Science.gov

Sample records for reflection-free one-way edge

  1. Cutting edge: back to "one-way" germinal centers.

    PubMed

    Meyer-Hermann, Michael E; Maini, Philip K

    2005-03-01

    The present status of germinal center (GC) research is revisited using in silico simulations based on recent lymphocyte motility data in mice. The generally adopted view of several rounds of somatic hypermutations and positive selection is analyzed with special emphasis on the spatial organization of the GC reaction. We claim that the development of dark zones is not necessary for successful GC reactions to develop. We find that a recirculation of positively selected centrocytes to the dark zone is rather unlikely. Instead we propose a scenario that combines a multiple-step mutation and selection concept with a "one-way" GC in the sense of cell migration.

  2. Observation of broadband unidirectional transmission by fusing the one-way edge states of gyromagnetic photonic crystals.

    PubMed

    Li, Zhen; Wu, Rui-xin; Li, Qing-Bo; Lin, Zhi-fang; Poo, Yin; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-04-20

    We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission.

  3. Optimization of one-way wave equations.

    USGS Publications Warehouse

    Lee, M.W.; Suh, S.Y.

    1985-01-01

    The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors

  4. One-way transformation of information

    DOEpatents

    Cooper, James A.

    1989-01-01

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two.

  5. Experimental one-way quantum computing.

    PubMed

    Walther, P; Resch, K J; Rudolph, T; Schenck, E; Weinfurter, H; Vedral, V; Aspelmeyer, M; Zeilinger, A

    2005-03-10

    Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

  6. Logica's one-way VSAT system

    NASA Astrophysics Data System (ADS)

    Barrington-Cook, J. I.

    1991-01-01

    Logica has recently produced the main 'collection and forwarding' element for a comprehensive one-way VSAT system. The system is designed to utilize the extra bandwidth available from direct-to-home broadcasts using the MAC/packet television standard, in order to provide point-to-multipoint data transmission via satellite. The expectation of very large volumes of supply for standard decoders, together with the large amount of bandwidth available, suggest that extremely low cost data transmission may become available. The system is designed to provide the necessary infrastructure to allow this bulk data, low cost approach to be offered for small scale and ad-hoc data transmission.

  7. Acoustic topological insulator and robust one-way sound transport

    NASA Astrophysics Data System (ADS)

    He, Cheng; Ni, Xu; Ge, Hao; Sun, Xiao-Chen; Chen, Yan-Bin; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-12-01

    Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin-orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.

  8. One-way regular electromagnetic mode immune to backscattering.

    PubMed

    Deng, Xiaohua; Hong, Lujun; Zheng, Xiaodong; Shen, Linfang

    2015-05-10

    In this paper, we present a basic model of robust one-way electromagnetic modes at microwave frequencies, which is formed by a semi-infinite gyromagnetic yttrium-iron-garnet with dielectric cladding terminated by a metal plate. It is shown that this system supports not only one-way surface magnetoplasmons (SMPs) but also a one-way regular mode, which is guided by the mechanism of total internal reflection. Like one-way SMPs, the one-way regular mode can be immune to backscattering, and two types of one-way modes together make up a complete dispersion band for the system.

  9. Improved technique for one-way transformation of information

    DOEpatents

    Cooper, J.A.

    1987-05-11

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.

  10. One-way electromagnetic waveguide using multiferroic Fibonacci superlattices

    NASA Astrophysics Data System (ADS)

    Tang, Zhenghua; Lei, Dajun; Huang, Jianquan; Jin, Gui; Qiu, Feng; Yan, Wenyan

    2015-12-01

    The multiferroic Fibonacci superlattices (MFSs) are composed of single-phase multiferroic domains with polarization and magnetization according to the rule of Fibonacci sequence. We propose to construct a one-way electromagnetic waveguide by the MFSs. The forbidden band structures of the MFSs for the forward and backward electromagnetic waves are not completely overlapped, and an obvious translation between them occurs around the fixed point ω bar = 1 with broken time-reversal and space inversion symmetries (TRSIS), which indicates the existence of one-way electromagnetic modes in the MFSs. Transmission spectrum is utilized to present this property and to indicate further one-way electromagnetic modes lying within the polaritonic band gap. The maximum forbidden bandwidth (divided by midgap frequency) of 5.4% for the backward electromagnetic wave (BEW) is found, in which the forward electromagnetic wave (FEW) can pass. The functions of one-way propagation modes and polaritonic band gap integrated into the MFSs can miniaturize the one-way photonic devices. The properties can also be applied to construct compact microwave isolators.

  11. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  12. One-way quantum computation with circuit quantum electrodynamics

    SciTech Connect

    Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun

    2010-03-15

    In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.

  13. Detail of one way mirror, mail slot, and electrical box ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of one way mirror, mail slot, and electrical box at sentry post no. 3, top of east stairs near the end of second floor corridor - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  14. One-way quantum computing in the optical frequency comb.

    PubMed

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  15. One-way Ponderomotive Barrier in a Uniform Magnetic Field

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2005-02-14

    The possibility of an asymmetric ponderomotive barrier in a nonuniform dc magnetic field by high-frequency radiation near the cyclotron resonance for selected plasma species was contemplated in Physics of Plasmas 11 (November 2004) 5046-5064. Here we show that a similar one-way barrier, which reflects particles incident from one side while transmitting those incident from the opposite side, can be produced also in a uniform magnetic field, entirely due to inhomogeneity of high-frequency drive.

  16. On measuring the one-way speed of light

    NASA Astrophysics Data System (ADS)

    Spavieri, G.

    2012-03-01

    The crucial problem of how to synchronize clocks and measure the one-way speed of light was originally discussed by Poincaré and Einstein. After being neglected for many decades, the Poincaré-Einstein problem of synchronization revived in 1977 with the work of Mansouri and Sexl, by which the one-way speed remains undetermined, allowing for unequal values of the speed of light in opposite directions. We review this problem in the framework of relativistic theories that assume clock-retardation and rod-contraction. We show that, for preferred frame theories, convection or "open" currents yield a magnetic field that depends on the velocity v with respect to the preferred frame S o . We also outline an experiment, based on Faraday's law of induction, that can determine the velocity v, identify S o , and test special relativity versus preferred frame theories. This result resolves the Poincaré-Einstein problem and shows that, in principle, the one-way speed c can be measured.

  17. Successive positive contrast in one-way avoidance learning.

    PubMed

    Cándido, Antonio; Maldonado, Antonio; Rodríguez, Alicia; Morales, Alberto

    2002-04-01

    The main finding of these experiments was a positive contrast effect in one-way avoidance learning. Experiment 1 showed that increasing safety time during one-way avoidance training led to improved performance, surpassing that of a control group that had received the high reward (safe time) from the beginning of training. Experiment 2 showed that a similar positive contrast effect occurred when the time spent in the danger compartment before the onset of the warning signal was shortened. These results suggest that time spent in a safe context acts as a reinforcer of the avoidance response; however, its incentive value depends not only on its duration, but also on the length of the time spent in the danger compartment before the onset of the signal. Overall, results also suggest that the avoidance response is a mixture of flight (motivated by fear) and approach (to a safe place) behaviour. The specific weight of the flight or approach component may be a function of the time and the amount of activation of each emotional state (fear or relief) due to opponent homeostatic compensatory processes that occur in the danger and safe compartments during one-way avoidance learning.

  18. One-way visibility using two parallel aerosol clouds.

    PubMed

    Alyones, Sharhabeel; Bruce, Charles W; Granado, Michael; Jelinek, Al V

    2015-01-01

    In this article, we experimentally and theoretically test the range of applicability of a patent that predicts one-way visibility through two successive parallel aerosol clouds, one scattering dominant and the other absorption dominant. A laboratory environment experiment has been designed to determine the ranges of transmissivity and contrast enhancement that might be of interest for military applications. In this study we show that transmissivities in the several percent range and lower are essential for any reasonable contrast enhancement between the two sides of the clouds.

  19. Universal linear Bogoliubov transformations through one-way quantum computation

    SciTech Connect

    Ukai, Ryuji; Yoshikawa, Jun-ichi; Iwata, Noriaki; Furusawa, Akira; Loock, Peter van

    2010-03-15

    We show explicitly how to realize an arbitrary linear unitary Bogoliubov (LUBO) transformation on a multimode quantum state through homodyne-based one-way quantum computation. Any LUBO transformation can be approximated by means of a fixed, finite-sized, sufficiently squeezed Gaussian cluster state that allows for the implementation of beam splitters (in form of three-mode connection gates) and general one-mode LUBO transformations. In particular, we demonstrate that a linear four-mode cluster state is a sufficient resource for an arbitrary one-mode LUBO transformation. Arbitrary-input quantum states including non-Gaussian states could be efficiently attached to the cluster through quantum teleportation.

  20. Acoustic one-way open tunnel by using metasurface

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Fan; Zou, Xin-Ye; Liang, Bin; Cheng, Jian-Chun

    2015-09-01

    We design and experimentally demonstrate an acoustic tunnel completely open for substances like fluids or other energy fluxes to exchange while allowing sound to pass only in one direction. This significant feature is based on a distinctive mechanism using metasurface pairs to yield asymmetric extraordinary reflections along opposite directions. Theoretical analysis is presented to analytically predict the trajectory of the wave. The experimental results agree well with the numerical results and the theoretical predictions. Our design may pave the way to more versatile acoustic one-way devices with potential applications in many scenarios like duct noise control and ultrasonic therapy.

  1. One-way glass for microwaves using nonreciprocal metamaterials.

    PubMed

    Degiron, A; Smith, D R

    2014-05-01

    We introduce a class of nonreciprocal metamaterials based on composite assemblies of metallic and biased ferrimagnetic elements. We show that such structures act as ultrathin one-way glasses due to the competition between two modes at the surface of the ferrimagnetic elements--a low-loss surface wave that transmits the signal on the other side of the structure and a surface spin-wave resonance that produces strong isolation levels. These findings can be adapted to existing metamaterial geometries, offering a blueprint to achieve unidirectional propagation in a variety of artificial media at radio, microwave, and millimeter wave frequencies.

  2. One way Doppler extractor. Volume 1: Vernier technique

    NASA Technical Reports Server (NTRS)

    Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.

    1974-01-01

    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.

  3. One way Doppler Extractor. Volume 2: Digital VCO technique

    NASA Technical Reports Server (NTRS)

    Nossen, E. J.; Starner, E. R.

    1974-01-01

    A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.

  4. One-way ANOVA based on interval information

    NASA Astrophysics Data System (ADS)

    Hesamian, Gholamreza

    2016-08-01

    This paper deals with extending the one-way analysis of variance (ANOVA) to the case where the observed data are represented by closed intervals rather than real numbers. In this approach, first a notion of interval random variable is introduced. Especially, a normal distribution with interval parameters is introduced to investigate hypotheses about the equality of interval means or test the homogeneity of interval variances assumption. Moreover, the least significant difference (LSD method) for investigating multiple comparison of interval means is developed when the null hypothesis about the equality of means is rejected. Then, at a given interval significance level, an index is applied to compare the interval test statistic and the related interval critical value as a criterion to accept or reject the null interval hypothesis of interest. Finally, the method of decision-making leads to some degrees to accept or reject the interval hypotheses. An applied example will be used to show the performance of this method.

  5. Destination Mars: Colonization via Initial One-way Missions

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, D.; Davies, P.

    Earth is located in a dangerous part of the universe. Threats to life on Earth are manifold and range from asteroid impacts to supernova explosions and from supervolcano eruptions to human-induced disasters. If the survival of the human species is to be ensured for the long term, then life on Earth has to spread to other planetary bodies. Mars is the most Earth-like planet we currently know and is the second closest planet; further it possesses a moderate surface gravity, an atmosphere, abundant water and carbon dioxide, together with a range of essential minerals. Thus, Mars is ideally suited to be a first colonization target. Here we argue that the most practical way that this can be accomplished is via a series of initial one-way human missions.

  6. Epidemic spreading on one-way-coupled networks

    NASA Astrophysics Data System (ADS)

    Wang, Lingna; Sun, Mengfeng; Chen, Shanshan; Fu, Xinchu

    2016-09-01

    Numerous real-world networks (e.g., social, communicational, and biological networks) have been observed to depend on each other, and this results in interconnected networks with different topology structures and dynamics functions. In this paper, we focus on the scenario of epidemic spreading on one-way-coupled networks comprised of two subnetworks, which can manifest the transmission of some zoonotic diseases. By proposing a mathematical model through mean-field approximation approach, we prove the global stability of the disease-free and endemic equilibria of this model. Through the theoretical and numerical analysis, we obtain interesting results: the basic reproduction number R0 of the whole network is the maximum of the basic reproduction numbers of the two subnetworks; R0 is independent of the cross-infection rate and cross contact pattern; R0 increases rapidly with the growth of inner infection rate if the inner contact pattern is scale-free; in order to eradicate zoonotic diseases from human beings, we must simultaneously eradicate them from animals; bird-to-bird infection rate has bigger impact on the human's average infected density than bird-to-human infection rate.

  7. Dynamics of cold atoms crossing a one-way barrier

    NASA Astrophysics Data System (ADS)

    Thorn, Jeremy J.; Schoene, Elizabeth A.; Li, Tao; Steck, Daniel A.

    2009-06-01

    We implemented an optical one-way potential barrier that allows ultracold R87b atoms to transmit through when incident on one side of the barrier but reflect from the other. This asymmetric barrier is a realization of Maxwell’s demon, which can be employed to produce phase-space compression and has implications for cooling atoms and molecules not amenable to standard laser-cooling techniques. The barrier comprises two focused Gaussian laser beams that intersect the focus of a far-off-resonant single-beam optical dipole trap that holds the atoms. The main barrier beam presents a state-dependent potential to incident atoms, while the repumping barrier beam optically pumps atoms to a trapped state. We investigated the robustness of the barrier asymmetry to changes in the barrier-beam separation, the initial atomic potential energy, the intensity of the second beam, and the detuning of the first beam. We performed simulations of the atomic dynamics in the presence of the barrier, showing that the initial three-dimensional momentum distribution plays a significant role, and that light-assisted collisions are likely the dominant loss mechanism. We also carefully examined the relationship to Maxwell’s demon and explicitly accounted for the apparent decrease in entropy for our particular system.

  8. Compressive Membrane Capability Estimates in Laterally Edge Restrained Reinforced Concrete One-Way Slabs

    DTIC Science & Technology

    1999-05-01

    LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT NSN 7640-01-280-5500 Standard Form 298 (Rev. 2-69) Pre ;erlbed by ANSI Sti. Z39-18 298-102 MAqY...peak load capacity as in Park’s deformation theory, to equate work done by the loads to the dissipated energy. Each of these methods requires a pre ... pre -determined deflection, but instead required a pre -determined thrust value. The known thrust (i.e., prestress) was used in the axial force-moment

  9. Virulence conversion of Legionella pneumophila: a one-way phenomenon.

    PubMed Central

    Catrenich, C E; Johnson, W

    1988-01-01

    Previous investigations have shown that Legionella pneumophila converts from virulence to avirulence after passage on supplemented Mueller-Hinton (SMH) agar and may convert back to virulence after passage in guinea pigs. However, there is no additional information concerning the apparent interconversion of virulent and avirulent derivatives of L. pneumophila cultures. We investigated the stability of a parental virulent culture and its avirulent derivatives and the growth and viability of these cultures on charcoal-yeast extract (CYE) and SMH agars. Avirulent derivatives of a highly virulent L. pneumophila culture were obtained by passage of the virulent parent culture on SMH agar. The only time a virulent L. pneumophila culture was recoverable from an avirulent culture was when the avirulent culture was derived from a saline suspension of a virulent culture which had been passaged only five times on SMH agar. When an avirulent culture was derived from a virulent culture passaged 25 times on SMH agar or from an isolated colony which grew on a SMH agar plate, we were unable to recover a virulent culture after successive passage through guinea pigs. These results suggest that the conversion process which occurs between virulent and avirulent forms of L. pneumophila is a one-way phenomenon from virulence to avirulence and that stable avirulent derivatives can be isolated. Furthermore, our findings suggest that SMH agar acts as a selective medium for the growth of avirulent L. pneumophila, and growth on SMH agar may be a phenotypic marker for avirulence. Virulent cells, although unable to grow on SMH agar, may remain viable for several passages on SMH agar and propagate when inoculated into guinea pigs. Images PMID:3182073

  10. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  11. One-way invisible cloak using parity-time symmetric transformation optics.

    PubMed

    Zhu, Xuefeng; Feng, Liang; Zhang, Peng; Yin, Xiaobo; Zhang, Xiang

    2013-08-01

    We propose a one-way invisible cloak using transformation optics of parity-time (PT) symmetric optical materials. At the spontaneous PT-symmetry breaking point, light is scattered only for incidence along one direction since the phase-matching condition is unidirectionally satisfied, making the cloak one-way invisible. Moreover, optical scattering from the one-way cloak can be further engineered to realize more interesting effects, for example, creating a unidirectional optical illusion of the concealed object.

  12. 47 CFR 90.490 - One-way paging operations in the private services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... directly from telephone positions in the public switched telephone network. When land stations are multiple... 47 Telecommunication 5 2012-10-01 2012-10-01 false One-way paging operations in the private... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way...

  13. 47 CFR 90.490 - One-way paging operations in the private services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... directly from telephone positions in the public switched telephone network. When land stations are multiple... 47 Telecommunication 5 2014-10-01 2014-10-01 false One-way paging operations in the private... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way...

  14. On the Experimental Determination of the One-Way Speed of Light

    ERIC Educational Resources Information Center

    Perez, Israel

    2011-01-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…

  15. Nonlinear behavior analysis of spur gear pairs with a one-way clutch

    NASA Astrophysics Data System (ADS)

    Gill-Jeong, Cheon

    2007-04-01

    Nonlinear behavior analysis of a paired spur gear system with a one-way clutch was used to verify whether a one-way clutch is effective for reducing torsional vibration. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior, such as softening nonlinearity and jump phenomena. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch, and double-side contact could be prevented, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of various parameter changes than installing one only on the input or output side.

  16. One-way helical electromagnetic wave propagation supported by magnetized plasma

    PubMed Central

    Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang

    2016-01-01

    In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally. PMID:26883883

  17. One-way quantum deficit and quantum coherence in the anisotropic XY chain

    NASA Astrophysics Data System (ADS)

    Ye, Biao-Liang; Li, Bo; Zhao, Li-Jun; Zhang, Hai-Jun; Fei, Shao-Ming

    2017-03-01

    In this study, we investigate pairwise non-classical correlations measured using a one-way quantum deficit as well as quantum coherence in the XY spin-1/2 chain in a transverse magnetic field for both zero and finite temperatures. The analytical and numerical results of our investigations are presented. In the case when the temperature is zero, it is shown that the one-way quantum deficit can characterize quantum phase transitions as well as quantum coherence. We find that these measures have a clear critical point at λ = 1. When λ ≤ 1, the one-way quantum deficit has an analytical expression that coincides with the relative entropy of coherence. We also study an XX model and an Ising chain at the finite temperatures.

  18. Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements.

    PubMed

    Li, Ke; Smith, Graeme

    2015-04-24

    We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multifold product states. The approximation is measured by distinguishability under measurements that are implementable by fully-one-way local operations and classical communication (LOCC). Our result strengthens Brandão and Harrow's de Finetti theorem where a kind of partially-one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multipartite entanglement with an amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.

  19. Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Smith, Graeme

    2015-04-01

    We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multifold product states. The approximation is measured by distinguishability under measurements that are implementable by fully-one-way local operations and classical communication (LOCC). Our result strengthens Brandão and Harrow's de Finetti theorem where a kind of partially-one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multipartite entanglement with an amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.

  20. One-way steering of optical fields via dissipation of an atomic reservoir

    NASA Astrophysics Data System (ADS)

    Rao, Shi; Hu, Xiangming; Li, Lingchao; Xu, Jun

    2016-11-01

    Einstein-Podolsky-Rosen (EPR) steering as a form of quantum correlation lies between entanglement and Bell nonlocality and exhibits an inherent asymmetry between two observers. We study EPR steering of two fields, which are generated via four-wave mixing processes and are entangled with each other due to the dissipation of the atomic reservoir. It is shown that the one-way steering happens from one mode to the other for different cavity decay rates and not too small cooperation parameters. Depending on the adiabatic and nonadiabatic conditions, the one-way steering occurs in a different detuning region when the cooperation parameters are relatively small. An increase in the cooperation parameters leads to an increase both in the parameter region and in the degree for the one-way steering. Finally we generalize the present scheme to the cases of the bright and/or collective fields.

  1. Bending self-collimated one-way light by using gyromagnetic photonic crystals

    SciTech Connect

    Li, Qing-Bo; Li, Zhen; Wu, Rui-xin

    2015-12-14

    We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.

  2. Transmission mechanism with parallel transmission systems including one way clutches, one being lockable

    SciTech Connect

    Akashi, T.; Ito, H.; Yamada, S.

    1986-03-18

    A transmission mechanism is described which consists of: an input shaft; an output shaft; a first on-off clutch; a second on-off clutch; a first one way clutch; a second one way clutch; a first gear train having a first reduction gear ratio; a second gear train having a second reduction gear ratio smaller than the first reduction gear ratio; a third gear train having a third reduction gear ratio smaller than the second reduction gear ratio; a fourth gear train having a fourth gear reduction gear ratio smaller than the third reduction gear ratio; a first synchronizer which connects the input shaft and the output shaft; and a second synchronizer which connects the input shaft and the output shaft via a series connection of the second on-off clutch, the second one way clutch, and the second gear train when the second synchronizer is shifted to a first side of a neutral position thereof so as to transmit rotational power from the input shaft to the output shaft in the normal rotational direction and which connects the input shaft and the output shaft via a series connection of the second on-off clutch, the second one way clutch, and the fourth gear train when the second synchronizer is shifted to a second side of the neutral position of the second synchronizer so as to transmit rotational power from the input shaft to the output shaft in the normal rotational direction.

  3. Teaching Principles of One-Way Analysis of Variance Using M&M's Candy

    ERIC Educational Resources Information Center

    Schwartz, Todd A.

    2013-01-01

    I present an active learning classroom exercise illustrating essential principles of one-way analysis of variance (ANOVA) methods. The exercise is easily conducted by the instructor and is instructive (as well as enjoyable) for the students. This is conducive for demonstrating many theoretical and practical issues related to ANOVA and lends itself…

  4. Perceptual shrinkage of a one-way motion path with high-speed motion

    PubMed Central

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4–100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  5. [Molecular basis of one-way serological reaction between SINV and XJ-160 virus].

    PubMed

    Wang, Li-hua; Fu, Shi-hong; Yang, Yi-liang; Zhu, Wu-yang; Tang, Qing; Liang, Guo-dong

    2010-05-01

    The purpose of this study is to elucidate the molecular mechanism of one-way serological reaction between XJ-160 virus and SINV by recombinant viruses which exchanged the glycoprotein genes individually or simultaneously. Three recombinant viruses were obtained based on the whole-length infectious cDNA clone of XJ-160 virus. The infectivity and pathogenesis to BHK-21 cells and animals were studied and the gene which controlled this one-way serological reaction phenomenon was searched by MCPENT. The results showed that the E2 glycoprotein was the main factor which influenced the growth rate, plaque morphology and pathogenicity of BHK-21 cells and suckling mice. The results of MCPENT showed that the E2 glycoprotein of SINV played a major role in this one-way serological reaction phenomenon. Our study identified the SINE2 gene was the determined gene for one way serological reaction between XJ-160 virus and SINV, and this research laid the foundation for further analysis of the genomic structure and function of SINV.

  6. More Than One Way to Catch a Fish: Effective Translation of Ocean Science for the Public

    DTIC Science & Technology

    2006-09-01

    translation is one way to make science and technical information more accessible to the public and thereby, improve scientific literacy of many Americans...We present three information translation models that promote scientific and technical literacy . I. INTRODUCTION As more Americans live... literacy ). The organizational structure of the Operations and Education groups (Figure 1) highlights how the two groups interact to provide

  7. A Note on Noncentrality Parameters for Contrast Tests in a One-Way Analysis of Variance

    ERIC Educational Resources Information Center

    Liu, Xiaofeng Steven

    2010-01-01

    The noncentrality parameter for a contrast test in a one-way analysis of variance is based on the dot product of 2 vectors whose geometric meaning in a Euclidian space offers mnemonic hints about its constituents. Additionally, the noncentrality parameters for a set of orthogonal contrasts sum up to the noncentrality parameter for the omnibus…

  8. Quantitative Comparison of Three Standardization Methods Using a One-Way ANOVA for Multiple Mean Comparisons

    ERIC Educational Resources Information Center

    Barrows, Russell D.

    2007-01-01

    A one-way ANOVA experiment is performed to determine whether or not the three standardization methods are statistically different in determining the concentration of the three paraffin analytes. The laboratory exercise asks students to combine the three methods in a single analytical procedure of their own design to determine the concentration of…

  9. 47 CFR 90.490 - One-way paging operations in the private services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way paging... governing the radio service in which a licensee's radio system is authorized, paging operations are... directly from telephone positions in the public switched telephone network. When land stations are...

  10. 47 CFR 90.490 - One-way paging operations in the private services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way paging... governing the radio service in which a licensee's radio system is authorized, paging operations are... directly from telephone positions in the public switched telephone network. When land stations are...

  11. 47 CFR 90.490 - One-way paging operations in the private services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way paging... governing the radio service in which a licensee's radio system is authorized, paging operations are... directly from telephone positions in the public switched telephone network. When land stations are...

  12. Developing English and Spanish Literacy in a One-Way Spanish Immersion Program

    ERIC Educational Resources Information Center

    Hollingsworth, Lindsay Kay

    2013-01-01

    This quantitative, causal-comparative study examined the possible cause and effect relationship between educational programming, specifically one-way Spanish immersion and traditional English-only, and native English-speaking fifth graders' vocabulary and reading comprehension. Archival data was used to examine students' reading achievement as…

  13. A wind-powered one-way bistable medium with parity effects

    NASA Astrophysics Data System (ADS)

    Rosenberger, Tessa; Schattgen, Graham; King-Smith, Matthew; Shrestha, Prakrit; Maxted, Katsuo J.; Lindner, John F.

    2017-02-01

    We describe the design, construction, and dynamics of low-cost mechanical arrays of 3D-printed bistable elements whose shapes interact with wind to couple them one-way. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Solitary waves or solitons propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in arrays with an even number of elements. Solitons propagate indefinitely in odd arrays that frustrate pairing. Large noise spontaneously creates soliton-antisoliton pairs. Soliton annihilation times increase quadratically with initial separations, as expected for random-walk models of soliton collisions.

  14. A wind-powered one-way bistable medium with parity effects.

    PubMed

    Rosenberger, Tessa; Schattgen, Graham; King-Smith, Matthew; Shrestha, Prakrit; Maxted, Katsuo J; Lindner, John F

    2017-02-01

    We describe the design, construction, and dynamics of low-cost mechanical arrays of 3D-printed bistable elements whose shapes interact with wind to couple them one-way. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Solitary waves or solitons propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in arrays with an even number of elements. Solitons propagate indefinitely in odd arrays that frustrate pairing. Large noise spontaneously creates soliton-antisoliton pairs. Soliton annihilation times increase quadratically with initial separations, as expected for random-walk models of soliton collisions.

  15. Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering

    NASA Astrophysics Data System (ADS)

    Wollmann, Sabine; Walk, Nathan; Bennet, Adam J.; Wiseman, Howard M.; Pryde, Geoff J.

    2016-04-01

    Within the hierarchy of inseparable quantum correlations, Einstein-Podolsky-Rosen steering is distinguished from both entanglement and Bell nonlocality by its asymmetry—there exist conditions where the steering phenomenon changes from being observable to not observable, simply by exchanging the role of the two measuring parties. While this one-way steering feature has been previously demonstrated for the restricted class of Gaussian measurements, for the general case of positive-operator-valued measures even its theoretical existence has only recently been settled. Here, we prove, and then experimentally observe, the one-way steerability of an experimentally practical class of entangled states in this general setting. As well as its foundational significance, the demonstration of fundamentally asymmetric nonlocality also has practical implications for the distribution of the trust in quantum communication networks.

  16. A new periodogram using one-way analysis of variance for circadian rhythms.

    PubMed

    Shono, M; Shono, H; Ito, Y; Muro, M; Maeda, Y; Sugimori, H

    2000-06-01

    A new periodogram was proposed using one-way analysis of variance (ANOVA), termed ANOVA periodogram, in order to reveal a precise significant periodicity. Thirty 3-day complex computer-simulated time series with known periodicity (24 h) and three 2-h data-missing occurring periodically (23 h, 20 min) were used to compare the ANOVA periodogram with Enright's one. In results, the ANOVA periodogram was superior to Enright's periodogram in the accuracy of assessing the major periodicity.

  17. Experimental realization of Deutsch's algorithm in a one-way quantum computer.

    PubMed

    Tame, M S; Prevedel, R; Paternostro, M; Böhi, P; Kim, M S; Zeilinger, A

    2007-04-06

    We report the first experimental demonstration of an all-optical one-way implementation of Deutsch's quantum algorithm on a four-qubit cluster state. All the possible configurations of a balanced or constant function acting on a two-qubit register are realized within the measurement-based model for quantum computation. The experimental results are in excellent agreement with the theoretical model, therefore demonstrating the successful performance of the algorithm.

  18. A comparison of one-way video and two-way video educational videoteleconferencing

    NASA Astrophysics Data System (ADS)

    Hendrix, Craig L.

    1995-05-01

    The literature reviewed in this study supported the effectiveness of educational videoteleconferencing; however, relatively little research was found comparing the two most interactive types of educational videoteleconferencing systems. An experimental research project was conducted, attempting to determine which educational videoteleconferencing system is more effective. Specifically, this project was designed to answer the following question: Is live two-way video with two-way audio more effective than live one-way video with two-way audio educational videoteleconferencing (EVC)?

  19. Matched Bipartite Digraph Representation of Generalized Dynamical System Formed by One-way Barriers

    NASA Astrophysics Data System (ADS)

    Li, John; Mahoney, John; Mitchell, Kevin; Tom Solomon Collaboration

    2014-03-01

    We studied a dynamical system with stable and unstable manifolds that behave as one-way barriers, instead of separatrices in traditional dynamical system that are two-way barriers. This asymmetry gives rise to a richer dynamical behavior such as the overlapping of basins of attraction. The recently developed Burning Invariant Manifold (BIM) theory took a dynamical system approach to understand front propagation in Advection-Reaction-Diffusion systems, which have BIMs as the one-way barriers. Through numerical simulations under BIM theory, we found that although both unstable and stable BIMs are one-way barriers, unstable BIMs are the ones that we can experimentally observe the fronts converging onto, and the stable BIMs act as the basin boundaries. We further hypothesized a duality relation between the stable and unstable BIMs. Under the duality hypothesis, we developed a mechanism of the behavior of the system by reducing it back to a traditional system based on topology, and we found a simplification of the system by to summarize the topological information into a Matched Bipartite directed graph (MB digraph). This work was supported by the US National Science Foundation under grant PHY-0748828 and NSF Fellowship DGE-0937362.

  20. Measurement of one-way velocity of light and light-year

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance / interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration). Furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. In this report two methods of clock synchronization to solve this problem were proposed: The arriving-time difference of longitudinal-transverse wave (Ts - Tp) or ordinary-extraordinary light (Te - To) is measured by single clock at one end of a dual-speed transmission-line, the signal transmission-delay (from sending-end time Tx to receiving-end time Tp or To) calculated with wave-speed ratio is: (Tp -Tx) = (Ts -Tp) / ((Vp / Vs) - 1) or: (To -Tx) = (Te - To) / ((Vo / Ve ) - 1), where (Vp / Vs) = (E / k) 1/2 is Yang's / shear elastic-modulus ratio obtained by comparing two strains at same stress, (Vo / Ve) = (ne / no) is extraordinary/ordinary light refractive-index ratio obtained by comparing two deflection-angles. Then, two clocks at transmission-line two ends can be synchronized directly to measure the one-way velocity of light and light-year, which work as one earthquakestation with single clock measures first-shake-time and the distance to epicenter. The readings Na and Nb of two counters Ca and Cb with distance L are transferred into a computer C by two leads with transmission-delay Tac and Tbc respectively. The computer progressing subtraction operation exports steady value: (Nb - Na) = f (Ta - Tb ) + f (Tac - Tbc ), where f is the frequency of light-wave always passing Ca and Cb, Ta and Tb are the count-start time of Ca and Cb respectively. From the transmission-delay possess the spatial translational and rotational invariability, the computer exports steady value

  1. One-way acoustic mirror based on anisotropic zero-index media

    SciTech Connect

    Gu, Zhong-ming; Liang, Bin E-mail: jccheng@nju.edu.cn; Yang, Jing; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Li, Yong; Yang, Jun

    2015-11-23

    We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.

  2. Seismic Imaging, One-Way Wave Equations, Pseudodifferential Operators, Path Integrals, and all that Jazz

    NASA Astrophysics Data System (ADS)

    Artoun, Ojenie; David-Rus, Diana; Emmett, Matthew; Fishman, Lou; Fital, Sandra; Hogan, Chad; Lim, Jisun; Lushi, Enkeleida; Marinov, Vesselin

    2006-05-01

    In this report we summarize an extension of Fourier analysis for the solution of the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not achieved before through other methods for this problem.

  3. One-way acoustic mirror based on anisotropic zero-index media

    NASA Astrophysics Data System (ADS)

    Gu, Zhong-ming; Liang, Bin; Zou, Xin-ye; Yang, Jing; Li, Yong; Yang, Jun; Cheng, Jian-chun

    2015-11-01

    We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.

  4. Generating equally weighted test particles from the one-way flux of a drifting Maxwellian

    NASA Astrophysics Data System (ADS)

    Makkonen, T.; Airila, M. I.; Kurki-Suonio, T.

    2015-01-01

    The problem of generating equally weighted test particles from the one way flux of drifting Maxwellian is tackled. This paper extends previous work on the subject by presenting a simple and efficient rejection sampling algorithm together with C++ source files. The properties of the underlying probability distribution function, having the form of a normal distribution times x with positive support, are also disseminated. The method presented in this paper has been successfully used to combine fluid and kinetic models for trace impurity problems in plasma physics.

  5. Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing.

    PubMed

    Chen, Sai; Fan, Fei; He, Xiaotong; Chen, Meng; Chang, Shengjiang

    2015-11-01

    A magneto-metasurface is demonstrated for one-way transmission of terahertz (THz) waves and magnetic field sensing. Due to the magneto-optical effect and the asymmetric structure of the transmission system, magnetoplasmon mode splitting for forward and backward THz waves and one-way transmission has been observed in this magneto-metasurface. Significantly, the resonance of the magneto-metasurface has been found that can remain at 0.750 THz at a temperature of 218 K, performing as a stable isolator with an isolation of larger than 30 dB within a magnetic field disturbance from 0.23 to 0.35 T. Also, since the resonance of the magneto-metasurface can be tuned by the different external magnetic fields at a temperature that is higher or lower than 218 K, the magneto-metasurface can work as a highly sensitive magnetic field sensor. The sensitivity of this device reaches S=513.05  GHz·T(-1) when T=230  K. This multifunctional magneto-metasurface has broad potential in THz application systems.

  6. Experimental realization of a one-way quantum computer algorithm solving Simon's problem.

    PubMed

    Tame, M S; Bell, B A; Di Franco, C; Wadsworth, W J; Rarity, J G

    2014-11-14

    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's problem-a black-box period-finding problem that has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.

  7. One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial.

    PubMed

    Zhao, Junming; Sun, Liang; Zhu, Bo; Feng, Yijun

    2015-02-23

    This paper presents the proposal and practical design of a one-way absorber for selective linearly polarized electromagnetic (EM) wave. The EM wave polarization rotation property has been combined with polarization selective absorption utilizing a composite metamaterial slab. The energy of certain linearly polarized EM wave can be absorbed along one particular incident direction, but will be fully transmitted through the opposite direction. For the cross polarized wave, the direction dependent propagation properties are totally reversed. A prototype designed with a total slab thickness of only one-sixth of the operating wavelength is verified through both full-wave simulation and experimental measurement in the microwave regime. It achieves absorption efficiency over 83% along one direction, while transmission efficiency over 83% along the opposite direction for one particular linearly polarized wave. The proposed one-way absorber can be applied in EM devices achieving asymmetric transmission for linearly polarized wave or polarization control. The composite metamaterial that combines different functionalities into one design may provide more potential in metamaterial designs for various applications.

  8. Extending the CLAST sequential rule to one-way ANOVA under group sampling.

    PubMed

    Ximénez, Carmen; Revuelta, Javier

    2007-02-01

    Several studies have demonstrated that the fixed-sample stopping rule (FSR), in which the sample size is determined in advance, is less practical and efficient than are sequential-stopping rules. The composite limited adaptive sequential test (CLAST) is one such sequential-stopping rule. Previous research has shown that CLAST is more efficient in terms of sample size and power than are the FSR and other sequential rules and that it reflects more realistically the practice of experimental psychology researchers. The CLAST rule has been applied only to the t test of mean differences with two matched samples and to the chi-square independence test for twofold contingency tables. The present work extends previous research on the efficiency of CLAST to multiple group statistical tests. Simulation studies were conducted to test the efficiency of the CLAST rule for the one-way ANOVA for fixed effects models. The ANOVA general test and two linear contrasts of multiple comparisons among treatment means are considered. The article also introduces four rules for allocating N observations to J groups under the general null hypothesis and three allocation rules for the linear contrasts. Results show that the CLAST rule is generally more efficient than the FSR in terms of sample size and power for one-way ANOVA tests. However, the allocation rules vary in their optimality and have a differential impact on sample size and power. Thus, selecting an allocation rule depends on the cost of sampling and the intended precision.

  9. Exact Markov chain and approximate diffusion solution for haploid genetic drift with one-way mutation.

    PubMed

    Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia

    2016-02-01

    The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates.

  10. Seasonal Ventilation of the Stratosphere: Robust Diagnostics from One-Way Flux Distributions

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Holzer, Mark; Polvani, Lorenzo M.; Waugh, Darryn W.; Li, Feng; Oman, Luke D.; Newman, Paul A.

    2014-01-01

    We present an analysis of the seasonally varying ventilation of the stratosphere using one-way flux distributions. Robust transport diagnostics are computed using GEOSCCM subject to fixed present-day climate forcings. From the one-way flux, we determine the mass of the stratosphere that is in transit since entry through the tropical tropopause to its exit back into the troposphere, partitioned according to stratospheric residence time and exit location. The seasonalities of all diagnostics are quantified with respect to the month of year (a) when air enters the stratosphere, (b) when the mass of the stratosphere is partitioned, and (c) when air exits back into the troposphere. We find that the return flux, within 3 months since entry, depends strongly on when entry occurred: (34 +/- 10)% more of the air entering the stratosphere in July leaves poleward of 45 deg N compared to air that enters in January. The month of year when the air mass is partitioned is also found to be important: The stratosphere contains about six times more air of tropical origin during late summer and early fall that will leave poleward of 45 deg within 6 months since entering the stratosphere compared to during late winter to late spring. When the entire mass of the air that entered the stratosphere at the tropics regardless of its residence time is considered, we find that (51 +/- 1)% and (39 +/- 2)% will leave poleward of 10 deg in the Northern Hemisphere (NH) and Southern Hemisphere (SH), respectively.

  11. One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael

    2016-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.

  12. Rectification and one-way street for the energy current in boundary-driven asymmetric quantum spin chains

    NASA Astrophysics Data System (ADS)

    Pereira, Emmanuel

    2017-03-01

    Motivated by the demand for efficient quantum devices to engineer energy transport, we analyze some inhomogeneous quantum spin systems, including X X Z chains, with magnetization baths at the ends. With a goal of finding general properties, we study the effects of suitable transformations on the boundary-driven Lindblad master equation associated with the dynamics of the systems. For asymmetric models with target polarization at the edges or twisted X Y boundary gradients, we show the properties of the steady state, which establish the features of the energy current irrespective of the system size and the regime of transport. We show the ubiquitous occurrence of energy rectification and, more interestingly, of an unusual phenomenon: in the absence of an external magnetic field, there is a one-way street for the energy current, i.e., the direction of the energy current does not change as we invert the magnetization baths at the boundaries. Given the extensiveness of the procedures, which essentially involve the properties of the Lindblad master equation, our results certainly follow for other interactions and other boundary conditions. Moreover, our results indicate graded spin chains as genuine quantum rectifiers.

  13. Demonstration of Orbit Determination for the Lunar Reconnaissance Orbiter Using One-Way Laser Ranging Data

    NASA Technical Reports Server (NTRS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-01-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. More over the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02,November2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12h (approximately equals 6

  14. Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-09-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. Moreover the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02, November 2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12 h (≈6 successive LRO orbits

  15. Transport properties of MOPhC/metal one-way waveguide

    SciTech Connect

    Eyderman, Sergey; Kuzmiak, Vladimir

    2011-10-03

    We have demonstrated numerically that the interface between metal and uniformly magnetized 2D photonic crystal(PC) fabricated from a transparent dielectric magneto-optic(MO) material possesses a one-way frequency range where only a forward propagating surface plasmon polariton mode is allowed to propagate. By using a simple theoretical model we have shown that nonreciprocity is introduced by the MO properties of the PC. Transport properties of the structures within this frequency range have been investigated by FDTD method which enables to calculating propagation of EM waves through media with full tensorial MO permittivity. We found that in the presence of a time-dependent external magnetic field interesting features associated with the redistribution of the EM field appear.

  16. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    PubMed Central

    Jiang, Xue; Liang, Bin; Zou, Xin-ye; Yang, Jing; Yin, Lei-lei; Yang, Jun; Cheng, Jian-chun

    2016-01-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973

  17. One-way rotation of a molecule-rotor driven by a shot noise.

    PubMed

    Echeverria, Jorge; Monturet, Serge; Joachim, Christian

    2014-03-07

    The shot noise of a tunneling current passing through a molecule-motor can sustain a one-way rotation when populating the molecular excited states by tunneling inelastic excitations. We demonstrate that a ratchet-like ground state rotation potential energy curve is not necessary for the rotation to occur. A relative shift in energy difference between the maxima of this ground state and the minima of the excited states is the necessary condition to get to a unidirectional rotation. The rotor speed of rotation and its rotation direction are both controlled by this shift, indicating the necessity of a careful design of both the ground and excited states of the next generation of molecule-motors to be able to generate a motive power at the nanoscale.

  18. One-way quantum key distribution: Simple upper bound on the secret key rate

    SciTech Connect

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2006-11-15

    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol.

  19. Gencrypt: one-way cryptographic hashes to detect overlapping individuals across samples

    PubMed Central

    Turchin, Michael C.; Hirschhorn, Joel N.

    2012-01-01

    Summary: Meta-analysis across genome-wide association studies is a common approach for discovering genetic associations. However, in some meta-analysis efforts, individual-level data cannot be broadly shared by study investigators due to privacy and Institutional Review Board concerns. In such cases, researchers cannot confirm that each study represents a unique group of people, leading to potentially inflated test statistics and false positives. To resolve this problem, we created a software tool, Gencrypt, which utilizes a security protocol known as one-way cryptographic hashes to allow overlapping participants to be identified without sharing individual-level data. Availability: Gencrypt is freely available under the GNU general public license v3 at http://www.broadinstitute.org/software/gencrypt/ Contact: joelh@broadinstitute.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22302573

  20. A one-way shooting algorithm for transition path sampling of asymmetric barriers.

    PubMed

    Brotzakis, Z Faidon; Bolhuis, Peter G

    2016-10-28

    We present a novel transition path sampling shooting algorithm for the efficient sampling of complex (biomolecular) activated processes with asymmetric free energy barriers. The method employs a fictitious potential that biases the shooting point toward the transition state. The method is similar in spirit to the aimless shooting technique by Peters and Trout [J. Chem. Phys. 125, 054108 (2006)], but is targeted for use with the one-way shooting approach, which has been shown to be more effective than two-way shooting algorithms in systems dominated by diffusive dynamics. We illustrate the method on a 2D Langevin toy model, the association of two peptides and the initial step in dissociation of a β-lactoglobulin dimer. In all cases we show a significant increase in efficiency.

  1. Optimal sample size allocation for Welch's test in one-way heteroscedastic ANOVA.

    PubMed

    Shieh, Gwowen; Jan, Show-Li

    2015-06-01

    The determination of an adequate sample size is a vital aspect in the planning stage of research studies. A prudent strategy should incorporate all of the critical factors and cost considerations into sample size calculations. This study concerns the allocation schemes of group sizes for Welch's test in a one-way heteroscedastic ANOVA. Optimal allocation approaches are presented for minimizing the total cost while maintaining adequate power and for maximizing power performance for a fixed cost. The commonly recommended ratio of sample sizes is proportional to the ratio of the population standard deviations or the ratio of the population standard deviations divided by the square root of the ratio of the unit sampling costs. Detailed numerical investigations have shown that these usual allocation methods generally do not give the optimal solution. The suggested procedures are illustrated using an example of the cost-efficiency evaluation in multidisciplinary pain centers.

  2. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-06-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.

  3. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  4. A one-way shooting algorithm for transition path sampling of asymmetric barriers

    NASA Astrophysics Data System (ADS)

    Brotzakis, Z. Faidon; Bolhuis, Peter G.

    2016-10-01

    We present a novel transition path sampling shooting algorithm for the efficient sampling of complex (biomolecular) activated processes with asymmetric free energy barriers. The method employs a fictitious potential that biases the shooting point toward the transition state. The method is similar in spirit to the aimless shooting technique by Peters and Trout [J. Chem. Phys. 125, 054108 (2006)], but is targeted for use with the one-way shooting approach, which has been shown to be more effective than two-way shooting algorithms in systems dominated by diffusive dynamics. We illustrate the method on a 2D Langevin toy model, the association of two peptides and the initial step in dissociation of a β-lactoglobulin dimer. In all cases we show a significant increase in efficiency.

  5. One-way Tamm plasmon polaritons at the interface between magnetophotonic crystals and conducting metal oxides

    NASA Astrophysics Data System (ADS)

    Dong, Hui Yuan; Wang, Jin; Cui, Tie Jun

    2013-01-01

    We demonstrate theoretically the existence of one-way Tamm plasmon polaritons on the interface between magnetophotonic crystals and conducting metal oxides. In contrast to conventional surface plasmon-polaritons (SPPs), Tamm plasmon polaritons (TPPs) occur at frequencies above the bulk plasma frequency of the conducting materials, provided that the dispersion curves of such surface modes lie outside the light cone for the conducting oxides and simultaneously fall into the photonic band gap of the magnetophotonic crystal. The nonreciprocal properties of TPPs are caused by violation of the periodicity and time-reversal symmetry in the structure. Calculations on the field distribution and transmission spectra through the structure are employed to confirm the theoretical results, which could potentially impact on a broad range of SPP-related phenomena in applications.

  6. Bronchoscopic treatment of complex persistent air leaks with endobronchial one-way valves.

    PubMed

    Fiorelli, Alfonso; Costanzo, Saveria; Carelli, Emanuele; Di Costanzo, Emilio; Santini, Mario

    2016-04-01

    We reported a case series including 5 patients with persistent air-leaks refractory to standard treatment. All patients were unfit for surgery for the presence of co-morbidities and/or severe respiratory failure due to underlying lung diseases. They were successfully treated with bronchoscopic placement of endobronchial one-way valves. Air-leaks stopped in the first 24 h after the procedure in three patients and 3 and 5 days later, respectively, in the remaining two. No complications were observed and follow-up was uneventful in all patients but one died 25 days after the procedure for systemic sepsis due to peritonis. Patients with important, refractory air leaks having clinical repercussions and unfit for surgery should be early reviewed for bronchoscopic valves treatment.

  7. Analysis of one-way laser ranging data to LRO, time transfer and clock characterization

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2017-02-01

    We processed and analyzed one-way laser ranging data from International Laser Ranging Service ground stations to NASA's Lunar Reconnaissance Orbiter (LRO), obtained from June 13, 2009 until September 30, 2014. We pair and analyze the one-way range observables from station laser fire and spacecraft laser arrival times by using nominal LRO orbit models based on the GRAIL gravity field. We apply corrections for instrument range walk, as well as for atmospheric and relativistic effects. In total we derived a tracking data volume of ≈ 3000 hours featuring 64 million Full Rate and 1.5 million Normal Point observations. From a statistical analysis of the dataset we evaluate the experiment and the ground station performance. We observe a laser ranging measurement precision of 12.3 cm in case of the Full Rate data which surpasses the LOLA timestamp precision of 15 cm. The averaging to Normal Point data further reduces the measurement precision to 5.6 cm. We characterized the LRO clock with fits throughout the mission time and estimated the rate to 6.9 × 10-8, the aging to 1.6 × 10-12/day and the change of aging to 2.3 × 10-14 /day2over all mission phases. The fits also provide referencing of onboard time to the TDB time scale at a precision of 166 ns over two and 256 ns over all mission phases, representing ground to space time transfer. Furthermore we measure ground station clock differences from the fits as well as from simultaneous passes which we use for ground to ground time transfer from common view observations. We observed relative offsets ranging from 33 to 560 ns and relative rates ranging from 2 × 10-13 to 6 × 10-12 between the ground station clocks during selected mission phases. We study the results from the different methods and discuss their applicability for time transfer.

  8. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton.

    PubMed

    Ochiai, Tetsuyuki

    2015-02-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range.

  9. Crafting zero-bias one-way transport of charge and spin

    NASA Astrophysics Data System (ADS)

    Foa Torres, L. E. F.; Dal Lago, V.; Suárez Morell, E.

    2016-02-01

    We explore the electronic structure and transport properties of a metal on top of a (weakly coupled) two-dimensional topological insulator. Unlike the widely studied junctions between topological nontrivial materials, the systems studied here allow for a unique band structure and transport steering. First, states on the topological insulator layer may coexist with the gapless bulk and, second, the edge states on one edge can be selectively switched off, thereby leading to nearly perfect directional transport of charge and spin even in the zero bias limit. We illustrate these phenomena for Bernal stacked bilayer graphene with Haldane or intrinsic spin-orbit terms and a perpendicular bias voltage. This opens a path for realizing directed transport in materials such as van der Waals heterostructures, monolayer, and ultrathin topological insulators.

  10. Analysis of One-Way Laser Ranging Data to LRO, Time Transfer and Clock Characterization

    NASA Technical Reports Server (NTRS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-01-01

    We processed and analyzed one-way laser ranging data from International Laser Ranging Service ground stations to NASA's Lunar Reconnaissance Orbiter (LRO), obtained from June 13, 2009 until September 30, 2014. We pair and analyze the one-way range observables from station laser fire and spacecraft laser arrival times by using nominal LRO orbit models based on the GRAIL gravity field. We apply corrections for instrument range walk, as well as for atmospheric and relativistic effects. In total we derived a tracking data volume of approximately 3000 hours featuring 64 million Full Rate and 1.5 million Normal Point observations. From a statistical analysis of the dataset we evaluate the experiment and the ground station performance. We observe a laser ranging measurement precision of 12.3 centimeters in case of the Full Rate data which surpasses the LOLA (Lunar Orbiting Laser Altimeter) timestamp precision of 15 centimeters. The averaging to Normal Point data further reduces the measurement precision to 5.6 centimeters. We characterized the LRO clock with fits throughout the mission time and estimated the rate to 6.9 times10 (sup -8), the aging to 1.6 times 10 (sup -12) per day and the change of aging to 2.3 times 10 (sup -14) per day squared over all mission phases. The fits also provide referencing of onboard time to the TDB (Barycentric Dynamical Time) time scale at a precision of 166 nanoseconds over two and 256 nanoseconds over all mission phases, representing ground to space time transfer. Furthermore we measure ground station clock differences from the fits as well as from simultaneous passes which we use for ground to ground time transfer from common view observations. We observed relative offsets ranging from 33 to 560 nanoseconds and relative rates ranging from 2 times 10 (sup -13) to 6 times 10 (sup -12) between the ground station clocks during selected mission phases. We study the results from the different methods and discuss their applicability for time

  11. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation

    PubMed Central

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David

    2017-01-01

    Background As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. Objective The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. Methods According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. Results There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can

  12. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows.

    PubMed

    Gallin, Louis-Jonardan; Rénier, Mathieu; Gaudard, Eric; Farges, Thomas; Marchiano, Régis; Coulouvrat, François

    2014-05-01

    A numerical scheme is developed to simulate the propagation of weak acoustic shock waves in the atmosphere with no absorption. It generalizes the method previously developed for a heterogeneous medium [Dagrau, Rénier, Marchiano, and Coulouvrat, J. Acoust. Soc. Am. 130, 20-32 (2011)] to the case of a moving medium. It is based on an approximate scalar wave equation for potential, rewritten in a moving time frame, and separated into three parts: (i) the linear wave equation in a homogeneous and quiescent medium, (ii) the effects of atmospheric winds and of density and speed of sound heterogeneities, and (iii) nonlinearities. Each effect is then solved separately by an adapted method: angular spectrum for the wave equation, finite differences for the flow and heterogeneity corrections, and analytical method in time domain for nonlinearities. To keep a one-way formulation, only forward propagating waves are kept in the angular spectrum part, while a wide-angle parabolic approximation is performed on the correction terms. The numerical process is validated in the case of guided modal propagation with a shear flow. It is then applied to the case of blast wave propagation within a boundary layer flow over a flat and rigid ground.

  13. Integratable quarter-wave plates enable one-way angular momentum conversion.

    PubMed

    Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao

    2016-04-22

    Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing.

  14. Integratable quarter-wave plates enable one-way angular momentum conversion

    PubMed Central

    Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao

    2016-01-01

    Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing. PMID:27102332

  15. Effects of hippocampal stimulation on retention and extinction of one way active avoidance response in cats.

    PubMed

    Gralewicz, K; Gralewicz, S

    1984-01-01

    We found previously that hippocampal stimulation (HiSt) at 20 cps, 100 mikroA, applied jointly with a tone (500 Hz) CS in the course of retention test, improved the performance and retarded the extinction of one way active avoidance response (AAR) in cats. During this test failures to perform the AAR were not punished in all but two trials it the beginning of each session. The first experiment of the present studies demonstrated that - (i) the AAR facilitating the effect of HiSt might be prevented by m all electrolytic lesions made around the tips of the stimulating electrodes, (ii) large lesions of the hippocampus exerted little effect on the AAR acquisition, but the response was extinguished faster during the retention test. In the second experiment two response prevention trials (non-reinforced presentations of the CS with no possibility to make the AAR) were run at the beginning of each session after the end of training. In these conditions the HiSt resulted in a faster extinction of the AAR as compared with implanted unstimulated animals. Large lesions of the hippocampus had no effect on the extinction rate. We conclude that the facilitation of retrieval from memory may be responsible for the effects of HiSt on conditioned behavior.

  16. Building of one-way Hadamard gate for squeezed coherent states

    NASA Astrophysics Data System (ADS)

    Podoshvedov, Sergey A.

    2013-01-01

    We present an optical scheme to conditionally generate even or odd squeezed superpositions of coherent states (SSCSs). The optical setup consists of an unbalanced beam splitter whose transmittance tends to unity, and additional balanced beam splitters and photodetectors in auxiliary modes. Squeezed coherent states with different amplitudes are the input states in the optical scheme. The single-qubit operations are probabilistic and employ two- and three-photon subtractions from initial beams as the driving force. Generation of the even or odd SSCSs is observed in a wide diapason of values of used parameters. We consider a possibility to realize a one-way Hadamard gate for the squeezed coherent states when the base states are transformed into superposition states. States approximating the output states of a Hadamard gate with high fidelity can be realized by imposing restrictions on the values of used parameters. Higher-order subtractions from input beams are necessary to generate the SSCSs with larger amplitudes and higher fidelities. The problem is resolved in a Wigner representation to take into account imperfections of the optical devices.

  17. Two-factor authentication system based on optical interference and one-way hash function

    NASA Astrophysics Data System (ADS)

    He, Wenqi; Peng, Xiang; Meng, Xiangfeng; Liu, Xiaoli

    2012-10-01

    We present a two-factor authentication method to verify the personal identification who tries to access an optoelectronic system. This method is based on the optical interference principle and the traditional one-way Hash function (e.g. MD5). The authentication process is straightforward, the phase key and the password-controlled phase lock of one user are loading on two Spatial Light Modulators (SLMs) in advance, by which two coherent beams are modulated and then interference with each other at the output plane leading to an output image. By comparing the output image with all the standard certification images in the database, the system can thus verify the user's identity. However, the system designing process involves an iterative Modified Phase Retrieval Algorithm (MPRA). For an uthorized user, a phase lock is first created based on a "Digital Fingerprint (DF)", which is the result of a Hash function on a preselected user password. The corresponding phase key can then be determined by use of the phase lock and a designated standard certification image. Note that the encode/design process can only be realized by digital means while the authentication process could be achieved digitally or optically. Computer simulations were also given to validate the proposed approach.

  18. Evidence-based practice guidelines--one way to enhance clinical practice.

    PubMed

    Bailes, Barbara K

    2002-06-01

    Abdominoplasty and liposuction guidelines are just two of the guidelines that can be accessed and used to enhance patient care. Guidelines also can be used to increase your knowledge about many other health care topics. The NGC has approved guidelines for managing chronic pain, as well as guidelines on chronic diseases (e.g., diabetes mellitus, hypertension, chronic obstructive pulmonary disease). Many patients have chronic diseases, and you or your family members also may be affected by chronic disorders. These guidelines provide you with a quick overview of evidence-based treatment protocols. These guidelines are not a panacea for evidence-based practice, but using them is one way that perioperative nurses can enhance their clinical skills. Though not everyone has personal Internet access, most health care facilities do or can make access a reality. Other options include medical or public libraries. Then one simply has to access the NGC web site and join other professionals in improving the quality and timeliness of patient care.

  19. One-way water permeable valve via water-based superhydrophobic coatings

    NASA Astrophysics Data System (ADS)

    Mates, Joseph E.; Megaridis, Constantine M.

    2013-11-01

    Spray-cast superhydrophobic coatings have shown promise in commercial applications for fluid management due to their intrinsic low-cost, large-area capabilities and substrate independence (Schutzius et al. 2011). A technique of applying a light (< 2 gsm) water-based superhydrophobic coating on inherently hydrophilic cellulosic substrates to generate a preferred directionality for water absorption and transmission is presented. The mechanism described allows water to pass through a thin treated porous substrate in one direction under negligible pressure, but does not allow water to return from the opposite direction unless much greater pressure is applied. This pressure disparity ``window'' effectively creates a one-way fluid valve, with envisioned applications ranging from personal hygiene products, to oil-water separation and filtration. Combining SEM imaging with theoretical robustness factors (Tuteja et al. 2008), the penetration pressures are found to be tunable for application-specific designs by choosing a substrate based on limiting factors of fiber diameter and spacing. The process can also be modified with the addition of functionalized (e.g. antibacterial, conductive) nanoparticle fillers suited for the desired application.

  20. One-way membrane trafficking of SOS in receptor-triggered Ras activation

    PubMed Central

    Christensen, Sune M.; Tu, Hsiung-Lin; Jun, Jesse E.; Alvarez, Steven; Triplet, Meredith G.; Iwig, Jeffrey S.; Yadav, Kamlesh K.; Bar-Sagi, Dafna; Roose, Jeroen P.; Groves, Jay T.

    2016-01-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane-recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2:SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted membrane experiments, these Grb2-independent interactions are sufficient to retain SOS on the membrane for many minutes, during which a single SOS molecule can processively activate thousands of Ras molecules. These observations raise questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative reconstituted SOS-deficient chicken B cell signaling systems combined with single molecule measurements in supported membranes. These studies reveal an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until it is actively removed via endocytosis. PMID:27501536

  1. Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels

    NASA Astrophysics Data System (ADS)

    Larguinho, Miguel; Correia, Daniela; Diniz, Mário S.; Baptista, Pedro V.

    2014-08-01

    This work reports a one-way flow bioaccumulation of gold nanoparticles (AuNPs) in aquatic organisms between two trophic levels. First, Dunaliella salina cells were exposed to citrate-capped AuNPs at different concentrations and during distinct exposure periods to assess internalization and behavior. Afterward, D. salina was incubated with both citrate-capped and functionalized (PEGylated) AuNPs for 24 h and later fed to Mytilus galloprovincialis. Analysis was carried out to assess Au content, histological differences and oxidative stress. These algae were fed to the model organism M. galloprovincialis (Mediterranean mussel) as it is considered of major importance for assessing toxic effects and bioaccumulation of different pollutants in aquatic environments. Elemental Au analysis revealed an uptake of about 76 % of the initial amount of AuNPs (and 36 % for PEGylated AuNPs) in microalgae. Mussel gills and digestive gland showed variable Au content in individuals fed with D. salina previously exposed to AuNPs. No significant morphological alterations were observed in D. salina or mussel digestive glands. Glutathione-s-transferase activity and total antioxidant capacity were assessed as oxidative stress biomarkers showing that AuNPs are not prone to trigger the induction of defenses against oxidative stress.

  2. Analysis of the characteristics of GRACE dual one-way ranging system

    NASA Astrophysics Data System (ADS)

    Ko, Ung Dai

    The motivation for this research was an improvement of the quality of the Earth's gravity solutions from the GRACE mission data through an instrument-level study. The objective was a better understanding of the characteristics and sources of the high-frequency noise in the range of (0.02 ˜ 0.1 Hz) in the dual one-way ranging (DOWR) and its effect on the gravity solution. For this purpose, the mathematical model of the DOWR observation was derived and the Allan variance was computed to establish an upper bound on the level of frequency instability of the ultra-stable oscillators (USO) to determine their contribution to the high-frequency noise. Because they are dominated by the high-frequency noise, the postfit residuals of the time derivative of the DOWR ranges were also examined to evaluate the contributions of various other factors such as system noise from the microwave signal receiver, external influences, and internal influences. The results indicate that the system noise is the dominant source of the excessive high-frequency noise. As one method of mitigation, a tighter bandwidth filter was applied to the DOWR processing, resulting in modest improvements in gravity solutions.

  3. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking

    PubMed Central

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-01-01

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking. PMID:27387438

  4. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking.

    PubMed

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-07-08

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking.

  5. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking

    NASA Astrophysics Data System (ADS)

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-07-01

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking.

  6. COBE navigation with one-way return-link Doppler in the post-helium-venting phase

    NASA Astrophysics Data System (ADS)

    Dunham, Joan; Nemesure, M.; Samii, M. V.; Maher, M.; Teles, Jerome; Jackson, J.

    1991-12-01

    The results of a navigation experiment with one way return link Doppler tracking measurements for operational orbit determination of the Cosmic Background Explorer (COBE) spacecraft are presented. The frequency of the tracking signal for the one way measurements was stabilized with an Ultrastable Oscillator (USO), and the signal was relayed by the Tracking and Data Relay Satellite System (TDRSS). The study achieved three objectives: space qualification of TDRSS noncoherent one way return link Doppler tracking; determination of flight performance of the USO coupled to the second generation TDRSS compatible user transponder; and verification of algorithms for navigation using actual one way tracking data. Orbit determination and the inflight USO performance evaluation results are presented.

  7. More than one way to see it: Individual heuristics in avian visual computation.

    PubMed

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M; Fitch, W Tecumseh

    2015-10-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species' ability to process pattern classes or different species' performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds' choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally.

  8. More than one way to see it: Individual heuristics in avian visual computation

    PubMed Central

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M.; Fitch, W. Tecumseh

    2015-01-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. PMID:26113444

  9. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension.

    PubMed

    Wang, Hongxia; Zhou, Hua; Yang, Weidong; Zhao, Yan; Fang, Jian; Lin, Tong

    2015-10-21

    Thin porous materials that can spontaneously transport oil fluids just in a single direction have great potential for making energy-saving functional membranes. However, there is little data for the preparation and functionalities of this smart material. Here, we report a novel method to prepare one-way oil-transport fabrics and their application in detecting liquid surface tension. This functional fabric was prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate. Upon one-sided UV irradiation, the coated fabric shows a one-way transport feature that allows oil fluid transport automatically from the unirradiated side to the UV-irradiated surface, but it stops fluid transport in the opposite direction. The fabric still maintains high superhydrophobicity after UV treatment. The one-way fluid transport takes place only for the oil fluids with a specific surface tension value, and the fluid selectivity is dependent on the UV treatment time. Changing the UV irradiation time from 6 to 30 h broadened the one-way transport for fluids with surface tension from around 22.3 mN/m to a range of 22.3-56.7 mN/m. We further proved that this selective one-way oil transport can be used to estimate the surface tension of a liquid simply by observing its transport feature on a series of fabrics with different one-way oil-transport selectivities. To our knowledge, this is the first example to use one-way fluid-transport materials for testing the liquid surface tension. It may open up further theoretical studies and the development of novel fluid sensors.

  10. Heteroscedastic Tests Statistics for One-Way Analysis of Variance: The Trimmed Means and Hall's Transformation Conjunction

    ERIC Educational Resources Information Center

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2005-01-01

    To deal with nonnormal and heterogeneous data for the one-way fixed effect analysis of variance model, the authors adopted a trimmed means method in conjunction with Hall's invertible transformation into a heteroscedastic test statistic (Alexander-Govern test or Welch test). The results of simulation experiments showed that the proposed technique…

  11. Constant Time Delay: One Way to Provide Positive Behavioral Support for Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Stevens, Kay B.; Lingo, Amy S.

    2005-01-01

    Teachers of students with emotional and behavioral disorders (EBD) understand conceptually, emotionally, and legally the importance of using research-based procedures as well as positive behavioral supports. One way to provide positive behavioral support for students with EBD is constant time delay (CTD). CTD is an instructional delivery procedure…

  12. Adjusting for Unequal Variances when Comparing Means in One-Way and Two-Way Fixed Effects ANOVA Models.

    ERIC Educational Resources Information Center

    Wilcox, Rand R.

    1989-01-01

    Two methods of handling unequal variances in the two-way fixed effects analysis of variance (ANOVA) model are described. One is based on an improved Wilcox (1988) method for the one-way model, and the other is an extension of G. S. James' (1951) second order method. (TJH)

  13. Nonparametric One-Way Multivariate Analysis of Variance: A Computational Approach Based on the Pillai-Bartlett Trace.

    ERIC Educational Resources Information Center

    Zwick, Rebecca

    1985-01-01

    Describes how the test statistic for nonparametric one-way multivariate analysis of variance can be obtained by submitting the data to a packaged computer program. Monte Carlo evidence indicates that the nonparametric approach is advantageous under certain violations of the assumptions of multinormality and homogeneity of covariance matrices.…

  14. One Way or Another

    NASA Technical Reports Server (NTRS)

    Zazzali, Christian

    2003-01-01

    Even experienced project managers can t anticipate every potential problem. Part of planning ahead should include allowing oneself the flexibility to rethink the plan and improvise if necessary. Unique solutions to problems sometimes create a set of new problems unique in nature as well. In dealing with sudden changes in planning, try to consider what other elements of the project will be affected, but don t second guess yourself into a state of inaction because you can t anticipate every contingency.

  15. One-way light transport controlled by synthetic magnetic fluxes and {\\mathscr{P}}{\\mathscr{T}}-symmetric resonators

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2017-01-01

    Controlled directional light propagation using optical nonlinearity has previously been proposed. Here, we propose a one-way optical device with linear elements controlled by synthetic magnetic fluxes. The device consists of two parity–time symmetric side-coupled resonators with balanced gain and loss. The gain and loss break the reflection symmetry and the magnetic fluxes break the transmission symmetry. Through tuning the magnetic fluxes, reflectionless full transmission in one direction and transmissionless full reflection in the opposite direction can be achieved. The device acts as a light-checking valve, preventing wave propagation in one direction. The proposed one-way transporter uses the nonreciprocity induced by non-Hermiticity and magnetic fluxes without applying nonlinearity. We anticipate that our findings will be useful for optical control and manipulation.

  16. High-performance one-way transmission using pyramid-shaped silicon grating-coupled hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Hu, Jigang; Qing, Yeming; Wen, Zhengqian; Wu, Xiaohang; Ren, Rongze; Gao, Weiqing; Li, Dongmei; Gao, Feng

    2016-11-01

    An asymmetric transmission device has been presented to realize high-performance one-way transmission at visible frequencies. This device consists of a pair of non-symmetric pyramid-shaped silicon gratings separated by a metal/dielectric multilayer structure (MDMS). Simulation results demonstrates that, compared with conventional Cr grating, MDMS with pyramid-shaped silicon gratings will greatly enhance the coupling and decoupling between the propagating waves in free space and the high frequency modes in MDMS, rendering an improved oneway transmission performance. The improved one-way transmission performance offered by our design may hold great potential in designing the optical isolator and polarizer for ultra-compact photonic integrated circuit.

  17. Experimental Realization of a Reflections-Free Compact Delay Line Based on a Photonic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady

    2016-06-01

    Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices.

  18. Experimental Realization of a Reflections-Free Compact Delay Line Based on a Photonic Topological Insulator

    PubMed Central

    Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady

    2016-01-01

    Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices. PMID:27345575

  19. Reflex free double pass objective due to reflective free form surfaces

    NASA Astrophysics Data System (ADS)

    Buchheister, J.; Mueller, L.

    2008-09-01

    The retina camera is a very classical setup, which is mainly caused by the complex functional demands of this kind of systems. A lot of knowledge and experience is necessary in order to get the system parts working perfectly together at all multiple settings, so major changes in design will cause a new learning process. In example a lot of effort is paid to avoid undesirable reflected light, since the response of desired information of the retina is very weak and every direct reflex even from antireflection coated surfaces will overlap the desired information. The most disturbing undesirable reflected light is introduced by the so called ophthalmic lens, a refractive optical element dealing the double pass characteristics of the setup. Substituting the refractive optical element by reflecting surfaces will avoid the undesirable reflected light just by choice of the setup. It will be discussed the optical design concept of such a reflecting ophthalmic group, including the core idea and the steps leading to the final solution using reflecting free form surfaces. Furthermore, it will be shown the results of the related optical design study dealing the demands of the application retina camera.

  20. Three-dimensional study of a one-way, flexible magnetorheological elastomer-based micro fluid transport system

    NASA Astrophysics Data System (ADS)

    Behrooz, Majid; Gordaninejad, Faramarz

    2016-09-01

    This paper presents a three-dimensional study of a controllable flexible magnetically-activated micropump. The tubular micropump employs magnetically induced deformation of magnetorheological elastomer and one-way flexible conical valves for fluid transport. Three-dimensional magneto-fluid-solid interaction analysis is employed to investigate the performance of the system. The effects of key material, geometric, and magnetic parameters on the effectiveness of the system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.

  1. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states.

    PubMed

    Chen, Kai; Li, Che-Ming; Zhang, Qiang; Chen, Yu-Ao; Goebel, Alexander; Chen, Shuai; Mair, Alois; Pan, Jian-Wei

    2007-09-21

    We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special source, we implemented a highly efficient Grover's search algorithm and high-fidelity two-qubit quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.

  2. Resource cost results for one-way entanglement distillation and state merging of compound and arbitrarily varying quantum sources

    SciTech Connect

    Boche, H. Janßen, G.

    2014-08-01

    We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.

  3. Burning Invariant Manifold Theory and the Bipartite Digraph Representation of Generalized Dynamical System Formed by One-way Barriers

    NASA Astrophysics Data System (ADS)

    Li, John; Mahoney, John; Mitchell, Kevin; Solomon, Tom

    2013-11-01

    The recently developed Burning Invariant Manifold (BIM) theory took a dynamical system approach to understand front propagation in Advection-Reaction-Diffusion systems and successfully predicted both the short-term and asymptotic front behavior by finding the unstable BIMs which act as barriers to front propagation. Unlike separatrices in traditional dynamical system being two-way barriers, the BIMs are one-way barriers. This asymmetry gives rise to a much richer dynamical behavior than traditional dynamical systems. Through numerical simulations, we found that the stable BIMs are the basin boundaries. Based on the properties of BIM theory, we further derived a theory to investigate a dynamical system consists of one-way barriers and the cooperative behavior of these barriers. This theory reveals the global structure of both stable and unstable BIMs by first using a systematic algorithm to convert the flow to a bipartite digraph and then extracting information of the steady states of fronts and corresponding basins of attraction from the digraph. This work was supported by the US National Science Foundation under grant PHY-0748828 and NSF Fellowship DGE-0937362.

  4. Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators

    NASA Astrophysics Data System (ADS)

    Wu, R.-S.

    - Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent

  5. [Placement of one-way endobronchial valves to treat severe pulmonary emphysema in an 84-year-old].

    PubMed

    Carron, Kris O M

    2009-01-01

    An 84-year-old man with end-stage emphysema was hospitalised on two occasions because of an episode of severe COPD exacerbation, each time successfully treated in a classical pharmacological manner. Further analysis of a high-resolution CT chest scan revealed very pronounced destruction of the lung parenchyma in the left lower lobe. Moreover, the degree of destruction in the left lung was of a highly heterogeneous nature and fissure analysis revealed a complete left major fissure. After carefully weighing up the costs against the benefits, two one-way valves of different sizes were implanted in the orifices of the left lower lobe using video bronchoscopy. This intervention had a very satisfactory outcome with positive changes in the lung function parameters, imaging studies and quality of life. The inevitable placement in a nursing home could consequently be postponed and, at follow-up one year later, no exacerbation or pneumonia had developed since the intervention.

  6. Confidence intervals and sample size calculations for the weighted eta-squared effect sizes in one-way heteroscedastic ANOVA.

    PubMed

    Shieh, Gwowen

    2013-03-01

    Effect size reporting and interpreting practices have been extensively recommended in academic journals when primary outcomes of all empirical studies have been analyzed. This article presents an alternative approach to constructing confidence intervals of the weighted eta-squared effect size within the context of one-way heteroscedastic ANOVA models. It is shown that the proposed interval procedure has advantages over an existing method in its theoretical justification, computational simplicity, and numerical performance. For design planning, the corresponding sample size procedures for precise interval estimation of the weighted eta-squared association measure are also delineated. Specifically, the developed formulas compute the necessary sample sizes with respect to the considerations of expected confidence interval width and tolerance probability of interval width within a designated value. Supplementary computer programs are provided to aid the implementation of the suggested techniques in practical applications of ANOVA designs when the assumption of homogeneous variances is not tenable.

  7. Comparing One-way and Two-way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Givati, Amir; Gochis, David; Rummler, Thomas; Kunstmann, Harald; Yu, Wei

    2016-04-01

    A pair of hydro-meteorological modeling systems were calibrated and evaluated for the Ayalon basin in central Israel to assess the advantages and limitations of one-way versus two-way coupled modeling systems for flood prediction. The models used included the Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) model and the Weather Research and Forecasting (WRF) Hydro modeling system. The models were forced by observed, interpolated precipitation from rain-gauges within the basin, and with modeled precipitation from the WRF atmospheric model. Detailed calibration and evaluation was carried out for two major winter storms in January and December 2013. Then both modeling systems were executed and evaluated in an operational mode for the full 2014/2015 rainy season. Outputs from these simulations were compared to observed measurements from hydrometric stations at the Ayalon basin outlet. Various statistical metrics were employed to quantify and analyze the results: correlation, Root Mean Square Error (RMSE) and the Nash-Sutcliffe (NS) efficiency coefficient. Foremost, the results presented in this study highlight the sensitivity of hydrological responses to different sources of precipitation data, and less so, to hydrologic model formulation. With observed precipitation data both calibrated models closely simulated the observed hydrographs. The two-way coupled WRF/WRF-Hydro modeling system produced improved both the precipitation and hydrological simulations as compared to the one-way WRF simulations. Findings from this study suggest that the use of two-way atmospheric-hydrological coupling has the potential to improve precipitation and, therefore, hydrological forecasts for early flood warning applications. However more research needed in order to better understand the land-atmosphere coupling mechanisms driving hydrometeorological processes on a wider variety precipitation and terrestrial hydrologic systems.

  8. Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method

    NASA Astrophysics Data System (ADS)

    Wu, Ru-Shan

    1994-01-01

    In this paper a system of equations for wide-angle one-way elastic wave propagation in arbitrarily heterogeneous media is formulated in both the space and wavenumber domains using elastic Rayleigh integrals and local elastic Born scattering theory. The wavenumber domain formulation leads to compact solutions to one-way propagation and scattering problems. It is shown that wide-angle scattering in heterogeneous elastic media cannot be formulated as passage through regular phase-screens, since the interaction between the incident wavefield and the heterogeneities is not local in both the space domain and the wavenumber domain. Our more generally valid formulation is called the 'thin-slap; formulation. After applying the small-angle approximation, the thin slab effect degenerates to that of an elastic complex-screen (or generalized phase-screen). For the complex-screen method the cross-coupling term is neglected because it is higher order small quantity for small-angle scattering. Relative to prior derivations of vector phase-screen method, our method can correctly treat the conversion between P and S waves and the cross-coupling between differently polarized S waves. A comparison with solutions from three-dimensional finite difference and exact solutions using eigenfunctions expansion is made for two special cases. One is for a solid sphere with only P velocity pertubation; the other is with only S velocity perturbation. The Elastic complex-screen method generally agrees well with the three-dimensional finite difference method and the exact solutions. In the limiting case of scalar waves, the derivation in this paper leads to a move generally valid new method, namely, a scaler thin-slab method. When making the small-angle approximation to the interaction term while keeping the propagation term unchanged, the thin-slab method approaches the currently available scalar wide-angle phase screen method.

  9. A one-way coupled, Euler-Lagrangian simulation of bubble coalescence in a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Mattson, Michael; Mahesh, Krishnan

    2011-11-01

    A bubble coalescence model is developed using an Euler-Lagrangian approach for unstructured grids. The Eulerian carrier fluid is solved using large-eddy simulation (LES) and the Lagrangian particle motion is solved using one-way coupled equations relating the turbulent motion of the carrier fluid to the forces on each discrete bubble. The collision process is deterministic; bubble-bubble collisions are assumed to be binary and are modeled using a hard-sphere approach. A stochastic approach is used to model coalescence, with the probability of coalescence being a function of the bubble-bubble interaction timescale and the time to drain fluid between the colliding bubbles. Coalescence in a bubbly, turbulent pipe flow without buoyancy is simulated with conditions similar to a microgravity experiment by Colin, Fabre and Dukler [Int. J. Multiphase Flow (1991) 17:533-544] and excellent agreement of bubble size distribution is obtained between simulation and experiment. With increasing downstream distance, the number density of bubbles decreases due to coalescence and the average probability of coalescence decreases slightly due to an increase in overall bubble size. Supported by the U.S. Office of Naval Research under ONR Grant N00014-07-1-0420.

  10. One-way domain decomposition method with exact radiation condition and fast GMRES solver for the solution of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Stupfel, Bruno; Lecouvez, Matthieu

    2016-10-01

    For the solution of the time-harmonic electromagnetic scattering problem by inhomogeneous 3-D objects, a one-way domain decomposition method (DDM) is considered: the computational domain is partitioned into concentric subdomains on the interfaces of which Robin-type transmission conditions (TCs) are prescribed; an integral representation of the electromagnetic fields on the outer boundary constitutes an exact radiation condition. The global system obtained after discretization of the finite element (FE) formulations is solved via a Krylov subspace iterative method (GMRES). It is preconditioned in such a way that, essentially, only the solution of the FE subsystems in each subdomain is required. This is made possible by a computationally cheap H (curl)- H (div) transformation performed on the interfaces that separate the two outermost subdomains. The eigenvalues of the preconditioned matrix of the system are bounded by two, and optimized values of the coefficients involved in the local TCs on the interfaces are determined so as to maximize the minimum eigenvalue. Numerical experiments are presented that illustrate the numerical accuracy of this technique, its fast convergence, and legitimate the choices made for the optimized coefficients.

  11. Investigation of crystal structures of one-way shape memory Nitinol wire actuators for active steerable needle

    NASA Astrophysics Data System (ADS)

    Honarvar, Mohammad; Konh, Bardia; Hutapea, Parsaoran

    2015-04-01

    Due to its outstanding properties of Nitinol, known as shape memory and superelasticity, Nitinol wires have been used as actuators in many medical devices. For the medical applications, it is critical to have a consistent strain response of Nitinol wires. This work focuses on studying the effect of parameters such as biased stress, maximum temperature, and wire diameters that influence the strain response of Nitinol wires. Specifically, Nitinol phase transformations were studied from microstructural point of view. The crystal structures of one-way shape memory Nitinol wires of various diameters under different thermomechanical loading conditions were studied using X-Ray Diffraction (XRD) method. The location and intensity of characteristic peaks were determined prior and after the thermomechanical loading cycles. It was observed that Nitinol wires of diameters less than 0.19 mm exhibit unrecovered strain while heated to the range of 70ºC to 80ºC in a thermal cycle, whereas no unrecovered strains were found in larger wires. The observation was supported by the XRD patterns where the formation of R-phase crystal structure was showed in wire diameters less than 0.19 mm at room temperature.

  12. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in cleaninlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled time-marching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  13. Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  14. Challenging the One-Way Paradigm for More Effective Science Communication: A Critical Review of Two Public Campaigns Addressing Contentious Environmental Issues

    ERIC Educational Resources Information Center

    McEntee, Marie; Mortimer, Claire

    2013-01-01

    This article examines two large-scale public communication campaigns to explore the appropriateness and effectiveness of using one-way communication in contentious environmental issues. The findings show while one-way communication can be successfully employed in contentious issues, it is not appropriate for all contexts and may contribute to…

  15. Two-way against one-way nesting for climate downscaling in Europe and the Mediterranean region using LMDZ4

    NASA Astrophysics Data System (ADS)

    Li, Shan; Li, Laurent; Le Treut, Hervé

    2016-04-01

    In the 21st century, the estimated surface temperature warming projected by General Circulation Models (GCMs) is between 0.3 and 4.8 °C, depending on the scenario considered. GCMs exhibit a good representation of climate on a global scale, but they are not able to reproduce regional climate processes with the same level of accuracy. Society and policymakers need model projections to define climate change adaptation and mitigation policies on a global, regional and local scale. Climate downscaling is mostly conducted with a regional model nested into the outputs of a global model. This one-way nesting approach is generally used in the climate community without feedbacks from Regional Climate Models (RCMs) to GCMs. This lack of interaction between the two models may affect regional modes of variability, in particular those with a boundary conflict. The objective of this study is to evaluate a two-way nesting configuration that makes an interactive coupling between the RCM and the GCM, an approach against the traditional configuration of one-way nesting system. An additional aim of this work is to examine if the two-way nesting system can improve the RCM performance. The atmospheric component of the IPSL integrated climate model (LMDZ) is configured at both regional (LMDZ-regional) and global (LMDZ-global) scales. The two models have the same configuration for the dynamical framework and the physical forcings. The climatology values of sea surface temperature (SST) are prescribed for the two models. The stretched-grid of LMDZ-global is applied to a region defined by Europe, the Mediterranean, North Africa and Western North Atlantic. To ensure a good statistical significance of results, all simulations last at least 80 years. The nesting process of models is performed by a relaxation procedure of a time scale of 90 minutes. In the case of two-way nesting, the exchange between the two models is every two hours. The relaxation procedure induces a boundary conflict

  16. Early Mission Orbit Determination Error Analysis Results for Low-Earth Orbiting Missions using TDRSS Differenced One-way Doppler Tracking Data

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    Differencing multiple, simultaneous Tracking and Data Relay Satellite System (TDRSS) one-way Doppler passes can yield metric tracking data usable for orbit determination for (low-cost) spacecraft which do not have TDRSS transponders or local oscillators stable enough to allow the one-way TDRSS Doppler tracking data to be used for early mission orbit determination. Orbit determination error analysis results are provided for low Earth orbiting spacecraft for various early mission tracking scenarios.

  17. Cosmic background explorer (COBE) navigation with TDRSS one-way return-link Doppler in the post-helium-venting phase

    NASA Technical Reports Server (NTRS)

    Nemesure, M.; Dunham, J.; Maher, M.; Teles, J.; Jackson, J.

    1991-01-01

    A navigation experiment was performed which establishes Ultra-Stable Oscillator (USO) frequency stabilized one way return link Doppler TDRSS tracking data as a feasible option for mission orbit determination support at the Goddard Space Center Flight Dynamics Facility. The study was conducted using both one way and two way Tracking and Data Relay Satellite System (TDRSS) tracking measurements for the Cosmic Background Explorer (COBE) spacecraft. Tracking data for a 4 week period immediately follow the depletion of the helium supply was used. The study showed that, for both definitive orbit solution and short term orbit prediction (up to 4 weeks), orbit determination results based on one way return link Doppler tracking measurements are comparable to orbit determination results based on two way range and two way Doppler tracking measurements.

  18. Cosmic background explorer (COBE) navigation with TDRSS one-way return-link Doppler in the post-helium-venting phase

    NASA Astrophysics Data System (ADS)

    Nemesure, M.; Dunham, J.; Maher, M.; Teles, J.; Jackson, J.

    1991-10-01

    A navigation experiment was performed which establishes Ultra-Stable Oscillator (USO) frequency stabilized one way return link Doppler TDRSS tracking data as a feasible option for mission orbit determination support at the Goddard Space Center Flight Dynamics Facility. The study was conducted using both one way and two way Tracking and Data Relay Satellite System (TDRSS) tracking measurements for the Cosmic Background Explorer (COBE) spacecraft. Tracking data for a 4 week period immediately follow the depletion of the helium supply was used. The study showed that, for both definitive orbit solution and short term orbit prediction (up to 4 weeks), orbit determination results based on one way return link Doppler tracking measurements are comparable to orbit determination results based on two way range and two way Doppler tracking measurements.

  19. One-way return-link Doppler navigation with the Tracking and Data Satellite System (TDRSS) - The ultrastable oscillator (USO) experiment on the Cosmic Background Explorer (COBE)

    NASA Astrophysics Data System (ADS)

    Dunham, J. B.; Nemesure, M.; Teles, J.; Brown-Conwell, E. R.; Jackson, J. A.; Reamy, V. L.; Maher, M. J.; Elrod, B. D.

    The principal objectives of the USO experiment on the COBE spacecraft are defined, and results of space qualification studies for the COBE USO experiment are summarized. The principal objectives of the experiment are: (1) to determine flight performance of the USO coupled to the second-generation TDRSS transponder; (2) space qualify TDRSS noncoherent one-way return-link Doppler tracking; and (3) analyze algorithms for one-way navigation with real data. The three objectives of the experiment have been met in the first stage of the experiment analysis.

  20. 47 CFR 90.492 - One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands. 90.492 Section 90.492 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging...

  1. 47 CFR 90.492 - One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands. 90.492 Section 90.492 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging...

  2. 47 CFR 90.492 - One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands. 90.492 Section 90.492 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging...

  3. 47 CFR 90.492 - One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands. 90.492 Section 90.492 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging...

  4. 47 CFR 90.492 - One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false One way paging operations in the 806-824/851-869 MHz and 896-901/935-940 MHz bands. 90.492 Section 90.492 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging...

  5. Edge Bioinformatics

    SciTech Connect

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance

  6. One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Wang, Pei; Sridhar, Niranjan; Chen, Moran; Pfister, Olivier; Menicucci, Nicolas C.

    2016-09-01

    One-way quantum computing is experimentally appealing because it requires only local measurements on an entangled resource called a cluster state. Record-size, but nonuniversal, continuous-variable cluster states were recently demonstrated separately in the time and frequency domains. We propose to combine these approaches into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up to (3 ×103 frequencies) × (unlimited number of temporal modes) into a computationally universal continuous-variable cluster state. We introduce a generalized measurement protocol to enable improved computational performance on this entanglement resource.

  7. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing.

    PubMed

    Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2008-05-30

    We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.

  8. The early detection of lung cancer during follow-up of patients undergoing endobronchial one-way valve treatment for emphysema.

    PubMed

    Fiorelli, Alfonso; Costanzo, Saveria; di Costanzo, Emilio; Santini, Mario

    2015-03-01

    We describe the early detection of lung cancer during the follow-up of two emphysematous patients undergoing endobronchial treatment with one-way valves for severe dyspnea. In both cases, the lung function improvement achieved after the valves placement allowed their surgical treatment. In additional to standard follow-up for evaluating the progression of emphysema, such patients should be enrolled in a screening program. It may allow the early detection of lung cancer with the possibility for surgery in accordance with respiratory function of patient.

  9. There Is More than One Way to Crack an Oyster: Identifying Variation in Burmese Long-Tailed Macaque (Macaca fascicularis aurea) Stone-Tool Use

    PubMed Central

    Tan, Amanda; Tan, Say Hoon; Vyas, Dhaval; Malaivijitnond, Suchinda; Gumert, Michael D.

    2015-01-01

    We explored variation in patterns of percussive stone-tool use on coastal foods by Burmese long-tailed macaques (Macaca fascicularis aurea) from two islands in Laem Son National Park, Ranong, Thailand. We catalogued variation into three hammering classes and 17 action patterns, after examining 638 tool-use bouts across 90 individuals. Hammering class was based on the stone surface used for striking food, being face, point, and edge hammering. Action patterns were discriminated by tool material, hand use, posture, and striking motion. Hammering class was analyzed for associations with material and behavioural elements of tool use. Action patterns were not, owing to insufficient instances of most patterns. We collected 3077 scan samples from 109 macaques on Piak Nam Yai Island’s coasts, to determine the proportion of individuals using each hammering class and action pattern. Point hammering was significantly more associated with sessile foods, smaller tools, faster striking rates, smoother recoil, unimanual use, and more varied striking direction, than were face and edge hammering, while both point and edge hammering were significantly more associated with precision gripping than face hammering. Edge hammering also showed distinct differences depending on whether such hammering was applied to sessile or unattached foods, resembling point hammering for sessile foods and face hammering for unattached foods. Point hammering and sessile edge hammering compared to prior descriptions of axe hammering, while face and unattached edge hammering compared to pound hammering. Analysis of scans showed that 80% of individuals used tools, each employing one to four different action patterns. The most common patterns were unimanual point hammering (58%), symmetrical-bimanual face hammering (47%) and unimanual face hammering (37%). Unimanual edge hammering was relatively frequent (13%), compared to the other thirteen rare action patterns (<5%). We compare our study to other stone

  10. Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb.

    PubMed

    Fan, Fei; Xu, Shi-Tong; Wang, Xiang-Hui; Chang, Sheng-Jiang

    2016-11-14

    In this work, we investigate the nonreciprocal circular dichroism for terahertz (THz) waves in magnetized InSb by the theoretical calculation and numerical simulation, which indicates that longitudinally magnetized InSb can be applied to the circular polarizer and nonreciprocal one-way transmission for the circular polarization THz waves. Furthermore, we propose a double-layer magnetoplasmonics based on the longitudinally magnetized InSb, and find two MO enhancement mechanisms in this device: the magneto surface plasmon resonance on the InSb-metal surface and Fabry-Pérot resonances between two orthogonal metallic gratings. These two resonance mechanisms enlarge the MO polarization rotation and greatly reduce the external magnetic field below 0.1T. The one-way transmission and perfect linear polarization conversion can be realized over 70dB, of which the transmittance can be modulated from 0 to 80% when the weak magnetic field changes from 0 to 0.1T under the low temperature around 200K. This magnetoplasmonic device has broad potential as a THz isolator, modulator, polarization convertor, and filter in the THz application systems.

  11. Improved one-way hash chain and revocation polynomial-based self-healing group key distribution schemes in resource-constrained wireless networks.

    PubMed

    Chen, Huifang; Xie, Lei

    2014-12-18

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked.

  12. Role of Channel Lysines and the “Push Through a One-Way Valve” Mechanism of the Viral DNA Packaging Motor

    PubMed Central

    Fang, Huaming; Jing, Peng; Haque, Farzin; Guo, Peixuan

    2012-01-01

    Linear double-stranded DNA (dsDNA) viruses package their genomes into preformed protein shells via nanomotors using ATP as an energy source. The central hub of the bacteriophage ϕ29 DNA-packaging motor contains a 3.6-nm channel for dsDNA to enter during packaging and to exit during infection. The negatively charged interior channel wall is decorated with a total of 48 positively charged lysine residues displayed as four 12-lysine rings from the 12 gp10 subunits that enclose the channel. The standard notion derived from many models is that these uniquely arranged, positively charged rings play active roles in DNA translocation through the channel. In this study, we tested this prevailing view by examining the effect of mutating these basic lysines to alanines, and assessing the impact of altering the pH environment. Unexpectedly, mutating these basic lysine residues or changing the pH to 4 or 10, which could alter the charge of lysines, did not measurably impair DNA translocation or affect the one-way traffic property of the channel. The results support our recent findings regarding the dsDNA packaging mechanism known as the “push through a one-way valve”. PMID:22225806

  13. Improved One-Way Hash Chain and Revocation Polynomial-Based Self-Healing Group Key Distribution Schemes in Resource-Constrained Wireless Networks

    PubMed Central

    Chen, Huifang; Xie, Lei

    2014-01-01

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204

  14. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain

    NASA Astrophysics Data System (ADS)

    Ozgun, Ozlem; Apaydin, Gökhan; Kuzuoglu, Mustafa; Sevgi, Levent

    2011-12-01

    A MATLAB-based one-way and two-way split-step parabolic equation software tool (PETOOL) has been developed with a user-friendly graphical user interface (GUI) for the analysis and visualization of radio-wave propagation over variable terrain and through homogeneous and inhomogeneous atmosphere. The tool has a unique feature over existing one-way parabolic equation (PE)-based codes, because it utilizes the two-way split-step parabolic equation (SSPE) approach with wide-angle propagator, which is a recursive forward-backward algorithm to incorporate both forward and backward waves into the solution in the presence of variable terrain. First, the formulation of the classical one-way SSPE and the relatively-novel two-way SSPE is presented, with particular emphasis on their capabilities and the limitations. Next, the structure and the GUI capabilities of the PETOOL software tool are discussed in detail. The calibration of PETOOL is performed and demonstrated via analytical comparisons and/or representative canonical tests performed against the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD). The tool can be used for research and/or educational purposes to investigate the effects of a variety of user-defined terrain and range-dependent refractivity profiles in electromagnetic wave propagation. Program summaryProgram title: PETOOL (Parabolic Equation Toolbox) Catalogue identifier: AEJS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 143 349 No. of bytes in distributed program, including test data, etc.: 23 280 251 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) 2010a. Partial Differential Toolbox and Curve Fitting Toolbox required Computer: PC Operating system: Windows XP and

  15. Edge Detection,

    DTIC Science & Technology

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  16. More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway.

    PubMed

    Clegg, Steven; Wilson, Janet; Johnson, Jeremiah

    2011-05-01

    Many gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms.

  17. Haemodynamics of giant cerebral aneurysm: A comparison between the rigid-wall, one-way and two-way FSI models

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.

  18. The effects of three-dimensional defects on one-way surface plasmon propagation for photonic topological insulators comprised of continuum media

    PubMed Central

    Hassani Gangaraj, S. Ali; Nemilentsau, Andrei; Hanson, George W.

    2016-01-01

    We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss. PMID:27444542

  19. Solar wind interaction with Mars Upper atmosphere: Results from the one-way coupling between the Multi-fluid MHD model and the M-TGCM model

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Nagy, A. F.; Brain, D. A.; Najib, D.

    2012-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered great interest in recent years. Among the large number of topics in this research area, the investigation of ion escape rates has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3D Mars neutral atmosphere profiles from the well-regarded Mars Thermospheric Global Circulation Model (M-TGCM) and one-way couple it with the 3D BATS-R-US Mars multi-fluid MHD model that solves separate momentum equations for each ion species. The M-TGCM model takes into account the effects of the solar cycle (solar minimum: F10.7=70 and solar maximum: F10.7=200 with equinox condition: Ls=0), allowing us to investigate the effects of the solar cycle on the Mars upper atmosphere ion escape by using a one-way coupling, i.e., the M-TGCM model outputs are used as inputs for the multi-fluid MHD model. A case for solar maximum with extremely high solar wind parameters is also investigated to estimate how high the escape flux can be for such an extreme case. Moreover, the ion escape flux along a satellite trajectory will be studied. This has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN mission (2012-2016). In order to make the code run more efficiently, we adopt a more appropriate grid structure compared to the one used previously. This new grid structure will benefit us to investigate the effects of some dynamic events (such as CME and dust storm) on the ion escape flux.

  20. Tailored One-Way and Two-Way Shape Memory Capabilities of Poly(ɛ-Caprolactone)-Based Systems for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Pandini, Stefano; Riccò, Theonis; Borboni, Alberto; Bodini, Ileana; Vetturi, David; Cambiaghi, Danilo; Toselli, Maurizio; Paderni, Katia; Messori, Massimo; Pilati, Francesco; Chiellini, Federica; Bartoli, Cristina

    2014-07-01

    This paper investigates the shape memory capabilities of semicrystalline networks, focusing the attention on poly(ɛ-caprolactone) (PCL) systems, a class of materials that allows to satisfy important requirements for their applications as biomedical devices, such as the good biocompatibility, the fast recovery of large "temporary" shape configurations, and the easy tailoring of the transformation temperatures. The materials were prepared with various crosslink densities and crosslinking methodologies; in particular, beside a thermal crosslinking based on reactive methacrylic end groups, a novel type of covalently crosslinked semicrystalline systems was prepared by a sol-gel approach from alkoxysilane-terminated PCL precursors, so as to avoid potentially toxic additives typically used for free-radical thermal curing. The materials were subjected to biological tests, to study their ability in sustaining cell adhesion and proliferation, and to thermal characterizations, to evaluate the possibility to tailor their melting and crystallization temperatures. The one-way shape memory (i.e., the possibility to set the material in a given configuration and to recover its pristine shape) and the two-way shape memory response (i.e., the triggered change between two distinguished shapes on the application of an on-off stimulus) were studied by applying optimized thermo-mechanical cyclic histories. The ability to fix the applied shape and to recover the original one on the application of heating (i.e., the one-way effect) was evaluated on tensile bars; further, to investigate a potential application as self-expandable stents, isothermal shape memory experiments were carried out also on tubular specimens, previously folded in a temporary compact configuration. The two-way response was studied through the application of a constant load and of a heating/cooling cycle from above melting to below the crystallization temperature, leading to a reversible elongation/contraction effect

  1. Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350)

    SciTech Connect

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Martinez-Camara, Eduardo; Jimenez-Macias, Emilio

    2015-11-15

    The European Committee for Standardization (CEN) through its Technical Committee CEN/TC-350 is developing a series of standards for assessing the building sustainability, at both product and building levels. The practical application of the selection (decision making) of structural alternatives made by one-way slabs leads to an intermediate level between the product and the building. Thus the present study addresses this problem of decision making, following the CEN guidelines and incorporating relevant aspects of architectural design into residential construction. A life cycle assessment (LCA) is developed in order to obtain valid information for the decision making process (the LCA was developed applying CML methodology although Ecoindicator99 was used in order to facilitate the comparison of the values); this information (the carbon footprint values) is contrasted with other databases and with the information from the Environmental Product Declaration (EPD) of one of the lightening materials (expanded polystyrene), in order to validate the results. Solutions of different column disposition and geometries are evaluated in the three pillars of sustainable construction on residential construction: social, economic and environmental. The quantitative analysis of the variables used in this study enables and facilitates an objective comparison in the design stage by a responsible technician; the application of the proposed methodology reduces the possible solutions to be evaluated by the expert to 12.22% of the options in the case of low values of the column index and to 26.67% for the highest values. - Highlights: • Methodology for selection of structural alternatives in buildings with one-way slabs • Adapted to CEN guidelines (CEN/TC-350) for assessing the building sustainability • LCA is developed in order to obtain valid information for the decision making process. • Results validated comparing carbon footprint, databases and Env. Product Declarations

  2. Combined Bone Marrow-Derived Mesenchymal Stromal Cell Therapy and One-Way Endobronchial Valve Placement in Patients with Pulmonary Emphysema: A Phase I Clinical Trial.

    PubMed

    de Oliveira, Hugo Goulart; Cruz, Fernanda Ferreira; Antunes, Mariana Alves; de Macedo Neto, Amarilio Vieira; Oliveira, Guilherme Augusto; Svartman, Fabio Munhoz; Borgonovo, Tamara; Rebelatto, Carmen Lucia Kuniyoshi; Weiss, Daniel J; Brofman, Paulo Roberto Slud; Morales, Marcelo Marcos; Lapa E Silva, José Roberto; Rocco, Patricia Rieken Macedo

    2017-03-01

    One-way endobronchial valves (EBV) insertion to reduce pulmonary air trapping has been used as therapy for chronic obstructive pulmonary disease (COPD) patients. However, local inflammation may result and can contribute to worsening of clinical status in these patients. We hypothesized that combined EBV insertion and intrabronchial administration of mesenchymal stromal cells (MSCs) would decrease the inflammatory process, thus mitigating EBV complications in severe COPD patients. This initial study sought to investigate the safety of this approach. For this purpose, a phase I, prospective, patient-blinded, randomized, placebo-controlled design was used. Heterogeneous advanced emphysema (Global Initiative for Chronic Lung Disease [GOLD] III or IV) patients randomly received either allogeneic bone marrow-derived MSCs (10(8) cells, EBV+MSC) or 0.9% saline solution (EBV) (n = 5 per group), bronchoscopically, just before insertion of one-way EBVs. Patients were evaluated 1, 7, 30, and 90 days after therapy. All patients completed the study protocol and 90-day follow-up. MSC delivery did not result in acute administration-related toxicity, serious adverse events, or death. No significant between-group differences were observed in overall number of adverse events, frequency of COPD exacerbations, or worsening of disease. Additionally, there were no significant differences in blood tests, lung function, or radiological outcomes. However, quality-of-life indicators were higher in EBV + MSC compared with EBV. EBV + MSC patients presented decreased levels of circulating C-reactive protein at 30 and 90 days, as well as BODE (Body mass index, airway Obstruction, Dyspnea, and Exercise index) and MMRC (Modified Medical Research Council) scores. Thus, combined use of EBV and MSCs appears to be safe in patients with severe COPD, providing a basis for subsequent investigations using MSCs as concomitant therapy. Stem Cells Translational Medicine 2017;6:962-969.

  3. Space Weather at Mars: 3-D studies using one-way coupling between the Multi-fluid MHD, M-GITM and M-AMPS models

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei

    This dissertation presents numerical simulation results of the solar wind interaction with the Martian upper atmosphere by using three comprehensive 3-D models: the Mars Global Ionosphere Thermosphere Model (M-GITM), the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS), and the BATS-R-US Mars multi-fluid MHD (MF-MHD) model. The coupled framework has the potential to provide improved predictions for ion escape rates for comparison with future data to be returned by the MAVEN mission (2014-2016) and thereby improve our understanding of present day escape processes. Estimates of ion escape rates over Mars history must start from properly validated models that can be extrapolated into the past. This thesis aims to build a model library for the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, which will thus enhance the science return from the MAVEN mission. In this thesis, we aim to address the following four main scientific questions by adopting the one-way coupled framework developed here: (1) What are the Martian ion escape rates at the current epoch and ancient times? (2) What controls the ion escape processes at the current epoch? How are the ion escape variations connected to the solar cycle, crustal field orientation and seasonal variations? (3) How do the variable 3-D cold neutral thermosphere and hot oxygen corona affect the solar wind-Mars interaction? (4) How does the Martian atmosphere respond to extreme variations (e.g., ICMEs) in the solar wind and its interplanetary environment? These questions are closely related to the primary scientific goals of NASA's MAVEN mission and European Space Agency's Mars Express (MEX) mission. We reasonably answer all these four questions at the end of this thesis by employing the one-way coupled framework and comparing the simulation results with both MEX and MAVEN observational data.

  4. Plans to improve the experimental limit in the comparison of the east-west and west-east one-way light propagation times on the rotating earth

    NASA Technical Reports Server (NTRS)

    Alley, C. O.; Kiess, T. E.; Nelson, R. A.; Sergienko, A. V.; Shih, Y. H.; Wang, B. C.; Yang, F. M.

    1993-01-01

    The preceding paper describes the results so far (interrupted in the Spring of 1989 because of lack of funds) of an experiment comparing the one-way light propagation times on the surface of the rotating Earth. For the 20 Km path length component in the East-West direction the predicted difference between the opposite sense propagation times would be 160 ps, if the approximately 360 Km/s surface speed of the Earth gives effective light speeds of 3 x 10(exp 8) m/s +/- 360 m/s. This could lead to a prediction of the difference between the clock transport and the light pulse synchronization methods described in the preceding paper: delta(T) = 0.5 (160) = 80 ps. The current upper bound of approximately 100 ps for delta(T) is limited by poorly understood systematic errors. The most important seems to be intensity-dependent time delays in the remote light pulse avalanche photo-diode detector. This will be replaced by a continuously operating circular scan streak camera having single photon sensitivity and a time resolution of approximately 5 ps. (This camera has recently been developed by the Xian Institute of Optics and Precision Mechanics in the P.R.C.). Better isolation from shocks and vibration for the Sigma-Tau hydrogen maser during transport will be provided. It is hoped that delta(T) is less than 20 ps can be achieved.

  5. Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multifluid MHD model and the MTGCM model

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Bougher, Stephen W.; Ma, Yingjuan; Toth, Gabor; Nagy, Andrew F.; Najib, Dalal

    2014-04-01

    The 3-D multifluid Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) MHD code (MF-MHD) is coupled with the 3-D Mars Thermospheric general circulation model (MTGCM). The ion escape rate from the Martian upper atmosphere is investigated by using a one-way coupling approach, i.e., the MF-MHD model incorporates the effects of 3-D neutral atmosphere profiles from the MTGCM model. The calculations are carried out for two cases with different solar cycle conditions. The calculated total ion escape flux (the sum of three major ionospheric species, O+, O2+, and CO2+) for solar cycle maximum conditions (6.6×1024 s-1) is about 2.6 times larger than that of solar cycle minimum conditions (2.5×1024 s-1). Our simulation results show good agreement with recent observations of 2-3×1024 s-1 (O+, O2+, and CO2+) measured near solar cycle minimum conditions by Mars Express. An extremely high solar wind condition is also simulated which may mimic the condition of coronal mass ejections or corotating interaction regions passing Mars. Simulation results show that it can lead to a significant value of the escape flux as large as 4.3×1025s-1.

  6. Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common genetic mechanism

    PubMed Central

    Feldman, C R; Durso, A M; Hanifin, C T; Pfrender, M E; Ducey, P K; Stokes, A N; Barnett, K E; Brodie III, E D; Brodie Jr, E D

    2016-01-01

    Convergent evolution of tetrodotoxin (TTX) resistance, at both the phenotypic and genetic levels, characterizes coevolutionary arms races between amphibians and their snake predators around the world, and reveals remarkable predictability in the process of adaptation. Here we examine the repeatability of the evolution of TTX resistance in an undescribed predator–prey relationship between TTX-bearing Eastern Newts (Notophthalmus viridescens) and Eastern Hog-nosed Snakes (Heterodon platirhinos). We found that that local newts contain levels of TTX dangerous enough to dissuade most predators, and that Eastern Hog-nosed Snakes within newt range are highly resistant to TTX. In fact, these populations of Eastern Hog-nosed Snakes are so resistant to TTX that the potential for current reciprocal selection might be limited. Unlike all other cases of TTX resistance in vertebrates, H. platirhinos lacks the adaptive amino acid substitutions in the skeletal muscle sodium channel that reduce TTX binding, suggesting that physiological resistance in Eastern Hog-nosed Snakes is conferred by an alternate genetic mechanism. Thus, phenotypic convergence in this case is not due to parallel molecular evolution, indicating that there may be more than one way for this adaptation to arise, even among closely related species. PMID:26374236

  7. Cooling the two-dimensional short spherocylinder liquid to the tetratic phase: Heterogeneous dynamics with one-way coupling between rotational and translational hopping.

    PubMed

    Su, Yen-Shuo; I, Lin

    2015-07-01

    We numerically demonstrate the transition from the isotropic liquid to the tetratic phase with quasilong-range tetratic alignment order (i.e., with nearly parallel or perpendicular aligned rods), for the cold two-dimensional (2D) short spherocylinder system before crystallization and investigate the thermal assisted heterogeneous rotational and translational micromotions. Comparing with the 2D liquid of isotropic particles, spherocylinders introduce extra rotational degrees of freedom and destroy packing isotropy and the equivalence between rotational and translational motions. It is found that cooling leads to the stronger dynamical heterogeneity with more cooperative hopping and the stronger retardations of rotational hopping than translational hopping. Under topological constraints from nearly parallel and perpendicular rods of the tetratic phase, longitudinal and transverse translational hopping can occur without rotational hopping, but not the reverse. The empty space trailing a neighboring translational hopping patch is needed for triggering the patch rotational hopping with its translational motion into the empty space. It is the origin for the observed increasing separation of hopping time scales and the one-way coupling between rotational and translational hopping. Strips of longitudinally or transversely aligned rods can be ruptured and reconnected with neighboring strips through buckling, kink formation, and patch rotation, under the unbalanced torques or forces from their neighboring rods and thermal kicks.

  8. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene-co-methacrylic acid).

    PubMed

    Lu, Lu; Li, Guoqiang

    2016-06-15

    Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs.

  9. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  10. Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 2: future climate projection (2021 2050)

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Ahn, Joong-Bae; Kwon, Won-Tae; Giorgi, Filippo

    2008-02-01

    An analysis of simulated future surface climate change over the southern half of Korean Peninsula using a RegCM3-based high-resolution one-way double-nested system is presented. Changes in mean climate as well as the frequency and intensity of extreme climate events are discussed for the 30-year-period of 2021 2050 with respect to the reference period of 1971 2000 based on the IPCC SRES B2 emission scenario. Warming in the range of 1 4°C is found throughout the analysis region and in all seasons. The warming is maximum in the higher latitudes of the South Korean Peninsula and in the cold season. A large reduction in snow depth is projected in response to the increase of winter minimum temperature induced by the greenhouse warming. The change in precipitation shows a distinct seasonal variation and a substantial regional variability. In particular, we find a large increase of wintertime precipitation over Korea, especially in the upslope side of major mountain systems. Summer precipitation increases over the northern part of South Korea and decreases over the southern regions, indicating regional diversity. The precipitation change also shows marked intraseasonal variations throughout the monsoon season. The temperature change shows a positive trend throughout 2021 2050 while the precipitation change is characterized by pronounced interdecadal variations. The PDF of the daily temperature is shifted towards higher values and is somewhat narrower in the scenario run than the reference one. The number of frost days decreases markedly and the number of hot days increases. The regional distribution of heavy precipitation (over 80 mm/day) changes considerably, indicating changes in flood vulnerable regions. The climate change signal shows pronounced fine scale signal over Korea, indicating the need of high-resolution climate simulations

  11. Randomized SUSAN edge detector

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Wang, Ping; Gao, Ying-Hui; Wang, Peng

    2011-11-01

    A speed up technique for the SUSAN edge detector based on random sampling is proposed. Instead of sliding the mask pixel by pixel on an image as the SUSAN edge detector does, the proposed scheme places the mask randomly on pixels to find edges in the image; we hereby name it randomized SUSAN edge detector (R-SUSAN). Specifically, the R-SUSAN edge detector adopts three approaches in the framework of random sampling to accelerate a SUSAN edge detector: procedure integration of response computation and nonmaxima suppression, reduction of unnecessary processing for obvious nonedge pixels, and early termination. Experimental results demonstrate the effectiveness of the proposed method.

  12. One Way--Frustrating, but Rewarding!

    ERIC Educational Resources Information Center

    Yencer, Dick

    1979-01-01

    Describes the experiences of a vocational agriculture teacher who worked for four years with rice farmers in Indonesia. Suggests reasons why changes in farming practices are hard to bring about in developing nations. (LRA)

  13. Threading One's Way Through the Geographic Region.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    1982-01-01

    Designed for students in grades 7 through 12, the paper presents illustrative resource materials for teaching concepts related to geographic regions. Emphasis is on giving students an understanding of the interrelationship between regional characteristics and human behavior. The paper introduces students to the following notions: environmental…

  14. Secure Introduction of One-way Functions

    DTIC Science & Technology

    2000-07-01

    steps , c terminates in a memory where l h with probability q. By Theorem 4.2, there is a low command c that terminates in no more than pn steps in a memory where with probability at least q. Furthermore, l h since . And because c is low, it has therefore managed to find h without any high variables as input, just occurrences of f h is all. This brings us to the following Corollary: Corollary 4.3 Any bound on the probability of finding h from f h within polynomial time, for a particular integer size and

  15. Telementoring: One Way to Reach America's Students.

    ERIC Educational Resources Information Center

    Foster, Ann

    1999-01-01

    Hewlett Packard has led the telementoring field with its Telementor Program, begun in 1995. The program creates one-to-one mentor relationships between HP employees and grade 5-12 students. Via e-mail, employees currently motivate 1,500 students to excel in math and science and improve communication and problem-solving skills. (MLH)

  16. One-Way Temperature Compensated Fiber Link

    DTIC Science & Technology

    2011-05-01

    individual compensated links. [1] R. Wynands and S. Weyers, “Atomic Fountain Clocks,” Metrologia , vol. 42, pp. S64-S79, 2005. [2] A. D. Ludlow...3] A. Bauch, et al. ,”Comparison Between Frequency Standards oin Europe and the USA at the 10-15 Uncertainty Level,” Metrologia , vol. 43, pp.109

  17. Nose and lungs: one way, one disease

    PubMed Central

    2012-01-01

    It’s well established that asthma, allergic rhinitis and rhinosinusitis are three closely related disease. In pediatrics, these conditions represent a common issue in daily practice. The scientific community has recently started to simply evaluate them as different manifestations of a common pathogenic phenomenon. This consideration relates to important implications in the clinical management of these diseases, which may affect the daily activity of a pediatrician. The unity of the respiratory tract is confirmed both from a morphological and from a functional point of view. When treating rhinitis, it is often necessary to assess the presence of asthma. Patients with sinusitis should be evaluated for a possible concomitant asthma. Conversely, patients with asthma should always be evaluated for possible nasal disease, especially those suffering from difficult-to-treat asthma, in which an occult sinusitis may be detected. The medications that treat nasal diseases appear to be useful in improving asthma control and in reducing bronchial hyperresponsiveness. It seems therefore important to analyze the link between asthma and sinusitis, both in terms of clinical and pathogenic features, as well the therapeutic approach of those patients presenting with these diseases. PMID:23098057

  18. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  19. Agile robotic edge finishing

    SciTech Connect

    Powell, M.

    1996-08-01

    Edge finishing processes have seemed like ideal candidates for automation. Most edge finishing processes are unpleasant, dangerous, tedious, expensive, not repeatable and labor intensive. Estimates place the cost of manual edge finishing processes at 12% of the total cost of fabricating precision parts. For small, high precision parts, the cost of hand finishing may be as high as 305 of the total part cost. Up to 50% of this cost could be saved through automation. This cost estimate includes the direct costs of edge finishing: the machining hours required and the 30% scrap and rework rate after manual finishing. Not included in these estimates are the indirect costs resulting from cumulative trauma disorders and retraining costs caused by the high turnover rate for finishing jobs.. Despite the apparent economic advantages, edge finishing has proven difficult to automate except in low precision and/or high volume production environments. Finishing automation systems have not been deployed successfully in Department of Energy defense programs (DOE/DP) production, A few systems have been attempted but have been subsequently abandoned for traditional edge finishing approaches: scraping, grinding, and filing the edges using modified dental tools and hand held power tools. Edge finishing automation has been an elusive but potentially lucrative production enhancement. The amount of time required for reconfiguring workcells for new parts, the time required to reprogram the workcells to finish new parts, and automation equipment to respond to fixturing errors and part tolerances are the most common reasons cited for eliminating automation as an option for DOE/DP edge finishing applications. Existing automated finishing systems have proven to be economically viable only where setup and reprogramming costs are a negligible fraction of overall production costs.

  20. Application of Tracking and Data Relay Satellite (TDRS) Differenced One-Way Doppler (DOWD) Tracking Data for Orbit Determination and Station Acquisition Support of User Spacecraft Without TDRS Compatible Transponders

    NASA Technical Reports Server (NTRS)

    Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark

    1996-01-01

    Many spacecraft are launched today with only an omni-directional (omni) antenna and do not have an onboard Tracking and Data Relay Satellite (TDRS) transponder that is capable of coherently returning a carrier signal through TDRS. Therefore, other means of tracking need to be explored and used to adequately acquire the spacecraft. Differenced One-Way Doppler (DOWD) tracking data are very useful in eliminating the problems associated with the instability of the onboard oscillators when using strictly one-way Doppler data. This paper investigates the TDRS DOWD tracking data received by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) during the launch and early orbit phases for the the Interplanetary Physics Laboratory (WIND) and the National Oceanographic and Atmospheric Administration (NOAA)-J missions. In particular FDF personnel performed an investigation of the data residuals and made an assessment of the acquisition capabilities of DOWD-based solutions. Comparisons of DOWD solutions with existing data types were performed and analyzed in this study. The evaluation also includes atmospheric editing of the DOWD data and a study of the feasibility of solving for Doppler biases in an attempt to minimize error. Furthermore, by comparing the results from WIND and NOAA-J, an attempt is made to show the limitations involved in using DOWD data for the two different mission profiles. The techniques discussed in this paper benefit the launches of spacecraft that do not have TDRS transponders on board, particularly those launched into a low Earth orbit. The use of DOWD data is a valuable asset to missions which do not have a stable local oscillator to enable high-quality solutions from the one-way/return-link Doppler tracking data.

  1. A Biomechanical Study of Hyoid Bone and Laryngeal Movements During Swallowing Comparing the Blom Low Profile Voice Inner Cannula and Passy-Muir One Way Tracheotomy Tube Speaking Valves.

    PubMed

    Srinet, Prateek; Van Daele, Douglas J; Adam, Stewart I; Burrell, Morton I; Aronberg, Ryan; Leder, Steven B

    2015-12-01

    The aim of this prospective, consecutive, cohort study was to investigate the biomechanical effects, if any, of the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves on movement of the hyoid bone and larynx during swallowing. Ten adult patients (8 male, 2 female) with an age range of 61-89 years (mean 71 years) participated. Criteria for inclusion were ≥18 years of age, English speaking, and ability to tolerate both changing to a Blom tracheotomy tube and placement of a one-way tracheotomy tube speaking valve with a fully deflated tracheotomy tube cuff. Digitized videofluoroscopic swallow studies were performed at 30 frames/s and with each patient seated upright in the lateral plane. A total of 18 swallows (three each with 5 cc bolus volumes of single contrast barium and puree + barium × 3 conditions) were analyzed for each participant. Variables evaluated included larynx-to-hyoid bone excursion (mm), maximum hyoid bone displacement (mm), and aspiration status under three randomized conditions: 1. Tracheotomy tube open with no inner cannula; 2. Tracheotomy tube with Blom valve; and 3. Tracheotomy tube with Passy-Muir valve. Blinded reliability testing with a Pearson product moment correlation was performed on 20 % of the data. Intra- and inter-rater reliability for combined measurements of larynx-to-hyoid bone excursion and maximum hyoid bone displacement was r = 0.98. Intra- and inter-rater reliability for aspiration status was 100 %. No significant differences (p > 0.05) were found for larynx-to-hyoid bone excursion and maximum hyoid bone displacement during swallowing based upon an open tracheotomy tube, Blom valve, or Passy-Muir valve. Aspiration status was identical for all three randomized conditions. The presence of a one-way tracheotomy tube speaking valve did not significantly alter two important components of normal pharyngeal swallow biomechanics, i.e., hyoid bone and laryngeal movements

  2. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  3. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  4. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  5. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  6. Swords with Blunt Edges

    ERIC Educational Resources Information Center

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  7. The Inner Urban Edge

    ERIC Educational Resources Information Center

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  8. Superpixel edges for boundary detection

    SciTech Connect

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  9. Shape of patch edges affects edge permeability for meadow voles.

    PubMed

    Nams, Vilis O

    2012-09-01

    Human development typically fragments natural habitats into patches, affecting population and metapopulation dynamics via changes in animal behavior. Emigration from one habitat patch to another has a large effect on population and metapopulation dynamics. One factor that affects emigration is permeability of patch edges. This study looks at the effects of edge shape (convex, concave, and straight) on edge permeability for meadow voles (Microtus pennsylvanicus).. I tested five hypotheses for responses of animal movement to patch shape: (1) neutral edge response; (2) edge attraction; (3) edge avoidance; (4) time-minimizing, in which an animal attempts to minimize the time spent in inhospitable matrix, and thus travels as far as possible in the patch before crossing the edge; and (5) protection, in which an animal attempts to maximize protection while in the inhospitable matrix by keeping the patch close by. These hypotheses were tested by an experimental manipulation of meadow vole habitats. A strip was mowed with different edge shapes through an old field, and vole response was measured by tracking plates. Voles crossed edges at concave treatments twice as often compared to convex and straight shapes. Hypotheses (2) and (5) were supported. Although edge attraction causes a passive effect of a decrease in edge-crossing at concavities, this effect was eclipsed by the active effect of voles choosing to cross at concavities. The results can be generalized to edge tortuosity in general. Conservation biologists should consider edge shapes when exploring the effects of habitat fragmentation on animal populations.

  10. Edge detection by nonlinear dynamics

    SciTech Connect

    Wong, Yiu-fai

    1994-07-01

    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  11. Edge turbulence in tokamaks

    NASA Astrophysics Data System (ADS)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  12. Solar wind interaction with Mars' upper atmosphere: Results from 3-D studies using one-way coupling between the Multi-fluid MHD, the M-GITM and the AMPS models

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.

    2013-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.

  13. Are shrubland birds edge specialists?

    PubMed

    Schlossberg, Scott; King, David I

    2008-09-01

    In studies of forest fragmentation, birds of scrubby, early-successional habitats are considered edge specialists. Because these birds are assumed to thrive in fragmented, edge-dominated areas, their landscape ecology has received little attention from ecologists. With populations of shrubland birds declining throughout the eastern United States, the question of whether or not these birds really prefer edge habitats has important conservation implications. We used a meta-analysis to test how edges affect the abundance of shrubland birds in early-successional habitats. We analyzed data for 17 species from seven studies that compared the abundances of birds in the interiors and edges of regenerating clearcuts surrounded by mature forest. The meta-analysis clearly showed that shrubland birds avoid edges. All 17 species tested had higher abundances in patch centers than along edges, and edge effects were significant for 8 of 17 species. The key implication of this result is that small or irregular patches, dominated by edge, are unlikely to provide suitable habitat for shrubland birds. Thus, management for these declining species should involve providing large patches and minimizing edges. These findings demonstrate the importance of testing widely accepted ecological classifications and the need to view landscape ecology from the perspective of non-forest wildlife.

  14. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  15. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  16. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  17. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and…

  18. Giant edge state splitting at atomically precise graphene zigzag edges

    PubMed Central

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-01-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron–electron interactions in these localized states. PMID:27181701

  19. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  20. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  1. Improved Edge Performance in MRF

    NASA Technical Reports Server (NTRS)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc

    2004-01-01

    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  2. The Robotic Edge Finishing Laboratory

    SciTech Connect

    Loucks, C.S.; Selleck, C.B.

    1990-08-01

    The Robotic Edge Finishing Laboratory at Sandia National Laboratories is developing four areas of technology required for automated deburring, chamfering, and blending of machined edges: (1) the automatic programming of robot trajectories and deburring processes using information derived from a CAD database, (2) the use of machine vision for locating the workpiece coupled with force control to ensure proper tool contact, (3) robotic deburring, blending, and machining of precision chamfered edges, and (4) in-process automated inspection of the formed edge. The Laboratory, its components, integration, and results from edge finishing experiments to date are described here. Also included is a discussion of the issues regarding implementation of the technology in a production environment. 24 refs., 17 figs.

  3. Effects of edge restraint on slab behavior. Final report

    SciTech Connect

    Guice, L.K.

    1986-02-01

    This study was performed in conjunction with a Federal Emergency Management Agency program to plan, design, and construct keyworker blast shelters which would be used in high-risk areas of the country during and after a nuclear attack. The shelters considered in this study were box-type structures in which damage is much more likely to occur in the roof slab than in the walls or floor. In this part of the program, the effect of edge restraint on slab behavior was investigated. The primary objective was to determine the effects of partial rotational restraint on slab strength, ductility, and mechanism of failure. Sixteen one-way, reinforced concrete plate elements were tested in a reaction structure under uniform static water pressure.

  4. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  5. Edge equilibrium code for tokamaks

    SciTech Connect

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  6. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  7. On the Edge: Haptic Discrimination of Edge Sharpness

    PubMed Central

    Skinner, Andy L.; Kent, Christopher; Rossiter, Jonathan M.; Benton, Christopher P.; Groen, Martin G. M.; Noyes, Jan M.

    2013-01-01

    The increasing ubiquity of haptic displays (e.g., smart phones and tablets) necessitates a better understanding of the perceptual capabilities of the human haptic system. Haptic displays will soon be capable of locally deforming to create simple 3D shapes. This study investigated the sensitivity of our haptic system to a fundamental component of shapes: edges. A novel set of eight high quality shape stimuli with test edges that varied in sharpness were fabricated in a 3D printer. In a two alternative, forced choice task, blindfolded participants were presented with two of these shapes side by side (one the reference, the other selected randomly from the remaining set of seven) and after actively exploring the test edge of each shape with the tip of their index finger, reported which shape had the sharper edge. We used a model selection approach to fit optimal psychometric functions to performance data, and from these obtained just noticeable differences and Weber fractions. In Experiment 1, participants performed the task with four different references. With sharpness defined as the angle at which one surface meets the horizontal plane, the four JNDs closely followed Weber’s Law, giving a Weber fraction of 0.11. Comparisons to previously reported Weber fractions from other haptic manipulations (e.g. amplitude of vibration) suggests we are sufficiently sensitive to changes in edge sharpness for this to be of potential utility in the design of future haptic displays. In Experiment 2, two groups of participants performed the task with a single reference but different exploration strategies; one was limited to a single touch, the other unconstrained and free to explore as they wished. As predicted, the JND in the free exploration condition was lower than that in the single touch condition, indicating exploration strategy affects sensitivity to edge sharpness. PMID:24023852

  8. Image recovery from edge primitives

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Huck, Friedrich O.; Narayanswamy, Ramkumar

    1990-01-01

    A method for extracting edge primitives from Mach-band patterns is presented together with a method for recovering image representations of features outlined by the edge boundaries. The accuracy, stability, and resolution of these representations are assessed. Since these representations are most commonly used in characterizing targets, this method of low-level processing offers new opportunities for computer vision and high data-compressing coding. Two bandpass filters are considered, the spatially invariant Laplacian of Gaussian filter and spatially variant intensity-dependent spatial (IDS) summation. It is shown that the recovery from the IDS bandpass data is particularly advantageous in applications for which robustness to local and temporal variations in illumination is important. It is concluded that the edge primitives extracted from bandpassed images can be an efficient way to store, transmit, and represent images.

  9. Edge Coloring, Polyhedra and Probability

    DTIC Science & Technology

    1998-11-01

    also \\dBi{v)-\\dB*{v)\\ < i<Jand|m Al(5J)- idef (SJ)| < | . t f ll t t \\8\\ {\\ | X ^ n(J follows from (a) and ±A < |B?| < 3A. D Preparing the marking...chromatic index of G and is denoted by x ’{G). We consider the edge coloring problem in the framework of the relationship between an integer program and its...linear programming relaxation. To do this we first formulate edge coloring as an integer program and let x *(G) be the optimum of the linear

  10. Role of Edges in Complex Network Epidemiology

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Jiang, Zhi-Hong; Wang, Hui; Xie, Fei; Chen, Chao

    2012-09-01

    In complex network epidemiology, diseases spread along contacting edges between individuals and different edges may play different roles in epidemic outbreaks. Quantifying the efficiency of edges is an important step towards arresting epidemics. In this paper, we study the efficiency of edges in general susceptible-infected-recovered models, and introduce the transmission capability to measure the efficiency of edges. Results show that deleting edges with the highest transmission capability will greatly decrease epidemics on scale-free networks. Basing on the message passing approach, we get exact mathematical solution on configuration model networks with edge deletion in the large size limit.

  11. Supporting interactive graph exploration using edge plucking

    NASA Astrophysics Data System (ADS)

    Wong, Nelson; Carpendale, Sheelagh

    2007-01-01

    Excessive edge density in graphs can cause serious readability issues, which in turn can make the graphs difficult to understand or even misleading. Recently, we introduced the idea of providing tools that offer interactive edge bending as a method by which edge congestion can be disambiguated. We extend this direction, presenting a new tool, Edge Plucking, which offers new interactive methods to clarify node-edge relationships. Edge Plucking expands the number of situations in which interactive graph exploration tools can be used to address edge congestion.

  12. Edge enhanced morphology for infrared image analysis

    NASA Astrophysics Data System (ADS)

    Bai, Xiangzhi; Liu, Haonan

    2017-01-01

    Edge information is one of the critical information for infrared images. Morphological operators have been widely used for infrared image analysis. However, the edge information in infrared image is weak and the morphological operators could not well utilize the edge information of infrared images. To strengthen the edge information in morphological operators, the edge enhanced morphology is proposed in this paper. Firstly, the edge enhanced dilation and erosion operators are given and analyzed. Secondly, the pseudo operators which are derived from the edge enhanced dilation and erosion operators are defined. Finally, the applications for infrared image analysis are shown to verify the effectiveness of the proposed edge enhanced morphological operators. The proposed edge enhanced morphological operators are useful for the applications related to edge features, which could be extended to wide area of applications.

  13. Shape-dependent canny edge detector

    NASA Astrophysics Data System (ADS)

    Panetta, Karen A.; Agaian, Sos S.; Nercessian, Shahan C.; Almunstashri, Ali A.

    2011-08-01

    Edges characterize the boundaries of objects in images and are informative structural cues for computer vision and target/object detection and recognition systems. The Canny edge detector is widely regarded as the edge detection standard. It is fairly adaptable to different environments, as its parametric nature attempts to tailor the detection of edges based on image-dependent characteristics or the particular requirements of a given implementation. Though it has been used in a myriad of image processing tasks, the Canny edge detector is still vulnerable to edge losses, localization errors, and noise sensitivity. These issues are largely due to the key tradeoff made in the scale and size of the edge detection filters used by the algorithm. Small-scaled filters are sensitive to edges but also to noise, whereas large-scaled filters are robust to noise but could filter out fine details. In this paper, novel edge detection kernel generalizations and a shape-dependent edge detector are introduced to alleviate these shortcomings. While most standard edge detection algorithms are based on convolving the input image with fixed size square kernels, this paper will illustrate the benefits of different filter sizes, and more importantly, different kernel shapes for edge detection. Moreover, new edge fusion methods are introduced to more effectively combine the individual edge responses. Existing edge detectors, including the Canny edge detector, can be obtained from the generalized edge detector by specifying corresponding parameters and kernel shapes. The proposed representations and edge detector have been qualitatively and quantitatively evaluated on several different types of image data. Computer simulations demonstrate that nonsquare kernel approaches can outperform square kernel approaches such as Canny, Sobel, Prewitt, Roberts, and others, providing better tradeoffs between noise rejection, accurate edge localization, and resolution. Where possible, Pratt's figure of

  14. Laplacian operator-based edge detectors.

    PubMed

    Wang, Xin

    2007-05-01

    Laplacian operator is a second derivative operator often used in edge detection. Compared with the first derivative-based edge detectors such as Sobel operator, the Laplacian operator may yield better results in edge localization. Unfortunately, the Laplacian operator is very sensitive to noise. In this paper, based on the Laplacian operator, a model is introduced for making some edge detectors. Also, the optimal threshold is introduced for obtaining a Maximum a Posteriori (MAP) estimate of edges.

  15. Digital, One Way, Acoustic Communication in the Ocean

    DTIC Science & Technology

    1990-09-01

    Figures ICapter I 1.1 Attenuation of electromagnetic radiation in clear water ............................. 3 1.2 Low freque.ncy acoustic attenuation...any two places on earth . Great success has been achieved in transmitting and receiving high quality video pictures from the moon and even from farther...the following: 3 a) Operating frequency 10 - 20 kHz. b) Operating range 2 - 5 km I c) Bit rate of 1 kbit/sec 3 d) Source level 170 dB/lpPa e) Water

  16. Guns and Fear: A One-Way Street?

    ERIC Educational Resources Information Center

    Hauser, Will; Kleck, Gary

    2013-01-01

    Surveys show that more than one half of gun owners report owning their firearm for self-protection. Although research has examined the effect of fear of crime on gun ownership, the issue of reciprocity and temporal order has been largely ignored. Furthermore, the effect of firearm acquisition and relinquishment on fear has not been evaluated…

  17. Finding one's way in proteomics: a protein species nomenclature

    PubMed Central

    Schlüter, Hartmut; Apweiler, Rolf; Holzhütter, Hermann-Georg; Jungblut, Peter R

    2009-01-01

    Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available. PMID:19740416

  18. Mystery Solved: One Way To Motivate Middle Schoolers To Read.

    ERIC Educational Resources Information Center

    Herder, Deb Den

    2000-01-01

    Describes a project for middle school librarians to use to motivate students to read for pleasure. Explains activities based on the idea of a mystery at the school, and describes how clues were developed and linked to books in certain genres that students had to read. (LRW)

  19. Electrically controlled one-way photon flow in plasmonic nanostructures.

    PubMed

    Davoyan, Artur; Engheta, Nader

    2014-11-06

    Photonics is frequently regarded as a potential pathway for substituting current solid-state electronics and as a promise for higher-speed all-optical computing. The fundamental challenges facing nanophotonics and electronics of the future are nanoscale on-chip integration of electronics and photonics with an efficient electric field tuning of light propagation, dynamic access to the light sources and material parameters of the system, as well as isolation of optical signals analogous to that in electronics. Here we suggest a paradigm for a monolithically integrated electronic control over the light propagation in nanoscale plasmonic waveguides. We theoretically demonstrate that magnetic field induced by the direct electric current flowing in metallic constituents of plasmonic nanostructures alters the material parameters and thus the optical signal flow. We use this principle for the design of an electrically controlled subwavelength optical isolator.

  20. Tiered Lessons: One Way to Differentiate Mathematics Instruction

    ERIC Educational Resources Information Center

    Pierce, Rebecca L.; Adams, Cheryll M.

    2004-01-01

    The movement toward inclusion has impacted classrooms by requiring teachers to respond to a broader range of academic needs. How can we possibly reach all the students in our classrooms when they are academically diverse, have special needs, are ESL learners, or have some combination of any or all of these factors? An answer to this question lies…

  1. Science Shorts: More than One Way to Investigate

    ERIC Educational Resources Information Center

    Coskie, Tracy L.; Davis, Kimberly J.

    2007-01-01

    An exciting element of science fairs is that they give students the opportunity to explore various interests through scientific investigation. Many students, however, mistakenly think that all investigations are experiments. This lesson can help broaden students' conceptions of science. (Contains 1 resource.)

  2. Understanding one-way ANOVA using conceptual figures

    PubMed Central

    2017-01-01

    Analysis of variance (ANOVA) is one of the most frequently used statistical methods in medical research. The need for ANOVA arises from the error of alpha level inflation, which increases Type 1 error probability (false positive) and is caused by multiple comparisons. ANOVA uses the statistic F, which is the ratio of between and within group variances. The main interest of analysis is focused on the differences of group means; however, ANOVA focuses on the difference of variances. The illustrated figures would serve as a suitable guide to understand how ANOVA determines the mean difference problems by using between and within group variance differences. PMID:28184262

  3. Online referrals one way capitated groups gain efficiencies, reduce errors.

    PubMed

    2002-08-01

    An online referral system is just the latest money and time-saving tool in the e-commerce arsenal at Hill Physicians Medical Group. Using a modified version of Healinx Corp.'s secure e-mail messaging platform, Hill is testing a custom-made online referral system at two primary care practices that appear to be helping the practice boost its bottom line under capitation.

  4. Understanding one-way ANOVA using conceptual figures.

    PubMed

    Kim, Tae Kyun

    2017-02-01

    Analysis of variance (ANOVA) is one of the most frequently used statistical methods in medical research. The need for ANOVA arises from the error of alpha level inflation, which increases Type 1 error probability (false positive) and is caused by multiple comparisons. ANOVA uses the statistic F, which is the ratio of between and within group variances. The main interest of analysis is focused on the differences of group means; however, ANOVA focuses on the difference of variances. The illustrated figures would serve as a suitable guide to understand how ANOVA determines the mean difference problems by using between and within group variance differences.

  5. Alternatives to incineration: There's more than one way to remediate

    SciTech Connect

    Pellerin, C.

    1994-10-01

    Hazardous waste is everywhere. It comes from paints, motor oil, hair spray, household cleaners, automotive chemicals, and all kinds of toxic medical, industrial and military products. Most industrial processes - from which come cosmetics and pharmaceuticals, computers and garden pesticides - generate wastes that the EPA, acting under the Resource Conservation Recovery Act (RCRA), says can harm human health or the environment if not properly managed. As a waste-disposal technology, incineration has been around for about 500,000 years - an interesting spinoff of that timely Homo erectus discovery, fire. For millennia, incineration looked like a pretty good way to turn big piles of hazardous waste into air emissions, smaller piles of ash, and sometimes energy. And it's still a good idea. The EPA, for one, calls high-temperature incineration the best available technology for disposing of most hazardous waste. But incineration has drawbacks. When hazardous waste goes into an incinerator, it comes out as potentially harmful air emissions, although these emissions are strictly controlled, and ash ash that's treated to meet EPA standards and then disposed of in an authorized landfill. It doesn't just vanish into thin air.

  6. Heavy Kids Fare Worse in One Way After Surgery

    MedlinePlus

    ... a hospital news release. These may include impaired wound healing due to lower oxygen pressure in the excess fat tissue surrounding the wound as well as impaired immune responsiveness, she explained. " ...

  7. Tests of Equivalence for One-Way Independent Groups Designs

    ERIC Educational Resources Information Center

    Cribbie, Robert A.; Arpin-Cribbie, Chantal A.; Gruman, Jamie A.

    2009-01-01

    Researchers in education are often interested in determining whether independent groups are equivalent on a specific outcome. Equivalence tests for 2 independent populations have been widely discussed, whereas testing for equivalence with more than 2 independent groups has received little attention. The authors discuss alternatives for testing the…

  8. Goodwill in the NHS is a one-way street.

    PubMed

    Scott, Graham

    2015-03-25

    The NHS runs on goodwill. Every day thousands of nurses, midwives and healthcare support workers work extra hours, skip breaks and go the extra mile to keep the health service running. In return, you may receive a 'thank you' from your manager or expressions of gratitude from patients, but rarely will you see any extra in your pay packet.

  9. Ionospheric effects on one-way timing signals

    NASA Technical Reports Server (NTRS)

    Soicher, H.; Gorman, F. J., Jr.

    1973-01-01

    A proposed navigation concept requires that a user measure the time-delay that satellite-emitted signals experience in traversing the distance between satellite and user. Simultaneous measurement of the propagation time from four different satellites permits the user to determine his position and clock bias if satellite ephemerides and signal propagation velocity are known. A pulse propagating through the ionosphere is slowed down somewhat, giving an apparent range that is larger than the equivalent free space range. The difference between the apparent range and the true range, or the free space velocity and the true velocity, is the quantity of interest. This quantity is directly proportional to the total electron content along the path of the propagating signal. Thus, if the total electron content is known, or is measured, a perfect correction to ranging could be performed. Faraday polarization measurements are continuously being taken at Fort Monmouth, N. J., using beacon emissions of the ATS-3 (137.35 MHz) satellite. Day-to-day variability of the diurnal variation of total electron content values is present with differences of up to 50% or more not being uncommon. In addition, superposed on the overall diurnal variation are smaller scale variations of approximately 5 to 10% of the total content which are attributed to ionospheric density irregularities.

  10. On-Line Learning: One Way to Bring People Together

    ERIC Educational Resources Information Center

    Goff-Kfouri, Carol Ann

    2006-01-01

    The purpose of this study was to demonstrate the benefits of on-line learning for adult learners and to further demystify three common misconceptions concerning on-line learning: students certainly do receive support from their on-line professors, the professor is pro-active rather than passive, and students may be more motivated to learn than in…

  11. Mapping the Chapter: One Way to Tackle the CTE Textbook

    ERIC Educational Resources Information Center

    Laverick DeFelice, Catherine

    2010-01-01

    This reading specialist has come up with a strategy to help other CTE instructors map the CTE textbook, so that students can better comprehend the information in them and discover a joy of reading. CTE textbooks present a particular challenge because they are packed with information and can be quite different in structure than texts student have…

  12. The Problem of the Edge.

    ERIC Educational Resources Information Center

    Faatz, Judith A.

    1998-01-01

    Describes a field study in a local ecosystem which allows high school students to investigate the edge effect, where a meadow and a forest meet. Students measure soil moisture content, soil temperature, air temperature, relative humidity, wind intensity, and illumination level. Teachers can help students apply their findings to understand problems…

  13. Failure During Sheared Edge Stretching

    NASA Astrophysics Data System (ADS)

    Levy, B. S.; van Tyne, C. J.

    2008-12-01

    Failure during sheared edge stretching of sheet steels is a serious concern, especially in advanced high-strength steel (AHSS) grades. The shearing process produces a shear face and a zone of deformation behind the shear face, which is the shear-affected zone (SAZ). A failure during sheared edge stretching depends on prior deformation in the sheet, the shearing process, and the subsequent strain path in the SAZ during stretching. Data from laboratory hole expansion tests and hole extrusion tests for multiple lots of fourteen grades of steel were analyzed. The forming limit curve (FLC), regression equations, measurement uncertainty calculations, and difference calculations were used in the analyses. From these analyses, an assessment of the primary factors that contribute to the fracture during sheared edge stretching was made. It was found that the forming limit strain with consideration of strain path in the SAZ is a major factor that contributes to the failure of a sheared edge during stretching. Although metallurgical factors are important, they appear to play a somewhat lesser role.

  14. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  15. Nature of Graphene Edges: A Review

    NASA Astrophysics Data System (ADS)

    Acik, Muge; Chabal, Yves J.

    2011-07-01

    Graphene edges determine the optical, magnetic, electrical, and electronic properties of graphene. In particular, termination, chemical functionalization and reconstruction of graphene edges leads to crucial changes in the properties of graphene, so control of the edges is critical to the development of applications in electronics, spintronics and optoelectronics. Up to date, significant advances in studying graphene edges have directed various smart ways of controlling the edge morphology. Though, it still remains as a major challenge since even minor deviations from the ideal shape of the edges significantly deteriorate the material properties. In this review, we discuss the fundamental edge configurations together with the role of various types of edge defects and their effects on graphene properties. Indeed, we highlight major demanding challenges to find the most suitable technique to characterize graphene edges for numerous device applications such as transistors, sensors, actuators, solar cells, light-emitting displays, and batteries in graphene technology.

  16. Quantifying edge significance on maintaining global connectivity

    PubMed Central

    Qian, Yuhua; Li, Yebin; Zhang, Min; Ma, Guoshuai; Lu, Furong

    2017-01-01

    Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity. PMID:28349923

  17. Saddle-node dynamics for edge detection

    SciTech Connect

    Wong, Y.F.

    1994-09-01

    The author demonstrates how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, this scheme is general enough to be able to handle different edges, such as lines, step edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  18. Feature Extraction Without Edge Detection

    DTIC Science & Technology

    1993-09-01

    feature? A.I. Memo 1356, MIT Artificial Intellegence Lab, April 1992. [65] W. A. Richards, B. Dawson, and D. Whittington. Encoding contour shape by...AD-A279 842 . " Technical Report 1434 --Feature Extraction Without Edge Detection Ronald D. Chane MIT Artificial .Intelligencc Laboratory ",, 𔃾•d...Chaney 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Massachusetts Institute of Technology Artificial

  19. Etching Of Semiconductor Wafer Edges

    DOEpatents

    Kardauskas, Michael J.; Piwczyk, Bernhard P.

    2003-12-09

    A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.

  20. Retention and the competitive edge.

    PubMed

    Lemery, L D

    2000-01-01

    I believe that retaining effective, seasoned employees enhances an organization's ability to compete in the marketplace. Though these seasoned employees seem to be more explicitly expensive, a detailed analysis of the costs involved in hiring and orienting replacement personnel may prove this assumption false. In addition, seasoned employees' intimate job knowledge actually constitutes the organization's competitive edge. Therefore, retaining seasoned personnel seems to become an important, mission- and vision-imperative institutional objective.

  1. Topological edge states in pnictides

    NASA Astrophysics Data System (ADS)

    Youmans, Cody; Ghaemi, Pouyan; Kargarian, Mehdi

    In some members of the ferro-pnictides, non-trivial topology in the bulk band-structure is related to potentially observable gapless edge states. We study these states numerically and analytically for a range of parameters, with and without superconductivity and antiferromagnetic SDW ordering, and their relation to the symmetries and topologically non-trivial aspects of our model Hamiltonian. Support was provided by the Doctoral Student Research Grant program at the Graduate Center, CUNY.

  2. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  3. Knife-edge seal for vacuum bagging

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1980-01-01

    Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.

  4. Edge and coupled core/edge transport modeling in tokamak

    SciTech Connect

    Pearlstein, L D; Casper, T A; Cohen, R H; LoDestro, L L; Mattor, N; Porter, G D; Rensink, M E; Rognlien, T D; Ryutov, D D; Scott, H A; Wan, A

    1998-10-14

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental observations; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. Two-dimensional simulations show the importance of ExB flow in the private-flux region and B-drift effects. A theory of rough plasma-facing surfaces is given, and interesting effects, some traveling back up the magnetic field-lines to the SOL plasma, are predicted. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts at the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative rnodelling. Long-lived oscillatory UEDGE solutions in both ITER and DIII-D are reported. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are shown to be well modelled with UEDGE, and the roles of impurity and neutral transport in the edge and SOL are discussed.

  5. Reduction of Free-Edge Stress Concentration

    DTIC Science & Technology

    1985-01-01

    oscillatory type of behavior near the free edge of the capped laminate before converging to zero further inside the laminate. The length of the edge effect is...Condition," J. Comp. Materials. Vol. 14 (1980), p. 2. 13. Altus, E., Rotem, A. and Shmueli, M., "Free Edge Effect in Angle- Ply Laminates - A New

  6. Understanding and preventing the edge effect.

    PubMed

    Cheneau, Edouard; Wolfram, Roswitha; Leborgne, Laurent; Waksman, Ron

    2003-02-01

    Edge stenosis, combining neointimal proliferation and negative remodeling, remains a serious limitation of vascular brachytherapy. This review comprehensively presents terminology, definitions, mechanisms, and treatment strategies to better understand the complexities of edge narrowing. The major contributors to this phenomenon are known; understanding the practical solutions will enable us to further minimize the problem of the edge effect.

  7. Densified edge seals for fuel cell components

    DOEpatents

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1982-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  8. Results from the EDGES Survey

    NASA Astrophysics Data System (ADS)

    van Zee, Liese; EDGES Team

    2017-03-01

    Results are presented from a deep imaging survey with the Spitzer Space Telescope which was designed to identify and measure the faint stellar populations around nearby galaxies. The Extended Disk Galaxy Exploration Science (EDGES) Survey includes a sample of 92 nearby galaxies with a range of morphological types and environments. The observations include a field-of-view of at least 5 times the optical size and are deep enough to detect stellar mass surface densities of several hundredths of a solar mass per square parsec. The observations reveal extended stellar features, such as stellar disks and stellar streams, around many of the target galaxies, as expected from hierarchical galaxy formation scenarios.

  9. K-edge densitometer (KED)

    SciTech Connect

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  10. Continuum Gyrokinetic Edge New Technology

    SciTech Connect

    Dorr, M. R.; Hittinger, J. A.; Dorf, M.; Cohen, R.; Ghosh, D.; Lee, W.; Reynolds, C.

    2016-05-02

    COGENT is a simulation code that models the plasma evolution in the edge region of a tokamak fusion reactor, from the open field line scrape-off layer, across the separatrix, and into the core. The model is based on the 4D gyrokinetic closure of the kinetic equations for a plasma coupled to an electrostatic potential field. The background magnetic field is prescribed either analytically or generated from experimental data, and the grid is aligned with magnetic flux surfaces. Multiple collision operator options are provided, from Krook to fully nonlinear Fokker-Planck.

  11. Environmental Dataset Gateway (EDG) Search Widget

    EPA Pesticide Factsheets

    Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other other applications. This allows individuals to provide direct access to EPA's metadata outside the EDG interface. The EDG Search Widget makes it possible to search the EDG from another web page or application. The search widget can be included on your website by simply inserting one or two lines of code. Users can type a search term or lucene search query in the search field and retrieve a pop-up list of records that match that search.

  12. Environmental Dataset Gateway (EDG) REST Interface

    EPA Pesticide Factsheets

    Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other other applications. This allows individuals to provide direct access to EPA's metadata outside the EDG interface. The EDG REST Interface allows each users to query the catalog through a URL using REST syntax. Accessing individual metadata documents through their REST URLs, or groups of documents that match specific search criteria through a REST-formatted search URL, provides powerful functionality for searching, viewing, and sharing EDG records.

  13. Fractal-based image edge detection

    NASA Astrophysics Data System (ADS)

    Luo, Huiguo; Zhu, Yaoting; Zhu, Guang-Xi; Wan, Faguang; Zhang, Ping

    1993-08-01

    Image edge is an important feature of image. Usually, we use Laplacian or Sober operator to get an image edge. In this paper, we use fractal method to get the edge. After introducing Fractal Brownian Random (FBR) field, we give the definition of Discrete Fractal Brownian Increase Random (DFBIR) field and discuss its properties, then we apply the DFBIR field to detect the edge of an image. According to the parameters H and D of DFBIR, we give a measure M equals (alpha) H + (beta) D. From the M value of each pixel, we can detect the edge of image.

  14. Evaluating Edge Detection through Boundary Detection

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ge, Feng; Liu, Tiecheng

    2006-12-01

    Edge detection has been widely used in computer vision and image processing. However, the performance evaluation of the edge-detection results is still a challenging problem. A major dilemma in edge-detection evaluation is the difficulty to balance the objectivity and generality: a general-purpose edge-detection evaluation independent of specific applications is usually not well defined, while an evaluation on a specific application has weak generality. Aiming at addressing this dilemma, this paper presents new evaluation methodology and a framework in which edge detection is evaluated through boundary detection, that is, the likelihood of retrieving the full object boundaries from this edge-detection output. Such a likelihood, we believe, reflects the performance of edge detection in many applications since boundary detection is the direct and natural goal of edge detection. In this framework, we use the newly developed ratio-contour algorithm to group the detected edges into closed boundaries. We also collect a large data set ([InlineEquation not available: see fulltext.]) of real images with unambiguous ground-truth boundaries for evaluation. Five edge detectors (Sobel, LoG, Canny, Rothwell, and Edison) are evaluated in this paper and we find that the current edge-detection performance still has scope for improvement by choosing appropriate detectors and detector parameters.

  15. A novel algorithm for the edge detection and edge enhancement of medical images.

    PubMed

    Crooks, I; Fallone, B G

    1993-01-01

    A novel algorithm, histogram shifting (HS) is presented, which performs edge detection or edge enhancement with the choice of two parameters. The histogram of a region surrounding each pixel is found and translated toward the origin, resulting in the new pixel value. Images from a variety of medical imaging modalities were processed with HS to perform detection and enhancement of edges. Comparison with results obtained from conventional edge detection (e.g., Sobel) and with conventional edge-enhancement algorithms is discussed. HS appears to perform the edge-detection operation without introducing "double-edge" effects often obtained with conventional edge-detection algorithms. HS also appears to perform edge enhancement without introducing extensive noise artifacts, which may be noticeable with many edge-enhancement algorithms.

  16. Measuring edge importance to improve immunization performance

    NASA Astrophysics Data System (ADS)

    Huang, He; Yan, Zhijun; Pan, Yaohui

    2014-12-01

    The edge heterogeneity has a remarkable influence on disease spreading, but it has seldom been considered in the disease-controlling policies. Based on the gravity model, we propose the edge importance index to describe the influence of edge heterogeneity on immunization strategies. Then the edge importance and contact weight are combined to calculate the infection rates on the I-S (Infected-Susceptible) edges in the complex network, and the difference of the infection rates on strong and weak ties is analyzed. Simulation results show that edge heterogeneity has a significant influence on the performance of immunization strategies, and better immunization efficiency is derived when the vaccination rate of the nodes in the weak I-S edges is increased.

  17. Reflections on the Knife Edge

    PubMed Central

    Murphy, John Patrick Michael

    2011-01-01

    Introduction The accompanying article, written by John Murphy, a retired lawyer and lifelong outdoorsman from his beloved Colorado Rockies, draws the striking parallel between his experiences as a mountain climber and as a patient with metastatic melanoma facing the hope and uncertainty of experimental therapy. Both are life-threatening circumstances, demanding courage and hope, and challenging our soul in a way almost unique to human experience. Both involve a conscious choice to move forward into dangerous and uncertain territory, and require a determination to look death (John's “Reaper”) in the eye. Many remarkable books and films have been written about such experiences. I recall in particular the 2003 documentary film Touching the Void, about the incredible survival of a mountaineer who returned from a perilous fall in Peru. I highly recommend it to the reader. Another is Laura Hillenbrand's Unbroken: A World War II Story of Survival, Resilience, and Redemption (Random House, 2010), about the survival of a prisoner of war, the celebrated miler Louis Zamperini. Again, unbridled courage and undeniable hope turned futility into future. John Murphy's reflections remind us of the daily heroism of our patients who are holding tight to the lifeline offered by clinical research. Good climbing, John. All of us are with you on that Knife Edge, waiting for our turn to ascend... and hoping to be as courageous as you were then on Capitol Peak and are again now on the Knife Edge of a clinical trial. For our turn will come. PMID:21349953

  18. Haptic Edge Detection Through Shear

    NASA Astrophysics Data System (ADS)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  19. Haptic Edge Detection Through Shear

    PubMed Central

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-01-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331

  20. Edge detection in microscopy images using curvelets

    PubMed Central

    Gebäck, Tobias; Koumoutsakos, Petros

    2009-01-01

    Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. Conclusion The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy. PMID:19257905

  1. Polarity control of h-BN nanoribbon edges by strain and edge termination.

    PubMed

    Yamanaka, Ayaka; Okada, Susumu

    2017-03-29

    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  2. Coulomb edge effects in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jaskolski, W.; Ayuela, A.

    2014-10-01

    Coulomb effects in graphene nanoribbons with arbitrary edges are investigated with the use of a mean-field Hubbard model. It was recently shown that chiral ribbons with minimal edges, characterized by the translation vector (n,m), have a similar structure of bands localized around the Fermi energy as pure zigzag ribbons (n-m,0). Here we show that these flat bands in both ribbon cases differ in detail due to the perturbation induced by armchair edge nodes. For chiral ribbons the edge bands split at the zone boundary, where the corresponding bands of (n-m,0) zigzag ribbons are degenerate. Coulomb interactions enhance strongly this splitting and at the same time they bring spin into play. We modify each edge keeping global sublattice balance to find that spin degeneracy can be partially lifted. The breaking of spin-degeneracy depends on the asymmetry between the edges and in some cases leads to spin-polarized currents.

  3. [Artificial crowns influence upon edge parodontium status].

    PubMed

    Zhulev, E N; Serov, A B

    2010-01-01

    With the aim of prosthetic treatment efficacy increase study of edge parodontium tissue reaction upon different types of artificial crowns was done and methods of chronic localized parodontitis prevention were developed. Changes of the main gingival fluid characteristics (amount, acidity, interleukine-1beta concentration) and indicators of microcirculation in edge parodontium of the teeth under the artificial crowns influence were disclosed. There were developed methods of chronic localized parodontitis prevention produced by artificial crowns edge.

  4. Modelling of edge localised modes and edge localised mode control

    SciTech Connect

    Huijsmans, G. T. A.; Loarte, A.; Chang, C. S.; Ferraro, N.; Sugiyama, L.; Waelbroeck, F.; Xu, X. Q.; Futatani, S.

    2015-02-15

    Edge Localised Modes (ELMs) in ITER Q = 10 H-mode plasmas are likely to lead to large transient heat loads to the divertor. To avoid an ELM induced reduction of the divertor lifetime, the large ELM energy losses need to be controlled. In ITER, ELM control is foreseen using magnetic field perturbations created by in-vessel coils and the injection of small D2 pellets. ITER plasmas are characterised by low collisionality at a high density (high fraction of the Greenwald density limit). These parameters cannot simultaneously be achieved in current experiments. Therefore, the extrapolation of the ELM properties and the requirements for ELM control in ITER relies on the development of validated physics models and numerical simulations. In this paper, we describe the modelling of ELMs and ELM control methods in ITER. The aim of this paper is not a complete review on the subject of ELM and ELM control modelling but rather to describe the current status and discuss open issues.

  5. An edge index for topological insulators

    NASA Astrophysics Data System (ADS)

    Prodan, Emil

    2009-03-01

    Topological insulators display dissipationless currents flowing at the edges of the samples. These currents are associated to chiral edge modes, whose existence is intrinsically linked to the topology of the electronic states of the bulk. The edge modes can be easily investigated when the edges are smooth and have a periodicity, but as soon as the periodicity is absent, the problem becomes un-traceable by purely theoretical means. In my talk I will exemplify the use of non-commutative calculus to explore the properties, especially the stability of the edge modes. For example, using such techniques one can give a fairly elementary proof that the edge modes in Chern insulators survive even for a rough (random) edge. Similarly, for the Spin-Hall effect, one can define an observable and its associated current whose conductance remains quantized during various deformations of the Hamiltonian system. It turns out that in all cases, the edge conductance is given by the index of a Fredholm operator, which provides a new topological invariant linked directly to the edge rather than the bulk.

  6. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  7. Edge Segment-Based Automatic Video Surveillance

    NASA Astrophysics Data System (ADS)

    Hossain, M. Julius; Dewan, M. Ali Akber; Chae, Oksam

    2007-12-01

    This paper presents a moving-object segmentation algorithm using edge information as segment. The proposed method is developed to address challenges due to variations in ambient lighting and background contents. We investigated the suitability of the proposed algorithm in comparison with the traditional-intensity-based as well as edge-pixel-based detection methods. In our method, edges are extracted from video frames and are represented as segments using an efficiently designed edge class. This representation helps to obtain the geometric information of edge in the case of edge matching and moving-object segmentation; and facilitates incorporating knowledge into edge segment during background modeling and motion tracking. An efficient approach for background initialization and robust method of edge matching is presented, to effectively reduce the risk of false alarm due to illumination change and camera motion while maintaining the high sensitivity to the presence of moving object. Detected moving edges are utilized along with watershed algorithm for extracting video object plane (VOP) with more accurate boundary. Experiment results with real image sequence reflect that the proposed method is suitable for automated video surveillance applications in various monitoring systems.

  8. Study on edge extracting in noise image

    NASA Astrophysics Data System (ADS)

    Feng, Gui; Lin, Qiwei; Fu, QingQing

    2008-03-01

    In order to reduce the influence of noise on edge extracting and improve the precision of edge localization on the image, after analyzed the principle, strong points and short points of some traditional edge detecting methods, an effective algorithm for edge extracting in noise image was proposed in this paper. Adopting thought of traditional multi-directional and multistage combinational filtering, an image detail-preserving adaptive filter is designed to remove noise, and then extract the edge in the image. On the basis of the classical Sobel operator, we introduced an algorithm with resisting noise, good real-time and locating accurate edge. The algorithm can distinguish real edge from noise in terms of the theory of successive and smooth edge and random noise. The algorithm was accomplished under visual C++ 6.0 environment and tested by several standard images. The experimental result prove that the presented method is feasible and effective when the salt-pepper pollution of image is smaller than 15%, furthermore the method can extract edges with high location precision and good continuity accurately and effectively, at the same time, it has high processing speed.

  9. Edge mode spectroscopy and imaging for film edge properties in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    McMichael, Robert

    2014-03-01

    Lithography is an act of violence. Often, films are almost entirely obliterated by patterning, leaving only nanostructures behind with film edges that have borne the brunt of the damage, edges that carry with them the scars of energetic ion bombardment, reactive ions, liftoff and exposure to ambient conditions. In this talk, I will present a variation on ferromagnetic resonance force microscopy that can provide insight into the magnetic properties of film edges in magnetic nanostructures. The method relies on the non-uniformity of the magnetic field in patterned-film nanostructures that are magnetized in-plane, specifically, the low-field regions that form near where the magnetization is directed normal to the edge. In these regions, localized precession forms as trapped spin wave modes, and the resonance condition of these modes serves as an indicator of the edge properties. I will present modeling and measurements on a 500 nm diameter, 25 nm thick Permalloy disk to illustrate the method. Micromagnetic modeling of this disk predicts a main mode that is nearly uniform across the sample and three localized edge modes with higher resonance fields. The spectra measured with various tip positions and mode imaging are consistent with the modeling results. In addition to a strong center mode, three distinct edge modes are observed when the tip is near the disk edge. For a symmetric disk, the modeling predicts that the edge mode resonances are identical on the two opposite edges. However, the measured edge mode resonances on opposite edges of the disk are detected at different resonance fields, suggesting inhomogeneity of the edge properties. By rotating the applied field, we control the position of the localized edge mode along the edge of the disk and confirm that the edge mode resonance field has a strong angular dependence, showing that edge mode properties can vary significantly in a nominally circular disk.

  10. Efficient edge-guided full-waveform inversion by Canny edge detection and bilateral filtering algorithms

    NASA Astrophysics Data System (ADS)

    Xiang, Shiming; Zhang, Haijiang

    2016-11-01

    It is known full-waveform inversion (FWI) is generally ill-conditioned and various strategies including pre-conditioning and regularizing the inversion system have been proposed to obtain a reliable estimation of the velocity model. Here, we propose a new edge-guided strategy for FWI in frequency domain to efficiently and reliably estimate velocity models with structures of the size similar to the seismic wavelength. The edges of the velocity model at the current iteration are first detected by the Canny edge detection algorithm that is widely used in image processing. Then, the detected edges are used for guiding the calculation of FWI gradient as well as enforcing edge-preserving total variation (TV) regularization for next iteration of FWI. Bilateral filtering is further applied to remove noise but keep edges of the FWI gradient. The proposed edge-guided FWI in the frequency domain with edge-guided TV regularization and bilateral filtering is designed to preserve model edges that are recovered from previous iterations as well as from lower frequency waveforms when FWI is conducted from lower to higher frequencies. The new FWI method is validated using the complex Marmousi model that contains several steeply dipping fault zones and hundreds of horizons. Compared to FWI without edge guidance, our proposed edge-guided FWI recovers velocity model anomalies and edges much better. Unlike previous image-guided FWI or edge-guided TV regularization strategies, our method does not require migrating seismic data, thus is more efficient for real applications.

  11. Saturn's Rings Edge-on

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.

    For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.

    The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.

    This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).

    Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science

  12. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott

    2012-06-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System. We will also explore the Neptune Trojans and scattered disk populations through the survey.

  13. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott

    2011-01-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System. We will also explore the Neptune Trojans and scattered disk populations through the survey.

  14. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott; Trujillo, Chad

    2012-02-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a medium wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System.

  15. Gyrokinetic Models for Edge Plasmas*

    NASA Astrophysics Data System (ADS)

    Dimits, Andris

    2010-11-01

    The use of gyrokinetic equations for the simulation of magnetic fusion edge and scrapeoff-layer plasmas requires that the equations be valid for large relative perturbation amplitudes and, possibly, large flows. The Hamiltonian gyrokinetic theory has therefore been extended to two new orderings [1,2] that are more general than the standard ones in that they allow for potential perturbations or ExB flows of order the thermal levels. These theories both generalize and show that additional terms should have been present some related prior work. Here, full (low-β) electromagnetic toroidal equation sets are presented, and he energy conservation relations are derived using Noether's theorem in a Lagrangian variational approach. Useful subsidiary and reduced orderings are also considered that result in considerable simplification, and methods for the numerical implementation of the new terms in the equations will also be discussed. *This work was performed for US DOE by LLNL under Contract DE-AC52-07NA27344 and is part of the ESL. [4pt] [1] A.M. Dimits et al., Phys. Fluids B4, 274 (1992). [0pt] [2] A.M. Dimits, Phys. Plasmas 17, 055901 (2010).

  16. Comparing object recognition from binary and bipolar edge features

    PubMed Central

    Jung, Jae-Hyun; Pu, Tian; Peli, Eli

    2017-01-01

    Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary edge images (black edges on white background or white edges on black background) have been used to represent features (edges and cusps) in scenes. However, the polarity of cusps and edges may contain important depth information (depth from shading) which is lost in the binary edge representation. This depth information may be restored, to some degree, using bipolar edges. We compared recognition rates of 16 binary edge images, or bipolar features, by 26 subjects. Object recognition rates were higher with bipolar edges and the improvement was significant in scenes with complex backgrounds.

  17. Eliminating Unbonded Edges In Explosive Bonding

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1991-01-01

    Explosive-bonding technique elminates sharp unbonded notch normally occurring between flyer plate and baseplate. Makes it possible to simply break away unbonded outer extremity of flyer plate; no longer necessary to grind away unbonded edge to prevent collection of corrosive contaminants in edge voids. Method not limited to flat surfaces.

  18. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2017-03-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  19. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  20. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2016-09-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  1. [Gap edge effect of Castanopsis kawakamii community].

    PubMed

    Liu, Jinfu; Hong, Wei; Li, Junqing; Lin, Rongfu

    2003-09-01

    This paper reported the characters of gap edge effect of Castanopsis kawakamii community in Sanming, Fujian Province. The species diversity, ecological dominance, and edge effect strength of 38 forest gaps with different development stages in different stands of Castanopsis kawakamii community were measured, and Shannon-Wiener index, Simpson index, and index of edge effect strength were calculated. The results showed that the index of the gap edge effect of Castanopsis kawakamii community was about 0.7-1.3 (according to the species diversity index) and 0.3-1.8 (according to the ecological dominance index). The gap edge effect had the trend of increasing the species diversity of forest communities. The index of gap effect was affected by the size and development stage of the gap and the related forest type. The study provided a theoretical basis for the maintenance of species diversity and the forest management in Castanopsis kawakamii community.

  2. Edge plasmons in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Bao, Zhi-Wei; Wu, Hong-Wei; Zhou, Yu

    2016-12-01

    In this paper, we numerically investigate the edge plasmons in monolayer black phosphorus. It is found that the complex effective indexes of these modes depend on the molecular configuration of the edge. We have calculated the ratio of the real over the imaginary part of the mode effective index, and the results indicate that such edge modes indeed possess outstanding propagation performances in the mid-infrared. In the case of black phosphorus nanoribbon, it seems that only the anti-symmetric modes have low losses, and may be of use in applications. Compared with those at the edge of monolayer black phosphorus, the propagation performances can be further enhanced due to the mode coupling between the two edges. In the end, the effects of substrates are discussed. Our study shows that monolayer black phosphorus may be regarded as a promising candidate for plasmonic applications in the mid-infrared.

  3. Sensitivity Analysis of Automated Ice Edge Detection

    NASA Astrophysics Data System (ADS)

    Moen, Mari-Ann N.; Isaksem, Hugo; Debien, Annekatrien

    2016-08-01

    The importance of highly detailed and time sensitive ice charts has increased with the increasing interest in the Arctic for oil and gas, tourism, and shipping. Manual ice charts are prepared by national ice services of several Arctic countries. Methods are also being developed to automate this task. Kongsberg Satellite Services uses a method that detects ice edges within 15 minutes after image acquisition. This paper describes a sensitivity analysis of the ice edge, assessing to which ice concentration class from the manual ice charts it can be compared to. The ice edge is derived using the Ice Tracking from SAR Images (ITSARI) algorithm. RADARSAT-2 images of February 2011 are used, both for the manual ice charts and the automatic ice edges. The results show that the KSAT ice edge lies within ice concentration classes with very low ice concentration or open water.

  4. Edge effects on water droplet condensation

    NASA Astrophysics Data System (ADS)

    Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel

    2014-12-01

    In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.

  5. Living on the edge: roads and edge effects on small mammal populations.

    PubMed

    Fuentes-Montemayor, Elisa; Cuarón, Alfredo D; Vázquez-Domínguez, Ella; Benítez-Malvido, Julieta; Valenzuela-Galván, David; Andresen, Ellen

    2009-07-01

    1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides

  6. Large Lewis No. Edge-Flame Instabilities

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.

    2001-01-01

    Edge-flames play an important role in a number of microgravity investigations, and in the general study of flames. Examples include the candle-flame experiments carried out on board both the Space Shuttle and the Mir Space Station; the flame-spread-over-liquid work carried out by H. Ross and W. Sirignano amongst others and lifted turbulent diffusion flames. In all of these configurations a local two-dimensional flame structure can be identified which looks like a flame-sheet with an edge, and these structures exhibit dynamical behavior which characterizes them and distinguishes them from ad hoc 2D flame structures. Edge-flames can exist in both a non-premixed context (edges of diffusion flames) and in a premixed context (edges of deflagrations), but the work reported here deals with the edges of diffusion flames. It is particularly relevant, we believe, to oscillations that have been seen in both the candle-flame context, and the flame-spread-over-liquid context. These oscillations are periodic edge-oscillations (in an appropriate reference frame), sans oscillation of the trailing diffusion flame. It is shown that if the Lewis number of the fuel is sufficiently large (the Lewis number of the oxidizer is taken to be 1), and the Damkohler number is sufficiently small, oscillating-edge solutions can be found. Oscillations are encouraged by an on-edge convective flow and the insertion of a cold probe, discouraged by an off-edge convective flow. In the present work, the nature of these oscillations is examined in more depth, using a variety of numerical strategies.

  7. Manipulating the edge of instability

    PubMed Central

    Venkadesan, Madhusudhan; Guckenheimer, John; Valero-Cuevas, Francisco J.

    2009-01-01

    We investigate the integration of visual and tactile sensory input for dynamic manipulation. Our experimental data and computational modeling reveal that time-delays are as critical to task-optimal multisensory integration as sensorimotor noise. Our focus is a dynamic manipulation task “at the edge of instability.” Mathematical bifurcation theory predicts that this system will exhibit well-classified low-dimensional dynamics in this regime. The task was using the thumbpad to compress a slender spring prone to buckling as far as possible, just shy of slipping. As expected from bifurcation theory, principal components analysis gives a projection of the data onto a low dimensional subspace that captures 91-97% of its variance. In this subspace, we formulate a low-order model for the brain+hand+spring dynamics based on known mechanical and neurophysiological properties of the system. By systematically occluding vision and anesthetically blocking thumbpad sensation in 12 consenting subjects, we found that vision contributed to dynamic manipulation only when thumbpad sensation was absent. The reduced ability of the model system to compress the spring with absent sensory channels closely resembled the experimental results. Moreover, we found that the model reproduced the contextual usefulness of vision only if we took account of time-delays. Our results shed light on critical features of dynamic manipulation distinct from those of static pinch, as well as the mechanism likely responsible for loss of manual dexterity and increased reliance on vision when age or neuromuscular disease increase noisiness and/or time-delays during sensorimotor integration. PMID:17400231

  8. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  9. Comparative Study of Edge Detectors in case of Echocardiographic Images

    NASA Astrophysics Data System (ADS)

    Saini, Kalpana; Dewal, M. L.; Rohit, Manoj Kumar

    2010-11-01

    In this paper we compare different edge detectors based on peak signal to noise ratio on Echocardiographic images. Edge detection is a critical element in image processing, since edges contain a major function of image information. The function of edge detection is to identify the boundaries of homogeneous regions in an image based on properties such as intensity and texture.We have taken Perwitt edge detector, Robarts edge detector, LoG edge detector, Canny edge detector, and Sobel edge detector for this comparison and study.

  10. Image Edge Extraction via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  11. Electrostatic analysis of the tokamak edge plasma

    SciTech Connect

    Motley, R.W.

    1981-07-01

    The intrusion of an equipotential poloidal limiter into the edge plasma of a circular tokamak discharge distorts the axisymmetry in two ways: (1) it (partially) shorts out the top-to-bottom Pfirsch-Schlueter driving potentials, and (2) it creates zones of back current flow into the limiter. The resulting boundary mismatch between the outer layers and the inner axisymmetric Pfirsch-Schlueter layer provides free energy to drive the edge plasma unstable. Special limiters are proposed to symmetrize the edge plasma and thereby reduce the electrical and MHD activity in the boundary layer.

  12. An edge preserving differential image coding scheme

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1992-01-01

    Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility, especially when coding medical or scientific images, where edge preservation is of utmost importance. A simple, easy to implement differential image coding system with excellent edge preservation properties is presented. The coding system can be used over variable rate channels, which makes it especially attractive for use in the packet network environment.

  13. An optimal scale for edge detection

    NASA Astrophysics Data System (ADS)

    Geiger, Davi; Poggio, Tomaso

    1988-09-01

    Many problems in early vision are ill posed. Edge detection is a typical example. This paper applies regularization techniques to the problem of edge detection. The authors derive an optimal filter for edge detection with a size controlled by the regularization parameter lambda and compare it to the Gaussian filter. A formula relating the signal-to-noise ratio to the parameter lambda is derived from regularization analysis for the case of small values of lambda. Also discussed is the method of Generalized Cross Validation for obtaining the optimal filter scale. Finally, the authors use their framework to explain two perceptual phenomena: coarsely quantized images becoming recognizable by either blurring or adding noise.

  14. Cavitation on hydrofoils with sinusoidal leading edge

    NASA Astrophysics Data System (ADS)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  15. Edge current in a small chiral superconductor

    NASA Astrophysics Data System (ADS)

    Suzuki, Shu-Ichiro; Asano, Yasuhiro

    2016-10-01

    We discuss a theoretical description of the edge current in a chiral superconductor. On the basis of the quasiclassical Green function formalism, we derive a useful expression of the chiral edge current which enable us to understand how Cooper pairs contribute to the electric current. We will show that the chiral edge current is carried by the combinations of two Cooper pairs belonging to different pairing symmetries. One Cooper pair belongs to the usual even-frequency pairing symmetry class. However, the other belongs to the odd-frequency symmetry class.

  16. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief

    PubMed Central

    Egan, John; Sharman, Rebecca J.; Scott-Brown, Kenneth C.; Lovell, Paul George

    2016-01-01

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief. PMID:27922058

  17. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    PubMed

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  18. Edge effect in fluid jet polishing.

    PubMed

    Guo, Peiji; Fang, Hui; Yu, Jingchi

    2006-09-10

    The edge effect is one of the most important subjects in optical manufacturing. The removal function at different positions of the sample in the process of fluid jet polishing (FJP) is investigated in the experiments. Furthermore, by using finite-element analysis (FEA), the distributions for velocity and pressure of slurry jets are simulated. Experimental results demonstrate that the removal function has a ring-shaped profile, except for a little change in the size at the operated area even if the nozzle extends beyond the edge of the sample. FEA simulations reveal a similar distribution of velocity with a cavity resulting in the ring-shaped profile of material removal at different impact positions. To a certain extent, therefore, the removal function at the edge of the surface of the sample appears similar to that inside of it, so that the classical edge effect can be neglected in FJP.

  19. Edge reconstruction-mediated graphene fracture

    NASA Astrophysics Data System (ADS)

    Zhang, Ziang; Kutana, Alex; Yakobson, Boris I.

    2015-01-01

    Creation of free edges in graphene during mechanical fracture is a process that is important from both fundamental and technological points of view. Here we derive an analytical expression for the energy of a free-standing reconstructed chiral graphene edge, with chiral angle varying from 0° to 30°, and test it by first-principles computations. We then study the thermodynamics and kinetics of fracture and show that during graphene fracture under uniaxial load it is possible to obtain fully reconstructed zigzag edges through sequential reconstructions at the crack tip. The preferable condition for this process is high temperature (T ~ 1000 K) and low (quasi-static) mechanical load (KI ~ 5.0 eV Å-5/2). Edge configurations of graphene nanoribbons may be tuned according to these guidelines.

  20. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  1. Edge energies and shapes of nanoprecipitates.

    SciTech Connect

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  2. Folded membrane dialyzer with mechanically sealed edges

    DOEpatents

    Markley, Finley W.

    1976-01-01

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  3. Leading edge protection for composite blades

    NASA Technical Reports Server (NTRS)

    Brantley, J. W.; Irwin, T. P. (Inventor)

    1977-01-01

    A laminated filament composite structure, such as an airfoil for use in an environment in which it is subjected to both foreign object impact and bending is provided with improved leading edge protection. At least one fine wire mesh layer is partially bonded within the composite structure along its neutral bending axis. A portion of the wire mesh layer extends beyond the neutral bending axis and partially around the leading edge where it is bonded to the outer periphery of the primary composite structure. The wire mesh is clad with a metal such as nickel to provide an improved leading edge protective device which is firmly anchored within the composite structure. Also described is a novel method of constructing a composite airfoil so as to further minimize the possibility of losing the leading edge protective device due to delamination caused by impact and bending.

  4. Multi-dimensional edge detection operators

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Lee, Chulhee

    2014-05-01

    In remote sensing, modern sensors produce multi-dimensional images. For example, hyperspectral images contain hundreds of spectral images. In many image processing applications, segmentation is an important step. Traditionally, most image segmentation and edge detection methods have been developed for one-dimensional images. For multidimensional images, the output images of spectral band images are typically combined under certain rules or using decision fusions. In this paper, we proposed a new edge detection algorithm for multi-dimensional images using secondorder statistics. First, we reduce the dimension of input images using the principal component analysis. Then we applied multi-dimensional edge detection operators that utilize second-order statistics. Experimental results show promising results compared to conventional one-dimensional edge detectors such as Sobel filter.

  5. The edge extraction of agricultural crop leaf

    NASA Astrophysics Data System (ADS)

    Wang, Beilei; Cao, Ying; Xiao, Huiming; Jiang, Huiyan; Liu, Hongjuan

    2009-07-01

    In agricultural engineering, to ensure rational use of pesticide and improvement of crop production, computer image recognition technology is currently applied to help farmers to identify the degree of crop diseases. Considering the importance of feature extraction in this field, in this paper, we first present and discuss several widely used edge operator, including Sobel, Prewitt, Roberts, Canny and LoG. Furthermore, an experiment is conducted to compare performance and accuracy of five operators by applying them to a leaf image taken from agricultural crop for edge detection. The results of experiment show that, in practice, LoG edge operator is relatively a better choice and performs well for edge detection of agricultural crop leaf image.

  6. Edge-Enabled Tactical Systems (Poster)

    DTIC Science & Technology

    2014-10-23

    Engineering Institute Contact: Grace Lewis glewis@sei.cmu.edu Current Capabilities Group Autonomy for Mobile Systems (GAMS) Portable middleware...distributed algorithms and tools to support warfighter-directed groups of autonomous sensors and robotic systems. The focus for FY14 was on area coverage...objects. Information Superiority to the Edge (ISE) Mobile application prototype that supports small edge units of soldiers or first responders by (1

  7. Applications of Hydrofoils with Leading Edge Protuberances

    DTIC Science & Technology

    2012-03-30

    APPLICATIONS OF HYDROFOILS WITH LEADING EDGE PROTUBERANCES Final Technical Report for Office of Naval Research contract...To) 03/30/2012 Final Technical Report 01-08-2008 to 31-12-2011 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Applications of Hydrofoils with Leading...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The leading edge modified hydrofoils

  8. Commercial Technology at the Tactical Edge

    DTIC Science & Technology

    2013-06-01

    18th ICCRTS “C2 in Underdeveloped, Degraded and Denied Operational Environments” Commercial Technology at the Tactical Edge Topics: (7...Architectures, Technologies , and Tools (8): Networks and Networking Jonathan R. Agre Institute for Defense Analyses 4850 Mark Center Drive...4. TITLE AND SUBTITLE Commercial Technology at the Tactical Edge 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  9. Edge Equilibrium Code (EEC) For Tokamaks

    SciTech Connect

    Li, Xujling

    2014-02-24

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids

  10. Edge covers and independence: Algebraic approach

    NASA Astrophysics Data System (ADS)

    Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.

    2016-06-01

    In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.

  11. Interaction of gusts with forest edges

    NASA Astrophysics Data System (ADS)

    Ruck, Bodo; Tischmacher, Michael

    2012-05-01

    Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study the interaction of gusts with forest edges. Summarizing the state of knowledge in the field of forest damages generated by extreme storms, there is a strong indication that in many cases, windthrow of trees starts near the forest edge from where it spreads into the stand. The high-transient interaction between gusts and (porous) forest edges produce unsteady flow phenomena not known so far. From a fluid mechanical point of view, the flow type resembles a forward-facing porous step flow, which is significantly influenced by the characteristics of the oncoming atmospheric boundary layer flow and the shape and `porous properties' of the forest edge. The paper reports systematic investigations on the interaction of artificially generated gusts and forest edge models in an atmospheric boundary layer wind tunnel. The experimental investigations were carried out with a laser-based time-resolved PIV-system and high speed photography. Different flow phenomena like gust streching, vortex formation, Kelvin-Helmholtz instabilities or wake production of turbulence could be measured or visualized contributing to the understanding of the complex flow perfomance over the forest edge.

  12. Edge detecting new physics the Voronoi way

    NASA Astrophysics Data System (ADS)

    Debnath, Dipsikha; Gainer, James S.; Kim, Doojin; Matchev, Konstantin T.

    2016-05-01

    Edge detection is an important tool in the search for and exploration of physics beyond the standard model. Ideally one would be able to perform edge detection in a relatively model-independent way, however most analyses rely on more detailed properties (i.e. “shapes” or likelihood distributions) of the variable(s) of interest. We therefore present a sketch of how edge detection can be accomplished using Voronoi tessellations, focusing on the case of two-dimensional distributions for simplicity. After deriving some useful properties of the Voronoi tessellations of simplified distributions containing edges, we propose several algorithms for tagging the Voronoi cells in the vicinity of kinematic edges in real data and show that the efficiency of our methods is improved by the addition of a few Voronoi relaxation steps via Lloyd's method. Our results suggest specifically that Voronoi-based methods should be useful for relatively model-independent edge detection, and, more generally, that the wider adaptation of Voronoi tessellations may be useful in collider physics.

  13. Aircraft wing trailing-edge noise

    NASA Technical Reports Server (NTRS)

    Underwood, R. L.; Hodgson, T. H.

    1981-01-01

    The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.

  14. Nondiffusive plasma transport at tokamak edge

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.

    2000-10-01

    Recent findings show that cross field edge plasma transport at tokamak edge does not necessarily obey a simple diffusive law [1], the only type of a transport model applied so far in the macroscopic modeling of edge plasma transport. Cross field edge transport is more likely due to plasma filamentation with a ballistic motion of the filaments towards the first wall. Moreover, it so fast that plasma recycles on the main chamber first wall rather than to flow into divertor as conventional picture of edge plasma fluxes suggests. Crudely speaking particle recycling wise diverted tokamak operates in a limiter regime due to fast anomalous non-diffusive cross field plasma transport. Obviously that this newly found feature of edge plasma anomalous transport can significantly alter a design of any future reactor relevant tokamaks. Here we present a simple model describing the motion of the filaments in the scrape off layer and discuss it implications for experimental observations. [1] M. Umansky, S. I. Krasheninnikov, B. LaBombard, B. Lipschultz, and J. L. Terry, Phys. Plasmas 6 (1999) 2791; M. Umansky, S. I. Krasheninnikov, B. LaBombard and J. L. Terry, Phys. Plasmas 5 (1998) 3373.

  15. Edge effects on water droplet condensation

    NASA Astrophysics Data System (ADS)

    Royon, Laurent; Montgruel, Anne; Medici, Marie Gabrielle; Beysens, Daniel

    2014-11-01

    The effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate is investigated. Edges, corners, cooled/non cooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicular to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edges effects can be canceled. In certain cases, the growth enhancement can reach nearly 500% on edges or corners which, on an inclined substrate, make droplets near the edges detach sooner than in the middle of the substrate. This effect is frequently observed with dew condensing on windows or car windshields. Such droplets, acting as wipers, can thus appreciably increase dew collection on a substrate.

  16. Losing your edge: climate change and the conservation value of range-edge populations.

    PubMed

    Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J

    2015-10-01

    Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

  17. Edge location to subpixel values in digital imagery.

    PubMed

    Tabatabai, A J; Mitchell, O R

    1984-02-01

    A new method for locating edges in digital data to subpixel values and which is invariant to additive and multiplicative changes in the data is presented. For one-dimensional edge patterns an ideal edge is fit to the data by matching moments. It is shown that the edge location is related to the so-called ``Christoffel numbers.'' Also presented is the study of the effect of additive noise on edge location. The method is extended to include two-dimensional edge patterns where a line equation is derived to locate an edge. This in turn is compared with the standard Hueckel edge operator. An application of the new edge operator as an edge detector is also provided and is compared with Sobel and Hueckel edge detectors in presence and absence of noise.

  18. Partnership for Edge Physics Simulation (EPSI)

    SciTech Connect

    Schroder, Peter

    2015-02-11

    We propose to develop advanced simulation codes, based upon an extreme parallelism, first principles kinetic approach, to address the challenges associated with the edge region of magnetically confined plasmas. This work is relevant to both existing magnetic fusion facilities and essential for next-generation burning plasma experiments, such as ITER where success is critically dependent upon H-mode operation achieving an edge pedestal of sufficient height for good core plasma performance without producing deleterious large scale edge localized instabilities. The plasma edge presents a well-known set of multi-physics, multi-scale problems involving complex 3D magnetic geometry. Perhaps the greatest computational challenge is the lack of scale separation – temporal scales for drift waves, Alfven waves, ELM dynamics for example have strong overlap. Similar overlap occurs on the spatial scales for the ion poloidal gyro-radius, drift wave and pedestal width. The traditional approach of separating fusion problems into weakly interacting spatial or temporal domains clearly breaks down in the edge. A full kinetic model (full-f model) must be solved to understand and predict the edge physics including non-equilibrium thermodynamic issues arising from the magnetic topology (the open field lines producing a spatially sensitive velocity hole), plasma wall interactions, neutral and atomic physics. The plan here is to model these phenomena within a comprehensive first principles set of equations without the need for the insurmountable multiple-codes coupling issues by building on the XGC1 code developed under the SciDAC Proto-FSP Center for Plasma Edge Simulation (CPES). This proposal includes the critical participants in the XGC1 development. We propose enhancing the capability of XGC1 by including all the important turbulence physics contained in kinetic ion and electron electromagnetic dynamics, by extending the PIC technology to incorporate several positive features found

  19. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  20. Dissecting new physics models through kinematic edges

    NASA Astrophysics Data System (ADS)

    Iyer, Abhishek M.; Maitra, Ushoshi

    2017-02-01

    Kinematic edges in the invariant mass distributions of different final state particles are typically a signal of new physics. In this work we propose a scenario wherein these edges could be utilized in discriminating between different classes of models. To this effect, we consider the resonant production of a heavy Higgs like resonance (H1) as a case study. Such states are a characteristic feature of many new physics scenarios beyond the standard model (SM). In the event of a discovery, it is essential to identify the true nature of the underlying theory. In this work we propose a channel, H1→t2t , where t2 is a vectorlike gauge singlet top-partner that decays into W b , Z t , h t . Invariant mass distributions constructed out of these final states are characterized by the presence of kinematic edges, which are unique to the topology under consideration. Further, since all the final state particles are SM states, the position in the edges of these invariant mass distributions can be used to exclusively determine the masses of the resonances. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these edge like features, in the specific invariant mass distributions considered here, in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non-MSSM-like scenarios.

  1. Trailing edge modifications for flatback airfoils.

    SciTech Connect

    Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.

    2008-03-01

    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  2. Leading-edge effects in bypass transition

    NASA Astrophysics Data System (ADS)

    Nagarajan, S.; Lele, S. K.; Ferziger, J. H.

    The effect of a blunt leading edge on bypass transition is studied by numerical simulation. A mixed direct and large-eddy simulation of a flat plate with a super-ellipse leading edge is carried out at various conditions. Onset and completion of transition is seen to move upstream with increasing bluntness. For sharper leading edges, at lower levels of turbulence, transition usually occurs through instabilities on low-speed streaks as observed by Jacobs & Durbin (2001) and Brandt et al. (2004) whereas increasing either the turbulence intensity or the leading-edge bluntness brings into play another mechanism. Free-stream vortices are amplified at the leading edge because of stretching. In the case of particularly strong vortices, this interaction induces a localized streamwise vortical disturbance in the boundary layer which then grows as it convects downstream and eventually breaks down to form a turbulent spot. These disturbances, which are localized and hence wavepacket-like, move at speeds in the range 0.55 U_{infty} 0.65 U_{infty} and occur in the lower portion of the boundary layer. Simulations conducted with isolated vortices confirm such a response of the boundary layer.

  3. Numerical simulation of the edge tone phenomenon

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Liu, B. L.; Ofarrell, J. M.

    1994-01-01

    Time accurate Navier-Stokes computations were performed to study a class 2 (acoustic) whistle, the edge tone, and to gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the wedge. Flow speed was kept constant at 1,750 cm/s as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. The analytical computations revealed edge tones to be present in four harmonic stages of jet flow instability over the wedge as the jet length was varied from 0.3 to 1.6 cm. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained frequencies and flow visualization results of Brown. Specific edge tone generation phenomena and further confirmation of certain theories and empirical formulas concerning these phenomena were brought to light in this analytical simulation of edge tones.

  4. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  5. Acoustic metamaterial for subwavelength edge detection.

    PubMed

    Molerón, Miguel; Daraio, Chiara

    2015-08-25

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ∼5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  6. Grain edge detection of diamond grinding wheel

    NASA Astrophysics Data System (ADS)

    Zhou, Lijun; Cui, Changcai; Huang, Chunqi; Huang, Hui; Ye, Ruifang

    2013-01-01

    The topograpgy characterization of grinding wheel grain is indispensable for precision grinding, it depends on accurate edge detecting and recognition of abrasive grains from wheel bond to a large extent. Due to different reflective characteristics arising among different materials, difference between maximum and minimum intensity (Δ ) of diamond is larger than that of bond. This paper uses a new method for grain edge detection of resin-bonded diamond grinding wheel that combines the improved Canny operator in Method of Maximum Classes Square Error (called as OTSU) with ΔI obtained by the white light interferometry (WLI). The experimental results show that the method based on improved Canny operator can effectively detect the edge of diamond grain.

  7. Edge effects in composites by moire interferometry

    NASA Technical Reports Server (NTRS)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  8. Preparation of edge states by shaking boundaries

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Hou, S. C.; Wang, L. C.; Yi, X. X.

    2016-10-01

    Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry-André-Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As a by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.

  9. Black phosphorus edges: a polarized Raman study

    NASA Astrophysics Data System (ADS)

    Ribeiro, H.; Villegas, C.; Bahamon, D.; Castro Neto, A.; de Souza, E.; Rocha, A.; Pimenta, M.; de Matos, C.

    Black phosphorus (BP) has been recently exfoliated down to few-layer thicknesses revealing numerous interesting features such as a tunable direct bandgap. Ever since, demonstrations of BP electronic devices have bloomed, as well as studies of the electric, optical, mechanical and thermal properties of its bulk and few-layer forms. However, the edges of BP crystals have, so far, been poorly characterized, even though the terminations of layered crystals are known to possess a range of interesting properties. In this work, the edges of exfoliated BP flakes are characterized by polarized confocal Raman spectroscopy. We will present experimental Raman spectra at zigzag and armchair edges, as well as density functional theory calculations that explain the peculiarities of the experimental data. Fapesp, INCT/Nanocarbono, Fapemig, CNPq, MackPesquisa, Grid-Unesp, CENAPAD-SP, and NRF.

  10. Diagnosing Topological Edge States via Entanglement Monogamy

    NASA Astrophysics Data System (ADS)

    Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.

    2016-04-01

    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.

  11. Contrast edge colors under different natural illuminations.

    PubMed

    Nieves, Juan Luis; Nascimento, Sérgio M C; Romero, Javier

    2012-02-01

    Essential to sensory processing in the human visual system is natural illumination, which can vary considerably not only across space but also along the day depending on the atmospheric conditions and the sun's position in the sky. In this work, edges derived from the three postreceptoral Luminance, Red-Green, and Blue-Yellow signals were computed from hyperspectral images of natural scenes rendered with daylights of Correlated Color Temperatures (CCTs) from 2735 to 25,889 K; for low CCT, the same analysis was performed using Planckian illuminants up to 800 K. It was found that average luminance and chromatic edge contrasts were maximal for low correlated color temperatures and almost constants above 10,000 K. The magnitude of these contrast changes was, however, only about 2% across the tested daylights. Results suggest that the postreceptoral opponent and nonopponent color vision mechanisms produce almost constant responses for color edge detection under natural illumination.

  12. Acoustic metamaterial for subwavelength edge detection

    PubMed Central

    Molerón, Miguel; Daraio, Chiara

    2015-01-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ∼5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions. PMID:26304739

  13. Controllable edge feature sharpening for dental applications.

    PubMed

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  14. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  15. SALT segmented primary mirror: inductive edge sensors

    NASA Astrophysics Data System (ADS)

    Gajjar, Hitesh; Menzies, John; Buckley, David; Neel, Christian; Parbaud, Philippe; Royet, Stéphane

    2014-07-01

    The development of an inductive edge sensor is in process for the control of the Southern African Large Telescope's (SALT)1 segmented mirror primary. The original capacitive edge sensing system was not capable of maintaining the figure of the primary mirror due to excessive noise and a severe sensitivity to humidity despite exhaustive attempts at characterisation1. The prototype of the inductive edge sensor has progressed to a mature industrialised version that is in the process of being installed and commissioned on SALT. The performance of the sensor in response to temperature and RH is very good with a maximum error of 10nm typical after temperature compensation. The noise and control characteristics of the array have been simulated in order to establish the maximum cumulative error and error rate tolerable for the SALT specific case. It has been established through simulation that over the expected 5 day alignment cycle, a maximum cumulative error of 30nm can be tolerated.

  16. Floquet edge states in germanene nanoribbons

    PubMed Central

    Tahir, M.; Zhang, Q. Y.; Schwingenschlögl, U.

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light. PMID:27550632

  17. Predictability of the Arctic sea ice edge

    NASA Astrophysics Data System (ADS)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  18. Edge Detection in Landing Budgerigars (Melopsittacus undulatus)

    PubMed Central

    Bhagavatula, Partha; Claudianos, Charles; Ibbotson, Michael; Srinivasan, Mandyam

    2009-01-01

    Background While considerable scientific effort has been devoted to studying how birds navigate over long distances, relatively little is known about how targets are detected, obstacles are avoided and smooth landings are orchestrated. Here we examine how visual features in the environment, such as contrasting edges, determine where a bird will land. Methodology/Principal Findings Landing in budgerigars (Melopsittacus undulatus) was investigated by training them to fly from a perch to a feeder, and video-filming their landings. The feeder was placed on a grey disc that produced a contrasting edge against a uniformly blue background. We found that the birds tended to land primarily at the edge of the disc and walk to the feeder, even though the feeder was in the middle of the disc. This suggests that the birds were using the visual contrast at the boundary of the disc to target their landings. When the grey level of the disc was varied systematically, whilst keeping the blue background constant, there was one intermediate grey level at which the budgerigar's preference for the disc boundary disappeared. The budgerigars then landed randomly all over the test surface. Even though this disc is (for humans) clearly distinguishable from the blue background, it offers very little contrast against the background, in the red and green regions of the spectrum. Conclusions We conclude that budgerigars use visual edges to target and guide landings. Calculations of photoreceptor excitation reveal that edge detection in landing budgerigars is performed by a color-blind luminance channel that sums the signals from the red and green photoreceptors, or, alternatively, receives input from the red double-cones. This finding has close parallels to vision in honeybees and primates, where edge detection and motion perception are also largely color-blind. PMID:19809500

  19. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an edge sensor shall actuate upon the application of a 15 pounds (66.7 N) or less force in the...

  20. Wing Leading Edge Concepts for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  1. Mechanisms and methods to resolve edge effect.

    PubMed

    Kuchulakanti, Pramod; Lew, Robert; Waksman, Ron

    2003-06-01

    Vascular brachytherapy (VBT) has established itself as a viable modality to treat in-stent restenosis (ISR). The problems associated with VBT have been understood well and remedied. Late thrombosis has been overcome to a great extent by prolonged antiplatelet therapy. Edge effect is another important limitation of VBT and is due to inadequate radiation coverage of the edges following VBT. It may be overcome by confining injury to the lesion segment and extending the radiation sources by a few millimeters from the injured segment.

  2. Active-edge planar radiation sensors

    PubMed Central

    Kenney, C.J.; Segal, J.D.; Westbrook, E.; Parker, Sherwood; Hasi, J.; Da Via, C.; Watts, S.; Morse, J.

    2007-01-01

    Many systems in medicine, biology, high-energy physics, and astrophysics require large area radiation sensors. In most of these applications, minimizing the amount of dead area or dead material is crucial. We have developed a new type of silicon radiation sensor in which the device is active to within a few microns of the mechanical edge. Their perimeter is made by a plasma etcher rather than a diamond saw. Their edges can be defined and also passivated by growing, in an intermediate step, a field oxide on the side surfaces. In this paper, the basic architecture and results from a synchrotron beam test are presented. PMID:18185839

  3. Airplane wing leading edge variable camber flap

    NASA Technical Reports Server (NTRS)

    Cole, J. B.

    1980-01-01

    The invention and design of an aerodynamic high lift device which provided a solution to an aircraft performance problem are described. The performance problem of converting a high speed cruise airfoil into a low speed aerodynamic shape that would provide landing and take-off characteristics superior to those available with contemporary high lift devices are addressed. The need for an improved wing leading edge device that would complement the high lift performance of a triple slotted trailing edge flap is examined. The mechanical and structural aspects of the variable camber flap are discussed and the aerodynamic performance aspects only as they relate to the invention and design of the device are presented.

  4. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  5. Edge detection techniques for iris recognition system

    NASA Astrophysics Data System (ADS)

    Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.

    2013-12-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.

  6. Edge and Surface Plasmons in Graphene Nanoribbons.

    PubMed

    Fei, Z; Goldflam, M D; Wu, J-S; Dai, S; Wagner, M; McLeod, A S; Liu, M K; Post, K W; Zhu, S; Janssen, G C A M; Fogler, M M; Basov, D N

    2015-12-09

    We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons leads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nanoimaging in the mid-infrared range 850-1450 cm(-1) allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures.

  7. Edge and Surface Plasmons in Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Fei, Z.; Goldflam, M. D.; Wu, J.-S.; Dai, S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Post, K. W.; Zhu, S.; Janssen, G. C. A. M.; Fogler, M. M.; Basov, D. N.

    2015-12-01

    We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons leads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nano-imaging in mid-infrared 850-1450 cm-1 allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures.

  8. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    PubMed

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  9. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS

    PubMed Central

    Almquist, Zack W.; Butts, Carter T.

    2015-01-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218

  10. Real-time edge tracking using a tactile sensor

    NASA Technical Reports Server (NTRS)

    Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.

    1989-01-01

    Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.

  11. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  12. Real time infrared video expansion based on edge

    NASA Astrophysics Data System (ADS)

    Wu, Yiliang; Hong, Jingxin; Chen, Huihuang

    2007-11-01

    This paper proposes an edge-directed interpolation algorithm for infrared images. At present, the resolution of infrared focus planar array (IFPA) is relatively low. Conventional linear interpolation schemes such as the pixels replacement, the bilinear interpolation and the bicubic interpolation result in blurred edges and zigzag pictures. The correlation of different edge direction was calculated at each pixel to be interpolated to detect the edge and the edge direction. There are 13 directions in two quadrants we have chosen. Most edge can be detected in this range. Pixels at the edge are interpolated along the edge. The non-edge pixels are bilinearly interpolated. Simulation results show that the proposed method effectively removed the zigzag and blur at the edge caused by conventional linear interpolation. And this method is easy to be carried out by hardware.

  13. Liquid-Crystal Light Valve Enhances Edges In Images

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1991-01-01

    Experiments show liquid-crystal light valve (LCLV) exhibits operating mode in which it enhances edges in images projected on it. Operates in edge-enhancing mode (or in combination of edge-enhancing and normal modes) by suitably adjusting bias voltage and frequency. Enhancement of edges one of most important preprocessing steps in optical pattern-recognition systems. Incorporated into image-processing system to enhance edges without introducing excessive optical noise.

  14. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    SciTech Connect

    Dr. Ricardo Maqueda; Dr. Fred M. Levinton

    2011-12-23

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  15. The Edges of the Ocean: An Introduction.

    ERIC Educational Resources Information Center

    Burke, Kevin

    1979-01-01

    Introduces a series of related articles on the study of ocean/continent boundaries (margins) within the framework of plate tectonics. Topics discussed include: early attempts to interpret ocean/continent boundaries, Atlantic-type margins, Pacific-type margins, the edges of ancient oceans, and future challenges in the study of continental margins.…

  16. Hermetic Edge Seals for Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.

    1986-01-01

    Corrosive atmospheric agents excluded to prolong cell life. Combination of two sealing techniques makes possible to protect solar cells from water vapor, oxygen, and other corrosive atmospheric constituents. Using three-step process, glass-to-metal hermetic seal formed around edge of solar-cell module. Elastomer seals used previously not as effective because they are permeable to water vapor and atmospheric gases.

  17. Strip edge cracking simulation in cold rolling

    NASA Astrophysics Data System (ADS)

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-01

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges. This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips. Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  18. Edge currents in frustrated Josephson junction ladders

    NASA Astrophysics Data System (ADS)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  19. Reading Edge. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Reading Edge" is a middle school literacy program that emphasizes cooperative learning, goal setting, feedback, classroom management techniques, and the use of metacognitive strategy, whereby students assess their own skills and learn to apply new ones. The program is a component of the "Success for All"[superscript 2]…

  20. The Cognitive Dimension--"Edge of Darkness."

    ERIC Educational Resources Information Center

    McGuigan, Jim

    This paper discusses the cognitive effect of a highly successful 1985 British television program, "Edge of Darkness," which was viewed by millions and received critical plaudits and the accolade of the industry itself. The program is shown to represent a significant television event for formal and cognitive reasons that can usefully be…

  1. Submillisecond Optical Knife-Edge Testing

    NASA Technical Reports Server (NTRS)

    Thurlow, P.

    1983-01-01

    Fast computer-controlled sampling of optical knife-edge response (KER) signal increases accuracy of optical system aberration measurement. Submicrosecond-response detectors in optical focal plane convert optical signals to electrical signals converted to digital data, sampled and feed into computer for storage and subsequent analysis. Optical data are virtually free of effects of index-of-refraction gradients.

  2. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  3. Zone edge effects with variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  4. New applications of Spectral Edge image fusion

    NASA Astrophysics Data System (ADS)

    Hayes, Alex E.; Montagna, Roberto; Finlayson, Graham D.

    2016-05-01

    In this paper, we present new applications of the Spectral Edge image fusion method. The Spectral Edge image fusion algorithm creates a result which combines details from any number of multispectral input images with natural color information from a visible spectrum image. Spectral Edge image fusion is a derivative-based technique, which creates an output fused image with gradients which are an ideal combination of those of the multispectral input images and the input visible color image. This produces both maximum detail and natural colors. We present two new applications of Spectral Edge image fusion. Firstly, we fuse RGB-NIR information from a sensor with a modified Bayer pattern, which captures visible and near-infrared image information on a single CCD. We also present an example of RGB-thermal image fusion, using a thermal camera attached to a smartphone, which captures both visible and low-resolution thermal images. These new results may be useful for computational photography and surveillance applications.

  5. Social Justice as a Pedagogy of Edge

    ERIC Educational Resources Information Center

    Sonu, Debbie J.

    2010-01-01

    In this article, the author discusses social justice as a "pedagogy of edge." She argues that educators hold the privilege to begin reframing the dialogue on social justice as a relation of all subjects and to dredge from within the meanings drawn and practices made in honor of justice. This may require a shift away from social justice as a…

  6. The Cutting Edge, 1999-2000.

    ERIC Educational Resources Information Center

    Cutting Edge, 2000

    2000-01-01

    The Cutting Edge is a bimonthly newsletter of the Regional Center for Applied Technology and Training at Danville Community College (DCC) (Virginia) that provides the latest information on a wide range of issues including technology, business, employment trends, and new legislation. Articles from the first five issues discuss: (1) the July 2000…

  7. A neutral model of edge effects.

    PubMed

    Babak, Petro; He, Fangliang

    2009-02-01

    In this paper a spatially implicit neutral model for explaining the edge effects between habitats is proposed. To analyze this model we use two different approaches: a discrete approach that is based on the Master equation for a one step jump process and a continuous approach based on the approximation of the discrete jump process with the Kolmogorov-Fokker-Planck forward and backward equations. The discrete and continuous approaches are applied to analyze the species abundance distributions and the time to species extinction. Moreover, with the aid of the continuous approach a realistic classification of the behavior of species in local communities is developed. The species abundance dynamics at the edge between two distinct habitats is compared with those located in the homogeneous interior habitats using species abundance distributions and the first time to species extinction. We show that the structure of the links between local community and the metacommunity plays an important role on species persistence. Specifically, species at the edge between two distinct metacommunities have higher extinction rate than those in the interior habitats connected only to one metacommunity. Moreover, the same species might be persistent in the homogeneous interior habitat, but its probability of extinction from the edge local community could be very high.

  8. Acoustic streaming of a sharp edge.

    PubMed

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  9. Detection of edges using local geometry

    NASA Technical Reports Server (NTRS)

    Gualtieri, J. A.; Manohar, M.

    1989-01-01

    Researchers described a new representation, the local geometry, for early visual processing which is motivated by results from biological vision. This representation is richer than is often used in image processing. It extracts more of the local structure available at each pixel in the image by using receptive fields that can be continuously rotated and that go to third order spatial variation. Early visual processing algorithms such as edge detectors and ridge detectors can be written in terms of various local geometries and are computationally tractable. For example, Canny's edge detector has been implemented in terms of a local geometry of order two, and a ridge detector in terms of a local geometry of order three. The edge detector in local geometry was applied to synthetic and real images and it was shown using simple interpolation schemes that sufficient information is available to locate edges with sub-pixel accuracy (to a resolution increase of at least a factor of five). This is reasonable even for noisy images because the local geometry fits a smooth surface - the Taylor series - to the discrete image data. Only local processing was used in the implementation so it can readily be implemented on parallel mesh machines such as the MPP. Researchers expect that other early visual algorithms, such as region growing, inflection point detection, and segmentation can also be implemented in terms of the local geometry and will provide sufficiently rich and robust representations for subsequent visual processing.

  10. MHD edge instabilities in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda

    2015-11-01

    Different types of MHD edge instabilities in different toroidal magnetically confined plasmas are compared. Large scale numerical simulations show that the nonlinear evolution of an unstable edge mode in a shaped plasma with a single X-point and a surrounding open field line region has a number of common features in the full resistive MHD model for strongly unstable and weaker instabilities. These include the relation of the nonlinear mode structure and dominant toroidal harmonics to the linear eigenmode spectrum, the effects of the mode on reducing the edge pressure or density gradient, the inward penetration of a ballooning-type perturbation into the plasma interior, and the potential to drive a coherent axisymmetric poloidal rotation of the outer part of the plasma, exhibited at different strengths. The results can be compared to experiment to estimate the usefulness and validity of the MHD model for predicting edge stability and instability properties. Work supported by the U.S. DOE OFES under Awards DE-SC-0007883, DE-FG02-04ER54802, and DE-SC-0008737. Some computation carried out at NERSC.

  11. The Cutting Edge: Workplace English. Instructional Guide.

    ERIC Educational Resources Information Center

    El Paso Community Coll., TX. Literacy Center.

    The instructional guide for the Cutting Edge workplace literacy program, a cooperative project of El Paso Community College (Texas) and Levi Strauss and Company, is an expanded version of one appendix the project handbook. It describes and provides an instructional model for the three-part, job-specific, video-based program of English as a Second…

  12. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  13. Students at the Edge of Space

    ERIC Educational Resources Information Center

    Kennon, Tillman; Roberts, Ed; Fuller, Teresa

    2008-01-01

    Space travel, even low Earth orbit, is probably several years away for most of us; however, students and teachers can research the edge of space by participating in the BalloonSat program. BalloonSat is an offshoot of the Space Grant Consortium's very successful RocketSat program. The Arkansas BalloonSat program consists of teacher-initiated…

  14. Mapping Forest Edge Using Aerial Lidar

    NASA Astrophysics Data System (ADS)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  15. Absorber topography dependence of phase edge effects

    NASA Astrophysics Data System (ADS)

    Shanker, Aamod; Sczyrba, Martin; Connolly, Brid; Waller, Laura; Neureuther, Andy

    2015-10-01

    Mask topography contributes to phase at the wafer plane, even for OMOG binary masks currently in use at the 22nm node in deep UV (193nm) lithography. Here, numerical experiments with rigorous FDTD simulation are used to study the impact of mask 3D effects on aerial imaging, by varying the height of the absorber stack and its sidewall angle. Using a thin mask boundary layer model to fit to rigorous simulations it is seen that increasing the absorber thickness, and hence the phase through the middle of a feature (bulk phase) monotonically changes the wafer-plane phase. Absorber height also influences best focus, revealed by an up/down shift in the Bossung plot (linewidth vs. defocus). Bossung plot tilt, however, responsible for process window variability at the wafer, is insensitive to changes in the absorber height (and hence also the bulk phase). It is seen to depend instead on EM edge diffraction from the thick mask edge (edge phase), but stays constant for variations in mask thickness within a 10% range. Both bulk phase and edge phase are also independent of sidewall angle fluctuation, which is seen to linearly affect the CD at the wafer, but does not alter wafer phase or the defocus process window. Notably, as mask topography varies, the effect of edge phase can be replicated by a thin mask model with 8nm wide boundary layers, irrespective of absorber height or sidewall angle. The conclusions are validated with measurements on phase shifting masks having different topographic parameters, confirming the strong dependence of phase variations at the wafer on bulk phase of the mask absorber.

  16. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  17. Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups.

    PubMed

    Chapman, Colin A; Speirs, Michaela L; Gillespie, Thomas R; Holland, Timothy; Austad, Kiersten M

    2006-04-01

    Humans are responsible for massive changes to primate habitats, and one unanticipated consequence of these alterations may be changes in host-parasite interactions. Edges are a ubiquitous aspect of human disturbance to forest landscapes. Here we examine how changes associated with the creation of edges in Kibale National Park, Uganda, alter the parasite community that is supported by two species of African colobines: the endangered red colobus (Piliocolobus tephrosceles) and the black-and-white colobus (Colobus guereza). An analysis of 822 fecal samples from edge and forest interior groups revealed no difference in the richness of parasite communities (i.e., the number of parasite species recovered from the host's fecal sample). However, for both species the proportion of individuals with multiple infections was greater in edge than forest interior groups. The prevalence of specific parasites also varied between edge and forest interior groups. Oesophagostomum sp., a potentially deleterious parasite, was 7.4 times more prevalent in red colobus on the edge than in those in the forest interior, and Entamoeba coli was four times more prevalent in red colobus on the edge than in animals from the forest interior. Environmental contamination with parasites (measured as parasite eggs/gm feces) by red colobus from the edge and forest interior differed in a similar fashion to prevalence for red colobus, but it did not differ for black-and-white colobus. For example, egg counts of Oesophagostomum sp. were 10 times higher in red colobus from the edge than in those from the interior. The less severe infections in the black-and-white colobus relative to the red colobus may reflect the fact that black-and-white colobus raid agricultural crops while red colobus do not. This nutritional gain may facilitate a more effective immune response to parasites by the black-and-white colobus. The fact that animals on the edge are likely not nutritionally stressed raises an intriguing

  18. Edge-effect interactions in fragmented and patchy landscapes.

    PubMed

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes.

  19. Edge-to-edge repair of tricuspid valve in a corrected transposition of the great vessels.

    PubMed

    Kotoulas, Christophoros; Jones, Robert Peter; Turkie, Wajdi; Hasan, Ragheb

    2008-01-01

    We describe the case of a 27-year-old Caucasian woman with corrected transposition of the great vessels, who presented with cardiac failure. She had severe regurgitation of the systemic tricuspid valve with a huge annulus that was not suitable for annuloplasty. She underwent a successful repair using the Alfieri edge-to-edge technique and was asymptomatic 15 months after surgery. Such a repair has not been reported in the past.

  20. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    PubMed

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  1. Multifractality in plasma edge electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Neto, C. Rodrigues; Guimarães-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.

    2008-08-01

    Plasma edge turbulence in Tokamak Chauffage Alfvén Brésilien (TCABR) [R. M. O. Galvão et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.

  2. The red edge of plant leaf reflectance

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.

    1983-01-01

    A detailed study of the red edge spectral feature of green vegetation based on laboratory reflectance spectrophotometry is presented. A parameter lambda is defined as the wavelength is defined as the wavelength of maximum slope and found to be dependent on chlorophyll concentration. Species, development stage, leaf layering, and leaf water content of vegetation also influences lambda. The maximum slope parameter is found to be independent of simulated ground area coverage. The results are interpreted in terms of Beer's Law and Kubelka-Munk theory. The chlorophyll concentration dependence of lambda seems to be explained in terms of a pure absorption effect, and it is suggested that the existence of two lambda components arises from leaf scattering properties. The results indicate that red edge measurements will be valuable for assessment of vegetative chlorophyll status and leaf area index independently of ground cover variations, and will be particularly suitable for early stress detection.

  3. Quantum nature of edge magnetism in graphene.

    PubMed

    Golor, Michael; Wessel, Stefan; Schmidt, Manuel J

    2014-01-31

    It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side, or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the basic mechanism which is responsible for the spin polarization and thereby enables the application of graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical processes. The great tunability of graphene magnetism thus offers a viable route for the study of the quantum-classical crossover.

  4. Immune mechanism: a 'double-edged sword'.

    PubMed

    Musa, Mustaffa

    2013-05-01

    Immunology has now developed into an independent discipline in medicine which covers not only germ infection which is related to immunity solely but also covers a lot of non-infectious diseases such as autoimmune disease, allergies, and others. Therefore, "The Immune Mechanism: "A Double-Edged Sword" means that the immune mechanism (consisted of antibody mediated mechanism and T cell mediated mechanism), just like one edge playing the role of giving benefit (immunity) as it destroys the agent of infection, and another one can be detrimental as it will cause tissue/cell damages and then give rise to immune diseases (immunopathology). Now, the prevalence of these immune diseases is on the rise and has become a new challenge to our country towards developed country in 2020. Therefore, we have to make ample preparation (laboratory facilities/services, main power, and research) from now on in order to face the problems and challenges.

  5. Edge overload breakdown in evolving networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter

    2002-09-01

    We investigate growing networks based on Barabási and Albert's algorithm for generating scale-free networks, but with edges sensitive to overload breakdown. The load is defined through edge betweenness centrality. We focus on the situation where the average number of connections per vertex is, like the number of vertices, linearly increasing in time. After an initial stage of growth, the network undergoes avalanching breakdowns to a fragmented state from which it never recovers. This breakdown is much less violent if the growth is by random rather than by preferential attachment (as defines the Barabási and Albert model). We briefly discuss the case where the average number of connections per vertex is constant. In this case no breakdown avalanches occur. Implications to the growth of real-world communication networks are discussed.

  6. Edges of Saturn's rings are fractal.

    PubMed

    Li, Jun; Ostoja-Starzewski, Martin

    2015-01-01

    The images recently sent by the Cassini spacecraft mission (on the NASA website http://saturn.jpl.nasa.gov/photos/halloffame/) show the complex and beautiful rings of Saturn. Over the past few decades, various conjectures were advanced that Saturn's rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. Here we focus on four images sent by the Cassini spacecraft mission (slide #42 "Mapping Clumps in Saturn's Rings", slide #54 "Scattered Sunshine", slide #66 taken two weeks before the planet's Augus't 200'9 equinox, and slide #68 showing edge waves raised by Daphnis on the Keeler Gap) and one image from the Voyager 2' mission in 1981. Using three box-counting methods, we determine the fractal dimension of edges of rings seen here to be consistently about 1.63 ~ 1.78. This clarifies in what sense Saturn's rings are fractal.

  7. Submonolayer growth with decorated island edges

    NASA Astrophysics Data System (ADS)

    Kotrla, Miroslav; Krug, Joachim; Šmilauer, Pavel

    2000-05-01

    We study the dynamics of island nucleation in the presence of adsorbates using kinetic Monte Carlo simulations of a two-species growth model. Adatoms (A atoms) and impurities (B atoms) are codeposited, diffuse and aggregate subject to attractive AA and AB interactions. Activated exchange of adatoms with impurities is identified as the key process to maintain decoration of island edges by impurities during growth. While the presence of impurities strongly increases the island density, a change in the scaling of island density with flux, predicted by a rate equation theory for attachment-limited growth [D. Kandel, Phys. Rev. Lett. 78 (1997) 499], is not observed. We argue that, within the present model, even completely covered island edges do not provide efficient barriers to attachment.

  8. Edge physics considerations for IBW launch

    SciTech Connect

    Myra, J.R.; DIppolito, D.A.; Russell, D.A.; Rogers, J.H.

    1997-04-01

    Models for the edge interactions that occur in various regimes of IBW antenna operation have been developed. At high edge density, it is shown that rf sheath effects are important and give rise to significant power losses (anomalous loading). When the density at the antenna is low, the desired EPW-IBW mode transformation is sensitive to the density gradient scale length, and hence to ponderomotive effects. To treat the low density case, a second order equation describing mode transformation and reflection from the lower hybrid layer has been developed. Strong reflections are shown to occur when the density gradient is steep. Application of this model in the presence of self-consistent ponderomotive density modifications is the subject of a companion paper [1]. {copyright} {ital 1997 American Institute of Physics.}

  9. Absence of many-body mobility edges

    NASA Astrophysics Data System (ADS)

    De Roeck, Wojciech; Huveneers, Francois; Müller, Markus; Schiulaz, Mauro

    2016-01-01

    Localization transitions as a function of temperature require a many-body mobility edge in energy, separating localized from ergodic states. We argue that this scenario is inconsistent because local fluctuations into the ergodic phase within the supposedly localized phase can serve as mobile bubbles that induce global delocalization. Such fluctuations inevitably appear with a low but finite density anywhere in any typical state. We conclude that the only possibility for many-body localization to occur is lattice models that are localized at all energies. Building on a close analogy with a model of assisted two-particle hopping, where interactions induce delocalization, we argue why hot bubbles are mobile and do not localize upon diluting their energy. Numerical tests of our scenario show that previously reported mobility edges cannot be distinguished from finite-size effects.

  10. Differentiator design and performance for edge sharpening

    USGS Publications Warehouse

    Pan, Jeng-Jong; Domingue, Julia O.

    1990-01-01

    A two-dimensional differentiator is useful for edge sharpening in digital image processing. In the design of a differentiator, differentiator coefficients that satisfy the specification of frequency response must be approximated. Four mathematical techniques - the minimax method, least-squares method, nonlinear programming, and linear programming - can be applied to solve the approximation problem. Results indicated that the differentiator derived from linear programming gives the highest resolution. -from Authors

  11. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  12. Flow Control Over Sharp-Edged Wings

    DTIC Science & Technology

    2007-07-01

    each jet. A constant average mass flow of air was supplied to the jet using a closed-loop servo valve . Their data indicated that maximum lift...and screw angles of 90 and 45 degrees respectively. High-speed flow control valves were used to control the pulsed flow to each jet individually. The...leading edge contained three jet nozzles; however only two were used. The valve open-and-close cycle was manipulated using a computer function

  13. Rogue Edge Waves in the Ocean

    NASA Astrophysics Data System (ADS)

    Polukhina, Oxana; Kurkin, Andrey; Pelinovsky, Efim

    2010-05-01

    The investigation of anomalously large amplitude surface gravity waves on the sea surface (rogue or freak waves), which can appear suddenly and disappear in the same abrupt way, is very extensive in the recent years (see e.g., book [Kharif, Pelinovsky, Slunyaev 2009] and references there). However, any sudden displacements of water level or changes in flow velocities can also appear in the ocean wave motions of other types, including geophysical large-scale fields. The number of observations of such waves is still very small, they are even almost absent, but the investigations of such possible processes seem to be important for the applications. In the present paper the problem of rogue waves is discussed for edge waves in the coastal zone. Such waves belong to the class of topographically trapped waves, which are supposed to play dominant role in the dynamics of oceanic coastal zone. The amplitude of the waves reaches a maximum at the edge, and they are attenuated offshore. Direct visual observations of such waves are difficult, but such waves have been detected instrumentally in the nearshore wave field many times (see e.g. [Huntley and Bowen 1973; Bryan, Hows and Bowen 1998]). Edge waves are often considered as the major factor of the long-term evolution of coastal line, forming the rhythmic crescentic bars [Dolan and Ferm 1968; Bowen and Inman 1971; Guza and Inman 1975; Guza and Bowen 1981; Holman and Bowen 1982; Komar 1998]. In the present paper we summarize the results of the study of the nonlinear mechanisms of possible freak edge wave appearance: nonlinear dispersion enhancement and modulation instability.

  14. A collection of edge-based elements

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Edge-based elements have proved useful in solving electromagnetic problems since they are nondivergent. Previous authors have presented several two and three dimensional elements. Herein, we present four types of elements which are suitable for modeling several types of three dimensional geometries. Distorted brick and triangular prism elements are given in cartesian coordinates as well as the specialized cylindrical shell and pie-shaped prism elements which are suitable for problems best described in polar cylindrical coordinates.

  15. Resonant mode at the band edge

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Vargas Hernández, D.; Manzanares-Martinez, J.; Corella-Madueño, A.; Rosas-Burgos, A.; Tanori, Dra J.; Pellat, A.; Estrada, S.

    2016-09-01

    We have found the solution of the boundary value problem for reflectance and transmittance of normal circularly polarized light impinges on a cholesteric elastomer film with a twist defect. We have found a tunable resonant mode in the reflectance band for right and left circularly polarized light. When the values of chiral twist defect are increased in the cholesteric elastomer film, the resonant modes changes to shorter wavelength until the edge band is reached.

  16. On Bitstream Based Edge Detection Techniques

    DTIC Science & Technology

    2009-01-01

    IEEE Transactions on, vol. 38, no. 1, pp. xviii– iv, Feb 1992. [5] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Addison-Wesley...Carmona-Poyato, R. Medina- Carnicer, and F. J. Madrid- Cuevas , “Automatic genera- tion of consensus ground truth for the comparison of edge detection techniques,” Image Vision Comput., vol. 26, no. 4, pp. 496–511, 2008.

  17. Edge Detection Using a Complex Wavelet

    DTIC Science & Technology

    1993-12-01

    A complex wavelet of the form Psi(x, y) = C(x jy)exp(-p(x-sq+y-sq))) is used in the continuous wavelet transform to obtain edges from a digital image...and x and y are position variables. The square root of the sum of the squares of the real and imaginary parts of the wavelet transform are used to...radar images and the resulting images are shown. Continuous wavelet transform , Digital image.

  18. Rimmed and edge thickened Stodola shaped flywheel

    DOEpatents

    Kulkarni, S.V.; Stone, R.G.

    1983-10-11

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

  19. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  20. Search for absorption edges in superexpansion bursts

    NASA Astrophysics Data System (ADS)

    in't Zand, Jean

    2013-09-01

    Our goal is to measure with the LETGS a series of bright type-I X-ray bursts with strong photospheric radius expansion ('superexpansion') to search for absorption edges due to the ashes of nuclear burning. We request a quick TOO, to be triggered by ISS-MAXI and Swift-BAT, with a total exposure time of 100 ks to obtain the detection of about 10 bursts.

  1. Edge Diffraction Coefficients around Critical Rays

    NASA Astrophysics Data System (ADS)

    Fradkin, L.; Harmer, M.; Darmon, M.

    2014-04-01

    The classical GTD (Geometrical Theory of Diffraction) gives a recipe, based on high-frequency asymptotics, for calculating edge diffraction coefficients in the geometrical regions where only diffracted waves propagate. The Uniform GTD extends this recipe to transition zones between irradiated and silent regions, known as penumbra. For many industrial materials, e.g. steels, and frequencies utlized in industrial ultrasonic transducers, that is, around 5 MHz, asymptotics suggested for description of geometrical regions supporting the head waves or transition regions surrounding their boundaries, known as critical rays, prove unsatisfactory. We present a numerical extension of GTD, which is based on a regularized, variable step Simpson's method for evaluating the edge diffraction coefficients in the regions of interference between head waves, diffracted waves and/or reflected waves. In mathematical terms, these are the regions of coalescence of three critical points - a branch point, stationary point and/or pole, respectively. We show that away from the shadow boundaries, near the critical rays the GTD still produces correct values of the edge diffraction coefficients.

  2. Edge ratio and community structure in networks

    NASA Astrophysics Data System (ADS)

    Cafieri, Sonia; Hansen, Pierre; Liberti, Leo

    2010-02-01

    A hierarchical divisive algorithm is proposed for identifying communities in complex networks. To that effect, the definition of community in the weak sense of Radicchi [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] is extended into a criterion for a bipartition to be optimal: one seeks to maximize the minimum for both classes of the bipartition of the ratio of inner edges to cut edges. A mathematical program is used within a dichotomous search to do this in an optimal way for each bipartition. This includes an exact solution of the problem of detecting indivisible communities. The resulting hierarchical divisive algorithm is compared with exact modularity maximization on both artificial and real world data sets. For two problems of the former kind optimal solutions are found; for five problems of the latter kind the edge ratio algorithm always appears to be competitive. Moreover, it provides additional information in several cases, notably through the use of the dendrogram summarizing the resolution. Finally, both algorithms are compared on reduced versions of the data sets of Girvan and Newman [Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)] and of Lancichinetti [Phys. Rev. E 78, 046110 (2008)]. Results for these instances appear to be comparable.

  3. Canny edge-based deformable image registration

    NASA Astrophysics Data System (ADS)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  4. Density Threshold for Edge Poloidal Flow Generation

    NASA Astrophysics Data System (ADS)

    Daniels, N.; Ware, A. S.; Newman, D. E.; Hidalgo, C.

    2004-11-01

    A numerical transport model is used to examine a density threshold for the onset of an edge poloidal velocity shear layer in toroidal devices. This work is motivated by recent experimental results from the TJ-II stellarator which indicate a critical density threshold for the development of an edge poloidal velocity shear layer [1]. Edge shear-flow layers are commonly observed in toroidal confinement devices, even in L-mode discharges. The numerical transport model has been used to examine internal transport barriers and front propagation of internal transport barriers [2]. The transport model couples together density, ion temperature, electron temperature, poloidal flow, toroidal flow, radial electric field, and a fluctuation envelope equation which includes a shear-suppression factor. In this work, we present results from a series of cases using parameters that are typical of TJ-II discharges. The dependence of the critical density threshold on flow damping and Reynolds stress drive is investigated. [1] C. Hidalgo, M. A. Pedrosa, L. Garcia, and A. Ware, "Direct experimental evidence of coupling between sheared flows development and increasing in level of turbulence in the TJ-II stellarator", submitted to Phys. Rev. E. [2] D. E. Newman, B. A. Carreras, D. Lopez-Bruna, P. H. Diamond, and V. B. Lebedev, Phys. Plasmas 5, 938 (1998).

  5. Large eddy simulation of trailing edge noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  6. Resource distribution influences positive edge effects in a seagrass fish.

    PubMed

    Macreadie, Peter I; Hindell, Jeremy S; Keough, Michael J; Jenkins, Gregory P; Connolly, Rod M

    2010-07-01

    According to conceptual models, the distribution of resources plays a critical role in determining how organisms distribute themselves near habitat edges. These models are frequently used to achieve a mechanistic understanding of edge effects, but because they are based predominantly on correlative studies, there is need for a demonstration of causality, which is best done through experimentation. Using artificial seagrass habitat as an experimental system, we determined a likely mechanism underpinning edge effects in a seagrass fish. To test for edge effects, we measured fish abundance at edges (0-0.5 m) and interiors (0.5-1 m) of two patch configurations: continuous (single, continuous 9-m2 patches) and patchy (four discrete 1-m2 patches within a 9-m2 area). In continuous configurations, pipefish (Stigmatopora argus) were three times more abundant at edges than interiors (positive edge effect), but in patchy configurations there was no difference. The lack of edge effect in patchy configurations might be because patchy seagrass consisted entirely of edge habitat. We then used two approaches to test whether observed edge effects in continuous configurations were caused by increased availability of food at edges. First, we estimated the abundance of the major prey of pipefish, small crustaceans, across continuous seagrass configurations. Crustacean abundances were highest at seagrass edges, where they were 16% greater than in patch interiors. Second, we supplemented interiors of continuous treatment patches with live crustaceans, while control patches were supplemented with seawater. After five hours of supplementation, numbers of pipefish were similar between edges and interiors of treatment patches, while the strong edge effects were maintained in controls. This indicated that fish were moving from patch edges to interiors in response to food supplementation. These approaches strongly suggest that a numerically dominant fish species is more abundant at seagrass

  7. Emergent properties of patch shapes affect edge permeability to animals.

    PubMed

    Nams, Vilis O

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.

  8. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    PubMed

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  9. Method for encapsulating the edge of a flexible sheet

    SciTech Connect

    Keenihan, James R; Clarey, Todd M

    2013-02-19

    The present invention is premised upon an inventive method of producing an over-molded edge portion on a flexible substrate, wherein the edge portion is void of open areas due to support devices in the mold cavity.

  10. Edge State and Intrinsic Hole Doping in Bilayer Phosphorene

    NASA Astrophysics Data System (ADS)

    Osada, Toshihito

    2015-01-01

    Using a simple LCAO model by Harrison, we have qualitatively studied the edge state of bilayer phosphorene, which is a unit structure of the layered crystal of black phosphorus. This model successfully reproduces the isolated edge state in the bulk gap in monolayer phosphorene. In bilayer phosphorene, however, it shows that edge states are almost buried in the valence band and there is no isolated midgap edge state at the zigzag edge. Since the buried edge state works as acceptor, holes are doped from the edge state into the bulk. This gives a possible explanation for p-type conduction in undoped black phosphorus. Under the vertical electric field, the intrinsic hole doping is reduced because a part of edge states move into the gap. These features of bilayer phosphorene might be better suited for device application.

  11. Research on reducing the edge effect in magnetorheological finishing.

    PubMed

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  12. Investigation of Edge Effects in Thermoacoustic Couple Measurements

    DTIC Science & Technology

    1990-12-01

    22 Ill. RESULTS AND DISCUSSION -- 24 A. EDGE EFFECT ........................................................................................... 24...investigate the extent to which irregularities in the temperature difference extend into the plate interior. A. EDGE EFFECT We constructed a TAC (TAC#1) with

  13. Comparison of edges detected at different polarisations in MAESTRO data

    NASA Technical Reports Server (NTRS)

    Caves, Ronald G.; Harley, Peter J.; Quegan, Shaun

    1992-01-01

    Edge detection would appear to be a crucial tool for analyzing multi-polarized, multi-frequency, and multi-temporal Synthetic Aperture Radar (SAR) images. Edge structure provides a simple means for comparing different polarizations and frequencies, and for detecting changes over time. Due to the fact that edges and segments (homogeneous regions) are dual concepts, edge detection has an important role to play in identifying segments within which mean backscatter measurements for use in image classification can be made. As part of a general investigation into edge detection in SAR imagery, an initial investigation was carried out into the detectability and nature of edges in multi-polarized and multi-frequency SAR images. The contrast ratio (CR) operator was used to detect edges. This operator was previously shown to perform well at detecting edges in single-polarized and single-frequency SAR images.

  14. Universal edge bands induced by linearly polarized irradiation on phosphorene

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Zhang, Wen-Lian; Cai, Zhi-Jun; Wang, Rui-Qiang; Bai, Yan-Kui

    2017-01-01

    Phosphorene (a monolayer of black phosphorus) is a large gap semiconductor with high mobility and has great application potential. Numerical calculations reveal that phosphorene is a topologically trivial material and can only host edge bands on specified edges such as the zigzag edge. A linearly polarized irradiation on the phosphorene lattice results in the dynamic gaps in the quasi-energy spectrum. We found that the irradiation polarized in the zigzag direction induces new edge bands within the dynamic gaps on any type of edge (zigzag, armchair, or other bearded edge). We proposed a new gauge independent quantity, δ +g, to account for the appearence of universal edge bands, where δ is the detune and g is the light induced valence-conduction band transition element. The number of edge bands in the dynamic gaps is reflected by the winding number of it.

  15. Opposite effects of Cu and Pt atoms on graphene edges

    NASA Astrophysics Data System (ADS)

    Kano, Emi; Hashimoto, Ayako; Takeguchi, Masaki

    2017-02-01

    Metal atoms at graphene edges are important because they can modify the structure and properties of graphene; however, there are very few reports on their direct observation. We performed electron microscopy to investigate the stability and dynamics of Cu and Pt atoms at graphene edges. We found that Cu atoms mended graphene edges, while Pt atoms etched them, and these transformations were promoted by electron irradiation. Cu and Pt atoms formed different atomic configurations at graphene edges.

  16. Edge energies : atomistic calculations of a continuum quantity.

    SciTech Connect

    Hamilton, John C.

    2005-06-01

    Controlling the properties of self-assembled nanostructures requires controlling their shape. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. To rigorously test such theories against experiment, quantitative atomistic calculations of edge energies are essential, yet none exist. I describe a fundamental ambiguity in the atomistic definition of edge energies, propose a definition based on equimolar dividing surfaces, and present an atomistic calculation of edge energies for Pd clusters.

  17. Optical knife-edge technique for nanomechanical displacement detection

    SciTech Connect

    Karabacak, D.; Kouh, T.; Huang, C.C.; Ekinci, K.L.

    2006-05-08

    We describe an optical knife-edge technique for nanomechanical displacement detection. Here, one carefully focuses a laser spot on a moving edge and monitors the reflected power as the edge is displaced sideways. To demonstrate nanomechanical displacement detection using the knife-edge technique, we have measured in-plane resonances of nanometer scale doubly clamped beams. The obtained displacement sensitivity is in the {approx}1 pm/{radical}(Hz) range--in close agreement with a simple analytical model.

  18. Amount of Forest Edge at a 65 Hectare Scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE65 is the percent of forest that is classified as edge using a 65 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  19. Amount of Future Forest Edge at a 65 Hectare scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE65 is the percent of forest that is classified as edge using a 65 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  20. Amount of Forest Edge at a 2 Hectare Scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE2 is the percent of forest that is classified as edge using a 2 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  1. Amount of Future Forest Edge at a 2 Hectare Scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE2 is the percent of forest that is classified as edge using a 2 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  2. Experimental results for propagation of diffuse photon-density waves up to 1 GHz in a tissue-like medium containing an absorbing edge

    NASA Astrophysics Data System (ADS)

    Netz, U. J.; Hielscher, A. H.; Scheel, A. K.; Beuthan, J.

    2006-05-01

    Optical imaging in the near-infrared (NIR) region provides the possibility to detect and determine pathological changes in human tissue without the drawback of ionizing radiation and with little technical and financial effort. Especially in rheumatoid arthritis, imaging by optical tomography to detect early inflammations in joints has the potential to become a supportive tool to common imaging modalities. One way to enhance the resolution and specificity of optical tissue characterization is to use the frequency domain instead of DC intensity measurement. Intensity modulation of a light source leads to propagation of diffuse photon-density waves (PDW) through the tissue. In this study, we report basic experimental results on tissuelike phantoms to determine the optimal parameters for PDW-transillumination of finger joints. We used PDW with modulation frequencies from 100 MHz up to 1 GHz to scan across a tissuelike phantom containing an absorbing plane bounded by an edge. The geometrical extents of the phantoms are similar to human finger joints. We measure the transmitted PDW and show that amplitude and phase behaves at the edge as expected according to theoretical predictions. An increasing modulation frequency leads to increasing slope of the amplitude decay at the edge but decreasing signal-to-noise ratio. Even at 1 GHz, the edge is detectable.

  3. Topological edge Mott insulating state in two dimensions at finite temperatures: Bulk and edge analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuneya; Kawakami, Norio

    2016-08-01

    We study a bilayer Kane-Mele-Hubbard model with lattice distortion and interlayer spin exchange interaction under cylinder geometry. Our analysis based on real-space dynamical mean field theory with continuous-time quantum Monte Carlo demonstrates the emergence of a topological edge Mott insulating (TEMI) state which hosts gapless edge modes only in collective spin excitations. This is confirmed by the numerical calculations at finite temperatures for the spin-Hall conductivity and the single-particle excitation spectrum; the spin-Hall conductivity is almost quantized, σspinx y˜2 (e /2 π ) , predicting gapless edge modes carrying the spin current, while the helical edge modes in the single-particle spectrum are gapped out with respecting symmetry. It is clarified how the TEMI state evolves from the ordinary spin-Hall insulating state with increasing the Hubbard interaction at a given temperature and then undergoes a phase transition to a trivial Mott insulating state. With a bosonization approach at zero temperature, we further address which collective modes host gapless edge modes in the TEMI state.

  4. Electrical upsetting of metal sheet forms weld edge

    NASA Technical Reports Server (NTRS)

    Scherba, E. S.

    1966-01-01

    Electric gathering of sheet stock edges forms metal sheets in the shape of gore sections with heavier edge areas that can be welded without loss of strength. The edges are gathered by progressive resistance heating and upsetting, and are formed automatically. This process avoids disturbance of the metals internal structure.

  5. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of an edge sensor shall function as intended when subjected to: (i) Accelerated Aging Test of Gaskets... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an... direction perpendicular to the plane of the door. See figure 6. (2) With respect to the test of paragraph...

  6. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of an edge sensor shall function as intended when subjected to: (i) Accelerated Aging Test of Gaskets... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an... direction perpendicular to the plane of the door. See figure 6. (2) With respect to the test of paragraph...

  7. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of an edge sensor shall function as intended when subjected to: (i) Accelerated Aging Test of Gaskets... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an... direction perpendicular to the plane of the door. See figure 6. (2) With respect to the test of paragraph...

  8. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of an edge sensor shall function as intended when subjected to: (i) Accelerated Aging Test of Gaskets... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an... direction perpendicular to the plane of the door. See figure 6. (2) With respect to the test of paragraph...

  9. Improved method of edge coating flat ribbon wire

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Method to coat the edges of flat ribbon wire is devised by using enamel with modified flow properties due to addition of 2 to 4 percent silicon. Conventional coating procedes several edge coatings to minimize oxidation and additional conventional coats are applied after edge coating to build up thickness.

  10. Uniform line integral representation of edge-diffracted fields.

    PubMed

    Umul, Yusuf Z

    2008-01-01

    A uniform line integral representation is derived for edge-diffracted fields by using the modified theory of physical optics and uniform asymptotic evaluation methods. The method is applied to the problem of diffraction of plane waves by a semi-infinite edge, which creates tip-diffracted fields with edge-diffracted waves. The uniform diffracted fields are plotted and examined numerically.

  11. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  12. Method of forming densified edge seals for fuel cell components

    DOEpatents

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1981-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  13. Shashkov`s method retaining cell-edge unknowns

    SciTech Connect

    Roberts, R.M.

    1996-01-05

    Shashkov`s method for scalar cell-edge and cell-center variables is derived. Dot products for cell-edge vectors are computed for a corner of the cell. Next, the divergence and gradient are discretized. The diffusion equation is solved with cell-edge continuity and boundary conditions. A symmetric positive definite solution matrix is proven.

  14. Education Confronts Changing Demographics. The Challenge to Edge Cities.

    ERIC Educational Resources Information Center

    Tushnet, Naida C.

    This monograph introduces a conference addressing the educational issues of the edge cities of the urban Pacific Southwest. Edge cities on the outside of urban cores (edge cities) are currently facing many of the problems formerly experienced only in urban areas. Of the 30 fastest-growing cities of over 100,000 residents in the country, 19 are…

  15. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles.

    PubMed

    Magura, Tibor; Lövei, Gábor L; Tóthmérész, Béla

    2017-02-01

    Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this "history-based edge effect" hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that the diversity-enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open-habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.

  16. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  17. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    NASA Astrophysics Data System (ADS)

    Mani, Arjun; Benjamin, Colin

    2016-04-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  18. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor

    NASA Astrophysics Data System (ADS)

    Takizuka, T.

    2017-03-01

    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.

  19. Climate Data Homogenization Using Edge Detection Algorithms

    NASA Astrophysics Data System (ADS)

    Hammann, A. C.; Rennermalm, A. K.

    2015-12-01

    The problem of climate data homogenization has predominantly been addressed by testing the likelihood of one or more breaks inserted into a given time series and modeling the mean to be stationary in between the breaks. We recast the same problem in a slightly different form: that of detecting step-like changes in noisy data, and observe that this problem has spawned a large number of approaches to its solution as the "edge detection" problem in image processing. With respect to climate data, we ask the question: How can we optimally separate step-like from smoothly-varying low-frequency signals? We study the hypothesis that the edge-detection approach makes better use of all information contained in the time series than the "traditional" approach (e.g. Caussinus and Mestre, 2004), which we base on several observations. 1) The traditional formulation of the problem reduces the available information from the outset to that contained in the test statistic. 2) The criterion of local steepness of the low-frequency variability, while at least hypothetically useful, is ignored. 3) The practice of using monthly data corresponds, mathematically, to applying a moving average filter (to reduce noise) and subsequent subsampling of the result; this subsampling reduces the amount of available information beyond what is necessary for noise reduction. Most importantly, the tradeoff between noise reduction (better with filters with wide support in the time domain) and localization of detected changes (better with filters with narrow support) is expressed in the well-known uncertainty principle and can be addressed optimally within a time-frequency framework. Unsurprisingly, a large number of edge-detection algorithms have been proposed that make use of wavelet decompositions and similar techniques. We are developing this framework in part to be applied to a particular set of climate data from Greenland; we will present results from this application as well as from tests with

  20. Edge ambipolar potential in toroidal fusion plasmas

    SciTech Connect

    Spizzo, G. Vianello, N.; Agostini, M.; Puiatti, M. E.; Scarin, P.; Spolaore, M.; Terranova, D.; White, R. B.; Abdullaev, S. S.; Schmitz, O.; Cavazzana, R.; Ciaccio, G.

    2014-05-15

    A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field E{sup r}(r=a,θ,ϕ) in the RFX reversed-field pinch show that E{sup r} has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt, maps show a sinusoidal dependence as a function of u, E{sup r}=E{sup ~r}sin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of E{sup r}. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ{sup ~}sin u. On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ{sub i} ≫ ρ{sub e}). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.

  1. Edge Simulation Laboratory Progress and Plans

    SciTech Connect

    Cohen, R

    2007-06-05

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began in fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.

  2. Hermetic edge sealing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The edge sealing technique is accomplished by a combination of a chemical bond between glass and aluminum, formed by electrostatic bonding, and a metallurgical bond between aluminum and aluminum, formed by ultrasonic welding. Such a glass to metal seal promises to provide a low cost, long lifetime, highly effective hermetic seal which can protect module components from severe environments. Development of the sealing techniques and demonstration of their effectiveness by fabricating a small number of dummy modules, up to eight inches square in size, and testing them for hermeticity using helium leak testing methods are reviewed. Non-destructive test methods are investigated.

  3. Viscosity in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the 'short radial gradient scale length' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.

  4. Viscosity in the edge of tokamak plasmas

    SciTech Connect

    Stacey, W.M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the ``short-radial-gradient-scale-length`` (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.

  5. The "edge effect" with patch test materials.

    PubMed

    Fyad, A; Masmoudi, M L; Lachapelle, J M

    1987-03-01

    A positive "edge effect", i.e., the accumulation on the skin of a chemical solution (such as fluorescein 0.01% in a 50/50 water-ethanol solution) at the periphery of the patch test sites has been demonstrated. It occurs with different test materials (Finn Chamber; Silver Patch Test; Patch Test Chamber). Practical implications are discussed: this observation could be important when discussing results of laboratory investigations. In clinical practice, it could explain the occurrence of "ring-shaped" positive allergic patch test reactions to chemicals used in solution, i.e., Kathon CG or hydrocortisone.

  6. Chiral Thermoelectrics with Quantum Hall Edge States

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2015-04-01

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  7. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  8. Rimmed and edge thickened Stodola shaped flywheel

    DOEpatents

    Kulkarni, Satish V.; Stone, Richard G.

    1983-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  9. Energy relaxation at quantum Hall edge

    NASA Astrophysics Data System (ADS)

    Levkivskyi, Ivan P.; Sukhorukov, Eugene V.

    2012-02-01

    In this work, we address the recent experiments [C. Altimiras , Nat. Phys.1745-247310.1038/nphys1429 6, 34 (2010); H. le Sueur , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.056803 105, 056803 (2010);C. Altimiras , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.226804 105, 226804 (2010)], where an electron distribution function at the quantum Hall (QH) edge at filling factor ν=2 has been measured with high precision. It has been reported that the energy of electrons injected into one of the two chiral edge channels with the help of a quantum point contact (QPC) is equally distributed between them, in agreement with earlier predictions, one being based on the Fermi gas approach [A. M. Lunde , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.041311 81, 041311(R) (2010)] and the other utilizing the Luttinger-liquid theory [P. Degiovanni , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.121302 81, 121302(R) (2010)]. We argue that the physics of the energy relaxation process at the QH edge may in fact be more rich, providing the possibility for discriminating between two physical pictures in experiment. Namely, using the recently proposed nonequilibrium bosonization technique [I. P. Levkivskyi , Phys. Rev. Lett., PRLTAO0031-900710.1103/PhysRevLett.103.036801 103, 036801 (2009)], we evaluate the electron distribution function and find that the initial “double-step” distribution created at a QPC evolves through several intermediate asymptotics before reaching eventual equilibrium state. At short distances, the distribution function is found to be asymmetric due to non-Gaussian current noise effects. At larger distances, where noise becomes Gaussian, the distribution function acquires symmetric Lorentzian shape. Importantly, in the regime of low QPC transparencies T, the width of the Lorentzian scales linearly with T, in contrast to the case of equilibrium Fermi distribution, the width of which scales as T. Therefore, we propose to do measurements at

  10. Nonlinear magnetohydrodynamics of edge localized mode precursors

    NASA Astrophysics Data System (ADS)

    Guo, Z. B.; Wang, Lu; Wang, X. G.

    2015-02-01

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ωpr e˜x1 /3ξ̂ψ,i n 2 /3n , with x position in radial direction, ξ̂ ψ,i n strength of initial perturbation, and n toroidal mode number.

  11. Distributed Antenna-Coupled Transition Edge Sensors

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; LeDuc, Henry G.; Lee, Richard A. M.; Dowell, C. Darren; Zmuidzinas, Jonas

    2006-01-01

    We describe progress toward realizing a new architecture for focal plane arrays for the Submillimeter and Far- Infrared (FIR) bands. This architecture is based on a detector design utilizing distributed hot{electron transition edge sensors (TES) coupled to slot antenna elements. Arrays utilizing this type of detector can be considerably easier to manufacture than membrane-isolated TES arrays, because the need for micro-machining is eliminated. We present background and rationale for this new array architecture and details of a new antenna design for an imaging polarimeter, which yields greater bandwidth than past designs. In addition, we describe a cryogenic facility for testing these arrays.

  12. Edge-on View of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    1996-01-01

    TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.

    In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.

    BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.

    Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.

    The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. Chiral thermoelectrics with quantum Hall edge states.

    PubMed

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N

    2015-04-10

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  14. Experimental investigation of leading-edge thrust at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1983-01-01

    Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings.

  15. Blind image deblurring with edge enhancing total variation regularization

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Hong, Hanyu; Song, Jie; Hua, Xia

    2015-04-01

    Blind image deblurring is an important issue. In this paper, we focus on solving this issue by constrained regularization method. Motivated by the importance of edges to visual perception, the edge-enhancing indicator is introduced to constrain the total variation regularization, and the bilateral filter is used for edge-preserving smoothing. The proposed edge enhancing regularization method aims to smooth preferably within each region and preserve edges. Experiments on simulated and real motion blurred images show that the proposed method is competitive with recent state-of-the-art total variation methods.

  16. Three-dimensional edge extraction in optical scanning holography

    NASA Astrophysics Data System (ADS)

    Zong, Yonghong; Zhou, Changhe; Ma, Jianyong; Jia, Wei; Wang, Jin

    2016-10-01

    Edge extraction has found applications in various image processing fields, such as in pattern recognition. In this paper, a new method is proposed for edge extraction of three-dimensional objects in optical scanning holography (OSH). Isotropic and anisotropic edge extraction of 3D objects is simulated using spiral phase plates in OSH operating in an incoherent mode. We propose to use a delta function and a spiral phase plate as the pupil functions to realize isotropic and anisotropic edge extraction. Our computer simulations show the capability of extracting the edges of a given 3D object by spiral phase filtering in OSH.

  17. Edge Theories in Projected Entangled Pair State Models

    NASA Astrophysics Data System (ADS)

    Yang, S.; Lehman, L.; Poilblanc, D.; Van Acoleyen, K.; Verstraete, F.; Cirac, J. I.; Schuch, N.

    2014-01-01

    We analyze the low energy excitations of spin lattice systems in two dimensions at zero temperature within the framework of projected entangled pair state models. Perturbations in the bulk give rise to physical excitations located at the edge. We identify the corresponding degrees of freedom, give a procedure to derive the edge Hamiltonian, and illustrate that it can exhibit a rich phase diagram. For topological models, the edge Hamiltonian is constrained by the topological order in the bulk, which gives rise to one-dimensional edge models with unconventional properties; for instance, a topologically ordered bulk can protect a ferromagnetic Ising chain at the edge against spontaneous symmetry breaking.

  18. Electronic structure modulation of graphene edges by chemical functionalization

    NASA Astrophysics Data System (ADS)

    Taira, Remi; Yamanaka, Ayaka; Okada, Susumu

    2016-11-01

    Using the density functional theory with the effective screening medium method, we study the electronic properties of graphene nanoribbons with zigzag edges that are terminated by hydrogen and ketone, hydroxyl, carbonyl, and carboxyl functional groups. Our calculations showed that the work function and electronic structures of the edges of the nanoribbons are sensitive to the functional groups attached to the edges. The nearly free electron state emerges in the vacuum region outside the hydroxylated edges and crosses the Fermi level, indicating the possibility of negative electron affinity at the edges.

  19. Applications of Euler equations to sharp edge delta wings with leading edge vortices

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.; Rizzi, Arthur

    1986-01-01

    Studies on the solution of discrete Euler equations past swept delta wing configurations with sharp leding edges are presented. Freestream Mach numbers range from zero to supersonic, although the Mach number normal to the leading edge is subsonic for all cases discussed. A few examples are given to show the application of the numerical methods to representative problems. The major dicussion is directed at the application of Computational Fluid Dynamics to the understanding of the fundamental fluid mechanic mechanisms of this class of flows.

  20. Wavelet Multiscale Edge Detection Using An ADALINE Neural Network To Match Up Edge Indicators

    DTIC Science & Technology

    2001-12-14

    the WMED is modified to use an ADALINE (ADAptive LInear NEuron) neural network that adapts to match up edge indicators across multiple wavelet levels...The ADALINE uses the least mean squared (LMS) learning rule to minimize the mean square error. The LMS algorithm is able to optimize the decision...boundaries of the network. This makes the boundaries more effective in the presence of noise. This paper will test the capability of the ADALINE to match up the edge indicators in noisy two-dimensional sidescan imagery.

  1. Influence of edge on predator prey distribution and abundance

    NASA Astrophysics Data System (ADS)

    Ferguson, Steven H.

    2004-03-01

    I investigated the effect of spatial configuration on distribution and abundance of invertebrate trophic groups by counting soil arthropods under boxes (21 × 9.5 cm) arranged in six different patterns that varied in the amount of edge (137-305 cm). I predicted fewer individuals from the consumer trophic group (Collembola) in box groups with greater amount of edge. This prediction was based on the assumption that predators (mites, ants, spiders, centipedes) select edge during foraging and thereby reduce abundance of the less mobile consumer group under box patterns with greater edge. Consumer abundance (Collembola) was not correlated with amount of edge. Among the predator groups, mite, ant and centipede abundance related to the amount of edge of box groups. However, in contrast to predictions, abundance of these predators was negatively correlated with amount of edge in box patterns. All Collembola predators, with the exception of ants, were less clumped in distribution than Collembola. The results are inconsistent with the view that predators used box edges to predate the less mobile consumer trophic group. Alternative explanations for the spatial patterns other than predator-prey relations include (1) a negative relationship between edge and moisture, (2) a positive relationship between edge and detritus decomposition (i.e. mycelium as food for the consumer group), and (3) a negative relationship between edge and the interstices between adjacent boxes. Landscape patterns likely affect microclimate, food, and predator-prey relations and, therefore, future experimental designs need to control these factors individually to distinguish among alternative hypotheses.

  2. Observed structures at the edges of Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.; Sremcevic, M.; Esposito, L. W.

    2014-04-01

    The edges of Saturn's rings exhibit structure on a range of spatial and temporal scales. Aside from the known variability in edge location many edges feature clumping on orbital timescales. In cases like the B and A ring outer edges even larger, more persistent objects have been observed. Most of these features and the underlying physical processing creating them have been associated with moon-induced perturbations. In addition tomoon-associated structures like wakes and gaps at the Encke and Keeler gap due to the presence of Pan and Daphnis respectively, parts of ring material is found truncated from the edges downstream of the moon. These gaps are about a few km wide and located a few tens of km from the edge. Using primarily Cassini UVIS occultations we investigate spatial and temporal morphology of ring edges.

  3. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  4. Coaxial connector for use with printed circuit board edge connector

    DOEpatents

    Howard, Donald R.; MacGill, Robert A.

    1989-01-01

    A coaxial cable connector for interfacing with an edge connector for a printed circuit board whereby a coaxial cable can be interconnected with a printed circuit board through the edge connector. The coaxial connector includes a body having two leg portions extending from one side for receiving the edge connector therebetween, and a tubular portion extending from an opposing side for receiving a coaxial cable. A cavity within the body receives a lug of the edge connector and the center conductor of the coaxial cable. Adjacent lugs of the edge connector can be bend around the edge connector housing to function as spring-loaded contacts for receiving the coaxial connector. The lugs also function to facilitate shielding of the center conductor where fastened to the edge connector lug.

  5. Adaptively wavelet-based image denoising algorithm with edge preserving

    NASA Astrophysics Data System (ADS)

    Tan, Yihua; Tian, Jinwen; Liu, Jian

    2006-02-01

    A new wavelet-based image denoising algorithm, which exploits the edge information hidden in the corrupted image, is presented. Firstly, a canny-like edge detector identifies the edges in each subband. Secondly, multiplying the wavelet coefficients in neighboring scales is implemented to suppress the noise while magnifying the edge information, and the result is utilized to exclude the fake edges. The isolated edge pixel is also identified as noise. Unlike the thresholding method, after that we use local window filter in the wavelet domain to remove noise in which the variance estimation is elaborated to utilize the edge information. This method is adaptive to local image details, and can achieve better performance than the methods of state of the art.

  6. Visualization of a ferromagnetic metallic edge state in manganite strips.

    PubMed

    Du, Kai; Zhang, Kai; Dong, Shuai; Wei, Wengang; Shao, Jian; Niu, Jiebin; Chen, Jinjie; Zhu, Yinyan; Lin, Hanxuan; Yin, Xiaolu; Liou, Sy-Hwang; Yin, Lifeng; Shen, Jian

    2015-02-04

    Recently, broken symmetry effect induced edge states in two-dimensional electronic systems have attracted great attention. However, whether edge states may exist in strongly correlated oxides is not yet known. In this work, using perovskite manganites as prototype systems, we demonstrate that edge states do exist in strongly correlated oxides. Distinct appearance of ferromagnetic metallic phase is observed along the edge of manganite strips by magnetic force microscopy. The edge states have strong influence on the transport properties of the strips, leading to higher metal-insulator transition temperatures and lower resistivity in narrower strips. Model calculations show that the edge states are associated with the broken symmetry effect of the antiferromagnetic charge-ordered states in manganites. Besides providing a new understanding of the broken symmetry effect in complex oxides, our discoveries indicate that novel edge state physics may exist in strongly correlated oxides beyond the current two-dimensional electronic systems.

  7. Plasmons on the edge of MoS2 nanostructures

    NASA Astrophysics Data System (ADS)

    Andersen, Kirsten; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2014-10-01

    Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles.

  8. Leading-edge vortices in insect flight

    NASA Astrophysics Data System (ADS)

    Ellington, Charles P.; van den Berg, Coen; Willmott, Alexander P.; Thomas, Adrian L. R.

    1996-12-01

    INSECTS cannot fly, according to the conventional laws of aerodynamics: during flapping flight, their wings produce more lift than during steady motion at the same velocities and angles of attack1-5. Measured instantaneous lift forces also show qualitative and quantitative disagreement with the forces predicted by conventional aerodynamic theories6-9. The importance of high-life aerodynamic mechanisms is now widely recognized but, except for the specialized fling mechanism used by some insect species1,10-13, the source of extra lift remains unknown. We have now visualized the airflow around the wings of the hawkmoth Manduca sexta and a 'hovering' large mechanical model-the flapper. An intense leading-edge vortex was found on the down-stroke, of sufficient strength to explain the high-lift forces. The vortex is created by dynamic stall, and not by the rotational lift mechanisms that have been postulated for insect flight14-16. The vortex spirals out towards the wingtip with a spanwise velocity comparable to the flapping velocity. The three-dimensional flow is similar to the conical leading-edge vortex found on delta wings, with the spanwise flow stabilizing the vortex.

  9. Bilayer Edges Catalyze Supported Lipid Bilayer Formation

    PubMed Central

    Weirich, Kimberly L.; Israelachvili, Jacob N.; Fygenson, D. Kuchnir

    2010-01-01

    Abstract Supported lipid bilayers (SLB) are important for the study of membrane-based phenomena and as coatings for biosensors. Nevertheless, there is a fundamental lack of understanding of the process by which they form from vesicles in solution. We report insights into the mechanism of SLB formation by vesicle adsorption using temperature-controlled time-resolved fluorescence microscopy at low vesicle concentrations. First, lipid accumulates on the surface at a constant rate up to ∼0.8 of SLB coverage. Then, as patches of SLB nucleate and spread, the rate of accumulation increases. At a coverage of ∼1.5 × SLB, excess vesicles desorb as SLB patches rapidly coalesce into a continuous SLB. Variable surface fluorescence immediately before SLB patch formation argues against the existence of a critical vesicle density necessary for rupture. The accelerating rate of accumulation and the widespread, abrupt loss of vesicles coincide with the emergence and disappearance of patch edges. We conclude that SLB edges enhance vesicle adhesion to the surface and induce vesicle rupture, thus playing a key role in the formation of continuous SLB. PMID:20085721

  10. Edge detection and texture classification by cuttlefish.

    PubMed

    Zylinski, Sarah; Osorio, Daniel; Shohet, Adam J

    2009-12-14

    Cephalopod mollusks including octopus and cuttlefish are adept at adaptive camouflage, varying their appearance to suit the surroundings. This behavior allows unique access into the vision of a non-human species because one can ask how these animals use spatial information to control their coloration pattern. There is particular interest in factors that affect the relative levels of expression of the Mottle and the Disruptive body patterns. Broadly speaking, the Mottle is displayed on continuous patterned surfaces whereas the Disruptive is used on discrete objects such as pebbles. Recent evidence from common cuttlefish, Sepia officinalis, suggests that multiple cues are relevant, including spatial scale, contrast, and depth. We analyze the body pattern responses of juvenile cuttlefish to a range of checkerboard stimuli. Our results suggest that the choice of camouflage pattern is consistent with a simple model of how cuttlefish classify visual textures, according to whether they are Uniform or patterned, and whether the pattern includes visual edges. In particular, cuttlefish appear to detect edges by sensing the relative spatial phases of two spatial frequency components (e.g., fundamental and the third harmonic Fourier component in a square wave). We discuss the relevance of these findings to vision and camouflage in aquatic environments.

  11. Edge reconstructions in fractional quantum Hall systems.

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh; Nguyen, Hoang; Murthy, Ganpathy

    2003-03-01

    Two dimensional electron systems exhibiting fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are possible [1]. We present a microscopic calculation of these egde-states at filling factors ν=1/3 and ν=2/5 using the Hamiltonian theory of the fractional quantum Hall effect [2]. We find that the quantum Hall egde undergoes a reconstruction as the confining potential, produced by the background charge density, softens [3,4]. Our results have implications to the tunneling experiments into the edge of a fractional quantum Hall system [5]. 1: X. G.Wen, Phys. Rev. Lett. 64, 2206 (1990). 2: R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 3: C. de C. Chamon and X. G. Wen, Phys. Rev. B 49, 8227 (1994). 4: X. Wan, K. Yang, and E. H. Razayi, Phys. Rev. Lett. 88, 056802 (2002). 5: A.M.Chang et al., Phys. Rev. Lett. 86, 143 (2000).

  12. LES tests on airfoil trailing edge serration

    NASA Astrophysics Data System (ADS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-09-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x106. In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device.

  13. Edge states in confined active fluids

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; Vitelli, Vincenzo

    Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.

  14. Extremotolerance in fungi: evolution on the edge.

    PubMed

    Gostincar, Cene; Grube, Martin; de Hoog, Sybren; Zalar, Polona; Gunde-Cimerman, Nina

    2010-01-01

    Our planet offers many opportunities for life on the edge: high and low temperatures, high salt concentrations, acidic and basic conditions and toxic environments, to name but a few extremes. Recent studies have revealed the diversity of fungi that can occur in stressful environments that are hostile to most eukaryotes. We review these studies here, with the additional purpose of proposing some mechanisms that would allow for the evolutionary adaptation of eukaryotic microbial life under extreme conditions. We focus, in particular, on life in ice and life at high salt concentrations, as there is a surprising similarity between the fungal populations in these two kinds of environments, both of which are characterized by low water activity. We propose steps of evolution of generalist species towards the development of specialists in extreme habitats. We argue that traits present in some fungal groups, such as asexuality, synthesis of melanin-like pigments and a flexible morphology, are preadaptations that facilitate persistence and eventual adaptation to conditions on the ecological edge, as well as biotope switches. These processes are important for understanding the evolution of extremophiles; moreover, they have implications for the emergence of novel fungal pathogens.

  15. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  16. From Flashes to Edges to Objects: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary Formation

    PubMed Central

    Erlikhman, Gennady; Kellman, Philip J.

    2016-01-01

    Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved

  17. Reinterpreting the Sharp Edges of Planetary Rings

    NASA Astrophysics Data System (ADS)

    Rimlinger, Thomas; Hamilton, Douglas P.; Hahn, Joseph M.

    2016-10-01

    Narrow ringlets are found throughout the Solar System and are typically 1-100 km wide. Angular momentum, L, is the key to understanding how narrow rings remain confined; L2 ∝ a(1 - e2) for semimajor axis a and eccentricity e. In a circular ring, L conservation demands that the ring quickly spread apart when some colliding particles lose energy while others gain it. By contrast, in an eccentric ring, energy loss and the associated decay of the average semi-major axes can be offset by a decrease in the average eccentricity. We argue that a ring's lifetime can be greatly extended if particles arrange themselves in this way (Borderies et al. 1984). The key difference of our model, however, is that rings need not be shepherded and can confine themselves provided they are sufficiently eccentric. Satellites merely extend the rings' lifespans by pumping up their eccentricities.This confinement mechanism can explain the existence and longevity of narrow ringlets in a variety of contexts. Saturn's Titan ringlet, which is quite circular, may nevertheless be able to confine itself indefinitely if its eccentricity decay is balanced by the increase from the resonance with Titan. Preliminary simulations presented by Rimlinger et al. at this year's DDA Conference have verified that this ring can self-confine even in the absence of any satellite; we update these findings with new results that include the effects of Titan. Furthermore, Mimas' resonance with the edge of the B ring may excite its higher order modes to similar effect. We update the findings of Hahn and Spitale (2013), who used artificial forces to confine the B ring's edge, and suggest that with a suitable viscosity and density, no such forces will be needed to keep the edge sharp. Finally, a ring that is "born" with a sufficiently high eccentricity may live for hundreds of millions or even billions of years in isolation if the rate of decay is slow enough. We present simulations exploring such a scenario.

  18. Objective evaluation of slanted edge charts

    NASA Astrophysics Data System (ADS)

    Hornung, Harvey (.

    2015-01-01

    Camera objective characterization methodologies are widely used in the digital camera industry. Most objective characterization systems rely on a chart with specific patterns, a software algorithm measures a degradation or difference between the captured image and the chart itself. The Spatial Frequency Response (SFR) method, which is part of the ISO 122331 standard, is now very commonly used in the imaging industry, it is a very convenient way to measure a camera Modulation transfer function (MTF). The SFR algorithm can measure frequencies beyond the Nyquist frequency thanks to super-resolution, so it does provide useful information on aliasing and can provide modulation for frequencies between half Nyquist and Nyquist on all color channels of a color sensor with a Bayer pattern. The measurement process relies on a chart that is simple to manufacture: a straight transition from a bright reflectance to a dark one (black and white for instance), while a sine chart requires handling precisely shades of gray which can also create all sort of issues with printers that rely on half-toning. However, no technology can create a perfect edge, so it is important to assess the quality of the chart and understand how it affects the accuracy of the measurement. In this article, I describe a protocol to characterize the MTF of a slanted edge chart, using a high-resolution flatbed scanner. The main idea is to use the RAW output of the scanner as a high-resolution micro-densitometer, since the signal is linear it is suitable to measure the chart MTF using the SFR algorithm. The scanner needs to be calibrated in sharpness: the scanner MTF is measured with a calibrated sine chart and inverted to compensate for the modulation loss from the scanner. Then the true chart MTF is computed. This article compares measured MTF from commercial charts and charts printed on printers, and also compares how of the contrast of the edge (using different shades of gray) can affect the chart MTF

  19. Edge effects on the electronic properties of phosphorene nanoribbons

    SciTech Connect

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  20. An accurate fuzzy edge detection method using wavelet details subimages

    NASA Astrophysics Data System (ADS)

    Sedaghat, Nafiseh; Pourreza, Hamidreza

    2010-02-01

    Edge detection is a basic and important subject in computer vision and image processing. An edge detector is defined as a mathematical operator of small spatial extent that responds in some way to these discontinuities, usually classifying every image pixel as either belonging to an edge or not. Many researchers have been spent attempting to develop effective edge detection algorithms. Despite this extensive research, the task of finding the edges that correspond to true physical boundaries remains a difficult problem.Edge detection algorithms based on the application of human knowledge show their flexibility and suggest that the use of human knowledge is a reasonable alternative. In this paper we propose a fuzzy inference system with two inputs: gradient and wavelet details. First input is calculated by Sobel operator and the second is calculated by wavelet transform of input image and then reconstruction of image only with details subimages by inverse wavelet transform. There are many fuzzy edge detection methods, but none of them utilize wavelet transform as it is used in this paper. For evaluating our method, we detect edges of images with different brightness characteristics and compare results with canny edge detector. The results show the high performance of our method in finding true edges.

  1. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  2. Study of edge detection task in dental panoramic radiographs.

    PubMed

    Gráfová, L; Kasparová, M; Kakawand, S; Procházka, A; Dostálová, T

    2013-01-01

    The purpose of this study is (1) to introduce a new approach for edge detection in orthopantograms (OPGs) and an improved automatic parameter selector for common edge detectors, (2) to present a comparison between our novel approach with common edge detectors and (3) to provide faster outputs without compromising quality. A new approach for edge detection based on statistical measures was introduced: (1) a set of N edge detection results is calculated from a given input image and a selected type of edge detector, (2) N correspondence maps are constructed from N edge detection results, (3) probabilities and average probabilities are computed, (4) an overall correspondence is evaluated for each correspondence map and (5) the correspondence map providing the best overall correspondence is taken as the result of edge detection procedure. A comparison with common edge detectors (the Roberts, Prewitt, Sobel, Laplacian of the Gaussian and Canny methods) with various parameter settings (304 combinations for each test image) was carried out. The methods were assessed objectively [edge mismatch error (EME), modified Hausdorff distance (MHD) and principal component analysis] and subjectively by experts in dentistry and based on time demands. The suitability of the new approach for edge detection in OPGs was confirmed by experts. The current conventional methods in edge detection in OPGs are inadequate (none of the tested methods reach an EME value or MHD value below 0.1). Our proposed approach for edge detection shows promising potential for its implementation in clinical dentistry. It enhances the accuracy of OPG interpretation and advances diagnosis and treatment planning.

  3. A fast leading-edge pulse generator

    NASA Astrophysics Data System (ADS)

    Wang, R.

    1986-01-01

    The pulse generator consists of ECL semiconductor integrated circuits, high speed transistors and step restorer diodes, among others; its circuitry is simple. The leading edge of the output pulse is less than 100 ps, and the output impedance is 50 ohms. An ECL four-wire receiver connected as a closed loop circut is used in the oscillator section of the set. The pulse frequency varies as low as 10 Hz and as high as 100 MHz. The control of pulse with is based on the subtraction of two pulse widths. The output pulse width may be less than 10 ns and the maximum width may be as wide as an oscillator half cycle. The pulse amplitude is continuously adjustable from + or - 35 mV to + or - 5 V. The operating principle of the oscillator stage, a simplified logic diagram, waveforms at various points, a rectifier circuit in the first stage, positive pulse channel circuit, and an adjustable power source are shown.

  4. Observations on Leading-Edge Vortex Development

    NASA Astrophysics Data System (ADS)

    Glenn, Michael; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Most of an insect's lift comes from the leading edge vortex (LEV) that they produce when flapping their wings. There are many variables that make a LEV either stronger or weaker such as: roughness from the scales on their wings, angle of attack (AoA) of wing, size of the wing, and speed of the wing during flapping motion. Experiments were conducted to study LEV development to gain a better understanding of butterfly flight and the importance of LEV formation. The variables emphasized in this particular experiment were the chord length Reynolds numbers. Two smooth plates of 4 inches and 7 inches were compared in this experiment with Re of 1500 and 3000. Matlab was used to track the LEV location and calculate the vorticity and circulation magnitudes. Differences in LEV vortex strength as a function of chord length will be presented. Funding was provided by NSF REU site Grant EEC 1358991 and CBET Grant 1628600.

  5. Wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Migliore, P G; Miller, L S; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  6. Wing Leading Edge Joint Laminar Flow Tests

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.

    1996-01-01

    An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.

  7. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  8. Casimir force at a knife's edge

    SciTech Connect

    Graham, Noah; Shpunt, Alexander; Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten; Jaffe, Robert L.

    2010-03-15

    The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, H and {theta}, and the cylinder's parabolic radius R. As H/R{yields}0, the proximity force approximation becomes exact. The opposite limit of R/H{yields}0 corresponds to a semi-infinite plate, where the effects of edge and inclination can be probed.

  9. Introduction to Solid Edge(TM)

    NASA Technical Reports Server (NTRS)

    Smith, John C.

    1997-01-01

    Solid Edge was conceived and developed to provide breakthrough levels of productivity for engineers and designers by providing tools focused on their daily work. This user-oriented approach led to a focus on five key areas: 1) assembly-focused design, 2) ease of use, 3) plug and play software, 4) superior part modeling, and 5) production drafting. Mechanical designers work primarily with assemblies of parts that together perform a useful function. The parts themselves are principally a consequence of the function of the assembly and the interrelationships between parts. Breakthroughs in productivity will come through a focus on making the design of assemblies easier, with enhanced part design a prerequisite to that. Enhancements already in development are part to part interaction, more assembly features applying to multiple parts, exploded assemblies, assembly playback, enhanced BOM, etc.

  10. Nonlinear magnetohydrodynamics of edge localized mode precursors

    SciTech Connect

    Guo, Z. B.; Wang, Lu; Wang, X. G.

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  11. Edge convection driven by externally applied potentials

    SciTech Connect

    D'Ippolito, D. A.; Myra, J. R.

    2000-08-01

    A theoretical model of convection in collisional tokamak edge and scrape-off-layer plasmas is described. In the linear theory, any mechanism for poloidal and toroidal symmetry breaking of the equilibrium will drive ExB flows; this result stems from the parallel thermal and pressure forces in Ohm's law. In the nonlinear theory, the quadratic coupling of the perturbations leads to quasilinear-type fluxes in the vorticity, density, and temperature equations. If the convection is strong enough, these fluxes lead to an ambipolarity constraint on the equilibrium electric field and to increased transport of particles and energy. The theory shows qualitative agreement with some tokamak experiments in which potential perturbations are externally driven by radio frequency antennas. (c) 2000 American Institute of Physics.

  12. Timing discriminator using leading-edge extrapolation

    DOEpatents

    Gottschalk, B.

    1981-07-30

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.

  13. Timing discriminator using leading-edge extrapolation

    DOEpatents

    Gottschalk, Bernard

    1983-01-01

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.

  14. Deprojecting Edge-on Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Pohlen, M.; Zaroubi, S.; Peletier, R. F.

    2007-05-01

    We present the results of a study of the intrinsic 3 dimensional distribution of stars in a pilot sample of ˜10 edge-on disk galaxies. The reconstruction of the 3D disk structure has been obtained through a direct deprojecting of the two-dimensional images subject to the assumption of axial symmetry. The deprojection method -- which utilises the so called Fourier slice theorem -- has been tested with a large set of artificial galaxy models seen under different inclinations (80 < i <= 90) with various stellar distributions (e.g. truncated, untruncated), and with different dust distributions (spatially and with varying optical depth). For this pilot sample we are able to recover all three main classes of disk shapes (untruncated, truncated, antitruncated) recently found for complete samples of intermediate to face-on galaxies (Erwin et al. 2005, Pohlen & Trujillo 2006). The parameters (scalelength and surface brightness) of the breaks in the radial light distribution (marking the truncations) are consistent with those of face-on galaxies. Consequently, we are now able to avoid some of the problems caused by the line-of-sight integration while fitting edge-on galaxies and show that the classification introduced for face-on galaxies is indeed consistent and independent of the geometry. For the first time we present deprojection of several slices, vertically extending and parallel to the major axis. This allows to measure the thick disk component, which appear as an increasing radial scalelength (i.e. h= h(z)). Furthermore, the deprojection allows the study of the vertical distribution of the outer disk, beyond the break region, where we measure a significant increase in scalelength with vertical distance from the major axis.

  15. Slope Edge Deformation and Permafrost Dynamics Along the Arctic Shelf Edge, Beaufort Sea, Canada

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Riedel, M.; Melling, H.

    2015-12-01

    The shelf of the Canadian Beaufort Sea is underlain by relict offshore permafrost that formed in the long intervals of terrestrial exposure during glacial periods. At the shelf edge the permafrost thins rapidly and also warms. This area has a very distinct morphology that we attribute to both the formation and degradation of ice bearing permafrost. Positive relief features include circular to oval shaped topographic mounds, up to 10 m high and ~50 m in diameter which occur at a density of ~6 per km2. Intermixed are circular topographic depressions up to 20 m deep. This topography was investigated using an autonomous underwater vehicle that provides 1 m horizontal resolution bathymetry and chirp profiles, a remotely operated vehicle to document seafloor textures, and sediment cores to sample pore waters. A consistent down-core freshening at rates of 14 to 96 mM Cl- per meter was found in these pore waters near the shelf edge. Downward extrapolation of these trends indicates water with ≤335 mM Cl- should occur at 2.3 to 22.4 m sub-seafloor depths within this shelf edge deformation band. Pore water with 335 mM Cl- or less freezes at -1.4°C. As bottom water temperatures in this area are persistently (<-1.4°C) cold and ground ice was observed in some core samples, we interpret the volume changes associated with mound formation are in part due to pore water freezing. Thermal models (Taylor et al., 2014) predict brackish water along the shelf edge may be sourced in relict permafrost melting under the adjacent continental shelf. Buoyant brackish water is hypothesized to migrate along the base of the relict permafrost, to emerge at the shelf edge and then refreeze when it encounters the colder seafloor. Expansion generated by the formation of ice-bearing permafrost generates the positive relief mounds and ridges. The associated negative relief features may be related to permafrost dynamics also. Permafrost dynamics may have geohazard implications that are unique to the

  16. Edge Minority Heating Experiment in Alcator C-Mod

    SciTech Connect

    S.J. Zweben; J.L. Terry; P. Bonoli; R. Budny; C.S. Chang; C. Fiore; G. Schilling; S. Wukitch; J. Hughes; Y. Lin; R. Perkins; M. Porkolab; the Alcator C-Mod Team

    2005-03-25

    An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of radio-frequency power is less than or equal to 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed.

  17. Image segmentation on adaptive edge-preserving smoothing

    NASA Astrophysics Data System (ADS)

    He, Kun; Wang, Dan; Zheng, Xiuqing

    2016-09-01

    Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.

  18. Orbital Edge States in a Photonic Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Milićević, M.; Ozawa, T.; Montambaux, G.; Carusotto, I.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.

    2017-03-01

    We experimentally reveal the emergence of edge states in a photonic lattice with orbital bands. We use a two-dimensional honeycomb lattice of coupled micropillars whose bulk spectrum shows four gapless bands arising from the coupling of p -like photonic orbitals. We observe zero-energy edge states whose topological origin is similar to that of conventional edge states in graphene. Additionally, we report novel dispersive edge states in zigzag and armchair edges. The observations are reproduced by tight-binding and analytical calculations, which we extend to bearded edges. Our work shows the potentiality of coupled micropillars in elucidating some of the electronic properties of emergent two-dimensional materials with orbital bands.

  19. Efficient method of image edge detection based on FSVM

    NASA Astrophysics Data System (ADS)

    Cai, Aiping; Xiong, Xiaomei

    2013-07-01

    For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.

  20. Bacterial foraging based edge detection for cell image segmentation.

    PubMed

    Pan, Yongsheng; Zhou, Tao; Xia, Yong

    2015-01-01

    Edge detection is the most popular and common choices for cell image segmentation, in which local searching strategies are commonly used. In spite of their computational efficiency, traditional edge detectors, however, may either produce discontinued edges or rely heavily on initializations. In this paper, we propose a bacterial foraging based edge detection (BFED) algorithm for cell image segmentation. We model the gradients of intensities as the nutrient concentration and propel bacteria to forage along nutrient-rich locations via mimicking the behavior of Escherichia coli, including the chemotaxis, swarming, reproduction, elimination and dispersal. As a nature-inspired evolutionary technique, this algorithm can identify the desired edges and mark them as the tracks of bacteria. We have evaluated the proposed algorithm against the Canny, SUSAN, Verma's and an active contour model (ACM) based edge detectors on both synthetic and real cell images. Our results suggest that the BFED algorithm can identify boundaries more effectively and provide more accurate cell image segmentation.