Science.gov

Sample records for reflection-free one-way edge

  1. Cutting edge: back to "one-way" germinal centers.

    PubMed

    Meyer-Hermann, Michael E; Maini, Philip K

    2005-03-01

    The present status of germinal center (GC) research is revisited using in silico simulations based on recent lymphocyte motility data in mice. The generally adopted view of several rounds of somatic hypermutations and positive selection is analyzed with special emphasis on the spatial organization of the GC reaction. We claim that the development of dark zones is not necessary for successful GC reactions to develop. We find that a recirculation of positively selected centrocytes to the dark zone is rather unlikely. Instead we propose a scenario that combines a multiple-step mutation and selection concept with a "one-way" GC in the sense of cell migration.

  2. Observation of broadband unidirectional transmission by fusing the one-way edge states of gyromagnetic photonic crystals.

    PubMed

    Li, Zhen; Wu, Rui-xin; Li, Qing-Bo; Lin, Zhi-fang; Poo, Yin; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-04-20

    We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission.

  3. Optimization of one-way wave equations.

    USGS Publications Warehouse

    Lee, M.W.; Suh, S.Y.

    1985-01-01

    The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors

  4. One-way transformation of information

    DOEpatents

    Cooper, James A.

    1989-01-01

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two.

  5. Experimental one-way quantum computing.

    PubMed

    Walther, P; Resch, K J; Rudolph, T; Schenck, E; Weinfurter, H; Vedral, V; Aspelmeyer, M; Zeilinger, A

    2005-03-10

    Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

  6. Logica's one-way VSAT system

    NASA Astrophysics Data System (ADS)

    Barrington-Cook, J. I.

    1991-01-01

    Logica has recently produced the main 'collection and forwarding' element for a comprehensive one-way VSAT system. The system is designed to utilize the extra bandwidth available from direct-to-home broadcasts using the MAC/packet television standard, in order to provide point-to-multipoint data transmission via satellite. The expectation of very large volumes of supply for standard decoders, together with the large amount of bandwidth available, suggest that extremely low cost data transmission may become available. The system is designed to provide the necessary infrastructure to allow this bulk data, low cost approach to be offered for small scale and ad-hoc data transmission.

  7. Acoustic topological insulator and robust one-way sound transport

    NASA Astrophysics Data System (ADS)

    He, Cheng; Ni, Xu; Ge, Hao; Sun, Xiao-Chen; Chen, Yan-Bin; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-12-01

    Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin-orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.

  8. One-way regular electromagnetic mode immune to backscattering.

    PubMed

    Deng, Xiaohua; Hong, Lujun; Zheng, Xiaodong; Shen, Linfang

    2015-05-10

    In this paper, we present a basic model of robust one-way electromagnetic modes at microwave frequencies, which is formed by a semi-infinite gyromagnetic yttrium-iron-garnet with dielectric cladding terminated by a metal plate. It is shown that this system supports not only one-way surface magnetoplasmons (SMPs) but also a one-way regular mode, which is guided by the mechanism of total internal reflection. Like one-way SMPs, the one-way regular mode can be immune to backscattering, and two types of one-way modes together make up a complete dispersion band for the system.

  9. Operator structures and quantum one-way LOCC conditions

    NASA Astrophysics Data System (ADS)

    Kribs, David W.; Mintah, Comfort; Nathanson, Michael; Pereira, Rajesh

    2017-09-01

    We conduct the first detailed analysis in quantum information of recently derived operator relations from the study of quantum one-way local operations and classical communications (LOCC). We show how operator structures such as operator systems, operator algebras, and Hilbert C*-modules naturally arise in this setting. We make use of these structures to derive new results and bounds in the study of one-way LOCC, and we use the approach to uncover new derivations of some previously established results.

  10. Improved technique for one-way transformation of information

    DOEpatents

    Cooper, J.A.

    1987-05-11

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.

  11. One-way electromagnetic waveguide using multiferroic Fibonacci superlattices

    NASA Astrophysics Data System (ADS)

    Tang, Zhenghua; Lei, Dajun; Huang, Jianquan; Jin, Gui; Qiu, Feng; Yan, Wenyan

    2015-12-01

    The multiferroic Fibonacci superlattices (MFSs) are composed of single-phase multiferroic domains with polarization and magnetization according to the rule of Fibonacci sequence. We propose to construct a one-way electromagnetic waveguide by the MFSs. The forbidden band structures of the MFSs for the forward and backward electromagnetic waves are not completely overlapped, and an obvious translation between them occurs around the fixed point ω bar = 1 with broken time-reversal and space inversion symmetries (TRSIS), which indicates the existence of one-way electromagnetic modes in the MFSs. Transmission spectrum is utilized to present this property and to indicate further one-way electromagnetic modes lying within the polaritonic band gap. The maximum forbidden bandwidth (divided by midgap frequency) of 5.4% for the backward electromagnetic wave (BEW) is found, in which the forward electromagnetic wave (FEW) can pass. The functions of one-way propagation modes and polaritonic band gap integrated into the MFSs can miniaturize the one-way photonic devices. The properties can also be applied to construct compact microwave isolators.

  12. One-way quantum computation with circuit quantum electrodynamics

    SciTech Connect

    Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun

    2010-03-15

    In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.

  13. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  14. Detail of one way mirror, mail slot, and electrical box ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of one way mirror, mail slot, and electrical box at sentry post no. 3, top of east stairs near the end of second floor corridor - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  15. The Mars Observer differential one-way range demonstration

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Border, J. S.; Nandi, S.

    1994-01-01

    Current methods of angular spacecraft positioning using station differenced range data require an additional observation of an extragalactic radio source (quasar) to estimate the timing offset between the reference clocks at the two Deep Space Stations. The quasar observation is also used to reduce the effects of instrumental and media delays on the radio metric observable by forming a difference with the spacecraft observation (delta differential one-way range, delta DOR). An experiment has been completed using data from the Global Positioning System satellites to estimate the station clock offset, eliminating the need for the quasar observation. The requirements for direct measurement of the instrumental delays that must be made in the absence of a quasar observation are assessed. Finally, the results of the 'quasar-free' differential one-way range, or DOR, measurements of the Mars Observer spacecraft are compared with those of simultaneous conventional delta DOR measurements.

  16. One-way Ponderomotive Barrier in a Uniform Magnetic Field

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2005-02-14

    The possibility of an asymmetric ponderomotive barrier in a nonuniform dc magnetic field by high-frequency radiation near the cyclotron resonance for selected plasma species was contemplated in Physics of Plasmas 11 (November 2004) 5046-5064. Here we show that a similar one-way barrier, which reflects particles incident from one side while transmitting those incident from the opposite side, can be produced also in a uniform magnetic field, entirely due to inhomogeneity of high-frequency drive.

  17. One-way quantum computing in the optical frequency comb.

    PubMed

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  18. On measuring the one-way speed of light

    NASA Astrophysics Data System (ADS)

    Spavieri, G.

    2012-03-01

    The crucial problem of how to synchronize clocks and measure the one-way speed of light was originally discussed by Poincaré and Einstein. After being neglected for many decades, the Poincaré-Einstein problem of synchronization revived in 1977 with the work of Mansouri and Sexl, by which the one-way speed remains undetermined, allowing for unequal values of the speed of light in opposite directions. We review this problem in the framework of relativistic theories that assume clock-retardation and rod-contraction. We show that, for preferred frame theories, convection or "open" currents yield a magnetic field that depends on the velocity v with respect to the preferred frame S o . We also outline an experiment, based on Faraday's law of induction, that can determine the velocity v, identify S o , and test special relativity versus preferred frame theories. This result resolves the Poincaré-Einstein problem and shows that, in principle, the one-way speed c can be measured.

  19. Successive positive contrast in one-way avoidance learning.

    PubMed

    Cándido, Antonio; Maldonado, Antonio; Rodríguez, Alicia; Morales, Alberto

    2002-04-01

    The main finding of these experiments was a positive contrast effect in one-way avoidance learning. Experiment 1 showed that increasing safety time during one-way avoidance training led to improved performance, surpassing that of a control group that had received the high reward (safe time) from the beginning of training. Experiment 2 showed that a similar positive contrast effect occurred when the time spent in the danger compartment before the onset of the warning signal was shortened. These results suggest that time spent in a safe context acts as a reinforcer of the avoidance response; however, its incentive value depends not only on its duration, but also on the length of the time spent in the danger compartment before the onset of the signal. Overall, results also suggest that the avoidance response is a mixture of flight (motivated by fear) and approach (to a safe place) behaviour. The specific weight of the flight or approach component may be a function of the time and the amount of activation of each emotional state (fear or relief) due to opponent homeostatic compensatory processes that occur in the danger and safe compartments during one-way avoidance learning.

  20. A one-way text messaging intervention for obesity.

    PubMed

    Ahn, Ahleum; Choi, Jaekyung

    2016-04-01

    Worldwide, there has been a startling increase in the number of people who are obese or overweight. Obesity increases the risk of cardiovascular disease and overall mortality. Mobile phone messaging is an important means of human communication globally. Because the mobile phone can be used anywhere at any time, mobile phone messaging has the potential to manage obesity. We investigated the effectiveness of a one-way text messaging intervention for obesity. Participants' body mass index and waist circumference were measured at the beginning of the programme and again after 12 weeks. The text message group received text messages about exercise, dietary intake, and general information about obesity three times a week, while the control group did not receive any text messages from the study. Of the 80 participants, 25 subjects in the text message group and 29 participants in the control group completed the study. After adjusting for baseline body mass index, the body mass index was significantly lower in the text message group than in the control group (27.9 vs. 28.3; p = 0.02). After adjusting for the baseline waist circumference, the difference of waist circumference between the text message group and control group was not significant (93.4 vs. 94.6; p = 0.13). The one-way text messaging intervention was a simple and effective way to manage obesity. The one-way text messaging intervention may be a useful method for lifestyle modification in obese subjects. © The Author(s) 2015.

  1. Universal linear Bogoliubov transformations through one-way quantum computation

    SciTech Connect

    Ukai, Ryuji; Yoshikawa, Jun-ichi; Iwata, Noriaki; Furusawa, Akira; Loock, Peter van

    2010-03-15

    We show explicitly how to realize an arbitrary linear unitary Bogoliubov (LUBO) transformation on a multimode quantum state through homodyne-based one-way quantum computation. Any LUBO transformation can be approximated by means of a fixed, finite-sized, sufficiently squeezed Gaussian cluster state that allows for the implementation of beam splitters (in form of three-mode connection gates) and general one-mode LUBO transformations. In particular, we demonstrate that a linear four-mode cluster state is a sufficient resource for an arbitrary one-mode LUBO transformation. Arbitrary-input quantum states including non-Gaussian states could be efficiently attached to the cluster through quantum teleportation.

  2. Nonreciprocity and one-way topological transitions in hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Leviyev, A.; Stein, B.; Christofi, A.; Galfsky, T.; Krishnamoorthy, H.; Kuskovsky, I. L.; Menon, V.; Khanikaev, A. B.

    2017-07-01

    Control of the electromagnetic waves in nano-scale structured materials is crucial to the development of next generation photonic circuits and devices. In this context, hyperbolic metamaterials, where elliptical isofrequency surfaces are morphed into surfaces with exotic hyperbolic topologies when the structure parameters are tuned, have shown unprecedented control over light propagation and interaction. Here we show that such topological transitions can be even more unusual when the hyperbolic metamaterial is endowed with nonreciprocity. Judicious design of metamaterials with reduced spatial symmetries, together with the breaking of time-reversal symmetry through magnetization, is shown to result in nonreciprocal dispersion and one-way topological phase transitions in hyperbolic metamaterials.

  3. Acoustic one-way open tunnel by using metasurface

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Fan; Zou, Xin-Ye; Liang, Bin; Cheng, Jian-Chun

    2015-09-01

    We design and experimentally demonstrate an acoustic tunnel completely open for substances like fluids or other energy fluxes to exchange while allowing sound to pass only in one direction. This significant feature is based on a distinctive mechanism using metasurface pairs to yield asymmetric extraordinary reflections along opposite directions. Theoretical analysis is presented to analytically predict the trajectory of the wave. The experimental results agree well with the numerical results and the theoretical predictions. Our design may pave the way to more versatile acoustic one-way devices with potential applications in many scenarios like duct noise control and ultrasonic therapy.

  4. One-way entangled-photon autocompensating quantum cryptography

    NASA Astrophysics Data System (ADS)

    Walton, Zachary D.; Abouraddy, Ayman F.; Sergienko, Alexander V.; Saleh, Bahaa E.; Teich, Malvin C.

    2003-06-01

    A quantum cryptography implementation is presented that uses entanglement to combine one-way operation with an autocompensating feature that has hitherto only been available in implementations that require the signal to make a round trip between the users. Using the concept of advanced waves, it is shown that this proposed implementation is related to the round-trip implementation in the same way that Ekert’s two-particle scheme is related to the original one-particle scheme of Bennett and Brassard. The practical advantages and disadvantages of the proposed implementation are discussed in the context of existing schemes.

  5. One-way visibility using two parallel aerosol clouds.

    PubMed

    Alyones, Sharhabeel; Bruce, Charles W; Granado, Michael; Jelinek, Al V

    2015-01-01

    In this article, we experimentally and theoretically test the range of applicability of a patent that predicts one-way visibility through two successive parallel aerosol clouds, one scattering dominant and the other absorption dominant. A laboratory environment experiment has been designed to determine the ranges of transmissivity and contrast enhancement that might be of interest for military applications. In this study we show that transmissivities in the several percent range and lower are essential for any reasonable contrast enhancement between the two sides of the clouds.

  6. One-way glass for microwaves using nonreciprocal metamaterials.

    PubMed

    Degiron, A; Smith, D R

    2014-05-01

    We introduce a class of nonreciprocal metamaterials based on composite assemblies of metallic and biased ferrimagnetic elements. We show that such structures act as ultrathin one-way glasses due to the competition between two modes at the surface of the ferrimagnetic elements--a low-loss surface wave that transmits the signal on the other side of the structure and a surface spin-wave resonance that produces strong isolation levels. These findings can be adapted to existing metamaterial geometries, offering a blueprint to achieve unidirectional propagation in a variety of artificial media at radio, microwave, and millimeter wave frequencies.

  7. One-way ANOVA based on interval information

    NASA Astrophysics Data System (ADS)

    Hesamian, Gholamreza

    2016-08-01

    This paper deals with extending the one-way analysis of variance (ANOVA) to the case where the observed data are represented by closed intervals rather than real numbers. In this approach, first a notion of interval random variable is introduced. Especially, a normal distribution with interval parameters is introduced to investigate hypotheses about the equality of interval means or test the homogeneity of interval variances assumption. Moreover, the least significant difference (LSD method) for investigating multiple comparison of interval means is developed when the null hypothesis about the equality of means is rejected. Then, at a given interval significance level, an index is applied to compare the interval test statistic and the related interval critical value as a criterion to accept or reject the null interval hypothesis of interest. Finally, the method of decision-making leads to some degrees to accept or reject the interval hypotheses. An applied example will be used to show the performance of this method.

  8. One way Doppler Extractor. Volume 2: Digital VCO technique

    NASA Technical Reports Server (NTRS)

    Nossen, E. J.; Starner, E. R.

    1974-01-01

    A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.

  9. One way Doppler extractor. Volume 1: Vernier technique

    NASA Technical Reports Server (NTRS)

    Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.

    1974-01-01

    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.

  10. Gate sequence for continuous variable one-way quantum computation

    PubMed Central

    Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2013-01-01

    Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.

  11. Destination Mars: Colonization via Initial One-way Missions

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, D.; Davies, P.

    Earth is located in a dangerous part of the universe. Threats to life on Earth are manifold and range from asteroid impacts to supernova explosions and from supervolcano eruptions to human-induced disasters. If the survival of the human species is to be ensured for the long term, then life on Earth has to spread to other planetary bodies. Mars is the most Earth-like planet we currently know and is the second closest planet; further it possesses a moderate surface gravity, an atmosphere, abundant water and carbon dioxide, together with a range of essential minerals. Thus, Mars is ideally suited to be a first colonization target. Here we argue that the most practical way that this can be accomplished is via a series of initial one-way human missions.

  12. Epidemic spreading on one-way-coupled networks

    NASA Astrophysics Data System (ADS)

    Wang, Lingna; Sun, Mengfeng; Chen, Shanshan; Fu, Xinchu

    2016-09-01

    Numerous real-world networks (e.g., social, communicational, and biological networks) have been observed to depend on each other, and this results in interconnected networks with different topology structures and dynamics functions. In this paper, we focus on the scenario of epidemic spreading on one-way-coupled networks comprised of two subnetworks, which can manifest the transmission of some zoonotic diseases. By proposing a mathematical model through mean-field approximation approach, we prove the global stability of the disease-free and endemic equilibria of this model. Through the theoretical and numerical analysis, we obtain interesting results: the basic reproduction number R0 of the whole network is the maximum of the basic reproduction numbers of the two subnetworks; R0 is independent of the cross-infection rate and cross contact pattern; R0 increases rapidly with the growth of inner infection rate if the inner contact pattern is scale-free; in order to eradicate zoonotic diseases from human beings, we must simultaneously eradicate them from animals; bird-to-bird infection rate has bigger impact on the human's average infected density than bird-to-human infection rate.

  13. Dynamics of cold atoms crossing a one-way barrier

    NASA Astrophysics Data System (ADS)

    Thorn, Jeremy J.; Schoene, Elizabeth A.; Li, Tao; Steck, Daniel A.

    2009-06-01

    We implemented an optical one-way potential barrier that allows ultracold R87b atoms to transmit through when incident on one side of the barrier but reflect from the other. This asymmetric barrier is a realization of Maxwell’s demon, which can be employed to produce phase-space compression and has implications for cooling atoms and molecules not amenable to standard laser-cooling techniques. The barrier comprises two focused Gaussian laser beams that intersect the focus of a far-off-resonant single-beam optical dipole trap that holds the atoms. The main barrier beam presents a state-dependent potential to incident atoms, while the repumping barrier beam optically pumps atoms to a trapped state. We investigated the robustness of the barrier asymmetry to changes in the barrier-beam separation, the initial atomic potential energy, the intensity of the second beam, and the detuning of the first beam. We performed simulations of the atomic dynamics in the presence of the barrier, showing that the initial three-dimensional momentum distribution plays a significant role, and that light-assisted collisions are likely the dominant loss mechanism. We also carefully examined the relationship to Maxwell’s demon and explicitly accounted for the apparent decrease in entropy for our particular system.

  14. Compressive Membrane Capability Estimates in Laterally Edge Restrained Reinforced Concrete One-Way Slabs

    DTIC Science & Technology

    1999-05-01

    LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT NSN 7640-01-280-5500 Standard Form 298 (Rev. 2-69) Pre ;erlbed by ANSI Sti. Z39-18 298-102 MAqY...peak load capacity as in Park’s deformation theory, to equate work done by the loads to the dissipated energy. Each of these methods requires a pre ... pre -determined deflection, but instead required a pre -determined thrust value. The known thrust (i.e., prestress) was used in the axial force-moment

  15. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  16. Virulence conversion of Legionella pneumophila: a one-way phenomenon.

    PubMed Central

    Catrenich, C E; Johnson, W

    1988-01-01

    Previous investigations have shown that Legionella pneumophila converts from virulence to avirulence after passage on supplemented Mueller-Hinton (SMH) agar and may convert back to virulence after passage in guinea pigs. However, there is no additional information concerning the apparent interconversion of virulent and avirulent derivatives of L. pneumophila cultures. We investigated the stability of a parental virulent culture and its avirulent derivatives and the growth and viability of these cultures on charcoal-yeast extract (CYE) and SMH agars. Avirulent derivatives of a highly virulent L. pneumophila culture were obtained by passage of the virulent parent culture on SMH agar. The only time a virulent L. pneumophila culture was recoverable from an avirulent culture was when the avirulent culture was derived from a saline suspension of a virulent culture which had been passaged only five times on SMH agar. When an avirulent culture was derived from a virulent culture passaged 25 times on SMH agar or from an isolated colony which grew on a SMH agar plate, we were unable to recover a virulent culture after successive passage through guinea pigs. These results suggest that the conversion process which occurs between virulent and avirulent forms of L. pneumophila is a one-way phenomenon from virulence to avirulence and that stable avirulent derivatives can be isolated. Furthermore, our findings suggest that SMH agar acts as a selective medium for the growth of avirulent L. pneumophila, and growth on SMH agar may be a phenotypic marker for avirulence. Virulent cells, although unable to grow on SMH agar, may remain viable for several passages on SMH agar and propagate when inoculated into guinea pigs. Images PMID:3182073

  17. The Laguerre finite difference one-way equation solver

    NASA Astrophysics Data System (ADS)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  18. 47 CFR 22.561 - Channels for one-way or two-way mobile operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for one-way or two-way mobile... CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.561 Channels for one-way or two-way mobile operation. The following channels are allocated...

  19. Experimental demonstration of deterministic one-way quantum computation on a NMR quantum computer

    SciTech Connect

    Ju, Chenyong; Zhu Jing; Peng Xinhua; Chong Bo; Zhou Xianyi; Du Jiangfeng

    2010-01-15

    One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report an experimental realization of the complete process of deterministic one-way quantum Deutsch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements, and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.

  20. One-way invisible cloak using parity-time symmetric transformation optics.

    PubMed

    Zhu, Xuefeng; Feng, Liang; Zhang, Peng; Yin, Xiaobo; Zhang, Xiang

    2013-08-01

    We propose a one-way invisible cloak using transformation optics of parity-time (PT) symmetric optical materials. At the spontaneous PT-symmetry breaking point, light is scattered only for incidence along one direction since the phase-matching condition is unidirectionally satisfied, making the cloak one-way invisible. Moreover, optical scattering from the one-way cloak can be further engineered to realize more interesting effects, for example, creating a unidirectional optical illusion of the concealed object.

  1. 47 CFR 90.490 - One-way paging operations in the private services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... directly from telephone positions in the public switched telephone network. When land stations are multiple... 47 Telecommunication 5 2012-10-01 2012-10-01 false One-way paging operations in the private... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way...

  2. 47 CFR 90.490 - One-way paging operations in the private services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... directly from telephone positions in the public switched telephone network. When land stations are multiple... 47 Telecommunication 5 2014-10-01 2014-10-01 false One-way paging operations in the private... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way...

  3. On the Experimental Determination of the One-Way Speed of Light

    ERIC Educational Resources Information Center

    Perez, Israel

    2011-01-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…

  4. On the Experimental Determination of the One-Way Speed of Light

    ERIC Educational Resources Information Center

    Perez, Israel

    2011-01-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…

  5. Nonlinear behavior analysis of spur gear pairs with a one-way clutch

    NASA Astrophysics Data System (ADS)

    Gill-Jeong, Cheon

    2007-04-01

    Nonlinear behavior analysis of a paired spur gear system with a one-way clutch was used to verify whether a one-way clutch is effective for reducing torsional vibration. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior, such as softening nonlinearity and jump phenomena. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch, and double-side contact could be prevented, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of various parameter changes than installing one only on the input or output side.

  6. One-way ViSP (Visually Servoed Paired structured light system) for structural displacement monitoring

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Kim, Y. J.; Myeong, W.; Myung, H.

    2017-08-01

    Nowadays, the evaluation of structural safety and serviceability is becoming more essential due to the deterioration of civil infrastructures. In particular, the structural displacement which provides important information on structural conditions is considered one of the important indicators for the health monitoring of structures. To estimate the structural displacement, this paper proposes a one-way projection-type six degree-of-freedom (DOF) displacement measurement system based on vision and laser sensors, named one-way ViSP (Visually Servoed Paired structured light system). The system is composed of a transmitter and a receiver, which are facing to each other. The transmitter consists of a 1D laser range finder, two lasers, and a 2-DOF manipulator, while the receiver consists of a screen and a camera. The one-way ViSP estimates relative displacements between a transmitter and receiver by measuring the coordinates of three projected beam spots and a distance. Besides the advantages such as high accuracy in 6-DOF displacement measurement, low cost, and real-time monitoring possibilities, the one-way ViSP can cover large areas such as dams and inclined planes by using multiple receivers. Through various simulations and experiments, it is shown that the one-way ViSP has high accuracy in 6-DOF displacement estimation.

  7. One-way quantum deficit and quantum coherence in the anisotropic XY chain

    NASA Astrophysics Data System (ADS)

    Ye, Biao-Liang; Li, Bo; Zhao, Li-Jun; Zhang, Hai-Jun; Fei, Shao-Ming

    2017-03-01

    In this study, we investigate pairwise non-classical correlations measured using a one-way quantum deficit as well as quantum coherence in the XY spin-1/2 chain in a transverse magnetic field for both zero and finite temperatures. The analytical and numerical results of our investigations are presented. In the case when the temperature is zero, it is shown that the one-way quantum deficit can characterize quantum phase transitions as well as quantum coherence. We find that these measures have a clear critical point at λ = 1. When λ ≤ 1, the one-way quantum deficit has an analytical expression that coincides with the relative entropy of coherence. We also study an XX model and an Ising chain at the finite temperatures.

  8. One-way steering of optical fields via dissipation of an atomic reservoir

    NASA Astrophysics Data System (ADS)

    Rao, Shi; Hu, Xiangming; Li, Lingchao; Xu, Jun

    2016-11-01

    Einstein-Podolsky-Rosen (EPR) steering as a form of quantum correlation lies between entanglement and Bell nonlocality and exhibits an inherent asymmetry between two observers. We study EPR steering of two fields, which are generated via four-wave mixing processes and are entangled with each other due to the dissipation of the atomic reservoir. It is shown that the one-way steering happens from one mode to the other for different cavity decay rates and not too small cooperation parameters. Depending on the adiabatic and nonadiabatic conditions, the one-way steering occurs in a different detuning region when the cooperation parameters are relatively small. An increase in the cooperation parameters leads to an increase both in the parameter region and in the degree for the one-way steering. Finally we generalize the present scheme to the cases of the bright and/or collective fields.

  9. Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements.

    PubMed

    Li, Ke; Smith, Graeme

    2015-04-24

    We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multifold product states. The approximation is measured by distinguishability under measurements that are implementable by fully-one-way local operations and classical communication (LOCC). Our result strengthens Brandão and Harrow's de Finetti theorem where a kind of partially-one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multipartite entanglement with an amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.

  10. Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Smith, Graeme

    2015-04-01

    We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multifold product states. The approximation is measured by distinguishability under measurements that are implementable by fully-one-way local operations and classical communication (LOCC). Our result strengthens Brandão and Harrow's de Finetti theorem where a kind of partially-one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multipartite entanglement with an amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.

  11. One-way helical electromagnetic wave propagation supported by magnetized plasma

    PubMed Central

    Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang

    2016-01-01

    In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally. PMID:26883883

  12. One-way helical electromagnetic wave propagation supported by magnetized plasma

    NASA Astrophysics Data System (ADS)

    Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang

    2016-02-01

    In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally.

  13. Identification and calibration of one-way delays in satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef; Kirchner, Georg; Koidl, Franz; Wang, Peiyuan

    2017-05-01

    We are reporting on identification and calibration of one-way delays in satellite laser ranging systems. Satellite Laser Ranging (SLR) is a standard technique to measure the distance of satellites as a function of time with millimeter precision and a few millimeters accuracy. For one-way laser ranging, laser time transfer ground to space and for bi- and multi-static laser ranging to space objects identification and measurement of system delays related separately to transmitting and receiving parts of the system are needed. The epochs of transmission and reception of optical signals have to be referred to the coordinated time scale with the accuracy reaching one nanosecond level or better for one-way ranging and space debris multi-static ranging. For transponder ranging and laser time transfer an even higher accuracy of 50 ps or better is needed. These accuracy requirements are by several orders of magnitude higher in comparison to standard SLR applications. A new procedure of calibration of one-way delays related to the SLR systems has been developed and tested. The necessary hardware components needed for calibration measurements were designed and developed in a form of a Calibration Device. It consists of a photon counting detector, an epoch timing device and a dedicated signal cable. The signal propagation delays of these components were determined with an accuracy of better than 20 ps. The signal propagation delay stability of the Calibration Device is on a level of units of picoseconds over days of operation. The Calibration Device and calibration procedure were tested in real measurements at the SLR site in Graz, Austria. The time needed to complete a calibration of one-way delays of the SLR system is less than two days. The one-way system delays were determined with the accuracy better than 50 ps. The measurement principle, Calibration Device and the first results are presented.

  14. Bending self-collimated one-way light by using gyromagnetic photonic crystals

    SciTech Connect

    Li, Qing-Bo; Li, Zhen; Wu, Rui-xin

    2015-12-14

    We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.

  15. Gaussian two-mode attacks in one-way quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ottaviani, Carlo; Mancini, Stefano; Pirandola, Stefano

    2017-05-01

    We investigate the asymptotic security of one-way continuous variable quantum key distribution against Gaussian two-mode coherent attacks. The one-way protocol is implemented by arranging the channel uses in two-mode blocks. By applying symmetric random permutations over these blocks, the security analysis is in fact reduced to study two-mode coherent attacks and, in particular, Gaussian ones, due to the extremality of Gaussian states. We explicitly show that the use of two-mode Gaussian correlations by an eavesdropper leads to asymptotic secret key rates which are strictly larger than the rate obtained under standard single-mode Gaussian attacks.

  16. Test and Analysis of Upgraded One-Way Reinforced Concrete Floor Slabs.

    DTIC Science & Technology

    1981-07-01

    be needed to protect these key people, as well as others that stay in high-risk areas, from the effects of nuclear weapons. As stated before, the...most of the load is carried in the short direction and one-way action is obtained in effect (References 11-13). Still another kind is the one-way...though, due to the excessive amount of work to assemble them, the amount of room they take up, and the obstruction of passages. The effectiveness of

  17. Teaching Principles of One-Way Analysis of Variance Using M&M's Candy

    ERIC Educational Resources Information Center

    Schwartz, Todd A.

    2013-01-01

    I present an active learning classroom exercise illustrating essential principles of one-way analysis of variance (ANOVA) methods. The exercise is easily conducted by the instructor and is instructive (as well as enjoyable) for the students. This is conducive for demonstrating many theoretical and practical issues related to ANOVA and lends itself…

  18. Developing English and Spanish Literacy in a One-Way Spanish Immersion Program

    ERIC Educational Resources Information Center

    Hollingsworth, Lindsay Kay

    2013-01-01

    This quantitative, causal-comparative study examined the possible cause and effect relationship between educational programming, specifically one-way Spanish immersion and traditional English-only, and native English-speaking fifth graders' vocabulary and reading comprehension. Archival data was used to examine students' reading achievement as…

  19. Perceptual shrinkage of a one-way motion path with high-speed motion

    PubMed Central

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4–100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  20. [Molecular basis of one-way serological reaction between SINV and XJ-160 virus].

    PubMed

    Wang, Li-hua; Fu, Shi-hong; Yang, Yi-liang; Zhu, Wu-yang; Tang, Qing; Liang, Guo-dong

    2010-05-01

    The purpose of this study is to elucidate the molecular mechanism of one-way serological reaction between XJ-160 virus and SINV by recombinant viruses which exchanged the glycoprotein genes individually or simultaneously. Three recombinant viruses were obtained based on the whole-length infectious cDNA clone of XJ-160 virus. The infectivity and pathogenesis to BHK-21 cells and animals were studied and the gene which controlled this one-way serological reaction phenomenon was searched by MCPENT. The results showed that the E2 glycoprotein was the main factor which influenced the growth rate, plaque morphology and pathogenicity of BHK-21 cells and suckling mice. The results of MCPENT showed that the E2 glycoprotein of SINV played a major role in this one-way serological reaction phenomenon. Our study identified the SINE2 gene was the determined gene for one way serological reaction between XJ-160 virus and SINV, and this research laid the foundation for further analysis of the genomic structure and function of SINV.

  1. Quantitative Comparison of Three Standardization Methods Using a One-Way ANOVA for Multiple Mean Comparisons

    ERIC Educational Resources Information Center

    Barrows, Russell D.

    2007-01-01

    A one-way ANOVA experiment is performed to determine whether or not the three standardization methods are statistically different in determining the concentration of the three paraffin analytes. The laboratory exercise asks students to combine the three methods in a single analytical procedure of their own design to determine the concentration of…

  2. Big sagebrush response to one-way and two-way chaining in Southeastern Utah

    Treesearch

    John A. Fairchild; James N. Davis; Jack D. Brotherson

    2005-01-01

    A decadent, mixed stand of Wyoming big sagebrush, Artemisia tridentata wyomingensis, and mountain big sagebrush, Artemisia tridentata vaseyana, located north of Cisco, Utah, was subjected to one-way and two-way chaining treatments in November 1987. The effect of the treatments on plant community characteristics and shrub vigor was...

  3. More Than One Way to Catch a Fish: Effective Translation of Ocean Science for the Public

    DTIC Science & Technology

    2006-09-01

    translation is one way to make science and technical information more accessible to the public and thereby, improve scientific literacy of many Americans...We present three information translation models that promote scientific and technical literacy . I. INTRODUCTION As more Americans live... literacy ). The organizational structure of the Operations and Education groups (Figure 1) highlights how the two groups interact to provide

  4. Transmission mechanism with parallel transmission systems including one way clutches, one being lockable

    SciTech Connect

    Akashi, T.; Ito, H.; Yamada, S.

    1986-03-18

    A transmission mechanism is described which consists of: an input shaft; an output shaft; a first on-off clutch; a second on-off clutch; a first one way clutch; a second one way clutch; a first gear train having a first reduction gear ratio; a second gear train having a second reduction gear ratio smaller than the first reduction gear ratio; a third gear train having a third reduction gear ratio smaller than the second reduction gear ratio; a fourth gear train having a fourth gear reduction gear ratio smaller than the third reduction gear ratio; a first synchronizer which connects the input shaft and the output shaft; and a second synchronizer which connects the input shaft and the output shaft via a series connection of the second on-off clutch, the second one way clutch, and the second gear train when the second synchronizer is shifted to a first side of a neutral position thereof so as to transmit rotational power from the input shaft to the output shaft in the normal rotational direction and which connects the input shaft and the output shaft via a series connection of the second on-off clutch, the second one way clutch, and the fourth gear train when the second synchronizer is shifted to a second side of the neutral position of the second synchronizer so as to transmit rotational power from the input shaft to the output shaft in the normal rotational direction.

  5. Teaching Principles of One-Way Analysis of Variance Using M&M's Candy

    ERIC Educational Resources Information Center

    Schwartz, Todd A.

    2013-01-01

    I present an active learning classroom exercise illustrating essential principles of one-way analysis of variance (ANOVA) methods. The exercise is easily conducted by the instructor and is instructive (as well as enjoyable) for the students. This is conducive for demonstrating many theoretical and practical issues related to ANOVA and lends itself…

  6. A Note on Noncentrality Parameters for Contrast Tests in a One-Way Analysis of Variance

    ERIC Educational Resources Information Center

    Liu, Xiaofeng Steven

    2010-01-01

    The noncentrality parameter for a contrast test in a one-way analysis of variance is based on the dot product of 2 vectors whose geometric meaning in a Euclidian space offers mnemonic hints about its constituents. Additionally, the noncentrality parameters for a set of orthogonal contrasts sum up to the noncentrality parameter for the omnibus…

  7. Non-linear dynamics of a one-way clutch in belt-pulley systems

    NASA Astrophysics Data System (ADS)

    Zhu, Farong; Parker, R. G.

    2005-01-01

    One-way clutches are frequently used in the serpentine belt accessory drives of automobiles and heavy vehicles. The clutch plays a role similar to a vibration absorber in order to reduce belt/pulley vibration and noise and increase belt life. This paper analyzes a two-pulley system where the driven pulley has a one-way clutch between the pulley and accessory shaft that engages only for positive relative displacement between these components. The belt is modelled with linear springs that transmit torque from the driving pulley to the accessory pulley. The one-way clutch is modelled as a piecewise linear spring with discontinuous stiffness that separates the driven pulley into two degrees of freedom. The harmonic balance method combined with arclength continuation is employed to illustrate the non-linear dynamic behavior of the one-way clutch and determine the stable and unstable periodic solutions for given parameters. The results are confirmed by numerical integration and the bifurcation software AUTO. At the first primary resonance, most of the responses are aperiodic, including quasiperiodic and chaotic solutions. At the second primary resonance, the peak bends to the left with classical softening non-linearity because clutch disengagement decouples the pulley and the accessory over portions of the response period. The dependence on clutch stiffness, excitation amplitude, and inertia ratio between the pulley and accessory is studied to characterize the non-linear dynamics across a range of conditions.

  8. Quantum one-way permutation over the finite field of two elements

    NASA Astrophysics Data System (ADS)

    de Castro, Alexandre

    2017-06-01

    In quantum cryptography, a one-way permutation is a bounded unitary operator U:{H} → {H} on a Hilbert space {H} that is easy to compute on every input, but hard to invert given the image of a random input. Levin (Probl Inf Transm 39(1):92-103, 2003) has conjectured that the unitary transformation g(a,x)=(a,f(x)+ax), where f is any length-preserving function and a,x \\in {GF}_{{2}^{\\Vert x\\Vert }}, is an information-theoretically secure operator within a polynomial factor. Here, we show that Levin's one-way permutation is provably secure because its output values are four maximally entangled two-qubit states, and whose probability of factoring them approaches zero faster than the multiplicative inverse of any positive polynomial poly( x) over the Boolean ring of all subsets of x. Our results demonstrate through well-known theorems that existence of classical one-way functions implies existence of a universal quantum one-way permutation that cannot be inverted in subexponential time in the worst case.

  9. Developing English and Spanish Literacy in a One-Way Spanish Immersion Program

    ERIC Educational Resources Information Center

    Hollingsworth, Lindsay Kay

    2013-01-01

    This quantitative, causal-comparative study examined the possible cause and effect relationship between educational programming, specifically one-way Spanish immersion and traditional English-only, and native English-speaking fifth graders' vocabulary and reading comprehension. Archival data was used to examine students' reading achievement as…

  10. Quantitative Comparison of Three Standardization Methods Using a One-Way ANOVA for Multiple Mean Comparisons

    ERIC Educational Resources Information Center

    Barrows, Russell D.

    2007-01-01

    A one-way ANOVA experiment is performed to determine whether or not the three standardization methods are statistically different in determining the concentration of the three paraffin analytes. The laboratory exercise asks students to combine the three methods in a single analytical procedure of their own design to determine the concentration of…

  11. A wind-powered one-way bistable medium with parity effects.

    PubMed

    Rosenberger, Tessa; Schattgen, Graham; King-Smith, Matthew; Shrestha, Prakrit; Maxted, Katsuo J; Lindner, John F

    2017-02-01

    We describe the design, construction, and dynamics of low-cost mechanical arrays of 3D-printed bistable elements whose shapes interact with wind to couple them one-way. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Solitary waves or solitons propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in arrays with an even number of elements. Solitons propagate indefinitely in odd arrays that frustrate pairing. Large noise spontaneously creates soliton-antisoliton pairs. Soliton annihilation times increase quadratically with initial separations, as expected for random-walk models of soliton collisions.

  12. Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering

    NASA Astrophysics Data System (ADS)

    Wollmann, Sabine; Walk, Nathan; Bennet, Adam J.; Wiseman, Howard M.; Pryde, Geoff J.

    2016-04-01

    Within the hierarchy of inseparable quantum correlations, Einstein-Podolsky-Rosen steering is distinguished from both entanglement and Bell nonlocality by its asymmetry—there exist conditions where the steering phenomenon changes from being observable to not observable, simply by exchanging the role of the two measuring parties. While this one-way steering feature has been previously demonstrated for the restricted class of Gaussian measurements, for the general case of positive-operator-valued measures even its theoretical existence has only recently been settled. Here, we prove, and then experimentally observe, the one-way steerability of an experimentally practical class of entangled states in this general setting. As well as its foundational significance, the demonstration of fundamentally asymmetric nonlocality also has practical implications for the distribution of the trust in quantum communication networks.

  13. Semi-device-independent security of one-way quantum key distribution

    SciTech Connect

    Pawlowski, Marcin; Brunner, Nicolas

    2011-07-15

    By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being ''device-independent.'' Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD, dimension witnesses, and random-access codes.

  14. A wind-powered one-way bistable medium with parity effects

    NASA Astrophysics Data System (ADS)

    Rosenberger, Tessa; Schattgen, Graham; King-Smith, Matthew; Shrestha, Prakrit; Maxted, Katsuo J.; Lindner, John F.

    2017-02-01

    We describe the design, construction, and dynamics of low-cost mechanical arrays of 3D-printed bistable elements whose shapes interact with wind to couple them one-way. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Solitary waves or solitons propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in arrays with an even number of elements. Solitons propagate indefinitely in odd arrays that frustrate pairing. Large noise spontaneously creates soliton-antisoliton pairs. Soliton annihilation times increase quadratically with initial separations, as expected for random-walk models of soliton collisions.

  15. One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Hu, Sen; Gao, Yihua

    2017-07-01

    A 2D orthogonal square-lattice photonic crystal (PC) heterojunction consisting of circular and square air holes in silicon is presented. Band structures are calculated using the plane wave expansion method, and the transmission properties are investigated by the finite-different time-domain simulations. Thanks to the higher diffraction orders excited when the circular and square holes are interlaced along the interface, one-way transmission phenomena can exist within wide frequency regions. The higher order diffraction is further enhanced through two different interface optimization designs proposed by modifying the PC structure of the hetero-interface. An orthogonal PC heterojunction for wide-band and efficient one-way transmission is constructed, and the maximum transmissivity is up to 78%.

  16. A comparison of one-way video and two-way video educational videoteleconferencing

    NASA Astrophysics Data System (ADS)

    Hendrix, Craig L.

    1995-05-01

    The literature reviewed in this study supported the effectiveness of educational videoteleconferencing; however, relatively little research was found comparing the two most interactive types of educational videoteleconferencing systems. An experimental research project was conducted, attempting to determine which educational videoteleconferencing system is more effective. Specifically, this project was designed to answer the following question: Is live two-way video with two-way audio more effective than live one-way video with two-way audio educational videoteleconferencing (EVC)?

  17. A new periodogram using one-way analysis of variance for circadian rhythms.

    PubMed

    Shono, M; Shono, H; Ito, Y; Muro, M; Maeda, Y; Sugimori, H

    2000-06-01

    A new periodogram was proposed using one-way analysis of variance (ANOVA), termed ANOVA periodogram, in order to reveal a precise significant periodicity. Thirty 3-day complex computer-simulated time series with known periodicity (24 h) and three 2-h data-missing occurring periodically (23 h, 20 min) were used to compare the ANOVA periodogram with Enright's one. In results, the ANOVA periodogram was superior to Enright's periodogram in the accuracy of assessing the major periodicity.

  18. Non-Black-Box Simulation from One-Way Functions and Applications to Resettable Security

    DTIC Science & Technology

    2012-11-05

    arguments for NP based on the existence of one-way permutations and trapdoor permutations. 6.1 Acknowledgements We are very grateful to Ran Canetti for...technique. In FOCS, 2012. [CGGM00] Ran Canetti , Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero- knowledge (extended abstract). In STOC...00, pages 235–244, 2000. [CGH04] Ran Canetti , Oded Goldreich, and Shai Halevi. On the random-oracle methodology as applied to length-restricted

  19. Periodic responses of a pulley-belt system with one-way clutch under inertia excitation

    NASA Astrophysics Data System (ADS)

    Ding, Hu

    2015-09-01

    The stable steady-state periodic response of a two-pulley belt drive system coupled with an accessory by a one-way clutch is presented. For the first time, the pulley-belt system is studied under double excitations. Specifically, the dual excitations consist of harmonic motion of the driving pulley and inertia excitation. The belt spans are modeled as axially moving viscoelastic beams by considering belt bending stiffness. Therefore, integro-partial-differential equations are derived for governing the transverse vibrations of the belt spans. Moreover, the transverse vibrations of the moving belt are coupled with the rotation vibrations of the pulleys by nonlinear dynamic tension. For describing the unidirectional decoupling function of the one-way device, rotation vibrations of the driven pulley and accessory are modeled as coupled piecewise ordinary differential equations. In order to eliminate the influence of the boundary of the belt spans, the non-trivial equilibriums of the pulley-belt system are numerically determined. Furthermore, A nonlinear piecewise discrete-continuous dynamical system is derived by introducing a coordinate transform. Coupled vibrations of the pulley-belt system are investigated via the Galerkin truncation. The natural frequencies of the coupled vibrations are obtained by using the fast Fourier transform. Moreover, frequency-response curves are abstracted from time histories. Therefore, resonance areas of the belt spans, the driven pulley and the accessory are presented. Furthermore, validity of the Galerkin method is examined by comparing with the differential and integral quadrature methods (DQM & IQM). By comparing the results with and without one-way device, significant damping effect of clutch on the dynamic response is discovered. Furthermore, the effects of the intensity of the driving pulley excitation and the inertia excitation are studied. Moreover, numerical results demonstrate that the two excitations interact on the steady

  20. Experimental realization of Deutsch's algorithm in a one-way quantum computer.

    PubMed

    Tame, M S; Prevedel, R; Paternostro, M; Böhi, P; Kim, M S; Zeilinger, A

    2007-04-06

    We report the first experimental demonstration of an all-optical one-way implementation of Deutsch's quantum algorithm on a four-qubit cluster state. All the possible configurations of a balanced or constant function acting on a two-qubit register are realized within the measurement-based model for quantum computation. The experimental results are in excellent agreement with the theoretical model, therefore demonstrating the successful performance of the algorithm.

  1. Well-posedness of one-way wave equations and absorbing boundary conditions

    NASA Technical Reports Server (NTRS)

    Trefethen, L. N.; Halpern, L.

    1985-01-01

    A one-way wave equation is a partial differential which, in some approximate sense, behaves like the wave equation in one direction but permits no propagation in the opposite one. The construction of such equations can be reduced to the approximation of the square root of (1-s sup 2) on -1, 1 by a rational function r(s) = p sub m (s)/q sub n(s). Those rational functions r for which the corresponding one-way wave equation is well-posed are characterized both as a partial differential equation and as an absorbing boundary condition for the wave equation. We find that if r(s) interpolates the square root of (1-s sup 2) at sufficiently many points in (-1,1), then well-posedness is assured. It follows that absorbing boundary conditions based on Pade approximation are well-posed if and only if (m, n) lies in one of two distinct diagonals in the Pade table, the two proposed by Engquist and Majda. Analogous results also hold for one-way wave equations derived from Chebyshev or least-squares approximation.

  2. Matched Bipartite Digraph Representation of Generalized Dynamical System Formed by One-way Barriers

    NASA Astrophysics Data System (ADS)

    Li, John; Mahoney, John; Mitchell, Kevin; Tom Solomon Collaboration

    2014-03-01

    We studied a dynamical system with stable and unstable manifolds that behave as one-way barriers, instead of separatrices in traditional dynamical system that are two-way barriers. This asymmetry gives rise to a richer dynamical behavior such as the overlapping of basins of attraction. The recently developed Burning Invariant Manifold (BIM) theory took a dynamical system approach to understand front propagation in Advection-Reaction-Diffusion systems, which have BIMs as the one-way barriers. Through numerical simulations under BIM theory, we found that although both unstable and stable BIMs are one-way barriers, unstable BIMs are the ones that we can experimentally observe the fronts converging onto, and the stable BIMs act as the basin boundaries. We further hypothesized a duality relation between the stable and unstable BIMs. Under the duality hypothesis, we developed a mechanism of the behavior of the system by reducing it back to a traditional system based on topology, and we found a simplification of the system by to summarize the topological information into a Matched Bipartite directed graph (MB digraph). This work was supported by the US National Science Foundation under grant PHY-0748828 and NSF Fellowship DGE-0937362.

  3. Measurement of one-way velocity of light and light-year

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance / interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration). Furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. In this report two methods of clock synchronization to solve this problem were proposed: The arriving-time difference of longitudinal-transverse wave (Ts - Tp) or ordinary-extraordinary light (Te - To) is measured by single clock at one end of a dual-speed transmission-line, the signal transmission-delay (from sending-end time Tx to receiving-end time Tp or To) calculated with wave-speed ratio is: (Tp -Tx) = (Ts -Tp) / ((Vp / Vs) - 1) or: (To -Tx) = (Te - To) / ((Vo / Ve ) - 1), where (Vp / Vs) = (E / k) 1/2 is Yang's / shear elastic-modulus ratio obtained by comparing two strains at same stress, (Vo / Ve) = (ne / no) is extraordinary/ordinary light refractive-index ratio obtained by comparing two deflection-angles. Then, two clocks at transmission-line two ends can be synchronized directly to measure the one-way velocity of light and light-year, which work as one earthquakestation with single clock measures first-shake-time and the distance to epicenter. The readings Na and Nb of two counters Ca and Cb with distance L are transferred into a computer C by two leads with transmission-delay Tac and Tbc respectively. The computer progressing subtraction operation exports steady value: (Nb - Na) = f (Ta - Tb ) + f (Tac - Tbc ), where f is the frequency of light-wave always passing Ca and Cb, Ta and Tb are the count-start time of Ca and Cb respectively. From the transmission-delay possess the spatial translational and rotational invariability, the computer exports steady value

  4. Rapid publication-ready MS-Word tables for one-way ANOVA.

    PubMed

    Assaad, Houssein I; Zhou, Lan; Carroll, Raymond J; Wu, Guoyao

    2014-01-01

    Statistical tables are an important component of data analysis and reports in biological sciences. However, the traditional manual processes for computation and presentation of statistically significant results using a letter-based algorithm are tedious and prone to errors. Based on the R language, we present two web-based software for individual and summary data, freely available online, at http://shiny.stat.tamu.edu:3838/hassaad/Table_report1/ and http://shiny.stat.tamu.edu:3838/hassaad/SumAOV1/, respectively. The software are capable of rapidly generating publication-ready tables containing one-way analysis of variance (ANOVA) results. No download is required. Additionally, the software can perform multiple comparisons of means using the Duncan, Student-Newman-Keuls, Tukey Kramer, and Fisher's least significant difference (LSD) tests. If the LSD test is selected, multiple methods (e.g., Bonferroni and Holm) are available for adjusting p-values. Using the software, the procedures of ANOVA can be completed within seconds using a web-browser, preferably Mozilla Firefox or Google Chrome, and a few mouse clicks. Furthermore, the software can handle one-way ANOVA for summary data (i.e. sample size, mean, and SD or SEM per treatment group) with post-hoc multiple comparisons among treatment means. To our awareness, none of the currently available commercial (e.g., SPSS and SAS) or open-source software (e.g., R and Python) can perform such a rapid task without advanced knowledge of the corresponding programming language. Our new and user-friendly software to perform statistical analysis and generate publication-ready MS-Word tables for one-way ANOVA are expected to facilitate research in agriculture, biomedicine, and other fields of life sciences.

  5. Generating equally weighted test particles from the one-way flux of a drifting Maxwellian

    NASA Astrophysics Data System (ADS)

    Makkonen, T.; Airila, M. I.; Kurki-Suonio, T.

    2015-01-01

    The problem of generating equally weighted test particles from the one way flux of drifting Maxwellian is tackled. This paper extends previous work on the subject by presenting a simple and efficient rejection sampling algorithm together with C++ source files. The properties of the underlying probability distribution function, having the form of a normal distribution times x with positive support, are also disseminated. The method presented in this paper has been successfully used to combine fluid and kinetic models for trace impurity problems in plasma physics.

  6. A constructive formulation of the one-way speed of light

    NASA Astrophysics Data System (ADS)

    Iyer, Chandru; Prabhu, G. M.

    2010-02-01

    A formulation of the one-way speed of light in three-dimensional Euclidean space is derived by a constructive approach. This formulation is consistent with the result of the Michelson-Morley experiment in that the harmonic mean of the outward and return speeds is equal to c, the standard value for the speed of electromagnetic radiation in vacuum. It is also shown that a shift in synchronization, proportional to the distance along the line of motion, renders this speed a constant along all directions.

  7. Interferometry with Phase Conjugate Mirrors and Measure of One-Way Velocity of Light

    NASA Astrophysics Data System (ADS)

    Garuccio, Augusto

    2004-12-01

    A Michelson interferometer with a phase-conjugate mirror (PCM) is described and discussed. The behavior of phase conjugate mirrors is discussed and the result of an experiment with a Michelson interferometer with a phase-conjugate mirror is described and commented. This interferometer has been proposed to be used to test the intrinsic non-locality of quantum mechanics. In this paper a new experimental setup to study the one-way velocity of light is proposed, which uses this new interesting device.

  8. One-way acoustic mirror based on anisotropic zero-index media

    SciTech Connect

    Gu, Zhong-ming; Liang, Bin E-mail: jccheng@nju.edu.cn; Yang, Jing; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Li, Yong; Yang, Jun

    2015-11-23

    We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.

  9. Seismic Imaging, One-Way Wave Equations, Pseudodifferential Operators, Path Integrals, and all that Jazz

    NASA Astrophysics Data System (ADS)

    Artoun, Ojenie; David-Rus, Diana; Emmett, Matthew; Fishman, Lou; Fital, Sandra; Hogan, Chad; Lim, Jisun; Lushi, Enkeleida; Marinov, Vesselin

    2006-05-01

    In this report we summarize an extension of Fourier analysis for the solution of the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not achieved before through other methods for this problem.

  10. One-way acoustic mirror based on anisotropic zero-index media

    NASA Astrophysics Data System (ADS)

    Gu, Zhong-ming; Liang, Bin; Zou, Xin-ye; Yang, Jing; Li, Yong; Yang, Jun; Cheng, Jian-chun

    2015-11-01

    We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.

  11. Exact Markov chain and approximate diffusion solution for haploid genetic drift with one-way mutation.

    PubMed

    Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia

    2016-02-01

    The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates.

  12. One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial.

    PubMed

    Zhao, Junming; Sun, Liang; Zhu, Bo; Feng, Yijun

    2015-02-23

    This paper presents the proposal and practical design of a one-way absorber for selective linearly polarized electromagnetic (EM) wave. The EM wave polarization rotation property has been combined with polarization selective absorption utilizing a composite metamaterial slab. The energy of certain linearly polarized EM wave can be absorbed along one particular incident direction, but will be fully transmitted through the opposite direction. For the cross polarized wave, the direction dependent propagation properties are totally reversed. A prototype designed with a total slab thickness of only one-sixth of the operating wavelength is verified through both full-wave simulation and experimental measurement in the microwave regime. It achieves absorption efficiency over 83% along one direction, while transmission efficiency over 83% along the opposite direction for one particular linearly polarized wave. The proposed one-way absorber can be applied in EM devices achieving asymmetric transmission for linearly polarized wave or polarization control. The composite metamaterial that combines different functionalities into one design may provide more potential in metamaterial designs for various applications.

  13. Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing.

    PubMed

    Chen, Sai; Fan, Fei; He, Xiaotong; Chen, Meng; Chang, Shengjiang

    2015-11-01

    A magneto-metasurface is demonstrated for one-way transmission of terahertz (THz) waves and magnetic field sensing. Due to the magneto-optical effect and the asymmetric structure of the transmission system, magnetoplasmon mode splitting for forward and backward THz waves and one-way transmission has been observed in this magneto-metasurface. Significantly, the resonance of the magneto-metasurface has been found that can remain at 0.750 THz at a temperature of 218 K, performing as a stable isolator with an isolation of larger than 30 dB within a magnetic field disturbance from 0.23 to 0.35 T. Also, since the resonance of the magneto-metasurface can be tuned by the different external magnetic fields at a temperature that is higher or lower than 218 K, the magneto-metasurface can work as a highly sensitive magnetic field sensor. The sensitivity of this device reaches S=513.05  GHz·T(-1) when T=230  K. This multifunctional magneto-metasurface has broad potential in THz application systems.

  14. Locomotor activity and one-way active avoidance after intrahippocampal injection of neurotransmitter antagonists.

    PubMed

    Brito, L S; Brito, G N

    1990-01-01

    Sixty-three rats with previous training in a T-maze, bilaterally implanted with cannulae directed toward the dorsal hippocampus, were used in this study. All rats received bilateral 1-microliter injections 20 min before testing for locomotor activity (day 1) and one-way active avoidance (day 3). The following drugs were injected into groups of 4 to 8 animals: scopolamine (9 or 18 micrograms/microliters), propranolol (5 or 10 micrograms/microliters), cimetidine (0.75 or 1.5 micrograms/microliters), sulpiride (5 or 10 micrograms/microliters), or vehicle (Krebs-Ringer). Locomotor activity was not changed by injection of any drug. However, intrahippocampal injections of scopolamine (9 micrograms/microliters) and sulpiride (10 micrograms/microliters) impaired avoidance behavior, particularly during the last five trials of the task. We conclude that muscarinic-cholinergic and D2-dopaminergic, but not beta-adrenergic or H2-histaminergic, mechanisms in the hippocampus are involved in the performance of one-way active avoidance behavior.

  15. Extending the CLAST sequential rule to one-way ANOVA under group sampling.

    PubMed

    Ximénez, Carmen; Revuelta, Javier

    2007-02-01

    Several studies have demonstrated that the fixed-sample stopping rule (FSR), in which the sample size is determined in advance, is less practical and efficient than are sequential-stopping rules. The composite limited adaptive sequential test (CLAST) is one such sequential-stopping rule. Previous research has shown that CLAST is more efficient in terms of sample size and power than are the FSR and other sequential rules and that it reflects more realistically the practice of experimental psychology researchers. The CLAST rule has been applied only to the t test of mean differences with two matched samples and to the chi-square independence test for twofold contingency tables. The present work extends previous research on the efficiency of CLAST to multiple group statistical tests. Simulation studies were conducted to test the efficiency of the CLAST rule for the one-way ANOVA for fixed effects models. The ANOVA general test and two linear contrasts of multiple comparisons among treatment means are considered. The article also introduces four rules for allocating N observations to J groups under the general null hypothesis and three allocation rules for the linear contrasts. Results show that the CLAST rule is generally more efficient than the FSR in terms of sample size and power for one-way ANOVA tests. However, the allocation rules vary in their optimality and have a differential impact on sample size and power. Thus, selecting an allocation rule depends on the cost of sampling and the intended precision.

  16. Experimental realization of a one-way quantum computer algorithm solving Simon's problem.

    PubMed

    Tame, M S; Bell, B A; Di Franco, C; Wadsworth, W J; Rarity, J G

    2014-11-14

    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's problem-a black-box period-finding problem that has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.

  17. One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael

    2016-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.

  18. Seasonal Ventilation of the Stratosphere: Robust Diagnostics from One-Way Flux Distributions

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Holzer, Mark; Polvani, Lorenzo M.; Waugh, Darryn W.; Li, Feng; Oman, Luke D.; Newman, Paul A.

    2014-01-01

    We present an analysis of the seasonally varying ventilation of the stratosphere using one-way flux distributions. Robust transport diagnostics are computed using GEOSCCM subject to fixed present-day climate forcings. From the one-way flux, we determine the mass of the stratosphere that is in transit since entry through the tropical tropopause to its exit back into the troposphere, partitioned according to stratospheric residence time and exit location. The seasonalities of all diagnostics are quantified with respect to the month of year (a) when air enters the stratosphere, (b) when the mass of the stratosphere is partitioned, and (c) when air exits back into the troposphere. We find that the return flux, within 3 months since entry, depends strongly on when entry occurred: (34 +/- 10)% more of the air entering the stratosphere in July leaves poleward of 45 deg N compared to air that enters in January. The month of year when the air mass is partitioned is also found to be important: The stratosphere contains about six times more air of tropical origin during late summer and early fall that will leave poleward of 45 deg within 6 months since entering the stratosphere compared to during late winter to late spring. When the entire mass of the air that entered the stratosphere at the tropics regardless of its residence time is considered, we find that (51 +/- 1)% and (39 +/- 2)% will leave poleward of 10 deg in the Northern Hemisphere (NH) and Southern Hemisphere (SH), respectively.

  19. Rectification and one-way street for the energy current in boundary-driven asymmetric quantum spin chains.

    PubMed

    Pereira, Emmanuel

    2017-03-01

    Motivated by the demand for efficient quantum devices to engineer energy transport, we analyze some inhomogeneous quantum spin systems, including XXZ chains, with magnetization baths at the ends. With a goal of finding general properties, we study the effects of suitable transformations on the boundary-driven Lindblad master equation associated with the dynamics of the systems. For asymmetric models with target polarization at the edges or twisted XY boundary gradients, we show the properties of the steady state, which establish the features of the energy current irrespective of the system size and the regime of transport. We show the ubiquitous occurrence of energy rectification and, more interestingly, of an unusual phenomenon: in the absence of an external magnetic field, there is a one-way street for the energy current, i.e., the direction of the energy current does not change as we invert the magnetization baths at the boundaries. Given the extensiveness of the procedures, which essentially involve the properties of the Lindblad master equation, our results certainly follow for other interactions and other boundary conditions. Moreover, our results indicate graded spin chains as genuine quantum rectifiers.

  20. Rectification and one-way street for the energy current in boundary-driven asymmetric quantum spin chains

    NASA Astrophysics Data System (ADS)

    Pereira, Emmanuel

    2017-03-01

    Motivated by the demand for efficient quantum devices to engineer energy transport, we analyze some inhomogeneous quantum spin systems, including X X Z chains, with magnetization baths at the ends. With a goal of finding general properties, we study the effects of suitable transformations on the boundary-driven Lindblad master equation associated with the dynamics of the systems. For asymmetric models with target polarization at the edges or twisted X Y boundary gradients, we show the properties of the steady state, which establish the features of the energy current irrespective of the system size and the regime of transport. We show the ubiquitous occurrence of energy rectification and, more interestingly, of an unusual phenomenon: in the absence of an external magnetic field, there is a one-way street for the energy current, i.e., the direction of the energy current does not change as we invert the magnetization baths at the boundaries. Given the extensiveness of the procedures, which essentially involve the properties of the Lindblad master equation, our results certainly follow for other interactions and other boundary conditions. Moreover, our results indicate graded spin chains as genuine quantum rectifiers.

  1. Demonstration of Orbit Determination for the Lunar Reconnaissance Orbiter Using One-Way Laser Ranging Data

    NASA Technical Reports Server (NTRS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; hide

    2016-01-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. More over the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02,November2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12h (approximately equals 6

  2. Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-09-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. Moreover the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02, November 2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12 h (≈6 successive LRO orbits

  3. Demonstration of Orbit Determination for the Lunar Reconnaissance Orbiter Using One-Way Laser Ranging Data

    NASA Technical Reports Server (NTRS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-01-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. More over the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02,November2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12h (approximately equals 6

  4. A one-way shooting algorithm for transition path sampling of asymmetric barriers.

    PubMed

    Brotzakis, Z Faidon; Bolhuis, Peter G

    2016-10-28

    We present a novel transition path sampling shooting algorithm for the efficient sampling of complex (biomolecular) activated processes with asymmetric free energy barriers. The method employs a fictitious potential that biases the shooting point toward the transition state. The method is similar in spirit to the aimless shooting technique by Peters and Trout [J. Chem. Phys. 125, 054108 (2006)], but is targeted for use with the one-way shooting approach, which has been shown to be more effective than two-way shooting algorithms in systems dominated by diffusive dynamics. We illustrate the method on a 2D Langevin toy model, the association of two peptides and the initial step in dissociation of a β-lactoglobulin dimer. In all cases we show a significant increase in efficiency.

  5. A one-way shooting algorithm for transition path sampling of asymmetric barriers

    NASA Astrophysics Data System (ADS)

    Brotzakis, Z. Faidon; Bolhuis, Peter G.

    2016-10-01

    We present a novel transition path sampling shooting algorithm for the efficient sampling of complex (biomolecular) activated processes with asymmetric free energy barriers. The method employs a fictitious potential that biases the shooting point toward the transition state. The method is similar in spirit to the aimless shooting technique by Peters and Trout [J. Chem. Phys. 125, 054108 (2006)], but is targeted for use with the one-way shooting approach, which has been shown to be more effective than two-way shooting algorithms in systems dominated by diffusive dynamics. We illustrate the method on a 2D Langevin toy model, the association of two peptides and the initial step in dissociation of a β-lactoglobulin dimer. In all cases we show a significant increase in efficiency.

  6. One-way Tamm plasmon polaritons at the interface between magnetophotonic crystals and conducting metal oxides

    NASA Astrophysics Data System (ADS)

    Dong, Hui Yuan; Wang, Jin; Cui, Tie Jun

    2013-01-01

    We demonstrate theoretically the existence of one-way Tamm plasmon polaritons on the interface between magnetophotonic crystals and conducting metal oxides. In contrast to conventional surface plasmon-polaritons (SPPs), Tamm plasmon polaritons (TPPs) occur at frequencies above the bulk plasma frequency of the conducting materials, provided that the dispersion curves of such surface modes lie outside the light cone for the conducting oxides and simultaneously fall into the photonic band gap of the magnetophotonic crystal. The nonreciprocal properties of TPPs are caused by violation of the periodicity and time-reversal symmetry in the structure. Calculations on the field distribution and transmission spectra through the structure are employed to confirm the theoretical results, which could potentially impact on a broad range of SPP-related phenomena in applications.

  7. One-way quantum key distribution: Simple upper bound on the secret key rate

    SciTech Connect

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2006-11-15

    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol.

  8. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-06-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.

  9. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  10. Transport properties of MOPhC/metal one-way waveguide

    SciTech Connect

    Eyderman, Sergey; Kuzmiak, Vladimir

    2011-10-03

    We have demonstrated numerically that the interface between metal and uniformly magnetized 2D photonic crystal(PC) fabricated from a transparent dielectric magneto-optic(MO) material possesses a one-way frequency range where only a forward propagating surface plasmon polariton mode is allowed to propagate. By using a simple theoretical model we have shown that nonreciprocity is introduced by the MO properties of the PC. Transport properties of the structures within this frequency range have been investigated by FDTD method which enables to calculating propagation of EM waves through media with full tensorial MO permittivity. We found that in the presence of a time-dependent external magnetic field interesting features associated with the redistribution of the EM field appear.

  11. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    PubMed Central

    Jiang, Xue; Liang, Bin; Zou, Xin-ye; Yang, Jing; Yin, Lei-lei; Yang, Jun; Cheng, Jian-chun

    2016-01-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973

  12. Optimal sample size allocation for Welch's test in one-way heteroscedastic ANOVA.

    PubMed

    Shieh, Gwowen; Jan, Show-Li

    2015-06-01

    The determination of an adequate sample size is a vital aspect in the planning stage of research studies. A prudent strategy should incorporate all of the critical factors and cost considerations into sample size calculations. This study concerns the allocation schemes of group sizes for Welch's test in a one-way heteroscedastic ANOVA. Optimal allocation approaches are presented for minimizing the total cost while maintaining adequate power and for maximizing power performance for a fixed cost. The commonly recommended ratio of sample sizes is proportional to the ratio of the population standard deviations or the ratio of the population standard deviations divided by the square root of the ratio of the unit sampling costs. Detailed numerical investigations have shown that these usual allocation methods generally do not give the optimal solution. The suggested procedures are illustrated using an example of the cost-efficiency evaluation in multidisciplinary pain centers.

  13. One-way rotation of a molecule-rotor driven by a shot noise.

    PubMed

    Echeverria, Jorge; Monturet, Serge; Joachim, Christian

    2014-03-07

    The shot noise of a tunneling current passing through a molecule-motor can sustain a one-way rotation when populating the molecular excited states by tunneling inelastic excitations. We demonstrate that a ratchet-like ground state rotation potential energy curve is not necessary for the rotation to occur. A relative shift in energy difference between the maxima of this ground state and the minima of the excited states is the necessary condition to get to a unidirectional rotation. The rotor speed of rotation and its rotation direction are both controlled by this shift, indicating the necessity of a careful design of both the ground and excited states of the next generation of molecule-motors to be able to generate a motive power at the nanoscale.

  14. Gencrypt: one-way cryptographic hashes to detect overlapping individuals across samples

    PubMed Central

    Turchin, Michael C.; Hirschhorn, Joel N.

    2012-01-01

    Summary: Meta-analysis across genome-wide association studies is a common approach for discovering genetic associations. However, in some meta-analysis efforts, individual-level data cannot be broadly shared by study investigators due to privacy and Institutional Review Board concerns. In such cases, researchers cannot confirm that each study represents a unique group of people, leading to potentially inflated test statistics and false positives. To resolve this problem, we created a software tool, Gencrypt, which utilizes a security protocol known as one-way cryptographic hashes to allow overlapping participants to be identified without sharing individual-level data. Availability: Gencrypt is freely available under the GNU general public license v3 at http://www.broadinstitute.org/software/gencrypt/ Contact: joelh@broadinstitute.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22302573

  15. Bronchoscopic treatment of complex persistent air leaks with endobronchial one-way valves.

    PubMed

    Fiorelli, Alfonso; Costanzo, Saveria; Carelli, Emanuele; Di Costanzo, Emilio; Santini, Mario

    2016-04-01

    We reported a case series including 5 patients with persistent air-leaks refractory to standard treatment. All patients were unfit for surgery for the presence of co-morbidities and/or severe respiratory failure due to underlying lung diseases. They were successfully treated with bronchoscopic placement of endobronchial one-way valves. Air-leaks stopped in the first 24 h after the procedure in three patients and 3 and 5 days later, respectively, in the remaining two. No complications were observed and follow-up was uneventful in all patients but one died 25 days after the procedure for systemic sepsis due to peritonis. Patients with important, refractory air leaks having clinical repercussions and unfit for surgery should be early reviewed for bronchoscopic valves treatment.

  16. Analysis of one-way laser ranging data to LRO, time transfer and clock characterization

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2017-02-01

    We processed and analyzed one-way laser ranging data from International Laser Ranging Service ground stations to NASA's Lunar Reconnaissance Orbiter (LRO), obtained from June 13, 2009 until September 30, 2014. We pair and analyze the one-way range observables from station laser fire and spacecraft laser arrival times by using nominal LRO orbit models based on the GRAIL gravity field. We apply corrections for instrument range walk, as well as for atmospheric and relativistic effects. In total we derived a tracking data volume of ≈ 3000 hours featuring 64 million Full Rate and 1.5 million Normal Point observations. From a statistical analysis of the dataset we evaluate the experiment and the ground station performance. We observe a laser ranging measurement precision of 12.3 cm in case of the Full Rate data which surpasses the LOLA timestamp precision of 15 cm. The averaging to Normal Point data further reduces the measurement precision to 5.6 cm. We characterized the LRO clock with fits throughout the mission time and estimated the rate to 6.9 × 10-8, the aging to 1.6 × 10-12/day and the change of aging to 2.3 × 10-14 /day2over all mission phases. The fits also provide referencing of onboard time to the TDB time scale at a precision of 166 ns over two and 256 ns over all mission phases, representing ground to space time transfer. Furthermore we measure ground station clock differences from the fits as well as from simultaneous passes which we use for ground to ground time transfer from common view observations. We observed relative offsets ranging from 33 to 560 ns and relative rates ranging from 2 × 10-13 to 6 × 10-12 between the ground station clocks during selected mission phases. We study the results from the different methods and discuss their applicability for time transfer.

  17. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton.

    PubMed

    Ochiai, Tetsuyuki

    2015-02-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range.

  18. Crafting zero-bias one-way transport of charge and spin

    NASA Astrophysics Data System (ADS)

    Foa Torres, L. E. F.; Dal Lago, V.; Suárez Morell, E.

    2016-02-01

    We explore the electronic structure and transport properties of a metal on top of a (weakly coupled) two-dimensional topological insulator. Unlike the widely studied junctions between topological nontrivial materials, the systems studied here allow for a unique band structure and transport steering. First, states on the topological insulator layer may coexist with the gapless bulk and, second, the edge states on one edge can be selectively switched off, thereby leading to nearly perfect directional transport of charge and spin even in the zero bias limit. We illustrate these phenomena for Bernal stacked bilayer graphene with Haldane or intrinsic spin-orbit terms and a perpendicular bias voltage. This opens a path for realizing directed transport in materials such as van der Waals heterostructures, monolayer, and ultrathin topological insulators.

  19. Analysis of One-Way Laser Ranging Data to LRO, Time Transfer and Clock Characterization

    NASA Technical Reports Server (NTRS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; hide

    2016-01-01

    We processed and analyzed one-way laser ranging data from International Laser Ranging Service ground stations to NASA's Lunar Reconnaissance Orbiter (LRO), obtained from June 13, 2009 until September 30, 2014. We pair and analyze the one-way range observables from station laser fire and spacecraft laser arrival times by using nominal LRO orbit models based on the GRAIL gravity field. We apply corrections for instrument range walk, as well as for atmospheric and relativistic effects. In total we derived a tracking data volume of approximately 3000 hours featuring 64 million Full Rate and 1.5 million Normal Point observations. From a statistical analysis of the dataset we evaluate the experiment and the ground station performance. We observe a laser ranging measurement precision of 12.3 centimeters in case of the Full Rate data which surpasses the LOLA (Lunar Orbiting Laser Altimeter) timestamp precision of 15 centimeters. The averaging to Normal Point data further reduces the measurement precision to 5.6 centimeters. We characterized the LRO clock with fits throughout the mission time and estimated the rate to 6.9 times10 (sup -8), the aging to 1.6 times 10 (sup -12) per day and the change of aging to 2.3 times 10 (sup -14) per day squared over all mission phases. The fits also provide referencing of onboard time to the TDB (Barycentric Dynamical Time) time scale at a precision of 166 nanoseconds over two and 256 nanoseconds over all mission phases, representing ground to space time transfer. Furthermore we measure ground station clock differences from the fits as well as from simultaneous passes which we use for ground to ground time transfer from common view observations. We observed relative offsets ranging from 33 to 560 nanoseconds and relative rates ranging from 2 times 10 (sup -13) to 6 times 10 (sup -12) between the ground station clocks during selected mission phases. We study the results from the different methods and discuss their applicability for time

  20. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation.

    PubMed

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David; Yang, Rong

    2017-02-17

    As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry

  1. Analysis of One-Way Laser Ranging Data to LRO, Time Transfer and Clock Characterization

    NASA Technical Reports Server (NTRS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-01-01

    We processed and analyzed one-way laser ranging data from International Laser Ranging Service ground stations to NASA's Lunar Reconnaissance Orbiter (LRO), obtained from June 13, 2009 until September 30, 2014. We pair and analyze the one-way range observables from station laser fire and spacecraft laser arrival times by using nominal LRO orbit models based on the GRAIL gravity field. We apply corrections for instrument range walk, as well as for atmospheric and relativistic effects. In total we derived a tracking data volume of approximately 3000 hours featuring 64 million Full Rate and 1.5 million Normal Point observations. From a statistical analysis of the dataset we evaluate the experiment and the ground station performance. We observe a laser ranging measurement precision of 12.3 centimeters in case of the Full Rate data which surpasses the LOLA (Lunar Orbiting Laser Altimeter) timestamp precision of 15 centimeters. The averaging to Normal Point data further reduces the measurement precision to 5.6 centimeters. We characterized the LRO clock with fits throughout the mission time and estimated the rate to 6.9 times10 (sup -8), the aging to 1.6 times 10 (sup -12) per day and the change of aging to 2.3 times 10 (sup -14) per day squared over all mission phases. The fits also provide referencing of onboard time to the TDB (Barycentric Dynamical Time) time scale at a precision of 166 nanoseconds over two and 256 nanoseconds over all mission phases, representing ground to space time transfer. Furthermore we measure ground station clock differences from the fits as well as from simultaneous passes which we use for ground to ground time transfer from common view observations. We observed relative offsets ranging from 33 to 560 nanoseconds and relative rates ranging from 2 times 10 (sup -13) to 6 times 10 (sup -12) between the ground station clocks during selected mission phases. We study the results from the different methods and discuss their applicability for time

  2. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation

    PubMed Central

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David

    2017-01-01

    Background As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. Objective The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. Methods According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. Results There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can

  3. Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels

    NASA Astrophysics Data System (ADS)

    Larguinho, Miguel; Correia, Daniela; Diniz, Mário S.; Baptista, Pedro V.

    2014-08-01

    This work reports a one-way flow bioaccumulation of gold nanoparticles (AuNPs) in aquatic organisms between two trophic levels. First, Dunaliella salina cells were exposed to citrate-capped AuNPs at different concentrations and during distinct exposure periods to assess internalization and behavior. Afterward, D. salina was incubated with both citrate-capped and functionalized (PEGylated) AuNPs for 24 h and later fed to Mytilus galloprovincialis. Analysis was carried out to assess Au content, histological differences and oxidative stress. These algae were fed to the model organism M. galloprovincialis (Mediterranean mussel) as it is considered of major importance for assessing toxic effects and bioaccumulation of different pollutants in aquatic environments. Elemental Au analysis revealed an uptake of about 76 % of the initial amount of AuNPs (and 36 % for PEGylated AuNPs) in microalgae. Mussel gills and digestive gland showed variable Au content in individuals fed with D. salina previously exposed to AuNPs. No significant morphological alterations were observed in D. salina or mussel digestive glands. Glutathione-s-transferase activity and total antioxidant capacity were assessed as oxidative stress biomarkers showing that AuNPs are not prone to trigger the induction of defenses against oxidative stress.

  4. Analysis of the characteristics of GRACE dual one-way ranging system

    NASA Astrophysics Data System (ADS)

    Ko, Ung Dai

    The motivation for this research was an improvement of the quality of the Earth's gravity solutions from the GRACE mission data through an instrument-level study. The objective was a better understanding of the characteristics and sources of the high-frequency noise in the range of (0.02 ˜ 0.1 Hz) in the dual one-way ranging (DOWR) and its effect on the gravity solution. For this purpose, the mathematical model of the DOWR observation was derived and the Allan variance was computed to establish an upper bound on the level of frequency instability of the ultra-stable oscillators (USO) to determine their contribution to the high-frequency noise. Because they are dominated by the high-frequency noise, the postfit residuals of the time derivative of the DOWR ranges were also examined to evaluate the contributions of various other factors such as system noise from the microwave signal receiver, external influences, and internal influences. The results indicate that the system noise is the dominant source of the excessive high-frequency noise. As one method of mitigation, a tighter bandwidth filter was applied to the DOWR processing, resulting in modest improvements in gravity solutions.

  5. One-way membrane trafficking of SOS in receptor-triggered Ras activation

    PubMed Central

    Christensen, Sune M.; Tu, Hsiung-Lin; Jun, Jesse E.; Alvarez, Steven; Triplet, Meredith G.; Iwig, Jeffrey S.; Yadav, Kamlesh K.; Bar-Sagi, Dafna; Roose, Jeroen P.; Groves, Jay T.

    2016-01-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane-recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2:SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted membrane experiments, these Grb2-independent interactions are sufficient to retain SOS on the membrane for many minutes, during which a single SOS molecule can processively activate thousands of Ras molecules. These observations raise questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative reconstituted SOS-deficient chicken B cell signaling systems combined with single molecule measurements in supported membranes. These studies reveal an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until it is actively removed via endocytosis. PMID:27501536

  6. One-way water permeable valve via water-based superhydrophobic coatings

    NASA Astrophysics Data System (ADS)

    Mates, Joseph E.; Megaridis, Constantine M.

    2013-11-01

    Spray-cast superhydrophobic coatings have shown promise in commercial applications for fluid management due to their intrinsic low-cost, large-area capabilities and substrate independence (Schutzius et al. 2011). A technique of applying a light (< 2 gsm) water-based superhydrophobic coating on inherently hydrophilic cellulosic substrates to generate a preferred directionality for water absorption and transmission is presented. The mechanism described allows water to pass through a thin treated porous substrate in one direction under negligible pressure, but does not allow water to return from the opposite direction unless much greater pressure is applied. This pressure disparity ``window'' effectively creates a one-way fluid valve, with envisioned applications ranging from personal hygiene products, to oil-water separation and filtration. Combining SEM imaging with theoretical robustness factors (Tuteja et al. 2008), the penetration pressures are found to be tunable for application-specific designs by choosing a substrate based on limiting factors of fiber diameter and spacing. The process can also be modified with the addition of functionalized (e.g. antibacterial, conductive) nanoparticle fillers suited for the desired application.

  7. Evidence-based practice guidelines--one way to enhance clinical practice.

    PubMed

    Bailes, Barbara K

    2002-06-01

    Abdominoplasty and liposuction guidelines are just two of the guidelines that can be accessed and used to enhance patient care. Guidelines also can be used to increase your knowledge about many other health care topics. The NGC has approved guidelines for managing chronic pain, as well as guidelines on chronic diseases (e.g., diabetes mellitus, hypertension, chronic obstructive pulmonary disease). Many patients have chronic diseases, and you or your family members also may be affected by chronic disorders. These guidelines provide you with a quick overview of evidence-based treatment protocols. These guidelines are not a panacea for evidence-based practice, but using them is one way that perioperative nurses can enhance their clinical skills. Though not everyone has personal Internet access, most health care facilities do or can make access a reality. Other options include medical or public libraries. Then one simply has to access the NGC web site and join other professionals in improving the quality and timeliness of patient care.

  8. Two-factor authentication system based on optical interference and one-way hash function

    NASA Astrophysics Data System (ADS)

    He, Wenqi; Peng, Xiang; Meng, Xiangfeng; Liu, Xiaoli

    2012-10-01

    We present a two-factor authentication method to verify the personal identification who tries to access an optoelectronic system. This method is based on the optical interference principle and the traditional one-way Hash function (e.g. MD5). The authentication process is straightforward, the phase key and the password-controlled phase lock of one user are loading on two Spatial Light Modulators (SLMs) in advance, by which two coherent beams are modulated and then interference with each other at the output plane leading to an output image. By comparing the output image with all the standard certification images in the database, the system can thus verify the user's identity. However, the system designing process involves an iterative Modified Phase Retrieval Algorithm (MPRA). For an uthorized user, a phase lock is first created based on a "Digital Fingerprint (DF)", which is the result of a Hash function on a preselected user password. The corresponding phase key can then be determined by use of the phase lock and a designated standard certification image. Note that the encode/design process can only be realized by digital means while the authentication process could be achieved digitally or optically. Computer simulations were also given to validate the proposed approach.

  9. Effects of hippocampal stimulation on retention and extinction of one way active avoidance response in cats.

    PubMed

    Gralewicz, K; Gralewicz, S

    1984-01-01

    We found previously that hippocampal stimulation (HiSt) at 20 cps, 100 mikroA, applied jointly with a tone (500 Hz) CS in the course of retention test, improved the performance and retarded the extinction of one way active avoidance response (AAR) in cats. During this test failures to perform the AAR were not punished in all but two trials it the beginning of each session. The first experiment of the present studies demonstrated that - (i) the AAR facilitating the effect of HiSt might be prevented by m all electrolytic lesions made around the tips of the stimulating electrodes, (ii) large lesions of the hippocampus exerted little effect on the AAR acquisition, but the response was extinguished faster during the retention test. In the second experiment two response prevention trials (non-reinforced presentations of the CS with no possibility to make the AAR) were run at the beginning of each session after the end of training. In these conditions the HiSt resulted in a faster extinction of the AAR as compared with implanted unstimulated animals. Large lesions of the hippocampus had no effect on the extinction rate. We conclude that the facilitation of retrieval from memory may be responsible for the effects of HiSt on conditioned behavior.

  10. Integratable quarter-wave plates enable one-way angular momentum conversion.

    PubMed

    Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao

    2016-04-22

    Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing.

  11. Integratable quarter-wave plates enable one-way angular momentum conversion

    PubMed Central

    Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao

    2016-01-01

    Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing. PMID:27102332

  12. Building of one-way Hadamard gate for squeezed coherent states

    NASA Astrophysics Data System (ADS)

    Podoshvedov, Sergey A.

    2013-01-01

    We present an optical scheme to conditionally generate even or odd squeezed superpositions of coherent states (SSCSs). The optical setup consists of an unbalanced beam splitter whose transmittance tends to unity, and additional balanced beam splitters and photodetectors in auxiliary modes. Squeezed coherent states with different amplitudes are the input states in the optical scheme. The single-qubit operations are probabilistic and employ two- and three-photon subtractions from initial beams as the driving force. Generation of the even or odd SSCSs is observed in a wide diapason of values of used parameters. We consider a possibility to realize a one-way Hadamard gate for the squeezed coherent states when the base states are transformed into superposition states. States approximating the output states of a Hadamard gate with high fidelity can be realized by imposing restrictions on the values of used parameters. Higher-order subtractions from input beams are necessary to generate the SSCSs with larger amplitudes and higher fidelities. The problem is resolved in a Wigner representation to take into account imperfections of the optical devices.

  13. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows.

    PubMed

    Gallin, Louis-Jonardan; Rénier, Mathieu; Gaudard, Eric; Farges, Thomas; Marchiano, Régis; Coulouvrat, François

    2014-05-01

    A numerical scheme is developed to simulate the propagation of weak acoustic shock waves in the atmosphere with no absorption. It generalizes the method previously developed for a heterogeneous medium [Dagrau, Rénier, Marchiano, and Coulouvrat, J. Acoust. Soc. Am. 130, 20-32 (2011)] to the case of a moving medium. It is based on an approximate scalar wave equation for potential, rewritten in a moving time frame, and separated into three parts: (i) the linear wave equation in a homogeneous and quiescent medium, (ii) the effects of atmospheric winds and of density and speed of sound heterogeneities, and (iii) nonlinearities. Each effect is then solved separately by an adapted method: angular spectrum for the wave equation, finite differences for the flow and heterogeneity corrections, and analytical method in time domain for nonlinearities. To keep a one-way formulation, only forward propagating waves are kept in the angular spectrum part, while a wide-angle parabolic approximation is performed on the correction terms. The numerical process is validated in the case of guided modal propagation with a shear flow. It is then applied to the case of blast wave propagation within a boundary layer flow over a flat and rigid ground.

  14. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking

    NASA Astrophysics Data System (ADS)

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-07-01

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking.

  15. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking.

    PubMed

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-07-08

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking.

  16. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking

    PubMed Central

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-01-01

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking. PMID:27387438

  17. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    SciTech Connect

    Kondo, Tomoki; Ando, Keita

    2016-03-15

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh–Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  18. Non-reciprocity and topology in optics: one-way road for light via surface magnon polariton

    PubMed Central

    Ochiai, Tetsuyuki

    2015-01-01

    We show how non-reciprocity and topology are used to construct an optical one-way waveguide in the Voigt geometry. First, we present a traditional approach of the one-way waveguide of light using surface polaritons under a static magnetic field. Second, we explain a recent discovery of a topological approach using photonic crystals with the magneto-optical coupling. Third, we present a combination of the two approaches, toward a broadband one-way waveguide in the microwave range. PMID:27877739

  19. COBE navigation with one-way return-link Doppler in the post-helium-venting phase

    NASA Astrophysics Data System (ADS)

    Dunham, Joan; Nemesure, M.; Samii, M. V.; Maher, M.; Teles, Jerome; Jackson, J.

    1991-12-01

    The results of a navigation experiment with one way return link Doppler tracking measurements for operational orbit determination of the Cosmic Background Explorer (COBE) spacecraft are presented. The frequency of the tracking signal for the one way measurements was stabilized with an Ultrastable Oscillator (USO), and the signal was relayed by the Tracking and Data Relay Satellite System (TDRSS). The study achieved three objectives: space qualification of TDRSS noncoherent one way return link Doppler tracking; determination of flight performance of the USO coupled to the second generation TDRSS compatible user transponder; and verification of algorithms for navigation using actual one way tracking data. Orbit determination and the inflight USO performance evaluation results are presented.

  20. More than one way to see it: Individual heuristics in avian visual computation

    PubMed Central

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M.; Fitch, W. Tecumseh

    2015-01-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. PMID:26113444

  1. More than one way to see it: Individual heuristics in avian visual computation.

    PubMed

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M; Fitch, W Tecumseh

    2015-10-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species' ability to process pattern classes or different species' performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds' choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally.

  2. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension.

    PubMed

    Wang, Hongxia; Zhou, Hua; Yang, Weidong; Zhao, Yan; Fang, Jian; Lin, Tong

    2015-10-21

    Thin porous materials that can spontaneously transport oil fluids just in a single direction have great potential for making energy-saving functional membranes. However, there is little data for the preparation and functionalities of this smart material. Here, we report a novel method to prepare one-way oil-transport fabrics and their application in detecting liquid surface tension. This functional fabric was prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate. Upon one-sided UV irradiation, the coated fabric shows a one-way transport feature that allows oil fluid transport automatically from the unirradiated side to the UV-irradiated surface, but it stops fluid transport in the opposite direction. The fabric still maintains high superhydrophobicity after UV treatment. The one-way fluid transport takes place only for the oil fluids with a specific surface tension value, and the fluid selectivity is dependent on the UV treatment time. Changing the UV irradiation time from 6 to 30 h broadened the one-way transport for fluids with surface tension from around 22.3 mN/m to a range of 22.3-56.7 mN/m. We further proved that this selective one-way oil transport can be used to estimate the surface tension of a liquid simply by observing its transport feature on a series of fabrics with different one-way oil-transport selectivities. To our knowledge, this is the first example to use one-way fluid-transport materials for testing the liquid surface tension. It may open up further theoretical studies and the development of novel fluid sensors.

  3. [Effects of one-way speaking valve placement on swallowing physiology for tracheostomized patients: impact on laryngeal clearance].

    PubMed

    Ohmae, Yukio; Adachi, Zin; Isoda, Yukihide; Maekawa, Hitosi; Kitagawa, Youko; Karaho, Takehiro; Tanabe, Tetuya; Kitahara, Satoshi

    2006-07-01

    Tracheostomy placement affects swallowing function, increasing the risk of aspiration. Recent studies suggest that because of increased risk of swallowing disturbance associated with tracheostomy, one-way speaking valve placement may help to reduce aspiration in tracheostomized patients. We hypothesize that airflow exhaled through the laryngeal cavity using the one-way speaking valve may improve the clearance of residual bolus from the upper airway, thus preventing bolus penetration and aspiration. We studied the effects of one way speaking valve placement on laryngeal clearance and swallowing physiology. Videoendoscopic and videofluoroscopic swallowing were examined in 16 patients with the tracheostomy, and swallowing was compared with and without the one-way speaking valve in place. Valve Valve placement significantly improved laryngeal clearance and the incidence of penetration during swallowing. placement did not, however, significantly affect pharyngeal bolus residue, laryngeal elevation, pharyngeal delay or aspiration. Factors associated with the resumption of oral feedings were sufficient laryngeal elevation during swallow and the prevention of laryngeal penetration and aspiration. We concluded that one-way speaking valve placement improves laryngeal clearance and prevents laryngeal penetration, resulting in better oropharyngeal swallowing physiology and oral feeding.

  4. One-way self-collimated acoustic beams in two-dimensional asymmetric sonic crystals with circulating fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Cheng, Ying; Liu, XiaoJun

    2017-06-01

    We theoretically realized the one-way self-collimation effect of acoustic beams in two-dimensional sonic crystals (SCs), which are composed of irregular rigid rods surrounded by circulating fluids. The parity symmetry (P symmetry) and time-reversal symmetry (T symmetry) of the circulating-fluid SCs (CFSCs) are broken by the asymmetric crystal lattice and the circulating fluids. A large isolation of >30 dB with a maintained wavefront and frequency is realized for output acoustic beams launched in opposite directions. By applying the gradient angular velocities of the circulating fluids, the one-way self-collimated acoustic beams can be bent gradually, yielding an acoustic mirage effect. The one-way self-collimation in CFSCs provides an avenue for manipulating acoustic beams independently of the nonlinearity and mode conversion.

  5. Nonparametric One-Way Multivariate Analysis of Variance: A Computational Approach Based on the Pillai-Bartlett Trace.

    ERIC Educational Resources Information Center

    Zwick, Rebecca

    1985-01-01

    Describes how the test statistic for nonparametric one-way multivariate analysis of variance can be obtained by submitting the data to a packaged computer program. Monte Carlo evidence indicates that the nonparametric approach is advantageous under certain violations of the assumptions of multinormality and homogeneity of covariance matrices.…

  6. Constant Time Delay: One Way to Provide Positive Behavioral Support for Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Stevens, Kay B.; Lingo, Amy S.

    2005-01-01

    Teachers of students with emotional and behavioral disorders (EBD) understand conceptually, emotionally, and legally the importance of using research-based procedures as well as positive behavioral supports. One way to provide positive behavioral support for students with EBD is constant time delay (CTD). CTD is an instructional delivery procedure…

  7. Adjusting for Unequal Variances when Comparing Means in One-Way and Two-Way Fixed Effects ANOVA Models.

    ERIC Educational Resources Information Center

    Wilcox, Rand R.

    1989-01-01

    Two methods of handling unequal variances in the two-way fixed effects analysis of variance (ANOVA) model are described. One is based on an improved Wilcox (1988) method for the one-way model, and the other is an extension of G. S. James' (1951) second order method. (TJH)

  8. Heteroscedastic Tests Statistics for One-Way Analysis of Variance: The Trimmed Means and Hall's Transformation Conjunction

    ERIC Educational Resources Information Center

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2005-01-01

    To deal with nonnormal and heterogeneous data for the one-way fixed effect analysis of variance model, the authors adopted a trimmed means method in conjunction with Hall's invertible transformation into a heteroscedastic test statistic (Alexander-Govern test or Welch test). The results of simulation experiments showed that the proposed technique…

  9. Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Zu, Jean W.

    2013-11-01

    This study focuses on the nonlinear steady-state response of a belt-drive system with a one-way clutch. A dynamic model is established to describe the rotations of the driving pulley, the driven pulley, and the accessory shaft. Moreover, the model considers the transverse vibration of the translating belt spans for the first time in belt-drive systems coupled with a one-way clutch. The excitation of the belt-drive system is derived from periodic fluctuation of the driving pulley. In automotive systems, this kind of fluctuation is induced by the engine firing harmonic pulsations. The derived coupled discrete-continuous nonlinear equations consist of integro-partial-differential equations and piece-wise ordinary differential equations. Using the Galerkin truncation, a set of nonlinear ordinary differential equations is obtained from the integro-partial-differential equations. Applying the Runge-Kutta time discretization, the time histories of the dynamic response are numerically solved for the driven pulley and the accessory shaft and the translating belt spans. The resonance areas of the coupled belt-drive system are determined using the frequency sweep. The effects of the one-way clutch on the belt-drive system are studied by comparing the frequency-response curves of the translating belt with and without one-way clutch device. Furthermore, the results of 2-term and 4-term Galerkin truncation are compared to determine the numerical convergence. Moreover, parametric studies are conducted to understand the effects of the system parameters on the nonlinear steady-state response. It is concluded that one-way clutch not only decreases the resonance amplitude of the driven pulley and shaft's rotational vibration, but also reduces the resonance region of the belt's transverse vibration.

  10. One Way or Another

    NASA Technical Reports Server (NTRS)

    Zazzali, Christian

    2003-01-01

    Even experienced project managers can t anticipate every potential problem. Part of planning ahead should include allowing oneself the flexibility to rethink the plan and improvise if necessary. Unique solutions to problems sometimes create a set of new problems unique in nature as well. In dealing with sudden changes in planning, try to consider what other elements of the project will be affected, but don t second guess yourself into a state of inaction because you can t anticipate every contingency.

  11. High-performance one-way transmission using pyramid-shaped silicon grating-coupled hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Hu, Jigang; Qing, Yeming; Wen, Zhengqian; Wu, Xiaohang; Ren, Rongze; Gao, Weiqing; Li, Dongmei; Gao, Feng

    2016-11-01

    An asymmetric transmission device has been presented to realize high-performance one-way transmission at visible frequencies. This device consists of a pair of non-symmetric pyramid-shaped silicon gratings separated by a metal/dielectric multilayer structure (MDMS). Simulation results demonstrates that, compared with conventional Cr grating, MDMS with pyramid-shaped silicon gratings will greatly enhance the coupling and decoupling between the propagating waves in free space and the high frequency modes in MDMS, rendering an improved oneway transmission performance. The improved one-way transmission performance offered by our design may hold great potential in designing the optical isolator and polarizer for ultra-compact photonic integrated circuit.

  12. One-way light transport controlled by synthetic magnetic fluxes and {\\mathscr{P}}{\\mathscr{T}}-symmetric resonators

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2017-01-01

    Controlled directional light propagation using optical nonlinearity has previously been proposed. Here, we propose a one-way optical device with linear elements controlled by synthetic magnetic fluxes. The device consists of two parity–time symmetric side-coupled resonators with balanced gain and loss. The gain and loss break the reflection symmetry and the magnetic fluxes break the transmission symmetry. Through tuning the magnetic fluxes, reflectionless full transmission in one direction and transmissionless full reflection in the opposite direction can be achieved. The device acts as a light-checking valve, preventing wave propagation in one direction. The proposed one-way transporter uses the nonreciprocity induced by non-Hermiticity and magnetic fluxes without applying nonlinearity. We anticipate that our findings will be useful for optical control and manipulation.

  13. Lower bounds for the security of modified coherent-one-way quantum key distribution against one-pulse-attack

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Han, Zheng-Fu; Bao, Wan-Su; Guo, Guang-Can

    2011-02-01

    Upper bounds for the security of coherent-one-way (COW) quantum key distribution protocols have been analyzed by considering the one-pulse-attack [Branciard C, Gisin N and Scarani V (BGS) New J.Phys. (2008) 10 013031]. However, their security analysis was based on long distance case, and the typical value of the transmission distance is larger than 50 km. Applying the sharp continuity for the von Neumann entropy and some basic inequalities, we provide lower bounds for the security of modified coherent-one-way quantum key distribution protocol against the most general one-pulse-attack by only considering photon number resolved detectors that will be used in the receiver's side. Comparing with BGS's security analysis, our security analysis can be satisfied with arbitrary distance case.

  14. Verbal communication with the Blom low profile and Passy-Muir one-way tracheotomy tube speaking valves.

    PubMed

    Adam, Stewart I; Srinet, Prateek; Aronberg, Ryan M; Rosenberg, Graeme; Leder, Steven B

    2015-01-01

    To investigate physiologic parameters, voice production abilities, and functional verbal communication ratings of the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves. Case series with planned data collection. Large, urban, tertiary care teaching hospital. Referred sample of 30 consecutively enrolled adults requiring a tracheotomy tube and tested with Blom and Passy-Muir valves. Physiologic parameters recorded were oxygen saturation, respiration rate, and heart rate. Voice production abilities included maximum voice intensity in relation to ambient room noise and maximum phonation duration of the vowel/a/. Functional verbal communication was determined from randomized and blinded listener ratings of counting 1-10, saying the days of the week, and reading aloud the sentence, "There is according to legend a boiling pot of gold at one end." There were no significant differences (p>0.05) between the Blom and Passy-Muir valves for the physiologic parameters of oxygen saturation, respiration rate, and heart rate; voice production abilities of both maximum intensity and duration of/a/; and functional verbal communication ratings. Both valves allowed for significantly greater maximum voice intensity over ambient room noise (p<0.001). The Blom low profile voice inner cannula and Passy-Muir one-way speaking valves exhibited equipoise regarding patient physiologic parameters, voice production abilities, and functional verbal communication ratings. Readers will understand the importance of verbal communication for patients who require a tracheotomy tube; will be able to determine the differences between the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves; and will be confident in knowing that both the Blom and Passy-Muir one-way tracheotomy tube speaking valves are equivalent regarding physiological functioning and speech production abilities. Copyright © 2015 Elsevier Inc. All rights

  15. Experimental Realization of a Reflections-Free Compact Delay Line Based on a Photonic Topological Insulator

    PubMed Central

    Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady

    2016-01-01

    Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices. PMID:27345575

  16. Reflex free double pass objective due to reflective free form surfaces

    NASA Astrophysics Data System (ADS)

    Buchheister, J.; Mueller, L.

    2008-09-01

    The retina camera is a very classical setup, which is mainly caused by the complex functional demands of this kind of systems. A lot of knowledge and experience is necessary in order to get the system parts working perfectly together at all multiple settings, so major changes in design will cause a new learning process. In example a lot of effort is paid to avoid undesirable reflected light, since the response of desired information of the retina is very weak and every direct reflex even from antireflection coated surfaces will overlap the desired information. The most disturbing undesirable reflected light is introduced by the so called ophthalmic lens, a refractive optical element dealing the double pass characteristics of the setup. Substituting the refractive optical element by reflecting surfaces will avoid the undesirable reflected light just by choice of the setup. It will be discussed the optical design concept of such a reflecting ophthalmic group, including the core idea and the steps leading to the final solution using reflecting free form surfaces. Furthermore, it will be shown the results of the related optical design study dealing the demands of the application retina camera.

  17. Experimental Realization of a Reflections-Free Compact Delay Line Based on a Photonic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady

    2016-06-01

    Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices.

  18. Experimental demonstration of counteracting imperfect sources in a practical one-way quantum-key-distribution system

    SciTech Connect

    Xu Fangxing; Zhang Yang; Zhou Zheng; Chen Wei; Han Zhengfu; Guo Guangcan

    2009-12-15

    In a practical quantum-key-distribution system, photon source and small operational errors cause intensity fluctuations inevitably, which cannot be ignored for a precise estimation on the single-photon fraction. In this paper, we demonstrated an efficient three-intensity decoy method scheme on top of the one-way Faraday-Michelson Interferometric system, combining an active monitoring with existing commercial apparatus to inspect fluctuations instantly. With this faithful detection for the upper bound of the fluctuation, the secure quantum key distribution is unconditionally realized with whatever type of intensity errors, which declares the utility and potential of decoy theory and active monitoring for quantum key distribution in practical use.

  19. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states.

    PubMed

    Chen, Kai; Li, Che-Ming; Zhang, Qiang; Chen, Yu-Ao; Goebel, Alexander; Chen, Shuai; Mair, Alois; Pan, Jian-Wei

    2007-09-21

    We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special source, we implemented a highly efficient Grover's search algorithm and high-fidelity two-qubit quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.

  20. Three-dimensional study of a one-way, flexible magnetorheological elastomer-based micro fluid transport system

    NASA Astrophysics Data System (ADS)

    Behrooz, Majid; Gordaninejad, Faramarz

    2016-09-01

    This paper presents a three-dimensional study of a controllable flexible magnetically-activated micropump. The tubular micropump employs magnetically induced deformation of magnetorheological elastomer and one-way flexible conical valves for fluid transport. Three-dimensional magneto-fluid-solid interaction analysis is employed to investigate the performance of the system. The effects of key material, geometric, and magnetic parameters on the effectiveness of the system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.

  1. Comparison of one-way and two-way coupled analyses of electromagnetic machines considering magnetic and structural interactions

    NASA Astrophysics Data System (ADS)

    Nam, Jahyun; Kang, Chiho; Song, Jeongyong; Jang, Gunhee

    2017-05-01

    We compared one-way and two-way coupled analyses of electromagnetic machines considering magnetic and structural interaction to identify the frequency components of magnetic excitation and to determine the structural coupling effects predicted only by the two-way coupled analysis. We developed finite element models of a C-core switch and an electric motor. In the two-way coupled analysis method, the magnetic force calculated by using the Maxwell stress tensor was applied to the structural finite element model to determine the elastic deformation, and the magnetic finite element model was rearranged by means of the moving mesh method to represent the structural elastic deformation. We showed that two-way coupled analysis predicted the excitation frequency of 80 Hz (4 times the input current frequency) of magnetic force in the C-core switch and the excitation frequency of 667 Hz (the first natural frequency of the rotor, corresponding to the translational mode) of magnetic force in the electric motor undergoing rotor eccentricity. We showed that two-way coupled analysis predicted magnetic excitation and its corresponding structural response more accurately than the one-way coupled analysis, especially for electromagnetic machines in which the structural deformation affects magnetic field through variation of the air gap length.

  2. Resource cost results for one-way entanglement distillation and state merging of compound and arbitrarily varying quantum sources

    SciTech Connect

    Boche, H. Janßen, G.

    2014-08-01

    We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.

  3. Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states

    NASA Astrophysics Data System (ADS)

    Ye, TianYu; Ji, ZhaoXu

    2017-09-01

    Quantum private comparison (QPC) aims to accomplish the equality comparison of the secrets from different users without disclosing their genuine contents by using the principles of quantum mechanics. In this paper, we summarize eight modes of quantum state preparation and transmission existing in current QPC protocols first. Then, by using the mode of scattered preparation and one-way convergent transmission, we construct a new multi-user quantum private comparison (MQPC) protocol with two-particle maximally entangled states, which can accomplish arbitrary pair's comparison of equality among K users within one execution. Analysis turns out that its output correctness and its security against both the outside attack and the participant attack are guaranteed. The proposed MQPC protocol can be implemented with current technologies. It can be concluded that the mode of scattered preparation and one-way convergent transmission of quantum states is beneficial to designing the MQPC protocol which can accomplish arbitrary pair's comparison of equality among K users within one execution.

  4. Burning Invariant Manifold Theory and the Bipartite Digraph Representation of Generalized Dynamical System Formed by One-way Barriers

    NASA Astrophysics Data System (ADS)

    Li, John; Mahoney, John; Mitchell, Kevin; Solomon, Tom

    2013-11-01

    The recently developed Burning Invariant Manifold (BIM) theory took a dynamical system approach to understand front propagation in Advection-Reaction-Diffusion systems and successfully predicted both the short-term and asymptotic front behavior by finding the unstable BIMs which act as barriers to front propagation. Unlike separatrices in traditional dynamical system being two-way barriers, the BIMs are one-way barriers. This asymmetry gives rise to a much richer dynamical behavior than traditional dynamical systems. Through numerical simulations, we found that the stable BIMs are the basin boundaries. Based on the properties of BIM theory, we further derived a theory to investigate a dynamical system consists of one-way barriers and the cooperative behavior of these barriers. This theory reveals the global structure of both stable and unstable BIMs by first using a systematic algorithm to convert the flow to a bipartite digraph and then extracting information of the steady states of fronts and corresponding basins of attraction from the digraph. This work was supported by the US National Science Foundation under grant PHY-0748828 and NSF Fellowship DGE-0937362.

  5. Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators

    NASA Astrophysics Data System (ADS)

    Wu, R.-S.

    - Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent

  6. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.

    PubMed

    Scarani, Valerio; Renner, Renato

    2008-05-23

    We derive a bound for the security of quantum key distribution with finite resources under one-way postprocessing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols such as Bennett-Brassard 1984 and six-states protocol. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N approximately 10(5) signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.

  7. Confidence intervals and sample size calculations for the weighted eta-squared effect sizes in one-way heteroscedastic ANOVA.

    PubMed

    Shieh, Gwowen

    2013-03-01

    Effect size reporting and interpreting practices have been extensively recommended in academic journals when primary outcomes of all empirical studies have been analyzed. This article presents an alternative approach to constructing confidence intervals of the weighted eta-squared effect size within the context of one-way heteroscedastic ANOVA models. It is shown that the proposed interval procedure has advantages over an existing method in its theoretical justification, computational simplicity, and numerical performance. For design planning, the corresponding sample size procedures for precise interval estimation of the weighted eta-squared association measure are also delineated. Specifically, the developed formulas compute the necessary sample sizes with respect to the considerations of expected confidence interval width and tolerance probability of interval width within a designated value. Supplementary computer programs are provided to aid the implementation of the suggested techniques in practical applications of ANOVA designs when the assumption of homogeneous variances is not tenable.

  8. [Placement of one-way endobronchial valves to treat severe pulmonary emphysema in an 84-year-old].

    PubMed

    Carron, Kris O M

    2009-01-01

    An 84-year-old man with end-stage emphysema was hospitalised on two occasions because of an episode of severe COPD exacerbation, each time successfully treated in a classical pharmacological manner. Further analysis of a high-resolution CT chest scan revealed very pronounced destruction of the lung parenchyma in the left lower lobe. Moreover, the degree of destruction in the left lung was of a highly heterogeneous nature and fissure analysis revealed a complete left major fissure. After carefully weighing up the costs against the benefits, two one-way valves of different sizes were implanted in the orifices of the left lower lobe using video bronchoscopy. This intervention had a very satisfactory outcome with positive changes in the lung function parameters, imaging studies and quality of life. The inevitable placement in a nursing home could consequently be postponed and, at follow-up one year later, no exacerbation or pneumonia had developed since the intervention.

  9. Validating the integrity of one-way check valves for the delivery of contrast solution to multiple patients.

    PubMed

    Gretzinger, D T; Cafazzo, J A; Ratner, J; Conly, J M; Easty, A C

    1996-01-01

    The infusion of contrast solution into multiple patients from a single infusion bag is desired in clinics concerned with the high cost of the solution. Using one-way check valves in the infusion line is a protection method to reduce the risk of blood-borne cross-contamination. The suitability of this method is assessed through testing of the operating characteristics of the valves and infusion system and the high back pressure testing of the valves. The results indicate that the use of back-flow valves can ensure the prevention of flow from the patient to the injector. Results also indicate that the use of sprung valves, those which require a significant forward pressure to open them, are more appropriate for this application.

  10. Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method

    NASA Astrophysics Data System (ADS)

    Wu, Ru-Shan

    1994-01-01

    In this paper a system of equations for wide-angle one-way elastic wave propagation in arbitrarily heterogeneous media is formulated in both the space and wavenumber domains using elastic Rayleigh integrals and local elastic Born scattering theory. The wavenumber domain formulation leads to compact solutions to one-way propagation and scattering problems. It is shown that wide-angle scattering in heterogeneous elastic media cannot be formulated as passage through regular phase-screens, since the interaction between the incident wavefield and the heterogeneities is not local in both the space domain and the wavenumber domain. Our more generally valid formulation is called the 'thin-slap; formulation. After applying the small-angle approximation, the thin slab effect degenerates to that of an elastic complex-screen (or generalized phase-screen). For the complex-screen method the cross-coupling term is neglected because it is higher order small quantity for small-angle scattering. Relative to prior derivations of vector phase-screen method, our method can correctly treat the conversion between P and S waves and the cross-coupling between differently polarized S waves. A comparison with solutions from three-dimensional finite difference and exact solutions using eigenfunctions expansion is made for two special cases. One is for a solid sphere with only P velocity pertubation; the other is with only S velocity perturbation. The Elastic complex-screen method generally agrees well with the three-dimensional finite difference method and the exact solutions. In the limiting case of scalar waves, the derivation in this paper leads to a move generally valid new method, namely, a scaler thin-slab method. When making the small-angle approximation to the interaction term while keeping the propagation term unchanged, the thin-slab method approaches the currently available scalar wide-angle phase screen method.

  11. Comparing One-way and Two-way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Givati, Amir; Gochis, David; Rummler, Thomas; Kunstmann, Harald; Yu, Wei

    2016-04-01

    A pair of hydro-meteorological modeling systems were calibrated and evaluated for the Ayalon basin in central Israel to assess the advantages and limitations of one-way versus two-way coupled modeling systems for flood prediction. The models used included the Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) model and the Weather Research and Forecasting (WRF) Hydro modeling system. The models were forced by observed, interpolated precipitation from rain-gauges within the basin, and with modeled precipitation from the WRF atmospheric model. Detailed calibration and evaluation was carried out for two major winter storms in January and December 2013. Then both modeling systems were executed and evaluated in an operational mode for the full 2014/2015 rainy season. Outputs from these simulations were compared to observed measurements from hydrometric stations at the Ayalon basin outlet. Various statistical metrics were employed to quantify and analyze the results: correlation, Root Mean Square Error (RMSE) and the Nash-Sutcliffe (NS) efficiency coefficient. Foremost, the results presented in this study highlight the sensitivity of hydrological responses to different sources of precipitation data, and less so, to hydrologic model formulation. With observed precipitation data both calibrated models closely simulated the observed hydrographs. The two-way coupled WRF/WRF-Hydro modeling system produced improved both the precipitation and hydrological simulations as compared to the one-way WRF simulations. Findings from this study suggest that the use of two-way atmospheric-hydrological coupling has the potential to improve precipitation and, therefore, hydrological forecasts for early flood warning applications. However more research needed in order to better understand the land-atmosphere coupling mechanisms driving hydrometeorological processes on a wider variety precipitation and terrestrial hydrologic systems.

  12. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in cleaninlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled time-marching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  13. One-way domain decomposition method with exact radiation condition and fast GMRES solver for the solution of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Stupfel, Bruno; Lecouvez, Matthieu

    2016-10-01

    For the solution of the time-harmonic electromagnetic scattering problem by inhomogeneous 3-D objects, a one-way domain decomposition method (DDM) is considered: the computational domain is partitioned into concentric subdomains on the interfaces of which Robin-type transmission conditions (TCs) are prescribed; an integral representation of the electromagnetic fields on the outer boundary constitutes an exact radiation condition. The global system obtained after discretization of the finite element (FE) formulations is solved via a Krylov subspace iterative method (GMRES). It is preconditioned in such a way that, essentially, only the solution of the FE subsystems in each subdomain is required. This is made possible by a computationally cheap H (curl)- H (div) transformation performed on the interfaces that separate the two outermost subdomains. The eigenvalues of the preconditioned matrix of the system are bounded by two, and optimized values of the coefficients involved in the local TCs on the interfaces are determined so as to maximize the minimum eigenvalue. Numerical experiments are presented that illustrate the numerical accuracy of this technique, its fast convergence, and legitimate the choices made for the optimized coefficients.

  14. A comparative study on the effectiveness of one-way printed communication versus videophone interactive interviews on health promotion.

    PubMed

    Homma, Satoki; Imamura, Haruhiko; Nakamura, Toru; Fujimura, Kaori; Ito, Yoshihiro; Maeda, Yuji; Kaneko, Ikuyo

    2016-01-01

    We performed a comparative study of a health education programme that was delivered either through one-way communication with printed media, or through interactive videophone interviews. We aimed to ascertain which mode of counselling, when used in combination with telemonitoring, is more effective at lifestyle modification intended to improve health status. Participants, who were residents of Kurihara city in Miyagi prefecture, Japan, were randomized into two groups: one group received individualized monthly documented reports (n = 33; 22 females; average age: 67.2 years), and the other received interactive videophone communication (n = 35; 22 females; average age: 65.1 years) for three months. Telemonitoring was conducted on both groups, using a pedometer, weighing scale and a sphygmomanometer. Pre- and post-intervention, anthropometric measurements and blood tests were performed; the participants also completed self-administered questionnaires. The two groups showed similar degrees of health status improvement and satisfaction levels. However, the participants in the videophone group were more aware of improvements in their lifestyles than were the participants in the document group. The individualized printed communication programme was less time-consuming compared to videophone communication. Further studies are needed to formulate a balanced protocol for a counselling-cum-telemonitoring programme that provides optimal health improvement and cost performance with the available human resources. © The Author(s) 2015.

  15. A Novel Approach for Constructing One-Way Hash Function Based on a Message Block Controlled 8D Hyperchaotic Map

    NASA Astrophysics Data System (ADS)

    Lin, Zhuosheng; Yu, Simin; Lü, Jinhu

    2017-06-01

    In this paper, a novel approach for constructing one-way hash function based on 8D hyperchaotic map is presented. First, two nominal matrices both with constant and variable parameters are adopted for designing 8D discrete-time hyperchaotic systems, respectively. Then each input plaintext message block is transformed into 8 × 8 matrix following the order of left to right and top to bottom, which is used as a control matrix for the switch of the nominal matrix elements both with the constant parameters and with the variable parameters. Through this switching control, a new nominal matrix mixed with the constant and variable parameters is obtained for the 8D hyperchaotic map. Finally, the hash function is constructed with the multiple low 8-bit hyperchaotic system iterative outputs after being rounded down, and its secure analysis results are also given, validating the feasibility and reliability of the proposed approach. Compared with the existing schemes, the main feature of the proposed method is that it has a large number of key parameters with avalanche effect, resulting in the difficulty for estimating or predicting key parameters via various attacks.

  16. Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  17. Investigation of crystal structures of one-way shape memory Nitinol wire actuators for active steerable needle

    NASA Astrophysics Data System (ADS)

    Honarvar, Mohammad; Konh, Bardia; Hutapea, Parsaoran

    2015-04-01

    Due to its outstanding properties of Nitinol, known as shape memory and superelasticity, Nitinol wires have been used as actuators in many medical devices. For the medical applications, it is critical to have a consistent strain response of Nitinol wires. This work focuses on studying the effect of parameters such as biased stress, maximum temperature, and wire diameters that influence the strain response of Nitinol wires. Specifically, Nitinol phase transformations were studied from microstructural point of view. The crystal structures of one-way shape memory Nitinol wires of various diameters under different thermomechanical loading conditions were studied using X-Ray Diffraction (XRD) method. The location and intensity of characteristic peaks were determined prior and after the thermomechanical loading cycles. It was observed that Nitinol wires of diameters less than 0.19 mm exhibit unrecovered strain while heated to the range of 70ºC to 80ºC in a thermal cycle, whereas no unrecovered strains were found in larger wires. The observation was supported by the XRD patterns where the formation of R-phase crystal structure was showed in wire diameters less than 0.19 mm at room temperature.

  18. Endobronchial occlusion with one-way endobronchial valves: a novel technique for persistent air leaks in children.

    PubMed

    Toth, Jennifer W; Podany, Abigail B; Reed, Michael F; Rocourt, Dorothy V; Gilbert, Christopher R; Santos, Mary C; Cilley, Robert E; Dillon, Peter W

    2015-01-01

    In children, persistent air leaks can result from pulmonary infection or barotrauma. Management strategies include surgery, prolonged pleural drainage, ventilator manipulation, and extracorporeal membrane oxygenation (ECMO). We report the use of endobronchial valve placement as an effective minimally invasive intervention for persistent air leaks in children. Children with refractory prolonged air leaks were evaluated by a multidisciplinary team (pediatric surgery, interventional pulmonology, pediatric intensive care, and thoracic surgery) for endobronchial valve placement. Flexible bronchoscopy was performed, and air leak location was isolated with balloon occlusion. Retrievable one-way endobronchial valves were placed. Four children (16 months to 16 years) had prolonged air leaks following necrotizing pneumonia (2), lobectomy (1), and pneumatocele (1). Patients had 1-4 valves placed. Average time to air leak resolution was 12 days (range 0-39). Average duration to chest tube removal was 25 days (range 7-39). All four children had complete resolution of air leaks. All were discharged from the hospital. None required additional surgical interventions. Endobronchial valve placement for prolonged air leaks owing to a variety of etiologies was effective in these children for treating air leaks, and their use may result in resolution of fistulae and avoidance of the morbidity of pulmonary surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A one-way coupled, Euler-Lagrangian simulation of bubble coalescence in a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Mattson, Michael; Mahesh, Krishnan

    2011-11-01

    A bubble coalescence model is developed using an Euler-Lagrangian approach for unstructured grids. The Eulerian carrier fluid is solved using large-eddy simulation (LES) and the Lagrangian particle motion is solved using one-way coupled equations relating the turbulent motion of the carrier fluid to the forces on each discrete bubble. The collision process is deterministic; bubble-bubble collisions are assumed to be binary and are modeled using a hard-sphere approach. A stochastic approach is used to model coalescence, with the probability of coalescence being a function of the bubble-bubble interaction timescale and the time to drain fluid between the colliding bubbles. Coalescence in a bubbly, turbulent pipe flow without buoyancy is simulated with conditions similar to a microgravity experiment by Colin, Fabre and Dukler [Int. J. Multiphase Flow (1991) 17:533-544] and excellent agreement of bubble size distribution is obtained between simulation and experiment. With increasing downstream distance, the number density of bubbles decreases due to coalescence and the average probability of coalescence decreases slightly due to an increase in overall bubble size. Supported by the U.S. Office of Naval Research under ONR Grant N00014-07-1-0420.

  20. A one-way coupled atmospheric-hydrological modeling system with combination of high-resolution and ensemble precipitation forecasting

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyong; Wu, Juan; Lu, Guihua

    2016-09-01

    Coupled hydrological and atmospheric modeling is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling system, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.

  1. Challenging the One-Way Paradigm for More Effective Science Communication: A Critical Review of Two Public Campaigns Addressing Contentious Environmental Issues

    ERIC Educational Resources Information Center

    McEntee, Marie; Mortimer, Claire

    2013-01-01

    This article examines two large-scale public communication campaigns to explore the appropriateness and effectiveness of using one-way communication in contentious environmental issues. The findings show while one-way communication can be successfully employed in contentious issues, it is not appropriate for all contexts and may contribute to…

  2. Challenging the One-Way Paradigm for More Effective Science Communication: A Critical Review of Two Public Campaigns Addressing Contentious Environmental Issues

    ERIC Educational Resources Information Center

    McEntee, Marie; Mortimer, Claire

    2013-01-01

    This article examines two large-scale public communication campaigns to explore the appropriateness and effectiveness of using one-way communication in contentious environmental issues. The findings show while one-way communication can be successfully employed in contentious issues, it is not appropriate for all contexts and may contribute to…

  3. Two-way against one-way nesting for climate downscaling in Europe and the Mediterranean region using LMDZ4

    NASA Astrophysics Data System (ADS)

    Li, Shan; Li, Laurent; Le Treut, Hervé

    2016-04-01

    In the 21st century, the estimated surface temperature warming projected by General Circulation Models (GCMs) is between 0.3 and 4.8 °C, depending on the scenario considered. GCMs exhibit a good representation of climate on a global scale, but they are not able to reproduce regional climate processes with the same level of accuracy. Society and policymakers need model projections to define climate change adaptation and mitigation policies on a global, regional and local scale. Climate downscaling is mostly conducted with a regional model nested into the outputs of a global model. This one-way nesting approach is generally used in the climate community without feedbacks from Regional Climate Models (RCMs) to GCMs. This lack of interaction between the two models may affect regional modes of variability, in particular those with a boundary conflict. The objective of this study is to evaluate a two-way nesting configuration that makes an interactive coupling between the RCM and the GCM, an approach against the traditional configuration of one-way nesting system. An additional aim of this work is to examine if the two-way nesting system can improve the RCM performance. The atmospheric component of the IPSL integrated climate model (LMDZ) is configured at both regional (LMDZ-regional) and global (LMDZ-global) scales. The two models have the same configuration for the dynamical framework and the physical forcings. The climatology values of sea surface temperature (SST) are prescribed for the two models. The stretched-grid of LMDZ-global is applied to a region defined by Europe, the Mediterranean, North Africa and Western North Atlantic. To ensure a good statistical significance of results, all simulations last at least 80 years. The nesting process of models is performed by a relaxation procedure of a time scale of 90 minutes. In the case of two-way nesting, the exchange between the two models is every two hours. The relaxation procedure induces a boundary conflict

  4. Particle transport and flow modification in planar temporally evolving laminar mixing layers. I. Particle transport under one-way coupling

    NASA Astrophysics Data System (ADS)

    Narayanan, Chidambaram; Lakehal, Djamel

    2006-09-01

    Simulations of two-dimensional, particle-laden mixing layers were performed for particles with Stokes numbers of 0.3, 0.6, 1, and 2 under the assumption of one-way coupling using the Eulerian-Lagrangian method; two-way coupling is addressed in Part II. Analysis of interphase momentum transfer was performed in the Eulerian frame of reference by looking at the balance of fluid-phase mean momentum, mean kinetic energy, modal kinetic energy, and particle-phase mean momentum. The differences in the dominant mechanisms of vertical transport of streamwise momentum between the fluid and particle phases is clearly brought out. In the fluid phase, growth of the mixing layer is due to energy transfer from the mean flow to the unstable Kelvin-Helmholtz modes, and transport of mean momentum by these modes. In contrast, in the particle phase, the primary mechanism of vertical transport of streamwise momentum is convection due to the mean vertical velocity induced by the centrifuging of particles by the spanwise Kelvin-Helmholtz vortices. Although the drag force and the particle-phase modal stress play an important role in the early stages of the evolution of the mixing layer, their role is shown to decrease during the pairing process. After pairing, the particle-phase mean streamwise momentum balance is accounted for by the convection and drag force term. The particle-phase modal stress term is shown to be strongly connected to the fluid phase modal stress with a Stokes-number-dependent time lag in its evolution.

  5. Spectral analysis of one-way and two-way downscaling applications for a tidally driven coastal ocean forecasting system

    NASA Astrophysics Data System (ADS)

    Solano, Miguel; Gonzalez, Juan; Canals, Miguel; Capella, Jorge; Morell, Julio; Leonardi, Stefano

    2017-04-01

    ways: 1) using Rich Pawlowicz's t_tide package (classic harmonic analysis), 2) with traditional band-pass filters (e.g. Lanczos) and 3) using Proper Orthogonal Decomposition. The tide filtering approach shows great improvement in the high frequency response of tidal motions at the open boundaries. Results are validated with NOAA tide gauges, Acoustic Doppler Current Profilers, High Frequency Radars (6km and 2km resolution). A floating drifter experiment is performed in coastal zones, in which 12 drifters were deployed at different coastal zones and tracked for several days. The results show an improvement of the forecast skill with the proper implementation of the tide filtering approach by adjusting the nudging time scales and adequately removing the tidal signals. Significant improvement is found in the tracking skill of the floating drifters for the one-way grid and the two-way nested application also shows some improvement over the offline downscaling approach at higher resolutions.

  6. Early Mission Orbit Determination Error Analysis Results for Low-Earth Orbiting Missions using TDRSS Differenced One-way Doppler Tracking Data

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    Differencing multiple, simultaneous Tracking and Data Relay Satellite System (TDRSS) one-way Doppler passes can yield metric tracking data usable for orbit determination for (low-cost) spacecraft which do not have TDRSS transponders or local oscillators stable enough to allow the one-way TDRSS Doppler tracking data to be used for early mission orbit determination. Orbit determination error analysis results are provided for low Earth orbiting spacecraft for various early mission tracking scenarios.

  7. Cosmic background explorer (COBE) navigation with TDRSS one-way return-link Doppler in the post-helium-venting phase

    NASA Astrophysics Data System (ADS)

    Nemesure, M.; Dunham, J.; Maher, M.; Teles, J.; Jackson, J.

    1991-10-01

    A navigation experiment was performed which establishes Ultra-Stable Oscillator (USO) frequency stabilized one way return link Doppler TDRSS tracking data as a feasible option for mission orbit determination support at the Goddard Space Center Flight Dynamics Facility. The study was conducted using both one way and two way Tracking and Data Relay Satellite System (TDRSS) tracking measurements for the Cosmic Background Explorer (COBE) spacecraft. Tracking data for a 4 week period immediately follow the depletion of the helium supply was used. The study showed that, for both definitive orbit solution and short term orbit prediction (up to 4 weeks), orbit determination results based on one way return link Doppler tracking measurements are comparable to orbit determination results based on two way range and two way Doppler tracking measurements.

  8. Cosmic background explorer (COBE) navigation with TDRSS one-way return-link Doppler in the post-helium-venting phase

    NASA Technical Reports Server (NTRS)

    Nemesure, M.; Dunham, J.; Maher, M.; Teles, J.; Jackson, J.

    1991-01-01

    A navigation experiment was performed which establishes Ultra-Stable Oscillator (USO) frequency stabilized one way return link Doppler TDRSS tracking data as a feasible option for mission orbit determination support at the Goddard Space Center Flight Dynamics Facility. The study was conducted using both one way and two way Tracking and Data Relay Satellite System (TDRSS) tracking measurements for the Cosmic Background Explorer (COBE) spacecraft. Tracking data for a 4 week period immediately follow the depletion of the helium supply was used. The study showed that, for both definitive orbit solution and short term orbit prediction (up to 4 weeks), orbit determination results based on one way return link Doppler tracking measurements are comparable to orbit determination results based on two way range and two way Doppler tracking measurements.

  9. One-way return-link Doppler navigation with the Tracking and Data Satellite System (TDRSS) - The ultrastable oscillator (USO) experiment on the Cosmic Background Explorer (COBE)

    NASA Astrophysics Data System (ADS)

    Dunham, J. B.; Nemesure, M.; Teles, J.; Brown-Conwell, E. R.; Jackson, J. A.; Reamy, V. L.; Maher, M. J.; Elrod, B. D.

    The principal objectives of the USO experiment on the COBE spacecraft are defined, and results of space qualification studies for the COBE USO experiment are summarized. The principal objectives of the experiment are: (1) to determine flight performance of the USO coupled to the second-generation TDRSS transponder; (2) space qualify TDRSS noncoherent one-way return-link Doppler tracking; and (3) analyze algorithms for one-way navigation with real data. The three objectives of the experiment have been met in the first stage of the experiment analysis.

  10. Edge Bioinformatics

    SciTech Connect

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance

  11. Quantum hydrodynamic modeling of edge modes in chiral Berry plasmons

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Zhai, Feng; Guo, Bin; Yi, Lin; Jiang, Wei

    2017-07-01

    A quantum hydrodynamic model is used to study the edge modes of chiral Berry plasmons in two-dimensional materials with nonzero Berry flux. A quantum effect of collective electron motions appears in systems with a high electron density. For the considered edge plasmon, the transcendental equation of the dispersion relation is solved nonlinearly and semianalytically. We predict a one-way chiral edge state in the presence of the quantum statistical effect and quantum diffraction effect. Indeed, the plasmon frequencies for counterpropagating edge modes exhibit different long-wavelength limits. The quantum effect can enhance the chirality of edge plasmons and their spatial confinement.

  12. One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Wang, Pei; Sridhar, Niranjan; Chen, Moran; Pfister, Olivier; Menicucci, Nicolas C.

    2016-09-01

    One-way quantum computing is experimentally appealing because it requires only local measurements on an entangled resource called a cluster state. Record-size, but nonuniversal, continuous-variable cluster states were recently demonstrated separately in the time and frequency domains. We propose to combine these approaches into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up to (3 ×103 frequencies) × (unlimited number of temporal modes) into a computationally universal continuous-variable cluster state. We introduce a generalized measurement protocol to enable improved computational performance on this entanglement resource.

  13. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing.

    PubMed

    Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2008-05-30

    We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.

  14. The early detection of lung cancer during follow-up of patients undergoing endobronchial one-way valve treatment for emphysema.

    PubMed

    Fiorelli, Alfonso; Costanzo, Saveria; di Costanzo, Emilio; Santini, Mario

    2015-03-01

    We describe the early detection of lung cancer during the follow-up of two emphysematous patients undergoing endobronchial treatment with one-way valves for severe dyspnea. In both cases, the lung function improvement achieved after the valves placement allowed their surgical treatment. In additional to standard follow-up for evaluating the progression of emphysema, such patients should be enrolled in a screening program. It may allow the early detection of lung cancer with the possibility for surgery in accordance with respiratory function of patient.

  15. There Is More than One Way to Crack an Oyster: Identifying Variation in Burmese Long-Tailed Macaque (Macaca fascicularis aurea) Stone-Tool Use.

    PubMed

    Tan, Amanda; Tan, Say Hoon; Vyas, Dhaval; Malaivijitnond, Suchinda; Gumert, Michael D

    2015-01-01

    We explored variation in patterns of percussive stone-tool use on coastal foods by Burmese long-tailed macaques (Macaca fascicularis aurea) from two islands in Laem Son National Park, Ranong, Thailand. We catalogued variation into three hammering classes and 17 action patterns, after examining 638 tool-use bouts across 90 individuals. Hammering class was based on the stone surface used for striking food, being face, point, and edge hammering. Action patterns were discriminated by tool material, hand use, posture, and striking motion. Hammering class was analyzed for associations with material and behavioural elements of tool use. Action patterns were not, owing to insufficient instances of most patterns. We collected 3077 scan samples from 109 macaques on Piak Nam Yai Island's coasts, to determine the proportion of individuals using each hammering class and action pattern. Point hammering was significantly more associated with sessile foods, smaller tools, faster striking rates, smoother recoil, unimanual use, and more varied striking direction, than were face and edge hammering, while both point and edge hammering were significantly more associated with precision gripping than face hammering. Edge hammering also showed distinct differences depending on whether such hammering was applied to sessile or unattached foods, resembling point hammering for sessile foods and face hammering for unattached foods. Point hammering and sessile edge hammering compared to prior descriptions of axe hammering, while face and unattached edge hammering compared to pound hammering. Analysis of scans showed that 80% of individuals used tools, each employing one to four different action patterns. The most common patterns were unimanual point hammering (58%), symmetrical-bimanual face hammering (47%) and unimanual face hammering (37%). Unimanual edge hammering was relatively frequent (13%), compared to the other thirteen rare action patterns (<5%). We compare our study to other stone

  16. There Is More than One Way to Crack an Oyster: Identifying Variation in Burmese Long-Tailed Macaque (Macaca fascicularis aurea) Stone-Tool Use

    PubMed Central

    Tan, Amanda; Tan, Say Hoon; Vyas, Dhaval; Malaivijitnond, Suchinda; Gumert, Michael D.

    2015-01-01

    We explored variation in patterns of percussive stone-tool use on coastal foods by Burmese long-tailed macaques (Macaca fascicularis aurea) from two islands in Laem Son National Park, Ranong, Thailand. We catalogued variation into three hammering classes and 17 action patterns, after examining 638 tool-use bouts across 90 individuals. Hammering class was based on the stone surface used for striking food, being face, point, and edge hammering. Action patterns were discriminated by tool material, hand use, posture, and striking motion. Hammering class was analyzed for associations with material and behavioural elements of tool use. Action patterns were not, owing to insufficient instances of most patterns. We collected 3077 scan samples from 109 macaques on Piak Nam Yai Island’s coasts, to determine the proportion of individuals using each hammering class and action pattern. Point hammering was significantly more associated with sessile foods, smaller tools, faster striking rates, smoother recoil, unimanual use, and more varied striking direction, than were face and edge hammering, while both point and edge hammering were significantly more associated with precision gripping than face hammering. Edge hammering also showed distinct differences depending on whether such hammering was applied to sessile or unattached foods, resembling point hammering for sessile foods and face hammering for unattached foods. Point hammering and sessile edge hammering compared to prior descriptions of axe hammering, while face and unattached edge hammering compared to pound hammering. Analysis of scans showed that 80% of individuals used tools, each employing one to four different action patterns. The most common patterns were unimanual point hammering (58%), symmetrical-bimanual face hammering (47%) and unimanual face hammering (37%). Unimanual edge hammering was relatively frequent (13%), compared to the other thirteen rare action patterns (<5%). We compare our study to other stone

  17. Role of Channel Lysines and the “Push Through a One-Way Valve” Mechanism of the Viral DNA Packaging Motor

    PubMed Central

    Fang, Huaming; Jing, Peng; Haque, Farzin; Guo, Peixuan

    2012-01-01

    Linear double-stranded DNA (dsDNA) viruses package their genomes into preformed protein shells via nanomotors using ATP as an energy source. The central hub of the bacteriophage ϕ29 DNA-packaging motor contains a 3.6-nm channel for dsDNA to enter during packaging and to exit during infection. The negatively charged interior channel wall is decorated with a total of 48 positively charged lysine residues displayed as four 12-lysine rings from the 12 gp10 subunits that enclose the channel. The standard notion derived from many models is that these uniquely arranged, positively charged rings play active roles in DNA translocation through the channel. In this study, we tested this prevailing view by examining the effect of mutating these basic lysines to alanines, and assessing the impact of altering the pH environment. Unexpectedly, mutating these basic lysine residues or changing the pH to 4 or 10, which could alter the charge of lysines, did not measurably impair DNA translocation or affect the one-way traffic property of the channel. The results support our recent findings regarding the dsDNA packaging mechanism known as the “push through a one-way valve”. PMID:22225806

  18. Improved One-Way Hash Chain and Revocation Polynomial-Based Self-Healing Group Key Distribution Schemes in Resource-Constrained Wireless Networks

    PubMed Central

    Chen, Huifang; Xie, Lei

    2014-01-01

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204

  19. Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb.

    PubMed

    Fan, Fei; Xu, Shi-Tong; Wang, Xiang-Hui; Chang, Sheng-Jiang

    2016-11-14

    In this work, we investigate the nonreciprocal circular dichroism for terahertz (THz) waves in magnetized InSb by the theoretical calculation and numerical simulation, which indicates that longitudinally magnetized InSb can be applied to the circular polarizer and nonreciprocal one-way transmission for the circular polarization THz waves. Furthermore, we propose a double-layer magnetoplasmonics based on the longitudinally magnetized InSb, and find two MO enhancement mechanisms in this device: the magneto surface plasmon resonance on the InSb-metal surface and Fabry-Pérot resonances between two orthogonal metallic gratings. These two resonance mechanisms enlarge the MO polarization rotation and greatly reduce the external magnetic field below 0.1T. The one-way transmission and perfect linear polarization conversion can be realized over 70dB, of which the transmittance can be modulated from 0 to 80% when the weak magnetic field changes from 0 to 0.1T under the low temperature around 200K. This magnetoplasmonic device has broad potential as a THz isolator, modulator, polarization convertor, and filter in the THz application systems.

  20. Improved one-way hash chain and revocation polynomial-based self-healing group key distribution schemes in resource-constrained wireless networks.

    PubMed

    Chen, Huifang; Xie, Lei

    2014-12-18

    Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked.

  1. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain

    NASA Astrophysics Data System (ADS)

    Ozgun, Ozlem; Apaydin, Gökhan; Kuzuoglu, Mustafa; Sevgi, Levent

    2011-12-01

    A MATLAB-based one-way and two-way split-step parabolic equation software tool (PETOOL) has been developed with a user-friendly graphical user interface (GUI) for the analysis and visualization of radio-wave propagation over variable terrain and through homogeneous and inhomogeneous atmosphere. The tool has a unique feature over existing one-way parabolic equation (PE)-based codes, because it utilizes the two-way split-step parabolic equation (SSPE) approach with wide-angle propagator, which is a recursive forward-backward algorithm to incorporate both forward and backward waves into the solution in the presence of variable terrain. First, the formulation of the classical one-way SSPE and the relatively-novel two-way SSPE is presented, with particular emphasis on their capabilities and the limitations. Next, the structure and the GUI capabilities of the PETOOL software tool are discussed in detail. The calibration of PETOOL is performed and demonstrated via analytical comparisons and/or representative canonical tests performed against the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD). The tool can be used for research and/or educational purposes to investigate the effects of a variety of user-defined terrain and range-dependent refractivity profiles in electromagnetic wave propagation. Program summaryProgram title: PETOOL (Parabolic Equation Toolbox) Catalogue identifier: AEJS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 143 349 No. of bytes in distributed program, including test data, etc.: 23 280 251 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) 2010a. Partial Differential Toolbox and Curve Fitting Toolbox required Computer: PC Operating system: Windows XP and

  2. Edge Detection,

    DTIC Science & Technology

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  3. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    PubMed

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  4. More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway.

    PubMed

    Clegg, Steven; Wilson, Janet; Johnson, Jeremiah

    2011-05-01

    Many gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms.

  5. More than One Way To Control Hair Growth: Regulatory Mechanisms in Enterobacteria That Affect Fimbriae Assembled by the Chaperone/Usher Pathway▿

    PubMed Central

    Clegg, Steven; Wilson, Janet; Johnson, Jeremiah

    2011-01-01

    Many Gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms. PMID:21398554

  6. The effects of three-dimensional defects on one-way surface plasmon propagation for photonic topological insulators comprised of continuum media

    PubMed Central

    Hassani Gangaraj, S. Ali; Nemilentsau, Andrei; Hanson, George W.

    2016-01-01

    We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss. PMID:27444542

  7. Haemodynamics of giant cerebral aneurysm: A comparison between the rigid-wall, one-way and two-way FSI models

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.

  8. Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350)

    SciTech Connect

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Martinez-Camara, Eduardo; Jimenez-Macias, Emilio

    2015-11-15

    The European Committee for Standardization (CEN) through its Technical Committee CEN/TC-350 is developing a series of standards for assessing the building sustainability, at both product and building levels. The practical application of the selection (decision making) of structural alternatives made by one-way slabs leads to an intermediate level between the product and the building. Thus the present study addresses this problem of decision making, following the CEN guidelines and incorporating relevant aspects of architectural design into residential construction. A life cycle assessment (LCA) is developed in order to obtain valid information for the decision making process (the LCA was developed applying CML methodology although Ecoindicator99 was used in order to facilitate the comparison of the values); this information (the carbon footprint values) is contrasted with other databases and with the information from the Environmental Product Declaration (EPD) of one of the lightening materials (expanded polystyrene), in order to validate the results. Solutions of different column disposition and geometries are evaluated in the three pillars of sustainable construction on residential construction: social, economic and environmental. The quantitative analysis of the variables used in this study enables and facilitates an objective comparison in the design stage by a responsible technician; the application of the proposed methodology reduces the possible solutions to be evaluated by the expert to 12.22% of the options in the case of low values of the column index and to 26.67% for the highest values. - Highlights: • Methodology for selection of structural alternatives in buildings with one-way slabs • Adapted to CEN guidelines (CEN/TC-350) for assessing the building sustainability • LCA is developed in order to obtain valid information for the decision making process. • Results validated comparing carbon footprint, databases and Env. Product Declarations

  9. Space Weather at Mars: 3-D studies using one-way coupling between the Multi-fluid MHD, M-GITM and M-AMPS models

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei

    This dissertation presents numerical simulation results of the solar wind interaction with the Martian upper atmosphere by using three comprehensive 3-D models: the Mars Global Ionosphere Thermosphere Model (M-GITM), the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS), and the BATS-R-US Mars multi-fluid MHD (MF-MHD) model. The coupled framework has the potential to provide improved predictions for ion escape rates for comparison with future data to be returned by the MAVEN mission (2014-2016) and thereby improve our understanding of present day escape processes. Estimates of ion escape rates over Mars history must start from properly validated models that can be extrapolated into the past. This thesis aims to build a model library for the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, which will thus enhance the science return from the MAVEN mission. In this thesis, we aim to address the following four main scientific questions by adopting the one-way coupled framework developed here: (1) What are the Martian ion escape rates at the current epoch and ancient times? (2) What controls the ion escape processes at the current epoch? How are the ion escape variations connected to the solar cycle, crustal field orientation and seasonal variations? (3) How do the variable 3-D cold neutral thermosphere and hot oxygen corona affect the solar wind-Mars interaction? (4) How does the Martian atmosphere respond to extreme variations (e.g., ICMEs) in the solar wind and its interplanetary environment? These questions are closely related to the primary scientific goals of NASA's MAVEN mission and European Space Agency's Mars Express (MEX) mission. We reasonably answer all these four questions at the end of this thesis by employing the one-way coupled framework and comparing the simulation results with both MEX and MAVEN observational data.

  10. Solar wind interaction with Mars Upper atmosphere: Results from the one-way coupling between the Multi-fluid MHD model and the M-TGCM model

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Nagy, A. F.; Brain, D. A.; Najib, D.

    2012-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered great interest in recent years. Among the large number of topics in this research area, the investigation of ion escape rates has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3D Mars neutral atmosphere profiles from the well-regarded Mars Thermospheric Global Circulation Model (M-TGCM) and one-way couple it with the 3D BATS-R-US Mars multi-fluid MHD model that solves separate momentum equations for each ion species. The M-TGCM model takes into account the effects of the solar cycle (solar minimum: F10.7=70 and solar maximum: F10.7=200 with equinox condition: Ls=0), allowing us to investigate the effects of the solar cycle on the Mars upper atmosphere ion escape by using a one-way coupling, i.e., the M-TGCM model outputs are used as inputs for the multi-fluid MHD model. A case for solar maximum with extremely high solar wind parameters is also investigated to estimate how high the escape flux can be for such an extreme case. Moreover, the ion escape flux along a satellite trajectory will be studied. This has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN mission (2012-2016). In order to make the code run more efficiently, we adopt a more appropriate grid structure compared to the one used previously. This new grid structure will benefit us to investigate the effects of some dynamic events (such as CME and dust storm) on the ion escape flux.

  11. Tailored One-Way and Two-Way Shape Memory Capabilities of Poly(ɛ-Caprolactone)-Based Systems for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Pandini, Stefano; Riccò, Theonis; Borboni, Alberto; Bodini, Ileana; Vetturi, David; Cambiaghi, Danilo; Toselli, Maurizio; Paderni, Katia; Messori, Massimo; Pilati, Francesco; Chiellini, Federica; Bartoli, Cristina

    2014-07-01

    This paper investigates the shape memory capabilities of semicrystalline networks, focusing the attention on poly(ɛ-caprolactone) (PCL) systems, a class of materials that allows to satisfy important requirements for their applications as biomedical devices, such as the good biocompatibility, the fast recovery of large "temporary" shape configurations, and the easy tailoring of the transformation temperatures. The materials were prepared with various crosslink densities and crosslinking methodologies; in particular, beside a thermal crosslinking based on reactive methacrylic end groups, a novel type of covalently crosslinked semicrystalline systems was prepared by a sol-gel approach from alkoxysilane-terminated PCL precursors, so as to avoid potentially toxic additives typically used for free-radical thermal curing. The materials were subjected to biological tests, to study their ability in sustaining cell adhesion and proliferation, and to thermal characterizations, to evaluate the possibility to tailor their melting and crystallization temperatures. The one-way shape memory (i.e., the possibility to set the material in a given configuration and to recover its pristine shape) and the two-way shape memory response (i.e., the triggered change between two distinguished shapes on the application of an on-off stimulus) were studied by applying optimized thermo-mechanical cyclic histories. The ability to fix the applied shape and to recover the original one on the application of heating (i.e., the one-way effect) was evaluated on tensile bars; further, to investigate a potential application as self-expandable stents, isothermal shape memory experiments were carried out also on tubular specimens, previously folded in a temporary compact configuration. The two-way response was studied through the application of a constant load and of a heating/cooling cycle from above melting to below the crystallization temperature, leading to a reversible elongation/contraction effect

  12. Mechanism of one-way traffic of hexameric phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution.

    PubMed

    Zhao, Zhengyi; Khisamutdinov, Emil; Schwartz, Chad; Guo, Peixuan

    2013-05-28

    The importance of nanomotors in nanotechnology is akin to that of mechanical engines to daily life. The AAA+ superfamily is a class of nanomotors performing various functions. Their hexagonal arrangement facilitates bottom-up assembly for stable structures. The bacteriophage phi29 DNA translocation motor contains three coaxial rings: a dodecamer channel, a hexameric ATPase ring, and a hexameric pRNA ring. The viral DNA packaging motor has been believed to be a rotational machine. However, we discovered a revolution mechanism without rotation. By analogy, the earth revolves around the sun while rotating on its own axis. One-way traffic of dsDNA translocation is facilitated by five factors: (1) ATPase changes its conformation to revolve dsDNA within a hexameric channel in one direction; (2) the 30° tilt of the channel subunits causes an antiparallel arrangement between two helices of dsDNA and channel wall to advance one-way translocation; (3) unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal; (4) 5'-3' single-direction movement of one DNA strand along the channel wall ensures single direction; and (5) four electropositive layers interact with one strand of the electronegative dsDNA phosphate backbone, resulting in four relaying transitional pauses during translocation. The discovery of a riding system along one strand provides a motion nanosystem for cargo transportation and a tool for studying force generation without coiling, friction, and torque. The revolution of dsDNA among 12 subunits offers a series of recognition sites on the DNA backbone to provide additional spatial variables for nucleotide discrimination for sensing applications.

  13. Mechanism of One-Way Traffic of Hexameric Phi29 DNA Packaging Motor with Four Electropositive Relaying Layers Facilitating Antiparallel Revolution

    PubMed Central

    2013-01-01

    The importance of nanomotors in nanotechnology is akin to that of mechanical engines to daily life. The AAA+ superfamily is a class of nanomotors performing various functions. Their hexagonal arrangement facilitates bottom-up assembly for stable structures. The bacteriophage phi29 DNA translocation motor contains three coaxial rings: a dodecamer channel, a hexameric ATPase ring, and a hexameric pRNA ring. The viral DNA packaging motor has been believed to be a rotational machine. However, we discovered a revolution mechanism without rotation. By analogy, the earth revolves around the sun while rotating on its own axis. One-way traffic of dsDNA translocation is facilitated by five factors: (1) ATPase changes its conformation to revolve dsDNA within a hexameric channel in one direction; (2) the 30° tilt of the channel subunits causes an antiparallel arrangement between two helices of dsDNA and channel wall to advance one-way translocation; (3) unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal; (4) 5′–3′ single-direction movement of one DNA strand along the channel wall ensures single direction; and (5) four electropositive layers interact with one strand of the electronegative dsDNA phosphate backbone, resulting in four relaying transitional pauses during translocation. The discovery of a riding system along one strand provides a motion nanosystem for cargo transportation and a tool for studying force generation without coiling, friction, and torque. The revolution of dsDNA among 12 subunits offers a series of recognition sites on the DNA backbone to provide additional spatial variables for nucleotide discrimination for sensing applications. PMID:23510192

  14. Combined Bone Marrow-Derived Mesenchymal Stromal Cell Therapy and One-Way Endobronchial Valve Placement in Patients with Pulmonary Emphysema: A Phase I Clinical Trial.

    PubMed

    de Oliveira, Hugo Goulart; Cruz, Fernanda Ferreira; Antunes, Mariana Alves; de Macedo Neto, Amarilio Vieira; Oliveira, Guilherme Augusto; Svartman, Fabio Munhoz; Borgonovo, Tamara; Rebelatto, Carmen Lucia Kuniyoshi; Weiss, Daniel J; Brofman, Paulo Roberto Slud; Morales, Marcelo Marcos; Lapa E Silva, José Roberto; Rocco, Patricia Rieken Macedo

    2017-03-01

    One-way endobronchial valves (EBV) insertion to reduce pulmonary air trapping has been used as therapy for chronic obstructive pulmonary disease (COPD) patients. However, local inflammation may result and can contribute to worsening of clinical status in these patients. We hypothesized that combined EBV insertion and intrabronchial administration of mesenchymal stromal cells (MSCs) would decrease the inflammatory process, thus mitigating EBV complications in severe COPD patients. This initial study sought to investigate the safety of this approach. For this purpose, a phase I, prospective, patient-blinded, randomized, placebo-controlled design was used. Heterogeneous advanced emphysema (Global Initiative for Chronic Lung Disease [GOLD] III or IV) patients randomly received either allogeneic bone marrow-derived MSCs (10(8) cells, EBV+MSC) or 0.9% saline solution (EBV) (n = 5 per group), bronchoscopically, just before insertion of one-way EBVs. Patients were evaluated 1, 7, 30, and 90 days after therapy. All patients completed the study protocol and 90-day follow-up. MSC delivery did not result in acute administration-related toxicity, serious adverse events, or death. No significant between-group differences were observed in overall number of adverse events, frequency of COPD exacerbations, or worsening of disease. Additionally, there were no significant differences in blood tests, lung function, or radiological outcomes. However, quality-of-life indicators were higher in EBV + MSC compared with EBV. EBV + MSC patients presented decreased levels of circulating C-reactive protein at 30 and 90 days, as well as BODE (Body mass index, airway Obstruction, Dyspnea, and Exercise index) and MMRC (Modified Medical Research Council) scores. Thus, combined use of EBV and MSCs appears to be safe in patients with severe COPD, providing a basis for subsequent investigations using MSCs as concomitant therapy. Stem Cells Translational Medicine 2017;6:962-969.

  15. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  16. Cooling the two-dimensional short spherocylinder liquid to the tetratic phase: Heterogeneous dynamics with one-way coupling between rotational and translational hopping.

    PubMed

    Su, Yen-Shuo; I, Lin

    2015-07-01

    We numerically demonstrate the transition from the isotropic liquid to the tetratic phase with quasilong-range tetratic alignment order (i.e., with nearly parallel or perpendicular aligned rods), for the cold two-dimensional (2D) short spherocylinder system before crystallization and investigate the thermal assisted heterogeneous rotational and translational micromotions. Comparing with the 2D liquid of isotropic particles, spherocylinders introduce extra rotational degrees of freedom and destroy packing isotropy and the equivalence between rotational and translational motions. It is found that cooling leads to the stronger dynamical heterogeneity with more cooperative hopping and the stronger retardations of rotational hopping than translational hopping. Under topological constraints from nearly parallel and perpendicular rods of the tetratic phase, longitudinal and transverse translational hopping can occur without rotational hopping, but not the reverse. The empty space trailing a neighboring translational hopping patch is needed for triggering the patch rotational hopping with its translational motion into the empty space. It is the origin for the observed increasing separation of hopping time scales and the one-way coupling between rotational and translational hopping. Strips of longitudinally or transversely aligned rods can be ruptured and reconnected with neighboring strips through buckling, kink formation, and patch rotation, under the unbalanced torques or forces from their neighboring rods and thermal kicks.

  17. Plans to improve the experimental limit in the comparison of the east-west and west-east one-way light propagation times on the rotating earth

    NASA Technical Reports Server (NTRS)

    Alley, C. O.; Kiess, T. E.; Nelson, R. A.; Sergienko, A. V.; Shih, Y. H.; Wang, B. C.; Yang, F. M.

    1993-01-01

    The preceding paper describes the results so far (interrupted in the Spring of 1989 because of lack of funds) of an experiment comparing the one-way light propagation times on the surface of the rotating Earth. For the 20 Km path length component in the East-West direction the predicted difference between the opposite sense propagation times would be 160 ps, if the approximately 360 Km/s surface speed of the Earth gives effective light speeds of 3 x 10(exp 8) m/s +/- 360 m/s. This could lead to a prediction of the difference between the clock transport and the light pulse synchronization methods described in the preceding paper: delta(T) = 0.5 (160) = 80 ps. The current upper bound of approximately 100 ps for delta(T) is limited by poorly understood systematic errors. The most important seems to be intensity-dependent time delays in the remote light pulse avalanche photo-diode detector. This will be replaced by a continuously operating circular scan streak camera having single photon sensitivity and a time resolution of approximately 5 ps. (This camera has recently been developed by the Xian Institute of Optics and Precision Mechanics in the P.R.C.). Better isolation from shocks and vibration for the Sigma-Tau hydrogen maser during transport will be provided. It is hoped that delta(T) is less than 20 ps can be achieved.

  18. Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common genetic mechanism

    PubMed Central

    Feldman, C R; Durso, A M; Hanifin, C T; Pfrender, M E; Ducey, P K; Stokes, A N; Barnett, K E; Brodie III, E D; Brodie Jr, E D

    2016-01-01

    Convergent evolution of tetrodotoxin (TTX) resistance, at both the phenotypic and genetic levels, characterizes coevolutionary arms races between amphibians and their snake predators around the world, and reveals remarkable predictability in the process of adaptation. Here we examine the repeatability of the evolution of TTX resistance in an undescribed predator–prey relationship between TTX-bearing Eastern Newts (Notophthalmus viridescens) and Eastern Hog-nosed Snakes (Heterodon platirhinos). We found that that local newts contain levels of TTX dangerous enough to dissuade most predators, and that Eastern Hog-nosed Snakes within newt range are highly resistant to TTX. In fact, these populations of Eastern Hog-nosed Snakes are so resistant to TTX that the potential for current reciprocal selection might be limited. Unlike all other cases of TTX resistance in vertebrates, H. platirhinos lacks the adaptive amino acid substitutions in the skeletal muscle sodium channel that reduce TTX binding, suggesting that physiological resistance in Eastern Hog-nosed Snakes is conferred by an alternate genetic mechanism. Thus, phenotypic convergence in this case is not due to parallel molecular evolution, indicating that there may be more than one way for this adaptation to arise, even among closely related species. PMID:26374236

  19. Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common genetic mechanism.

    PubMed

    Feldman, C R; Durso, A M; Hanifin, C T; Pfrender, M E; Ducey, P K; Stokes, A N; Barnett, K E; Brodie, E D; Brodie, E D

    2016-01-01

    Convergent evolution of tetrodotoxin (TTX) resistance, at both the phenotypic and genetic levels, characterizes coevolutionary arms races between amphibians and their snake predators around the world, and reveals remarkable predictability in the process of adaptation. Here we examine the repeatability of the evolution of TTX resistance in an undescribed predator-prey relationship between TTX-bearing Eastern Newts (Notophthalmus viridescens) and Eastern Hog-nosed Snakes (Heterodon platirhinos). We found that that local newts contain levels of TTX dangerous enough to dissuade most predators, and that Eastern Hog-nosed Snakes within newt range are highly resistant to TTX. In fact, these populations of Eastern Hog-nosed Snakes are so resistant to TTX that the potential for current reciprocal selection might be limited. Unlike all other cases of TTX resistance in vertebrates, H. platirhinos lacks the adaptive amino acid substitutions in the skeletal muscle sodium channel that reduce TTX binding, suggesting that physiological resistance in Eastern Hog-nosed Snakes is conferred by an alternate genetic mechanism. Thus, phenotypic convergence in this case is not due to parallel molecular evolution, indicating that there may be more than one way for this adaptation to arise, even among closely related species.

  20. Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multifluid MHD model and the MTGCM model

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Bougher, Stephen W.; Ma, Yingjuan; Toth, Gabor; Nagy, Andrew F.; Najib, Dalal

    2014-04-01

    The 3-D multifluid Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) MHD code (MF-MHD) is coupled with the 3-D Mars Thermospheric general circulation model (MTGCM). The ion escape rate from the Martian upper atmosphere is investigated by using a one-way coupling approach, i.e., the MF-MHD model incorporates the effects of 3-D neutral atmosphere profiles from the MTGCM model. The calculations are carried out for two cases with different solar cycle conditions. The calculated total ion escape flux (the sum of three major ionospheric species, O+, O2+, and CO2+) for solar cycle maximum conditions (6.6×1024 s-1) is about 2.6 times larger than that of solar cycle minimum conditions (2.5×1024 s-1). Our simulation results show good agreement with recent observations of 2-3×1024 s-1 (O+, O2+, and CO2+) measured near solar cycle minimum conditions by Mars Express. An extremely high solar wind condition is also simulated which may mimic the condition of coronal mass ejections or corotating interaction regions passing Mars. Simulation results show that it can lead to a significant value of the escape flux as large as 4.3×1025s-1.

  1. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene-co-methacrylic acid).

    PubMed

    Lu, Lu; Li, Guoqiang

    2016-06-15

    Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs.

  2. Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell

    NASA Astrophysics Data System (ADS)

    Pennetta, Riccardo; Xie, Shangran; Lenahan, Frances; Mridha, Manoj; Novoa, David; Russell, Philip St. J.

    2017-07-01

    We report a fully integrated interface delivering efficient, reflection-free, single-mode, and self-aligned coupling between a step-index fiber and a gas-filled hollow-core photonic crystal fiber. The device offers a universal solution for interfacing solid and hollow cores and can be sealed to allow operation either evacuated or at high pressure. Stimulated Raman scattering and molecular modulation of light are demonstrated in a H2 -filled hollow-core photonic crystal fiber using the device.

  3. Estimating Accurate Relative Spacecraft Angular Position from Deep Space Network Very Long Baseline Interferometry Phases Using X-Band Telemetry or Differential One-Way Ranging Tones

    NASA Astrophysics Data System (ADS)

    Bagri, D. S.; Majid, W. A.

    2008-02-01

    At present spacecraft angular position with the Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometry (VLBI) phase measurements employing differential one-way ranging (DOR) tones. Group delay measurements require high signal-to-noise ratio (SNR) to provide modest angular position accuracy. On the other hand, VLBI phases with modest SNR can be used to determine the position of a spacecraft with high accuracy, except for the interferometer interference fringe cycle ambiguity, which can be resolved using multiple baselines, requiring several antenna stations as is done, for example, using the Very Long Baseline Array (VLBA) (e.g, the VLBA has 10 antenna stations). As an alternative to this approach, here we propose estimating the position of a spacecraft to half-a-fringe-cycle accuracy using time variations between measured and calculated phases, using DSN VLBI baseline(s), as the Earth rotates (i.e., estimate position offset from the difference between observed and calculated phases for different spatial frequency (U,V) values). Combining the fringe location of the target with the phase information allows for estimate of spacecraft angular position to a high accuracy. One of the advantages of this scheme, in addition to the possibility of achieving a fraction of a nanoradian measurement accuracy using DSN antennas for VLBI, is that it is possible to use telemetry signals with at least a 4 to 8 Msamples/s data rate (bandwidth greater than about 8 to 16 MHz) to measure spacecraft angular position instead of using DOR tones, as is currently done. Using telemetry instead of DOR tones will eliminate the need for spacecraft coordination for angular position measurements and will minimize calibration errors due to instrumental dispersion effects.

  4. Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 2: future climate projection (2021 2050)

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Ahn, Joong-Bae; Kwon, Won-Tae; Giorgi, Filippo

    2008-02-01

    An analysis of simulated future surface climate change over the southern half of Korean Peninsula using a RegCM3-based high-resolution one-way double-nested system is presented. Changes in mean climate as well as the frequency and intensity of extreme climate events are discussed for the 30-year-period of 2021 2050 with respect to the reference period of 1971 2000 based on the IPCC SRES B2 emission scenario. Warming in the range of 1 4°C is found throughout the analysis region and in all seasons. The warming is maximum in the higher latitudes of the South Korean Peninsula and in the cold season. A large reduction in snow depth is projected in response to the increase of winter minimum temperature induced by the greenhouse warming. The change in precipitation shows a distinct seasonal variation and a substantial regional variability. In particular, we find a large increase of wintertime precipitation over Korea, especially in the upslope side of major mountain systems. Summer precipitation increases over the northern part of South Korea and decreases over the southern regions, indicating regional diversity. The precipitation change also shows marked intraseasonal variations throughout the monsoon season. The temperature change shows a positive trend throughout 2021 2050 while the precipitation change is characterized by pronounced interdecadal variations. The PDF of the daily temperature is shifted towards higher values and is somewhat narrower in the scenario run than the reference one. The number of frost days decreases markedly and the number of hot days increases. The regional distribution of heavy precipitation (over 80 mm/day) changes considerably, indicating changes in flood vulnerable regions. The climate change signal shows pronounced fine scale signal over Korea, indicating the need of high-resolution climate simulations

  5. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.

    2013-11-01

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River

  6. Exploration of Mars using Delta Differential One-Way Ranging based on Triangle Libration Points in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Tang, Jingshi; Hou, Xiyun; Liu, Lin

    Very Long Baseline Interferometry (VLBI) is a technique that allows determination of angular position for distant radio sources by measuring the geometric time delay between received radio signals at two geographically separated stations. An application of VLBI is spacecraft navigation in space missions where delay measurements of a spacecraft radio signal are compared against similar delay measurements of angularly nearby quasar radio signals. In the case where the spacecraft measurements are obtained from the phases of tones emitted from the spacecraft, first detected separately at each station, and then differenced, this application of VLBI is known as Delta Differential One-Way Ranging (Delta-DOR). Even though data acquisition and processing are not identical for the spacecraft and quasar, they have similar information content and similar sensitivity to sources of error. Consequently, the Delta-DOR can be used in conjunction with Doppler and ranging data to improve spacecraft navigation by more efficiently determining spacecraft angular position in the plane-of-sky. Over the decades, human exploration of Mars have never been stopped. As we know, Delta-DOR began to serve its purpose for Mars Odyssey spacecraft in 2001. In the following years, Delta-DOR was used from Mars Exploration Rover (MER) in 2003-2004 to Mars Science Laboratory (MSL) in 2011, all with excellent results. At present, human exploration of Mars using Delta-DOR technique mainly depends on the Earth-based ground stations. As we know, the differential time delay between the spacecraft and quasar is given approximately by begin{math}Deltatau=-frac{1}{c}BsinTheta_{1}(DeltaTheta_{B}) , the accuracy of the determination of angular separation begin{math}DeltaTheta_{B} improves as the measurement error in the observable begin{math}Deltatau decreases. Further, begin{math}DeltaTheta_{B} accuracy improves as the baseline length B increases. Therefore, the introduction of special libration points, i

  7. Randomized SUSAN edge detector

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Wang, Ping; Gao, Ying-Hui; Wang, Peng

    2011-11-01

    A speed up technique for the SUSAN edge detector based on random sampling is proposed. Instead of sliding the mask pixel by pixel on an image as the SUSAN edge detector does, the proposed scheme places the mask randomly on pixels to find edges in the image; we hereby name it randomized SUSAN edge detector (R-SUSAN). Specifically, the R-SUSAN edge detector adopts three approaches in the framework of random sampling to accelerate a SUSAN edge detector: procedure integration of response computation and nonmaxima suppression, reduction of unnecessary processing for obvious nonedge pixels, and early termination. Experimental results demonstrate the effectiveness of the proposed method.

  8. Nanoindentation near the edge

    Treesearch

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  9. One-Way Trip to Tempel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Quick Time Movie for PIA02135 Impactor Targeting Sensor Approach

    This movie shows Deep Impact's impactor probe approaching comet Tempel 1. It is made up of images taken by the probe's impactor targeting sensor. The probe collided with the comet at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4).

  10. One Way--Frustrating, but Rewarding!

    ERIC Educational Resources Information Center

    Yencer, Dick

    1979-01-01

    Describes the experiences of a vocational agriculture teacher who worked for four years with rice farmers in Indonesia. Suggests reasons why changes in farming practices are hard to bring about in developing nations. (LRA)

  11. Telementoring: One Way to Reach America's Students.

    ERIC Educational Resources Information Center

    Foster, Ann

    1999-01-01

    Hewlett Packard has led the telementoring field with its Telementor Program, begun in 1995. The program creates one-to-one mentor relationships between HP employees and grade 5-12 students. Via e-mail, employees currently motivate 1,500 students to excel in math and science and improve communication and problem-solving skills. (MLH)

  12. Threading One's Way Through the Geographic Region.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    1982-01-01

    Designed for students in grades 7 through 12, the paper presents illustrative resource materials for teaching concepts related to geographic regions. Emphasis is on giving students an understanding of the interrelationship between regional characteristics and human behavior. The paper introduces students to the following notions: environmental…

  13. Secure Introduction of One-way Functions

    DTIC Science & Technology

    2000-07-01

    steps , c terminates in a memory where l h with probability q. By Theorem 4.2, there is a low command c that terminates in no more than pn steps in a memory where with probability at least q. Furthermore, l h since . And because c is low, it has therefore managed to find h without any high variables as input, just occurrences of f h is all. This brings us to the following Corollary: Corollary 4.3 Any bound on the probability of finding h from f h within polynomial time, for a particular integer size and

  14. One-Way Trip to Tempel

    NASA Image and Video Library

    2005-07-04

    This image shows NASA Deep Impact impactor probe approaching comet Tempel 1. It is made up of images taken by the probe impactor targeting sensor on July 4, 2005. Animation available at the Photojournal.

  15. Nose and lungs: one way, one disease

    PubMed Central

    2012-01-01

    It’s well established that asthma, allergic rhinitis and rhinosinusitis are three closely related disease. In pediatrics, these conditions represent a common issue in daily practice. The scientific community has recently started to simply evaluate them as different manifestations of a common pathogenic phenomenon. This consideration relates to important implications in the clinical management of these diseases, which may affect the daily activity of a pediatrician. The unity of the respiratory tract is confirmed both from a morphological and from a functional point of view. When treating rhinitis, it is often necessary to assess the presence of asthma. Patients with sinusitis should be evaluated for a possible concomitant asthma. Conversely, patients with asthma should always be evaluated for possible nasal disease, especially those suffering from difficult-to-treat asthma, in which an occult sinusitis may be detected. The medications that treat nasal diseases appear to be useful in improving asthma control and in reducing bronchial hyperresponsiveness. It seems therefore important to analyze the link between asthma and sinusitis, both in terms of clinical and pathogenic features, as well the therapeutic approach of those patients presenting with these diseases. PMID:23098057

  16. Threading One's Way Through the Geographic Region.

    ERIC Educational Resources Information Center

    Thomas, Paul F.

    1982-01-01

    Designed for students in grades 7 through 12, the paper presents illustrative resource materials for teaching concepts related to geographic regions. Emphasis is on giving students an understanding of the interrelationship between regional characteristics and human behavior. The paper introduces students to the following notions: environmental…

  17. One Way--Frustrating, but Rewarding!

    ERIC Educational Resources Information Center

    Yencer, Dick

    1979-01-01

    Describes the experiences of a vocational agriculture teacher who worked for four years with rice farmers in Indonesia. Suggests reasons why changes in farming practices are hard to bring about in developing nations. (LRA)

  18. One-Way Temperature Compensated Fiber Link

    DTIC Science & Technology

    2011-05-01

    individual compensated links. [1] R. Wynands and S. Weyers, “Atomic Fountain Clocks,” Metrologia , vol. 42, pp. S64-S79, 2005. [2] A. D. Ludlow...3] A. Bauch, et al. ,”Comparison Between Frequency Standards oin Europe and the USA at the 10-15 Uncertainty Level,” Metrologia , vol. 43, pp.109

  19. Tasting edge effects

    NASA Astrophysics Data System (ADS)

    Bocquet, Lydéric

    2007-02-01

    We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.

  20. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  1. The Edge, Fall 1999.

    ERIC Educational Resources Information Center

    Edge, 1999

    1999-01-01

    "The Edge" is a Canadian publication for youth. The mandate of the Edge is to support and celebrate all career journeys embraced by youth. This issue contains career profile articles covering three jobs: crane operator, indoor climbing instructor, and product certification tester. Career trends and the state of today's workplace are also…

  2. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  3. Edge wave visualization

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K.; Nguyen, Truong X.

    1991-01-01

    Scattering mechanisms that involve edge waves are addressed. The behavior of edge waves and their interaction with flat, perfectly conducting plates are depicted in the time domain through a visualization of surface currents that flow on the surface, as an incident Gaussian pulse of energy washes over the surface. Viewing these surface currents allows a very clear physical interpretation and appreciation of the scattering process.

  4. Application of Tracking and Data Relay Satellite (TDRS) Differenced One-Way Doppler (DOWD) Tracking Data for Orbit Determination and Station Acquisition Support of User Spacecraft Without TDRS Compatible Transponders

    NASA Technical Reports Server (NTRS)

    Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark

    1996-01-01

    Many spacecraft are launched today with only an omni-directional (omni) antenna and do not have an onboard Tracking and Data Relay Satellite (TDRS) transponder that is capable of coherently returning a carrier signal through TDRS. Therefore, other means of tracking need to be explored and used to adequately acquire the spacecraft. Differenced One-Way Doppler (DOWD) tracking data are very useful in eliminating the problems associated with the instability of the onboard oscillators when using strictly one-way Doppler data. This paper investigates the TDRS DOWD tracking data received by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) during the launch and early orbit phases for the the Interplanetary Physics Laboratory (WIND) and the National Oceanographic and Atmospheric Administration (NOAA)-J missions. In particular FDF personnel performed an investigation of the data residuals and made an assessment of the acquisition capabilities of DOWD-based solutions. Comparisons of DOWD solutions with existing data types were performed and analyzed in this study. The evaluation also includes atmospheric editing of the DOWD data and a study of the feasibility of solving for Doppler biases in an attempt to minimize error. Furthermore, by comparing the results from WIND and NOAA-J, an attempt is made to show the limitations involved in using DOWD data for the two different mission profiles. The techniques discussed in this paper benefit the launches of spacecraft that do not have TDRS transponders on board, particularly those launched into a low Earth orbit. The use of DOWD data is a valuable asset to missions which do not have a stable local oscillator to enable high-quality solutions from the one-way/return-link Doppler tracking data.

  5. A Biomechanical Study of Hyoid Bone and Laryngeal Movements During Swallowing Comparing the Blom Low Profile Voice Inner Cannula and Passy-Muir One Way Tracheotomy Tube Speaking Valves.

    PubMed

    Srinet, Prateek; Van Daele, Douglas J; Adam, Stewart I; Burrell, Morton I; Aronberg, Ryan; Leder, Steven B

    2015-12-01

    The aim of this prospective, consecutive, cohort study was to investigate the biomechanical effects, if any, of the Blom low profile voice inner cannula and Passy-Muir one-way tracheotomy tube speaking valves on movement of the hyoid bone and larynx during swallowing. Ten adult patients (8 male, 2 female) with an age range of 61-89 years (mean 71 years) participated. Criteria for inclusion were ≥18 years of age, English speaking, and ability to tolerate both changing to a Blom tracheotomy tube and placement of a one-way tracheotomy tube speaking valve with a fully deflated tracheotomy tube cuff. Digitized videofluoroscopic swallow studies were performed at 30 frames/s and with each patient seated upright in the lateral plane. A total of 18 swallows (three each with 5 cc bolus volumes of single contrast barium and puree + barium × 3 conditions) were analyzed for each participant. Variables evaluated included larynx-to-hyoid bone excursion (mm), maximum hyoid bone displacement (mm), and aspiration status under three randomized conditions: 1. Tracheotomy tube open with no inner cannula; 2. Tracheotomy tube with Blom valve; and 3. Tracheotomy tube with Passy-Muir valve. Blinded reliability testing with a Pearson product moment correlation was performed on 20 % of the data. Intra- and inter-rater reliability for combined measurements of larynx-to-hyoid bone excursion and maximum hyoid bone displacement was r = 0.98. Intra- and inter-rater reliability for aspiration status was 100 %. No significant differences (p > 0.05) were found for larynx-to-hyoid bone excursion and maximum hyoid bone displacement during swallowing based upon an open tracheotomy tube, Blom valve, or Passy-Muir valve. Aspiration status was identical for all three randomized conditions. The presence of a one-way tracheotomy tube speaking valve did not significantly alter two important components of normal pharyngeal swallow biomechanics, i.e., hyoid bone and laryngeal movements

  6. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  7. Adaptable edge quality metric

    NASA Astrophysics Data System (ADS)

    Strickland, Robin N.; Chang, Dunkai K.

    1990-09-01

    A new quality metric for evaluating edges detected by digital image processing algorithms is presented. The metric is a weighted sum of measures of edge continuity smoothness thinness localization detection and noisiness. Through a training process we can design weights which optimize the metric for different users and applications. We have used the metric to compare the results of ten edge detectors when applied to edges degraded by varying degrees of blur and varying degrees and types of noise. As expected the more optimum Difference-of-Gaussians (DOG) and Haralick methods outperform the simpler gradient detectors. At high signal-to-noise (SNR) ratios Haralick''s method is the best choice although it exhibits a sudden drop in performance at lower SNRs. The DOG filter''s performance degrades almost linearly with SNR and maintains a reasonably high level at lower SNRs. The same relative performances are observed as blur is varied. For most of the detectors tested performance drops with increasing noise correlation. Noise correlated in the same direction as the edge is the most destructive of the noise types tested.

  8. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  9. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  10. The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses.

    PubMed

    Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; Graves, Martin J; Bennett, Martin R; Gillard, Jonathan H

    2014-04-11

    Compositional and morphological features of carotid atherosclerotic plaques provide complementary information to luminal stenosis in predicting clinical presentations. However, they alone cannot predict cerebrovascular risk. Mechanical stress within the plaque induced by cyclical changes in blood pressure has potential to assess plaque vulnerability. Various modeling strategies have been employed to predict stress, including 2D and 3D structure-only, 3D one-way and fully coupled fluid-structure interaction (FSI) simulations. However, differences in stress predictions using different strategies have not been assessed. Maximum principal stress (Stress-P1) within 8 human carotid atherosclerotic plaques was calculated based on geometry reconstructed from in vivo computerized tomography and high resolution, multi-sequence magnetic resonance images. Stress-P1 within the diseased region predicted by 2D and 3D structure-only, and 3D one-way FSI simulations were compared to 3D fully coupled FSI analysis. Compared to 3D fully coupled FSI, 2D structure-only simulation significantly overestimated stress level (94.1 kPa [65.2, 117.3] vs. 85.5 kPa [64.4, 113.6]; median [inter-quartile range], p=0.0004). However, when slices around the bifurcation region were excluded, stresses predicted by 2D structure-only simulations showed a good correlation (R(2)=0.69) with values obtained from 3D fully coupled FSI analysis. 3D structure-only model produced a small yet statistically significant stress overestimation compared to 3D fully coupled FSI (86.8 kPa [66.3, 115.8] vs. 85.5 kPa [64.4, 113.6]; p<0.0001). In contrast, one-way FSI underestimated stress compared to 3D fully coupled FSI (78.8 kPa [61.1, 100.4] vs. 85.5 kPa [64.4, 113.7]; p<0.0001). A 3D structure-only model seems to be a computationally inexpensive yet reasonably accurate approximation for stress within carotid atherosclerotic plaques with mild to moderate luminal stenosis as compared to fully coupled FSI analysis

  11. Swords with Blunt Edges

    ERIC Educational Resources Information Center

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  12. The Inner Urban Edge

    ERIC Educational Resources Information Center

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  13. Superpixel edges for boundary detection

    SciTech Connect

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  14. Shape of patch edges affects edge permeability for meadow voles.

    PubMed

    Nams, Vilis O

    2012-09-01

    Human development typically fragments natural habitats into patches, affecting population and metapopulation dynamics via changes in animal behavior. Emigration from one habitat patch to another has a large effect on population and metapopulation dynamics. One factor that affects emigration is permeability of patch edges. This study looks at the effects of edge shape (convex, concave, and straight) on edge permeability for meadow voles (Microtus pennsylvanicus).. I tested five hypotheses for responses of animal movement to patch shape: (1) neutral edge response; (2) edge attraction; (3) edge avoidance; (4) time-minimizing, in which an animal attempts to minimize the time spent in inhospitable matrix, and thus travels as far as possible in the patch before crossing the edge; and (5) protection, in which an animal attempts to maximize protection while in the inhospitable matrix by keeping the patch close by. These hypotheses were tested by an experimental manipulation of meadow vole habitats. A strip was mowed with different edge shapes through an old field, and vole response was measured by tracking plates. Voles crossed edges at concave treatments twice as often compared to convex and straight shapes. Hypotheses (2) and (5) were supported. Although edge attraction causes a passive effect of a decrease in edge-crossing at concavities, this effect was eclipsed by the active effect of voles choosing to cross at concavities. The results can be generalized to edge tortuosity in general. Conservation biologists should consider edge shapes when exploring the effects of habitat fragmentation on animal populations.

  15. Edge detection by nonlinear dynamics

    SciTech Connect

    Wong, Yiu-fai

    1994-07-01

    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  16. Playing Along the Edge

    NASA Image and Video Library

    2016-08-13

    Strands and arches of plasma streamed above the edge of the Sun for over a day, pulled by powerful magnetic forces (Aug. 11-12, 2016). The tug and pull of material heated to about 60,000 degrees C. was viewed in extreme ultraviolet light. This kind of dynamic flow of materials is rather common, though this grouping was larger than most. http://photojournal.jpl.nasa.gov/catalog/PIA17913

  17. Edge turbulence in tokamaks

    NASA Astrophysics Data System (ADS)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  18. Competing edge networks

    NASA Astrophysics Data System (ADS)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  19. Are shrubland birds edge specialists?

    PubMed

    Schlossberg, Scott; King, David I

    2008-09-01

    In studies of forest fragmentation, birds of scrubby, early-successional habitats are considered edge specialists. Because these birds are assumed to thrive in fragmented, edge-dominated areas, their landscape ecology has received little attention from ecologists. With populations of shrubland birds declining throughout the eastern United States, the question of whether or not these birds really prefer edge habitats has important conservation implications. We used a meta-analysis to test how edges affect the abundance of shrubland birds in early-successional habitats. We analyzed data for 17 species from seven studies that compared the abundances of birds in the interiors and edges of regenerating clearcuts surrounded by mature forest. The meta-analysis clearly showed that shrubland birds avoid edges. All 17 species tested had higher abundances in patch centers than along edges, and edge effects were significant for 8 of 17 species. The key implication of this result is that small or irregular patches, dominated by edge, are unlikely to provide suitable habitat for shrubland birds. Thus, management for these declining species should involve providing large patches and minimizing edges. These findings demonstrate the importance of testing widely accepted ecological classifications and the need to view landscape ecology from the perspective of non-forest wildlife.

  20. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  1. On the Edge

    NASA Image and Video Library

    2015-02-04

    In today's image, Mercury's horizon cuts a striking edge against the stark blackness of space. On the right, sunlight harshly brings the landscape into relief while on the left, the surface is shrouded in the darkness of night. This image was acquired as part of MDIS's limb imaging campaign. Once per week, MDIS captures images of Mercury's limb, with an emphasis on imaging the southern hemisphere limb. These limb images provide information about Mercury's shape and complement measurements of topography made by the Mercury Laser Altimeter (MLA) of Mercury's northern hemisphere. Date acquired: January 20, 2015 Image Mission Elapsed Time (MET): 64084239 Image ID: 7831084 Instrument: Wide Angle Camera (WAC) of the Mercury Dual Imaging System (MDIS) WAC filter: 7 (748 nanometers) Center Latitude: -54.45° Center Longitude: 90.52° E Center Resolution: 401 meters/pixel http://photojournal.jpl.nasa.gov/catalog/PIA19192

  2. Solar wind interaction with Mars' upper atmosphere: Results from 3-D studies using one-way coupling between the Multi-fluid MHD, the M-GITM and the AMPS models

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.

    2013-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.

  3. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  4. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  5. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and…

  6. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and…

  7. Edge-edge interactions in stacked graphene nanoplatelets

    SciTech Connect

    Cruz Silva, Eduardo; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Jia, Xiaoting; Sumpter, Bobby G; Dresselhaus, M; Meunier, V.

    2013-01-01

    High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.

  8. Giant edge state splitting at atomically precise graphene zigzag edges

    PubMed Central

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-01-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron–electron interactions in these localized states. PMID:27181701

  9. The Edge of Jupiter

    NASA Image and Video Library

    2017-04-19

    This enhanced color Jupiter image, taken by the JunoCam imager on NASA's Juno spacecraft, showcases several interesting features on the apparent edge (limb) of the planet. Prior to Juno's fifth flyby over Jupiter's mysterious cloud tops, members of the public voted on which targets JunoCam should image. This picture captures not only a fascinating variety of textures in Jupiter's atmosphere, it also features three specific points of interest: "String of Pearls," "Between the Pearls," and "An Interesting Band Point." Also visible is what's known as the STB Spectre, a feature in Jupiter's South Temperate Belt where multiple atmospheric conditions appear to collide. JunoCam images of Jupiter sometimes appear to have an odd shape. This is because the Juno spacecraft is so close to Jupiter that it cannot capture the entire illuminated area in one image -- the sides get cut off. Juno acquired this image on March 27, 2017, at 2:12 a.m. PDT (5:12 a.m. EDT), as the spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was about 12,400 miles (20,000 kilometers) from the planet. This enhanced color image was created by citizen scientist Bjorn Jonsson. https://photojournal.jpl.nasa.gov/catalog/PIA21389

  10. Widely tunable edge emitters

    NASA Astrophysics Data System (ADS)

    Sarlet, Gert; Wesstrom, Jan-Olof; Rigole, Pierre-Jean; Broberg, Bjoern

    2001-11-01

    We will present the current state-of-the-art in widely tunable edge emitting lasers for WDM applications. Typical applications for a tunable laser will be discussed, and the different types of tunable lasers available today will be compared with respect to the requirements posed by these applications. We will focus on the DBR-type tunable lasers - DBR, SG-DBR and GCSR - which at present seem to be the only tunable lasers mature enough for real-life applications. Their main advantages are that they are all monolithic, with no moving parts, and can be switched from one frequency to the other very rapidly since the tuning is based on carrier injection and not on thermal or mechanical changes. We will briefly discuss the working principle of each of these devices, and present typical performance characteristics. From a manufacturing point of view, rapid characterization of the lasers is crucial; therefore an overview will be given of different characterization schemes that have recently been proposed. For the end user, reliability is the prime issue. We will show results of degradation studies on these lasers and outline how the control electronics that drive the laser can compensate for any frequency drift. Finally, we will also discuss the impact of the requirement for rapid frequency switching on the design of the control electronics.

  11. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  12. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  13. Improved Edge Performance in MRF

    NASA Technical Reports Server (NTRS)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc

    2004-01-01

    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  14. The Robotic Edge Finishing Laboratory

    SciTech Connect

    Loucks, C.S.; Selleck, C.B.

    1990-08-01

    The Robotic Edge Finishing Laboratory at Sandia National Laboratories is developing four areas of technology required for automated deburring, chamfering, and blending of machined edges: (1) the automatic programming of robot trajectories and deburring processes using information derived from a CAD database, (2) the use of machine vision for locating the workpiece coupled with force control to ensure proper tool contact, (3) robotic deburring, blending, and machining of precision chamfered edges, and (4) in-process automated inspection of the formed edge. The Laboratory, its components, integration, and results from edge finishing experiments to date are described here. Also included is a discussion of the issues regarding implementation of the technology in a production environment. 24 refs., 17 figs.

  15. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  16. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  17. Effects of edge restraint on slab behavior. Final report

    SciTech Connect

    Guice, L.K.

    1986-02-01

    This study was performed in conjunction with a Federal Emergency Management Agency program to plan, design, and construct keyworker blast shelters which would be used in high-risk areas of the country during and after a nuclear attack. The shelters considered in this study were box-type structures in which damage is much more likely to occur in the roof slab than in the walls or floor. In this part of the program, the effect of edge restraint on slab behavior was investigated. The primary objective was to determine the effects of partial rotational restraint on slab strength, ductility, and mechanism of failure. Sixteen one-way, reinforced concrete plate elements were tested in a reaction structure under uniform static water pressure.

  18. Reduction of airfoil trailing edge noise by trailing edge blowing

    NASA Astrophysics Data System (ADS)

    Gerhard, T.; Erbslöh, S.; Carolus, T.

    2014-06-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.

  19. Oscillations at B Ring Edge

    NASA Image and Video Library

    2010-11-01

    This image obtained by NASA Cassini spacecraft of the outer edge of Saturn?s B ring, reveals the combined effects of a tugging moon and oscillations that can naturally occur in disks like Saturn rings and spiral galaxies.

  20. Fast tracking using edge histograms

    NASA Astrophysics Data System (ADS)

    Rokita, Przemyslaw

    1997-04-01

    This paper proposes a new algorithm for tracking objects and objects boundaries. This algorithm was developed and applied in a system used for compositing computer generated images and real world video sequences, but can be applied in general in all tracking systems where accuracy and high processing speed are required. The algorithm is based on analysis of histograms obtained by summing along chosen axles pixels of edge segmented images. Edge segmentation is done by spatial convolution using gradient operator. The advantage of such an approach is that it can be performed in real-time using available on the market hardware convolution filters. After edge extraction and histograms computation, respective positions of maximums in edge intensity histograms, in current and previous frame, are compared and matched. Obtained this way information about displacement of histograms maximums, can be directly converted into information about changes of target boundaries positions along chosen axles.

  1. Edge Fracture in Complex Fluids

    NASA Astrophysics Data System (ADS)

    Hemingway, Ewan J.; Kusumaatmaja, Halim; Fielding, Suzanne M.

    2017-07-01

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  2. Edge Fracture in Complex Fluids.

    PubMed

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  3. Edge equilibrium code for tokamaks

    SciTech Connect

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  4. The roles of image decomposition and edge curvature in the 'snake' lightness illusion.

    PubMed

    Todorović, Dejan; Zdravković, Sunčica

    2014-04-01

    The snake illusion is an effect in which the lightness of target patches is strongly affected by the luminance of remote patches. One explanation is that such images are decomposed into a pattern of illumination and a pattern of reflectance, involving a classification of luminance edges into illumination and reflectance edges. Based on this decomposition, perceived reflectance is determined by discounting the illumination. A problem for this account is that image decomposition is not unique, and that different decompositions may lead to different lightness predictions. One way to rule out alternative decompositions and ensure correct predictions is to postulate that the visual system tends to classify curved luminance edges as reflectance edges rather than illumination edges. We have constructed several variations of the basic snake display in order to test the proposed curvature constraint and the more general image decomposition hypothesis. Although the results from some displays have confirmed previous findings of the effect of curvature, the general pattern of data questions the relevance of the shape of luminance edges for the determination of lightness in this class of displays. The data also argue against an image decomposition mechanism as an explanation of this effect. As an alternative, a tentative neurally based account is sketched.

  5. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  6. On the Edge: Haptic Discrimination of Edge Sharpness

    PubMed Central

    Skinner, Andy L.; Kent, Christopher; Rossiter, Jonathan M.; Benton, Christopher P.; Groen, Martin G. M.; Noyes, Jan M.

    2013-01-01

    The increasing ubiquity of haptic displays (e.g., smart phones and tablets) necessitates a better understanding of the perceptual capabilities of the human haptic system. Haptic displays will soon be capable of locally deforming to create simple 3D shapes. This study investigated the sensitivity of our haptic system to a fundamental component of shapes: edges. A novel set of eight high quality shape stimuli with test edges that varied in sharpness were fabricated in a 3D printer. In a two alternative, forced choice task, blindfolded participants were presented with two of these shapes side by side (one the reference, the other selected randomly from the remaining set of seven) and after actively exploring the test edge of each shape with the tip of their index finger, reported which shape had the sharper edge. We used a model selection approach to fit optimal psychometric functions to performance data, and from these obtained just noticeable differences and Weber fractions. In Experiment 1, participants performed the task with four different references. With sharpness defined as the angle at which one surface meets the horizontal plane, the four JNDs closely followed Weber’s Law, giving a Weber fraction of 0.11. Comparisons to previously reported Weber fractions from other haptic manipulations (e.g. amplitude of vibration) suggests we are sufficiently sensitive to changes in edge sharpness for this to be of potential utility in the design of future haptic displays. In Experiment 2, two groups of participants performed the task with a single reference but different exploration strategies; one was limited to a single touch, the other unconstrained and free to explore as they wished. As predicted, the JND in the free exploration condition was lower than that in the single touch condition, indicating exploration strategy affects sensitivity to edge sharpness. PMID:24023852

  7. Edge-Aware BMA Filters.

    PubMed

    Guang Deng

    2016-01-01

    There has been continuous research in edge-aware filters which have found many applications in computer vision and image processing. In this paper, we propose a principled-approach for the development of edge-aware filters. The proposed approach is based on two well-established principles: 1) optimal parameter estimation and 2) Bayesian model averaging (BMA). Using this approach, we formulate the problem of filtering a pixel in a local pixel patch as an optimal estimation problem. Since a pixel belongs to multiple local patches, there are multiple estimates of the same pixel. We combine these estimates into a final estimate using BMA. We demonstrate the versatility of this approach by developing a family of BMA filters based on different settings of cost functions and log-likelihood and log-prior functions. We also present a new interpretation of the guided filter and develop a BMA guided filter which includes the guided filter as a special case. We show that BMA filters can produce similar smoothing results as those of the state-of-the-art edge-aware filters. Two BMA filters are computationally as efficient as the guided filter which is one of the fastest edge-aware filters. We also demonstrate that the BMA guided filter is better than the guided filter in preserving sharp edges. A new feature of the BMA guided filter is that the filtered image is similar to that produced by a clustering process.

  8. Flap-Edge Blowing Experiments

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Englar, R. J.; Ahuja, K. K.

    2003-01-01

    This Appendix documents the salient results from an effort to mitigate the so-called flap-edge noise generated at the split between a flap edge that is deployed and the undeployed flap. Utilizing a Coanda surface installed at the flap edge, steady blowing was used in an attempt to diminish the vortex strength resulting from the uneven lift distribution. The strength of this lifting vortex was augmented by steady blowing over the deployed flap. The test article for this study was the same 2D airfoil used in the steady blowing program reported earlier (also used in pulsed blowing tests, see Appendix G), however its trailing edge geometry was modified. An exact duplicate of the airfoil shape was made out of fiberglass with no flap, and in the clean configuration. It was attached to the existing airfoil to make an airfoil that has half of its flap deployed and half un-deployed. Figure 1 shows a schematic of the planform showing the two areas where steady blowing was introduced. The flap-edge blowing or the auxiliary blowing was in the direction normal to the freestream velocity vector. Slot heights for the blowing chambers were on the order of 0.0 14 inches.

  9. Supporting interactive graph exploration using edge plucking

    NASA Astrophysics Data System (ADS)

    Wong, Nelson; Carpendale, Sheelagh

    2007-01-01

    Excessive edge density in graphs can cause serious readability issues, which in turn can make the graphs difficult to understand or even misleading. Recently, we introduced the idea of providing tools that offer interactive edge bending as a method by which edge congestion can be disambiguated. We extend this direction, presenting a new tool, Edge Plucking, which offers new interactive methods to clarify node-edge relationships. Edge Plucking expands the number of situations in which interactive graph exploration tools can be used to address edge congestion.

  10. Role of Edges in Complex Network Epidemiology

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Jiang, Zhi-Hong; Wang, Hui; Xie, Fei; Chen, Chao

    2012-09-01

    In complex network epidemiology, diseases spread along contacting edges between individuals and different edges may play different roles in epidemic outbreaks. Quantifying the efficiency of edges is an important step towards arresting epidemics. In this paper, we study the efficiency of edges in general susceptible-infected-recovered models, and introduce the transmission capability to measure the efficiency of edges. Results show that deleting edges with the highest transmission capability will greatly decrease epidemics on scale-free networks. Basing on the message passing approach, we get exact mathematical solution on configuration model networks with edge deletion in the large size limit.

  11. Edge enhanced morphology for infrared image analysis

    NASA Astrophysics Data System (ADS)

    Bai, Xiangzhi; Liu, Haonan

    2017-01-01

    Edge information is one of the critical information for infrared images. Morphological operators have been widely used for infrared image analysis. However, the edge information in infrared image is weak and the morphological operators could not well utilize the edge information of infrared images. To strengthen the edge information in morphological operators, the edge enhanced morphology is proposed in this paper. Firstly, the edge enhanced dilation and erosion operators are given and analyzed. Secondly, the pseudo operators which are derived from the edge enhanced dilation and erosion operators are defined. Finally, the applications for infrared image analysis are shown to verify the effectiveness of the proposed edge enhanced morphological operators. The proposed edge enhanced morphological operators are useful for the applications related to edge features, which could be extended to wide area of applications.

  12. Shape-dependent canny edge detector

    NASA Astrophysics Data System (ADS)

    Panetta, Karen A.; Agaian, Sos S.; Nercessian, Shahan C.; Almunstashri, Ali A.

    2011-08-01

    Edges characterize the boundaries of objects in images and are informative structural cues for computer vision and target/object detection and recognition systems. The Canny edge detector is widely regarded as the edge detection standard. It is fairly adaptable to different environments, as its parametric nature attempts to tailor the detection of edges based on image-dependent characteristics or the particular requirements of a given implementation. Though it has been used in a myriad of image processing tasks, the Canny edge detector is still vulnerable to edge losses, localization errors, and noise sensitivity. These issues are largely due to the key tradeoff made in the scale and size of the edge detection filters used by the algorithm. Small-scaled filters are sensitive to edges but also to noise, whereas large-scaled filters are robust to noise but could filter out fine details. In this paper, novel edge detection kernel generalizations and a shape-dependent edge detector are introduced to alleviate these shortcomings. While most standard edge detection algorithms are based on convolving the input image with fixed size square kernels, this paper will illustrate the benefits of different filter sizes, and more importantly, different kernel shapes for edge detection. Moreover, new edge fusion methods are introduced to more effectively combine the individual edge responses. Existing edge detectors, including the Canny edge detector, can be obtained from the generalized edge detector by specifying corresponding parameters and kernel shapes. The proposed representations and edge detector have been qualitatively and quantitatively evaluated on several different types of image data. Computer simulations demonstrate that nonsquare kernel approaches can outperform square kernel approaches such as Canny, Sobel, Prewitt, Roberts, and others, providing better tradeoffs between noise rejection, accurate edge localization, and resolution. Where possible, Pratt's figure of

  13. Laplacian operator-based edge detectors.

    PubMed

    Wang, Xin

    2007-05-01

    Laplacian operator is a second derivative operator often used in edge detection. Compared with the first derivative-based edge detectors such as Sobel operator, the Laplacian operator may yield better results in edge localization. Unfortunately, the Laplacian operator is very sensitive to noise. In this paper, based on the Laplacian operator, a model is introduced for making some edge detectors. Also, the optimal threshold is introduced for obtaining a Maximum a Posteriori (MAP) estimate of edges.

  14. Failure During Sheared Edge Stretching

    NASA Astrophysics Data System (ADS)

    Levy, B. S.; van Tyne, C. J.

    2008-12-01

    Failure during sheared edge stretching of sheet steels is a serious concern, especially in advanced high-strength steel (AHSS) grades. The shearing process produces a shear face and a zone of deformation behind the shear face, which is the shear-affected zone (SAZ). A failure during sheared edge stretching depends on prior deformation in the sheet, the shearing process, and the subsequent strain path in the SAZ during stretching. Data from laboratory hole expansion tests and hole extrusion tests for multiple lots of fourteen grades of steel were analyzed. The forming limit curve (FLC), regression equations, measurement uncertainty calculations, and difference calculations were used in the analyses. From these analyses, an assessment of the primary factors that contribute to the fracture during sheared edge stretching was made. It was found that the forming limit strain with consideration of strain path in the SAZ is a major factor that contributes to the failure of a sheared edge during stretching. Although metallurgical factors are important, they appear to play a somewhat lesser role.

  15. The Problem of the Edge.

    ERIC Educational Resources Information Center

    Faatz, Judith A.

    1998-01-01

    Describes a field study in a local ecosystem which allows high school students to investigate the edge effect, where a meadow and a forest meet. Students measure soil moisture content, soil temperature, air temperature, relative humidity, wind intensity, and illumination level. Teachers can help students apply their findings to understand problems…

  16. The Problem of the Edge.

    ERIC Educational Resources Information Center

    Faatz, Judith A.

    1998-01-01

    Describes a field study in a local ecosystem which allows high school students to investigate the edge effect, where a meadow and a forest meet. Students measure soil moisture content, soil temperature, air temperature, relative humidity, wind intensity, and illumination level. Teachers can help students apply their findings to understand problems…

  17. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    USDA-ARS?s Scientific Manuscript database

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  18. Mystery Solved: One Way To Motivate Middle Schoolers To Read.

    ERIC Educational Resources Information Center

    Herder, Deb Den

    2000-01-01

    Describes a project for middle school librarians to use to motivate students to read for pleasure. Explains activities based on the idea of a mystery at the school, and describes how clues were developed and linked to books in certain genres that students had to read. (LRW)

  19. Goodwill in the NHS is a one-way street.

    PubMed

    Scott, Graham

    2015-03-25

    The NHS runs on goodwill. Every day thousands of nurses, midwives and healthcare support workers work extra hours, skip breaks and go the extra mile to keep the health service running. In return, you may receive a 'thank you' from your manager or expressions of gratitude from patients, but rarely will you see any extra in your pay packet.

  20. Shared governance: one way to engage employed physicians.

    PubMed

    Sanford, Kathleen D

    2012-09-01

    To work better with employed physicians, finance leaders should: Understand classic management theories on what motivates employees. Learn from shared governance models with nurses at Magnet hospitals. Apply best practices in management to all employees, not just physicians.

  1. Community Education Implementation: One Way--Not the Only Way.

    ERIC Educational Resources Information Center

    Walker, John E.

    One approach to the implementation of community education is to solicit involvement and support for the idea from the informal power structure. The first step is to identify the informal power structure; one method is the reputational technique, in which selected members of a variety of organizations each nominate at least five people who have…

  2. Mapping the Chapter: One Way to Tackle the CTE Textbook

    ERIC Educational Resources Information Center

    Laverick DeFelice, Catherine

    2010-01-01

    This reading specialist has come up with a strategy to help other CTE instructors map the CTE textbook, so that students can better comprehend the information in them and discover a joy of reading. CTE textbooks present a particular challenge because they are packed with information and can be quite different in structure than texts student have…

  3. Alternatives to incineration: There's more than one way to remediate

    SciTech Connect

    Pellerin, C.

    1994-10-01

    Hazardous waste is everywhere. It comes from paints, motor oil, hair spray, household cleaners, automotive chemicals, and all kinds of toxic medical, industrial and military products. Most industrial processes - from which come cosmetics and pharmaceuticals, computers and garden pesticides - generate wastes that the EPA, acting under the Resource Conservation Recovery Act (RCRA), says can harm human health or the environment if not properly managed. As a waste-disposal technology, incineration has been around for about 500,000 years - an interesting spinoff of that timely Homo erectus discovery, fire. For millennia, incineration looked like a pretty good way to turn big piles of hazardous waste into air emissions, smaller piles of ash, and sometimes energy. And it's still a good idea. The EPA, for one, calls high-temperature incineration the best available technology for disposing of most hazardous waste. But incineration has drawbacks. When hazardous waste goes into an incinerator, it comes out as potentially harmful air emissions, although these emissions are strictly controlled, and ash ash that's treated to meet EPA standards and then disposed of in an authorized landfill. It doesn't just vanish into thin air.

  4. One Way or Return? The Journey from Practitioner to Researcher

    ERIC Educational Resources Information Center

    Buoro, Ivano

    2015-01-01

    The journey from VET practitioner to academic researcher is not an easy one, especially for VET teachers whose educational research training in action and ethnographic research have been inculcated through years of practice. This paper discusses the highlights of the journey from practitioner to practitioner researcher including a discussion of…

  5. Understanding one-way ANOVA using conceptual figures.

    PubMed

    Kim, Tae Kyun

    2017-02-01

    Analysis of variance (ANOVA) is one of the most frequently used statistical methods in medical research. The need for ANOVA arises from the error of alpha level inflation, which increases Type 1 error probability (false positive) and is caused by multiple comparisons. ANOVA uses the statistic F, which is the ratio of between and within group variances. The main interest of analysis is focused on the differences of group means; however, ANOVA focuses on the difference of variances. The illustrated figures would serve as a suitable guide to understand how ANOVA determines the mean difference problems by using between and within group variance differences.

  6. Tests of Equivalence for One-Way Independent Groups Designs

    ERIC Educational Resources Information Center

    Cribbie, Robert A.; Arpin-Cribbie, Chantal A.; Gruman, Jamie A.

    2009-01-01

    Researchers in education are often interested in determining whether independent groups are equivalent on a specific outcome. Equivalence tests for 2 independent populations have been widely discussed, whereas testing for equivalence with more than 2 independent groups has received little attention. The authors discuss alternatives for testing the…

  7. More than One Way to Make a Bulletin Board.

    ERIC Educational Resources Information Center

    Crane, John; And Others

    1980-01-01

    The authors provide tips for creating pleasing bulletin boards for the elementary classroom. Mood, lettering, materials, and design are considered. In addition, they suggest ideas for a thematic bulletin board for each month of the school year. (SJL)

  8. Is There Only One Way To Evaluate Students?

    ERIC Educational Resources Information Center

    Gifford, Ann Porter

    2002-01-01

    Suggests there are many ways to assess students' progress in understanding the elements of a story. Discusses how to stimulate students' ability to analyze how adding another character, changing the setting or twisting the plot can create new and interesting versions of a the common folktale, "The Three Little Pigs." Includes a 37-item…

  9. Heavy Kids Fare Worse in One Way After Surgery

    MedlinePlus

    ... a hospital news release. These may include impaired wound healing due to lower oxygen pressure in the excess fat tissue surrounding the wound as well as impaired immune responsiveness, she explained. " ...

  10. Electrically controlled one-way photon flow in plasmonic nanostructures.

    PubMed

    Davoyan, Artur; Engheta, Nader

    2014-11-06

    Photonics is frequently regarded as a potential pathway for substituting current solid-state electronics and as a promise for higher-speed all-optical computing. The fundamental challenges facing nanophotonics and electronics of the future are nanoscale on-chip integration of electronics and photonics with an efficient electric field tuning of light propagation, dynamic access to the light sources and material parameters of the system, as well as isolation of optical signals analogous to that in electronics. Here we suggest a paradigm for a monolithically integrated electronic control over the light propagation in nanoscale plasmonic waveguides. We theoretically demonstrate that magnetic field induced by the direct electric current flowing in metallic constituents of plasmonic nanostructures alters the material parameters and thus the optical signal flow. We use this principle for the design of an electrically controlled subwavelength optical isolator.

  11. Total quality management: one way to get started.

    PubMed

    Mullen, J L; Heitholt, C

    1993-01-01

    Continuous QI requires our hospitals to undergo a fundamental change in values, beliefs, and ways to manage. Process improvement changes must start with senior managers, who create the environment for continuous improvement and then enable department managers and employees to improve their processes. Persistent poor quality does not respect organizational boundaries, and HQIP provides an opportunity to manage all the resources necessary to make improvements. As pharmacy managers, we must identify processes under our control that can be continuously improved based on documented customer judgments. We must stop asking employees to work harder in a flawed system and empower them to improve those processes within their control. It may be easy to become frustrated if it seems to take a long time to implement TQM. Remember, transforming our departments and hospitals will not happen overnight. We are embarking on a new style of leadership and management, one that will help pharmacies implement our pharmaceutical care vision.

  12. Digital, One Way, Acoustic Communication in the Ocean

    DTIC Science & Technology

    1990-09-01

    Figures ICapter I 1.1 Attenuation of electromagnetic radiation in clear water ............................. 3 1.2 Low freque.ncy acoustic attenuation...any two places on earth . Great success has been achieved in transmitting and receiving high quality video pictures from the moon and even from farther...the following: 3 a) Operating frequency 10 - 20 kHz. b) Operating range 2 - 5 km I c) Bit rate of 1 kbit/sec 3 d) Source level 170 dB/lpPa e) Water

  13. Guns and Fear: A One-Way Street?

    ERIC Educational Resources Information Center

    Hauser, Will; Kleck, Gary

    2013-01-01

    Surveys show that more than one half of gun owners report owning their firearm for self-protection. Although research has examined the effect of fear of crime on gun ownership, the issue of reciprocity and temporal order has been largely ignored. Furthermore, the effect of firearm acquisition and relinquishment on fear has not been evaluated…

  14. Understanding one-way ANOVA using conceptual figures

    PubMed Central

    2017-01-01

    Analysis of variance (ANOVA) is one of the most frequently used statistical methods in medical research. The need for ANOVA arises from the error of alpha level inflation, which increases Type 1 error probability (false positive) and is caused by multiple comparisons. ANOVA uses the statistic F, which is the ratio of between and within group variances. The main interest of analysis is focused on the differences of group means; however, ANOVA focuses on the difference of variances. The illustrated figures would serve as a suitable guide to understand how ANOVA determines the mean difference problems by using between and within group variance differences. PMID:28184262

  15. Science Shorts: More than One Way to Investigate

    ERIC Educational Resources Information Center

    Coskie, Tracy L.; Davis, Kimberly J.

    2007-01-01

    An exciting element of science fairs is that they give students the opportunity to explore various interests through scientific investigation. Many students, however, mistakenly think that all investigations are experiments. This lesson can help broaden students' conceptions of science. (Contains 1 resource.)

  16. Guns and Fear: A One-Way Street?

    ERIC Educational Resources Information Center

    Hauser, Will; Kleck, Gary

    2013-01-01

    Surveys show that more than one half of gun owners report owning their firearm for self-protection. Although research has examined the effect of fear of crime on gun ownership, the issue of reciprocity and temporal order has been largely ignored. Furthermore, the effect of firearm acquisition and relinquishment on fear has not been evaluated…

  17. One Way to Hold the Line On Energy Cost

    ERIC Educational Resources Information Center

    Dickey, William K., Jr.

    1977-01-01

    Schools in Alachua County, Gainesville, Florida, demonstrate that decentralizing the utility budget to the local school level provides an incentive for the school principal to conserve energy. (Author/MLF)

  18. Tests of Equivalence for One-Way Independent Groups Designs

    ERIC Educational Resources Information Center

    Cribbie, Robert A.; Arpin-Cribbie, Chantal A.; Gruman, Jamie A.

    2009-01-01

    Researchers in education are often interested in determining whether independent groups are equivalent on a specific outcome. Equivalence tests for 2 independent populations have been widely discussed, whereas testing for equivalence with more than 2 independent groups has received little attention. The authors discuss alternatives for testing the…

  19. Science Shorts: More than One Way to Investigate

    ERIC Educational Resources Information Center

    Coskie, Tracy L.; Davis, Kimberly J.

    2007-01-01

    An exciting element of science fairs is that they give students the opportunity to explore various interests through scientific investigation. Many students, however, mistakenly think that all investigations are experiments. This lesson can help broaden students' conceptions of science. (Contains 1 resource.)

  20. One-way nesting for a primitive equation ocean model

    NASA Technical Reports Server (NTRS)

    Blake, D. W.

    1991-01-01

    Prognostic numerical models for atmospheric and oceanic circulations require initial fields, boundary conditions, and forcing functions in addition to a consistent set of partial differential equations, including a state relation and equations expressing conservation of mass, momentum, and energy. Depending on the horizontal domain to be modeled, the horizontal boundary conditions are either physically obvious or extremely difficult to specify consistently. If the entire atmosphere is modeled, periodic horizontal boundary conditions are appropriate. On the other hand, the physical horizontal boundaries on the entire ocean are solid walls. Obviously, the normal velocity at a solid wall is zero while the specification of the tangential velocity depends on the mathematical treatment of the horizontal viscous terms. Limitations imposed by computer capacity and cost, as well as research interests, have led to the use of limited area models to study flows in the atmosphere and ocean. The limited area models do not have physical horizontal boundaries, merely numerical ones. Correctly determining these open boundary conditions for limited-area numerical models has both intrigued and frustrated numerical modelers for decades. One common approach is to use the closed or solid wall boundary conditions for a limited-area model. The argument given for this approach is that the boundary conditions affect flow near the walls but that none of these effects are propagated into the interior. Therefore, one chooses a big enough domain that the central region of interest is not corrupted by the boundary flow. Research in progress to model the North Atlantic circulation vividly illustrates the pitfalls of this approach. Two model runs are compared: (1) the southern boundary at 20S between latitudes 0 and 40W is artificially closed; and (2) the same boundary is specified as open with an inward transport of 15 Sv (determined from a global model with the same physics) uniformly spread across the boundary. A comparison of both runs is presented.

  1. Tiered Lessons: One Way to Differentiate Mathematics Instruction

    ERIC Educational Resources Information Center

    Pierce, Rebecca L.; Adams, Cheryll M.

    2004-01-01

    The movement toward inclusion has impacted classrooms by requiring teachers to respond to a broader range of academic needs. How can we possibly reach all the students in our classrooms when they are academically diverse, have special needs, are ESL learners, or have some combination of any or all of these factors? An answer to this question lies…

  2. Online referrals one way capitated groups gain efficiencies, reduce errors.

    PubMed

    2002-08-01

    An online referral system is just the latest money and time-saving tool in the e-commerce arsenal at Hill Physicians Medical Group. Using a modified version of Healinx Corp.'s secure e-mail messaging platform, Hill is testing a custom-made online referral system at two primary care practices that appear to be helping the practice boost its bottom line under capitation.

  3. Mystery Solved: One Way To Motivate Middle Schoolers To Read.

    ERIC Educational Resources Information Center

    Herder, Deb Den

    2000-01-01

    Describes a project for middle school librarians to use to motivate students to read for pleasure. Explains activities based on the idea of a mystery at the school, and describes how clues were developed and linked to books in certain genres that students had to read. (LRW)

  4. When There's More Than One Way To Get There...

    ERIC Educational Resources Information Center

    Lovaszova, Gabriela; Hvorecky, Jozef

    Mathematics is not only about learning problem-solving methods; it is also about gaining a deeper understanding of their purpose, advantages and disadvantages. Frequently, the same problem can be solved by applying several different methods. Mathematics education should also include clues to those best fitting to the person's aim. To achieve that…

  5. On Problems with Solutions Attainable in More Than One Way.

    ERIC Educational Resources Information Center

    Pedersen, Jean; Polya, George

    1984-01-01

    Presents three sample problems related to arithmetic and algebra, geometry, and calculus, indicating, in each case, similar problems that could be posed. Includes a discussion of positive benefits which result by asking students "Can you derive the result differently?" (JN)

  6. Ionospheric effects on one-way timing signals

    NASA Technical Reports Server (NTRS)

    Soicher, H.; Gorman, F. J., Jr.

    1973-01-01

    A proposed navigation concept requires that a user measure the time-delay that satellite-emitted signals experience in traversing the distance between satellite and user. Simultaneous measurement of the propagation time from four different satellites permits the user to determine his position and clock bias if satellite ephemerides and signal propagation velocity are known. A pulse propagating through the ionosphere is slowed down somewhat, giving an apparent range that is larger than the equivalent free space range. The difference between the apparent range and the true range, or the free space velocity and the true velocity, is the quantity of interest. This quantity is directly proportional to the total electron content along the path of the propagating signal. Thus, if the total electron content is known, or is measured, a perfect correction to ranging could be performed. Faraday polarization measurements are continuously being taken at Fort Monmouth, N. J., using beacon emissions of the ATS-3 (137.35 MHz) satellite. Day-to-day variability of the diurnal variation of total electron content values is present with differences of up to 50% or more not being uncommon. In addition, superposed on the overall diurnal variation are smaller scale variations of approximately 5 to 10% of the total content which are attributed to ionospheric density irregularities.

  7. On-Line Learning: One Way to Bring People Together

    ERIC Educational Resources Information Center

    Goff-Kfouri, Carol Ann

    2006-01-01

    The purpose of this study was to demonstrate the benefits of on-line learning for adult learners and to further demystify three common misconceptions concerning on-line learning: students certainly do receive support from their on-line professors, the professor is pro-active rather than passive, and students may be more motivated to learn than in…

  8. Nature of Graphene Edges: A Review

    NASA Astrophysics Data System (ADS)

    Acik, Muge; Chabal, Yves J.

    2011-07-01

    Graphene edges determine the optical, magnetic, electrical, and electronic properties of graphene. In particular, termination, chemical functionalization and reconstruction of graphene edges leads to crucial changes in the properties of graphene, so control of the edges is critical to the development of applications in electronics, spintronics and optoelectronics. Up to date, significant advances in studying graphene edges have directed various smart ways of controlling the edge morphology. Though, it still remains as a major challenge since even minor deviations from the ideal shape of the edges significantly deteriorate the material properties. In this review, we discuss the fundamental edge configurations together with the role of various types of edge defects and their effects on graphene properties. Indeed, we highlight major demanding challenges to find the most suitable technique to characterize graphene edges for numerous device applications such as transistors, sensors, actuators, solar cells, light-emitting displays, and batteries in graphene technology.

  9. Quantifying edge significance on maintaining global connectivity

    PubMed Central

    Qian, Yuhua; Li, Yebin; Zhang, Min; Ma, Guoshuai; Lu, Furong

    2017-01-01

    Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity. PMID:28349923

  10. Propagating edge states in strained honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2017-06-01

    We investigate the helically propagating edge states associated with pseudo-Landau levels in strained honeycomb lattices. We exploit chiral symmetry to derive a general criterion for the existence of these propagating edge states in the presence of only nearest-neighbor hoppings and we verify our criterion using numerical simulations of both uniaxially and trigonally strained honeycomb lattices. We show that the propagation of the helical edge state can be controlled by engineering the shape of the edges. Sensitivity to chiral-symmetry-breaking next-nearest-neighbor hoppings is assessed. Our result opens up an avenue toward the precise control of edge modes through manipulation of the edge shape.

  11. Saddle-node dynamics for edge detection

    SciTech Connect

    Wong, Y.F.

    1994-09-01

    The author demonstrates how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, this scheme is general enough to be able to handle different edges, such as lines, step edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  12. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials.

    PubMed

    Argyrou, Renos; Thompson, Geoffrey A; Cho, Seok-Hwan; Berzins, David W

    2016-09-01

    Two novel restorative materials, a polymer infiltrated ceramic network (PICN) and a resin nanoceramic (RNC), for computer-assisted design and computer-assisted manufacturing (CAD-CAM) applications have recently become commercially available. Little independent evidence regarding their mechanical properties exists to facilitate material selection. The purpose of this in vitro study was to measure the edge chipping resistance and flexural strength of the PICN and RNC materials and compare them with 2 commonly used feldspathic ceramic (FC) and leucite reinforced glass-ceramic (LRGC) CAD-CAM materials that share the same clinical indications. PICN, RNC, FC, and LRGC material specimens were obtained by sectioning commercially available CAD-CAM blocks. Edge chipping test specimens (n=20/material) were adhesively attached to a resin substrate before testing. Edge chips were produced using a 120-degree, sharp, conical diamond indenter mounted on a universal testing machine and positioned 0.1 to 0.7 mm horizontally from the specimen's edge. The chipping force was plotted against distance to the edge, and the data were fitted to linear and quadratic equations. One-way ANOVA determined intergroup differences (α=.05) in edge chipping toughness. Beam specimens (n=22/material) were tested for determining flexural strength using a 3-point bend test. Weibull statistics determined intergroup differences (α=.05). Flexural modulus and work of fracture were also calculated, and 1-way ANOVA determined intergroup differences (α=.05) RESULTS: Significant (P<.05) differences were found among the 4 CAD-CAM materials for the 4 mechanical properties. Specifically, the material rankings were edge chipping toughness: RNC>LRGC=FC>PICN; flexural strength: RNC=LRGC>PICN>FC; flexural modulus: RNCLRGC=PICN>FC. The RNC material demonstrated superior performance for the mechanical properties tested compared with the other 3 materials. Copyright © 2016

  13. Edge Simulation Laboratory Project Report

    SciTech Connect

    Cohen, R. H.; Dorf, M.; Dorr, M.; Rognlien, T. D.

    2011-02-25

    In 2010 The Edge Simulation Laboratory (ESL) embarked upon the plan laid out in the renewal proposal submitted in December 2009. This proposal called for initially parallel efforts addressing the physics of the closed-flux-surface pedestal region, using existing computational tools (GYRO, BOUT++) and analytic modeling, and physics of the scrape-off layer via development of the new edge gyrokinetic code COGENT. Progress in the former area is described in a series of monthly progress reports prepared by General Atomics; these are attached as a set of appendices (describing work done in the month prior to the indicated date). Progress in the latter area, as well as associated theoretical development, is described.

  14. On Edge Exchangeable Random Graphs

    NASA Astrophysics Data System (ADS)

    Janson, Svante

    2017-06-01

    We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).

  15. Feature Extraction Without Edge Detection

    DTIC Science & Technology

    1993-09-01

    feature? A.I. Memo 1356, MIT Artificial Intellegence Lab, April 1992. [65] W. A. Richards, B. Dawson, and D. Whittington. Encoding contour shape by...AD-A279 842 . " Technical Report 1434 --Feature Extraction Without Edge Detection Ronald D. Chane MIT Artificial .Intelligencc Laboratory ",, 𔃾•d...Chaney 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Massachusetts Institute of Technology Artificial

  16. Edge effects and delamination failures

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1989-01-01

    The fundamental relationship between the morphology of a composite laminate and the resulting free edge effects is explored and related to delamination failures. Cross-ply, angle-ply, and quasi-isotropic laminates are discussed in detail. It is shown that the local mismatch in elastic properties of adjacent layers and the global stacking sequence of a laminate both have a significant influence on the interlaminar stresses and delamination failures.

  17. Retention and the competitive edge.

    PubMed

    Lemery, L D

    2000-01-01

    I believe that retaining effective, seasoned employees enhances an organization's ability to compete in the marketplace. Though these seasoned employees seem to be more explicitly expensive, a detailed analysis of the costs involved in hiring and orienting replacement personnel may prove this assumption false. In addition, seasoned employees' intimate job knowledge actually constitutes the organization's competitive edge. Therefore, retaining seasoned personnel seems to become an important, mission- and vision-imperative institutional objective.

  18. Etching Of Semiconductor Wafer Edges

    DOEpatents

    Kardauskas, Michael J.; Piwczyk, Bernhard P.

    2003-12-09

    A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.

  19. Edge Coloring, Polyhedra and Probability

    DTIC Science & Technology

    1998-11-01

    programming relaxation (called the fractional chromatic index). For any graph G one can compute x*(G) in polynomial time but deciding whether x’{G) = A or...has large maximum degree and satisfies two technical conditions, then the equality holds. The constructive proof provides a randomized polynomial ...computes an optimal edge coloring of any graph in polynomial time, on average. Acknowledgements I would like to thank Bruce Reed, Dana Scott, Alan

  20. Topological edge states in pnictides

    NASA Astrophysics Data System (ADS)

    Youmans, Cody; Ghaemi, Pouyan; Kargarian, Mehdi

    In some members of the ferro-pnictides, non-trivial topology in the bulk band-structure is related to potentially observable gapless edge states. We study these states numerically and analytically for a range of parameters, with and without superconductivity and antiferromagnetic SDW ordering, and their relation to the symmetries and topologically non-trivial aspects of our model Hamiltonian. Support was provided by the Doctoral Student Research Grant program at the Graduate Center, CUNY.

  1. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  2. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  3. Knife-edge seal for vacuum bagging

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1980-01-01

    Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.

  4. Edge and coupled core/edge transport modeling in tokamak

    SciTech Connect

    Pearlstein, L D; Casper, T A; Cohen, R H; LoDestro, L L; Mattor, N; Porter, G D; Rensink, M E; Rognlien, T D; Ryutov, D D; Scott, H A; Wan, A

    1998-10-14

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental observations; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. Two-dimensional simulations show the importance of ExB flow in the private-flux region and B-drift effects. A theory of rough plasma-facing surfaces is given, and interesting effects, some traveling back up the magnetic field-lines to the SOL plasma, are predicted. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts at the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative rnodelling. Long-lived oscillatory UEDGE solutions in both ITER and DIII-D are reported. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are shown to be well modelled with UEDGE, and the roles of impurity and neutral transport in the edge and SOL are discussed.

  5. Learning from "Talk-around-the-Edges."

    ERIC Educational Resources Information Center

    Searle, Dennis; Dudley-Marling, Curt

    1995-01-01

    Argues that "talk around the edges," informal exchanges between children in the classroom, are important moments for the enhancement of language facility, at least as important as formal language lessons. Provides approaches to incorporating "talk around the edges" or talk much like "talk around the edges" into lessons. (TB)

  6. Reduction of Free-Edge Stress Concentration

    DTIC Science & Technology

    1985-01-01

    oscillatory type of behavior near the free edge of the capped laminate before converging to zero further inside the laminate. The length of the edge effect is...Condition," J. Comp. Materials. Vol. 14 (1980), p. 2. 13. Altus, E., Rotem, A. and Shmueli, M., "Free Edge Effect in Angle- Ply Laminates - A New

  7. Understanding and preventing the edge effect.

    PubMed

    Cheneau, Edouard; Wolfram, Roswitha; Leborgne, Laurent; Waksman, Ron

    2003-02-01

    Edge stenosis, combining neointimal proliferation and negative remodeling, remains a serious limitation of vascular brachytherapy. This review comprehensively presents terminology, definitions, mechanisms, and treatment strategies to better understand the complexities of edge narrowing. The major contributors to this phenomenon are known; understanding the practical solutions will enable us to further minimize the problem of the edge effect.

  8. Densified edge seals for fuel cell components

    DOEpatents

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1982-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  9. K-edge densitometer (KED)

    SciTech Connect

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  10. Results from the EDGES Survey

    NASA Astrophysics Data System (ADS)

    van Zee, Liese; EDGES Team

    2017-03-01

    Results are presented from a deep imaging survey with the Spitzer Space Telescope which was designed to identify and measure the faint stellar populations around nearby galaxies. The Extended Disk Galaxy Exploration Science (EDGES) Survey includes a sample of 92 nearby galaxies with a range of morphological types and environments. The observations include a field-of-view of at least 5 times the optical size and are deep enough to detect stellar mass surface densities of several hundredths of a solar mass per square parsec. The observations reveal extended stellar features, such as stellar disks and stellar streams, around many of the target galaxies, as expected from hierarchical galaxy formation scenarios.

  11. Continuum Gyrokinetic Edge New Technology

    SciTech Connect

    Dorr, M. R.; Hittinger, J. A.; Dorf, M.; Cohen, R.; Ghosh, D.; Lee, W.; Reynolds, C.

    2016-05-02

    COGENT is a simulation code that models the plasma evolution in the edge region of a tokamak fusion reactor, from the open field line scrape-off layer, across the separatrix, and into the core. The model is based on the 4D gyrokinetic closure of the kinetic equations for a plasma coupled to an electrostatic potential field. The background magnetic field is prescribed either analytically or generated from experimental data, and the grid is aligned with magnetic flux surfaces. Multiple collision operator options are provided, from Krook to fully nonlinear Fokker-Planck.

  12. Fractal-based image edge detection

    NASA Astrophysics Data System (ADS)

    Luo, Huiguo; Zhu, Yaoting; Zhu, Guang-Xi; Wan, Faguang; Zhang, Ping

    1993-08-01

    Image edge is an important feature of image. Usually, we use Laplacian or Sober operator to get an image edge. In this paper, we use fractal method to get the edge. After introducing Fractal Brownian Random (FBR) field, we give the definition of Discrete Fractal Brownian Increase Random (DFBIR) field and discuss its properties, then we apply the DFBIR field to detect the edge of an image. According to the parameters H and D of DFBIR, we give a measure M equals (alpha) H + (beta) D. From the M value of each pixel, we can detect the edge of image.

  13. Environmental Dataset Gateway (EDG) Search Widget

    EPA Pesticide Factsheets

    Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other other applications. This allows individuals to provide direct access to EPA's metadata outside the EDG interface. The EDG Search Widget makes it possible to search the EDG from another web page or application. The search widget can be included on your website by simply inserting one or two lines of code. Users can type a search term or lucene search query in the search field and retrieve a pop-up list of records that match that search.

  14. Environmental Dataset Gateway (EDG) REST Interface

    EPA Pesticide Factsheets

    Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other other applications. This allows individuals to provide direct access to EPA's metadata outside the EDG interface. The EDG REST Interface allows each users to query the catalog through a URL using REST syntax. Accessing individual metadata documents through their REST URLs, or groups of documents that match specific search criteria through a REST-formatted search URL, provides powerful functionality for searching, viewing, and sharing EDG records.

  15. Chiral edge fluctuations of colloidal membranes

    NASA Astrophysics Data System (ADS)

    Jia, Leroy L.; Zakhary, Mark J.; Dogic, Zvonimir; Pelcovits, Robert A.; Powers, Thomas R.

    2017-06-01

    We study edge fluctuations of a flat colloidal membrane comprised of a monolayer of aligned filamentous viruses. Experiments reveal that a peak in the spectrum of the in-plane edge fluctuations arises for sufficiently strong virus chirality. Accounting for internal liquid crystalline degrees of freedom by the length, curvature, and geodesic torsion of the edge, we calculate the spectrum of the edge fluctuations. The theory quantitatively describes the experimental data, demonstrating that chirality couples in-plane and out-of-plane edge fluctuations to produce the peak.

  16. Stent edge dissection: depth of injury and adverse outcome.

    PubMed

    Goldstein, James A

    2015-08-01

    Deep stent edge dissection by OCT predicts adverse outcome. STEMI culprit lesions are most susceptible to edge dissection. Procedural performance influences edge dissection. © 2015 Wiley Periodicals, Inc.

  17. Evaluating Edge Detection through Boundary Detection

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ge, Feng; Liu, Tiecheng

    2006-12-01

    Edge detection has been widely used in computer vision and image processing. However, the performance evaluation of the edge-detection results is still a challenging problem. A major dilemma in edge-detection evaluation is the difficulty to balance the objectivity and generality: a general-purpose edge-detection evaluation independent of specific applications is usually not well defined, while an evaluation on a specific application has weak generality. Aiming at addressing this dilemma, this paper presents new evaluation methodology and a framework in which edge detection is evaluated through boundary detection, that is, the likelihood of retrieving the full object boundaries from this edge-detection output. Such a likelihood, we believe, reflects the performance of edge detection in many applications since boundary detection is the direct and natural goal of edge detection. In this framework, we use the newly developed ratio-contour algorithm to group the detected edges into closed boundaries. We also collect a large data set ([InlineEquation not available: see fulltext.]) of real images with unambiguous ground-truth boundaries for evaluation. Five edge detectors (Sobel, LoG, Canny, Rothwell, and Edison) are evaluated in this paper and we find that the current edge-detection performance still has scope for improvement by choosing appropriate detectors and detector parameters.

  18. Optimal edge filters explain human blur detection.

    PubMed

    McIlhagga, William H; May, Keith A

    2012-09-14

    Edges are important visual features, providing many cues to the three-dimensional structure of the world. One of these cues is edge blur. Sharp edges tend to be caused by object boundaries, while blurred edges indicate shadows, surface curvature, or defocus due to relative depth. Edge blur also drives accommodation and may be implicated in the correct development of the eye's optical power. Here we use classification image techniques to reveal the mechanisms underlying blur detection in human vision. Observers were shown a sharp and a blurred edge in white noise and had to identify the blurred edge. The resultant smoothed classification image derived from these experiments was similar to a derivative of a Gaussian filter. We also fitted a number of edge detection models (MIRAGE, N(1), and N(3)(+)) and the ideal observer to observer responses, but none performed as well as the classification image. However, observer responses were well fitted by a recently developed optimal edge detector model, coupled with a Bayesian prior on the expected blurs in the stimulus. This model outperformed the classification image when performance was measured by the Akaike Information Criterion. This result strongly suggests that humans use optimal edge detection filters to detect edges and encode their blur.

  19. A novel algorithm for the edge detection and edge enhancement of medical images.

    PubMed

    Crooks, I; Fallone, B G

    1993-01-01

    A novel algorithm, histogram shifting (HS) is presented, which performs edge detection or edge enhancement with the choice of two parameters. The histogram of a region surrounding each pixel is found and translated toward the origin, resulting in the new pixel value. Images from a variety of medical imaging modalities were processed with HS to perform detection and enhancement of edges. Comparison with results obtained from conventional edge detection (e.g., Sobel) and with conventional edge-enhancement algorithms is discussed. HS appears to perform the edge-detection operation without introducing "double-edge" effects often obtained with conventional edge-detection algorithms. HS also appears to perform edge enhancement without introducing extensive noise artifacts, which may be noticeable with many edge-enhancement algorithms.

  20. Measuring edge importance to improve immunization performance

    NASA Astrophysics Data System (ADS)

    Huang, He; Yan, Zhijun; Pan, Yaohui

    2014-12-01

    The edge heterogeneity has a remarkable influence on disease spreading, but it has seldom been considered in the disease-controlling policies. Based on the gravity model, we propose the edge importance index to describe the influence of edge heterogeneity on immunization strategies. Then the edge importance and contact weight are combined to calculate the infection rates on the I-S (Infected-Susceptible) edges in the complex network, and the difference of the infection rates on strong and weak ties is analyzed. Simulation results show that edge heterogeneity has a significant influence on the performance of immunization strategies, and better immunization efficiency is derived when the vaccination rate of the nodes in the weak I-S edges is increased.

  1. Haptic Edge Detection Through Shear

    NASA Astrophysics Data System (ADS)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  2. Haptic Edge Detection Through Shear

    PubMed Central

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-01-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331

  3. Reflections on the Knife Edge

    PubMed Central

    Murphy, John Patrick Michael

    2011-01-01

    Introduction The accompanying article, written by John Murphy, a retired lawyer and lifelong outdoorsman from his beloved Colorado Rockies, draws the striking parallel between his experiences as a mountain climber and as a patient with metastatic melanoma facing the hope and uncertainty of experimental therapy. Both are life-threatening circumstances, demanding courage and hope, and challenging our soul in a way almost unique to human experience. Both involve a conscious choice to move forward into dangerous and uncertain territory, and require a determination to look death (John's “Reaper”) in the eye. Many remarkable books and films have been written about such experiences. I recall in particular the 2003 documentary film Touching the Void, about the incredible survival of a mountaineer who returned from a perilous fall in Peru. I highly recommend it to the reader. Another is Laura Hillenbrand's Unbroken: A World War II Story of Survival, Resilience, and Redemption (Random House, 2010), about the survival of a prisoner of war, the celebrated miler Louis Zamperini. Again, unbridled courage and undeniable hope turned futility into future. John Murphy's reflections remind us of the daily heroism of our patients who are holding tight to the lifeline offered by clinical research. Good climbing, John. All of us are with you on that Knife Edge, waiting for our turn to ascend... and hoping to be as courageous as you were then on Capitol Peak and are again now on the Knife Edge of a clinical trial. For our turn will come. PMID:21349953

  4. The reconstructed edges of the hexagonal BN.

    PubMed

    Zhao, Ruiqi; Gao, Junfeng; Liu, Zhongfan; Ding, Feng

    2015-06-07

    As an important two-dimensional material which shows exceptional mechanical and chemical stability, superior electronic properties, along with broad applications, the hexagonal-BN (h-BN) has drawn great attention recently. Here we report a systematic study on the structural stability, electronic and magnetic properties of various h-BN edges, including both bare and hydrogen-terminated ones. It is found that along the armchair (AC) direction, the pristine edge is the most stable one because of the formation of a triple B≡N bond, while, along the zigzag (ZZ) directions, the reconstructed ones, ZZB + N and ZZN57 are more stable. The pristine edges are more stable in bare BN in most cases if saturated with hydrogen. By applying the theory of Wulff construction, we predicted that an unpassivated BN domain prefers the hexagonal shape enclosed with bare AC edges i.e., AC-Ns, AC, AC-Bs if the feedstock varies from N-rich to B-rich. However, the evolution from ZZN edged triangular domain, to hexagonal domain enclosed with AC edges, and ZZB edged triangle may occur if the edges are terminated by hydrogen atoms. Further calculation shows that these edges present rich type-dependent properties and thus are important for various applications. This theoretical study showed that controlling the morphologies of BN domains and BN edges is crucial for various applications.

  5. Edge detection in microscopy images using curvelets

    PubMed Central

    Gebäck, Tobias; Koumoutsakos, Petros

    2009-01-01

    Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. Conclusion The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy. PMID:19257905

  6. Polarity control of h-BN nanoribbon edges by strain and edge termination.

    PubMed

    Yamanaka, Ayaka; Okada, Susumu

    2017-03-29

    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  7. Edge detection and localization with edge pattern analysis and inflection characterization

    NASA Astrophysics Data System (ADS)

    Jiang, Bo

    2012-05-01

    In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge

  8. Magnetohydrodynamic stability of tokamak edge plasmas

    SciTech Connect

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-07-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement {open_quotes}H{close_quotes}-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates {approximately}n{sup 1/3} rational surfaces into the plasma (rather than {approximately}n{sup 1/2}, expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle.

  9. Coulomb edge effects in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jaskolski, W.; Ayuela, A.

    2014-10-01

    Coulomb effects in graphene nanoribbons with arbitrary edges are investigated with the use of a mean-field Hubbard model. It was recently shown that chiral ribbons with minimal edges, characterized by the translation vector (n,m), have a similar structure of bands localized around the Fermi energy as pure zigzag ribbons (n-m,0). Here we show that these flat bands in both ribbon cases differ in detail due to the perturbation induced by armchair edge nodes. For chiral ribbons the edge bands split at the zone boundary, where the corresponding bands of (n-m,0) zigzag ribbons are degenerate. Coulomb interactions enhance strongly this splitting and at the same time they bring spin into play. We modify each edge keeping global sublattice balance to find that spin degeneracy can be partially lifted. The breaking of spin-degeneracy depends on the asymmetry between the edges and in some cases leads to spin-polarized currents.

  10. [Artificial crowns influence upon edge parodontium status].

    PubMed

    Zhulev, E N; Serov, A B

    2010-01-01

    With the aim of prosthetic treatment efficacy increase study of edge parodontium tissue reaction upon different types of artificial crowns was done and methods of chronic localized parodontitis prevention were developed. Changes of the main gingival fluid characteristics (amount, acidity, interleukine-1beta concentration) and indicators of microcirculation in edge parodontium of the teeth under the artificial crowns influence were disclosed. There were developed methods of chronic localized parodontitis prevention produced by artificial crowns edge.

  11. An edge index for topological insulators

    NASA Astrophysics Data System (ADS)

    Prodan, Emil

    2009-03-01

    Topological insulators display dissipationless currents flowing at the edges of the samples. These currents are associated to chiral edge modes, whose existence is intrinsically linked to the topology of the electronic states of the bulk. The edge modes can be easily investigated when the edges are smooth and have a periodicity, but as soon as the periodicity is absent, the problem becomes un-traceable by purely theoretical means. In my talk I will exemplify the use of non-commutative calculus to explore the properties, especially the stability of the edge modes. For example, using such techniques one can give a fairly elementary proof that the edge modes in Chern insulators survive even for a rough (random) edge. Similarly, for the Spin-Hall effect, one can define an observable and its associated current whose conductance remains quantized during various deformations of the Hamiltonian system. It turns out that in all cases, the edge conductance is given by the index of a Fredholm operator, which provides a new topological invariant linked directly to the edge rather than the bulk.

  12. Topological edge states of bound photon pairs

    NASA Astrophysics Data System (ADS)

    Gorlach, Maxim A.; Poddubny, Alexander N.

    2017-05-01

    We predict the existence of interaction-driven edge states of bound two-photon quasiparticles in a dimer periodic array of nonlinear optical cavities. The energy spectrum of photon pairs is dramatically richer than in the noninteracting case or in a simple lattice, featuring collapse and revival of multiple edge and bulk modes as well as edge states in continuum. We link the edge-state existence to the two-photon quantum walk graph connectivity. Our results offer a route to control quantum entanglement and provide insights into the physics of many-body topological states.

  13. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  14. Study on edge extracting in noise image

    NASA Astrophysics Data System (ADS)

    Feng, Gui; Lin, Qiwei; Fu, QingQing

    2008-03-01

    In order to reduce the influence of noise on edge extracting and improve the precision of edge localization on the image, after analyzed the principle, strong points and short points of some traditional edge detecting methods, an effective algorithm for edge extracting in noise image was proposed in this paper. Adopting thought of traditional multi-directional and multistage combinational filtering, an image detail-preserving adaptive filter is designed to remove noise, and then extract the edge in the image. On the basis of the classical Sobel operator, we introduced an algorithm with resisting noise, good real-time and locating accurate edge. The algorithm can distinguish real edge from noise in terms of the theory of successive and smooth edge and random noise. The algorithm was accomplished under visual C++ 6.0 environment and tested by several standard images. The experimental result prove that the presented method is feasible and effective when the salt-pepper pollution of image is smaller than 15%, furthermore the method can extract edges with high location precision and good continuity accurately and effectively, at the same time, it has high processing speed.

  15. Modelling of edge localised modes and edge localised mode control

    SciTech Connect

    Huijsmans, G. T. A.; Loarte, A.; Chang, C. S.; Ferraro, N.; Sugiyama, L.; Waelbroeck, F.; Xu, X. Q.; Futatani, S.

    2015-02-15

    Edge Localised Modes (ELMs) in ITER Q = 10 H-mode plasmas are likely to lead to large transient heat loads to the divertor. To avoid an ELM induced reduction of the divertor lifetime, the large ELM energy losses need to be controlled. In ITER, ELM control is foreseen using magnetic field perturbations created by in-vessel coils and the injection of small D2 pellets. ITER plasmas are characterised by low collisionality at a high density (high fraction of the Greenwald density limit). These parameters cannot simultaneously be achieved in current experiments. Therefore, the extrapolation of the ELM properties and the requirements for ELM control in ITER relies on the development of validated physics models and numerical simulations. In this paper, we describe the modelling of ELMs and ELM control methods in ITER. The aim of this paper is not a complete review on the subject of ELM and ELM control modelling but rather to describe the current status and discuss open issues.

  16. Edge mode spectroscopy and imaging for film edge properties in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    McMichael, Robert

    2014-03-01

    Lithography is an act of violence. Often, films are almost entirely obliterated by patterning, leaving only nanostructures behind with film edges that have borne the brunt of the damage, edges that carry with them the scars of energetic ion bombardment, reactive ions, liftoff and exposure to ambient conditions. In this talk, I will present a variation on ferromagnetic resonance force microscopy that can provide insight into the magnetic properties of film edges in magnetic nanostructures. The method relies on the non-uniformity of the magnetic field in patterned-film nanostructures that are magnetized in-plane, specifically, the low-field regions that form near where the magnetization is directed normal to the edge. In these regions, localized precession forms as trapped spin wave modes, and the resonance condition of these modes serves as an indicator of the edge properties. I will present modeling and measurements on a 500 nm diameter, 25 nm thick Permalloy disk to illustrate the method. Micromagnetic modeling of this disk predicts a main mode that is nearly uniform across the sample and three localized edge modes with higher resonance fields. The spectra measured with various tip positions and mode imaging are consistent with the modeling results. In addition to a strong center mode, three distinct edge modes are observed when the tip is near the disk edge. For a symmetric disk, the modeling predicts that the edge mode resonances are identical on the two opposite edges. However, the measured edge mode resonances on opposite edges of the disk are detected at different resonance fields, suggesting inhomogeneity of the edge properties. By rotating the applied field, we control the position of the localized edge mode along the edge of the disk and confirm that the edge mode resonance field has a strong angular dependence, showing that edge mode properties can vary significantly in a nominally circular disk.

  17. Efficient edge-guided full-waveform inversion by Canny edge detection and bilateral filtering algorithms

    NASA Astrophysics Data System (ADS)

    Xiang, Shiming; Zhang, Haijiang

    2016-11-01

    It is known full-waveform inversion (FWI) is generally ill-conditioned and various strategies including pre-conditioning and regularizing the inversion system have been proposed to obtain a reliable estimation of the velocity model. Here, we propose a new edge-guided strategy for FWI in frequency domain to efficiently and reliably estimate velocity models with structures of the size similar to the seismic wavelength. The edges of the velocity model at the current iteration are first detected by the Canny edge detection algorithm that is widely used in image processing. Then, the detected edges are used for guiding the calculation of FWI gradient as well as enforcing edge-preserving total variation (TV) regularization for next iteration of FWI. Bilateral filtering is further applied to remove noise but keep edges of the FWI gradient. The proposed edge-guided FWI in the frequency domain with edge-guided TV regularization and bilateral filtering is designed to preserve model edges that are recovered from previous iterations as well as from lower frequency waveforms when FWI is conducted from lower to higher frequencies. The new FWI method is validated using the complex Marmousi model that contains several steeply dipping fault zones and hundreds of horizons. Compared to FWI without edge guidance, our proposed edge-guided FWI recovers velocity model anomalies and edges much better. Unlike previous image-guided FWI or edge-guided TV regularization strategies, our method does not require migrating seismic data, thus is more efficient for real applications.

  18. Saturn's Rings Edge-on

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.

    For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.

    The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.

    This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).

    Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science

  19. Comparing object recognition from binary and bipolar edge features

    PubMed Central

    Jung, Jae-Hyun; Pu, Tian; Peli, Eli

    2017-01-01

    Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary edge images (black edges on white background or white edges on black background) have been used to represent features (edges and cusps) in scenes. However, the polarity of cusps and edges may contain important depth information (depth from shading) which is lost in the binary edge representation. This depth information may be restored, to some degree, using bipolar edges. We compared recognition rates of 16 binary edge images, or bipolar features, by 26 subjects. Object recognition rates were higher with bipolar edges and the improvement was significant in scenes with complex backgrounds.

  20. Gyrokinetic Models for Edge Plasmas*

    NASA Astrophysics Data System (ADS)

    Dimits, Andris

    2010-11-01

    The use of gyrokinetic equations for the simulation of magnetic fusion edge and scrapeoff-layer plasmas requires that the equations be valid for large relative perturbation amplitudes and, possibly, large flows. The Hamiltonian gyrokinetic theory has therefore been extended to two new orderings [1,2] that are more general than the standard ones in that they allow for potential perturbations or ExB flows of order the thermal levels. These theories both generalize and show that additional terms should have been present some related prior work. Here, full (low-β) electromagnetic toroidal equation sets are presented, and he energy conservation relations are derived using Noether's theorem in a Lagrangian variational approach. Useful subsidiary and reduced orderings are also considered that result in considerable simplification, and methods for the numerical implementation of the new terms in the equations will also be discussed. *This work was performed for US DOE by LLNL under Contract DE-AC52-07NA27344 and is part of the ESL. [4pt] [1] A.M. Dimits et al., Phys. Fluids B4, 274 (1992). [0pt] [2] A.M. Dimits, Phys. Plasmas 17, 055901 (2010).

  1. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott

    2011-01-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System. We will also explore the Neptune Trojans and scattered disk populations through the survey.

  2. Structure at the Leading Edge

    NASA Astrophysics Data System (ADS)

    Quint, D. A.; Schwarz, J. M.; Marchetti, M. C.

    2009-03-01

    The leading edge of a crawling cell is propelled forward by a polymerizing network of branched actin filaments. This emergent structural array seems to be rigid enough to support and push against the cell membrane within the appropriate time scales under which cell motility can be realized. We seek to understand how such a network can optimize its structure to generate the rigidity required, particularly focusing on the role of branching in the network. For isolated elastic beams, which model semiflexible polymers, the critical buckling load is enhanced when branched supports are included. Therefore, we conjecture that an optimal branching angle is found by looking at the competition between branching providing collective structural support, which results in polymerization with a component perpendicular to the direction of motion, and polymerization along the direction of motion. To partially test this conjecture, we simulate a directed, branched network in the absence of forces. Preliminary results indicate a lower bound on the optimal branching angle of approximately 40 degrees (to be compared with the observed 70 degree branching angle). Studies of a directed, branched network with forces will also be addressed.

  3. On the Edge of Mercury

    NASA Image and Video Library

    2017-09-28

    In this image, Mercury's horizon cuts a striking edge against the stark blackness of space. On the right, sunlight harshly brings the landscape into relief while on the left, the surface is shrouded in the darkness of night. This image was acquired as part of MDIS's limb imaging campaign. Once per week, MDIS captures images of Mercury's limb, with an emphasis on imaging the southern hemisphere limb. These limb images provide information about Mercury's shape and complement measurements of topography made by the Mercury Laser Altimeter (MLA) of Mercury's northern hemisphere. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. In the mission's more than three years of orbital operations, MESSENGER has acquired over 250,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott; Trujillo, Chad

    2012-02-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a medium wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System.

  5. Beyond the Kuiper Belt Edge

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott

    2012-06-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System. We will also explore the Neptune Trojans and scattered disk populations through the survey.

  6. Leading edge gypsy moth population dynamics

    Treesearch

    M. R. Carter; F. W. Ravlin; M. L. McManus

    1991-01-01

    Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...

  7. Eliminating Unbonded Edges In Explosive Bonding

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1991-01-01

    Explosive-bonding technique elminates sharp unbonded notch normally occurring between flyer plate and baseplate. Makes it possible to simply break away unbonded outer extremity of flyer plate; no longer necessary to grind away unbonded edge to prevent collection of corrosive contaminants in edge voids. Method not limited to flat surfaces.

  8. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  9. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2017-03-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  10. Optimum Edging and Trimming of Hardwood Lumber

    Treesearch

    Carmen Regalado; D. Earl Kline; Philip A. Araman

    1992-01-01

    Before the adoption of an automated system for optimizing edging and trimming in hardwood mills, the performance of present manual systems must be evaluated to provide a basis for comparison. a study was made in which lumber values recovered in actual hardwood operations were compared to the output of a computer-based procedure for edging and trimming optimization. The...

  11. Automatic Edging and Trimming of Hardwood Lumber

    Treesearch

    D. Earl Kline; Eugene M. Wengert; Philip A. Araman

    1990-01-01

    Studies have shown that there is a potential to increase hardwood lumber value by more than 20 percent through optimum edging and trimming. Even a small portion of this percentage can boost the profitability of hardwood lumber manufacturers substantially. The objective of this research project is to develop an automated system which would assist in correct edging and...

  12. Eliminating Unbonded Edges In Explosive Bonding

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1991-01-01

    Explosive-bonding technique elminates sharp unbonded notch normally occurring between flyer plate and baseplate. Makes it possible to simply break away unbonded outer extremity of flyer plate; no longer necessary to grind away unbonded edge to prevent collection of corrosive contaminants in edge voids. Method not limited to flat surfaces.

  13. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2016-09-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  14. Living on the edge: roads and edge effects on small mammal populations.

    PubMed

    Fuentes-Montemayor, Elisa; Cuarón, Alfredo D; Vázquez-Domínguez, Ella; Benítez-Malvido, Julieta; Valenzuela-Galván, David; Andresen, Ellen

    2009-07-01

    1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides

  15. Graphene at the edge: stability and dynamics.

    PubMed

    Girit, Caglar O; Meyer, Jannik C; Erni, Rolf; Rossell, Marta D; Kisielowski, C; Yang, Li; Park, Cheol-Hwan; Crommie, M F; Cohen, Marvin L; Louie, Steven G; Zettl, A

    2009-03-27

    Although the physics of materials at surfaces and edges has been extensively studied, the movement of individual atoms at an isolated edge has not been directly observed in real time. With a transmission electron aberration-corrected microscope capable of simultaneous atomic spatial resolution and 1-second temporal resolution, we produced movies of the dynamics of carbon atoms at the edge of a hole in a suspended, single atomic layer of graphene. The rearrangement of bonds and beam-induced ejection of carbon atoms are recorded as the hole grows. We investigated the mechanism of edge reconstruction and demonstrated the stability of the "zigzag" edge configuration. This study of an ideal low-dimensional interface, a hole in graphene, exhibits the complex behavior of atoms at a boundary.

  16. Sensitivity Analysis of Automated Ice Edge Detection

    NASA Astrophysics Data System (ADS)

    Moen, Mari-Ann N.; Isaksem, Hugo; Debien, Annekatrien

    2016-08-01

    The importance of highly detailed and time sensitive ice charts has increased with the increasing interest in the Arctic for oil and gas, tourism, and shipping. Manual ice charts are prepared by national ice services of several Arctic countries. Methods are also being developed to automate this task. Kongsberg Satellite Services uses a method that detects ice edges within 15 minutes after image acquisition. This paper describes a sensitivity analysis of the ice edge, assessing to which ice concentration class from the manual ice charts it can be compared to. The ice edge is derived using the Ice Tracking from SAR Images (ITSARI) algorithm. RADARSAT-2 images of February 2011 are used, both for the manual ice charts and the automatic ice edges. The results show that the KSAT ice edge lies within ice concentration classes with very low ice concentration or open water.

  17. Edge States in Transitional Pipe Flow

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias M.; Eckhardt, Bruno

    2006-11-01

    We study the boundary of the laminar region near the onset of turbulence. Approaching the boundary from the laminar side, the lifetime of perturbations increases, diverges when the boundary is reached, and varies chaotically for larger amplitudes. In the chaotic region, lifetimes vary sensitively with amplitude, consistent with the strange saddle picture of the turbulence proposed earlier. The trajectory on the edge between the laminar and chaotic regions is asymptotic to a single well defined state, essentially independent of the type of perturbation. The edge then becomes the stable manifold of this structure. In the case of a model shear flow, the edge states are simple or period doubled or chaotic trajectories. In the case of pipe flow the edge state seems to remain close to a state with simple vortical structure. Edge of Chaos in a Parallel Shear Flow, Joseph D. Skufca, James A. Yorke, and Bruno Eckhardt, Phys. Rev. Lett. 96, 174101 (2006)

  18. Edge plasmons in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Bao, Zhi-Wei; Wu, Hong-Wei; Zhou, Yu

    2016-12-01

    In this paper, we numerically investigate the edge plasmons in monolayer black phosphorus. It is found that the complex effective indexes of these modes depend on the molecular configuration of the edge. We have calculated the ratio of the real over the imaginary part of the mode effective index, and the results indicate that such edge modes indeed possess outstanding propagation performances in the mid-infrared. In the case of black phosphorus nanoribbon, it seems that only the anti-symmetric modes have low losses, and may be of use in applications. Compared with those at the edge of monolayer black phosphorus, the propagation performances can be further enhanced due to the mode coupling between the two edges. In the end, the effects of substrates are discussed. Our study shows that monolayer black phosphorus may be regarded as a promising candidate for plasmonic applications in the mid-infrared.

  19. Edge effects on water droplet condensation.

    PubMed

    Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel

    2014-12-01

    In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.

  20. [Gap edge effect of Castanopsis kawakamii community].

    PubMed

    Liu, Jinfu; Hong, Wei; Li, Junqing; Lin, Rongfu

    2003-09-01

    This paper reported the characters of gap edge effect of Castanopsis kawakamii community in Sanming, Fujian Province. The species diversity, ecological dominance, and edge effect strength of 38 forest gaps with different development stages in different stands of Castanopsis kawakamii community were measured, and Shannon-Wiener index, Simpson index, and index of edge effect strength were calculated. The results showed that the index of the gap edge effect of Castanopsis kawakamii community was about 0.7-1.3 (according to the species diversity index) and 0.3-1.8 (according to the ecological dominance index). The gap edge effect had the trend of increasing the species diversity of forest communities. The index of gap effect was affected by the size and development stage of the gap and the related forest type. The study provided a theoretical basis for the maintenance of species diversity and the forest management in Castanopsis kawakamii community.

  1. Edge effects on water droplet condensation

    NASA Astrophysics Data System (ADS)

    Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel

    2014-12-01

    In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.

  2. Large Lewis No. Edge-Flame Instabilities

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.

    2001-01-01

    Edge-flames play an important role in a number of microgravity investigations, and in the general study of flames. Examples include the candle-flame experiments carried out on board both the Space Shuttle and the Mir Space Station; the flame-spread-over-liquid work carried out by H. Ross and W. Sirignano amongst others and lifted turbulent diffusion flames. In all of these configurations a local two-dimensional flame structure can be identified which looks like a flame-sheet with an edge, and these structures exhibit dynamical behavior which characterizes them and distinguishes them from ad hoc 2D flame structures. Edge-flames can exist in both a non-premixed context (edges of diffusion flames) and in a premixed context (edges of deflagrations), but the work reported here deals with the edges of diffusion flames. It is particularly relevant, we believe, to oscillations that have been seen in both the candle-flame context, and the flame-spread-over-liquid context. These oscillations are periodic edge-oscillations (in an appropriate reference frame), sans oscillation of the trailing diffusion flame. It is shown that if the Lewis number of the fuel is sufficiently large (the Lewis number of the oxidizer is taken to be 1), and the Damkohler number is sufficiently small, oscillating-edge solutions can be found. Oscillations are encouraged by an on-edge convective flow and the insertion of a cold probe, discouraged by an off-edge convective flow. In the present work, the nature of these oscillations is examined in more depth, using a variety of numerical strategies.

  3. Manipulating the edge of instability

    PubMed Central

    Venkadesan, Madhusudhan; Guckenheimer, John; Valero-Cuevas, Francisco J.

    2009-01-01

    We investigate the integration of visual and tactile sensory input for dynamic manipulation. Our experimental data and computational modeling reveal that time-delays are as critical to task-optimal multisensory integration as sensorimotor noise. Our focus is a dynamic manipulation task “at the edge of instability.” Mathematical bifurcation theory predicts that this system will exhibit well-classified low-dimensional dynamics in this regime. The task was using the thumbpad to compress a slender spring prone to buckling as far as possible, just shy of slipping. As expected from bifurcation theory, principal components analysis gives a projection of the data onto a low dimensional subspace that captures 91-97% of its variance. In this subspace, we formulate a low-order model for the brain+hand+spring dynamics based on known mechanical and neurophysiological properties of the system. By systematically occluding vision and anesthetically blocking thumbpad sensation in 12 consenting subjects, we found that vision contributed to dynamic manipulation only when thumbpad sensation was absent. The reduced ability of the model system to compress the spring with absent sensory channels closely resembled the experimental results. Moreover, we found that the model reproduced the contextual usefulness of vision only if we took account of time-delays. Our results shed light on critical features of dynamic manipulation distinct from those of static pinch, as well as the mechanism likely responsible for loss of manual dexterity and increased reliance on vision when age or neuromuscular disease increase noisiness and/or time-delays during sensorimotor integration. PMID:17400231

  4. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  5. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    PubMed

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  6. Comparative Study of Edge Detectors in case of Echocardiographic Images

    NASA Astrophysics Data System (ADS)

    Saini, Kalpana; Dewal, M. L.; Rohit, Manoj Kumar

    2010-11-01

    In this paper we compare different edge detectors based on peak signal to noise ratio on Echocardiographic images. Edge detection is a critical element in image processing, since edges contain a major function of image information. The function of edge detection is to identify the boundaries of homogeneous regions in an image based on properties such as intensity and texture.We have taken Perwitt edge detector, Robarts edge detector, LoG edge detector, Canny edge detector, and Sobel edge detector for this comparison and study.

  7. Auditing to the cutting edge

    SciTech Connect

    Good, L.; Wirdzek, P.

    1999-07-01

    Equipment? System? Building? Campus? Neighborhood? Community? Region? What is to be audited and what needs to be corrected? Can the energy management professional decide, or should the customer? Over the last few decades, energy professionals have been evaluating energy use in order to balance clients' expenditures with acceptable levels of service. Traditionally, professional expertise and creativity have been limited more by budget than any other single element. Today, energy and the environment are tightly intertwined. In the future, effective energy management may not be possible without considering the relationships between them. Conversely, environmental protection cannot be achieved without considering energy production, distribution, and use. To this end, two powerful federal organizations, the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE), have been engaged in defining the interrelationships of these areas and fashioning national energy policies aimed at awakening Americans to these facts. Environmental demands are becoming a factor in efficiency equations. Energy management professionals should prepare a response. They will face demands for cutting-edge audits that reach further than giving utility power just a trim in the energy barber shop. Survival in the business of energy management will require a broader perspective. One need only look to current advertisements by national and international corporations which praise the environmental benefits of their products and even their places of business as cleaner than their competitors'. For the energy management professional then, energy diversity and source versus site considerations are opportunities to be identified in the audit process, in addition to replacement of inefficient equipment. The country is rich with technology choices, with documented experience, and with the knowledge to create systems that can mine deep savings. True, some have niche applications, which

  8. Technidilaton at the conformal edge

    SciTech Connect

    Hashimoto, Michio; Yamawaki, Koichi

    2011-01-01

    Technidilaton (TD) was proposed long ago in the technicolor near criticality/conformality. To reveal the critical behavior of TD, we explicitly compute the nonperturbative contributions to the scale anomaly <{theta}{sub {mu}}{sup {mu}>} and to the technigluon condensate <{alpha}G{sub {mu}{nu}}{sup 2}>, which are generated by the dynamical mass m of the technifermions. Our computation is based on the (improved) ladder Schwinger-Dyson equation, with the gauge coupling {alpha} replaced by the two-loop running coupling {alpha}({mu}) having the Caswell-Banks-Zaks infrared fixed point {alpha}{sub *}: {alpha}({mu}){approx_equal}{alpha}={alpha}{sub *} for the infrared region m<{mu}<{Lambda}{sub TC}, where {Lambda}{sub TC} is the intrinsic scale (analogue of {Lambda}{sub QCD} of QCD) relevant to the perturbative scale anomaly. We find that -<{theta}{sub {mu}}{sup {mu}}>/m{sup 4}{yields}const{ne}0 and <{alpha}G{sub {mu}}{nu}{sup 2}>/m{sup 4}{yields}({alpha}/{alpha}{sub cr}-1){sup -3/2}{yields}{infinity} in the criticality limit m/{Lambda}{sub TC}{approx}exp(-{pi}/({alpha}/{alpha}{sub cr}-1){sup 1/2}){yields}0 ({alpha}={alpha}{sub *}=>{alpha}{sub cr}, or N{sub f} approaches N{sub f}{sup cr}) ('conformal edge'). Our result precisely reproduces the formal identity <{theta}{sub {mu}}{sup {mu}>}=({beta}({alpha})/4{alpha}{sup 2})<{alpha}G{sub {mu}{nu}}{sup 2}>, where {beta}({alpha})={Lambda}{sub TC}({partial_derivative}{alpha}/{partial_derivative}{Lambda}{sub TC})=-(2{alpha}{sub cr}/{pi}){center_dot}({alpha}/{alpha}{sub cr}-1){sup 3/2} is the nonperturbative beta function corresponding to the above essential singularity scaling of m/{Lambda}{sub TC}. Accordingly, the partially conserved dilatation current implies (M{sub TD}/m){sup 2}(F{sub TD}/m){sup 2}=-4<{theta}{sub {mu}}{sup {mu}}>/m{sup 4}{yields}const{ne}0 at criticality limit, where M{sub TD} is the mass of TD and F{sub TD} the decay constant of TD. We thus conclude that at criticality limit the TD could become a ''true

  9. Electrostatic analysis of the tokamak edge plasma

    SciTech Connect

    Motley, R.W.

    1981-07-01

    The intrusion of an equipotential poloidal limiter into the edge plasma of a circular tokamak discharge distorts the axisymmetry in two ways: (1) it (partially) shorts out the top-to-bottom Pfirsch-Schlueter driving potentials, and (2) it creates zones of back current flow into the limiter. The resulting boundary mismatch between the outer layers and the inner axisymmetric Pfirsch-Schlueter layer provides free energy to drive the edge plasma unstable. Special limiters are proposed to symmetrize the edge plasma and thereby reduce the electrical and MHD activity in the boundary layer.

  10. Image Edge Extraction via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  11. An edge preserving differential image coding scheme

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1992-01-01

    Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility, especially when coding medical or scientific images, where edge preservation is of utmost importance. A simple, easy to implement differential image coding system with excellent edge preservation properties is presented. The coding system can be used over variable rate channels, which makes it especially attractive for use in the packet network environment.

  12. Edge current in a small chiral superconductor

    NASA Astrophysics Data System (ADS)

    Suzuki, Shu-Ichiro; Asano, Yasuhiro

    2016-10-01

    We discuss a theoretical description of the edge current in a chiral superconductor. On the basis of the quasiclassical Green function formalism, we derive a useful expression of the chiral edge current which enable us to understand how Cooper pairs contribute to the electric current. We will show that the chiral edge current is carried by the combinations of two Cooper pairs belonging to different pairing symmetries. One Cooper pair belongs to the usual even-frequency pairing symmetry class. However, the other belongs to the odd-frequency symmetry class.

  13. Natural and artificial spectral edges in exoplanets

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  14. An edge preserving differential image coding scheme

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1991-01-01

    Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility especially when coding medical or scientific images, where edge preservation is of utmost importance. We present a simple, easy to implement differential image coding system with excellent edge preservation properties. The coding system can be used over variable rate channels which makes it especially attractive for use in the packet network environment.

  15. Cavitation on hydrofoils with sinusoidal leading edge

    NASA Astrophysics Data System (ADS)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  16. An optimal scale for edge detection

    NASA Astrophysics Data System (ADS)

    Geiger, Davi; Poggio, Tomaso

    1988-09-01

    Many problems in early vision are ill posed. Edge detection is a typical example. This paper applies regularization techniques to the problem of edge detection. The authors derive an optimal filter for edge detection with a size controlled by the regularization parameter lambda and compare it to the Gaussian filter. A formula relating the signal-to-noise ratio to the parameter lambda is derived from regularization analysis for the case of small values of lambda. Also discussed is the method of Generalized Cross Validation for obtaining the optimal filter scale. Finally, the authors use their framework to explain two perceptual phenomena: coarsely quantized images becoming recognizable by either blurring or adding noise.

  17. Nonperturbative models of intermittency in edge turbulence

    SciTech Connect

    Anderson, Johan; Kim, Eun-jin

    2008-12-15

    A theory of the probability distribution function (PDF) tails of the blob density in plasma edge turbulence is provided. A simplified model of the fast convective radial transport is used. The theoretically predicted PDF tails corroborate earlier measurements of edge transport, further confirming the strongly non-Gaussian feature of edge transport. It is found that increasing the cross-sectional spatial scale length (L{sub x} and L{sub y}) of the blob results in larger transport, whereas increasing the toroidal scale length (L{sub z}) decreases the PDF. The results imply that the PDF decreases for larger blob speed v{sub b}.

  18. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief

    PubMed Central

    Egan, John; Sharman, Rebecca J.; Scott-Brown, Kenneth C.; Lovell, Paul George

    2016-01-01

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief. PMID:27922058

  19. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    PubMed

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  20. Io Loki in Infrared: Hot Edge

    NASA Image and Video Library

    2001-11-27

    High temperatures observed by NASA Galileo spacecraft along the western edge of the Loki volcano on Jupiter moon Io may indicate freshly exposed material at the shore of a lava lake during an Oct. 16, 2001 flyby of Io.

  1. At the Edge of a Polar Cap

    NASA Image and Video Library

    2014-05-22

    The deep chasm that formed on the polar cap edge is identified as an area of strong down-slope winds and has a clear connection to Mars largest dune field, Olympia Undae as observed by NASA Mars Reconnaissance Orbiter.

  2. Edge energies and shapes of nanoprecipitates.

    SciTech Connect

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  3. Edge effect in fluid jet polishing.

    PubMed

    Guo, Peiji; Fang, Hui; Yu, Jingchi

    2006-09-10

    The edge effect is one of the most important subjects in optical manufacturing. The removal function at different positions of the sample in the process of fluid jet polishing (FJP) is investigated in the experiments. Furthermore, by using finite-element analysis (FEA), the distributions for velocity and pressure of slurry jets are simulated. Experimental results demonstrate that the removal function has a ring-shaped profile, except for a little change in the size at the operated area even if the nozzle extends beyond the edge of the sample. FEA simulations reveal a similar distribution of velocity with a cavity resulting in the ring-shaped profile of material removal at different impact positions. To a certain extent, therefore, the removal function at the edge of the surface of the sample appears similar to that inside of it, so that the classical edge effect can be neglected in FJP.

  4. Survey of atomic processes in edge plasmas

    SciTech Connect

    Janev, R.K.; Post, D.E.; Langer, W.D.; Evans, K.; Heifetz, D.B.; Weisheit, J.C.

    1983-11-01

    A review of the most important reactions of atomic and molecular hydrogen with the fusion edge plasma electrons and ions is presented. An appropriate characterization of the considered collision processes, useful in plasma edge studies (evaluated cross sections, reaction rates, energy gain/loss per collision, etc.) has been performed. While a complete survey of atomic physics of fusion edge plasmas will be given elsewhere shortly, we demonstrate here the relevance of the atomic collision processes for describing the physical state of edge plasmas and understanding the energy balance in cool divertor plasmas. It is found that the excited neutral species play an important role in the low-temperature, high-density plasmas.

  5. Collapsing Volcano; Edge of Olympus Mons

    NASA Image and Video Library

    2010-03-31

    This image taken by NASA Mars Reconnaissance Orbiter covers the northern edge of the largest volcano in the solar system, Olympus Mons on Mars; its margin is defined by a massive cliff many kilometers several miles tall.

  6. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  7. Leading edge protection for composite blades

    NASA Technical Reports Server (NTRS)

    Brantley, J. W.; Irwin, T. P. (Inventor)

    1977-01-01

    A laminated filament composite structure, such as an airfoil for use in an environment in which it is subjected to both foreign object impact and bending is provided with improved leading edge protection. At least one fine wire mesh layer is partially bonded within the composite structure along its neutral bending axis. A portion of the wire mesh layer extends beyond the neutral bending axis and partially around the leading edge where it is bonded to the outer periphery of the primary composite structure. The wire mesh is clad with a metal such as nickel to provide an improved leading edge protective device which is firmly anchored within the composite structure. Also described is a novel method of constructing a composite airfoil so as to further minimize the possibility of losing the leading edge protective device due to delamination caused by impact and bending.

  8. Edge reconstruction-mediated graphene fracture

    NASA Astrophysics Data System (ADS)

    Zhang, Ziang; Kutana, Alex; Yakobson, Boris I.

    2015-01-01

    Creation of free edges in graphene during mechanical fracture is a process that is important from both fundamental and technological points of view. Here we derive an analytical expression for the energy of a free-standing reconstructed chiral graphene edge, with chiral angle varying from 0° to 30°, and test it by first-principles computations. We then study the thermodynamics and kinetics of fracture and show that during graphene fracture under uniaxial load it is possible to obtain fully reconstructed zigzag edges through sequential reconstructions at the crack tip. The preferable condition for this process is high temperature (T ~ 1000 K) and low (quasi-static) mechanical load (KI ~ 5.0 eV Å-5/2). Edge configurations of graphene nanoribbons may be tuned according to these guidelines.

  9. Folded membrane dialyzer with mechanically sealed edges

    DOEpatents

    Markley, Finley W.

    1976-01-01

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  10. Multi-dimensional edge detection operators

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Lee, Chulhee

    2014-05-01

    In remote sensing, modern sensors produce multi-dimensional images. For example, hyperspectral images contain hundreds of spectral images. In many image processing applications, segmentation is an important step. Traditionally, most image segmentation and edge detection methods have been developed for one-dimensional images. For multidimensional images, the output images of spectral band images are typically combined under certain rules or using decision fusions. In this paper, we proposed a new edge detection algorithm for multi-dimensional images using secondorder statistics. First, we reduce the dimension of input images using the principal component analysis. Then we applied multi-dimensional edge detection operators that utilize second-order statistics. Experimental results show promising results compared to conventional one-dimensional edge detectors such as Sobel filter.

  11. The edge extraction of agricultural crop leaf

    NASA Astrophysics Data System (ADS)

    Wang, Beilei; Cao, Ying; Xiao, Huiming; Jiang, Huiyan; Liu, Hongjuan

    2009-07-01

    In agricultural engineering, to ensure rational use of pesticide and improvement of crop production, computer image recognition technology is currently applied to help farmers to identify the degree of crop diseases. Considering the importance of feature extraction in this field, in this paper, we first present and discuss several widely used edge operator, including Sobel, Prewitt, Roberts, Canny and LoG. Furthermore, an experiment is conducted to compare performance and accuracy of five operators by applying them to a leaf image taken from agricultural crop for edge detection. The results of experiment show that, in practice, LoG edge operator is relatively a better choice and performs well for edge detection of agricultural crop leaf image.

  12. Applications of Hydrofoils with Leading Edge Protuberances

    DTIC Science & Technology

    2012-03-30

    APPLICATIONS OF HYDROFOILS WITH LEADING EDGE PROTUBERANCES Final Technical Report for Office of Naval Research contract...To) 03/30/2012 Final Technical Report 01-08-2008 to 31-12-2011 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Applications of Hydrofoils with Leading...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The leading edge modified hydrofoils

  13. Forecasting Bering Sea ice edge behavior

    SciTech Connect

    Pritchard, R.S. ); Mueller, A.C. ); Yang, Y.S. ); Hanzlick, D.J.

    1990-01-15

    A coupled ice/ocean dynamics model is developed to provide Arctic offshore operators with 5- to 7-day forecasts of ice motions, ice conditions, and ice edge motions. An adaptive grid is introduced to follow the ice edge, and the grid may move independently of the ice motion. The grid can be Lagrangian or Eulerian at different locations away from the ice edge. Ice stress is described using an elastic-plastic model with strength determined by the ice conditions. The ocean dynamics model describes time-dependent, three-dimensional behavior, including wind-driven currents and barotropic and baroclinic flows. The thermal energy budget of the ice cover is coupled to the ocean, with mass and salt interchange accompanying freezing or melting. Near the marginal ice zone (MIZ), surface winds (determined by reducing and turning the geostrophic winds) are enhanced to reflect observed behavior. The model was tested by simulating ice edge motions observed during the 1983 Marginal Ice Zone Experiment-West and during drilling of the 1983 north Aleutian shelf Continental Offshore Stratigraphic Test well. Simulations of ice edge movement in the Bering Sea compare with observed data to within about 5 km/d. The model correctly describes mixed-layer evolution in the marginal ice zone as fresh meltwater is mixed downward by turbulence. Along-edge baroclinic flows due to density gradients across the ice edge are simulated by the model, in agreement with observations. Increased ice drift speeds generate higher melt rates due to increased turbulence levels, with the result that ice edge advance is moderated in spite of higher ice drift speeds.

  14. Possible new edge barriers in polycrystalline superconductors

    NASA Astrophysics Data System (ADS)

    Belevtsov, L. V.

    2002-09-01

    We present a theoretical prediction of the new edge barriers for Abrikosov vortex penetration into polycrystalline superconductors. The traditional Bean-Livingston surface barrier is governed by the strength of the external field. Edge barriers in polycrystalline superconductors are also governed by the external field as well as by the anisotropy ratio, grain-coupling strength and grain size. We support our theory with concrete calculation of the critical current density in both high-Tc oxide and MgB2 superconductors.

  15. Commercial Technology at the Tactical Edge

    DTIC Science & Technology

    2013-06-01

    18th ICCRTS “C2 in Underdeveloped, Degraded and Denied Operational Environments” Commercial Technology at the Tactical Edge Topics: (7...Architectures, Technologies , and Tools (8): Networks and Networking Jonathan R. Agre Institute for Defense Analyses 4850 Mark Center Drive...4. TITLE AND SUBTITLE Commercial Technology at the Tactical Edge 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  16. Floquet edge states with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Reichl, Matthew D.; Mueller, Erich J.

    2014-06-01

    We describe an experimental setup for imaging topologically protected Floquet edge states using ultracold bosons in an optical lattice. Our setup involves a deep two-dimensional optical lattice with a time-dependent superlattice that modulates the hopping between neighboring sites. The finite waist of the superlattice beam yields regions with different topological numbers. One can observe chiral edge states by imaging the real-space density of a bosonic packet launched from the boundary between two topologically distinct regions.

  17. Edge Equilibrium Code (EEC) For Tokamaks

    SciTech Connect

    Li, Xujling

    2014-02-24

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids

  18. Edge covers and independence: Algebraic approach

    NASA Astrophysics Data System (ADS)

    Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.

    2016-06-01

    In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.

  19. Nondiffusive plasma transport at tokamak edge

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.

    2000-10-01

    Recent findings show that cross field edge plasma transport at tokamak edge does not necessarily obey a simple diffusive law [1], the only type of a transport model applied so far in the macroscopic modeling of edge plasma transport. Cross field edge transport is more likely due to plasma filamentation with a ballistic motion of the filaments towards the first wall. Moreover, it so fast that plasma recycles on the main chamber first wall rather than to flow into divertor as conventional picture of edge plasma fluxes suggests. Crudely speaking particle recycling wise diverted tokamak operates in a limiter regime due to fast anomalous non-diffusive cross field plasma transport. Obviously that this newly found feature of edge plasma anomalous transport can significantly alter a design of any future reactor relevant tokamaks. Here we present a simple model describing the motion of the filaments in the scrape off layer and discuss it implications for experimental observations. [1] M. Umansky, S. I. Krasheninnikov, B. LaBombard, B. Lipschultz, and J. L. Terry, Phys. Plasmas 6 (1999) 2791; M. Umansky, S. I. Krasheninnikov, B. LaBombard and J. L. Terry, Phys. Plasmas 5 (1998) 3373.

  20. Interaction of gusts with forest edges

    NASA Astrophysics Data System (ADS)

    Ruck, Bodo; Tischmacher, Michael

    2012-05-01

    Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study the interaction of gusts with forest edges. Summarizing the state of knowledge in the field of forest damages generated by extreme storms, there is a strong indication that in many cases, windthrow of trees starts near the forest edge from where it spreads into the stand. The high-transient interaction between gusts and (porous) forest edges produce unsteady flow phenomena not known so far. From a fluid mechanical point of view, the flow type resembles a forward-facing porous step flow, which is significantly influenced by the characteristics of the oncoming atmospheric boundary layer flow and the shape and `porous properties' of the forest edge. The paper reports systematic investigations on the interaction of artificially generated gusts and forest edge models in an atmospheric boundary layer wind tunnel. The experimental investigations were carried out with a laser-based time-resolved PIV-system and high speed photography. Different flow phenomena like gust streching, vortex formation, Kelvin-Helmholtz instabilities or wake production of turbulence could be measured or visualized contributing to the understanding of the complex flow perfomance over the forest edge.

  1. Aircraft wing trailing-edge noise

    NASA Technical Reports Server (NTRS)

    Underwood, R. L.; Hodgson, T. H.

    1981-01-01

    The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.

  2. Active edge maps for medical image registration

    NASA Astrophysics Data System (ADS)

    Kerwin, William; Yuan, Chun

    2001-07-01

    Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.

  3. Edge detecting new physics the Voronoi way

    NASA Astrophysics Data System (ADS)

    Debnath, Dipsikha; Gainer, James S.; Kim, Doojin; Matchev, Konstantin T.

    2016-05-01

    Edge detection is an important tool in the search for and exploration of physics beyond the standard model. Ideally one would be able to perform edge detection in a relatively model-independent way, however most analyses rely on more detailed properties (i.e. “shapes” or likelihood distributions) of the variable(s) of interest. We therefore present a sketch of how edge detection can be accomplished using Voronoi tessellations, focusing on the case of two-dimensional distributions for simplicity. After deriving some useful properties of the Voronoi tessellations of simplified distributions containing edges, we propose several algorithms for tagging the Voronoi cells in the vicinity of kinematic edges in real data and show that the efficiency of our methods is improved by the addition of a few Voronoi relaxation steps via Lloyd's method. Our results suggest specifically that Voronoi-based methods should be useful for relatively model-independent edge detection, and, more generally, that the wider adaptation of Voronoi tessellations may be useful in collider physics.

  4. Edge effects on water droplet condensation

    NASA Astrophysics Data System (ADS)

    Royon, Laurent; Montgruel, Anne; Medici, Marie Gabrielle; Beysens, Daniel

    2014-11-01

    The effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate is investigated. Edges, corners, cooled/non cooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicular to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edges effects can be canceled. In certain cases, the growth enhancement can reach nearly 500% on edges or corners which, on an inclined substrate, make droplets near the edges detach sooner than in the middle of the substrate. This effect is frequently observed with dew condensing on windows or car windshields. Such droplets, acting as wipers, can thus appreciably increase dew collection on a substrate.

  5. Edge conduction in monolayer WTe2

    NASA Astrophysics Data System (ADS)

    Fei, Zaiyao; Palomaki, Tauno; Wu, Sanfeng; Zhao, Wenjin; Cai, Xinghan; Sun, Bosong; Nguyen, Paul; Finney, Joseph; Xu, Xiaodong; Cobden, David H.

    2017-07-01

    A two-dimensional topological insulator (2DTI) is guaranteed to have a helical one-dimensional edge mode in which spin is locked to momentum, producing the quantum spin Hall effect and prohibiting elastic backscattering at zero magnetic field. No monolayer material has yet been shown to be a 2DTI, but recently the Weyl semimetal WTe2 was predicted to become a 2DTI in monolayer form if a bulk gap opens. Here, we report that, at temperatures below about 100 K, monolayer WTe2 does become insulating in its interior, while the edges still conduct. The edge conduction is strongly suppressed by an in-plane magnetic field and is independent of gate voltage, save for mesoscopic fluctuations that grow on cooling due to a zero-bias anomaly, which reduces the linear-response conductance. Bilayer WTe2 also becomes insulating at low temperatures but does not show edge conduction. Many of these observations are consistent with monolayer WTe2 being a 2DTI. However, the low-temperature edge conductance, for contacts spacings down to 150 nm, never reaches values higher than ~20 μS, about half the predicted value of e2/h, suggesting significant elastic scattering in the edge.

  6. Edge-to-Edge Oriented Self-Assembly of ReS2 Nanoflakes.

    PubMed

    Zhang, Qin; Wang, Wenjie; Kong, Xin; Mendes, Rafael G; Fang, Liwen; Xue, Yinghui; Xiao, Yao; Rümmeli, Mark H; Chen, Shengli; Fu, Lei

    2016-09-07

    The self-assembly of two-dimensional (2D) nanomaterials, an emerging research area, still remains largely unexplored. The strong interlayer attraction between 2D nanosheets leads to face-to-face stacking rather than edge-to-edge coupling. We demonstrate, for the first time, how one can induce and control an edge-to-edge self-assembly process for 2D nanomaterials. The extremely weak van der Waals coupling and strong anisotropy of ReS2 allow us to realize an oriented self-assembly (OSA) process. The aspect ratio of the resulting ReS2 nanoscrolls can be well controlled. In addition, we perform simulations to further explain and confirm the OSA process, demonstrating its great potential to be expanded as a general edge-to-edge self-assembly process suitable for other 2D nanomaterials.

  7. Plasma-materials interactions and edge-plasma physics research

    SciTech Connect

    Hirooka, Y.

    1991-12-01

    This report discusses the: Pisces Program; Pisces Facilities; Pisces Experiments: Materials and Surface Physics; Pisces Experiments: Edge Plasma Physics; and, Theoretical Analysis: Edge Plasma Behavior.

  8. Living on the Edge: Parasite Prevalence Changes Dramatically across a Range Edge in an Invasive Gecko.

    PubMed

    Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L

    2017-02-01

    Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.

  9. Losing your edge: climate change and the conservation value of range-edge populations.

    PubMed

    Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J

    2015-10-01

    Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

  10. Cloud deposition to a spruce forest edge

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Lovett, G. M.; Likens, G. E.

    Deposition from clouds to a spruce (Picea rubens Sarg.) forest edge on Hunter Mt. in the Catskill Mts of New York State was measured during 1987 and 1988 to determine whether the windward edge of forest floor receives greater deposition of water and ions via cloud water than the interior of a forest. Throughfall was used as a measure of deposition and was collected during cloud-only and mixed cloud-and-rain events along five windward-to-leeward transects in a 30 x 30 m forested area. Ambient cloud water was also collected in a passive collector and chemically analyzed. Trees at the edge of the forest received on average three times, and up to 15 times, greater deposition of ions than those in the interior of the forest. Lead content in samples from Hunter Mt. forest floor at the windward edge, relative to the interior, was enhanced as well. Using a regression of distance vs deposition, the deposition "half-distance", (i.e. the point at which the rate of cloud water deposition is 50% of the rate at the windward edge of the forest) was found to be 28 m. The cloud deposition data from this study are compared to other studies of Na particle deposition to low-elevation forest edges, which show similar deposition "half distances", ranging from ˜ 2 to 36 m into the forest. Most models of cloud deposition currently in use assume landscape homogeneity. Montane forest landscapes, however, are often highly heterogeneous, consisting of many "edges", and thus current models may seriously underestimate cloud deposition.

  11. Edge location to subpixel values in digital imagery.

    PubMed

    Tabatabai, A J; Mitchell, O R

    1984-02-01

    A new method for locating edges in digital data to subpixel values and which is invariant to additive and multiplicative changes in the data is presented. For one-dimensional edge patterns an ideal edge is fit to the data by matching moments. It is shown that the edge location is related to the so-called ``Christoffel numbers.'' Also presented is the study of the effect of additive noise on edge location. The method is extended to include two-dimensional edge patterns where a line equation is derived to locate an edge. This in turn is compared with the standard Hueckel edge operator. An application of the new edge operator as an edge detector is also provided and is compared with Sobel and Hueckel edge detectors in presence and absence of noise.

  12. Partnership for Edge Physics Simulation (EPSI)

    SciTech Connect

    Schroder, Peter

    2015-02-11

    We propose to develop advanced simulation codes, based upon an extreme parallelism, first principles kinetic approach, to address the challenges associated with the edge region of magnetically confined plasmas. This work is relevant to both existing magnetic fusion facilities and essential for next-generation burning plasma experiments, such as ITER where success is critically dependent upon H-mode operation achieving an edge pedestal of sufficient height for good core plasma performance without producing deleterious large scale edge localized instabilities. The plasma edge presents a well-known set of multi-physics, multi-scale problems involving complex 3D magnetic geometry. Perhaps the greatest computational challenge is the lack of scale separation – temporal scales for drift waves, Alfven waves, ELM dynamics for example have strong overlap. Similar overlap occurs on the spatial scales for the ion poloidal gyro-radius, drift wave and pedestal width. The traditional approach of separating fusion problems into weakly interacting spatial or temporal domains clearly breaks down in the edge. A full kinetic model (full-f model) must be solved to understand and predict the edge physics including non-equilibrium thermodynamic issues arising from the magnetic topology (the open field lines producing a spatially sensitive velocity hole), plasma wall interactions, neutral and atomic physics. The plan here is to model these phenomena within a comprehensive first principles set of equations without the need for the insurmountable multiple-codes coupling issues by building on the XGC1 code developed under the SciDAC Proto-FSP Center for Plasma Edge Simulation (CPES). This proposal includes the critical participants in the XGC1 development. We propose enhancing the capability of XGC1 by including all the important turbulence physics contained in kinetic ion and electron electromagnetic dynamics, by extending the PIC technology to incorporate several positive features found

  13. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  14. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and

  15. Dissecting new physics models through kinematic edges

    NASA Astrophysics Data System (ADS)

    Iyer, Abhishek M.; Maitra, Ushoshi

    2017-02-01

    Kinematic edges in the invariant mass distributions of different final state particles are typically a signal of new physics. In this work we propose a scenario wherein these edges could be utilized in discriminating between different classes of models. To this effect, we consider the resonant production of a heavy Higgs like resonance (H1) as a case study. Such states are a characteristic feature of many new physics scenarios beyond the standard model (SM). In the event of a discovery, it is essential to identify the true nature of the underlying theory. In this work we propose a channel, H1→t2t , where t2 is a vectorlike gauge singlet top-partner that decays into W b , Z t , h t . Invariant mass distributions constructed out of these final states are characterized by the presence of kinematic edges, which are unique to the topology under consideration. Further, since all the final state particles are SM states, the position in the edges of these invariant mass distributions can be used to exclusively determine the masses of the resonances. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these edge like features, in the specific invariant mass distributions considered here, in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non-MSSM-like scenarios.

  16. Trailing edge modifications for flatback airfoils.

    SciTech Connect

    Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.

    2008-03-01

    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  17. Leading-edge effects in bypass transition

    NASA Astrophysics Data System (ADS)

    Nagarajan, S.; Lele, S. K.; Ferziger, J. H.

    The effect of a blunt leading edge on bypass transition is studied by numerical simulation. A mixed direct and large-eddy simulation of a flat plate with a super-ellipse leading edge is carried out at various conditions. Onset and completion of transition is seen to move upstream with increasing bluntness. For sharper leading edges, at lower levels of turbulence, transition usually occurs through instabilities on low-speed streaks as observed by Jacobs & Durbin (2001) and Brandt et al. (2004) whereas increasing either the turbulence intensity or the leading-edge bluntness brings into play another mechanism. Free-stream vortices are amplified at the leading edge because of stretching. In the case of particularly strong vortices, this interaction induces a localized streamwise vortical disturbance in the boundary layer which then grows as it convects downstream and eventually breaks down to form a turbulent spot. These disturbances, which are localized and hence wavepacket-like, move at speeds in the range 0.55 U_{infty} 0.65 U_{infty} and occur in the lower portion of the boundary layer. Simulations conducted with isolated vortices confirm such a response of the boundary layer.

  18. Edge reconstruction in fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Sabo, Ron; Gurman, Itamar; Rosenblatt, Amir; Lafont, Fabien; Banitt, Daniel; Park, Jinhong; Heiblum, Moty; Gefen, Yuval; Umansky, Vladimir; Mahalu, Diana

    2017-01-01

    The nature of edge reconstruction in the quantum Hall effect (QHE) and the issue of where the current flows have been debated for years. Moreover, the recent observation of proliferation of `upstream’ neutral modes in the fractional QHE has raised doubts about the present models of edge channels. Here, we present a new picture of the edge reconstruction in two of the hole-conjugate states. For example, while the present model for ν = (2/3) consists of a single downstream chiral charge channel with conductance (2/3)(e2/h) and an upstream neutral mode, we show that the current is carried by two separate downstream chiral edge channels, each with conductance (1/3)(e2/h). We uncover a novel mechanism of fragmentation of upstream neutral modes into downstream propagating charge modes that induces current fluctuations with zero net current. Our unexpected results underline the need for better understanding of edge reconstruction and energy transport in all fractional QHE states.

  19. Edge detector tolerant to object defocusing

    NASA Astrophysics Data System (ADS)

    Mazzaferri, Javier; Campos, Juan; Escalera, Juan C.; Sheppard, Colin J. R.; Ledesma, Silvia

    2010-10-01

    Different methods for edge extraction have been studied in the past years. In a recent paper we have presented a rotation-invariant edge extractor based on a spiral phase filter placed in the frequency plane of a convergent correlator. In this architecture, the axial position of the output plane strongly depends on the axial position of the object. This condition limits the processing of three dimensional objects, because only a narrow axial region of the object would be correctly imaged to the output. The other axial regions of the target yield defocused results. Likewise, a rather small axial misalignment of planar scenes could produce completely inaccurate correlations. Besides, annular pupils have been widely used to regulate the depth of focus (DOF) and the transversal resolution of optical systems. In this paper we present a novel filter that combines the advantages of a spiral phase-based edge extractor and those of an axial-apodizing annular pupil. This design allows edge extraction of objects in a widened axial range. Numerical simulations and experimental results that demonstrate edge extraction with improved tolerance to defocusing are presented.

  20. Effective Hamiltonian for edge states in graphene.

    DOE PAGES

    Deshpande, H.; Winkler, R.

    2017-06-03

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Lambda in the Brillouin zone (BZ) with protected degeneracies at Lambda. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for bothmore » zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. We show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Lambda for the edge states without affecting the bulk spectrum.« less

  1. Numerical simulation of the edge tone phenomenon

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Liu, B. L.; Ofarrell, J. M.

    1994-01-01

    Time accurate Navier-Stokes computations were performed to study a class 2 (acoustic) whistle, the edge tone, and to gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the wedge. Flow speed was kept constant at 1,750 cm/s as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. The analytical computations revealed edge tones to be present in four harmonic stages of jet flow instability over the wedge as the jet length was varied from 0.3 to 1.6 cm. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained frequencies and flow visualization results of Brown. Specific edge tone generation phenomena and further confirmation of certain theories and empirical formulas concerning these phenomena were brought to light in this analytical simulation of edge tones.

  2. Floquet edge states in germanene nanoribbons

    PubMed Central

    Tahir, M.; Zhang, Q. Y.; Schwingenschlögl, U.

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light. PMID:27550632

  3. Edge Detection By Differences Of Gaussians

    NASA Astrophysics Data System (ADS)

    Marthon, Ph.; Thiesse, B.; Bruel, A.

    1986-06-01

    The Differences of Gaussians (DOGs) are of fundamental importance in edge detection. They belong to the human vision system as shown by Enroth-Cugell and Robson [ENR66]. The zero-crossings of their outputs mark the loci of the intensity changes. The set of descriptions from different operator sizes forms the input for later visual processes, such as stereopsis and motion analysis. We show that DOGs uniformly converge to the Laplacian of a Gaussian (ΔG2,σ) when both the inhibitory and excitatory variables converge to σ. Spatial and spectral properties of DOGs and ΔGs are compared: width and height of their central positive regions, bandiwidths... Finally, DOGs' responses to some features such as ideal edge, right angle corner, general corner..., are presented and magnitudes of error on edge position are given.

  4. Edge mode dynamics of quenched topological wires.

    PubMed

    Sacramento, P D

    2016-06-01

    The fermionic and Majorana edge mode dynamics of various topological systems are compared, after a sudden global quench of the Hamiltonian parameters takes place. Attention is focused on the regimes where the survival probability of an edge state has oscillations either due to critical or off-critical quenches. The nature of the wave functions and the overlaps between the eigenstates of different points in parameter space determine the various types of behaviors, and the distinction due to the Majorana nature of the excitations plays a lesser role. Performing a sequence of quenches, it is shown that the edge states, including Majorana modes, may be switched off and on. Also, the generation of Majoranas due to quenching from a trivial phase is discussed.

  5. Development of Columbia Leading Edge Reconstruction System

    NASA Technical Reports Server (NTRS)

    Trautwein, John; Wegerif, Dan

    2004-01-01

    After the loss of Columbia in 2003, the Columbia Accident Investigation Board and NASA KSC directed personnel at the Launch Equipment Test Facility (LETF) to design and build high fidelity mock-ups of Columbia's left wing leading edges. These leading edge segments, constructed of reinforced carbon-carbon, were a major point of inquiry by the investigation team. The LETF engineers developed a concept of building a clear Lexan panel with an aluminum support structure ten percent larger than the original panel. The leading edge debris are attached to the Lexan panels and both the front and back side of each panel are visible for inspection. The entire assembly can be rotated, to provide visual access to the entire panel. Six carts were fabricated to support the thirteen panels. These carts could be set up in order, next to each other, to provide the desired inspection access. The carts and attached debris are currently located in the Vehicle Assembly Building at KSC.

  6. Controllable edge feature sharpening for dental applications.

    PubMed

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  7. Acoustic metamaterial for subwavelength edge detection

    PubMed Central

    Molerón, Miguel; Daraio, Chiara

    2015-01-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ∼5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions. PMID:26304739

  8. Contrast edge colors under different natural illuminations.

    PubMed

    Nieves, Juan Luis; Nascimento, Sérgio M C; Romero, Javier

    2012-02-01

    Essential to sensory processing in the human visual system is natural illumination, which can vary considerably not only across space but also along the day depending on the atmospheric conditions and the sun's position in the sky. In this work, edges derived from the three postreceptoral Luminance, Red-Green, and Blue-Yellow signals were computed from hyperspectral images of natural scenes rendered with daylights of Correlated Color Temperatures (CCTs) from 2735 to 25,889 K; for low CCT, the same analysis was performed using Planckian illuminants up to 800 K. It was found that average luminance and chromatic edge contrasts were maximal for low correlated color temperatures and almost constants above 10,000 K. The magnitude of these contrast changes was, however, only about 2% across the tested daylights. Results suggest that the postreceptoral opponent and nonopponent color vision mechanisms produce almost constant responses for color edge detection under natural illumination.

  9. Free edge effects in laminated composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1989-01-01

    The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.

  10. Edge effects in composites by moire interferometry

    NASA Technical Reports Server (NTRS)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  11. Preparation of edge states by shaking boundaries

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Hou, S. C.; Wang, L. C.; Yi, X. X.

    2016-10-01

    Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry-André-Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As a by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.

  12. SALT segmented primary mirror: inductive edge sensors

    NASA Astrophysics Data System (ADS)

    Gajjar, Hitesh; Menzies, John; Buckley, David; Neel, Christian; Parbaud, Philippe; Royet, Stéphane

    2014-07-01

    The development of an inductive edge sensor is in process for the control of the Southern African Large Telescope's (SALT)1 segmented mirror primary. The original capacitive edge sensing system was not capable of maintaining the figure of the primary mirror due to excessive noise and a severe sensitivity to humidity despite exhaustive attempts at characterisation1. The prototype of the inductive edge sensor has progressed to a mature industrialised version that is in the process of being installed and commissioned on SALT. The performance of the sensor in response to temperature and RH is very good with a maximum error of 10nm typical after temperature compensation. The noise and control characteristics of the array have been simulated in order to establish the maximum cumulative error and error rate tolerable for the SALT specific case. It has been established through simulation that over the expected 5 day alignment cycle, a maximum cumulative error of 30nm can be tolerated.

  13. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  14. Edge effects in composites by moire interferometry

    NASA Technical Reports Server (NTRS)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  15. Acoustic metamaterial for subwavelength edge detection.

    PubMed

    Molerón, Miguel; Daraio, Chiara

    2015-08-25

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ∼5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  16. Acoustic metamaterial for subwavelength edge detection

    NASA Astrophysics Data System (ADS)

    Molerón, Miguel; Daraio, Chiara

    2015-08-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ~5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  17. Edge mode amplification in disordered elastic networks.

    PubMed

    Yan, Le; Bouchaud, Jean-Philippe; Wyart, Matthieu

    2017-08-30

    Understanding how mechanical systems can be designed to efficiently transport elastic information is important in a variety of fields, including in materials science and biology. Recently, it has been discovered that certain crystalline lattices present "topologically-protected" edge modes that can amplify elastic signals. Several observations suggest that edge modes are important in disordered systems as well, an effect not well understood presently. Here we build a theory of edge modes in disordered isostatic materials and compute the distribution g(κ) of Lyapunov exponents κ characterizing how modes penetrate in the bulk, and find good agreement with numerical results. We show that disordered isostatic materials generically act as levers with amplification of an order L(L) where L is the system size, whereas more connected materials amplify signals only close to free surfaces. Our approach, which is based on recent results in "free" random matrix theory, makes an analogy with electronic transport in a disordered conductor.

  18. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  19. Grain edge detection of diamond grinding wheel

    NASA Astrophysics Data System (ADS)

    Zhou, Lijun; Cui, Changcai; Huang, Chunqi; Huang, Hui; Ye, Ruifang

    2013-01-01

    The topograpgy characterization of grinding wheel grain is indispensable for precision grinding, it depends on accurate edge detecting and recognition of abrasive grains from wheel bond to a large extent. Due to different reflective characteristics arising among different materials, difference between maximum and minimum intensity (Δ ) of diamond is larger than that of bond. This paper uses a new method for grain edge detection of resin-bonded diamond grinding wheel that combines the improved Canny operator in Method of Maximum Classes Square Error (called as OTSU) with ΔI obtained by the white light interferometry (WLI). The experimental results show that the method based on improved Canny operator can effectively detect the edge of diamond grain.

  20. Black phosphorus edges: a polarized Raman study

    NASA Astrophysics Data System (ADS)

    Ribeiro, H.; Villegas, C.; Bahamon, D.; Castro Neto, A.; de Souza, E.; Rocha, A.; Pimenta, M.; de Matos, C.

    Black phosphorus (BP) has been recently exfoliated down to few-layer thicknesses revealing numerous interesting features such as a tunable direct bandgap. Ever since, demonstrations of BP electronic devices have bloomed, as well as studies of the electric, optical, mechanical and thermal properties of its bulk and few-layer forms. However, the edges of BP crystals have, so far, been poorly characterized, even though the terminations of layered crystals are known to possess a range of interesting properties. In this work, the edges of exfoliated BP flakes are characterized by polarized confocal Raman spectroscopy. We will present experimental Raman spectra at zigzag and armchair edges, as well as density functional theory calculations that explain the peculiarities of the experimental data. Fapesp, INCT/Nanocarbono, Fapemig, CNPq, MackPesquisa, Grid-Unesp, CENAPAD-SP, and NRF.

  1. Preparation of edge states by shaking boundaries

    SciTech Connect

    Shi, Z.C.; Hou, S.C.; Wang, L.C.; Yi, X.X.

    2016-10-15

    Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry–André–Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As a by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.

  2. Predictability of the Arctic sea ice edge

    NASA Astrophysics Data System (ADS)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  3. Low temperature edge dynamics of AB-stacked bilayer graphene: naturally favored closed zigzag edges.

    PubMed

    Zhan, Da; Liu, Lei; Xu, Ya Nan; Ni, Zhen Hua; Yan, Jia Xu; Zhao, Chun; Shen, Ze Xiang

    2011-01-01

    Closed edges bilayer graphene (CEBG) is a recent discovered novel form of graphene structures, whose regulated edge states may critically change the overall electronic behaviors. If stacked properly with the AB style, the bilayer graphene with closed zigzag edges may even present amazing electronic properties of bandgap opening and charge separation. Experimentally, the CEBG has been confirmed recently with HRTEM observations after extremely high temperature annealing (2000 °C). From the application point of view, the low temperature closing of the graphene edges would be much more feasible for large-scale graphene-based electronic devices fabrication. Here, we demonstrate that the zigzag edges of AB-stacked bilayer graphene will form curved close structure naturally at low annealing temperature (< 500 °C) based on Raman observation and first principles analysis. Such findings may illuminate a simple and easy way to engineer graphene electronics.

  4. Edge waves: theories past and present.

    PubMed

    Johnson, R S

    2007-09-15

    The problem of edge waves as an example within classical water-wave theory is described by presenting an overview of some of the theories that have been offered for this phenomenon. The appropriate governing equations and boundary conditions are formulated, and then the important discoveries of Stokes and Ursell, concerning the travelling edge wave, are presented. (We do not address the corresponding problem of standing waves.) Thus, the linear problem and its spectrum are constructed; in addition, we also present the linear long-wave approximation to the problem, as well as Whitham's weakly nonlinear extension to Stokes' original theory. All these discussions are based on the same formulation of the problem, allowing an immediate comparison of the results, whether this be in terms of different approximations or whether the theory be for an irrotational flow or not. Gerstner's exact solution of the water-wave problem is then briefly described, together with a transformation that produces an exact solution of the full equations for the edge wave. The form of this solution is then used as the basis for a multiple-scale description of the edge wave over a slowly varying depth; this leads to a version of the shallow-water equations which has an exact solution that corresponds to the edge wave. Some examples of the theoretical predictions for the run-up pattern are presented. We conclude with three variants of nonlinear model equations that may prove useful in the study of edge waves and, particularly, the interaction of different modes.

  5. Edge Detection in Landing Budgerigars (Melopsittacus undulatus)

    PubMed Central

    Bhagavatula, Partha; Claudianos, Charles; Ibbotson, Michael; Srinivasan, Mandyam

    2009-01-01

    Background While considerable scientific effort has been devoted to studying how birds navigate over long distances, relatively little is known about how targets are detected, obstacles are avoided and smooth landings are orchestrated. Here we examine how visual features in the environment, such as contrasting edges, determine where a bird will land. Methodology/Principal Findings Landing in budgerigars (Melopsittacus undulatus) was investigated by training them to fly from a perch to a feeder, and video-filming their landings. The feeder was placed on a grey disc that produced a contrasting edge against a uniformly blue background. We found that the birds tended to land primarily at the edge of the disc and walk to the feeder, even though the feeder was in the middle of the disc. This suggests that the birds were using the visual contrast at the boundary of the disc to target their landings. When the grey level of the disc was varied systematically, whilst keeping the blue background constant, there was one intermediate grey level at which the budgerigar's preference for the disc boundary disappeared. The budgerigars then landed randomly all over the test surface. Even though this disc is (for humans) clearly distinguishable from the blue background, it offers very little contrast against the background, in the red and green regions of the spectrum. Conclusions We conclude that budgerigars use visual edges to target and guide landings. Calculations of photoreceptor excitation reveal that edge detection in landing budgerigars is performed by a color-blind luminance channel that sums the signals from the red and green photoreceptors, or, alternatively, receives input from the red double-cones. This finding has close parallels to vision in honeybees and primates, where edge detection and motion perception are also largely color-blind. PMID:19809500

  6. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an edge sensor shall actuate upon the application of a 15 pounds (66.7 N) or less force in the...

  7. 16 CFR 1211.12 - Requirements for edge sensors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an edge sensor shall actuate upon the application of a 15 pounds (66.7 N) or less force in the...

  8. EdgeMarker: Identifying differentially correlated molecule pairs as edge-biomarkers.

    PubMed

    Zhang, Wanwei; Zeng, Tao; Chen, Luonan

    2014-12-07

    Biomarker discovery is one of the major topics in translational biomedicine study based on high-throughput biological data analysis. Traditional methods focus on differentially expressed genes (or node-biomarkers) but ignore non-differentials. However, non-differentially expressed genes also play important roles in the biological processes and the rewired interactions / edges among non-differential genes may reveal fundamental difference between variable conditions. Therefore, it is necessary to identify relevant interactions or gene pairs to elucidate the molecular mechanism of complex biological phenomena, e.g. distinguish different phenotypes. To address this issue, we proposed a new method based on a new vector representation of an edge, EdgeMarker, to (1) identify edge-biomarkers, i.e. the differentially correlated molecular pairs (e.g., gene pairs) with optimal classification ability, and (2) transform the 'node expression' data in node space into the 'edge expression' data in edge space and classify the phenotype of each single sample in edge space, which generally cannot be achieved in traditional methods. Unlike the traditional methods which analyze the node space (i.e. molecular expression space) or higher dimensional space using arbitrary kernel methods, this study provides a mathematical model to explore the edge space (i.e. correlation space) for classification of a single sample. In this work, we show that the identified edge-biomarkers indeed have strong ability in distinguishing normal and disease samples even when all involved genes are not significantly differentially expressed. The analysis of human cholangiocarcinoma dataset and diabetes dataset also suggested that the identified edge-biomarkers may cast new biological insights into the pathogenesis of human complex diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Wing Leading Edge Concepts for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  10. Leading edge cooling by upstream injection

    NASA Technical Reports Server (NTRS)

    Piva, R.

    1971-01-01

    A leading edge cooling system by upstream along the surface was investigated. The purpose of this system is to keep the leading edge below a desired temperature without excessively increasing the radius of the tip and consequently the total pressure losses. An experimental investigation was conducted to find the optimum conditions for the cooling from the point of view of upstream jet penetration and minimum shock losses. A theoretical analysis was performed to study the flow field in the mixing region between the two counterflowing streams and the results obtained compare favorably with the experimental results.

  11. Active-edge planar radiation sensors

    PubMed Central

    Kenney, C.J.; Segal, J.D.; Westbrook, E.; Parker, Sherwood; Hasi, J.; Da Via, C.; Watts, S.; Morse, J.

    2007-01-01

    Many systems in medicine, biology, high-energy physics, and astrophysics require large area radiation sensors. In most of these applications, minimizing the amount of dead area or dead material is crucial. We have developed a new type of silicon radiation sensor in which the device is active to within a few microns of the mechanical edge. Their perimeter is made by a plasma etcher rather than a diamond saw. Their edges can be defined and also passivated by growing, in an intermediate step, a field oxide on the side surfaces. In this paper, the basic architecture and results from a synchrotron beam test are presented. PMID:18185839

  12. Airplane wing leading edge variable camber flap

    NASA Technical Reports Server (NTRS)

    Cole, J. B.

    1980-01-01

    The invention and design of an aerodynamic high lift device which provided a solution to an aircraft performance problem are described. The performance problem of converting a high speed cruise airfoil into a low speed aerodynamic shape that would provide landing and take-off characteristics superior to those available with contemporary high lift devices are addressed. The need for an improved wing leading edge device that would complement the high lift performance of a triple slotted trailing edge flap is examined. The mechanical and structural aspects of the variable camber flap are discussed and the aerodynamic performance aspects only as they relate to the invention and design of the device are presented.

  13. Floquet Edge States with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Reichl, Matthew; Mueller, Erich

    2015-05-01

    We describe an experimental setup for imaging topologically protected Floquet edge states using ultracold bosons in an optical lattice. Our setup involves a deep two-dimensional optical lattice with a time-dependent superlattice that modulates the hopping between neighboring sites. The finite waist of the superlattice beam yields regions with different topological numbers. One can observe chiral edge states by imaging the real-space density of a bosonic packet launched from the boundary between two topologically distinct regions. NSF GRFP Grant No. DGE-1144153; NSF Grant No. PHY-1068165.

  14. Mechanisms and methods to resolve edge effect.

    PubMed

    Kuchulakanti, Pramod; Lew, Robert; Waksman, Ron

    2003-06-01

    Vascular brachytherapy (VBT) has established itself as a viable modality to treat in-stent restenosis (ISR). The problems associated with VBT have been understood well and remedied. Late thrombosis has been overcome to a great extent by prolonged antiplatelet therapy. Edge effect is another important limitation of VBT and is due to inadequate radiation coverage of the edges following VBT. It may be overcome by confining injury to the lesion segment and extending the radiation sources by a few millimeters from the injured segment.

  15. Edge states of periodically kicked quantum rotors.

    PubMed

    Floss, Johannes; Averbukh, Ilya Sh

    2015-05-01

    We present a quantum localization phenomenon that exists in periodically kicked three-dimensional rotors, but is absent in the commonly studied two-dimensional ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at J=0. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  16. Edge and Surface Plasmons in Graphene Nanoribbons.

    PubMed

    Fei, Z; Goldflam, M D; Wu, J-S; Dai, S; Wagner, M; McLeod, A S; Liu, M K; Post, K W; Zhu, S; Janssen, G C A M; Fogler, M M; Basov, D N

    2015-12-09

    We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons leads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nanoimaging in the mid-infrared range 850-1450 cm(-1) allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures.

  17. Edge and Surface Plasmons in Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Fei, Z.; Goldflam, M. D.; Wu, J.-S.; Dai, S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Post, K. W.; Zhu, S.; Janssen, G. C. A. M.; Fogler, M. M.; Basov, D. N.

    2015-12-01

    We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons leads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nano-imaging in mid-infrared 850-1450 cm-1 allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures.

  18. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  19. Edge detection techniques for iris recognition system

    NASA Astrophysics Data System (ADS)

    Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.

    2013-12-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.

  20. Real-time edge tracking using a tactile sensor

    NASA Technical Reports Server (NTRS)

    Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.

    1989-01-01

    Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.