Topological Phononic Crystals with One-Way Elastic Edge Waves
NASA Astrophysics Data System (ADS)
Wang, Pai; Lu, Ling; Bertoldi, Katia
2015-09-01
We report a new type of phononic crystals with topologically nontrivial band gaps for both longitudinal and transverse polarizations, resulting in protected one-way elastic edge waves. In our design, gyroscopic inertial effects are used to break the time-reversal symmetry and realize the phononic analogue of the electronic quantum (anomalous) Hall effect. We investigate the response of both hexagonal and square gyroscopic lattices and observe bulk Chern numbers of 1 and 2, indicating that these structures support single and multimode edge elastic waves immune to backscattering. These robust one-way phononic waveguides could potentially lead to the design of a novel class of surface wave devices that are widely used in electronics, telecommunication, and acoustic imaging.
Li, Zhen; Wu, Rui-xin; Li, Qing-Bo; Lin, Zhi-fang; Poo, Yin; Liu, Rong-Juan; Li, Zhi-Yuan
2015-04-20
We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission. PMID:25969002
NASA Astrophysics Data System (ADS)
González-Rodríguez, Pedro; Ilan, Boaz; Kim, Arnold D.
2016-06-01
We introduce the one-way radiative transfer equation (RTE) for modeling the transmission of a light beam incident normally on a slab composed of a uniform forward-peaked scattering medium. Unlike the RTE, which is formulated as a boundary value problem, the one-way RTE is formulated as an initial value problem. Consequently, the one-way RTE is much easier to solve. We discuss the relation of the one-way RTE to the Fokker-Planck, small-angle, and Fermi pencil beam approximations. Then, we validate the one-way RTE through systematic comparisons with RTE simulations for both the Henyey-Greenstein and screened Rutherford scattering phase functions over a broad range of albedo, anisotropy factor, optical thickness, and refractive index values. We find that the one-way RTE gives very good approximations for a broad range of optical property values for thin to moderately thick media that have moderately to sharply forward-peaked scattering. Specifically, we show that the error made by the one-way RTE decreases monotonically as the anisotropic factor increases and as the albedo increases. On the other hand, the error increases monotonically as the optical thickness increases and the refractive index mismatch at the boundary increases.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
One-way unlocalizable quantum discord
NASA Astrophysics Data System (ADS)
Xi, Zhengjun; Fan, Heng; Li, Yongming
2012-05-01
In this paper, we present the concept of the one-way unlocalizable quantum discord and investigate its properties. We provide a polygamy inequality for it in a tripartite pure quantum system of arbitrary dimension. Several tradeoff relations between the one-way unlocalizable quantum discord and other correlations are given. If the von Neumann measurement is made on a part of the system, we give two expressions of the one-way unlocalizable quantum discord in terms of partial distillable entanglement and quantum disturbance. Finally, we also provide a lower bound for bipartite shareability of quantum correlation beyond entanglement in a tripartite system.
One-way transformation of information
Cooper, James A.
1989-01-01
Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two.
Multimode one-way waveguides of large Chern numbers.
Skirlo, Scott A; Lu, Ling; Soljačić, Marin
2014-09-12
Current experimental realizations of the quantum anomalous Hall phase in both electronic and photonic systems have been limited to a Chern number of one. In photonics, this corresponds to a single-mode one-way edge waveguide. Here, we predict quantum anomalous Hall phases in photonic crystals with large Chern numbers of 2, 3, and 4. These new topological phases were found by simultaneously gapping multiple Dirac and quadratic points. We demonstrate a continuously tunable power splitter as a possible application of multimode one-way waveguides. All our findings are readily realizable at microwave frequencies. PMID:25259982
NASA Astrophysics Data System (ADS)
Barrington-Cook, J. I.
1991-01-01
Logica has recently produced the main 'collection and forwarding' element for a comprehensive one-way VSAT system. The system is designed to utilize the extra bandwidth available from direct-to-home broadcasts using the MAC/packet television standard, in order to provide point-to-multipoint data transmission via satellite. The expectation of very large volumes of supply for standard decoders, together with the large amount of bandwidth available, suggest that extremely low cost data transmission may become available. The system is designed to provide the necessary infrastructure to allow this bulk data, low cost approach to be offered for small scale and ad-hoc data transmission.
One-Way Quantum Deficit for 2 ⊗ d Systems
NASA Astrophysics Data System (ADS)
Ye, Biao-Liang; Fei, Shao-Ming
2016-08-01
We investigate one-way quantum deficit for 2 ⊗ d systems. Analytical expressions of one-way quantum deficit under both von Neumann measurement and weak measurement are presented. As an illustration, qubit-qutrit systems are studied in detail. It is shown that there exists non-zero one-way quantum deficit even quantum entanglement vanishes. Moreover, one-way quantum deficit via weak measurement turns out to be weaker than that via von Neumann measurement. The dynamics of entanglement and one-way quantum deficit under dephasing channels is also investigated.
Multipartite distribution property of one way discord beyond measurement
NASA Astrophysics Data System (ADS)
Liu, Si-Yuan; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng
2015-03-01
We investigate the distribution property of one way discord in the multipartite system by introducing the concept of polygamy deficit for one way discord. The difference between one way discord and quantum discord is analogue to the one between entanglement of assistance and entanglement of formation. For tripartite pure states, two kinds of polygamy deficits are presented with the equivalent expressions and physical interpretations regardless of measurement. For four-partite pure states, we provide a condition which makes one way discord polygamy satisfied. In addition, we generalize these results to the case for N-partite pure states. Those results can be applicable to multipartite quantum systems and are complementary to our understanding of the shareability of quantum correlations.
Improved technique for one-way transformation of information
Cooper, J.A.
1987-05-11
Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.
One-way electromagnetic waveguide using multiferroic Fibonacci superlattices
NASA Astrophysics Data System (ADS)
Tang, Zhenghua; Lei, Dajun; Huang, Jianquan; Jin, Gui; Qiu, Feng; Yan, Wenyan
2015-12-01
The multiferroic Fibonacci superlattices (MFSs) are composed of single-phase multiferroic domains with polarization and magnetization according to the rule of Fibonacci sequence. We propose to construct a one-way electromagnetic waveguide by the MFSs. The forbidden band structures of the MFSs for the forward and backward electromagnetic waves are not completely overlapped, and an obvious translation between them occurs around the fixed point ω bar = 1 with broken time-reversal and space inversion symmetries (TRSIS), which indicates the existence of one-way electromagnetic modes in the MFSs. Transmission spectrum is utilized to present this property and to indicate further one-way electromagnetic modes lying within the polaritonic band gap. The maximum forbidden bandwidth (divided by midgap frequency) of 5.4% for the backward electromagnetic wave (BEW) is found, in which the forward electromagnetic wave (FEW) can pass. The functions of one-way propagation modes and polaritonic band gap integrated into the MFSs can miniaturize the one-way photonic devices. The properties can also be applied to construct compact microwave isolators.
Cooling atoms with a moving one-way barrier
Schoene, Elizabeth A.; Thorn, Jeremy J.; Steck, Daniel A.
2010-08-15
We implement and demonstrate the effectiveness of a cooling scheme using a moving, all-optical, one-way barrier to cool a sample of {sup 87}Rb atoms, achieving nearly a factor of 2 reduction in temperature. The one-way barrier, composed of two focused, Gaussian laser beams, allows atoms incident on one side to transmit, while reflecting atoms incident on the other. The one-way barrier is adiabatically swept through a sample of atoms contained in a far-off-resonant, single-beam, optical dipole trap that forms a nearly harmonic trapping potential. As the barrier moves longitudinally through the potential, atoms become trapped to one side of the barrier with reduced kinetic energy. The adiabatic translation of the barrier leaves the atoms at the bottom of the trapping potential, only minimally increasing their kinetic energy.
One-way quantum computation with circuit quantum electrodynamics
Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun
2010-03-15
In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.
Noisy one-way quantum computations: The role of correlations
Chaves, Rafael; Melo, Fernando de
2011-08-15
A scheme to evaluate computation fidelities within the one-way model is developed and explored to understand the role of correlations in the quality of noisy quantum computations. The formalism is promptly applied to many computation instances and unveils that a higher amount of entanglement in the noisy resource state does not necessarily imply a better computation.
Detail of one way mirror, mail slot, and electrical box ...
Detail of one way mirror, mail slot, and electrical box at sentry post no. 3, top of east stairs near the end of second floor corridor - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA
The Mars Observer differential one-way range demonstration
NASA Technical Reports Server (NTRS)
Kroger, P. M.; Border, J. S.; Nandi, S.
1994-01-01
Current methods of angular spacecraft positioning using station differenced range data require an additional observation of an extragalactic radio source (quasar) to estimate the timing offset between the reference clocks at the two Deep Space Stations. The quasar observation is also used to reduce the effects of instrumental and media delays on the radio metric observable by forming a difference with the spacecraft observation (delta differential one-way range, delta DOR). An experiment has been completed using data from the Global Positioning System satellites to estimate the station clock offset, eliminating the need for the quasar observation. The requirements for direct measurement of the instrumental delays that must be made in the absence of a quasar observation are assessed. Finally, the results of the 'quasar-free' differential one-way range, or DOR, measurements of the Mars Observer spacecraft are compared with those of simultaneous conventional delta DOR measurements.
One-way Ponderomotive Barrier in a Uniform Magnetic Field
I.Y. Dodin; N.J. Fisch
2005-02-14
The possibility of an asymmetric ponderomotive barrier in a nonuniform dc magnetic field by high-frequency radiation near the cyclotron resonance for selected plasma species was contemplated in Physics of Plasmas 11 (November 2004) 5046-5064. Here we show that a similar one-way barrier, which reflects particles incident from one side while transmitting those incident from the opposite side, can be produced also in a uniform magnetic field, entirely due to inhomogeneity of high-frequency drive.
A fault-tolerant one-way quantum computer
Raussendorf, R. . E-mail: rraussendorf@perimeterinstitute.ca; Harrington, J.; Goyal, K.
2006-09-15
We describe a fault-tolerant one-way quantum computer on cluster states in three dimensions. The presented scheme uses methods of topological error correction resulting from a link between cluster states and surface codes. The error threshold is 1.4% for local depolarizing error and 0.11% for each source in an error model with preparation-, gate-, storage-, and measurement errors.
One-way spatial integration of hyperbolic equations
NASA Astrophysics Data System (ADS)
Towne, Aaron; Colonius, Tim
2015-11-01
In this paper, we develop and demonstrate a method for constructing well-posed one-way approximations of linear hyperbolic systems. We use a semi-discrete approach that allows the method to be applied to a wider class of problems than existing methods based on analytical factorization of idealized dispersion relations. After establishing the existence of an exact one-way equation for systems whose coefficients do not vary along the axis of integration, efficient approximations of the one-way operator are constructed by generalizing techniques previously used to create nonreflecting boundary conditions. When physically justified, the method can be applied to systems with slowly varying coefficients in the direction of integration. To demonstrate the accuracy and computational efficiency of the approach, the method is applied to model problems in acoustics and fluid dynamics via the linearized Euler equations; in particular we consider the scattering of sound waves from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. The latter problem shows the potential of the method to offer a systematic, convergent alternative to ad hoc regularizations such as the parabolized stability equations.
One-way glass for microwaves using nonreciprocal metamaterials
NASA Astrophysics Data System (ADS)
Degiron, A.; Smith, D. R.
2014-05-01
We introduce a class of nonreciprocal metamaterials based on composite assemblies of metallic and biased ferrimagnetic elements. We show that such structures act as ultrathin one-way glasses due to the competition between two modes at the surface of the ferrimagnetic elements—a low-loss surface wave that transmits the signal on the other side of the structure and a surface spin-wave resonance that produces strong isolation levels. These findings can be adapted to existing metamaterial geometries, offering a blueprint to achieve unidirectional propagation in a variety of artificial media at radio, microwave, and millimeter wave frequencies.
Universal linear Bogoliubov transformations through one-way quantum computation
Ukai, Ryuji; Yoshikawa, Jun-ichi; Iwata, Noriaki; Furusawa, Akira; Loock, Peter van
2010-03-15
We show explicitly how to realize an arbitrary linear unitary Bogoliubov (LUBO) transformation on a multimode quantum state through homodyne-based one-way quantum computation. Any LUBO transformation can be approximated by means of a fixed, finite-sized, sufficiently squeezed Gaussian cluster state that allows for the implementation of beam splitters (in form of three-mode connection gates) and general one-mode LUBO transformations. In particular, we demonstrate that a linear four-mode cluster state is a sufficient resource for an arbitrary one-mode LUBO transformation. Arbitrary-input quantum states including non-Gaussian states could be efficiently attached to the cluster through quantum teleportation.
Radiochromic leuko dye real time dosimeter, one way optical waveguide
Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.
1984-12-18
A radiochromic leuko dye dosimeter includes a plastic tube containing a solution of a radiochromic dye which is sensitive to ionizing radiation, one end of the tube being closed by a reflective surface, the opposite end of the tube being closed by a transparent plug to form a one-way optical waveguide. Light enters the tube through the transparent end thereof and is reflected back and exits through the transparent end. The intensity of the exiting light is measured to determine radiation induced absorption of the leuko dye.
One-way glass for microwaves using nonreciprocal metamaterials.
Degiron, A; Smith, D R
2014-05-01
We introduce a class of nonreciprocal metamaterials based on composite assemblies of metallic and biased ferrimagnetic elements. We show that such structures act as ultrathin one-way glasses due to the competition between two modes at the surface of the ferrimagnetic elements--a low-loss surface wave that transmits the signal on the other side of the structure and a surface spin-wave resonance that produces strong isolation levels. These findings can be adapted to existing metamaterial geometries, offering a blueprint to achieve unidirectional propagation in a variety of artificial media at radio, microwave, and millimeter wave frequencies. PMID:25353908
Radiochromic leuko dye real time dosimeter, one way optical waveguide
Kronenberg, S.
1982-11-15
This invention relates generally to nuclear radiation dosimetry, and more particularly to a radiochromic leuko dye dosimeter constructed and arranged to measure absorbed radiation doses, such as gamma rays, X-rays and fast neutrons, in real time; viz., as the dose is being delivered. A radiochromic leuko dye dosimeter includes a plastic tube containing a solution of a radiochromic dye which is sensitive to ionizing radiation, one end of the tube being closed by a reflective surface, the opposite end of the tube being closed by a transparent plug to form a one-way optical waveguide. Light enters the tube through the transparent end thereof and is reflected back and exists through the transparent end. The intensity of the existing light is measured to determine radiation induced absorption of the leuko dye.
One way Doppler Extractor. Volume 2: Digital VCO technique
NASA Technical Reports Server (NTRS)
Nossen, E. J.; Starner, E. R.
1974-01-01
A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.
Finding flows in the one-way measurement model
Beaudrap, Niel de
2008-02-15
The one-way measurement model is a framework for universal quantum computation in which algorithms are partially described by a graph G of entanglement relations on a collection of qubits. A sufficient condition for an algorithm to perform a unitary embedding between two Hilbert spaces is for the graph G, together with input and output I, O vertices I,O is contained in V(G), to have a flow in the sense introduced by Danos and Kashefi [Phys. Rev. A 74, 052310 (2006)]. For the special case of |I|=|O|, using a graph-theoretic characterization, I show that such flows are unique when they exist. This leads to an efficient algorithm for finding flows by a reduction to solved problems in graph theory.
Gate sequence for continuous variable one-way quantum computation
Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2013-01-01
Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.
Destination Mars: Colonization via Initial One-way Missions
NASA Astrophysics Data System (ADS)
Schulze-Makuch, D.; Davies, P.
Earth is located in a dangerous part of the universe. Threats to life on Earth are manifold and range from asteroid impacts to supernova explosions and from supervolcano eruptions to human-induced disasters. If the survival of the human species is to be ensured for the long term, then life on Earth has to spread to other planetary bodies. Mars is the most Earth-like planet we currently know and is the second closest planet; further it possesses a moderate surface gravity, an atmosphere, abundant water and carbon dioxide, together with a range of essential minerals. Thus, Mars is ideally suited to be a first colonization target. Here we argue that the most practical way that this can be accomplished is via a series of initial one-way human missions.
One-way ANOVA based on interval information
NASA Astrophysics Data System (ADS)
Hesamian, Gholamreza
2016-08-01
This paper deals with extending the one-way analysis of variance (ANOVA) to the case where the observed data are represented by closed intervals rather than real numbers. In this approach, first a notion of interval random variable is introduced. Especially, a normal distribution with interval parameters is introduced to investigate hypotheses about the equality of interval means or test the homogeneity of interval variances assumption. Moreover, the least significant difference (LSD method) for investigating multiple comparison of interval means is developed when the null hypothesis about the equality of means is rejected. Then, at a given interval significance level, an index is applied to compare the interval test statistic and the related interval critical value as a criterion to accept or reject the null interval hypothesis of interest. Finally, the method of decision-making leads to some degrees to accept or reject the interval hypotheses. An applied example will be used to show the performance of this method.
One way Doppler extractor. Volume 1: Vernier technique
NASA Technical Reports Server (NTRS)
Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.
1974-01-01
A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.
Epidemic spreading on one-way-coupled networks
NASA Astrophysics Data System (ADS)
Wang, Lingna; Sun, Mengfeng; Chen, Shanshan; Fu, Xinchu
2016-09-01
Numerous real-world networks (e.g., social, communicational, and biological networks) have been observed to depend on each other, and this results in interconnected networks with different topology structures and dynamics functions. In this paper, we focus on the scenario of epidemic spreading on one-way-coupled networks comprised of two subnetworks, which can manifest the transmission of some zoonotic diseases. By proposing a mathematical model through mean-field approximation approach, we prove the global stability of the disease-free and endemic equilibria of this model. Through the theoretical and numerical analysis, we obtain interesting results: the basic reproduction number R0 of the whole network is the maximum of the basic reproduction numbers of the two subnetworks; R0 is independent of the cross-infection rate and cross contact pattern; R0 increases rapidly with the growth of inner infection rate if the inner contact pattern is scale-free; in order to eradicate zoonotic diseases from human beings, we must simultaneously eradicate them from animals; bird-to-bird infection rate has bigger impact on the human's average infected density than bird-to-human infection rate.
Mathematical investigation of one-way transform matrix options.
Cooper, James Arlin
2006-01-01
One-way transforms have been used in weapon systems processors since the mid- to late-1970s in order to help recognize insertion of correct pre-arm information while maintaining abnormal-environment safety. Level-One, Level-Two, and Level-Three transforms have been designed. The Level-One and Level-Two transforms have been implemented in weapon systems, and both of these transforms are equivalent to matrix multiplication applied to the inserted information. The Level-Two transform, utilizing a 6 x 6 matrix, provided the basis for the ''System 2'' interface definition for Unique-Signal digital communication between aircraft and attached weapons. The investigation described in this report was carried out to find out if there were other size matrices that would be equivalent to the 6 x 6 Level-Two matrix. One reason for the investigation was to find out whether or not other dimensions were possible, and if so, to derive implementation options. Another important reason was to more fully explore the potential for inadvertent inversion. The results were that additional implementation methods were discovered, but no inversion weaknesses were revealed.
Criteria of backscattering in chiral one-way photonic crystals
NASA Astrophysics Data System (ADS)
Cheng, Pi-Ju; Chang, Shu-Wei
2016-03-01
Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.
One-way Quantum Deficit and Decoherence for Two-qubit X States
NASA Astrophysics Data System (ADS)
Ye, Biao-Liang; Wang, Yao-Kun; Fei, Shao-Ming
2016-04-01
We study one-way quantum deficit of two-qubit X states systematically from analytical derivations. An effective approach to compute one-way quantum deficit of two-qubit X states has been provided. Analytical results are presented as for detailed examples. Moreover, we demonstrate the decoherence of one-way quantum deficit under phase damping channel.
47 CFR 22.589 - One-way or two-way application requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false One-way or two-way application requirements. 22... SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.589 One-way or two-way application requirements. In addition to information required by subparts B...
47 CFR 22.561 - Channels for one-way or two-way mobile operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for one-way or two-way mobile... CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.561 Channels for one-way or two-way mobile operation. The following channels are...
49 CFR 232.403 - Design standards for one-way end-of-train devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Design standards for one-way end-of-train devices. 232.403 Section 232.403 Transportation Other Regulations Relating to Transportation (Continued... Design standards for one-way end-of-train devices. (a) General. A one-way end-of-train device shall...
47 CFR 22.561 - Channels for one-way or two-way mobile operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channels for one-way or two-way mobile... CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.561 Channels for one-way or two-way mobile operation. The following channels are...
Numerical Analysis of Stress on Pump Blade by One-Way Coupled Fluid-Structure Simulation
NASA Astrophysics Data System (ADS)
Kobayashi, Katsutoshi; Ono, Shigeyoshi; Harada, Ichiro; Chiba, Yoshimasa
A mixed-flow pump with an unshrouded impeller was computed by a one-way coupled fluid-structure simulation to evaluate a prediction accuracy of stress and analyze a flow pattern which caused the largest stress. The stress occurring around a blade root was predicted by a numerical simulation and compared with an experimental one. Five flow rates, Q/Qbep=0,40,70,100 and 120% were simulated and the predicted stresses at all flow rates agreed with the experimental ones within -11˜+6% accuracy. The largest stress occurred around a blade root on a pressure side of blade surface at all flow rates. The stress became largest at 70% flow rate. A flow pattern around the blade was analyzed to investigate how the largest stress occurred at 70% flow rate. It was found in this study that a flow separation occurred around a leading edge on a suction side of blade surface at 70% flow rate and the largest load was acting on an outside region of blade.
On small set of one-way LOCC indistinguishability of maximally entangled states
NASA Astrophysics Data System (ADS)
Wang, Yan-Ling; Li, Mao-Sheng; Zheng, Zhu-Jun; Fei, Shao-Ming
2016-04-01
In this paper, we study the one-way local operations and classical communication (LOCC) problem. In {C}^d⊗ {C}^d with d≥ 4, we construct a set of 3lceil √{d}rceil -1 one-way LOCC indistinguishable maximally entangled states which are generalized Bell states. Moreover, we show that there are four maximally entangled states which cannot be perfectly distinguished by one-way LOCC measurements for any dimension d≥ 4.
Experimental demonstration of deterministic one-way quantum computation on a NMR quantum computer
Ju, Chenyong; Zhu Jing; Peng Xinhua; Chong Bo; Zhou Xianyi; Du Jiangfeng
2010-01-15
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report an experimental realization of the complete process of deterministic one-way quantum Deutsch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements, and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.
One-way invisible cloak using parity-time symmetric transformation optics.
Zhu, Xuefeng; Feng, Liang; Zhang, Peng; Yin, Xiaobo; Zhang, Xiang
2013-08-01
We propose a one-way invisible cloak using transformation optics of parity-time (PT) symmetric optical materials. At the spontaneous PT-symmetry breaking point, light is scattered only for incidence along one direction since the phase-matching condition is unidirectionally satisfied, making the cloak one-way invisible. Moreover, optical scattering from the one-way cloak can be further engineered to realize more interesting effects, for example, creating a unidirectional optical illusion of the concealed object. PMID:23903152
47 CFR 90.490 - One-way paging operations in the private services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false One-way paging operations in the private services. 90.490 Section 90.490 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way...
47 CFR 90.490 - One-way paging operations in the private services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false One-way paging operations in the private services. 90.490 Section 90.490 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Paging Operations § 90.490 One-way...
On the Experimental Determination of the One-Way Speed of Light
ERIC Educational Resources Information Center
Perez, Israel
2011-01-01
In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…
49 CFR 232.403 - Design standards for one-way end-of-train devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Design standards for one-way end-of-train devices. (a) General. A one-way end-of-train device shall be... brake pipe pressure variations of ±1 psig; (2) Equipped with a “bleeder valve” that permits the release...) The front device shall have a means for entry of the unique identification code of the rear unit...
A note on one-way quantum deficit and quantum discord
NASA Astrophysics Data System (ADS)
Ye, Biao-Liang; Fei, Shao-Ming
2016-01-01
One-way quantum deficit and quantum discord are two important measures of quantum correlations. We revisit the relationship between them in two-qubit systems. We investigate the conditions that both one-way quantum deficit and quantum discord have the same optimal measurement ensembles, and demonstrate that one-way quantum deficit can be derived from the quantum discord for a class of X states. Moreover, we give an explicit relation between one-way quantum deficit and entanglement of formation. We show that under phase damping channel both one-way quantum deficit and quantum discord evolve exactly in the same way for four parameter X states. Some examples are presented in details.
Signal transmission in a Y-shaped one-way chain
NASA Astrophysics Data System (ADS)
Liang, Xiaoming; Tang, Ming; Lü, Huaping
2013-12-01
It has been found that noise plays a key role to improve signal transmission in a one-way chain of bistable systems [Zhang et al., Phys. Rev. E 58, 2952 (1998)]. We here show that the signal transmission can be sharply improved without the aid of noise, if the one-way chain with a single source node is changed with two source nodes becoming a Y-shaped one-way chain. We further reveal that the enhanced signal transmission in the Y-shaped one-way chain is regulated by coupling strength, and that it is robust to noise perturbation and input signal irregularity. We finally analyze the mechanism of the enhanced signal transmission by the Y-shaped structure.
One-way helical electromagnetic wave propagation supported by magnetized plasma
NASA Astrophysics Data System (ADS)
Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang
2016-02-01
In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally.
One-way helical electromagnetic wave propagation supported by magnetized plasma
Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang
2016-01-01
In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally. PMID:26883883
On the relative performance of one-way and two-way grid nesting
NASA Astrophysics Data System (ADS)
Harris, Lucas M.
Most mesoscale models can be run with either one-way ("parasitic") or two-way ("interactive") grid nesting. This paper presents results from a linear 1D shallow-water model and from 3D simulations of a multicell thunderstorm and of trapped lee waves to determine whether the choice of nesting method can have a significant impact on the solution. In the shallow-water model, two-way nesting was found to be generally superior to one-way nesting. The increased reflection for longer-wavelength disturbances in the one-way case is due to a phase difference between the coarse- and nested-grid solutions at the nested-grid boundary that accumulates because of the difference in numerical phase speeds between the grids. Reflections for two-way nesting may be estimated from the difference in numerical group velocities between the coarse and nested grids, which only becomes large for waves that are poorly-resolved on the coarse grid. The only situation in which one-way nesting performs better than two-way is when very poorly-resolved waves strike the nest boundary; in these cases, using a filter on the coarse-grid values within the sponge zone of an otherwise conventional sponge boundary condition can greatly reduce the reflections caused by two-way nesting. The results were more equivocal for the 3D simulations. Two-way nesting clearly produced smaller precipitation errors than did one-way nesting in the multicell simulations, due to the lack of mismatch errors between the coarse- and nested-grid solutions in the two-way simulations. In the trapped lee-wave simulations, two-way nesting produced lower overall errors than did one-way nesting when a simple interpolation BC was used, but larger errors when the sponge BC was used.
Bending self-collimated one-way light by using gyromagnetic photonic crystals
Li, Qing-Bo; Li, Zhen; Wu, Rui-xin
2015-12-14
We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.
Teaching Principles of One-Way Analysis of Variance Using M&M's Candy
ERIC Educational Resources Information Center
Schwartz, Todd A.
2013-01-01
I present an active learning classroom exercise illustrating essential principles of one-way analysis of variance (ANOVA) methods. The exercise is easily conducted by the instructor and is instructive (as well as enjoyable) for the students. This is conducive for demonstrating many theoretical and practical issues related to ANOVA and lends itself…
ERIC Educational Resources Information Center
Barrows, Russell D.
2007-01-01
A one-way ANOVA experiment is performed to determine whether or not the three standardization methods are statistically different in determining the concentration of the three paraffin analytes. The laboratory exercise asks students to combine the three methods in a single analytical procedure of their own design to determine the concentration of…
Perceptual shrinkage of a one-way motion path with high-speed motion
Nakajima, Yutaka; Sakaguchi, Yutaka
2016-01-01
Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4–100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844
Perceptual shrinkage of a one-way motion path with high-speed motion.
Nakajima, Yutaka; Sakaguchi, Yutaka
2016-01-01
Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844
A Note on Noncentrality Parameters for Contrast Tests in a One-Way Analysis of Variance
ERIC Educational Resources Information Center
Liu, Xiaofeng Steven
2010-01-01
The noncentrality parameter for a contrast test in a one-way analysis of variance is based on the dot product of 2 vectors whose geometric meaning in a Euclidian space offers mnemonic hints about its constituents. Additionally, the noncentrality parameters for a set of orthogonal contrasts sum up to the noncentrality parameter for the omnibus "F"…
Developing English and Spanish Literacy in a One-Way Spanish Immersion Program
ERIC Educational Resources Information Center
Hollingsworth, Lindsay Kay
2013-01-01
This quantitative, causal-comparative study examined the possible cause and effect relationship between educational programming, specifically one-way Spanish immersion and traditional English-only, and native English-speaking fifth graders' vocabulary and reading comprehension. Archival data was used to examine students' reading achievement as…
Influence of the Packet Size on the One-Way Delay in 3G Networks
NASA Astrophysics Data System (ADS)
Arlos, Patrik; Fiedler, Markus
We currently observe a rising interest in mobile broadband, which users expect to perform in a similar way as its fixed counterpart. On the other hand, the capacity allocation process on mobile access links is far less transparent to the user; still, its properties need to be known in order to minimize the impact of the network on application performance. This paper investigates the impact of the packet size on the minimal one-way delay for the uplink in third-generation mobile networks. For interactive and real-time applications such as VoIP, one-way delays are of major importance for user perception; however, they are challenging to measure due to their sensitivity to clock synchronisation. Therefore, the paper applies a robust and innovative method to assure the quality of these measurements. Results from measurements from several Swedish mobile operators show that applications can gain significantly in terms of one-way delay from choosing optimal packet sizes. We show that, in certain cases, an increased packet size can improve the one-way delay performance at best by several hundred milliseconds.
Non-linear dynamics of a one-way clutch in belt-pulley systems
NASA Astrophysics Data System (ADS)
Zhu, Farong; Parker, R. G.
2005-01-01
One-way clutches are frequently used in the serpentine belt accessory drives of automobiles and heavy vehicles. The clutch plays a role similar to a vibration absorber in order to reduce belt/pulley vibration and noise and increase belt life. This paper analyzes a two-pulley system where the driven pulley has a one-way clutch between the pulley and accessory shaft that engages only for positive relative displacement between these components. The belt is modelled with linear springs that transmit torque from the driving pulley to the accessory pulley. The one-way clutch is modelled as a piecewise linear spring with discontinuous stiffness that separates the driven pulley into two degrees of freedom. The harmonic balance method combined with arclength continuation is employed to illustrate the non-linear dynamic behavior of the one-way clutch and determine the stable and unstable periodic solutions for given parameters. The results are confirmed by numerical integration and the bifurcation software AUTO. At the first primary resonance, most of the responses are aperiodic, including quasiperiodic and chaotic solutions. At the second primary resonance, the peak bends to the left with classical softening non-linearity because clutch disengagement decouples the pulley and the accessory over portions of the response period. The dependence on clutch stiffness, excitation amplitude, and inertia ratio between the pulley and accessory is studied to characterize the non-linear dynamics across a range of conditions.
Distinguishing maximally entangled states by one-way local operations and classical communication
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Feng, Ke-Qin; Gao, Fei; Wen, Qiao-Yan
2015-01-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal bipartite maximally entangled states. We construct sets of fewer than d orthogonal maximally entangled states which are not distinguished by one-way local operations and classical communication (LOCC) in the Hilbert space of d ⊗d . The proof, based on the Fourier transform of an additive group, is very simple but quite effective. Simultaneously, our results give a general unified upper bound for the minimum number of one-way LOCC indistinguishable maximally entangled states. This improves previous results which only showed sets of N ≥d -2 such states. Finally, our results also show that previous conjectures in Zhang et al. [Z.-C. Zhang, Q.-Y. Wen, F. Gao, G.-J. Tian, and T.-Q. Cao, Quant. Info. Proc. 13, 795 (2014), 10.1007/s11128-013-0691-9] are indeed correct.
On the experimental determination of the one-way speed of light
NASA Astrophysics Data System (ADS)
Pérez, Israel
2011-07-01
In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities close paths. The procedure employed here will provide epistemological tools so that physicists understand that a direct measurement of the speed not only of light but of any physical entity is by no means trivial. Our results shed light on the physics behind the experiments which may be of interest for both physicists with an elemental knowledge in special relativity and philosophers of science.
Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering.
Wollmann, Sabine; Walk, Nathan; Bennet, Adam J; Wiseman, Howard M; Pryde, Geoff J
2016-04-22
Within the hierarchy of inseparable quantum correlations, Einstein-Podolsky-Rosen steering is distinguished from both entanglement and Bell nonlocality by its asymmetry-there exist conditions where the steering phenomenon changes from being observable to not observable, simply by exchanging the role of the two measuring parties. While this one-way steering feature has been previously demonstrated for the restricted class of Gaussian measurements, for the general case of positive-operator-valued measures even its theoretical existence has only recently been settled. Here, we prove, and then experimentally observe, the one-way steerability of an experimentally practical class of entangled states in this general setting. As well as its foundational significance, the demonstration of fundamentally asymmetric nonlocality also has practical implications for the distribution of the trust in quantum communication networks. PMID:27152777
Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering
NASA Astrophysics Data System (ADS)
Wollmann, Sabine; Walk, Nathan; Bennet, Adam J.; Wiseman, Howard M.; Pryde, Geoff J.
2016-04-01
Within the hierarchy of inseparable quantum correlations, Einstein-Podolsky-Rosen steering is distinguished from both entanglement and Bell nonlocality by its asymmetry—there exist conditions where the steering phenomenon changes from being observable to not observable, simply by exchanging the role of the two measuring parties. While this one-way steering feature has been previously demonstrated for the restricted class of Gaussian measurements, for the general case of positive-operator-valued measures even its theoretical existence has only recently been settled. Here, we prove, and then experimentally observe, the one-way steerability of an experimentally practical class of entangled states in this general setting. As well as its foundational significance, the demonstration of fundamentally asymmetric nonlocality also has practical implications for the distribution of the trust in quantum communication networks.
One-Way Diffusion of Ionic Liquids in a Mixing Process with Water
NASA Astrophysics Data System (ADS)
Oikawa, Noriko; Tahara, Daiki; Kurita, Rei
2016-09-01
In contrast to the usual diffusive mixing process between two miscible liquids, the ionic liquid [Cnmim][PF6] forms a droplet in water while mixing. The droplet retains a sharp interface with surface tension, gradually decreasing in size until completely mixed with water. This peculiar behavior in the mixing process accompanies one-way diffusion, in which ions diffuse in one direction only from the bulk IL droplet into the bulk continuum of water. The activation energy of the one-way diffusion at the [Cnmim][PF6]/water interface increases with increasing length of the hydrophobic alkyl chains attached to the cation molecules of [Cnmim][PF6]. It is considered that the hydrophobic nanoscale structure observed in [C4mim][PF6] plays an important role in the generation of the droplet and the mixing dynamics.
Semi-device-independent security of one-way quantum key distribution
Pawlowski, Marcin; Brunner, Nicolas
2011-07-15
By testing nonlocality, the security of entanglement-based quantum key distribution (QKD) can be enhanced to being ''device-independent.'' Here we ask whether such a strong form of security could also be established for one-way (prepare and measure) QKD. While fully device-independent security is impossible, we show that security can be guaranteed against individual attacks in a semi-device-independent scenario. In the latter, the devices used by the trusted parties are noncharacterized, but the dimensionality of the quantum systems used in the protocol is assumed to be bounded. Our security proof relies on the analogies between one-way QKD, dimension witnesses, and random-access codes.
One-Way Markov Process Approach to Repeat Times of Large Earthquakes in Faults
NASA Astrophysics Data System (ADS)
Tejedor, Alejandro; Gomez, Javier B.; Pacheco, Amalio F.
2012-11-01
One of the uses of Markov Chains is the simulation of the seismic cycle in a fault, i.e. as a renewal model for the repetition of its characteristic earthquakes. This representation is consistent with Reid's elastic rebound theory. We propose a general one-way Markovian model in which the waiting time distribution, its first moments, coefficient of variation, and functions of error and alarm (related to the predictability of the model) can be obtained analytically. The fact that in any one-way Markov cycle the coefficient of variation of the corresponding distribution of cycle lengths is always lower than one concurs with observations of large earthquakes in seismic faults. The waiting time distribution of one of the limits of this model is the negative binomial distribution; as an application, we use it to fit the Parkfield earthquake series in the San Andreas fault, California.
Periodic responses of a pulley-belt system with one-way clutch under inertia excitation
NASA Astrophysics Data System (ADS)
Ding, Hu
2015-09-01
The stable steady-state periodic response of a two-pulley belt drive system coupled with an accessory by a one-way clutch is presented. For the first time, the pulley-belt system is studied under double excitations. Specifically, the dual excitations consist of harmonic motion of the driving pulley and inertia excitation. The belt spans are modeled as axially moving viscoelastic beams by considering belt bending stiffness. Therefore, integro-partial-differential equations are derived for governing the transverse vibrations of the belt spans. Moreover, the transverse vibrations of the moving belt are coupled with the rotation vibrations of the pulleys by nonlinear dynamic tension. For describing the unidirectional decoupling function of the one-way device, rotation vibrations of the driven pulley and accessory are modeled as coupled piecewise ordinary differential equations. In order to eliminate the influence of the boundary of the belt spans, the non-trivial equilibriums of the pulley-belt system are numerically determined. Furthermore, A nonlinear piecewise discrete-continuous dynamical system is derived by introducing a coordinate transform. Coupled vibrations of the pulley-belt system are investigated via the Galerkin truncation. The natural frequencies of the coupled vibrations are obtained by using the fast Fourier transform. Moreover, frequency-response curves are abstracted from time histories. Therefore, resonance areas of the belt spans, the driven pulley and the accessory are presented. Furthermore, validity of the Galerkin method is examined by comparing with the differential and integral quadrature methods (DQM & IQM). By comparing the results with and without one-way device, significant damping effect of clutch on the dynamic response is discovered. Furthermore, the effects of the intensity of the driving pulley excitation and the inertia excitation are studied. Moreover, numerical results demonstrate that the two excitations interact on the steady
Matched Bipartite Digraph Representation of Generalized Dynamical System Formed by One-way Barriers
NASA Astrophysics Data System (ADS)
Li, John; Mahoney, John; Mitchell, Kevin; Tom Solomon Collaboration
2014-03-01
We studied a dynamical system with stable and unstable manifolds that behave as one-way barriers, instead of separatrices in traditional dynamical system that are two-way barriers. This asymmetry gives rise to a richer dynamical behavior such as the overlapping of basins of attraction. The recently developed Burning Invariant Manifold (BIM) theory took a dynamical system approach to understand front propagation in Advection-Reaction-Diffusion systems, which have BIMs as the one-way barriers. Through numerical simulations under BIM theory, we found that although both unstable and stable BIMs are one-way barriers, unstable BIMs are the ones that we can experimentally observe the fronts converging onto, and the stable BIMs act as the basin boundaries. We further hypothesized a duality relation between the stable and unstable BIMs. Under the duality hypothesis, we developed a mechanism of the behavior of the system by reducing it back to a traditional system based on topology, and we found a simplification of the system by to summarize the topological information into a Matched Bipartite directed graph (MB digraph). This work was supported by the US National Science Foundation under grant PHY-0748828 and NSF Fellowship DGE-0937362.
One-way-ness in the input-saving (Turing) machine
NASA Astrophysics Data System (ADS)
de Castro, Alexandre
2014-12-01
Currently, a complexity-class problem is proving the existence of one-way permutations: one-to-one and onto maps that are computationally ‘easy’, while their inverses are computationally ‘hard’. In what follows, we make use of Bennett’s algorithm of the reversible Turing machine (quantum information heat engine) to perform a cascade of two controlled-NOT gates to physically create a permutation operation. We show that by running this input-saving (Turing) machine backwards the critical inequality of Landauer’s thermodynamic limit is reversed, which provokes the symmetry-breaking of the quantum circuit based on two successive controlled-NOT quantum gates. This finding reveals that a permutation of controlled-NOT gates becomes one-way, provided that adiabatically immersed in a heat bath, which determines the condition of existence of a thermodynamically non-invertible bijection in polynomial-time, that would otherwise be mathematically invertible. This one-way bijection can also be particularly important because it shows nonlinearities in quantum mechanics, which are detectable by watching that the mathematical reversibility of controlled-NOT gates does not work physically.
Well-posedness of one-way wave equations and absorbing boundary conditions
NASA Technical Reports Server (NTRS)
Trefethen, L. N.; Halpern, L.
1985-01-01
A one-way wave equation is a partial differential which, in some approximate sense, behaves like the wave equation in one direction but permits no propagation in the opposite one. The construction of such equations can be reduced to the approximation of the square root of (1-s sup 2) on -1, 1 by a rational function r(s) = p sub m (s)/q sub n(s). Those rational functions r for which the corresponding one-way wave equation is well-posed are characterized both as a partial differential equation and as an absorbing boundary condition for the wave equation. We find that if r(s) interpolates the square root of (1-s sup 2) at sufficiently many points in (-1,1), then well-posedness is assured. It follows that absorbing boundary conditions based on Pade approximation are well-posed if and only if (m, n) lies in one of two distinct diagonals in the Pade table, the two proposed by Engquist and Majda. Analogous results also hold for one-way wave equations derived from Chebyshev or least-squares approximation.
One-way acoustic mirror based on anisotropic zero-index media
Gu, Zhong-ming; Liang, Bin E-mail: jccheng@nju.edu.cn; Yang, Jing; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Li, Yong; Yang, Jun
2015-11-23
We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.
Investigation of physical implementation of one-way quantum repeaters with multilevel systems
NASA Astrophysics Data System (ADS)
Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Wen, Jianming; Jiang, Liang
Error correcting codes of multilevel systems have been shown to be resource efficient for the correction of erasure errors. One way quantum repeaters based on multilevel systems offer ultrafast key generation rates, while consuming lower resources than qubit based schemes (arXiv:1504.08054). On the other hand, they are technologically demanding. Here, we identify the key technological requirements needed for the implementation of quantum repeaters with multilevel systems and propose different experimental techniques that can be used to overcome the difficulties. We propose a generalized Duan-Kimble scheme for the generation of error correcting codes of multilevel systems with time-bin qudits.
NASA Astrophysics Data System (ADS)
Artoun, Ojenie; David-Rus, Diana; Emmett, Matthew; Fishman, Lou; Fital, Sandra; Hogan, Chad; Lim, Jisun; Lushi, Enkeleida; Marinov, Vesselin
2006-05-01
In this report we summarize an extension of Fourier analysis for the solution of the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not achieved before through other methods for this problem.
Two-sample tests and one-way MANOVA for multivariate biomarker data with nondetects.
Thulin, M
2016-09-10
Testing whether the mean vector of a multivariate set of biomarkers differs between several populations is an increasingly common problem in medical research. Biomarker data is often left censored because some measurements fall below the laboratory's detection limit. We investigate how such censoring affects multivariate two-sample and one-way multivariate analysis of variance tests. Type I error rates, power and robustness to increasing censoring are studied, under both normality and non-normality. Parametric tests are found to perform better than non-parametric alternatives, indicating that the current recommendations for analysis of censored multivariate data may have to be revised. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26999657
Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement
NASA Astrophysics Data System (ADS)
Xu, Xiao-Fan; Bao, Xiao-Hui; Pan, Jian-Wei
2012-11-01
We report an optical one-way quantum computing experiment with stationary quantum memory involved. First we create a hybrid four-qubit cluster state with two qubits propagating as photons and the other two stationary and stored in a laser-cooled atomic-ensemble quantum memory, and characterize it with entanglement witnesses and quantum state tomography. Then, by making use of this cluster state and fast operations of electro-optic modulators, we realize memory-assisted feedforward operations and demonstrate deterministic single-qubit rotation as an example.
One way and two way VHF ranging system performance for tracking and data relay applications
NASA Technical Reports Server (NTRS)
Bryan, J. W.; Filippi, C. A.
1972-01-01
The trajectory of an orbiting spacecraft is determined from an orbit determination program. Two inputs to this program, among others, are the range and range rate relative to some known location. The arithmetic and measurement errors in the determinations of the range, range rate, and range differences were identified and evaluated. These uncertainties are tabulated for one way and two way systems. A comparison of the measurement error contributions illustrate the predominance of thermal noise effects under low power budget conditions, with the other error sources becoming relevent for the high power budget case. The evaluated uncertainties are summarized as root sum squared noise and bias errors.
Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing.
Chen, Sai; Fan, Fei; He, Xiaotong; Chen, Meng; Chang, Shengjiang
2015-11-01
A magneto-metasurface is demonstrated for one-way transmission of terahertz (THz) waves and magnetic field sensing. Due to the magneto-optical effect and the asymmetric structure of the transmission system, magnetoplasmon mode splitting for forward and backward THz waves and one-way transmission has been observed in this magneto-metasurface. Significantly, the resonance of the magneto-metasurface has been found that can remain at 0.750 THz at a temperature of 218 K, performing as a stable isolator with an isolation of larger than 30 dB within a magnetic field disturbance from 0.23 to 0.35 T. Also, since the resonance of the magneto-metasurface can be tuned by the different external magnetic fields at a temperature that is higher or lower than 218 K, the magneto-metasurface can work as a highly sensitive magnetic field sensor. The sensitivity of this device reaches S=513.05 GHz·T(-1) when T=230 K. This multifunctional magneto-metasurface has broad potential in THz application systems. PMID:26560571
Derivation of a one-way radiative transfer equation in random media
NASA Astrophysics Data System (ADS)
Borcea, Liliana; Garnier, Josselin
2016-02-01
We derive from first principles a one-way radiative transfer equation for the wave intensity resolved over directions (Wigner transform of the wave field) in random media. It is an initial value problem with excitation from a source which emits waves in a preferred, forward direction. The equation is derived in a regime with small random fluctuations of the wave speed but long distances of propagation with respect to the wavelength, so that cumulative scattering is significant. The correlation length of the medium and the scale of the support of the source are slightly larger than the wavelength, and the waves propagate in a wide cone with an opening angle less than 180∘, so that the backward and evanescent waves are negligible. The scattering regime is a bridge between that of radiative transfer, where the waves propagate in all directions, and the paraxial regime, where the waves propagate in a narrow angular cone. We connect the one-way radiative transfer equation with the equations satisfied by the Wigner transform of the wave field in these regimes.
Seasonal Ventilation of the Stratosphere: Robust Diagnostics from One-Way Flux Distributions
NASA Technical Reports Server (NTRS)
Orbe, Clara; Holzer, Mark; Polvani, Lorenzo M.; Waugh, Darryn W.; Li, Feng; Oman, Luke D.; Newman, Paul A.
2014-01-01
We present an analysis of the seasonally varying ventilation of the stratosphere using one-way flux distributions. Robust transport diagnostics are computed using GEOSCCM subject to fixed present-day climate forcings. From the one-way flux, we determine the mass of the stratosphere that is in transit since entry through the tropical tropopause to its exit back into the troposphere, partitioned according to stratospheric residence time and exit location. The seasonalities of all diagnostics are quantified with respect to the month of year (a) when air enters the stratosphere, (b) when the mass of the stratosphere is partitioned, and (c) when air exits back into the troposphere. We find that the return flux, within 3 months since entry, depends strongly on when entry occurred: (34 +/- 10)% more of the air entering the stratosphere in July leaves poleward of 45 deg N compared to air that enters in January. The month of year when the air mass is partitioned is also found to be important: The stratosphere contains about six times more air of tropical origin during late summer and early fall that will leave poleward of 45 deg within 6 months since entering the stratosphere compared to during late winter to late spring. When the entire mass of the air that entered the stratosphere at the tropics regardless of its residence time is considered, we find that (51 +/- 1)% and (39 +/- 2)% will leave poleward of 10 deg in the Northern Hemisphere (NH) and Southern Hemisphere (SH), respectively.
NASA Astrophysics Data System (ADS)
Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.
2016-09-01
We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. Moreover the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02, November 2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12 h (≈6 successive LRO orbits
Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer
Jiang, Xue; Liang, Bin; Zou, Xin-ye; Yang, Jing; Yin, Lei-lei; Yang, Jun; Cheng, Jian-chun
2016-01-01
We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973
A one way Doppler tracking system for satellite to satellite tracking
NASA Technical Reports Server (NTRS)
Bryan, J. W.; Lynn, J. J.
1973-01-01
An S-band tracking system employing one way Doppler applicable to the tracking and data relay system (TDRS) was evaluated. This evaluation is limited to the measurement system parameters. The analysis assumes state-of-the-art components such as spacecraft oscillator long term stability of one part in 10 to the 8th power and ground station oscillator stability of one part in 10 to the 11th power. Signal characteristics comparable with the present ranging systems are utilized in the analysis. Predicated upon measurement system parameters, position uncertainties for the low orbiting spacecraft vary from 5 meters to 2 kilometers along track, 4 meters to 1 kilometer cross track, and 1 meter to 180 meters radially depending upon the tracking geometry and the high satellite position and velocity error assumptions.
Vangel, M G; Rukhin, A L
1999-03-01
This article presents results for the maximum likelihood analysis of several groups of measurements made on the same quantity. Following Cochran (1937, Journal of the Royal Statistical Society 4(Supple), 102-118; 1954, Biometrics 10, 101-129; 1980, in Proceedings of the 25th Conference on the Design of Experiments in Army Research, Development and Testing, 21-33) and others, this problem is formulated as a one-way unbalanced random-effects ANOVA with unequal within-group variances. A reparametrization of the likelihood leads to simplified computations, easier identification and interpretation of multimodality of the likelihood, and (through a non-informative-prior Bayesian approach) approximate confidence regions for the mean and between-group variance. PMID:11318146
Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer
NASA Astrophysics Data System (ADS)
Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun
2016-06-01
We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.
One-way quantum key distribution: Simple upper bound on the secret key rate
Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos
2006-11-15
We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol.
An energy-conserving one-way coupled mode propagation model.
Abawi, Ahmad T
2002-01-01
The equations of motion for pressure and displacement fields in a waveguide have been used to derive an energy-conserving, one-way coupled mode propagation model. This model has three important properties: First, since it is based on the equations of motion, rather than the wave equation, instead of two coupling matrices, it only contains one coupling matrix. Second, the resulting coupling matrix is anti-symmetric, which implies that the energy among modes is conserved. Third, the coupling matrix can be computed using the local modes and their depth derivatives. The model has been applied to two range-dependent cases: Propagation in a wedge, where range dependence is due to variations in water depth and propagation through internal waves, where range dependence is due to variations in water sound speed. In both cases the solutions are compared with those obtained from the parabolic equation (PE) method. PMID:11831790
Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation
Morimae, Tomoyuki
2010-06-15
We study how entanglement among the register qubits affects the gate fidelity in the one-way quantum computation if a measurement is inaccurate. We derive an inequality that shows that the mean gate fidelity is upper bounded by a decreasing function of the magnitude of the error of the measurement and the amount of the entanglement between the measured qubit and other register qubits. The consequence of this inequality is that, for a given amount of entanglement, which is theoretically calculated once the algorithm is fixed, we can estimate from this inequality how small the magnitude of the error should be in order not to make the gate fidelity below a threshold, which is specified by a technical requirement in a particular experimental setup or by the threshold theorem of the fault-tolerant quantum computation.
Transport properties of MOPhC/metal one-way waveguide
Eyderman, Sergey; Kuzmiak, Vladimir
2011-10-03
We have demonstrated numerically that the interface between metal and uniformly magnetized 2D photonic crystal(PC) fabricated from a transparent dielectric magneto-optic(MO) material possesses a one-way frequency range where only a forward propagating surface plasmon polariton mode is allowed to propagate. By using a simple theoretical model we have shown that nonreciprocity is introduced by the MO properties of the PC. Transport properties of the structures within this frequency range have been investigated by FDTD method which enables to calculating propagation of EM waves through media with full tensorial MO permittivity. We found that in the presence of a time-dependent external magnetic field interesting features associated with the redistribution of the EM field appear.
Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer.
Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun
2016-01-01
We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973
Surface plasmon polaritons one-way mode converter based on parity-time symmetry broken system
NASA Astrophysics Data System (ADS)
Yan, Xiang-An; Liu, Hanchen; Zhu, Changjun
2016-03-01
In this paper, we have proposed a novel periodic surface plasmon polariton (SPP) waveguide to realize a one-way mode converter which is based on a parity-time (PT) symmetry broken system, and it converts the fundamental TM mode to the first-order TM mode in only forward direction. Periodic gain potentials are put in place to construct the system mentioned in periodic SPP waveguide. Further, as the mode converter contains gain and loss material, light signals will be amplified when it propagates forward, and they will be attenuated toward when they propagate backward. The unidirectional mode converter has wide applications in nonlinearity induced isolation, mode insensitive element and on-chip mode locked laser.
Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation.
Ukai, Ryuji; Yokoyama, Shota; Yoshikawa, Jun-ichi; van Loock, Peter; Furusawa, Akira
2011-12-16
We experimentally demonstrate a controlled-phase gate for continuous variables using a cluster-state resource of four optical modes. The two independent input states of the gate are coupled with the cluster in a teleportation-based fashion. As a result, one of the entanglement links present in the initial cluster state appears in the two unmeasured output modes as the corresponding entangling gate acting on the input states. The genuine quantum character of this gate becomes manifest and is verified through the presence of entanglement at the output for a product two-mode coherent input state. By combining our gate with the recently reported module for single-mode Gaussian operations [R. Ukai et al., Phys. Rev. Lett. 106, 240504 (2011)], it is possible to implement any multimode Gaussian operation as a fully measurement-based one-way quantum computation. PMID:22243056
An experiment to measure the one-way velocity of propagation of electromagnetic radiation
NASA Technical Reports Server (NTRS)
Kolen, P.; Torr, D. G.
1982-01-01
An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.
An attack aimed at active phase compensation in one-way phase-encoded QKD systems
NASA Astrophysics Data System (ADS)
Dong, Zhao-Yue; Yu, Ning-Na; Wei, Zheng-Jun; Wang, Jin-Dong; Zhang, Zhi-Ming
2014-08-01
Phase drift is an inherent problem in one-way phase-encoded quantum key distribution (QKD) systems. Although combining passive with active phase compensation (APC) processes can effectively compensate for the phase drift, the security problems brought about by these processes are rarely considered. In this paper, we point out a security hole in the APC process and put forward a corresponding attack scheme. Under our proposed attack, the quantum bit error rate (QBER) of the QKD can be close to zero for some conditions. However, under the same conditions the ratio r of the key "0" and the key "1" which Bob (the legal communicators Alice and Bob) gets is no longer 1:1 but 2:1, which may expose Eve (the eavesdropper). In order to solve this problem, we modify the resend strategy of the attack scheme, which can force r to reach 1 and the QBER to be lower than the tolerable QBER.
Integratable quarter-wave plates enable one-way angular momentum conversion.
Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao
2016-01-01
Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing. PMID:27102332
Integratable quarter-wave plates enable one-way angular momentum conversion
NASA Astrophysics Data System (ADS)
Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao
2016-04-01
Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing.
Two-factor authentication system based on optical interference and one-way hash function
NASA Astrophysics Data System (ADS)
He, Wenqi; Peng, Xiang; Meng, Xiangfeng; Liu, Xiaoli
2012-10-01
We present a two-factor authentication method to verify the personal identification who tries to access an optoelectronic system. This method is based on the optical interference principle and the traditional one-way Hash function (e.g. MD5). The authentication process is straightforward, the phase key and the password-controlled phase lock of one user are loading on two Spatial Light Modulators (SLMs) in advance, by which two coherent beams are modulated and then interference with each other at the output plane leading to an output image. By comparing the output image with all the standard certification images in the database, the system can thus verify the user's identity. However, the system designing process involves an iterative Modified Phase Retrieval Algorithm (MPRA). For an uthorized user, a phase lock is first created based on a "Digital Fingerprint (DF)", which is the result of a Hash function on a preselected user password. The corresponding phase key can then be determined by use of the phase lock and a designated standard certification image. Note that the encode/design process can only be realized by digital means while the authentication process could be achieved digitally or optically. Computer simulations were also given to validate the proposed approach.
One-way approximation for the simulation of weak shock wave propagation in atmospheric flows.
Gallin, Louis-Jonardan; Rénier, Mathieu; Gaudard, Eric; Farges, Thomas; Marchiano, Régis; Coulouvrat, François
2014-05-01
A numerical scheme is developed to simulate the propagation of weak acoustic shock waves in the atmosphere with no absorption. It generalizes the method previously developed for a heterogeneous medium [Dagrau, Rénier, Marchiano, and Coulouvrat, J. Acoust. Soc. Am. 130, 20-32 (2011)] to the case of a moving medium. It is based on an approximate scalar wave equation for potential, rewritten in a moving time frame, and separated into three parts: (i) the linear wave equation in a homogeneous and quiescent medium, (ii) the effects of atmospheric winds and of density and speed of sound heterogeneities, and (iii) nonlinearities. Each effect is then solved separately by an adapted method: angular spectrum for the wave equation, finite differences for the flow and heterogeneity corrections, and analytical method in time domain for nonlinearities. To keep a one-way formulation, only forward propagating waves are kept in the angular spectrum part, while a wide-angle parabolic approximation is performed on the correction terms. The numerical process is validated in the case of guided modal propagation with a shear flow. It is then applied to the case of blast wave propagation within a boundary layer flow over a flat and rigid ground. PMID:24815240
One-way water permeable valve via water-based superhydrophobic coatings
NASA Astrophysics Data System (ADS)
Mates, Joseph E.; Megaridis, Constantine M.
2013-11-01
Spray-cast superhydrophobic coatings have shown promise in commercial applications for fluid management due to their intrinsic low-cost, large-area capabilities and substrate independence (Schutzius et al. 2011). A technique of applying a light (< 2 gsm) water-based superhydrophobic coating on inherently hydrophilic cellulosic substrates to generate a preferred directionality for water absorption and transmission is presented. The mechanism described allows water to pass through a thin treated porous substrate in one direction under negligible pressure, but does not allow water to return from the opposite direction unless much greater pressure is applied. This pressure disparity ``window'' effectively creates a one-way fluid valve, with envisioned applications ranging from personal hygiene products, to oil-water separation and filtration. Combining SEM imaging with theoretical robustness factors (Tuteja et al. 2008), the penetration pressures are found to be tunable for application-specific designs by choosing a substrate based on limiting factors of fiber diameter and spacing. The process can also be modified with the addition of functionalized (e.g. antibacterial, conductive) nanoparticle fillers suited for the desired application.
One-way membrane trafficking of SOS in receptor-triggered Ras activation.
Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T
2016-09-01
SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis. PMID:27501536
Integratable quarter-wave plates enable one-way angular momentum conversion
Liang, Yao; Zhang, Fengchun; Gu, Jiahua; Huang, Xu Guang; Liu, Songhao
2016-01-01
Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs respectively based on the concept of abrupt phase change and birefringence effect. The orientation of the equivalent optical axis of an Integratable QWP is designable. Remarkably, a combination of two integratable QWPs with different equivalent optical axes leads to an integrated system that performances one-way AM conversion. Moreover, this system can be used as a point source that can excite different patterns on a metal surface via directional excitation of surface plasmon polaritons (SPP). These results allow for the control of AM of light in nanophotonic waveguides, which are crucial for various applications with limited physical space, such as on-chip bio-sensing and integrated quantum information processing. PMID:27102332
Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking
Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng
2016-01-01
One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking. PMID:27387438
Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking
NASA Astrophysics Data System (ADS)
Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng
2016-07-01
One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking.
Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking.
Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng
2016-01-01
One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking. PMID:27387438
One-way-coupling simulation of cavitation accompanied by high-speed droplet impact
NASA Astrophysics Data System (ADS)
Kondo, Tomoki; Ando, Keita
2016-03-01
Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.
NASA Astrophysics Data System (ADS)
Kraczek, B.
2005-03-01
We present a means for coupling dynamic atomistic and continuum simulations via a spacetime discontinuous Galerkin (SDG) finite element method. Our scheme allows the SDG method to couple a general MD simulation using Verlet time-stepping through the flux conditions on the element boundaries at the interface. These flux conditions ensure weak balance of momentum and energy to achieve reflection-free transfer of disturbance across the interface. Our work is supported by the National Science Foundation (ITR grant DMR-0121695) on Process Simulation and Design and, in part, by the Materials Computation Center (FRG grant DMR-99-76550)
More than one way to see it: Individual heuristics in avian visual computation.
Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M; Fitch, W Tecumseh
2015-10-01
Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species' ability to process pattern classes or different species' performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds' choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. PMID:26113444
More than one way to see it: Individual heuristics in avian visual computation
Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M.; Fitch, W. Tecumseh
2015-01-01
Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. PMID:26113444
ERIC Educational Resources Information Center
Wilcox, Rand R.
1989-01-01
Two methods of handling unequal variances in the two-way fixed effects analysis of variance (ANOVA) model are described. One is based on an improved Wilcox (1988) method for the one-way model, and the other is an extension of G. S. James' (1951) second order method. (TJH)
FORTRAN IV Program for One-Way Analysis of Variance with A Priori or A Posteriori Mean Comparisons
ERIC Educational Resources Information Center
Fordyce, Michael W.
1977-01-01
A flexible Fortran program for computing one way analysis of variance is described. Requiring minimal core space, the program provides a variety of useful group statistics, all summary statistics for the analysis, and all mean comparisons for a priori or a posteriori testing. (Author/JKS)
ERIC Educational Resources Information Center
Luh, Wei-Ming; Guo, Jiin-Huarng
2005-01-01
To deal with nonnormal and heterogeneous data for the one-way fixed effect analysis of variance model, the authors adopted a trimmed means method in conjunction with Hall's invertible transformation into a heteroscedastic test statistic (Alexander-Govern test or Welch test). The results of simulation experiments showed that the proposed technique…
NASA Technical Reports Server (NTRS)
Zazzali, Christian
2003-01-01
Even experienced project managers can t anticipate every potential problem. Part of planning ahead should include allowing oneself the flexibility to rethink the plan and improvise if necessary. Unique solutions to problems sometimes create a set of new problems unique in nature as well. In dealing with sudden changes in planning, try to consider what other elements of the project will be affected, but don t second guess yourself into a state of inaction because you can t anticipate every contingency.
Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady
2016-01-01
Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices. PMID:27345575
Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady
2016-01-01
Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium's electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices. PMID:27345575
NASA Astrophysics Data System (ADS)
Lai, Kueifu; Ma, Tsuhsuang; Bo, Xiao; Anlage, Steven; Shvets, Gennady
2016-06-01
Electromagnetic (EM) waves propagating through an inhomogeneous medium are generally scattered whenever the medium’s electromagnetic properties change on the scale of a single wavelength. This fundamental phenomenon constrains how optical structures are designed and interfaced with each other. Recent theoretical work indicates that electromagnetic structures collectively known as photonic topological insulators (PTIs) can be employed to overcome this fundamental limitation, thereby paving the way for ultra-compact photonic structures that no longer have to be wavelength-scale smooth. Here we present the first experimental demonstration of a photonic delay line based on topologically protected surface electromagnetic waves (TPSWs) between two PTIs which are the EM counterparts of the quantum spin-Hall topological insulators in condensed matter. Unlike conventional guided EM waves that do not benefit from topological protection, TPSWs are shown to experience multi-wavelength reflection-free time delays when detoured around sharply-curved paths, thus offering a unique paradigm for compact and efficient wave buffers and other devices.
NASA Astrophysics Data System (ADS)
Xie, Yi; Huang, Yong
2015-10-01
We analyze the post-fit residuals of one-way Doppler tracking data from the Mars Express (MEX) spacecraft to test possible violations of local Lorentz invariance (LLI) and local position invariance (LPI). These one-way Doppler observations were carried out on 2011 August 7 for about 20 minutes at Sheshan Station of Shanghai Astronomical Observatory in China. These downlink signals were sent by MEX for telemetry at X-band. Because we are not able to decode the data in the form of telemetry and separate them from the carrier frequency, this makes the post-fit residuals of the Doppler data degrade to the level of 0.1 m s-1. Even so, the residuals can still impose upper bounds on LLI and LPI at 10-1, which is consistent with the prediction based on our analysis of the detectability. Although the upper bounds given by three-way Doppler tracking of MEX are better than those obtained in the present work, one-way Doppler measurements still provide a unique chance to test possible violations of LLI and LPI far from the ground stations.
Xu Fangxing; Zhang Yang; Zhou Zheng; Chen Wei; Han Zhengfu; Guo Guangcan
2009-12-15
In a practical quantum-key-distribution system, photon source and small operational errors cause intensity fluctuations inevitably, which cannot be ignored for a precise estimation on the single-photon fraction. In this paper, we demonstrated an efficient three-intensity decoy method scheme on top of the one-way Faraday-Michelson Interferometric system, combining an active monitoring with existing commercial apparatus to inspect fluctuations instantly. With this faithful detection for the upper bound of the fluctuation, the secure quantum key distribution is unconditionally realized with whatever type of intensity errors, which declares the utility and potential of decoy theory and active monitoring for quantum key distribution in practical use.
NASA Astrophysics Data System (ADS)
Behrooz, Majid; Gordaninejad, Faramarz
2016-09-01
This paper presents a three-dimensional study of a controllable flexible magnetically-activated micropump. The tubular micropump employs magnetically induced deformation of magnetorheological elastomer and one-way flexible conical valves for fluid transport. Three-dimensional magneto–fluid–solid interaction analysis is employed to investigate the performance of the system. The effects of key material, geometric, and magnetic parameters on the effectiveness of the system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.
NASA Astrophysics Data System (ADS)
Li, John; Mahoney, John; Mitchell, Kevin; Solomon, Tom
2013-11-01
The recently developed Burning Invariant Manifold (BIM) theory took a dynamical system approach to understand front propagation in Advection-Reaction-Diffusion systems and successfully predicted both the short-term and asymptotic front behavior by finding the unstable BIMs which act as barriers to front propagation. Unlike separatrices in traditional dynamical system being two-way barriers, the BIMs are one-way barriers. This asymmetry gives rise to a much richer dynamical behavior than traditional dynamical systems. Through numerical simulations, we found that the stable BIMs are the basin boundaries. Based on the properties of BIM theory, we further derived a theory to investigate a dynamical system consists of one-way barriers and the cooperative behavior of these barriers. This theory reveals the global structure of both stable and unstable BIMs by first using a systematic algorithm to convert the flow to a bipartite digraph and then extracting information of the steady states of fronts and corresponding basins of attraction from the digraph. This work was supported by the US National Science Foundation under grant PHY-0748828 and NSF Fellowship DGE-0937362.
Boche, H. Janßen, G.
2014-08-01
We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.
NASA Astrophysics Data System (ADS)
Givati, Amir; Gochis, David; Rummler, Thomas; Kunstmann, Harald; Yu, Wei
2016-04-01
A pair of hydro-meteorological modeling systems were calibrated and evaluated for the Ayalon basin in central Israel to assess the advantages and limitations of one-way versus two-way coupled modeling systems for flood prediction. The models used included the Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) model and the Weather Research and Forecasting (WRF) Hydro modeling system. The models were forced by observed, interpolated precipitation from rain-gauges within the basin, and with modeled precipitation from the WRF atmospheric model. Detailed calibration and evaluation was carried out for two major winter storms in January and December 2013. Then both modeling systems were executed and evaluated in an operational mode for the full 2014/2015 rainy season. Outputs from these simulations were compared to observed measurements from hydrometric stations at the Ayalon basin outlet. Various statistical metrics were employed to quantify and analyze the results: correlation, Root Mean Square Error (RMSE) and the Nash-Sutcliffe (NS) efficiency coefficient. Foremost, the results presented in this study highlight the sensitivity of hydrological responses to different sources of precipitation data, and less so, to hydrologic model formulation. With observed precipitation data both calibrated models closely simulated the observed hydrographs. The two-way coupled WRF/WRF-Hydro modeling system produced improved both the precipitation and hydrological simulations as compared to the one-way WRF simulations. Findings from this study suggest that the use of two-way atmospheric-hydrological coupling has the potential to improve precipitation and, therefore, hydrological forecasts for early flood warning applications. However more research needed in order to better understand the land-atmosphere coupling mechanisms driving hydrometeorological processes on a wider variety precipitation and terrestrial hydrologic systems.
NASA Astrophysics Data System (ADS)
Angus, Douglas A.
A finite-difference narrow-angle one-way wave equation is implemented and is applied to various wave propagation problems to verify the method as well as to study frequency-dependent three-component waveform effects. The narrow-angle wave equation is the most approximate, yet most computationally practical, of the one-way wave equations derived by Thomson (1999). Although the vector narrow-angle wave equation is limited to a certain propagation distance, it is still a viable and powerful modelling approach to wave propagation in three-dimensional elastic media. A FORTRAN finite-difference code is developed that is second-order accurate in the lateral and forward propagation direction and requires only three extrapolation planes to be stored during each propagation step. Numerical analysis of the finite-difference algorithm indicates that the scheme is stable for appropriate initial conditions and, for the propagation path-lengths of interest, angular range of forward propagation and source-pulse spectral content, numerical grid-anisotropy is minimal. The narrow-angle propagator is sufficiently accurate for angles up to +/-15° to the preferred direction of propagation and is stable within singular regions of slowness space. For reasonable velocity gradients, the travel-times and amplitudes of transmitted and converted body-waves are in good agreement with an exact reference solution. The conical-point singularity is the main focus of the homogeneous, anisotropic wave propagation examples, because it represents the most extreme anisotropic singularity and poses the greatest difficulty for ray-based methods. The results of wave propagation along the acoustic axis display characteristic and potentially diagnostic waveform effects, such as wavefront folding and tearing, merging and splitting pulses, growth of anomalous components and bipolar waveforms. The results of wave propagation in isotropic heterogeneous media are consistent with various published results. Some
A one-way coupled, Euler-Lagrangian simulation of bubble coalescence in a turbulent pipe flow
NASA Astrophysics Data System (ADS)
Mattson, Michael; Mahesh, Krishnan
2011-11-01
A bubble coalescence model is developed using an Euler-Lagrangian approach for unstructured grids. The Eulerian carrier fluid is solved using large-eddy simulation (LES) and the Lagrangian particle motion is solved using one-way coupled equations relating the turbulent motion of the carrier fluid to the forces on each discrete bubble. The collision process is deterministic; bubble-bubble collisions are assumed to be binary and are modeled using a hard-sphere approach. A stochastic approach is used to model coalescence, with the probability of coalescence being a function of the bubble-bubble interaction timescale and the time to drain fluid between the colliding bubbles. Coalescence in a bubbly, turbulent pipe flow without buoyancy is simulated with conditions similar to a microgravity experiment by Colin, Fabre and Dukler [Int. J. Multiphase Flow (1991) 17:533-544] and excellent agreement of bubble size distribution is obtained between simulation and experiment. With increasing downstream distance, the number density of bubbles decreases due to coalescence and the average probability of coalescence decreases slightly due to an increase in overall bubble size. Supported by the U.S. Office of Naval Research under ONR Grant N00014-07-1-0420.
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.
2014-01-01
Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in cleaninlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled time-marching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.
NASA Astrophysics Data System (ADS)
Honarvar, Mohammad; Konh, Bardia; Hutapea, Parsaoran
2015-04-01
Due to its outstanding properties of Nitinol, known as shape memory and superelasticity, Nitinol wires have been used as actuators in many medical devices. For the medical applications, it is critical to have a consistent strain response of Nitinol wires. This work focuses on studying the effect of parameters such as biased stress, maximum temperature, and wire diameters that influence the strain response of Nitinol wires. Specifically, Nitinol phase transformations were studied from microstructural point of view. The crystal structures of one-way shape memory Nitinol wires of various diameters under different thermomechanical loading conditions were studied using X-Ray Diffraction (XRD) method. The location and intensity of characteristic peaks were determined prior and after the thermomechanical loading cycles. It was observed that Nitinol wires of diameters less than 0.19 mm exhibit unrecovered strain while heated to the range of 70ºC to 80ºC in a thermal cycle, whereas no unrecovered strains were found in larger wires. The observation was supported by the XRD patterns where the formation of R-phase crystal structure was showed in wire diameters less than 0.19 mm at room temperature.
NASA Astrophysics Data System (ADS)
Wu, Zhiyong; Wu, Juan; Lu, Guihua
2015-11-01
Coupled hydrological and atmospheric modeling is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling system, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.
2014-01-01
Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.
Serebryannikov, Andriy E; Beruete, Miguel; Mutlu, Mehmet; Ozbay, Ekmel
2015-05-18
Multiband one-way polarization conversion and strong asymmetry in transmission inspired by it are demonstrated in ultrathin sandwiched structures that comprise two twisted aperture-type arrays of complementary split-ring resonators (CSRRs), metallic mesh, and dielectric layers. The basic features of the resulting mechanism originate from the common effect of chirality and tunneling. The emphasis is put on the (nearly) perfect polarization conversion of linear incident polarization into the orthogonal one and related diodelike asymmetric transmission within multiple narrow bands. Desired polarization conversion can be obtained at several resonances for one of the two opposite incidence directions, whereas transmission is fully blocked for the other one. The resonances, at which the (nearly) perfect conversion takes place, are expected to be inherited from similar structures with parallel, i.e., not rotated CSRR arrays that do not enable chirality and, thus, polarization conversion. It is found that the basic transmission and polarization conversion features and, thus, the dominant physics are rather general, enabling efficient engineering of such structures. The lowest-frequency resonance can be obtained in structures made of conventional materials with total thickness less than λ/50 and up to ten such resonances can correspond to thickness less than λ/20. PMID:26074599
NASA Astrophysics Data System (ADS)
Wu, Zhiyong; Wu, Juan; Lu, Guihua
2016-09-01
Coupled hydrological and atmospheric modeling is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling system, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.
NASA Astrophysics Data System (ADS)
Mantha, V.; Mohanty, A. K.; Satyamurthy, P.
2007-02-01
BARC has recently proposed a one-way coupled ADS reactor. This reactor requires typically 1 GeV proton beam with 2 mA of current. Approximately 8 kW of heat is deposited in the window of the target. Circulating liquid metal target (lead/lead-bismuth{eutectic) has to extract this heat and this is a critical R&D problem to be solved. At present there are very few accelerators, which can give few mA and high-energy proton beam. However, accelerators with low energy and hundreds of micro-ampere current are commercially available. In view of this, it is proposed in this paper to simulate beam window heating of 8 kW in the target with low-energy proton beam. Detailed thermal analysis in the spallation and window region has been carried out to study the capability of heat extraction by circulating LBE for a typical target loop with a proton beam of 30 MeV energy and current of 0.267 mA. The heat deposition study is carried out using FLUKA code and flow analysis by CFD code. The detailed analysis of this work is presented in this paper.
ERIC Educational Resources Information Center
McEntee, Marie; Mortimer, Claire
2013-01-01
This article examines two large-scale public communication campaigns to explore the appropriateness and effectiveness of using one-way communication in contentious environmental issues. The findings show while one-way communication can be successfully employed in contentious issues, it is not appropriate for all contexts and may contribute to…
NASA Astrophysics Data System (ADS)
Li, Shan; Li, Laurent; Le Treut, Hervé
2016-04-01
In the 21st century, the estimated surface temperature warming projected by General Circulation Models (GCMs) is between 0.3 and 4.8 °C, depending on the scenario considered. GCMs exhibit a good representation of climate on a global scale, but they are not able to reproduce regional climate processes with the same level of accuracy. Society and policymakers need model projections to define climate change adaptation and mitigation policies on a global, regional and local scale. Climate downscaling is mostly conducted with a regional model nested into the outputs of a global model. This one-way nesting approach is generally used in the climate community without feedbacks from Regional Climate Models (RCMs) to GCMs. This lack of interaction between the two models may affect regional modes of variability, in particular those with a boundary conflict. The objective of this study is to evaluate a two-way nesting configuration that makes an interactive coupling between the RCM and the GCM, an approach against the traditional configuration of one-way nesting system. An additional aim of this work is to examine if the two-way nesting system can improve the RCM performance. The atmospheric component of the IPSL integrated climate model (LMDZ) is configured at both regional (LMDZ-regional) and global (LMDZ-global) scales. The two models have the same configuration for the dynamical framework and the physical forcings. The climatology values of sea surface temperature (SST) are prescribed for the two models. The stretched-grid of LMDZ-global is applied to a region defined by Europe, the Mediterranean, North Africa and Western North Atlantic. To ensure a good statistical significance of results, all simulations last at least 80 years. The nesting process of models is performed by a relaxation procedure of a time scale of 90 minutes. In the case of two-way nesting, the exchange between the two models is every two hours. The relaxation procedure induces a boundary conflict
NASA Technical Reports Server (NTRS)
Dunham, J. B.; Nemesure, M.; Teles, J.; Brown-Conwell, E. R.; Jackson, J. A.; Reamy, V. L.; Maher, M. J.; Elrod, B. D.
1990-01-01
The principal objectives of the USO experiment on the COBE spacecraft are defined, and results of space qualification studies for the COBE USO experiment are summarized. The principal objectives of the experiment are: (1) to determine flight performance of the USO coupled to the second-generation TDRSS transponder; (2) space qualify TDRSS noncoherent one-way return-link Doppler tracking; and (3) analyze algorithms for one-way navigation with real data. The three objectives of the experiment have been met in the first stage of the experiment analysis.
ERIC Educational Resources Information Center
Kirman, Joseph M.; Goldberg, Jack
This study compared teachers instructed in use of Landsat satellite maps through one-way television and simultaneous telephone group conferencing to another teacher group instructed directly. Thirty teachers of intermediate children in Edmonton and Sherwood Park, Alberta, received 5 hours of instruction about Landsat maps over a 2-week period;…
NASA Astrophysics Data System (ADS)
Ličer, M.; Smerkol, P.; Fettich, A.; Ravdas, M.; Papapostolou, A.; Mantziafou, A.; Strajnar, B.; Cedilnik, J.; Jeromel, M.; Jerman, J.; Petan, S.; Malačič, V.; Sofianos, S.
2015-07-01
We study the performances of (a) fully two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmospheric model hourly output), as compared to the available in situ (mooring and CTD) measurements during and after an strong Bora wind event in February 2012, which led to extreme air-sea interactions and record breaking seawater cooling and dense water formation in Northern Adriatic. The simulations span the period between January and March 2012. The models used were ALADIN (4.4 km resolution) on the atmospheric side and Adriatic setup of POM (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. We show, using in situ seawater temperature measurements, that the two-way atmosphere-ocean coupling improves the ocean response to Bora because it captures transient Bora-induced cooling better than the one-way coupled version of the ocean model. We show that this difference stems mainly from an underestimation of air-sea temperature difference in one-way coupled system during the Bora episode, leading to an underestimation of sensible heat losses from the ocean in the one-way coupled system. We show these losses exhibit significant impact on baroclinic circulation on synoptic timescales. We use CTD observations in the Gulf of Trieste to show that when compared to the one-way setup, the two-way coupled system produces a similar estimation of salinities and density anomalies before the Bora episode, but a significantly better estimation of these quantities afterwards.
Davoyan, Arthur R; Engheta, Nader
2013-12-20
We study propagation of transverse-magnetic electromagnetic waves in the bulk and at the surface of a magnetized epsilon-near-zero (ENZ) medium in a Voigt configuration. We reveal that in a certain range of material parameters novel regimes of wave propagation emerge; we show that the transparency of the medium can be altered with the magnetization leading either to magnetically induced Hall opacity or Hall transparency of the ENZ. In our theoretical study, we demonstrate that surface waves at the interface between either a transparent or an opaque Hall medium and a homogeneous medium may, under certain conditions, be predominantly one way. Moreover, we predict that one-way photonic surface states may exist at the interface of an opaque Hall ENZ and a regular metal, giving rise to the possibility for backscattering immune wave propagation and isolation. PMID:24483756
NASA Astrophysics Data System (ADS)
Davoyan, Arthur R.; Engheta, Nader
2013-12-01
We study propagation of transverse-magnetic electromagnetic waves in the bulk and at the surface of a magnetized epsilon-near-zero (ENZ) medium in a Voigt configuration. We reveal that in a certain range of material parameters novel regimes of wave propagation emerge; we show that the transparency of the medium can be altered with the magnetization leading either to magnetically induced Hall opacity or Hall transparency of the ENZ. In our theoretical study, we demonstrate that surface waves at the interface between either a transparent or an opaque Hall medium and a homogeneous medium may, under certain conditions, be predominantly one way. Moreover, we predict that one-way photonic surface states may exist at the interface of an opaque Hall ENZ and a regular metal, giving rise to the possibility for backscattering immune wave propagation and isolation.
2015-08-03
Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in amore » genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance« less
Lo, Chien-Chi
2015-08-03
Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance
Chen, Huifang; Xie, Lei
2014-01-01
Self-healing group key distribution (SGKD) aims to deal with the key distribution problem over an unreliable wireless network. In this paper, we investigate the SGKD issue in resource-constrained wireless networks. We propose two improved SGKD schemes using the one-way hash chain (OHC) and the revocation polynomial (RP), the OHC&RP-SGKD schemes. In the proposed OHC&RP-SGKD schemes, by introducing the unique session identifier and binding the joining time with the capability of recovering previous session keys, the problem of the collusion attack between revoked users and new joined users in existing hash chain-based SGKD schemes is resolved. Moreover, novel methods for utilizing the one-way hash chain and constructing the personal secret, the revocation polynomial and the key updating broadcast packet are presented. Hence, the proposed OHC&RP-SGKD schemes eliminate the limitation of the maximum allowed number of revoked users on the maximum allowed number of sessions, increase the maximum allowed number of revoked/colluding users, and reduce the redundancy in the key updating broadcast packet. Performance analysis and simulation results show that the proposed OHC&RP-SGKD schemes are practical for resource-constrained wireless networks in bad environments, where a strong collusion attack resistance is required and many users could be revoked. PMID:25529204
Tan, Amanda; Tan, Say Hoon; Vyas, Dhaval; Malaivijitnond, Suchinda; Gumert, Michael D.
2015-01-01
We explored variation in patterns of percussive stone-tool use on coastal foods by Burmese long-tailed macaques (Macaca fascicularis aurea) from two islands in Laem Son National Park, Ranong, Thailand. We catalogued variation into three hammering classes and 17 action patterns, after examining 638 tool-use bouts across 90 individuals. Hammering class was based on the stone surface used for striking food, being face, point, and edge hammering. Action patterns were discriminated by tool material, hand use, posture, and striking motion. Hammering class was analyzed for associations with material and behavioural elements of tool use. Action patterns were not, owing to insufficient instances of most patterns. We collected 3077 scan samples from 109 macaques on Piak Nam Yai Island’s coasts, to determine the proportion of individuals using each hammering class and action pattern. Point hammering was significantly more associated with sessile foods, smaller tools, faster striking rates, smoother recoil, unimanual use, and more varied striking direction, than were face and edge hammering, while both point and edge hammering were significantly more associated with precision gripping than face hammering. Edge hammering also showed distinct differences depending on whether such hammering was applied to sessile or unattached foods, resembling point hammering for sessile foods and face hammering for unattached foods. Point hammering and sessile edge hammering compared to prior descriptions of axe hammering, while face and unattached edge hammering compared to pound hammering. Analysis of scans showed that 80% of individuals used tools, each employing one to four different action patterns. The most common patterns were unimanual point hammering (58%), symmetrical-bimanual face hammering (47%) and unimanual face hammering (37%). Unimanual edge hammering was relatively frequent (13%), compared to the other thirteen rare action patterns (<5%). We compare our study to other stone
NASA Astrophysics Data System (ADS)
Ličer, M.; Smerkol, P.; Fettich, A.; Ravdas, M.; Papapostolou, A.; Mantziafou, A.; Strajnar, B.; Cedilnik, J.; Jeromel, M.; Jerman, J.; Petan, S.; Malačič, V.; Sofianos, S.
2016-01-01
We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic bora wind event in February 2012, which led to extreme air-sea interactions. The simulations span the period between January and March 2012. The models used were ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) (4.4 km resolution) on the atmosphere side and an Adriatic setup of Princeton ocean model (POM) (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to sea surface temperature. We have compared modeled atmosphere-ocean fluxes and sea temperatures from both setups to platform and CTD (conductivity, temperature, and depth) measurements from three locations in the northern Adriatic. We present objective verification of 2 m atmosphere temperature forecasts using mean bias and standard deviation of errors scores from 23 meteorological stations in the eastern part of Italy. We show that turbulent fluxes from both setups differ up to 20 % during the bora but not significantly before and after the event. When compared to observations, two-way coupling ocean temperatures exhibit a 4 times lower root mean square error (RMSE) than those from one-way coupled system. Two-way coupling improves sensible heat fluxes at all stations but does not improve latent heat loss. The spatial average of the two-way coupled atmosphere component is up to 0.3 °C colder than the one-way coupled setup, which is an improvement for prognostic lead times up to 20 h. Daily spatial average of the standard deviation of air temperature errors shows 0.15 °C improvement in the case of coupled system compared to the uncoupled. Coupled and uncoupled circulations in the northern
NASA Astrophysics Data System (ADS)
Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu
2016-06-01
In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.
Hassani Gangaraj, S. Ali; Nemilentsau, Andrei; Hanson, George W.
2016-01-01
We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss. PMID:27444542
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Nemilentsau, Andrei; Hanson, George W.
2016-07-01
We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss.
Hassani Gangaraj, S Ali; Nemilentsau, Andrei; Hanson, George W
2016-01-01
We have investigated one-way surface plasmon-polaritons (SPPs) at the interface of a continuum magnetoplasma material and metal, in the presence of three-dimensional surface defects. Bulk electromagnetic modes of continuum materials have Chern numbers, analogous to those of photonic crystals. This can lead to the appearance of topologically-protected surface modes at material interfaces, propagating at frequencies inside the bandgap of the bulk materials. Previous studies considered two-dimensional structures; here we consider the effect of three-dimensional defects, and show that, although backward propagation/reflection cannot occur, side scattering does take place and has significant effect on the propagation of the surface mode. Several different waveguiding geometries are considered for reducing the effects of side-scattering, and we also consider the effects of metal loss. PMID:27444542
Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Martinez-Camara, Eduardo; Jimenez-Macias, Emilio
2015-11-15
The European Committee for Standardization (CEN) through its Technical Committee CEN/TC-350 is developing a series of standards for assessing the building sustainability, at both product and building levels. The practical application of the selection (decision making) of structural alternatives made by one-way slabs leads to an intermediate level between the product and the building. Thus the present study addresses this problem of decision making, following the CEN guidelines and incorporating relevant aspects of architectural design into residential construction. A life cycle assessment (LCA) is developed in order to obtain valid information for the decision making process (the LCA was developed applying CML methodology although Ecoindicator99 was used in order to facilitate the comparison of the values); this information (the carbon footprint values) is contrasted with other databases and with the information from the Environmental Product Declaration (EPD) of one of the lightening materials (expanded polystyrene), in order to validate the results. Solutions of different column disposition and geometries are evaluated in the three pillars of sustainable construction on residential construction: social, economic and environmental. The quantitative analysis of the variables used in this study enables and facilitates an objective comparison in the design stage by a responsible technician; the application of the proposed methodology reduces the possible solutions to be evaluated by the expert to 12.22% of the options in the case of low values of the column index and to 26.67% for the highest values. - Highlights: • Methodology for selection of structural alternatives in buildings with one-way slabs • Adapted to CEN guidelines (CEN/TC-350) for assessing the building sustainability • LCA is developed in order to obtain valid information for the decision making process. • Results validated comparing carbon footprint, databases and Env. Product Declarations
Tao, Xiaojuan; Gao, Peiyi; Jing, Lina; Lin, Yan; Sui, Binbin
2015-01-01
Background Hemodynamics play an important role in the development and progression of carotid atherosclerosis, and may be important in the assessment of plaque vulnerability. The aim of this study was to develop a system to assess the hemodynamics of carotid atherosclerotic plaques using subject-specific fluid-structure interaction (FSI) models based on magnetic resonance imaging (MRI). Material/Methods Models of carotid bifurcations (n=86 with plaques from 52 patients, n=14 normal carotids from 12 participants) were obtained at the Department of Radiology, Beijing Tian Tan Hospital between 2010 and 2013. The maximum von Mises stress, minimum pressure, and flow velocity values were assessed at the most stenotic site in patients, or at the carotid bifurcations in healthy volunteers. Results of one-way FSI were compared with fully-coupled FSI for the plaques of 19 randomly selected models. Results The maximum von Mises stress and the minimum pressure and velocity were significantly increased in the stenosis group compared with controls based on one-way FSI (all P<0.05). The maximum von Mises stress and the minimum pressure were significantly higher and the velocity was significantly lower based on fully coupled FSI compared with on-way FSI (all P<0.05). Although there were differences in numerical values, both methods were equivalent. The maximum von Mises stress of vulnerable plaques was significantly higher than stable plaques (P<0.001). The maximum von Mises stress of the group with fibrous cap defect was significantly higher than the group without fibrous cap defect (P=0.001). Conclusions The hemodynamics of atherosclerotic plaques can be assessed noninvasively using subject-specific models of FSI based on MRI. PMID:26510514
NASA Astrophysics Data System (ADS)
Dong, Chuanfei
This dissertation presents numerical simulation results of the solar wind interaction with the Martian upper atmosphere by using three comprehensive 3-D models: the Mars Global Ionosphere Thermosphere Model (M-GITM), the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS), and the BATS-R-US Mars multi-fluid MHD (MF-MHD) model. The coupled framework has the potential to provide improved predictions for ion escape rates for comparison with future data to be returned by the MAVEN mission (2014-2016) and thereby improve our understanding of present day escape processes. Estimates of ion escape rates over Mars history must start from properly validated models that can be extrapolated into the past. This thesis aims to build a model library for the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, which will thus enhance the science return from the MAVEN mission. In this thesis, we aim to address the following four main scientific questions by adopting the one-way coupled framework developed here: (1) What are the Martian ion escape rates at the current epoch and ancient times? (2) What controls the ion escape processes at the current epoch? How are the ion escape variations connected to the solar cycle, crustal field orientation and seasonal variations? (3) How do the variable 3-D cold neutral thermosphere and hot oxygen corona affect the solar wind-Mars interaction? (4) How does the Martian atmosphere respond to extreme variations (e.g., ICMEs) in the solar wind and its interplanetary environment? These questions are closely related to the primary scientific goals of NASA's MAVEN mission and European Space Agency's Mars Express (MEX) mission. We reasonably answer all these four questions at the end of this thesis by employing the one-way coupled framework and comparing the simulation results with both MEX and MAVEN observational data.
NASA Astrophysics Data System (ADS)
Mao, D.; Sun, X.; Skillman, D. R.; Mcgarry, J.; Hoffman, E.; Neumann, G. A.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.
2014-12-01
Satellite laser ranging (SLR) has long been used to measure the distance from a ground station to an Earth-orbiting satellite in order to determine the spacecraft position in orbit, and to conduct other geodetic measurements such as plate motions. This technique can also be used to transfer time between the station and satellite, and between remote SLR sites, as recently demonstrated by the Time Transfer by Laser Link (T2L2) project by the Centre National d'Etudes Spatiaes (CNES) and Observatorire de la Cote d'Azur (OCA) as well as the Laser Time Transfer (LTT) project by the Shanghai Astronomical Observatory, where two-way and one-way measurements were obtained at the same time. Here we report a new technique to transfer time between distant SLR stations via simultaneous one-way laser ranging (LR) to the Lunar Reconnaissance Orbiter (LRO) spacecraft at lunar distance. The major objectives are to establish accurate ground station times and to improve LRO orbit determination via these measurements. The results of these simultaneous LR measurements are used to compare the SLR station times or transfer time from one to the other using times-of-flight estimated from conventional radio frequency tracking of LRO. The accuracy of the time transfer depends only on the difference of the times-of-flight from each ground station to the spacecraft, and is expected to be at sub-nano second level. The technique has been validated by both a ground-based experiment and an experiment that utilized LRO. Here we present the results to show that sub-nanosecond precision and accuracy are achievable. Both experiments were carried out between the primary LRO-LR station, The Next Generation Satellite Laser Ranging (NGSLR) station, and its nearby station, Mobile Laser System (MOBLAS-7), both at Greenbelt, Maryland. The laser transmit time from both stations were recorded by the same event timer referenced to a Hydrogen maser. The results have been compared to data from a common All
NASA Astrophysics Data System (ADS)
Tehrani, Mohammad Hadikhan; Khoshnoudian, Faramarz
2014-09-01
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure.
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Bougher, Stephen W.; Ma, Yingjuan; Toth, Gabor; Nagy, Andrew F.; Najib, Dalal
2014-04-01
The 3-D multifluid Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) MHD code (MF-MHD) is coupled with the 3-D Mars Thermospheric general circulation model (MTGCM). The ion escape rate from the Martian upper atmosphere is investigated by using a one-way coupling approach, i.e., the MF-MHD model incorporates the effects of 3-D neutral atmosphere profiles from the MTGCM model. The calculations are carried out for two cases with different solar cycle conditions. The calculated total ion escape flux (the sum of three major ionospheric species, O+, O2+, and CO2+) for solar cycle maximum conditions (6.6×1024 s-1) is about 2.6 times larger than that of solar cycle minimum conditions (2.5×1024 s-1). Our simulation results show good agreement with recent observations of 2-3×1024 s-1 (O+, O2+, and CO2+) measured near solar cycle minimum conditions by Mars Express. An extremely high solar wind condition is also simulated which may mimic the condition of coronal mass ejections or corotating interaction regions passing Mars. Simulation results show that it can lead to a significant value of the escape flux as large as 4.3×1025s-1.
Lu, Lu; Li, Guoqiang
2016-06-15
Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs. PMID:27191832
Feldman, C R; Durso, A M; Hanifin, C T; Pfrender, M E; Ducey, P K; Stokes, A N; Barnett, K E; Brodie, E D; Brodie, E D
2016-01-01
Convergent evolution of tetrodotoxin (TTX) resistance, at both the phenotypic and genetic levels, characterizes coevolutionary arms races between amphibians and their snake predators around the world, and reveals remarkable predictability in the process of adaptation. Here we examine the repeatability of the evolution of TTX resistance in an undescribed predator-prey relationship between TTX-bearing Eastern Newts (Notophthalmus viridescens) and Eastern Hog-nosed Snakes (Heterodon platirhinos). We found that that local newts contain levels of TTX dangerous enough to dissuade most predators, and that Eastern Hog-nosed Snakes within newt range are highly resistant to TTX. In fact, these populations of Eastern Hog-nosed Snakes are so resistant to TTX that the potential for current reciprocal selection might be limited. Unlike all other cases of TTX resistance in vertebrates, H. platirhinos lacks the adaptive amino acid substitutions in the skeletal muscle sodium channel that reduce TTX binding, suggesting that physiological resistance in Eastern Hog-nosed Snakes is conferred by an alternate genetic mechanism. Thus, phenotypic convergence in this case is not due to parallel molecular evolution, indicating that there may be more than one way for this adaptation to arise, even among closely related species. PMID:26374236
NASA Technical Reports Server (NTRS)
Alley, C. O.; Kiess, T. E.; Nelson, R. A.; Sergienko, A. V.; Shih, Y. H.; Wang, B. C.; Yang, F. M.
1993-01-01
The preceding paper describes the results so far (interrupted in the Spring of 1989 because of lack of funds) of an experiment comparing the one-way light propagation times on the surface of the rotating Earth. For the 20 Km path length component in the East-West direction the predicted difference between the opposite sense propagation times would be 160 ps, if the approximately 360 Km/s surface speed of the Earth gives effective light speeds of 3 x 10(exp 8) m/s +/- 360 m/s. This could lead to a prediction of the difference between the clock transport and the light pulse synchronization methods described in the preceding paper: delta(T) = 0.5 (160) = 80 ps. The current upper bound of approximately 100 ps for delta(T) is limited by poorly understood systematic errors. The most important seems to be intensity-dependent time delays in the remote light pulse avalanche photo-diode detector. This will be replaced by a continuously operating circular scan streak camera having single photon sensitivity and a time resolution of approximately 5 ps. (This camera has recently been developed by the Xian Institute of Optics and Precision Mechanics in the P.R.C.). Better isolation from shocks and vibration for the Sigma-Tau hydrogen maser during transport will be provided. It is hoped that delta(T) is less than 20 ps can be achieved.
NASA Astrophysics Data System (ADS)
Hildreth, E. C.
1985-09-01
For both biological systems and machines, vision begins with a large and unwieldly array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene such as the location of object boundaries and the structure, color and texture of object surfaces, from the two-dimensional image that is projected onto the eye or camera. This goal is not achieved in a single step: vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clues about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processing has led to extensive research on their detection, description and use, both in computer and biological vision systems. This article reviews some of the theory that underlies the detection of edges, and the methods used to carry out this analysis.
NASA Astrophysics Data System (ADS)
Liu, Peng; Tang, Jingshi; Hou, Xiyun; Liu, Lin
Very Long Baseline Interferometry (VLBI) is a technique that allows determination of angular position for distant radio sources by measuring the geometric time delay between received radio signals at two geographically separated stations. An application of VLBI is spacecraft navigation in space missions where delay measurements of a spacecraft radio signal are compared against similar delay measurements of angularly nearby quasar radio signals. In the case where the spacecraft measurements are obtained from the phases of tones emitted from the spacecraft, first detected separately at each station, and then differenced, this application of VLBI is known as Delta Differential One-Way Ranging (Delta-DOR). Even though data acquisition and processing are not identical for the spacecraft and quasar, they have similar information content and similar sensitivity to sources of error. Consequently, the Delta-DOR can be used in conjunction with Doppler and ranging data to improve spacecraft navigation by more efficiently determining spacecraft angular position in the plane-of-sky. Over the decades, human exploration of Mars have never been stopped. As we know, Delta-DOR began to serve its purpose for Mars Odyssey spacecraft in 2001. In the following years, Delta-DOR was used from Mars Exploration Rover (MER) in 2003-2004 to Mars Science Laboratory (MSL) in 2011, all with excellent results. At present, human exploration of Mars using Delta-DOR technique mainly depends on the Earth-based ground stations. As we know, the differential time delay between the spacecraft and quasar is given approximately by begin{math}Deltatau=-frac{1}{c}BsinTheta_{1}(DeltaTheta_{B}) , the accuracy of the determination of angular separation begin{math}DeltaTheta_{B} improves as the measurement error in the observable begin{math}Deltatau decreases. Further, begin{math}DeltaTheta_{B} accuracy improves as the baseline length B increases. Therefore, the introduction of special libration points, i
NASA Astrophysics Data System (ADS)
Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.
2013-11-01
An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River
NASA Technical Reports Server (NTRS)
2006-01-01
6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.
Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer
2007-06-18
UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines,more » and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in Basis Manual Set by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.« less
2007-06-18
UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines, and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in Basis Manual Set by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.
Wang, Chenyu; Nair, Sithara S; Veeravalli, Sharon; Moseh, Patricia; Wynne, Kenneth J
2016-06-01
-temperature end (slippery surface) but became pinned at the low-temperature end (sticky surface) and did not move when the slide was rotated 180°. The surface was therefore a "one-way street" for water droplet flow. Theory provides fundamental understanding for slippery/sticky behavior for gradient S-PDMS and Pt-PDMS coatings. A model for network formation is based on hydrosilylation at high temperature and condensation curing of Si-OH from autoxidation of Si-H at low temperatures. In summary, network formation conditions strongly affect receding contact angles and water adhesion for Sylgard 184 and the filler-free mimic Pt-PDMS. These findings suggest careful control of curing conditions is important to silicones used in microfluidic devices or as biomedical materials. Network-forming conditions also impact bulk mechanical properties for Sylgard 184, but the range that can be obtained has not been critically examined for specific applications. PMID:27175918
Zhang, Xiuyun; Xin, John; Ding, Feng
2013-04-01
The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth. PMID:23420074
NASA Astrophysics Data System (ADS)
Zhang, Xiuyun; Xin, John; Ding, Feng
2013-03-01
The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.
Microfluidic one-way streets for algae
NASA Astrophysics Data System (ADS)
Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Goldstein, Raymond E.
2012-02-01
Controlling locomotion and transport of microorganisms is a key challenge in the development of future biotechnological applications. Here, we demonstrate the use of optimized microfluidic ratchets to rectify the mean swimming direction in suspensions of the unicellular green alga Chlamydomonas reinhardtii, which is a promising candidate for the photosynthetic production of hydrogen. To assess the potential of microfluidic barriers for the manipulation of algal swimming, we studied first the scattering of individual C. reinhardtii from solid boundaries. High-speed imaging reveals the surprising result that these quasi-spherical ``puller''-type microswimmers primarily interact with surfaces via direct flagellar contact, whereas hydrodynamic effects play a subordinate role. A minimal theoretical model, based on run-and-turn motion and the experimentally measured surface-scattering law, predicts the existence of optimal wedge-shaped ratchets that maximize rectification of initially uniform suspensions. We confirm this prediction in experimental measurements with different geometries. Since the mechano-elastic properties of eukaryotic flagella are conserved across many genera, we expect that our results and methods are applicable to a broad class of biflagellate microorganisms.
One Way--Frustrating, but Rewarding!
ERIC Educational Resources Information Center
Yencer, Dick
1979-01-01
Describes the experiences of a vocational agriculture teacher who worked for four years with rice farmers in Indonesia. Suggests reasons why changes in farming practices are hard to bring about in developing nations. (LRA)
Threading One's Way Through the Geographic Region.
ERIC Educational Resources Information Center
Thomas, Paul F.
1982-01-01
Designed for students in grades 7 through 12, the paper presents illustrative resource materials for teaching concepts related to geographic regions. Emphasis is on giving students an understanding of the interrelationship between regional characteristics and human behavior. The paper introduces students to the following notions: environmental…
NASA Technical Reports Server (NTRS)
Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark
1996-01-01
Many spacecraft are launched today with only an omni-directional (omni) antenna and do not have an onboard Tracking and Data Relay Satellite (TDRS) transponder that is capable of coherently returning a carrier signal through TDRS. Therefore, other means of tracking need to be explored and used to adequately acquire the spacecraft. Differenced One-Way Doppler (DOWD) tracking data are very useful in eliminating the problems associated with the instability of the onboard oscillators when using strictly one-way Doppler data. This paper investigates the TDRS DOWD tracking data received by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) during the launch and early orbit phases for the the Interplanetary Physics Laboratory (WIND) and the National Oceanographic and Atmospheric Administration (NOAA)-J missions. In particular FDF personnel performed an investigation of the data residuals and made an assessment of the acquisition capabilities of DOWD-based solutions. Comparisons of DOWD solutions with existing data types were performed and analyzed in this study. The evaluation also includes atmospheric editing of the DOWD data and a study of the feasibility of solving for Doppler biases in an attempt to minimize error. Furthermore, by comparing the results from WIND and NOAA-J, an attempt is made to show the limitations involved in using DOWD data for the two different mission profiles. The techniques discussed in this paper benefit the launches of spacecraft that do not have TDRS transponders on board, particularly those launched into a low Earth orbit. The use of DOWD data is a valuable asset to missions which do not have a stable local oscillator to enable high-quality solutions from the one-way/return-link Doppler tracking data.
Supersonic Leading Edge Receptivity
NASA Technical Reports Server (NTRS)
Maslov, Anatoly A.
1998-01-01
This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.
ERIC Educational Resources Information Center
Edge, 1999
1999-01-01
"The Edge" is a Canadian publication for youth. The mandate of the Edge is to support and celebrate all career journeys embraced by youth. This issue contains career profile articles covering three jobs: crane operator, indoor climbing instructor, and product certification tester. Career trends and the state of today's workplace are also…
Raquez, Jean-Marie; Vanderstappen, Sophie; Meyer, Franck; Verge, Pierre; Alexandre, Michael; Thomassin, Jean-Michel; Jérôme, Christine; Dubois, Philippe
2011-08-29
Cross-linked poly(ε-caprolactone) (PCL)-based polyesterurethane (PUR) systems have been synthesized through Diels-Alder reactions by reactive extrusion. The Diels-Alder and retro-Diels-Alder reactions proved to be useful for enhancing the molecular motion of PCL-based systems, and therefore their crystallization ability, in the design of cross-linked semicrystalline polymers with one-way and two-way shape-memory properties. Successive reactions between α,ω-diol PCL (PCL(2) ), furfuryl alcohol, and methylene diphenyl 4,4'-diisocyanate straightforwardly afforded the α,ω-furfuryl PCL-based PUR systems, and subsequent Diels-Alder reactions with N,N-phenylenedimaleimide afforded the thermoreversible cycloadducts. The cross-linking density could be modulated by partially replacing PCL-diol with PCL-tetraol. Interestingly, the resulting PUR systems proved to be semicrystalline cross-linked polymers, the melting temperature of which (close to 45 °C) represented the switching temperature for their shape-memory properties. Qualitative and quantitative measurements demonstrated that these PUR systems exhibited one-way and two-way shape-memory properties depending on their cross-linking density. PMID:21744399
Powell, M.
1996-08-01
Edge finishing processes have seemed like ideal candidates for automation. Most edge finishing processes are unpleasant, dangerous, tedious, expensive, not repeatable and labor intensive. Estimates place the cost of manual edge finishing processes at 12% of the total cost of fabricating precision parts. For small, high precision parts, the cost of hand finishing may be as high as 305 of the total part cost. Up to 50% of this cost could be saved through automation. This cost estimate includes the direct costs of edge finishing: the machining hours required and the 30% scrap and rework rate after manual finishing. Not included in these estimates are the indirect costs resulting from cumulative trauma disorders and retraining costs caused by the high turnover rate for finishing jobs.. Despite the apparent economic advantages, edge finishing has proven difficult to automate except in low precision and/or high volume production environments. Finishing automation systems have not been deployed successfully in Department of Energy defense programs (DOE/DP) production, A few systems have been attempted but have been subsequently abandoned for traditional edge finishing approaches: scraping, grinding, and filing the edges using modified dental tools and hand held power tools. Edge finishing automation has been an elusive but potentially lucrative production enhancement. The amount of time required for reconfiguring workcells for new parts, the time required to reprogram the workcells to finish new parts, and automation equipment to respond to fixturing errors and part tolerances are the most common reasons cited for eliminating automation as an option for DOE/DP edge finishing applications. Existing automated finishing systems have proven to be economically viable only where setup and reprogramming costs are a negligible fraction of overall production costs.
Edge detection: a tutorial review
Kunt, M.
1982-01-01
Major edge detection methods are reviewed from the signal processing and artificial intelligence point of views. In the first class, images are processed first to enhance edges. Then a decision is made to label each picture point as edge or not edge. In the second class edges are viewed as the border-lines of regions whose points share a common property. 21 references.
NASA Technical Reports Server (NTRS)
Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian
1992-01-01
As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).
NASA Astrophysics Data System (ADS)
Zisk, Stanley H.; Wittels, Norman
1988-02-01
Edge location is an important machine vision task. Machine vision systems perform mathematical operations on rectangular arrays of numbers that are intended to faithfully represent the spatial distribution of scene luminance. The numbers are produced by periodic sampling and quantization of the camera's video output. This sequence can cause artifacts to appear in the data with a noise spectrum that is high in power at high spatial frequencies. This is a problem because most edge detection algorithms are preferentially sensitive to the high-frequency content in an image. Solid state cameras can introduce errors because of the spatial periodicity of their sensor elements. This can result in problems when image edges are aligned with camera pixel boundaries: (a) some cameras introduce transients into the video signal while switching between sensor elements; (b) most cameras use analog low-pass filters to minimize sampling artifacts and these introduce video phase delays that shift the locations of edges. The problems compound when the vision system samples asynchronously with the camera's pixel rate. Moire patterns (analogous to beat frequencies) can result. In this paper, we examine and model quantization effects in a machine vision system with particular emphasis on edge detection performance. We also compare our models with experimental measurements.
NASA Technical Reports Server (NTRS)
Prokop, Norman F (Inventor)
2016-01-01
Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.
NASA Technical Reports Server (NTRS)
Prokop, Norman F (Inventor)
2015-01-01
Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.
Kubo, S; Nakata, H; Miyasyo, K; Yoshimine, T
2000-10-01
The authors report a case of ruptured aneurysm in a patient in her 90's who was treated by clipping and returned to her independent life after discharge. A 91-year-old woman with a diagnosis of SAH of Hunt & Kosnik Grade III was treated using a conventional clipping operation with cisternal drainage. The cisternal drainage was assembled as a closed system using a newly developed one-way ball valve to regulate the CSF outflow. With this system the patient was able to take any posture and do any movement she wished, not being obligned to stay in bed. Early postoperative rehabilitation was able to be started to prevent pneumonia and muscular atrophy. The drainage was stopped on the 27th postoperative day when the CSF became clear. During the period of drainage, neither valve obstruction nor meningitis was noted. This valve system allows patients under cisternal drainage to move freely. It would be useful, especially when dealing with the elderly, to prevent unwanted complications often caused by postoperative restraint imposed by confinement to bed. PMID:11070911
ERIC Educational Resources Information Center
Popham, W. James
2004-01-01
Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…
NASA Astrophysics Data System (ADS)
Buckmaster, J.; Zhang, Yi
1999-09-01
It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate. It is also known that when a near-asphyxiated candle-flame burns in zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. We propose that these oscillations are nothing more than a manifestation of the large Lewis number instability well known in chemical reactor studies and in combustion studies, one that is exacerbated by heat losses. As evidence of this we examine an edge-flame confined within a fuel-supply boundary and an oxygen-supply boundary, anchored by a discontinuity in data at the fuel-supply boundary. We show that when the Lewis number of the fuel is 2, and the Lewis number of the oxidizer is 1, oscillations of the edge occur when the Damköhler number is reduced below a critical value. During a single oscillation period there is a short premixed propagation stage and a long diffusion stage, behaviour that has been observed in flame spread experiments. Oscillations do not occur when both Lewis numbers are equal to 1.
ERIC Educational Resources Information Center
Ferebee, Ann; Carpenter, Edward K.
1974-01-01
In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…
Superpixel edges for boundary detection
Moya, Mary M.; Koch, Mark W.
2016-07-12
Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.
Edge detection by nonlinear dynamics
Wong, Yiu-fai
1994-07-01
We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.
NASA Astrophysics Data System (ADS)
Parsons, Mark; Grindrod, Peter
2012-06-01
We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.
Hagland, M; Lumsdon, K; Montague, J; Serb, C
1995-08-01
With managed care payment becoming the norm, employers actively pursuing keener benefits management, health care markets evolving at warp speed, and clinical and information technologies spawning new capabilities every day, the cutting edge in health care keeps slicing ever-deeper. With that in mind, we at Hospitals & Health Networks have developed a browser's compendium of some of the leading people, places (organizations and programs) and technologies that are helping move the field forward into the next stage. Each entry is unique; what they all share is an innovative quality that others will emulate. PMID:7627230
Topological number of edge states
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Kimura, Taro
2016-05-01
We show that the edge states of the four-dimensional class A system can have topological charges, which are characterized by Abelian/non-Abelian monopoles. The edge topological charges are a new feature of relations among theories with different dimensions. From this novel viewpoint, we provide a non-Abelian analog of the TKNN number as an edge topological charge, which is defined by an SU(2) 't Hooft-Polyakov BPS monopole through an equivalence to Nahm construction. Furthermore, putting a constant magnetic field yields an edge monopole in a noncommutative momentum space, where D-brane methods in string theory facilitate study of edge fermions.
Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis
2013-12-01
We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.
NASA Astrophysics Data System (ADS)
2007-08-01
Peering at Uranus's Rings as they Swing Edge-on to Earth for the First Time Since their Discovery in 1977 As Uranus coasts through a brief window of time when its rings are edge-on to Earth - a view of the planet we get only once every 42 years - astronomers peering at the rings with ESO's Very Large Telescope and other space or ground-based telescopes are getting an unprecedented view of the fine dust in the system, free from the glare of the bright rocky rings. They may even find a new moon or two. ESO PR Photo 37/07 ESO PR Photo 37/07 The Uranus System "ESO's VLT took data at the precise moment when the rings were edge-on to Earth," said Imke de Pater, of University of California, Berkeley who coordinated the worldwide campaign. She worked with two team members observing in Chile: Daphne Stam of the Technical University Delft in the Netherlands and Markus Hartung of ESO. The observations were done with NACO, one of the adaptive optics instruments installed at the VLT. With adaptive optics, it is possible to obtain images almost free from the blurring effect of the atmosphere. It is as if the 8.2-m telescope were observing from space. Observations were also done with the Keck telescope in Hawaii, the Hubble Space Telescope, and at the Palomar Observatory. "Using different telescopes around the world allows us to observe as much of the changes during the ring-plane crossing as possible: when Uranus sets as seen from the VLT, it can still be observed by the Keck," emphasised Stam. Uranus orbits the Sun in 84 years. Twice during a Uranian year, the rings appear edge-on to Earth for a brief period. The rings were discovered in 1977, so this is the first time for a Uranus ring-crossing to be observed from Earth. The advantage of observations at a ring-plane crossing is that it becomes possible to look at the rings from the shadowed or dark side. From that vantage point, the normally bright outer rings grow fainter because their centimetre- to metre-sized rocks obscure
Edge phonons in black phosphorus
NASA Astrophysics Data System (ADS)
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Edge phonons in black phosphorus.
Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan
2005-10-01
In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases. PMID:16238052
Edge conduction in vacuum glazing
Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D.
1995-03-01
Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.
The Facilitator's Edge: Group Sessions for Edge-ucators.
ERIC Educational Resources Information Center
Handcock, Helen
The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and Making it…
Giant edge state splitting at atomically precise graphene zigzag edges
NASA Astrophysics Data System (ADS)
Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal
2016-05-01
Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states.
Edge-edge interactions in stacked graphene nanoplatelets
Cruz Silva, Eduardo; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Jia, Xiaoting; Sumpter, Bobby G; Dresselhaus, M; Meunier, V.
2013-01-01
High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.
Giant edge state splitting at atomically precise graphene zigzag edges
Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal
2016-01-01
Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron–electron interactions in these localized states. PMID:27181701
Giant edge state splitting at atomically precise graphene zigzag edges.
Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal
2016-01-01
Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states. PMID:27181701
NASA Astrophysics Data System (ADS)
Meyer, Stephan S.; Cheng, Edward S.; Cottingham, David A.; Fixsen, Dale J.; Knox, Lloyd; Silverberg, Robert F.; Timbie, Peter T.; Wilson, Grant
2003-02-01
EDGE is a Long Duration Balloon (LDB) borne instrument designed to measure the large-scale anisotropy of the Cosmic Infrared Background (CIB). The goal is to use this signal as a new observational tool to measure the character of the spatial distribution of galaxies at the largest spatial scales. With a 6\\arcmin\\ beam mapping more than 400 square degrees of sky at 8 frequency bands between 250GHz and 1.5 THz the experiment can determine the variation of galaxy density on spatial scales ranging from >200h-1 Mpc, where dark matter variations are determined directly from Cosmic Microwave Background Radiation (CMBR) anisotropy, to <5h-1 Mpc where the distribution of dark matter and galaxies is determined from galaxy redshift surveys and the underlying dynamics of structure growth is non-linear. The instrument consists of a 1-meter class off-axis telescope and a Frequency Selective Bolometer (FSB) array radiometer. The FSB design provides the compact, multi-chromatic, high sensitivity focal plane needed for this measurement.
Rock Segmentation through Edge Regrouping
NASA Technical Reports Server (NTRS)
Burl, Michael
2008-01-01
Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.
The Robotic Edge Finishing Laboratory
Loucks, C.S.; Selleck, C.B.
1990-08-01
The Robotic Edge Finishing Laboratory at Sandia National Laboratories is developing four areas of technology required for automated deburring, chamfering, and blending of machined edges: (1) the automatic programming of robot trajectories and deburring processes using information derived from a CAD database, (2) the use of machine vision for locating the workpiece coupled with force control to ensure proper tool contact, (3) robotic deburring, blending, and machining of precision chamfered edges, and (4) in-process automated inspection of the formed edge. The Laboratory, its components, integration, and results from edge finishing experiments to date are described here. Also included is a discussion of the issues regarding implementation of the technology in a production environment. 24 refs., 17 figs.
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.
The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.
The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.
The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.
The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.
The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty
Helicopter rotor trailing edge noise
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.
1981-01-01
An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.
Helicopter rotor trailing edge noise
NASA Astrophysics Data System (ADS)
Schlinker, R. H.; Amiet, R. K.
1981-10-01
An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.
Reduction of airfoil trailing edge noise by trailing edge blowing
NASA Astrophysics Data System (ADS)
Gerhard, T.; Erbslöh, S.; Carolus, T.
2014-06-01
The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.
Fast tracking using edge histograms
NASA Astrophysics Data System (ADS)
Rokita, Przemyslaw
1997-04-01
This paper proposes a new algorithm for tracking objects and objects boundaries. This algorithm was developed and applied in a system used for compositing computer generated images and real world video sequences, but can be applied in general in all tracking systems where accuracy and high processing speed are required. The algorithm is based on analysis of histograms obtained by summing along chosen axles pixels of edge segmented images. Edge segmentation is done by spatial convolution using gradient operator. The advantage of such an approach is that it can be performed in real-time using available on the market hardware convolution filters. After edge extraction and histograms computation, respective positions of maximums in edge intensity histograms, in current and previous frame, are compared and matched. Obtained this way information about displacement of histograms maximums, can be directly converted into information about changes of target boundaries positions along chosen axles.
Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications
NASA Astrophysics Data System (ADS)
Wolff, T.; Ernst, B.; Seume, J. R.
2014-06-01
The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.
Edge equilibrium code for tokamaks
Li, Xujing; Drozdov, Vladimir V.
2014-01-15
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.
Edge instabilities of topological superconductors
NASA Astrophysics Data System (ADS)
Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.
2016-05-01
Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.
NASA Astrophysics Data System (ADS)
Hosokawa, K.; Taguchi, S.; Ogawa, Y.
2016-04-01
On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.
One-way nesting for a primitive equation ocean model
NASA Technical Reports Server (NTRS)
Blake, D. W.
1991-01-01
Prognostic numerical models for atmospheric and oceanic circulations require initial fields, boundary conditions, and forcing functions in addition to a consistent set of partial differential equations, including a state relation and equations expressing conservation of mass, momentum, and energy. Depending on the horizontal domain to be modeled, the horizontal boundary conditions are either physically obvious or extremely difficult to specify consistently. If the entire atmosphere is modeled, periodic horizontal boundary conditions are appropriate. On the other hand, the physical horizontal boundaries on the entire ocean are solid walls. Obviously, the normal velocity at a solid wall is zero while the specification of the tangential velocity depends on the mathematical treatment of the horizontal viscous terms. Limitations imposed by computer capacity and cost, as well as research interests, have led to the use of limited area models to study flows in the atmosphere and ocean. The limited area models do not have physical horizontal boundaries, merely numerical ones. Correctly determining these open boundary conditions for limited-area numerical models has both intrigued and frustrated numerical modelers for decades. One common approach is to use the closed or solid wall boundary conditions for a limited-area model. The argument given for this approach is that the boundary conditions affect flow near the walls but that none of these effects are propagated into the interior. Therefore, one chooses a big enough domain that the central region of interest is not corrupted by the boundary flow. Research in progress to model the North Atlantic circulation vividly illustrates the pitfalls of this approach. Two model runs are compared: (1) the southern boundary at 20S between latitudes 0 and 40W is artificially closed; and (2) the same boundary is specified as open with an inward transport of 15 Sv (determined from a global model with the same physics) uniformly spread across the boundary. A comparison of both runs is presented.
One Way or Return? The Journey from Practitioner to Researcher
ERIC Educational Resources Information Center
Buoro, Ivano
2015-01-01
The journey from VET practitioner to academic researcher is not an easy one, especially for VET teachers whose educational research training in action and ethnographic research have been inculcated through years of practice. This paper discusses the highlights of the journey from practitioner to practitioner researcher including a discussion of…
One Way or Another, 'Your' Curriculum Flows from the Potomac
ERIC Educational Resources Information Center
Brody, Judith A.
1977-01-01
The federal government has exercised considerable influence over local school programs because of legislation and money. Examples of the federal role are given and the increasing desire of citizens to have influence in education is noted. (Author/IRT)
Continuous Progress/Ungraded Schooling: One Way To Individualize Learning.
ERIC Educational Resources Information Center
Synthesis, 1992
1992-01-01
This newsletter examines the continuous progress (CP) curriculum, the primary characteristic of which is flexible pacing for the student. The newsletter notes some of the practical concerns limiting implementation of CP curricula, and how some schools have overcome them. It then discusses four issues that schools must address to employ a…
Ants can learn to forage on one-way trails.
Ribeiro, Pedro Leite; Helene, André Frazão; Xavier, Gilberto; Navas, Carlos; Ribeiro, Fernando Leite
2009-01-01
The trails formed by many ant species between nest and food source are two-way roads on which outgoing and returning workers meet and touch each other all along. The way to get back home, after grasping a food load, is to take the same route on which they have arrived from the nest. In many species such trails are chemically marked by pheromones providing orientation cues for the ants to find their way. Other species rely on their vision and use landmarks as cues. We have developed a method to stop foraging ants from shuttling on two-way trails. The only way to forage is to take two separate roads, as they cannot go back on their steps after arriving at the food or at the nest. The condition qualifies as a problem because all their orientation cues -- chemical, visual or any other -- are disrupted, as all of them cannot but lead the ants back to the route on which they arrived. We have found that workers of the leaf-cutting ant Atta sexdens rubropilosa can solve the problem. They could not only find the alternative way, but also used the unidirectional traffic system to forage effectively. We suggest that their ability is an evolutionary consequence of the need to deal with environmental irregularities that cannot be negotiated by means of excessively stereotyped behavior, and that it is but an example of a widespread phenomenon. We also suggest that our method can be adapted to other species, invertebrate and vertebrate, in the study of orientation, memory, perception, learning and communication. PMID:19337369
"At Least One" Way to Add Value to Conferences
ERIC Educational Resources Information Center
Wilson, Warren J.
2005-01-01
In "EDUCAUSE Quarterly," Volume 25, Number 3, 2002, Joan Getman and Nikki Reynolds published an excellent article about getting the most from a conference. They listed 10 strategies that a conference attendee could use to maximize the conference's yield in information and motivation: (1) Plan ahead; (2) Set realistic expectations; (3) Use e-mail…
Science Shorts: More than One Way to Investigate
ERIC Educational Resources Information Center
Coskie, Tracy L.; Davis, Kimberly J.
2007-01-01
An exciting element of science fairs is that they give students the opportunity to explore various interests through scientific investigation. Many students, however, mistakenly think that all investigations are experiments. This lesson can help broaden students' conceptions of science. (Contains 1 resource.)
Mapping the Chapter: One Way to Tackle the CTE Textbook
ERIC Educational Resources Information Center
Laverick DeFelice, Catherine
2010-01-01
This reading specialist has come up with a strategy to help other CTE instructors map the CTE textbook, so that students can better comprehend the information in them and discover a joy of reading. CTE textbooks present a particular challenge because they are packed with information and can be quite different in structure than texts student have…
Guns and Fear: A One-Way Street?
ERIC Educational Resources Information Center
Hauser, Will; Kleck, Gary
2013-01-01
Surveys show that more than one half of gun owners report owning their firearm for self-protection. Although research has examined the effect of fear of crime on gun ownership, the issue of reciprocity and temporal order has been largely ignored. Furthermore, the effect of firearm acquisition and relinquishment on fear has not been evaluated…
Is There Only One Way To Evaluate Students?
ERIC Educational Resources Information Center
Gifford, Ann Porter
2002-01-01
Suggests there are many ways to assess students' progress in understanding the elements of a story. Discusses how to stimulate students' ability to analyze how adding another character, changing the setting or twisting the plot can create new and interesting versions of a the common folktale, "The Three Little Pigs." Includes a 37-item annotated…
One Hundred and One Ways to Infinity: Part 2.
ERIC Educational Resources Information Center
Gardiner, A.
1980-01-01
Part 2 considers the limit of a sequence and extends this to include ideas such as continuity, derivative, and integral. The discussion concludes with an example of a finite or "counted completely" set, the Fermat primes. (MK)
Alternatives to incineration: There's more than one way to remediate
Pellerin, C.
1994-10-01
Hazardous waste is everywhere. It comes from paints, motor oil, hair spray, household cleaners, automotive chemicals, and all kinds of toxic medical, industrial and military products. Most industrial processes - from which come cosmetics and pharmaceuticals, computers and garden pesticides - generate wastes that the EPA, acting under the Resource Conservation Recovery Act (RCRA), says can harm human health or the environment if not properly managed. As a waste-disposal technology, incineration has been around for about 500,000 years - an interesting spinoff of that timely Homo erectus discovery, fire. For millennia, incineration looked like a pretty good way to turn big piles of hazardous waste into air emissions, smaller piles of ash, and sometimes energy. And it's still a good idea. The EPA, for one, calls high-temperature incineration the best available technology for disposing of most hazardous waste. But incineration has drawbacks. When hazardous waste goes into an incinerator, it comes out as potentially harmful air emissions, although these emissions are strictly controlled, and ash ash that's treated to meet EPA standards and then disposed of in an authorized landfill. It doesn't just vanish into thin air.
Decay patterns of edge states at reconstructed armchair graphene edges
NASA Astrophysics Data System (ADS)
Park, Changwon; Ihm, Jisoon; Kim, Gunn
Density functional theory calculations are used to investigate the electronic structures of localized states at reconstructed armchair graphene edges. We consider graphene nanoribbons with two different edge types and obtain the energy band structures and charge densities of the edge states. By examining the imaginary part of the wave vector in the forbidden energy region, we reveal the decay behavior of the wave functions in graphene. The complex band structures of graphene in the armchair and zigzag directions are presented in the first-principles framework. G.K. acknowledges the support of the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant No. 2013R1A1A2009131) and the Priority Research Center Program (Grant No. 2010-0020207).
On the Edge: Haptic Discrimination of Edge Sharpness
Skinner, Andy L.; Kent, Christopher; Rossiter, Jonathan M.; Benton, Christopher P.; Groen, Martin G. M.; Noyes, Jan M.
2013-01-01
The increasing ubiquity of haptic displays (e.g., smart phones and tablets) necessitates a better understanding of the perceptual capabilities of the human haptic system. Haptic displays will soon be capable of locally deforming to create simple 3D shapes. This study investigated the sensitivity of our haptic system to a fundamental component of shapes: edges. A novel set of eight high quality shape stimuli with test edges that varied in sharpness were fabricated in a 3D printer. In a two alternative, forced choice task, blindfolded participants were presented with two of these shapes side by side (one the reference, the other selected randomly from the remaining set of seven) and after actively exploring the test edge of each shape with the tip of their index finger, reported which shape had the sharper edge. We used a model selection approach to fit optimal psychometric functions to performance data, and from these obtained just noticeable differences and Weber fractions. In Experiment 1, participants performed the task with four different references. With sharpness defined as the angle at which one surface meets the horizontal plane, the four JNDs closely followed Weber’s Law, giving a Weber fraction of 0.11. Comparisons to previously reported Weber fractions from other haptic manipulations (e.g. amplitude of vibration) suggests we are sufficiently sensitive to changes in edge sharpness for this to be of potential utility in the design of future haptic displays. In Experiment 2, two groups of participants performed the task with a single reference but different exploration strategies; one was limited to a single touch, the other unconstrained and free to explore as they wished. As predicted, the JND in the free exploration condition was lower than that in the single touch condition, indicating exploration strategy affects sensitivity to edge sharpness. PMID:24023852
Continued Growth on Graphene Edges
NASA Astrophysics Data System (ADS)
Luo, Zhengtang
Previously, we have shown that the large-size single crystal graphene can be obtained by suppressing the nucleation density during Chemical Vapor Deposition (CVD) growth. Here we demonstrate that the graphene single crystal can be amplified by a continued growth method. In this process, we used a mild oxidation step after the first-growth, which lead to the observed fromation of oxides at the vicinity of graphene edges, which allows the graphene growth at seed edges due to reduced activation energy. Consequently, we successful grown a secondary single-crystal graphene structures with the same lattice structure, orientation on the graphene edges. This amplification method would enable the production of graphene electronics with controlled properties.
Edges and Corners With Shearlets.
Duval-Poo, Miguel A; Odone, Francesca; De Vito, Ernesto
2015-11-01
Shearlets are a relatively new and very effective multi-scale framework for signal analysis. Contrary to the traditional wavelets, shearlets are capable to efficiently capture the anisotropic information in multivariate problem classes. Therefore, shearlets can be seen as the valid choice for multi-scale analysis and detection of directional sensitive visual features like edges and corners. In this paper, we start by reviewing the main properties of shearlets that are important for edge and corner detection. Then, we study algorithms for multi-scale edge and corner detection based on the shearlet representation. We provide an extensive experimental assessment on benchmark data sets which empirically confirms the potential of shearlets feature detection. PMID:26353351
Edge shape and comfort of rigid lenses.
La Hood, D
1988-08-01
One of the main factors determining the comfort of a rigid contact lens is the shape of the edge. The comfort of four different contact lens edge shapes was assessed with four unadapted subjects in a randomized masked trial. Lenses with well rounded anterior edge profiles were found to be significantly more comfortable than lenses with square anterior edges. There was no significant difference in subjective comfort between a rounded and square posterior edge profile. The results suggest that the interaction of the edge with the eyelid is more important in determining comfort than edge effects on the cornea, when lenses are fitted according to a corneal alignment philosophy. PMID:3177585
Shape-dependent canny edge detector
NASA Astrophysics Data System (ADS)
Panetta, Karen A.; Agaian, Sos S.; Nercessian, Shahan C.; Almunstashri, Ali A.
2011-08-01
Edges characterize the boundaries of objects in images and are informative structural cues for computer vision and target/object detection and recognition systems. The Canny edge detector is widely regarded as the edge detection standard. It is fairly adaptable to different environments, as its parametric nature attempts to tailor the detection of edges based on image-dependent characteristics or the particular requirements of a given implementation. Though it has been used in a myriad of image processing tasks, the Canny edge detector is still vulnerable to edge losses, localization errors, and noise sensitivity. These issues are largely due to the key tradeoff made in the scale and size of the edge detection filters used by the algorithm. Small-scaled filters are sensitive to edges but also to noise, whereas large-scaled filters are robust to noise but could filter out fine details. In this paper, novel edge detection kernel generalizations and a shape-dependent edge detector are introduced to alleviate these shortcomings. While most standard edge detection algorithms are based on convolving the input image with fixed size square kernels, this paper will illustrate the benefits of different filter sizes, and more importantly, different kernel shapes for edge detection. Moreover, new edge fusion methods are introduced to more effectively combine the individual edge responses. Existing edge detectors, including the Canny edge detector, can be obtained from the generalized edge detector by specifying corresponding parameters and kernel shapes. The proposed representations and edge detector have been qualitatively and quantitatively evaluated on several different types of image data. Computer simulations demonstrate that nonsquare kernel approaches can outperform square kernel approaches such as Canny, Sobel, Prewitt, Roberts, and others, providing better tradeoffs between noise rejection, accurate edge localization, and resolution. Where possible, Pratt's figure of
ERIC Educational Resources Information Center
Faatz, Judith A.
1998-01-01
Describes a field study in a local ecosystem which allows high school students to investigate the edge effect, where a meadow and a forest meet. Students measure soil moisture content, soil temperature, air temperature, relative humidity, wind intensity, and illumination level. Teachers can help students apply their findings to understand problems…
Helicopter rotor trailing edge noise
NASA Astrophysics Data System (ADS)
Schlinker, R. H.; Amier, R. K.
1981-11-01
A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.
Technology Transfer Automated Retrieval System (TEKTRAN)
Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...
Saddle-node dynamics for edge detection
Wong, Y.F.
1994-09-01
The author demonstrates how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, this scheme is general enough to be able to handle different edges, such as lines, step edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.
Linear array optical edge sensor
NASA Technical Reports Server (NTRS)
Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)
1987-01-01
A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.
NASA Astrophysics Data System (ADS)
Kasparova, A.; Katkov, I.; Chilingarian, I.; Silchenko, O.; Moiseev, A.; Borisov, S.
2016-06-01
Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difﬁculties, there is a lack of information about their stellar populations. Using the Russian 6-m telescope BTA we collected deep spectra of thick discs in three edge-on early-type disc galaxies located in different environments: NGC4111 in a dense group, NGC4710 in the Virgo cluster, and NGC5422 in a sparse group. We see intermediate age (4 ‑ 5 Gyr) metal rich ([Fe/H] ~ ‑0.2 ‑ 0.0 dex) stellar populations in NGC4111 and NGC4710. On the other hand, NGC5422 does not harbour young stars, its only disc is thick and old (10 Gyr) and its α-element abundance suggests a long formation epoch implying its formation at high redshift. Our results prove the diversity of thick disc formation scenarios.
Gyrosheath near the tokamak edge
Hazeltine, R.D.; Xiao, H.; Valanju, P.M.
1993-03-01
A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results.
Topological edge states in pnictides
NASA Astrophysics Data System (ADS)
Youmans, Cody; Ghaemi, Pouyan; Kargarian, Mehdi
In some members of the ferro-pnictides, non-trivial topology in the bulk band-structure is related to potentially observable gapless edge states. We study these states numerically and analytically for a range of parameters, with and without superconductivity and antiferromagnetic SDW ordering, and their relation to the symmetries and topologically non-trivial aspects of our model Hamiltonian. Support was provided by the Doctoral Student Research Grant program at the Graduate Center, CUNY.
Etching Of Semiconductor Wafer Edges
Kardauskas, Michael J.; Piwczyk, Bernhard P.
2003-12-09
A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.
Edge effects and delamination failures
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1989-01-01
The fundamental relationship between the morphology of a composite laminate and the resulting free edge effects is explored and related to delamination failures. Cross-ply, angle-ply, and quasi-isotropic laminates are discussed in detail. It is shown that the local mismatch in elastic properties of adjacent layers and the global stacking sequence of a laminate both have a significant influence on the interlaminar stresses and delamination failures.
Edge-driven microplate kinematics
Schouten, Hans; Klitgord, Kim D.; Gallo, David G.
1993-01-01
It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.
Flap--edge flowfield measurements
NASA Astrophysics Data System (ADS)
Pye, John D.; Cantwell, Brian J.
1997-11-01
Recent studies of airframe noise suggest that the wing and flap trailing--edges as well as the flap side--edge are areas of significant noise generation. To identify the fluid dynamic processes associated with these noise sources, we are examining the flow--field around a NACA 63--215 Mod B main element airfoil configured with a half--span Fowler flap. The tests are performed in a low--speed wind tunnel at a Reynolds number of ~ 6.0×10^5. A hot wire traverse system is used to map the mean velocities and turbulence intensities in the near wake region of the flow. Measurements of the pressure fluctuations along the flap side--edge and in the cove of the airfoil configuration are made with pressure transducers mounted inside the airfoil. The experimental data are in good qualitative agreement with the numerical simulation of a slightly higher Reynolds number flow ( ~ 1.5×10^6) around a geometrically similar airfoil configuration.
Smectic Edge Dislocations under Shear
NASA Astrophysics Data System (ADS)
Chen, Peilong; Lu, Chun-Yi David
2011-09-01
Layer structures around an edge dislocation in a smectic phase under shear are studied with both phase field and order parameter models. It is shown that, contrast to a crystal solid, the conventional picture of the Peach--Koehler force experienced by dislocations when the sample is under a shear stress cannot be readily applied to the smectic phases. Under a uniform shear flow, we obtain the phase field and order parameter solutions around an edge dislocation. The solutions elucidate properties such as the layer distortion range around the dislocation and scaling of inter-dislocation interaction on dislocation separation. Calculations on energy dissipation indicate the extreme shear-thinning behavior that an edge dislocation induces a shear stress independent of the shear rate. Finally in a bulk sample with dislocation forming loops and networks, we argue that the uniform flow component around the dislocation is important to the energy dissipation and we show that its scaling exponent with the shear rate is very close to results from many previous rheology measurements.
Chemistry at the Edge of Graphene.
Bellunato, Amedeo; Arjmandi Tash, Hadi; Cesa, Yanina; Schneider, Grégory F
2016-03-16
The selective functionalization of graphene edges is driven by the chemical reactivity of its carbon atoms. The chemical reactivity of an edge, as an interruption of the honeycomb lattice of graphene, differs from the relative inertness of the basal plane. In fact, the unsaturation of the pz orbitals and the break of the π conjugation on an edge increase the energy of the electrons at the edge sites, leading to specific chemical reactivity and electronic properties. Given the relevance of the chemistry at the edges in many aspects of graphene, the present Review investigates the processes and mechanisms that drive the chemical functionalization of graphene at the edges. Emphasis is given to the selective chemical functionalization of graphene edges from theoretical and experimental perspectives, with a particular focus on the characterization tools available to investigate the chemistry of graphene at the edge. PMID:26693841
Edge localized mode control with an edge resonant magnetic perturbation
Moyer, R.A.; Boedo, J.A.; Rudakov, D.L.; Evans, T.E.; Osborne, T.H.; Gohil, P.; Groebner, R.J.; Jackson, G.L.; La Haye, R.J.; Leonard, A.W.; Schaffer, M.J.; Snyder, P.B.; West, W.P.; Thomas, P.R.; Becoulet, M.; Harris, J.; Finken, K.-H.; Doyle, E.J.; Rhodes, T.L.; Wang, G.
2005-05-15
A low amplitude ({delta}b{sub r}/B{sub T}=1 part in 5000) edge resonant magnetic field perturbation with toroidal mode number n=3 and poloidal mode numbers between 8 and 15 has been used to suppress most large type I edge localized modes (ELMs) without degrading core plasma confinement. ELMs have been suppressed for periods of up to 8.6 energy confinement times when the edge safety factor q{sub 95} is between 3.5 and 4. The large ELMs are replaced by packets of events (possibly type II ELMs) with small amplitude, narrow radial extent, and a higher level of magnetic field and density fluctuations, creating a duty cycle with long 'active' intervals of high transport and short 'quiet' intervals of low transport. The increased transport associated with these events is less impulsive and slows the recovery of the pedestal profiles to the values reached just before the large ELMs without the n=3 perturbation. Changing the toroidal phase of the perturbation by 60 deg. with respect to the best ELM suppression case reduces the ELM amplitude and frequency by factors of 2-3 in the divertor, produces a more stochastic response in the H-mode pedestal profiles, and displays similar increases in small scale events, although significant numbers of large ELMs survive. In contrast to the best ELM suppression case where the type I ELMs are also suppressed on the outboard midplane, the midplane recycling increases until individual ELMs are no longer discernable. The ELM response depends on the toroidal phase of the applied perturbation because intrinsic error fields make the target plasma nonaxisymmetric, and suggests that at least some of the variation in ELM behavior in a single device or among different devices is due to differences in the intrinsic error fields in these devices. These results indicate that ELMs can be suppressed by small edge resonant magnetic field perturbations. Extrapolation to next-step burning plasma devices will require extending the regime of operation to
APPROXIMATION ALGORITHMS FOR DISTANCE-2 EDGE COLORING.
BARRETT, CHRISTOPHER L; ISTRATE, GABRIEL; VILIKANTI, ANIL KUMAR; MARATHE, MADHAV; THITE, SHRIPAD V
2002-07-17
The authors consider the link scheduling problem for packet radio networks which is assigning channels to the connecting links so that transmission may proceed on all links assigned the same channel simultaneously without collisions. This problem can be cast as the distance-2 edge coloring problem, a variant of proper edge coloring, on the graph with transceivers as vertices and links as edges. They present efficient approximation algorithms for the distance-2 edge coloring problem for various classes of graphs.
Densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1982-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
Sprinkle, J.K.; Hansen, W.J.
1993-02-11
In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.
Bosonic edge states in gapped honeycomb lattices
NASA Astrophysics Data System (ADS)
Guo, Huaiming; Niu, Yuekun; Chen, Shu; Feng, Shiping
2016-03-01
By quantum Monte Carlo simulations of bosons in gapped honeycomb lattices, we show the existence of bosonic edge states. For a single layer honeycomb lattice, bosonic edge states can be controlled to appear, cross the gap, and merge into bulk states by an on-site potential applied on the outermost sites of the boundary. On a bilayer honeycomb lattice, A bosonic edge state traversing the gap at half filling is demonstrated. The topological origin of the bosonic edge states is discussed with pseudo Berry curvature. The results will simulate experimental studies of these exotic bosonic edge states with ultracold bosons trapped in honeycomb optical lattices.
Extraction of edge feature in cardiovascular image
NASA Astrophysics Data System (ADS)
Lu, Jianrong; Chen, Dongqing; Yu, Daoyin; Liu, Xiaojun
2001-09-01
Extraction of edge feature and accurate measurement of vascular diameter in cardiovascular image are the bases for labeling the coronary hierarchy, 3D refined reconstruction of the coronary arterial tree and accurate fusion between the calculated 3D vascular trees and other views. In order to extract vessels from the image, the grayscale minimization of the circle template and differential edge detection are put forward. Edge pixels of the coronary artery are set according to maximization of the differential value. The edge lines are determined after the edge pixels are smoothed by B-Spline function. The assessment of feature extraction is demonstrated by the excellent performance in computer simulation and actual application.
An Efficient Ant-Based Edge Detector
NASA Astrophysics Data System (ADS)
Aydın, Doğan
An efficient ant-based edge detector is presented. It is based on the distribution of ants on an image, ants try to find possible edges by using a state transition function based on 5x5 edge structures. Visual comparisons show that the proposed method gives finer details and thinner edges at lesser computational times when compared to earlier ant-based approaches. When compared to standard edge detectors, it shows robustness to Gaussian and Salt & Pepper noise and provides finer details than others with same parameter set in both clear and noisy images.
Tunable skewed edges in puckered structures
NASA Astrophysics Data System (ADS)
Grujić, Marko M.; Ezawa, Motohiko; Tadić, Milan Ž.; Peeters, François M.
2016-06-01
We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field Ez. A topological argument is presented, revealing the condition for the emergence of such edge states.
Optimal edge filters explain human blur detection.
McIlhagga, William H; May, Keith A
2012-01-01
Edges are important visual features, providing many cues to the three-dimensional structure of the world. One of these cues is edge blur. Sharp edges tend to be caused by object boundaries, while blurred edges indicate shadows, surface curvature, or defocus due to relative depth. Edge blur also drives accommodation and may be implicated in the correct development of the eye's optical power. Here we use classification image techniques to reveal the mechanisms underlying blur detection in human vision. Observers were shown a sharp and a blurred edge in white noise and had to identify the blurred edge. The resultant smoothed classification image derived from these experiments was similar to a derivative of a Gaussian filter. We also fitted a number of edge detection models (MIRAGE, N(1), and N(3)(+)) and the ideal observer to observer responses, but none performed as well as the classification image. However, observer responses were well fitted by a recently developed optimal edge detector model, coupled with a Bayesian prior on the expected blurs in the stimulus. This model outperformed the classification image when performance was measured by the Akaike Information Criterion. This result strongly suggests that humans use optimal edge detection filters to detect edges and encode their blur. PMID:22984222
Measuring edge importance to improve immunization performance
NASA Astrophysics Data System (ADS)
Huang, He; Yan, Zhijun; Pan, Yaohui
2014-12-01
The edge heterogeneity has a remarkable influence on disease spreading, but it has seldom been considered in the disease-controlling policies. Based on the gravity model, we propose the edge importance index to describe the influence of edge heterogeneity on immunization strategies. Then the edge importance and contact weight are combined to calculate the infection rates on the I-S (Infected-Susceptible) edges in the complex network, and the difference of the infection rates on strong and weak ties is analyzed. Simulation results show that edge heterogeneity has a significant influence on the performance of immunization strategies, and better immunization efficiency is derived when the vaccination rate of the nodes in the weak I-S edges is increased.
Atomic processes in edge plasmas
NASA Astrophysics Data System (ADS)
Schultz, David; Krstic, Predrag; Pindzola, Mitch; Griffin, Donald; Loch, Stuart; Ballance, Conner; Minami, Tatsuya; Reinhold, Carlos; Stuart, Steve
2006-10-01
Atomic processes play a number of key roles in both the physics of edge plasmas and in their diagnostics. We will provide a brief overview of a number of electron-impact and heavy-particle atomic collision calculations and the associated evaluated databases that are pertinent to edge modeling. Examples will include a large, well tested set of elastic and related transport cross sections as well as generalized collisional-radiative coefficients for all ion stages of Li and Be. We will also report on recent work that has re-evaluated widely assumed scaling relations for electron-impact ionization of excited states of hydrogen-like ions and how this affects the effective ionization rate coefficient used in a wide range of models. Finally, novel calculations of chemical sputtering, sticking, and reflection of D and D2 incident upon deuterated carbons surfaces (amorphous and graphite), in the energy range from about one eV to hundreds of eV, will be described. New and unique features of these simulations in comparison to the previous ones include the surface preparation, enhanced statistics enabled by ultrascale computer resources, and use of the most recent, improved hydrocarbon potentials.
Haptic Edge Detection Through Shear
NASA Astrophysics Data System (ADS)
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-03-01
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.
Haptic Edge Detection Through Shear
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-01-01
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331
Edge detection in microscopy images using curvelets
Gebäck, Tobias; Koumoutsakos, Petros
2009-01-01
Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. Conclusion The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy. PMID:19257905
NASA Technical Reports Server (NTRS)
2007-01-01
Tracks left by NASA's Mars Exploration Rover Opportunity as it traveled along the rim of Victoria Crater can be seen clearly in this image taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter spacecraft.
This is a subframe of a larger image that the camera acquired on June 26, 2007. The larger image will be released as HiRISE catalogue number PSP_004289_1780 after geometric processing.
Opportunity first approached Victoria Crater at an alcove informally named 'Duck Bay' (see tracks at left). It then drove along the crater's sinuous edge in a clockwise direction before heading back to Duck Bay, where it is expected to enter the crater in early July 2007.
Cowder, L.R.; Klosterbuer, S.F.; Augustson, R.H.; Esmailpour, A.; Hawkins, R.; Kuhn, E.
1984-05-01
Los Alamos National Laboratory has designed, built, and is currently testing a compact K-edge densitometer for use by International Atomic Energy Agency (IAEA) inspectors. The unit, which can easily be moved from one location to another within a facility, is positioned outside a glovebox with the body of the instrument inserted into the glove. A fixture inside the glovebox fits around the body and positions a sample holder. A hand-held high-purity germanium detector powered by a battery pack and a Davidson portable multichannel analyzer (MCA) is used to measure the transmission through plutonium nitrate solutions at E/sub Y/ = 121.1 and 122.2 keV. The Davidson MCA is programmed to lead the user through the measurement procedure and perform all the data analyses. The instrument is currently installed at the Safeguards Analytical Laboratory, where IAEA personnel are evaluating its accuracy, ease of operation, and safety. 5 references, 5 figures, 5 tables.
Fresnel diffraction of aperture with rough edge
NASA Astrophysics Data System (ADS)
Cui, Yuwei; Zhang, Wei; Wang, Junhong; Zhang, Meina; Teng, Shuyun
2015-06-01
The Fresnel diffraction of an aperture with a rough edge is studied in this paper. Circular and elliptical apertures with sinusoidal and random edges are chosen as examples to investigate the influence of the aperture edge on the diffraction. The numerical calculation results indicate intuitively the variations of the transverse and longitude diffraction intensity distributions with the edge parameters of the aperture. The data files of aperture models are obtained through the numerical calculations, and the aperture samples are obtained with the help of a liquid crystal light modulator (LCLM). Thus, the practical experiments of the diffractions of apertures with rough edges are carried out. The measured results are consistent with the calculated ones. The approximate analytic expressions of the diffraction by the modified aperture are deduced on the basis of the Fresnel diffraction theory and the statistic optics, and the reasonable explanations for the influence of edge parameters on the diffraction are given through the theoretical analysis.
Edge detection based on gradient ghost imaging.
Liu, Xue-Feng; Yao, Xu-Ri; Lan, Ruo-Ming; Wang, Chao; Zhai, Guang-Jie
2015-12-28
We present an experimental demonstration of edge detection based on ghost imaging (GI) in the gradient domain. Through modification of a random light field, gradient GI (GGI) can directly give the edge of an object without needing the original image. As edges of real objects are usually sparser than the original objects, the signal-to-noise ratio (SNR) of the edge detection result will be dramatically enhanced, especially for large-area, high-transmittance objects. In this study, we experimentally perform one- and two-dimensional edge detection with a double-slit based on GI and GGI. The use of GGI improves the SNR significantly in both cases. Gray-scale objects are also studied by the use of simulation. The special advantages of GI will make the edge detection based on GGI be valuable in real applications. PMID:26832041
Improving Network Transport Efficiency by Edge Rewiring
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liang, Man-Gui; Guo, Dong-Chao
2013-03-01
Considering the heterogeneous structure of scale-free networks causing low traffic capacity of network, we propose to improve the network transport efficiency by rewiring a fraction of edges for the network. In this paper, six edge rewiring strategies are discussed and extensive simulations on Barabási-Albert (BA) scale-free networks confirm the effectiveness of these strategies. From another perspective, rewiring edges for scale-free networks directly reuse the removed edges under some edge-removal strategies [Z. Liu, M. B. Hu, R. Jiang, W. X. Wang and Q. S. Wu, Phys. Rev. E76 (2007) 037101; G. Q. Zhang, D. Wang and G. J. Li, Phys. Rev. E76 (2007) 017101], and can significantly enhance the traffic capacity of the network at the expense of increasing a little average path length. After the edge rewiring process, the network structure becomes significantly homogeneous. This work is helpful for network design and network performance optimization.
Visible imaging of edge turbulence in NSTX
S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al
2000-06-13
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.
An edge index for topological insulators
NASA Astrophysics Data System (ADS)
Prodan, Emil
2009-03-01
Topological insulators display dissipationless currents flowing at the edges of the samples. These currents are associated to chiral edge modes, whose existence is intrinsically linked to the topology of the electronic states of the bulk. The edge modes can be easily investigated when the edges are smooth and have a periodicity, but as soon as the periodicity is absent, the problem becomes un-traceable by purely theoretical means. In my talk I will exemplify the use of non-commutative calculus to explore the properties, especially the stability of the edge modes. For example, using such techniques one can give a fairly elementary proof that the edge modes in Chern insulators survive even for a rough (random) edge. Similarly, for the Spin-Hall effect, one can define an observable and its associated current whose conductance remains quantized during various deformations of the Hamiltonian system. It turns out that in all cases, the edge conductance is given by the index of a Fredholm operator, which provides a new topological invariant linked directly to the edge rather than the bulk.
Moveable Leading Edge Device for a Wing
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2013-01-01
A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.
Edge mode spectroscopy and imaging for film edge properties in magnetic nanostructures
NASA Astrophysics Data System (ADS)
McMichael, Robert
2014-03-01
Lithography is an act of violence. Often, films are almost entirely obliterated by patterning, leaving only nanostructures behind with film edges that have borne the brunt of the damage, edges that carry with them the scars of energetic ion bombardment, reactive ions, liftoff and exposure to ambient conditions. In this talk, I will present a variation on ferromagnetic resonance force microscopy that can provide insight into the magnetic properties of film edges in magnetic nanostructures. The method relies on the non-uniformity of the magnetic field in patterned-film nanostructures that are magnetized in-plane, specifically, the low-field regions that form near where the magnetization is directed normal to the edge. In these regions, localized precession forms as trapped spin wave modes, and the resonance condition of these modes serves as an indicator of the edge properties. I will present modeling and measurements on a 500 nm diameter, 25 nm thick Permalloy disk to illustrate the method. Micromagnetic modeling of this disk predicts a main mode that is nearly uniform across the sample and three localized edge modes with higher resonance fields. The spectra measured with various tip positions and mode imaging are consistent with the modeling results. In addition to a strong center mode, three distinct edge modes are observed when the tip is near the disk edge. For a symmetric disk, the modeling predicts that the edge mode resonances are identical on the two opposite edges. However, the measured edge mode resonances on opposite edges of the disk are detected at different resonance fields, suggesting inhomogeneity of the edge properties. By rotating the applied field, we control the position of the localized edge mode along the edge of the disk and confirm that the edge mode resonance field has a strong angular dependence, showing that edge mode properties can vary significantly in a nominally circular disk.
NASA Technical Reports Server (NTRS)
1995-01-01
In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.
For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.
The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.
This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).
Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.
The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science
NASA Astrophysics Data System (ADS)
Sheppard, Scott; Trujillo, Chad
2012-02-01
Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a medium wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System.
NASA Astrophysics Data System (ADS)
Sheppard, Scott
2012-06-01
Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Kuiper Belt surveys to date have not been optimized to survey beyond the Kuiper Belt edge at 50 AU. Most of these surveys either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we propose a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if this eccentric, distant body is unique (as once believed for Pluto) or just the first of a new class of object in the outer Solar System. We will also explore the Neptune Trojans and scattered disk populations through the survey.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Eliminating Unbonded Edges In Explosive Bonding
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Kushnick, Anne C.
1991-01-01
Explosive-bonding technique elminates sharp unbonded notch normally occurring between flyer plate and baseplate. Makes it possible to simply break away unbonded outer extremity of flyer plate; no longer necessary to grind away unbonded edge to prevent collection of corrosive contaminants in edge voids. Method not limited to flat surfaces.
An investigation of the flap edge flowfield
NASA Astrophysics Data System (ADS)
Pye, John David
To identify and understand the fluid dynamic processes associated with flow in the region of a flap side edge, a NACA 63-215 Mod B main element with a half-span Fowler flap was tested in the JIAA Low Speed Wind Tunnel at Stanford University. Measurements were made using a variety of techniques to capture the effects of the flap edge vortex. Pressure sensitive paint was applied to the upper surface of both the flap and main element, as well as to the flap side edge. Fast response pressure transducers were mounted interior to the model to measure surface pressure fluctuations on the flap side edge. Single component hotwire data was taken in the near wake region of the flap edge. In addition to the data experimentally obtained, a computational data set of a geometrically similar model at a flight Reynolds number was used for comparison. The data indicates the presence of a dual vortex structure along the flap side edge. This structure is seen to grow, merge, and ultimately become a single symmetric vortex as it progresses downstream. Surface pressure fluctuations on the side edge scale as three power laws with free stream velocity as different flow regions are encountered. By varying the model rigging, indications of a confined source region for the pressure fluctuations were observed. A spatial survey of the correlation between flap side edge surface pressure fluctuations and the near-wake fluctuating velocity field shows increased correlation coefficients for the region surrounding the vortex core.
Cutting a Tapered Edge on Padding Material
NASA Technical Reports Server (NTRS)
Mitchell, M. J.
1982-01-01
Resilience and flexibility of felt, rubber, or other padding materials allow them to be clamped in form block, cut straight down, and then released to produce straight clean tapered edge. With material held in slanted position, edge can be cut straight down; hence cut depth is minimum.
Edge effects on water droplet condensation.
Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel
2014-12-01
In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners. PMID:25615108
Electrochemistry of Graphene Edge Embedded Nanopores
NASA Astrophysics Data System (ADS)
Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid
2013-03-01
We demonstrate a stacked graphene- Al2O3 dielectric nanopore architecture to investigate electrochemical activity at graphene edges. It has proven to be difficult to isolate electrochemical activity at the graphene edges from those at the basal planes. We use 24 nm of Al2O3 to isolate the graphene basal planes from an ionic fluid environment. Nanopores ranging from 5 to 20 nm are formed by an electron beam sculpting process to expose graphene edges. Electrochemical measurements at isolated graphene edges show current densities as high as 1.2 x 104 A/cm2, 300x greater than those reported for carbon nanotubes. Additionally, we modulate nanopore conductance by tuning the graphene edge electrochemical current as a function of the applied bias on the embedded graphene electrode. Our results indicate that electrochemical devices based on graphene nanopores have promising applications as sensitive chemical and biological sensors, energy storage devices, and DNA sequencing.
Edge effects on water droplet condensation
NASA Astrophysics Data System (ADS)
Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel
2014-12-01
In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.
Magnetism of zigzag edge phosphorene nanoribbons
Zhu, Zhili E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu E-mail: jiayu@zzu.edu.cn
2014-09-15
We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.
Edge States in Transitional Pipe Flow
NASA Astrophysics Data System (ADS)
Schneider, Tobias M.; Eckhardt, Bruno
2006-11-01
We study the boundary of the laminar region near the onset of turbulence. Approaching the boundary from the laminar side, the lifetime of perturbations increases, diverges when the boundary is reached, and varies chaotically for larger amplitudes. In the chaotic region, lifetimes vary sensitively with amplitude, consistent with the strange saddle picture of the turbulence proposed earlier. The trajectory on the edge between the laminar and chaotic regions is asymptotic to a single well defined state, essentially independent of the type of perturbation. The edge then becomes the stable manifold of this structure. In the case of a model shear flow, the edge states are simple or period doubled or chaotic trajectories. In the case of pipe flow the edge state seems to remain close to a state with simple vortical structure. Edge of Chaos in a Parallel Shear Flow, Joseph D. Skufca, James A. Yorke, and Bruno Eckhardt, Phys. Rev. Lett. 96, 174101 (2006)
Maintenance of the Sea-Ice Edge.
NASA Astrophysics Data System (ADS)
Bitz, C. M.; Holland, M. M.; Hunke, E. C.; Moritz, R. E.
2005-08-01
A coupled global climate model is used to evaluate processes that determine the equilibrium location of the sea-ice edge and its climatological annual cycle. The extent to which the wintertime ice edge departs from a symmetric ring around either pole depends primarily on coastlines, ice motion, and the melt rate at the ice-ocean interface. At any location the principal drivers of the oceanic heat flux that melts sea ice are absorbed solar radiation and the convergence of heat transported by ocean currents. The distance between the ice edge and the pole and the magnitude of the ocean heat flux convergence at the ice edge are inversely related. The chief exception to this rule is in the East Greenland Current, where the ocean heat flux convergence just east of the ice edge is relatively high but ice survives due to its swift southward motion and the protection of the cold southward-flowing surface water. In regions where the ice edge extends relatively far equatorward, absorbed solar radiation is the largest component of the ocean energy budget, and the large seasonal range of insolation causes the ice edge to traverse a large distance. In contrast, at relatively high latitudes, the ocean heat flux convergence is the largest component and it has a relatively small annual range, so the ice edge traverses a much smaller distance there. When the model is subject to increased CO2 forcing up to twice preindustrial levels, the ocean heat flux convergence weakens near the ice edge in most places. This weakening reduces the heat flux from the ocean to the base of the ice and tends to offset the effects of increased radiative forcing at the ice surface, so the ice edge retreats less than it would otherwise.
Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)
2014-01-01
A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.
TCT measurements with slim edge strip detectors
NASA Astrophysics Data System (ADS)
Mandić, Igor; Cindro, Vladimir; Gorišek, Andrej; Kramberger, Gregor; Mikuž, Marko; Zavrtanik, Marko; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.-W.; Christophersen, Marc; Phlips, Bernard
2014-07-01
Transient current technique (TCT) measurements with focused laser light on miniature silicon strip detectors (n+-type strips on p-type bulk) with one inactive edge thinned to about 100 μm using the Scribe-Cleave-Passivate (SCP) method are presented. Pulses of focused IR (λ=1064 nm) laser light were directed to the surface of the detector and charge collection properties near the slim edge were investigated. Measurements before and after irradiation with reactor neutrons up to 1 MeV equivalent fluence of 1.5×1015 neq/cm2 showed that SCP thinning of detector edge does not influence its charge collection properties. TCT measurements were done also with focused red laser beam (λ=640 nm) directed to the SCP processed side of the detector. The absorption length of red light in silicon is about 3 μm so with this measurement information about the electric field at the edge can be obtained. Observations of laser induced signals indicate that the electric field distribution along the depth of the detector at the detector edge is different than in the detector bulk: electric field is higher near the strip side and lower at the back side. This is a consequence of negative surface charge caused by passivation of the cleaved edge with Al2O3. The difference between bulk and edge electric field distributions gets smaller after irradiation.
On the distributed approximation of edge coloring
Panconesi, A.
1994-12-31
An edge coloring of a graph G is an assignment of colors to the edges such that incident edges always have different colors. The edge coloring problem is to find an edge coloring with the aim of minimizing the number of colors used. The importance of this problem in distributed computing, and computer science generally, stems from the fact that several scheduling and resource allocation problems can be modeled as edge coloring problems. Given that determining an optimal (minimal) coloring is an NP-hard problem this requirement is usually relaxed to consider approximate, hopefully even near-optimal, colorings. In this talk, we discuss a distributed, randomized algorithm for the edge coloring problem that uses (1 + o(1)){Delta} colors and runs in O(log n) time with high probability ({Delta} denotes the maximum degree of the underlying network, and n denotes the number of nodes). The algorithm is based on a beautiful probabilistic strategy called the Rodl nibble. This talk describes joint work with Devdatt Dubhashi of the Max Planck Institute, Saarbrucken, Germany.
Technidilaton at the conformal edge
Hashimoto, Michio; Yamawaki, Koichi
2011-01-01
Technidilaton (TD) was proposed long ago in the technicolor near criticality/conformality. To reveal the critical behavior of TD, we explicitly compute the nonperturbative contributions to the scale anomaly <{theta}{sub {mu}}{sup {mu}>} and to the technigluon condensate <{alpha}G{sub {mu}{nu}}{sup 2}>, which are generated by the dynamical mass m of the technifermions. Our computation is based on the (improved) ladder Schwinger-Dyson equation, with the gauge coupling {alpha} replaced by the two-loop running coupling {alpha}({mu}) having the Caswell-Banks-Zaks infrared fixed point {alpha}{sub *}: {alpha}({mu}){approx_equal}{alpha}={alpha}{sub *} for the infrared region m<{mu}<{Lambda}{sub TC}, where {Lambda}{sub TC} is the intrinsic scale (analogue of {Lambda}{sub QCD} of QCD) relevant to the perturbative scale anomaly. We find that -<{theta}{sub {mu}}{sup {mu}}>/m{sup 4}{yields}const{ne}0 and <{alpha}G{sub {mu}}{nu}{sup 2}>/m{sup 4}{yields}({alpha}/{alpha}{sub cr}-1){sup -3/2}{yields}{infinity} in the criticality limit m/{Lambda}{sub TC}{approx}exp(-{pi}/({alpha}/{alpha}{sub cr}-1){sup 1/2}){yields}0 ({alpha}={alpha}{sub *}=>{alpha}{sub cr}, or N{sub f} approaches N{sub f}{sup cr}) ('conformal edge'). Our result precisely reproduces the formal identity <{theta}{sub {mu}}{sup {mu}>}=({beta}({alpha})/4{alpha}{sup 2})<{alpha}G{sub {mu}{nu}}{sup 2}>, where {beta}({alpha})={Lambda}{sub TC}({partial_derivative}{alpha}/{partial_derivative}{Lambda}{sub TC})=-(2{alpha}{sub cr}/{pi}){center_dot}({alpha}/{alpha}{sub cr}-1){sup 3/2} is the nonperturbative beta function corresponding to the above essential singularity scaling of m/{Lambda}{sub TC}. Accordingly, the partially conserved dilatation current implies (M{sub TD}/m){sup 2}(F{sub TD}/m){sup 2}=-4<{theta}{sub {mu}}{sup {mu}}>/m{sup 4}{yields}const{ne}0 at criticality limit, where M{sub TD} is the mass of TD and F{sub TD} the decay constant of TD. We thus conclude that at criticality limit the TD could become a ''true
Differential Search Algorithm Based Edge Detection
NASA Astrophysics Data System (ADS)
Gunen, M. A.; Civicioglu, P.; Beşdok, E.
2016-06-01
In this paper, a new method has been presented for the extraction of edge information by using Differential Search Optimization Algorithm. The proposed method is based on using a new heuristic image thresholding method for edge detection. The success of the proposed method has been examined on fusion of two remote sensed images. The applicability of the proposed method on edge detection and image fusion problems have been analysed in detail and the empirical results exposed that the proposed method is useful for solving the mentioned problems.
An edge preserving differential image coding scheme
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1992-01-01
Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility, especially when coding medical or scientific images, where edge preservation is of utmost importance. A simple, easy to implement differential image coding system with excellent edge preservation properties is presented. The coding system can be used over variable rate channels, which makes it especially attractive for use in the packet network environment.
An edge preserving differential image coding scheme
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1991-01-01
Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility especially when coding medical or scientific images, where edge preservation is of utmost importance. We present a simple, easy to implement differential image coding system with excellent edge preservation properties. The coding system can be used over variable rate channels which makes it especially attractive for use in the packet network environment.
Composite laminate free edge reinforcement concepts
NASA Technical Reports Server (NTRS)
Howard, W. E.; Gossard, T., Jr.; Jones, R. M.
1985-01-01
The presence of a free edge in a laminated composite structure can result in delamination of the composite under certain loading conditions. Linear finite element analysis predicts large or even singular interlaminar stresses near the free edge. Edge reinforcements which will reduce these interlaminar stresses, prevent or delay the onset of delaminations, and thereby increase the strength and life of the structure were studied. Finite element models are used to analyze reinforced laminates which were subsequently fabricated and loaded to failure in order to verify the analysis results.
Flat-band engineering of mobility edges
NASA Astrophysics Data System (ADS)
Danieli, Carlo; Bodyfelt, Joshua D.; Flach, Sergej
2015-06-01
Properly modulated flat-band lattices have a divergent density of states at the flat-band energy. Quasiperiodic modulations are known to host a metal-insulator transition already in one space dimension. Their embedding into flat-band geometries consequently allows for a precise engineering and fine tuning of mobility edges. We obtain analytic expressions for singular mobility edges for two flat-band lattice examples. In particular, we engineer cases with arbitrarily small energy separations of mobility edge, zeroes, and divergencies.
FAST EDGE-FILTERED IMAGE UPSAMPLING
Joshi, Shantanu H.; Marquina, Antonio L.; Osher, Stanley J.; Dinov, Ivo; Toga, Arthur W.; Van Horn, John D.
2011-01-01
We present a novel edge preserved interpolation scheme for fast upsampling of natural images. The proposed piecewise hyperbolic operator uses a slope-limiter function that conveniently lends itself to higher-order approximations and is responsible for restricting spatial oscillations arising due to the edges and sharp details in the image. As a consequence the upsampled image not only exhibits enhanced edges, and discontinuities across boundaries, but also preserves smoothly varying features in images. Experimental results show an improvement in the PSNR compared to typical cubic, and spline-based interpolation approaches. PMID:22323066
Cavitation on hydrofoils with sinusoidal leading edge
NASA Astrophysics Data System (ADS)
Johari, H.
2015-12-01
Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.
Electrostatic analysis of the tokamak edge plasma
Motley, R.W.
1981-07-01
The intrusion of an equipotential poloidal limiter into the edge plasma of a circular tokamak discharge distorts the axisymmetry in two ways: (1) it (partially) shorts out the top-to-bottom Pfirsch-Schlueter driving potentials, and (2) it creates zones of back current flow into the limiter. The resulting boundary mismatch between the outer layers and the inner axisymmetric Pfirsch-Schlueter layer provides free energy to drive the edge plasma unstable. Special limiters are proposed to symmetrize the edge plasma and thereby reduce the electrical and MHD activity in the boundary layer.
Edge of chaos and genesis of turbulence.
Chian, Abraham C-L; Muñoz, Pablo R; Rempel, Erico L
2013-11-01
The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable traveling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space. PMID:24329334
Image Edge Extraction via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)
2008-01-01
A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.
Lyman edges - Signatures of accretion disks
NASA Astrophysics Data System (ADS)
Kinney, A. L.
1992-05-01
Accretion disks are thought to provide the ultraviolet emission seen in the big blue bump of quasars. However, observations of the UV spectra of quasars do not show the additional signatures predicted by the accretion disk models. This paper will concentrate on just one of those signatures - the Lyman edge. Two studies are briefly discussed which explore the Lyman edge region of both high and low redshift quasars (Antonucci, Kinney, and Ford 1989 and Koratkar, Kinney, and Bohlin 1992). Both studies find that Lyman edges are not present in quasar spectra as frequently as predicted by the models or at the strength predicted by accretion disk models.
Edge states in a honeycomb lattice: effects of anisotropic hopping and mixed edges
Dahal, Hari P; Balatsky, Alexander V; Sinistsyn, N A; Hu, Zi - Xiang; Yang, Kun
2008-01-01
We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed.
Leading edge protection for composite blades
NASA Technical Reports Server (NTRS)
Brantley, J. W.; Irwin, T. P. (Inventor)
1977-01-01
A laminated filament composite structure, such as an airfoil for use in an environment in which it is subjected to both foreign object impact and bending is provided with improved leading edge protection. At least one fine wire mesh layer is partially bonded within the composite structure along its neutral bending axis. A portion of the wire mesh layer extends beyond the neutral bending axis and partially around the leading edge where it is bonded to the outer periphery of the primary composite structure. The wire mesh is clad with a metal such as nickel to provide an improved leading edge protective device which is firmly anchored within the composite structure. Also described is a novel method of constructing a composite airfoil so as to further minimize the possibility of losing the leading edge protective device due to delamination caused by impact and bending.
Miniature Trailing Edge Effector for Aerodynamic Control
NASA Technical Reports Server (NTRS)
Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)
2008-01-01
Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.
Folded membrane dialyzer with mechanically sealed edges
Markley, Finley W.
1976-01-01
A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.
Friction, adhesion, and elasticity of graphene edges
NASA Astrophysics Data System (ADS)
Hunley, D. Patrick; Flynn, Tyler J.; Dodson, Tom; Sundararajan, Abhishek; Boland, Mathias J.; Strachan, Douglas R.
2013-01-01
Frictional, adhesive, and elastic characteristics of graphene edges are determined through lateral force microscopy. Measurements reveal a significant local frictional increase at exposed graphene edges, whereas a single overlapping layer of graphene removes this local frictional increase. Comparison of lateral force and atomic force microscopy measurements shows that local forces on the probe are successfully modeled with a vertical adhesion in the vicinity of the atomic-scale graphene steps which also provides a new low-load calibration method. Lateral force microscopy performed with carefully maintained low-adhesion probes shows evidence of elastic straining of graphene edges. Estimates of the energy stored of this observed elastic response is consistent with out-of-plane bending of the graphene edge.
Overview of Edge Simulation Laboratory (ESL)
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T.; Umansky, M.; Xiong, A.; Xu, X.; Belli, E.; Candy, J.; Snyder, P.; Colella, P.; Martin, D.; Sternberg, T.; van Straalen, B.; Bodi, K.; Krasheninnikov, S.
2006-10-01
The ESL is a new collaboration to build a full-f electromagnetic gyrokinetic code for tokamak edge plasmas using continuum methods. Target applications are edge turbulence and transport (neoclassical and anomalous), and edge-localized modes. Initially the project has three major threads: (i) verification and validation of TEMPEST, the project's initial (electrostatic) edge code which can be run in 4D (neoclassical and transport-timescale applications) or 5D (turbulence); (ii) design of the next generation code, which will include more complete physics (electromagnetics, fluid equation option, improved collisions) and advanced numerics (fully conservative, high-order discretization, mapped multiblock grids, adaptivity), and (iii) rapid-prototype codes to explore the issues attached to solving fully nonlinear gyrokinetics with steep radial gradiens. We present a brief summary of the status of each of these activities.
Fast Edge-Searching and Related Problems
NASA Astrophysics Data System (ADS)
Yang, Boting
Given a graph G = (V,E) in which a fugitive hides on vertices or along edges, graph searching problems are usually to find the minimum number of searchers required to capture the fugitive. In this paper, we consider the problem of finding the minimum number of steps to capture the fugitive. We introduce the fast edge-searching problem in the edge search model, which is the problem of finding the minimum number of steps (called the fast edge-search time) to capture the fugitive. We establish relations between the fast edge-search time and the fast search number. While the family of graphs whose fast search number is at most k is not minor-closed for any positive integer k ≥ 2, we show that the family of graphs whose fast edge-search time is at most k is minor-closed. We establish relations between the fast (edge-)searching and the node searching. These relations allow us to transform the problem of computing node search numbers to the problem of computing fast edge-search time or fast search numbers. Using these relations, we prove that the problem of deciding, given a graph G and an integer k, whether the fast (edge-)search number of G is less than or equal to k is NP-complete; and it remains NP-complete for Eulerian graphs. We also prove that the problem of determining whether the fast (edge-)search number of G is a half of the number of odd vertices in G is NP-complete; and it remains NP-complete for planar graphs with maximum degree 4. We present a linear time approximation algorithm for the fast edge-search time that always delivers solutions of at most (1+|V|-1/|E|+1) times the optimal value. This algorithm also gives us a tight upper bound on the fast search number of the graph. We also show a lower bound on the fast search number using the minimum degree and the number of odd vertices.
Edge covers and independence: Algebraic approach
NASA Astrophysics Data System (ADS)
Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.
2016-06-01
In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.
Edge Equilibrium Code (EEC) For Tokamaks
Li, Xujling
2014-02-24
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids
Edge states in polariton honeycomb lattices
NASA Astrophysics Data System (ADS)
Milićević, M.; Ozawa, T.; Andreakou, P.; Carusotto, I.; Jacqmin, T.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.
2015-09-01
The experimental study of edge states in atomically thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and the need to measure local properties. In the case of graphene, localized edge modes have been predicted in zigzag and bearded edges, characterized by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the π and π* bands of graphene. We show the momentum-space dispersion of the edge states associated with the zigzag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of polaritons on the properties of these states.
Edge effects on water droplet condensation
NASA Astrophysics Data System (ADS)
Royon, Laurent; Montgruel, Anne; Medici, Marie Gabrielle; Beysens, Daniel
2014-11-01
The effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate is investigated. Edges, corners, cooled/non cooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicular to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edges effects can be canceled. In certain cases, the growth enhancement can reach nearly 500% on edges or corners which, on an inclined substrate, make droplets near the edges detach sooner than in the middle of the substrate. This effect is frequently observed with dew condensing on windows or car windshields. Such droplets, acting as wipers, can thus appreciably increase dew collection on a substrate.
Predicting edge seal performance from accelerated testing
NASA Astrophysics Data System (ADS)
Hardikar, Kedar; Vitkavage, Dan; Saproo, Ajay; Krajewski, Todd
2014-10-01
Degradation in performance of a PV module attributable to moisture ingress has received significant attention in PV reliability research. Assessment of field performance of PV modules against moisture ingress through product-level testing in temperature-humidity control chambers poses challenges. Development of a meaningful acceleration factor model is challenging due to different rates of degradation of components embedded in a PV module, when exposed to moisture. Test results are typically a convolution of moisture barrier performance of the edge seal and degradation of laminated components when exposed to moisture. It is desirable to have an alternate method by which moisture barrier performance of the edge seal in its end product form can be assessed in any given field conditions, independent of particular cell design. In this work, a relatively inexpensive test technique was developed to test the edge seal in its end product form in a manner that is decoupled from other components of the PV module. A theoretical framework was developed to assess moisture barrier performance of edge seal with desiccants subjected to different conditions. This framework enables the analysis of test results from accelerated tests and prediction of the field performance of the edge seal. Results from this study lead to the conclusion that the edge seal on certain Miasole glass-glass modules studied is effective for the most aggressive weather conditions examined, beyond the intended service.
Human vision based color edge detection
NASA Astrophysics Data System (ADS)
Kim, Ari; Kim, Hong-suk; Park, Seung-ok
2011-01-01
Edge detection can be of great importance to image processing in various digital imaging applications such as digital television and camera. Therefore, extracting more accurate edge properties are significantly demanded for achieving a better image understanding. In vector gradient edge detection, absolute difference of RGB values between a center pixel value, and its neighborhood values are usually used, although such a device-dependent color space does not account for human visual characteristics well. The goal of this study is to test a variety of color difference equations and propose the most effective model that can be used for the purpose of color edge detection. Three of synthetic images generated using perceptibility threshold of the human visual system were used for objectively evaluate to 5 color difference equations studied in this paper. A set of 6 complex color images was also used to testing the 5 color difference equations psychophysically. The equations include ΔRGB, ΔE* ab, ΔECMC, CIEDE2000 (ΔE00) and CIECAM02-UCS delta E (ΔECAM-UCS). Consequently, there were not significant performance variations observed between those 5 color difference equations for the purpose of edge detection. However, ΔE00 and ΔECAM-UCS showed slightly higher mean opinion score (MOS) in detected edge information.
Edge-to-Edge Oriented Self-Assembly of ReS2 Nanoflakes.
Zhang, Qin; Wang, Wenjie; Kong, Xin; Mendes, Rafael G; Fang, Liwen; Xue, Yinghui; Xiao, Yao; Rümmeli, Mark H; Chen, Shengli; Fu, Lei
2016-09-01
The self-assembly of two-dimensional (2D) nanomaterials, an emerging research area, still remains largely unexplored. The strong interlayer attraction between 2D nanosheets leads to face-to-face stacking rather than edge-to-edge coupling. We demonstrate, for the first time, how one can induce and control an edge-to-edge self-assembly process for 2D nanomaterials. The extremely weak van der Waals coupling and strong anisotropy of ReS2 allow us to realize an oriented self-assembly (OSA) process. The aspect ratio of the resulting ReS2 nanoscrolls can be well controlled. In addition, we perform simulations to further explain and confirm the OSA process, demonstrating its great potential to be expanded as a general edge-to-edge self-assembly process suitable for other 2D nanomaterials. PMID:27547983
Flap-edge aeroacoustic measurements and predictions
NASA Astrophysics Data System (ADS)
Brooks, Thomas F.; Humphreys, William M.
2003-03-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a small aperture directional array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by computational fluid dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that the prediction models capture much of the physics. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. The complexity of the directivity results demonstrate the strong role of edge source geometry and frequency in
Losing your edge: climate change and the conservation value of range-edge populations.
Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J
2015-10-01
Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change. PMID:26664681
Computation of leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Newsome, R. W.; Thomas, J. L.
1986-01-01
The simulation of the leading edge vortex flow about a series of conical delta wings through solution of the Navier-Stokes and Euler equations is studied. The occurrence, the validity, and the usefulness of separated flow solutions to the Euler equations of particular interest. Central and upwind difference solutions to the governing equations are compared for a series of cross sectional shapes, including both rounded and sharp tip geometries. For the rounded leading edge and the flight condition considered, viscous solutions obtained with either central or upwind difference methods predict the classic structure of vortical flow over a highly swept delta wing. Predicted features include the primary vortex due to leading edge separation and the secondary vortex due to crossflow separation. Central difference solutions to the Euler equations show a marked sensitivity to grid refinement. On a coarse grid, the flow separates due to numerical error and a primary vortex which resembles that of the viscous solution is predicted. In contrast, the upwind difference solutions to the Euler equations predict attached flow even for first-order solutions on coarse grids. On a sufficiently fine grid, both methods agree closely and correctly predict a shock-curvature-induced inviscid separation near the leeward plane of symmetry. Upwind difference solutions to the Navier-Stokes and Euler equations are presented for two sharp leading edge geometries. The viscous solutions are quite similar to the rounded leading edge results with vortices of similar shape and size. The upwind Euler solutions predict attached flow with no separation for both geometries. However, with sufficient grid refinement near the tip or through the use of more accurate spatial differencing, leading edge separation results. Once the leading edge separation is established, the upwind solution agrees with recently published central difference solutions to the Euler equations.
Cloud deposition to a spruce forest edge
NASA Astrophysics Data System (ADS)
Weathers, K. C.; Lovett, G. M.; Likens, G. E.
Deposition from clouds to a spruce (Picea rubens Sarg.) forest edge on Hunter Mt. in the Catskill Mts of New York State was measured during 1987 and 1988 to determine whether the windward edge of forest floor receives greater deposition of water and ions via cloud water than the interior of a forest. Throughfall was used as a measure of deposition and was collected during cloud-only and mixed cloud-and-rain events along five windward-to-leeward transects in a 30 x 30 m forested area. Ambient cloud water was also collected in a passive collector and chemically analyzed. Trees at the edge of the forest received on average three times, and up to 15 times, greater deposition of ions than those in the interior of the forest. Lead content in samples from Hunter Mt. forest floor at the windward edge, relative to the interior, was enhanced as well. Using a regression of distance vs deposition, the deposition "half-distance", (i.e. the point at which the rate of cloud water deposition is 50% of the rate at the windward edge of the forest) was found to be 28 m. The cloud deposition data from this study are compared to other studies of Na particle deposition to low-elevation forest edges, which show similar deposition "half distances", ranging from ˜ 2 to 36 m into the forest. Most models of cloud deposition currently in use assume landscape homogeneity. Montane forest landscapes, however, are often highly heterogeneous, consisting of many "edges", and thus current models may seriously underestimate cloud deposition.
Partnership for Edge Physics Simulation (EPSI)
Schroder, Peter
2015-02-11
We propose to develop advanced simulation codes, based upon an extreme parallelism, first principles kinetic approach, to address the challenges associated with the edge region of magnetically confined plasmas. This work is relevant to both existing magnetic fusion facilities and essential for next-generation burning plasma experiments, such as ITER where success is critically dependent upon H-mode operation achieving an edge pedestal of sufficient height for good core plasma performance without producing deleterious large scale edge localized instabilities. The plasma edge presents a well-known set of multi-physics, multi-scale problems involving complex 3D magnetic geometry. Perhaps the greatest computational challenge is the lack of scale separation – temporal scales for drift waves, Alfven waves, ELM dynamics for example have strong overlap. Similar overlap occurs on the spatial scales for the ion poloidal gyro-radius, drift wave and pedestal width. The traditional approach of separating fusion problems into weakly interacting spatial or temporal domains clearly breaks down in the edge. A full kinetic model (full-f model) must be solved to understand and predict the edge physics including non-equilibrium thermodynamic issues arising from the magnetic topology (the open field lines producing a spatially sensitive velocity hole), plasma wall interactions, neutral and atomic physics. The plan here is to model these phenomena within a comprehensive first principles set of equations without the need for the insurmountable multiple-codes coupling issues by building on the XGC1 code developed under the SciDAC Proto-FSP Center for Plasma Edge Simulation (CPES). This proposal includes the critical participants in the XGC1 development. We propose enhancing the capability of XGC1 by including all the important turbulence physics contained in kinetic ion and electron electromagnetic dynamics, by extending the PIC technology to incorporate several positive features found
Flap Edge Aeroacoustic Measurements and Predictions
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M., Jr.
2000-01-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and
Flap Edge Aeroacoustic Measurements and Predictions
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M., Jr.
2000-01-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and
Trailing edge modifications for flatback airfoils.
Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.
2008-03-01
The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.
Edge states of zigzag bilayer graphite nanoribbons
NASA Astrophysics Data System (ADS)
Rhim, Jun-Won; Moon, Kyungsun
2008-09-01
The electronic structures of zigzag bilayer graphite nanoribbons (Z-BGNRs) with various ribbon widths N are studied within the tight binding approximation. Neglecting the inter-layer hopping amplitude γ4, which is an order of magnitude smaller than the other inter-layer hopping parameters, there exist two fixed Fermi points ± k* independent of the ribbon width with a peculiar energy dispersion near k* as ɛ(k)~ ± (k-k*)N. By investigating the edge states of Z-BGNRs, we notice that the trigonal warping of the bilayer graphene sheets is reflected in the edge state structure. With the inclusion of γ4, the above two Fermi points are not fixed but drift toward the vicinity of the Dirac point with increasing width N, as shown by the finite scaling method, and the peculiar dispersions change to parabolic ones. The edge magnetism of Z-BGNRs is also examined by solving the half-filled Hubbard Hamiltonian for the ribbon using the Hartree-Fock approximation. We have shown that within the same side of the edges, the edge spins are aligned ferromagnetically for the experimentally relevant set of parameters.
Image sharpness function based on edge feature
NASA Astrophysics Data System (ADS)
Jun, Ni
2009-11-01
Autofocus technique has been widely used in optical tracking and measure system, but it has problem that when the autofocus device should to work. So, no-reference image sharpness assessment has become an important issue. A new Sharpness Function that can estimate current frame image be in focus or not is proposed in this paper. According to current image whether in focus or not and choose the time of auto focus automatism. The algorithm measures object typical edge and edge direction, and then get image local kurtosis information to determine the degree of image sharpness. It firstly select several grads points cross the edge line, secondly calculates edge sharpness value and get the cure of the kurtosis, according the measure precision of optical-equipment, a threshold value will be set beforehand. If edge kurtosis value is more than threshold, it can conclude current frame image is in focus. Otherwise, it is out of focus. If image is out of focus, optics system then takes autofocus program. This algorithm test several thousands of digital images captured from optical tracking and measure system. The results show high correlation with subjective sharpness assessment for s images of sky object.
Image enhancement based on edge boosting algorithm
NASA Astrophysics Data System (ADS)
Ngernplubpla, Jaturon; Chitsobhuk, Orachat
2015-12-01
In this paper, a technique for image enhancement based on proposed edge boosting algorithm to reconstruct high quality image from a single low resolution image is described. The difficulty in single-image super-resolution is that the generic image priors resided in the low resolution input image may not be sufficient to generate the effective solutions. In order to achieve a success in super-resolution reconstruction, efficient prior knowledge should be estimated. The statistics of gradient priors in terms of priority map based on separable gradient estimation, maximum likelihood edge estimation, and local variance are introduced. The proposed edge boosting algorithm takes advantages of these gradient statistics to select the appropriate enhancement weights. The larger weights are applied to the higher frequency details while the low frequency details are smoothed. From the experimental results, the significant performance improvement quantitatively and perceptually is illustrated. It can be seen that the proposed edge boosting algorithm demonstrates high quality results with fewer artifacts, sharper edges, superior texture areas, and finer detail with low noise.
Numerical simulation of the edge tone phenomenon
NASA Technical Reports Server (NTRS)
Dougherty, N. S.; Liu, B. L.; Ofarrell, J. M.
1994-01-01
Time accurate Navier-Stokes computations were performed to study a class 2 (acoustic) whistle, the edge tone, and to gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the wedge. Flow speed was kept constant at 1,750 cm/s as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. The analytical computations revealed edge tones to be present in four harmonic stages of jet flow instability over the wedge as the jet length was varied from 0.3 to 1.6 cm. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained frequencies and flow visualization results of Brown. Specific edge tone generation phenomena and further confirmation of certain theories and empirical formulas concerning these phenomena were brought to light in this analytical simulation of edge tones.
Universal edge information from wavefunction deformation
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Cincio, Lukasz; Moradi, Heidar; Vidal, Guifre
It is well known that the bulk physics of a topological phase constrains its possible edge physics through the bulk-edge correspondence. Therefore, the different types of edge theories that a topological phase can host is a universal piece of data which can be used to characterize topological order. Here, we argue that beginning from only the fixed point wavefunction (FPW) of a nonchiral topological phase and by locally deforming it, all possible edge theories can be extracted from its entanglement Hamiltonian (EH). We illustrate our claim by deforming the FPW of the Wen-plaquette model, the quantum double of ℤ2. We show that the possible EHs of the deformed FPWs reflect the known possible types of edge theories, which are generically gapped, but gapless if translational symmetry is preserved. We stress that our results do not require an underlying Hamiltonian - thus, this lends support to the notion that a topological phase is indeed characterized by only a set of quantum states and can be studied through its FPWs. Also affiliated to Perimeter Inst for Theo Phys.
The Explorer of Diffuse Galactic Emission (edge)
NASA Astrophysics Data System (ADS)
Silverberg, Robert F.; Cheng, Edward S.; Cottingham, David A.; Fixsen, Dale J.; Knox, Lloyd; Meyer, Stephan S.; Timbie, Peter; Wilson, Grant
Measurements of the large-scale anisotropy of the Cosmic Infared Background (CIB) can be used to determine the characteristics of the distribution of galaxies at the largest spatial scales. With this information important tests of galaxy evolution models and primordial structure growth are possible. In this paper we describe the scientific goals instrumentation and observing strategy of EDGE a mission using an Antarctic Long Duration Balloon (LDB) platform. EDGE will observe the anisotropy in the CIB in 8 spectral bands from 270 GHz-1.5 THz with 6' angular resolution over a region ~400 square degrees. EDGE uses a one-meter class off-axis telescope and an array of Frequency Selective Bololmeters (FSB) to provide the compact and efficient multi- color high sensitivity radiometer required to achieve its scientific objectives.
Black phosphorus edges: a polarized Raman study
NASA Astrophysics Data System (ADS)
Ribeiro, H.; Villegas, C.; Bahamon, D.; Castro Neto, A.; de Souza, E.; Rocha, A.; Pimenta, M.; de Matos, C.
Black phosphorus (BP) has been recently exfoliated down to few-layer thicknesses revealing numerous interesting features such as a tunable direct bandgap. Ever since, demonstrations of BP electronic devices have bloomed, as well as studies of the electric, optical, mechanical and thermal properties of its bulk and few-layer forms. However, the edges of BP crystals have, so far, been poorly characterized, even though the terminations of layered crystals are known to possess a range of interesting properties. In this work, the edges of exfoliated BP flakes are characterized by polarized confocal Raman spectroscopy. We will present experimental Raman spectra at zigzag and armchair edges, as well as density functional theory calculations that explain the peculiarities of the experimental data. Fapesp, INCT/Nanocarbono, Fapemig, CNPq, MackPesquisa, Grid-Unesp, CENAPAD-SP, and NRF.
Diagnosing Topological Edge States via Entanglement Monogamy
NASA Astrophysics Data System (ADS)
Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.
2016-04-01
Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.
Diagnosing Topological Edge States via Entanglement Monogamy.
Meichanetzidis, K; Eisert, J; Cirio, M; Lahtinen, V; Pachos, J K
2016-04-01
Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems. PMID:27081962
Predictability of the Arctic sea ice edge
NASA Astrophysics Data System (ADS)
Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.
2016-02-01
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
Diffusion at the Random Matrix Hard Edge
NASA Astrophysics Data System (ADS)
Ramírez, José A.; Rider, Brian
2009-06-01
We show that the limiting minimal eigenvalue distributions for a natural generalization of Gaussian sample-covariance structures (beta ensembles) are described by the spectrum of a random diffusion generator. This generator may be mapped onto the “Stochastic Bessel Operator,” introduced and studied by A. Edelman and B. Sutton in [6] where the corresponding convergence was first conjectured. Here, by a Riccati transformation, we also obtain a second diffusion description of the limiting eigenvalues in terms of hitting laws. All this pertains to the so-called hard edge of random matrix theory and sits in complement to the recent work [15] of the authors and B. Virág on the general beta random matrix soft edge. In fact, the diffusion descriptions found on both sides are used below to prove there exists a transition between the soft and hard edge laws at all values of beta.
Floquet edge states in germanene nanoribbons.
Tahir, M; Zhang, Q Y; Schwingenschlögl, U
2016-01-01
We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light. PMID:27550632
Floquet edge states in germanene nanoribbons
Tahir, M.; Zhang, Q. Y.; Schwingenschlögl, U.
2016-01-01
We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light. PMID:27550632
Topological edge modes in multilayer graphene systems.
Ge, Lixin; Wang, Li; Xiao, Meng; Wen, Weijia; Chan, C T; Han, Dezhuan
2015-08-24
Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. PMID:26368137
Edge mode dynamics of quenched topological wires
NASA Astrophysics Data System (ADS)
Sacramento, P. D.
2016-06-01
The fermionic and Majorana edge mode dynamics of various topological systems are compared, after a sudden global quench of the Hamiltonian parameters takes place. Attention is focused on the regimes where the survival probability of an edge state has oscillations either due to critical or off-critical quenches. The nature of the wave functions and the overlaps between the eigenstates of different points in parameter space determine the various types of behaviors, and the distinction due to the Majorana nature of the excitations plays a lesser role. Performing a sequence of quenches, it is shown that the edge states, including Majorana modes, may be switched off and on. Also, the generation of Majoranas due to quenching from a trivial phase is discussed.
Free edge effects in laminated composites
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1989-01-01
The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.
Edge effects in composites by moire interferometry
NASA Technical Reports Server (NTRS)
Czarnek, R.; Post, D.; Herakovich, C.
1983-01-01
The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.
Low temperature edge dynamics of AB-stacked bilayer graphene: naturally favored closed zigzag edges.
Zhan, Da; Liu, Lei; Xu, Ya Nan; Ni, Zhen Hua; Yan, Jia Xu; Zhao, Chun; Shen, Ze Xiang
2011-01-01
Closed edges bilayer graphene (CEBG) is a recent discovered novel form of graphene structures, whose regulated edge states may critically change the overall electronic behaviors. If stacked properly with the AB style, the bilayer graphene with closed zigzag edges may even present amazing electronic properties of bandgap opening and charge separation. Experimentally, the CEBG has been confirmed recently with HRTEM observations after extremely high temperature annealing (2000 °C). From the application point of view, the low temperature closing of the graphene edges would be much more feasible for large-scale graphene-based electronic devices fabrication. Here, we demonstrate that the zigzag edges of AB-stacked bilayer graphene will form curved close structure naturally at low annealing temperature (< 500 °C) based on Raman observation and first principles analysis. Such findings may illuminate a simple and easy way to engineer graphene electronics. PMID:22355531
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS
Almquist, Zack W.; Butts, Carter T.
2015-01-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218
Edge Mode Coupling within a Plasmonic Nanoparticle.
Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenau, Andreas; Hohenester, Ulrich; Hofer, Ferdinand; Krenn, Joachim R
2016-08-10
The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra. PMID:27427962
Wing Leading Edge Concepts for Noise Reduction
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.
2010-01-01
This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.
Bulk-edge correspondence in topological pumping
NASA Astrophysics Data System (ADS)
Hatsugai, Y.; Fukui, T.
2016-07-01
The topological pumping proposed in 1980s and recently realized by cold atom experiments is revisited from the view point of the bulk-edge correspondence. For a system with boundaries, a different form of the pumped charge is derived by the Berry connection in the temporal gauge that corresponds to the shift of the center of mass (c.m.). Even with boundaries, the pumped charge is carried by the bulk and its quantization is guaranteed by the discontinuities of the c.m. associated with the edge states. This is a modified Laughlin argument based on the local U (1 ) invariance, although the physics behind it is quite different.
Edge and Surface Plasmons in Graphene Nanoribbons.
Fei, Z; Goldflam, M D; Wu, J-S; Dai, S; Wagner, M; McLeod, A S; Liu, M K; Post, K W; Zhu, S; Janssen, G C A M; Fogler, M M; Basov, D N
2015-12-01
We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons leads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nanoimaging in the mid-infrared range 850-1450 cm(-1) allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures. PMID:26571096
Trailing edge noise prediction using Amiet's method
NASA Technical Reports Server (NTRS)
Brooks, T. F.
1981-01-01
Amiet's (1976, 1978) solution to the problem of airfoil trailing edge noise prediction is discussed in light of the results of evanescent wave theory's application to the measured surface pressure behavior near the trailing edge of an airfoil with a turbulent boundary layer. The method employed by Amiet has the advantage of incorporating the effect of finite chord in its solution. The assumed form of the pressure distribution is examined as well as the constant turbulent boundary layer convection assumption, which is found to be unnecessarily restrictive.
Edge detection techniques for iris recognition system
NASA Astrophysics Data System (ADS)
Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.
2013-12-01
Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.
Real-time edge tracking using a tactile sensor
NASA Technical Reports Server (NTRS)
Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.
1989-01-01
Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.
A new method of edge detection for object recognition
Maddox, Brian G.; Rhew, Benjamin
2004-01-01
Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.
Liquid-Crystal Light Valve Enhances Edges In Images
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Liu, Hua-Kuang
1991-01-01
Experiments show liquid-crystal light valve (LCLV) exhibits operating mode in which it enhances edges in images projected on it. Operates in edge-enhancing mode (or in combination of edge-enhancing and normal modes) by suitably adjusting bias voltage and frequency. Enhancement of edges one of most important preprocessing steps in optical pattern-recognition systems. Incorporated into image-processing system to enhance edges without introducing excessive optical noise.
Helicopter rotor trailing edge noise. [noise prediction
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amier, R. K.
1981-01-01
A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.
Superconducting Metallic Glass Transition-Edge-Sensors
NASA Technical Reports Server (NTRS)
Hays, Charles C. (Inventor)
2013-01-01
A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.
Reading Edge. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Reading Edge" is a middle school literacy program that emphasizes cooperative learning, goal setting, feedback, classroom management techniques, and the use of metacognitive strategy, whereby students assess their own skills and learn to apply new ones. The program is a component of the "Success for All"[superscript 2] ("SFA")[R] whole-school…
Strip edge cracking simulation in cold rolling
Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.
2011-01-17
This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Perspective: Engineering Education's Three-Edged Sword.
ERIC Educational Resources Information Center
LeBold, William K.
1983-01-01
Engineering and engineering education have continually faced a problem regarding quantity, quality, and equity (the traditional three-edged sword). Each of these three areas is defined and discussed. Suggests that these areas can be controlled only by anticipating the challenges of the next two decades. (JN)
Modeling and Simulation of Plasma Edge Behavior
Charles K. Birdsall, Professor
2002-02-14
A typical steady state plasma edge consists of a strongly nonneutral sheath region, starting from the wall, joined to a quasineutral pre-sheath region, & then becoming the plasma bulk, which is essentially neutral. In particular, we find that the sheath/pre-sheath boundary not static, but dynamic, both in a stable thermal plasma, with considerable sheath boundary motion and heating.
Edge currents in frustrated Josephson junction ladders
NASA Astrophysics Data System (ADS)
Marques, A. M.; Santos, F. D. R.; Dias, R. G.
2016-09-01
We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.
ERIC Educational Resources Information Center
Kennon, Tillman; Roberts, Ed; Fuller, Teresa
2008-01-01
Space travel, even low Earth orbit, is probably several years away for most of us; however, students and teachers can research the edge of space by participating in the BalloonSat program. BalloonSat is an offshoot of the Space Grant Consortium's very successful RocketSat program. The Arkansas BalloonSat program consists of teacher-initiated…
ERIC Educational Resources Information Center
Cutting Edge, 2000
2000-01-01
The Cutting Edge is a bimonthly newsletter of the Regional Center for Applied Technology and Training at Danville Community College (DCC) (Virginia) that provides the latest information on a wide range of issues including technology, business, employment trends, and new legislation. Articles from the first five issues discuss: (1) the July 2000…
Social Justice as a Pedagogy of Edge
ERIC Educational Resources Information Center
Sonu, Debbie J.
2010-01-01
In this article, the author discusses social justice as a "pedagogy of edge." She argues that educators hold the privilege to begin reframing the dialogue on social justice as a relation of all subjects and to dredge from within the meanings drawn and practices made in honor of justice. This may require a shift away from social justice as a…
Nonlocal edge state transport in topological insulators
NASA Astrophysics Data System (ADS)
Protogenov, Alexander P.; Verbus, Valery A.; Chulkov, Evgueni V.
2013-11-01
We use the N-terminal scheme for studying the edge-state transport in two-dimensional topological insulators. We find the universal nonlocal response in the ballistic transport approach. This macroscopic exhibition of the topological order offers different areas for applications.
Apparatus for edge etching of semiconductor wafers
NASA Technical Reports Server (NTRS)
Casajus, A.
1986-01-01
A device for use in the production of semiconductors, characterized by etching in a rapidly rotating etching bath is described. The fast rotation causes the surface of the etching bath to assume the form of a paraboloid of revolution, so that the semiconductor wafer adjusted at a given height above the resting bath surface is only attacked by etchant at the edges.
Zone edge effects with variable rate irrigation
Technology Transfer Automated Retrieval System (TEKTRAN)
Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...
The Edges of the Ocean: An Introduction.
ERIC Educational Resources Information Center
Burke, Kevin
1979-01-01
Introduces a series of related articles on the study of ocean/continent boundaries (margins) within the framework of plate tectonics. Topics discussed include: early attempts to interpret ocean/continent boundaries, Atlantic-type margins, Pacific-type margins, the edges of ancient oceans, and future challenges in the study of continental margins.…
Detection of edges using local geometry
NASA Technical Reports Server (NTRS)
Gualtieri, J. A.; Manohar, M.
1989-01-01
Researchers described a new representation, the local geometry, for early visual processing which is motivated by results from biological vision. This representation is richer than is often used in image processing. It extracts more of the local structure available at each pixel in the image by using receptive fields that can be continuously rotated and that go to third order spatial variation. Early visual processing algorithms such as edge detectors and ridge detectors can be written in terms of various local geometries and are computationally tractable. For example, Canny's edge detector has been implemented in terms of a local geometry of order two, and a ridge detector in terms of a local geometry of order three. The edge detector in local geometry was applied to synthetic and real images and it was shown using simple interpolation schemes that sufficient information is available to locate edges with sub-pixel accuracy (to a resolution increase of at least a factor of five). This is reasonable even for noisy images because the local geometry fits a smooth surface - the Taylor series - to the discrete image data. Only local processing was used in the implementation so it can readily be implemented on parallel mesh machines such as the MPP. Researchers expect that other early visual algorithms, such as region growing, inflection point detection, and segmentation can also be implemented in terms of the local geometry and will provide sufficiently rich and robust representations for subsequent visual processing.
Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling
Dr. Ricardo Maqueda; Dr. Fred M. Levinton
2011-12-23
Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.
Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony
2013-01-14
Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement. PMID:23388930
Directed triadic closure and edge deletion mechanism induce asymmetry in directed edge properties
NASA Astrophysics Data System (ADS)
Brot, Hilla; Muchnik, Lev; Louzoun, Yoram
2015-01-01
Many directed real world networks, such as the WWW, genetic regulation networks and economic networks exhibit significant differences between the properties of the incoming and outgoing edges, while the differences exhibited by other networks, such as Social Netw. are far more limited. This phenomenon is most evident in the differences between the distributions of incoming and outgoing degrees and direct clustering coefficients. There is currently no generic network generation model that would reproduce and tune these observed dissimilarities. We propose and empirically validate a simple and realistic model that can explain the emergence of the dissimilarities between the incoming and outgoing network degrees and clustering coefficients by combining directed triadic closure, random edge addition and directed edge removal. Surprisingly, we find that the difference between in and out degree distributions is attributed to asymmetries in the edge removal, highlighting the neglected yet crucial importance of edge removal mechanisms to the static and dynamic properties of real world networks. The model is governed by only two parameters: the first tunes the randomness of the edge addition mechanism, while the second controls the difference between the in and out degrees. The combination of these parameters reproduces the observed variety of directed degree distributions and clustering coefficients. Further comparisons of the model's microscopic dynamics against the empirically observed evolution of real world social network confirms that while quite simple, the model properly describes both the edge addition and deletion processes in directed networks.
NASA Astrophysics Data System (ADS)
Erkarslan, U.; Oylumluoglu, G.; Grayson, M.; Siddiki, A.
2012-02-01
The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk quantized Hall (QH) regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two-dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the nonlinear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, but still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under QH conditions.
A Theory of Oscillating Edge Flames
NASA Technical Reports Server (NTRS)
Buckmaster, J.; Zhang, Yi
1999-01-01
It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the
Mapping Forest Edge Using Aerial Lidar
NASA Astrophysics Data System (ADS)
MacLean, M. G.
2014-12-01
Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.
Edge Instabilities Limiting the Pedestal Evolution
NASA Astrophysics Data System (ADS)
Diallo, A.
2014-10-01
Identifying the transport mechanism and instabilities limiting pedestal properties and global confinement are essential to predict and control the performance of ITER and future fusion devices. Measurements of the edge density and magnetic fluctuations on the DIII-D and Alcator C-Mod tokamaks provide direct evidence for the onset of quasi-coherent edge fluctuations limiting the pedestal temperature recovery after an edge-localized-mode (ELM). These instabilities onset at the critical pressure gradient for kinetic ballooning mode (KBM) instabilities, which is consistent with predictions of EPED model. On both C-Mod and DIII-D, the low-k coherent fluctuations are observed having magnetic signatures, localized near the pedestal top. At low current on DIII-D these fluctuations are observed to correlate well with the density gradient recovery (measured with high temporal resolution) suggesting that particle transport is responsible for limiting the pedestal. At higher plasma current, the density gradient recovers on the same time scale as in the low current case. However, the temperature gradient increases until saturation, which suggests a different transport mechanism compared to the low current case. This plasma current dependence is consistent with changes of heat flux from the core needed to replenish the pedestal after an ELM crash. This paper reports detailed measurements of the pedestal recovery dynamics and associated edge fluctuations in two fusion devices, which clearly indicate that quasi-coherent edge fluctuations with magnetic signatures limit the temperature pedestal evolution. These new measurements as well as the recovery time of the pedestal strongly suggest that the pedestal temperature is a potential control knob, if acted on early in the recovery phase, for optimizing the pedestal in future fusion devices. Supported by the US DOE under DE-AC02-09CH11466 and DE-FC02-04ER54698.
An ellipse detection algorithm based on edge classification
NASA Astrophysics Data System (ADS)
Yu, Liu; Chen, Feng; Huang, Jianming; Wei, Xiangquan
2015-12-01
In order to enhance the speed and accuracy of ellipse detection, an ellipse detection algorithm based on edge classification is proposed. Too many edge points are removed by making edge into point in serialized form and the distance constraint between the edge points. It achieves effective classification by the criteria of the angle between the edge points. And it makes the probability of randomly selecting the edge points falling on the same ellipse greatly increased. Ellipse fitting accuracy is significantly improved by the optimization of the RED algorithm. It uses Euclidean distance to measure the distance from the edge point to the elliptical boundary. Experimental results show that: it can detect ellipse well in case of edge with interference or edges blocking each other. It has higher detecting precision and less time consuming than the RED algorithm.
Geometry-Based Edge Clustering for Graph Visualization
Cui, Wei W.; Zhou, Hong; Qu, Huamin; Wong, Pak C.; Li, X. M.
2008-10-19
Graphs have been widely used to model relationships among data. For large graphs, excessive edge crossings will make the display visually cluttered and thus difficult to explore. In this paper, we propose a novel geometry-based edge-clustering framework which can group edges into bundles to reduce the overall edge crossings. Our method uses a control mesh to guide the edge-clustering process; edge bundles can be formed by forcing all edges to pass through some control points on the mesh. The control mesh can be generated at different levels of detail either manually or automatically based on underlying graph patterns. Users can further interact with the edge-clustering results through several advanced visualization techniques such as color and opacity enhancement. Compared with other edge-clustering methods, our approach is intuitive, flexible, and efficient. The experiments on some large graphs demonstrate the effectiveness of our method.
Mortality after percutaneous edge-to-edge mitral valve repair: a contemporary review
de Beenhouwer, Thomas; Swaans, Martin J.; Post, Marco C.; van der Heyden, Jan A. S.; Eefting, Frank D.; Rensing, Benno J. W. M.
2016-01-01
Percutaneous edge-to-edge mitral valve (MV) repair is a relatively new treatment option for mitral regurgitation (MR). After the feasibility and safety having been proved in low-surgical-risk patients, the use of this procedure has shifted more to the treatment of high-risk patients. With the absence of randomized controlled trials (RCT) for this particular subgroup, observational studies try to add evidence to the safety aspect of this procedure. These also provide short- and mid-term mortality figures. Several mortality predictors have been identified, which may help the optimal selection of patients who will benefit most from this technique. In this article we provide an overview of the literature about mortality and its predictors in patients treated with the percutaneous edge-to-edge device. PMID:27054105
Edge Localised Modes (ELMs): Experiments and Theory
Connor, J. W.; Kirk, A.
2008-05-14
Edge Localised Modes (ELMs) are periodic disturbances of the plasma periphery occurring in tokamaks with an H-mode edge transport barrier. As a result, a fraction of the plasma energy present in the confined hot edge plasma is transferred to the open field lines in the divertor region, ultimately appearing at the divertor target plates. These events can result in high transient heat loads being deposited on the divertor target plates in large tokamaks, potentially causing damage in devices such as ITER. Consequently it is important to find means to mitigate their effects, either avoiding them or, at least, controlling them. This in turn means it is essential to understand the physics causing ELMs so that appropriate steps can be taken. It is generally agreed that ELMs originate as MHD instability caused by the steep plasma pressure gradients or edge plasma current present in H-mode, the so-called 'peeling-ballooning' model. Normally this is considered to be an ideal MHD instability but resistivity may be involved. Much less clear is the non-linear evolution of these instabilities and the mechanisms by which the confined edge plasma is transferred to the divertor plasma. There is evidence for the non-linear development of 'filamentary' structures predicted by theory, but the reconnection processes by which these are detached from the plasma core remain uncertain. In this paper the experimental and theoretical evidence for the peeling-ballooning model is presented, drawing data from a number of tokamaks, e.g. JET, DIII-D, ASDEX-Upgrade, MAST etc. Some theoretical models for the non-linear evolution of ELMs are discussed; as well as ones related to the 'peeling-ballooning' model, other candidate models for the ELM cycle are mentioned. The consequential heat loads on divertor target plates are discussed. Based on our current understanding of the physics of ELMs, means to avoid them, or mitigate their consequences, are described, e.g. the use of plasma shaping or
The cutting edge: Sharp biological materials
NASA Astrophysics Data System (ADS)
Meyers, M. A.; Lin, A. Y. M.; Lin, Y. S.; Olevsky, E. A.; Georgalis, S.
2008-03-01
Through hundreds of millions of years of evolution, organisms have developed a myriad of ingenious solutions to ensure and optimize survival and success. Biological materials that comprise organisms are synthesized at ambient temperature and pressure and mostly in aqueous environments. This process, mediated by proteins, limits the range of materials at the disposal of nature and therefore the design plays a pivotal role. This article focuses on sharp edges and serrations as important survival and predating mechanisms in a number of plants, insects, fishes, and mammals. Some plants have sharp edges covered with serrations. The proboscis of mosquitoes and stinger of bees are examples in insects. Serrations are a prominent feature in many fish teeth, and rodents have teeth that are sharpened continuously, ensuring their sharpness and efficacy. Some current bioinspired applications will also be reviewed.
Multifractality in plasma edge electrostatic turbulence
Neto, C. Rodrigues; Guimaraes-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.
2008-08-15
Plasma edge turbulence in Tokamak Chauffage Alfven Bresilien (TCABR) [R. M. O. Galvao et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.
Edges of Saturn's rings are fractal.
Li, Jun; Ostoja-Starzewski, Martin
2015-01-01
The images recently sent by the Cassini spacecraft mission (on the NASA website http://saturn.jpl.nasa.gov/photos/halloffame/) show the complex and beautiful rings of Saturn. Over the past few decades, various conjectures were advanced that Saturn's rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. Here we focus on four images sent by the Cassini spacecraft mission (slide #42 "Mapping Clumps in Saturn's Rings", slide #54 "Scattered Sunshine", slide #66 taken two weeks before the planet's Augus't 200'9 equinox, and slide #68 showing edge waves raised by Daphnis on the Keeler Gap) and one image from the Voyager 2' mission in 1981. Using three box-counting methods, we determine the fractal dimension of edges of rings seen here to be consistently about 1.63 ~ 1.78. This clarifies in what sense Saturn's rings are fractal. PMID:25883885
The red edge of plant leaf reflectance
NASA Technical Reports Server (NTRS)
Horler, D. N. H.; Dockray, M.; Barber, J.
1983-01-01
A detailed study of the red edge spectral feature of green vegetation based on laboratory reflectance spectrophotometry is presented. A parameter lambda is defined as the wavelength is defined as the wavelength of maximum slope and found to be dependent on chlorophyll concentration. Species, development stage, leaf layering, and leaf water content of vegetation also influences lambda. The maximum slope parameter is found to be independent of simulated ground area coverage. The results are interpreted in terms of Beer's Law and Kubelka-Munk theory. The chlorophyll concentration dependence of lambda seems to be explained in terms of a pure absorption effect, and it is suggested that the existence of two lambda components arises from leaf scattering properties. The results indicate that red edge measurements will be valuable for assessment of vegetative chlorophyll status and leaf area index independently of ground cover variations, and will be particularly suitable for early stress detection.
Absence of many-body mobility edges
NASA Astrophysics Data System (ADS)
De Roeck, Wojciech; Huveneers, Francois; Müller, Markus; Schiulaz, Mauro
2016-01-01
Localization transitions as a function of temperature require a many-body mobility edge in energy, separating localized from ergodic states. We argue that this scenario is inconsistent because local fluctuations into the ergodic phase within the supposedly localized phase can serve as mobile bubbles that induce global delocalization. Such fluctuations inevitably appear with a low but finite density anywhere in any typical state. We conclude that the only possibility for many-body localization to occur is lattice models that are localized at all energies. Building on a close analogy with a model of assisted two-particle hopping, where interactions induce delocalization, we argue why hot bubbles are mobile and do not localize upon diluting their energy. Numerical tests of our scenario show that previously reported mobility edges cannot be distinguished from finite-size effects.
On thermal edge effects in composite laminates
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1976-01-01
Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.
EDGE-ON VIEW OF SATURN'S RINGS
NASA Technical Reports Server (NTRS)
2002-01-01
This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on. In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane. [bottom] - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys. Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn. The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA
Rimmed and edge thickened Stodola shaped flywheel
Kulkarni, S.V.; Stone, R.G.
1983-10-11
A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.
Adaptive WMMR filters for edge enhancement
NASA Astrophysics Data System (ADS)
Zhou, Jun; Longbotham, Harold G.
1993-05-01
In this paper, an adaptive WMMR filter is introduced, which adaptively changes its window size to accommodate edge width variations. We prove that for any given one dimensional input signal convergence is to fixed points, which are PICO (piecewise constant), by iterative application of the adaptive WMMR filter. An application of the filters to one-D data (non- PICO) and images of printed circuit boards are then provided. Application to images in general is discussed.
Edge rotational magnons in magnonic crystals
Lisenkov, Ivan Kalyabin, Dmitry; Nikitov, Sergey
2013-11-11
It is predicted that in 2D magnonic crystals the edge rotational magnons of forward volume magnetostatic spin waves can exist. Under certain conditions, locally bounded magnons may appear within the crystal consisting of the ferromagnetic matrix and periodically inserted magnetic/non-magnetic inclusions. It is also shown that interplay of different resonances in 2D magnonic crystal may provide conditions for spin wave modes existence with negative group velocity.
Robotic Vision With Enhanced Detection Of Edges
NASA Technical Reports Server (NTRS)
Davis, V. L.; Shawaga, L.; Walsh, P.; Kambies, K.
1993-01-01
Robotic vision subsystem provides enhanced detection of edges as it preprocesses image of target moving in six degrees of freedom. Subsystem designed to filter out high (spatial) frequency components in image, with frequency response tuned to size of object detected. Blurring and background noise reduced to avoid false detection of moving target. Image produced used by another vision subsystem guiding robot to mate with target. Produces less noise and operates more reliably.
Mating system shifts on the trailing edge
Levin, Donald A.
2012-01-01
Background The trailing edges of species ranges are becoming a subject of increasing interest as the environment changes due to global warming. Trailing edge populations are likely to face extinction because of a decline in numbers and an inability to evolve new adaptations with sufficient speed. Discussions of character change in the trailing edge have focused on physiological, exomorphic and phenological traits. The mating pattern within populations has not been part of the discourse, in spite of the fact that the mating pattern may affect the ability of populations to respond to environmental change and to maintain their sizes. In this paper, the case is made that a substantial increase in self-fertilization rates may occur via plastic responses to stress. Scope and Conclusions Small populations on the trailing edge are especially vulnerable to environmental change because of inadequate levels of cross-fertilization. Evidence is presented that a deficiency of cross-seed production is due to inadequate pollinator services and a paucity of self-incompatibility alleles within populations. Evidence also is presented that if plants are self-compatible, self-fertilization may compensate in part for this deficiency through a stress-induced increase in levels of self-compatibility and stress-induced alterations in floral morphology that elevate self-pollination. Whereas increased self-fertility may afford populations the time to adapt to their changing environments, it can be concluded that increased selfing is not a panacea for the ills of environmental change, because it will lead to substantial reductions in genetic diversity, which may render adaptation unlikely. PMID:21980190
A collection of edge-based elements
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Edge-based elements have proved useful in solving electromagnetic problems since they are nondivergent. Previous authors have presented several two and three dimensional elements. Herein, we present four types of elements which are suitable for modeling several types of three dimensional geometries. Distorted brick and triangular prism elements are given in cartesian coordinates as well as the specialized cylindrical shell and pie-shaped prism elements which are suitable for problems best described in polar cylindrical coordinates.
Differentiator design and performance for edge sharpening
Pan, Jeng-Jong; Domingue, Julia O.
1990-01-01
A two-dimensional differentiator is useful for edge sharpening in digital image processing. In the design of a differentiator, differentiator coefficients that satisfy the specification of frequency response must be approximated. Four mathematical techniques - the minimax method, least-squares method, nonlinear programming, and linear programming - can be applied to solve the approximation problem. Results indicated that the differentiator derived from linear programming gives the highest resolution. -from Authors
Permanent magnet edge-field quadrupole
Tatchyn, Roman O.
1997-01-01
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.
Permanent magnet edge-field quadrupole
Tatchyn, R.O.
1997-01-21
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.
Edge ratio and community structure in networks
NASA Astrophysics Data System (ADS)
Cafieri, Sonia; Hansen, Pierre; Liberti, Leo
2010-02-01
A hierarchical divisive algorithm is proposed for identifying communities in complex networks. To that effect, the definition of community in the weak sense of Radicchi [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] is extended into a criterion for a bipartition to be optimal: one seeks to maximize the minimum for both classes of the bipartition of the ratio of inner edges to cut edges. A mathematical program is used within a dichotomous search to do this in an optimal way for each bipartition. This includes an exact solution of the problem of detecting indivisible communities. The resulting hierarchical divisive algorithm is compared with exact modularity maximization on both artificial and real world data sets. For two problems of the former kind optimal solutions are found; for five problems of the latter kind the edge ratio algorithm always appears to be competitive. Moreover, it provides additional information in several cases, notably through the use of the dendrogram summarizing the resolution. Finally, both algorithms are compared on reduced versions of the data sets of Girvan and Newman [Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002)] and of Lancichinetti [Phys. Rev. E 78, 046110 (2008)]. Results for these instances appear to be comparable.
Diffusion-induced line-edge roughness
NASA Astrophysics Data System (ADS)
Stewart, Michael D.; Schmid, Gerard M.; Goldfarb, Dario L.; Angelopoulos, Marie; Willson, C. Grant
2003-06-01
As feature dimensions shrink, line edge roughness has become an increasing concern in semiconductor fabrication. There are numerous potential contributors to line edge roughness throughout the lithographic process and any measured roughness value on a printed device feature is, like the feature itself, a convolved function of every processing step. When the full lithographic process is used to study line edge roughness, it can be difficult to isolate the contribution to final roughness from any individual processing step or factor. To gain a more fundamental understanding of roughness generation that is specifically related to photoresist chemistry and formulation it is necessary to design experiments that separate out exposure related issues like mask dimension variation or local dose variation ("shot noise"). This can be accomplished using previously reported experimental protocols for bilayer film stack creation. The bilayer experimental approach has been used to study the effect of variations in such factors as post exposure bake time, photoacid generator loading, and developer concentration on roughness generation. Surface roughness of the developed film stacks is measured via atomic force microscopy. Surface roughness of developed bilayer film stacks may be considered analogous to sidewall roughness of printed features. An acrylate-based 193nm photoresist resin and an APEX-type resin are used in these experiments. In addition to experimental results, results from mesoscale lithographic simulations are used to gain further insight into diffusion induced roughness and how roughness in the latent image is modified during the development step.
The electronic absorption edge of petroleum
Mullins, O.C.; Mitra-Kirtley, S.; Zhu, Yifu
1992-09-01
The electronic absorption spectra of more than 20 crude oils and asphaltenes are examined. The spectral location of the electronic absorption edge varies over a wide range, from the near-infrared for heavy oils and asphaltenes to the near-UV for gas condensates. The functional form of the electronic absorption edge for all crude oils (measured) is characteristic of the {open_quotes}Urbach tail,{close_quotes} a phenomenology which describes electronic absorption edges in wide-ranging materials. The crude oils all show similar Urbach widths, which are significantly larger than those generally found for various materials but are similar to those previously reported for asphaltenes. Monotonically increasing absorption at higher photon energy continues for all crude oils until the spectral region is reached where single-ring aromatics dominate absorption. However, the rate of increasing absorption at higher energies moderates, thereby deviating from the Urbach behavior. Fluorescence emission spectra exhibit small red shifts from the excitation wavelength and small fluorescence peak widths in the Urbach regions of different crude oils, but show large red shifts and large peak widths in spectral regions which deviate from the Urbach behavior. This observation implies that the Urbach spectral region is dominated by lowest-energy electronic absorption of corresponding chromophores. Thus, the Urbach tail gives a direct measure of the population distribution of chromophores in crude oils. Implied population distributions are consistent with thermally activated growth of large chromophores from small ones. 12 refs., 8 figs.
Cavitation on Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration
2012-11-01
The effects of spanwise-uniform sinusoidal leading edge protuberances on the flow characteristics and forces of finite-span hydrofoils under vaporous cavitation conditions were examined experimentally over angles of attack ranging from -9° α <= 27°. Two planforms were studied, rectangular and swept, at a Reynolds number of ~ 720,000. Two protuberance wavelengths, λ = 0.25 c and 0.50 c, and three amplitudes, A = 0.025 c, 0.05 c, and 0.12 c, were examined as they resemble the humpback whale flipper morphology. All hydrofoils retain a mean NACA 634-021 profile. The forces and moments were measured at a freestream velocity of 7.2 m/s, and high-speed digital photography was used to capture flow field images at several angles of attack. The cavitation number corresponding to incipient leading edge cavitation was also calculated. As far as forces and cavitation number are concerned, results show that the baseline hydrofoil tends to have nearly equal or improved performance over the modified hydrofoils at most angles of attack tested. Flow images reveal that it is possible that the extent of sheet and tip vortex cavitation can be reduced with the introduction of leading edge protuberances. The forces and cavitation characteristics will be presented. Sponsored by the ONR-ULI program.
Large eddy simulation of trailing edge noise
NASA Astrophysics Data System (ADS)
Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan
2015-11-01
Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.
Airfoil noise reductions through leading edge serrations
NASA Astrophysics Data System (ADS)
Narayanan, S.; Chaitanya, P.; Haeri, S.; Joseph, P.; Kim, J. W.; Polacsek, C.
2015-02-01
This paper provides an experimental investigation into the use of leading edge (LE) serrations as a means of reducing the broadband noise generated due to the interaction between the aerofoil's LE and impinging turbulence. Experiments are performed on a flat plate in an open jet wind tunnel. Grids are used to generate isotropic homogeneous turbulence. The leading edge serrations are in the form of sinusoidal profiles of wavelengths, λ, and amplitudes, 2h. The frequency and amplitude characteristics are studied in detail in order to understand the effect of LE serrations on noise reduction characteristics and are compared with straight edge baseline flat plates. Noise reductions are found to be insignificant at low frequencies but significant in the mid frequency range (500 Hz-8 kHz) for all the cases studied. The flat plate results are also compared to the noise reductions obtained on a serrated NACA-65 aerofoil with the same serration profile. Noise reductions are found to be significantly higher for the flat plates with a maximum noise reduction of around 9 dB compared with about 7 dB for the aerofoil. In general, it is observed that the sound power reduction level (ΔPWL) is sensitive to the amplitude, 2h of the LE serrations but less sensitive to the serration wavelength, λ. Thus, this paper sufficiently demonstrates that the LE amplitude acts as a key parameter for enhancing the noise reduction levels in flat plates and aerofoils.
Recent Advances in Plasma Edge Physics Theory
NASA Astrophysics Data System (ADS)
Stacey, W. M.
2015-11-01
This presentation summarizes recent theory developments for interpreting plasma edge physics experiments in DIII-D. i) Radial and poloidal moment balance require that the radial particle flux be of a pinch-diffusive nature with the pinch representing the electromagnetic forces and external momentum input. Ion radial particle fluxes in experiment are found to be a smaller difference between large outward diffusion fluxes and inward pinch fluxes. When the pinch-diffusion relation is used in the continuity equation a new diffusion theory that preserves momentum balance is obtained. ii) The majority of thermalized ions and their energy cross the LCFS on ion loss orbits and are deposited in the SOL near the outboard midplane. The lost ions are predominantly ctr-current, producing a co-current intrinsic rotation of the remaining ions in the edge plasma. iii) While the contribution of the leading order parallel viscosity to toroidal momentum damping vanishes identically in axisymmetric plasmas, non-axisymmetric radial B-fields in the edge plasma enable parallel viscosity to enhance the damping of toroidal rotation. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.
Issues in Kinetic Edge Turbulence Simulation
NASA Astrophysics Data System (ADS)
Parker, S. E.; Chen, Y.; Lang, J.
2006-10-01
Simulations of trapped electron modes are underway using GEM [1,2], a global electromagnetic gyrokinetic delta-f simulation with collisions. We report results with no temperature gradient so that ITG and ETG instabilities are not present. For typical weak density gradient core values, the CTEM is dominant. However, for steeper density gradient edge values, higher k drift-waves are most unstable [J. Lang this mtg.]. For the weaker density gradient core case, nonlinear simulations using GEM are routine. For the steeper gradient edge case, the nonlinear fluctuations are very high and a stationary state has not been obtained. More physics, e.g. profile variation and equilibrium ExB shear flow should be significantly stabilizing, and may make such simulations feasible using standard delta-f techniques. These features are fully implemented in GEM and research is ongoing. One approach to addressing the high fluctuation levels in the edge turbulence regime is the particle-continuum method [3]. A new scheme that periodically resets the particle weights, using a Maxwellian particle load is being tested in GEM [Y. Chen this mtg.] and will be discussed. [1] Y. Chen, S. Parker, J. Comput. Phys. 189 463 (2003). [2] Y. Chen, S. Parker, accepted, available on-line, J. Comput. Phys. (2006). [4] S. Vadlamani, S. Parker, Y. Chen and C. Kim, Comput. Phys. Comm. 164 209 (2004).
Noise, Edge Extraction and Visibility of Features
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.
2005-01-01
Noise, whether due to the image-gathering device or some other reason, reduces the visibility of fine features in an image. Several techniques attempt to mitigate the impact of noise by performing a low-pass filtering operation on the acquired data. This is based on the assumption that the uncorrelated noise has high-frequency content and thus will be suppressed by low-pass filtering. A result of this operation is that edges in a noisy image also tend to get blurred, and, in some cases, may get completely lost due to the low-pass filtering. In this paper, we quantitatively assess the impact of noise on fine feature visibility by using computer-generated targets of known spatial detail. Additionally, we develop a new scheme for noise-reduction based on the connectivity of edge-features. The overall impact of this scheme is to reduce overall noise, yet retain the high frequency content that make edge-features sharp.
Emergent Properties of Patch Shapes Affect Edge Permeability to Animals
Nams, Vilis O.
2011-01-01
Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965
Observation of unconventional edge states in 'photonic graphene'.
Plotnik, Yonatan; Rechtsman, Mikael C; Song, Daohong; Heinrich, Matthias; Zeuner, Julia M; Nolte, Stefan; Lumer, Yaakov; Malkova, Natalia; Xu, Jingjun; Szameit, Alexander; Chen, Zhigang; Segev, Mordechai
2014-01-01
Graphene, a two-dimensional honeycomb lattice of carbon atoms, has been attracting much interest in recent years. Electrons therein behave as massless relativistic particles, giving rise to strikingly unconventional phenomena. Graphene edge states are essential for understanding the electronic properties of this material. However, the coarse or impure nature of the graphene edges hampers the ability to directly probe the edge states. Perhaps the best example is given by the edge states on the bearded edge that have never been observed-because such an edge is unstable in graphene. Here, we use the optical equivalent of graphene-a photonic honeycomb lattice-to study the edge states and their properties. We directly image the edge states on both the zigzag and bearded edges of this photonic graphene, measure their dispersion properties, and most importantly, find a new type of edge state: one residing on the bearded edge that has never been predicted or observed. This edge state lies near the Van Hove singularity in the edge band structure and can be classified as a Tamm-like state lacking any surface defect. The mechanism underlying its formation may counterintuitively appear in other crystalline systems. PMID:24193661
Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.
Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B
2014-01-01
With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will
Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects
Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.
2014-01-01
With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will
Comparison of edges detected at different polarisations in MAESTRO data
NASA Technical Reports Server (NTRS)
Caves, Ronald G.; Harley, Peter J.; Quegan, Shaun
1992-01-01
Edge detection would appear to be a crucial tool for analyzing multi-polarized, multi-frequency, and multi-temporal Synthetic Aperture Radar (SAR) images. Edge structure provides a simple means for comparing different polarizations and frequencies, and for detecting changes over time. Due to the fact that edges and segments (homogeneous regions) are dual concepts, edge detection has an important role to play in identifying segments within which mean backscatter measurements for use in image classification can be made. As part of a general investigation into edge detection in SAR imagery, an initial investigation was carried out into the detectability and nature of edges in multi-polarized and multi-frequency SAR images. The contrast ratio (CR) operator was used to detect edges. This operator was previously shown to perform well at detecting edges in single-polarized and single-frequency SAR images.
Method for encapsulating the edge of a flexible sheet
Keenihan, James R; Clarey, Todd M
2013-02-19
The present invention is premised upon an inventive method of producing an over-molded edge portion on a flexible substrate, wherein the edge portion is void of open areas due to support devices in the mold cavity.
3. EASTERN EDGE OF POST ENGINEER'S SHOPS AND YARD, LOOKING ...
3. EASTERN EDGE OF POST ENGINEER'S SHOPS AND YARD, LOOKING 312 DEGREES NORTH WEST, EUCALYPTUS TREES DENOTE EDGE OF PRESIDIO. - Presidio of San Francisco, Post Engineer's Headquarters Office, Crissy Field North cantonment, San Francisco, San Francisco County, CA
Edge State and Intrinsic Hole Doping in Bilayer Phosphorene
NASA Astrophysics Data System (ADS)
Osada, Toshihito
2015-01-01
Using a simple LCAO model by Harrison, we have qualitatively studied the edge state of bilayer phosphorene, which is a unit structure of the layered crystal of black phosphorus. This model successfully reproduces the isolated edge state in the bulk gap in monolayer phosphorene. In bilayer phosphorene, however, it shows that edge states are almost buried in the valence band and there is no isolated midgap edge state at the zigzag edge. Since the buried edge state works as acceptor, holes are doped from the edge state into the bulk. This gives a possible explanation for p-type conduction in undoped black phosphorus. Under the vertical electric field, the intrinsic hole doping is reduced because a part of edge states move into the gap. These features of bilayer phosphorene might be better suited for device application.
NASA Astrophysics Data System (ADS)
Netz, U. J.; Hielscher, A. H.; Scheel, A. K.; Beuthan, J.
2006-05-01
Optical imaging in the near-infrared (NIR) region provides the possibility to detect and determine pathological changes in human tissue without the drawback of ionizing radiation and with little technical and financial effort. Especially in rheumatoid arthritis, imaging by optical tomography to detect early inflammations in joints has the potential to become a supportive tool to common imaging modalities. One way to enhance the resolution and specificity of optical tissue characterization is to use the frequency domain instead of DC intensity measurement. Intensity modulation of a light source leads to propagation of diffuse photon-density waves (PDW) through the tissue. In this study, we report basic experimental results on tissuelike phantoms to determine the optimal parameters for PDW-transillumination of finger joints. We used PDW with modulation frequencies from 100 MHz up to 1 GHz to scan across a tissuelike phantom containing an absorbing plane bounded by an edge. The geometrical extents of the phantoms are similar to human finger joints. We measure the transmitted PDW and show that amplitude and phase behaves at the edge as expected according to theoretical predictions. An increasing modulation frequency leads to increasing slope of the amplitude decay at the edge but decreasing signal-to-noise ratio. Even at 1 GHz, the edge is detectable.
Edge-based correlation image registration for multispectral imaging
Nandy, Prabal
2009-11-17
Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.
Shashkov`s method retaining cell-edge unknowns
Roberts, R.M.
1996-01-05
Shashkov`s method for scalar cell-edge and cell-center variables is derived. Dot products for cell-edge vectors are computed for a corner of the cell. Next, the divergence and gradient are discretized. The diffusion equation is solved with cell-edge continuity and boundary conditions. A symmetric positive definite solution matrix is proven.
16 CFR 1211.12 - Requirements for edge sensors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from Global Engineering Documents... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge,...
16 CFR 1211.12 - Requirements for edge sensors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from Global Engineering Documents... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge,...
Panels illuminated by edge-lighted lens technique
NASA Technical Reports Server (NTRS)
Haag, G. E.; Horsfall, R. B.
1966-01-01
Electroluminescent lamps used to edge-light a specially ground lens provide nonglare, reduced eye strain panel illumination. There is no noticeable falloff in brightness along the lens edge. Light intensity diminishes toward the lens center. A slight halo, observed along the lens edge, has no detrimental effect.
AMOUNT OF FOREST EDGE AT A 2 HECTARE SCALE
Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE2 is the percent of forest that is classified as edge using a 2 ha scale.
Electrical upsetting of metal sheet forms weld edge
NASA Technical Reports Server (NTRS)
Scherba, E. S.
1966-01-01
Electric gathering of sheet stock edges forms metal sheets in the shape of gore sections with heavier edge areas that can be welded without loss of strength. The edges are gathered by progressive resistance heating and upsetting, and are formed automatically. This process avoids disturbance of the metals internal structure.
16 CFR 1211.12 - Requirements for edge sensors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from Global Engineering Documents... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge,...
16 CFR 1211.12 - Requirements for edge sensors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from Global Engineering Documents... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge,...
16 CFR 1211.12 - Requirements for edge sensors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from Global Engineering Documents... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge,...
12 CFR 211.5 - Edge and agreement corporations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (12 CFR part 204), and other Edge and agreement corporations; (3) Money-market instruments (including... and Q (12 CFR parts 204 and 217) in the same manner and to the same extent as if the Edge or agreement... (12 CFR 208.62). (l) Protection of customer information and consumer information. An Edge or...
12 CFR 211.5 - Edge and agreement corporations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (12 CFR part 204), and other Edge and agreement corporations; (3) Money-market instruments (including... and Q (12 CFR parts 204 and 217) in the same manner and to the same extent as if the Edge or agreement... (12 CFR 208.62). (l) Protection of customer information and consumer information. An Edge or...
AMOUNT OF FOREST EDGE AT A 65 HECTARE SCALE
Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE65 is the percent of forest that is classified as edge using a 65 ha scale.
AMOUNT OF FUTURE FOREST EDGE AT A 2 HECTARE SCALE
Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE2 is the percent of forest that is classified as edge using a 2 ha scale.
AMOUNT OF FUTURE FOREST EDGE AT A 65 HECTARE SCALE
Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE65 is the percent of forest that is classified as edge using a 65 ha scale.
Gait alterations can reduce the risk of edge loading.
Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse
2016-06-01
Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. PMID:26632197
Improved method of edge coating flat ribbon wire
NASA Technical Reports Server (NTRS)
1966-01-01
Method to coat the edges of flat ribbon wire is devised by using enamel with modified flow properties due to addition of 2 to 4 percent silicon. Conventional coating procedes several edge coatings to minimize oxidation and additional conventional coats are applied after edge coating to build up thickness.
12 CFR 211.5 - Edge and agreement corporations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Q (12 CFR parts 204 and 217) in the same manner and to the same extent as if the Edge or agreement... (12 CFR part 204), and other Edge and agreement corporations; (3) Money-market instruments (including... (12 CFR 208.62). (l) Protection of customer information and consumer information. An Edge or...
12 CFR 211.5 - Edge and agreement corporations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and Q (12 CFR parts 204 and 217) in the same manner and to the same extent as if the Edge or agreement... (12 CFR part 204), and other Edge and agreement corporations; (3) Money-market instruments (including... (12 CFR 208.62). (l) Protection of customer information and consumer information. An Edge or...
Method of forming densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1981-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
16 CFR 1632.7 - Tape edge substitution procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Tape edge substitution procedure. 1632.7... edge substitution procedure. (a) Sections 1632.1 (j) and (k) provide in part that “a change in existing... respect to materials substitution of items such as flange materials and tapes at the tape edge under...
NASA Astrophysics Data System (ADS)
Mani, Arjun; Benjamin, Colin
2016-04-01
On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.
Edge ambipolar potential in toroidal fusion plasmasa)
NASA Astrophysics Data System (ADS)
Spizzo, G.; Vianello, N.; White, R. B.; Abdullaev, S. S.; Agostini, M.; Cavazzana, R.; Ciaccio, G.; Puiatti, M. E.; Scarin, P.; Schmitz, O.; Spolaore, M.; Terranova, D.
2014-05-01
A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field Er(r =a,θ,ϕ) in the RFX reversed-field pinch show that Er has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u =mθ-nϕ+ωt, maps show a sinusoidal dependence as a function of u, Er=E ˜rsin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of Er. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ =Φ˜sin u. On the basis of a model developed with the guiding center code Orbit and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρi ≫ ρe). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.
Edge Simulation Laboratory Progress and Plans
Cohen, R
2007-06-05
The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began in fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.
Edge ambipolar potential in toroidal fusion plasmas
Spizzo, G. Vianello, N.; Agostini, M.; Puiatti, M. E.; Scarin, P.; Spolaore, M.; Terranova, D.; White, R. B.; Abdullaev, S. S.; Schmitz, O.; Cavazzana, R.; Ciaccio, G.
2014-05-15
A series of issues with toroidally confined fusion plasmas are related to the generation of 3D flow patterns by means of edge magnetic islands, embedded in a chaotic field and interacting with the wall. These issues include the Greenwald limit in Tokamaks and reversed-field pinches, the collisionality window for ELM mitigation with the resonant magnetic perturbations (RMPs) in Tokamaks, and edge islands interacting with the bootstrap current in stellarators. Measurements of the 2D map of the edge electric field E{sup r}(r=a,θ,ϕ) in the RFX reversed-field pinch show that E{sup r} has the same helicity of the magnetic islands generated by a m/n perturbation: in fact, defining the helical angle u=mθ−nϕ+ωt, maps show a sinusoidal dependence as a function of u, E{sup r}=E{sup ~r}sin u. The associated E × B flow displays a huge convective cell with v(a)≠0 which, in RFX and near the Greenwald limit, determines a stagnation point for density and a reversal of the sign of E{sup r}. From a theoretical point of view, the question is how a perturbed toroidal flux of symmetry m/n gives rise to an ambipolar potential Φ=Φ{sup ~}sin u. On the basis of a model developed with the guiding center code ORBIT and applied to RFX and the TEXTOR tokamak, we will show that the presence of an m/n perturbation in any kind of device breaks the toroidal symmetry with a drift proportional to the gyroradius ρ, thus larger for ions (ρ{sub i} ≫ ρ{sub e}). Immediately, an ambipolar potential arises to balance the drifts, with the same symmetry as the original perturbation.
Edge-on View of Saturn's Rings
NASA Technical Reports Server (NTRS)
1996-01-01
TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.
In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.
BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.
Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.
The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.
The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.
This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/
Rimmed and edge thickened Stodola shaped flywheel
Kulkarni, Satish V.; Stone, Richard G.
1983-01-01
A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.
Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.
Chiral Thermoelectrics with Quantum Hall Edge States
NASA Astrophysics Data System (ADS)
Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.
2015-04-01
The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.
Features of plastics edge cutting machining
NASA Astrophysics Data System (ADS)
Handozhko, A. V.; Shcherbakov, A. N.; Zaharov, L. A.; Gavrilenko, T. V.
2016-04-01
This article describes the features of pieces from thermoplastic materials in the form of electrical insulators cut by a disk edge tool. The problems in question are possible defects arising during machining and technological conditions that reduce their quantity. The necessity of required machining conditions matching substantiated in accordance with a specific grade of the material which is treated. Equipment and machining attachments, developed for experimental studies, determine the rational conditions of plastic electrical insulators machining. As a result of experiments the dependences of cut face quality parameters of plastics are obtained by machining conditions. The obtained results allowed us to make valid conclusions and recommendations.
Edge Singularity in “INDUCED QCD”
NASA Astrophysics Data System (ADS)
Matytsin, Andrei; Migdal, Alexander A.
The behavior of the master field in “induced QCD” near the edge of its support is studied. An extended scaling domain, where the shape of the master field is a universal function, is found. This function is determined explicitly for the case of dimensions close to 1, and the D-1 expansion is constructed. The problem of the meson spectrum corresponding to this solution is analyzed. As a by-product of these calculations, a new, explicit equation for the meson spectrum in induced QCD with a general potential is derived.
Viscosity in the edge of tokamak plasmas
NASA Astrophysics Data System (ADS)
Stacey, W. M.
1993-05-01
A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the 'short radial gradient scale length' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.
Hermetic edge sealing of photovoltaic modules
NASA Technical Reports Server (NTRS)
1983-01-01
The edge sealing technique is accomplished by a combination of a chemical bond between glass and aluminum, formed by electrostatic bonding, and a metallurgical bond between aluminum and aluminum, formed by ultrasonic welding. Such a glass to metal seal promises to provide a low cost, long lifetime, highly effective hermetic seal which can protect module components from severe environments. Development of the sealing techniques and demonstration of their effectiveness by fabricating a small number of dummy modules, up to eight inches square in size, and testing them for hermeticity using helium leak testing methods are reviewed. Non-destructive test methods are investigated.
Real-time reprogrammable low-level image processing: edge detection and edge tracking accelerator
NASA Astrophysics Data System (ADS)
Meribout, M.; Hou, Kun M.
1993-10-01
Currently, in image processing, segmentation algorithms comprise between real time video rate processing and accurate results. In this paper, we present an efficient and not recursive algorithm filter originated from Deriche filter. This algorithm is implemented in hardware by using FPGA technology. Thus, it permits video rate edge detection. In addition, the FPGA board is used as an edge tracking accelerator, it allows us to greatly reduce execution time by avoiding scanning the whole image. We also present the architecture of our vision system dedicated to build 3D scene every 200 ms.
Experimental investigation of leading-edge thrust at supersonic speeds
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1983-01-01
Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings.
Blind image deblurring with edge enhancing total variation regularization
NASA Astrophysics Data System (ADS)
Shi, Yu; Hong, Hanyu; Song, Jie; Hua, Xia
2015-04-01
Blind image deblurring is an important issue. In this paper, we focus on solving this issue by constrained regularization method. Motivated by the importance of edges to visual perception, the edge-enhancing indicator is introduced to constrain the total variation regularization, and the bilateral filter is used for edge-preserving smoothing. The proposed edge enhancing regularization method aims to smooth preferably within each region and preserve edges. Experiments on simulated and real motion blurred images show that the proposed method is competitive with recent state-of-the-art total variation methods.
Noise generation at the side edges of flaps
NASA Astrophysics Data System (ADS)
Hardin, J. C.
1980-06-01
The recently observed phenomenon of high noise radiation from the side edges of flaps is investigated by way of a two-dimensional model based upon a physical picture of chordwise boundary layer vorticity being swept around the edge by spanwise flow on the flap. The trajectory and resulting noise radiation for a discrete vortex in such a flow is obtained. Further, a mathematical condition for the vortex to be captured by the flow and swept around the edge is derived. The sound generation depends strongly upon the vortex strength and distance from the edge and can be more intense than trailing edge noise in agreement with experimental observations.
Influence of edge on predator prey distribution and abundance
NASA Astrophysics Data System (ADS)
Ferguson, Steven H.
2004-03-01
I investigated the effect of spatial configuration on distribution and abundance of invertebrate trophic groups by counting soil arthropods under boxes (21 × 9.5 cm) arranged in six different patterns that varied in the amount of edge (137-305 cm). I predicted fewer individuals from the consumer trophic group (Collembola) in box groups with greater amount of edge. This prediction was based on the assumption that predators (mites, ants, spiders, centipedes) select edge during foraging and thereby reduce abundance of the less mobile consumer group under box patterns with greater edge. Consumer abundance (Collembola) was not correlated with amount of edge. Among the predator groups, mite, ant and centipede abundance related to the amount of edge of box groups. However, in contrast to predictions, abundance of these predators was negatively correlated with amount of edge in box patterns. All Collembola predators, with the exception of ants, were less clumped in distribution than Collembola. The results are inconsistent with the view that predators used box edges to predate the less mobile consumer trophic group. Alternative explanations for the spatial patterns other than predator-prey relations include (1) a negative relationship between edge and moisture, (2) a positive relationship between edge and detritus decomposition (i.e. mycelium as food for the consumer group), and (3) a negative relationship between edge and the interstices between adjacent boxes. Landscape patterns likely affect microclimate, food, and predator-prey relations and, therefore, future experimental designs need to control these factors individually to distinguish among alternative hypotheses.
Edge detection depends on achromatic channel in Drosophila melanogaster.
Zhou, Yanqiong; Ji, Xiaoxiao; Gong, Haiyun; Gong, Zhefeng; Liu, Li
2012-10-01
Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. So far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have been largely undemonstrated. In the present study, using a color light-emitting-diode-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal luminance, at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE(17) and sev(LY3);rh5(2);rh6(1) demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of rhodopsin 4 (Rh4), Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE(17) mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila. PMID:22735352
Dislocations With Edge Components in Nanocrystalline bcc Mo
G. M. Cheng; W. Z. Xu; W. W. Jian; H. Yuan; M. H. Tsai; Y. T. Zhu; Y. F. Zhang; Paul C. Millett
2013-07-01
We report high-resolution transmission electron microscopy (HRTEM) observation of a high density of dislocations with edge components (approximately 1016 m-2) in nanocrystalline (NC) body-centered cubic (bcc) Mo prepared by high-pressure torsion. We also observed for the first time of the 1/2 <111> and <001> pure edge dislocations in NC Mo. Crystallographic analysis and image simulations reveal that the best way using HRTEM to study dislocations with edge components in bcc systems is to take images along <110> zone axis, from which it is possible to identify 1/2 <111> pure edge dislocations, and edge components of 1/2 <111> and <001> mixed dislocations. The <001> pure edge dislocations can only be identified from <100> zone axis. The high density of dislocations with edge components is believed to play a major role in the reduction of strain rate sensitivity in NC bcc metals and alloys.
Measurement of peeling mode edge current profile dynamics.
Bongard, M W; Fonck, R J; Hegna, C C; Redd, A J; Schlossberg, D J
2011-07-15
Peeling modes, an instability mechanism underlying deleterious edge localized mode (ELM) activity in fusion-grade plasmas, are observed at the edge of limited plasmas in a low aspect ratio tokamak under conditions of high edge current density (J(edge) ∼ 0.1 MA/m2) and low magnetic field (B ∼ 0.1 T). They generate edge-localized, electromagnetic activity with low toroidal mode numbers n≤3 and amplitudes that scale strongly with measured J(edge)/B instability drive, consistent with theory. ELM-like field-aligned, current-carrying filaments form from an initial current-hole J(edge) perturbation that detach and propagate outward. PMID:21838369
Computing the Edge-Neighbour-Scattering Number of Graphs
NASA Astrophysics Data System (ADS)
Wei, Zongtian; Qi, Nannan; Yue, Xiaokui
2013-11-01
A set of edges X is subverted from a graph G by removing the closed neighbourhood N[X] from G. We denote the survival subgraph by G=X. An edge-subversion strategy X is called an edge-cut strategy of G if G=X is disconnected, a single vertex, or empty. The edge-neighbour-scattering number of a graph G is defined as ENS(G) = max{ω(G/X)-|X| : X is an edge-cut strategy of G}, where w(G=X) is the number of components of G=X. This parameter can be used to measure the vulnerability of networks when some edges are failed, especially spy networks and virus-infected networks. In this paper, we prove that the problem of computing the edge-neighbour-scattering number of a graph is NP-complete and give some upper and lower bounds for this parameter.
Plasmons on the edge of MoS2 nanostructures
NASA Astrophysics Data System (ADS)
Andersen, Kirsten; Jacobsen, Karsten W.; Thygesen, Kristian S.
2014-10-01
Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles.
Coaxial connector for use with printed circuit board edge connector
Howard, Donald R.; MacGill, Robert A.
1989-01-01
A coaxial cable connector for interfacing with an edge connector for a printed circuit board whereby a coaxial cable can be interconnected with a printed circuit board through the edge connector. The coaxial connector includes a body having two leg portions extending from one side for receiving the edge connector therebetween, and a tubular portion extending from an opposing side for receiving a coaxial cable. A cavity within the body receives a lug of the edge connector and the center conductor of the coaxial cable. Adjacent lugs of the edge connector can be bend around the edge connector housing to function as spring-loaded contacts for receiving the coaxial connector. The lugs also function to facilitate shielding of the center conductor where fastened to the edge connector lug.
Using new edges for anomaly detection in computer networks
Neil, Joshua Charles
2015-05-19
Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.
An Experimental Investigation of Trailing Edge Acoustics
NASA Astrophysics Data System (ADS)
Shannon, Daniel W.
2005-11-01
Measurements of the convected vorticity field in the near wake of a blunt asymmetric trailing edge has lead to the hypothesis that large scale turbulence related to a vortex shedding modulates the broadband sound produced by smaller scale turbulent motions. This paper will focus on efforts to support this hypothesis through the simultaneous measurement of the unsteady pressure on the model surface and the far field acoustic pressure. The acoustic data were acquired in an anechoic wind tunnel utilizing a pair of phased microphone arrays containing 40 condenser microphones each. Correlations between the surface pressure and the acoustic pressure suggest that the tonal noise is more closely related to the unsteady surface pressure on the attached pressure side of the model and that the broadband noise is correlated with the surface pressures over the separated suction side of the trailing edge. An analysis of the broadband noise as a function of the phase of the vortex shedding process suggests that the both the surface pressure and the acoustic pressure are modulated by the vortex shedding motions.
Shape Optimization for Trailing Edge Noise Control
NASA Astrophysics Data System (ADS)
Marsden, Alison; Wang, Meng; Mohammadi, Bijan; Moin, Parviz
2001-11-01
Noise generated by turbulent boundary layers near the trailing edge of lifting surfaces continues to pose a challenge for many applications. In this study, we explore noise reduction strategies through shape optimization. A gradient based shape design method is formulated and implemented for use with large eddy simulation of the flow over an airfoil. The cost function gradient is calculated using the method of incomplete sensitivities (Mohammadi and Pironneau 2001 ph Applied shape Optimization for Fluids, Oxford Univ. Press). This method has the advantage that effects of geometry changes on the flow field can be neglected when computing the gradient of the cost function, making it far more cost effective than solving the full adjoint problem. Validation studies are presented for a model problem of the unsteady laminar flow over an acoustically compact airfoil. A section of the surface is allowed to deform and the cost function is derived based on aeroacoustic theroy. Rapid convergence of the trailing-edge shape and significant reduction of the noise due to vortex shedding and wake instability have been achieved. The addition of constraints and issues of extension to fully turbulent flows past an acoustically noncompact airfoil are also discussed.
Experimental analyses of trailing edge flows
NASA Technical Reports Server (NTRS)
Petrie, S. L.; Emmer, D. S.
1984-01-01
An experimental study of several of the trailing edge and wake turbulence properties for a NACA 64A010 airfoil section was completed. The experiment was conducted at the Ohio State University Aeronautical and Astronautical Research Laboratory in the 6 inch X 22 inch transonic wind tunnel facility. The data were obtained at a free stream Mach number of 0.80 and a flow Reynolds number (based on chord length) of 5 million. The principle diagnostic tool was a dual-component laser Doppler velocimeter. The experimental data included surface static pressures, chordwise and vertical mean velocities, RMS turbulence intensities, local flow angles, and a determination of turbulence kinetic energy in the wake. Two angles of attack (0 and 2 degrees) were investigated. At these incidence angles, four flow field surveys were obtained ranging in position from the surface of the airfoil, between the transonic shock and the trailing edge, to the far-wake. At both angles of attack, the turbulence intensities and turbulence kinetic energy were observed to decay in the streamwise direction. In the far wake, for the non-lifting case, the turbulence intensities were nearly isotropic. For the two degree case, the horizontal component of the turbulence intensity was observed to be substantially higher than the vertical component.
Edge states in confined active fluids
NASA Astrophysics Data System (ADS)
Souslov, Anton; Vitelli, Vincenzo
Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.
Photon Counting Using Edge-Detection Algorithm
NASA Technical Reports Server (NTRS)
Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.
2010-01-01
New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1
Erlikhman, Gennady; Kellman, Philip J
2016-01-01
Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved
Erlikhman, Gennady; Kellman, Philip J.
2016-01-01
Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved
Objective evaluation of slanted edge charts
NASA Astrophysics Data System (ADS)
Hornung, Harvey (.
2015-01-01
Camera objective characterization methodologies are widely used in the digital camera industry. Most objective characterization systems rely on a chart with specific patterns, a software algorithm measures a degradation or difference between the captured image and the chart itself. The Spatial Frequency Response (SFR) method, which is part of the ISO 122331 standard, is now very commonly used in the imaging industry, it is a very convenient way to measure a camera Modulation transfer function (MTF). The SFR algorithm can measure frequencies beyond the Nyquist frequency thanks to super-resolution, so it does provide useful information on aliasing and can provide modulation for frequencies between half Nyquist and Nyquist on all color channels of a color sensor with a Bayer pattern. The measurement process relies on a chart that is simple to manufacture: a straight transition from a bright reflectance to a dark one (black and white for instance), while a sine chart requires handling precisely shades of gray which can also create all sort of issues with printers that rely on half-toning. However, no technology can create a perfect edge, so it is important to assess the quality of the chart and understand how it affects the accuracy of the measurement. In this article, I describe a protocol to characterize the MTF of a slanted edge chart, using a high-resolution flatbed scanner. The main idea is to use the RAW output of the scanner as a high-resolution micro-densitometer, since the signal is linear it is suitable to measure the chart MTF using the SFR algorithm. The scanner needs to be calibrated in sharpness: the scanner MTF is measured with a calibrated sine chart and inverted to compensate for the modulation loss from the scanner. Then the true chart MTF is computed. This article compares measured MTF from commercial charts and charts printed on printers, and also compares how of the contrast of the edge (using different shades of gray) can affect the chart MTF
Edge effects on the electronic properties of phosphorene nanoribbons
Peng, Xihong; Copple, Andrew; Wei, Qun
2014-10-14
Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.
The Effect of Nozzle Trailing Edge Thickness on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Kinzie, Kevin; Haskin, Henry
2004-01-01
The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.
Independence of color and luminance edges in natural scenes.
Hansen, Thorsten; Gegenfurtner, Karl R
2009-01-01
Form vision is traditionally regarded as processing primarily achromatic information. Previous investigations into the statistics of color and luminance in natural scenes have claimed that luminance and chromatic edges are not independent of each other and that any chromatic edge most likely occurs together with a luminance edge of similar strength. Here we computed the joint statistics of luminance and chromatic edges in over 700 calibrated color images from natural scenes. We found that isoluminant edges exist in natural scenes and were not rarer than pure luminance edges. Most edges combined luminance and chromatic information but to varying degrees such that luminance and chromatic edges were statistically independent of each other. Independence increased along successive stages of visual processing from cones via postreceptoral color-opponent channels to edges. The results show that chromatic edge contrast is an independent source of information that can be linearly combined with other cues for the proper segmentation of objects in natural and artificial vision systems. Color vision may have evolved in response to the natural scene statistics to gain access to this independent information. PMID:19152717
Green's function approach to edge states in transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Farmanbar, Mojtaba; Amlaki, Taher; Brocks, Geert
2016-05-01
The semiconducting two-dimensional transition metal dichalcogenides MX 2 show an abundance of one-dimensional metallic edges and grain boundaries. Standard techniques for calculating edge states typically model nanoribbons, and require the use of supercells. In this paper, we formulate a Green's function technique for calculating edge states of (semi-)infinite two-dimensional systems with a single well-defined edge or grain boundary. We express Green's functions in terms of Bloch matrices, constructed from the solutions of a quadratic eigenvalue equation. The technique can be applied to any localized basis representation of the Hamiltonian. Here, we use it to calculate edge states of MX 2 monolayers by means of tight-binding models. Aside from the basic zigzag and armchair edges, we study edges with a more general orientation, structurally modifed edges, and grain boundaries. A simple three-band model captures an important part of the edge electronic structures. An 11-band model comprising all valence orbitals of the M and X atoms is required to obtain all edge states with energies in the MX 2 band gap. Here, states of odd symmetry with respect to a mirror plane through the layer of M atoms have a dangling-bond character, and tend to pin the Fermi level.
Study of edge detection task in dental panoramic radiographs.
Gráfová, L; Kasparová, M; Kakawand, S; Procházka, A; Dostálová, T
2013-01-01
The purpose of this study is (1) to introduce a new approach for edge detection in orthopantograms (OPGs) and an improved automatic parameter selector for common edge detectors, (2) to present a comparison between our novel approach with common edge detectors and (3) to provide faster outputs without compromising quality. A new approach for edge detection based on statistical measures was introduced: (1) a set of N edge detection results is calculated from a given input image and a selected type of edge detector, (2) N correspondence maps are constructed from N edge detection results, (3) probabilities and average probabilities are computed, (4) an overall correspondence is evaluated for each correspondence map and (5) the correspondence map providing the best overall correspondence is taken as the result of edge detection procedure. A comparison with common edge detectors (the Roberts, Prewitt, Sobel, Laplacian of the Gaussian and Canny methods) with various parameter settings (304 combinations for each test image) was carried out. The methods were assessed objectively [edge mismatch error (EME), modified Hausdorff distance (MHD) and principal component analysis] and subjectively by experts in dentistry and based on time demands. The suitability of the new approach for edge detection in OPGs was confirmed by experts. The current conventional methods in edge detection in OPGs are inadequate (none of the tested methods reach an EME value or MHD value below 0.1). Our proposed approach for edge detection shows promising potential for its implementation in clinical dentistry. It enhances the accuracy of OPG interpretation and advances diagnosis and treatment planning. PMID:23640989
Visible imaging of edge fluctuations in TFTR
Zweben, S.J.; Medley, S.S.
1989-03-01
Images of the visible light emission from the inner wall region of TFTR have been made using a rapidly gated, intensified TV camera. Strong ''filamentation'' of the neutral deuterium D..cap alpha.. light is observed when the camera gating time is <100 ..mu..sec during neutral-beam-heated discharges. These turbulent filaments vary in position randomly vs. time and have a poloidal wavelength of approx.3-5 cm which is much shorter than their parallel wavelength of approx.100 cm. A second and new type of edge fluctuation phenomenon, which we call a ''merfe,'' is also described. Merfes are a regular poloidal pattern of toroidally symmetric, small-scale marfes which move away from the inner midplane during the current decay after neutral beam injection. Some tentative interpretations of these two phenomena are presented. 27 refs., 8 figs.
Edge-on Look at Saturn's Rings
NASA Technical Reports Server (NTRS)
1995-01-01
Astronomers are studying the unusual appearance of Saturn's rings. The top portion of this Hubble Space Telescope snapshot shows Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted, but because the Earth was almost in the plane of Saturn's rings, they appear edge-on. Positioned above the ring plane, the Sun is causing the rings to cast a shadow on Saturn. The bottom photograph shows Saturn with its rings slightly tilted, and displays a faint narrow ring, the F-ring, just outside the main ring, which is normally invisible from Earth. The moon called Dion, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting of the sun on the ring plane.
Timing discriminator using leading-edge extrapolation
Gottschalk, B.
1981-07-30
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
Timing discriminator using leading-edge extrapolation
Gottschalk, Bernard
1983-01-01
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
Simulating photomask edge roughness and corner rounding
NASA Astrophysics Data System (ADS)
Adam, Konstantinos; Socha, Robert J.; Pistor, Thomas V.; Neureuther, Andrew R.
1997-07-01
Corner rounding and edge roughness of a rectangular opening at a glass-chrome mask are simulated with TEMPEST. The intensity patterns on the image plane are extracted and compared for these defects at several degrees of fabrication-induced imperfection. A 4X - DUV lithography printing system is assumed with NA equals 0.6 and (sigma) equals 0.5. The prototypical geometry simulate was a 4 micrometers X 1 micrometers line on the mask. The results indicate that the rounding of the corners does not decrease the printed area by more than 2 percent for a 0.4 micrometers radius corner rounding and that roughness should not be a concern, at least in DUV, since it does not crucially affect the linewidth of the printed area.
Reversible watermarking using edge based difference modification
NASA Astrophysics Data System (ADS)
Qu, Xiaochao; Kim, Suah; Kim, Hyoungjoong
2014-01-01
Reversible watermarking can embed data into the cover image and extract data from stego image, where the original cover image can be recovered perfectly after the extraction of data. Difference expansion (DE) and prediction error expansion (PEE) are two popular reversible watermarking methods. DE has the advantage of small distortion while PEE has the advantage of large embedding capacity and smaller prediction error compared with pixel difference. In this paper, we proposed a novel method that combines the advantages of DE and PEE, where the difference calculated between two pixels is combined with the edge information near this pixel pair. The proposed difference calculation can produce smaller pixel difference compared with the original simple pixel difference calculation. Overlapping embedding is then used to increase the embedding capacity. Our proposed method gives excellent results which is shown by several experiments.
HIGHER ORDER HARD EDGE END FIELD EFFECTS.
BERG,J.S.
2004-09-14
In most cases, nonlinearities from magnets must be properly included in tracking and analysis to properly compute quantities of interest, in particular chromatic properties and dynamic aperture. One source of nonlinearities in magnets that is often important and cannot be avoided is the nonlinearity arising at the end of a magnet due to the longitudinal variation of the field at the end of the magnet. Part of this effect is independent of the longitudinal of the end. It is lowest order in the body field of the magnet, and is the result of taking a limit as the length over which the field at the end varies approaches zero. This is referred to as a ''hard edge'' end field. This effect has been computed previously to lowest order in the transverse variables. This paper describes a method to compute this effect to arbitrary order in the transverse variables, under certain constraints.
Wind turbine trailing edge aerodynamic brakes
Migliore, P G; Miller, L S; Quandt, G A
1995-04-01
Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).
Step-Edge Directed Metal Oxidation.
Zhu, Qing; Saidi, Wissam A; Yang, Judith C
2016-07-01
Metal surface oxidation is governed by surface mass transport processes. Realistic surfaces have many defects such as step edges, which often dictate the oxide growth dynamics and result in novel oxide nanostructures. Here we present a comprehensive and systematic study of the oxidation of stepped (100), (110) and (111) Cu surfaces using a multiscale approach employing density functional theory (DFT) and reactive force field molecular dynamics (MD) simulations. We show that the early stages of oxidation of these stepped surfaces can be qualitatively understood from the potential energy surface of single oxygen adatoms, namely, adsorption energies and Ehrlich-Schwöbel barriers. These DFT predictions are then validated using classical MD simulations with a newly optimized ReaxFF force field. In turn, we show that the DFT results can be explained using a simple bond-counting argument that makes our results general and transferable to other metal surfaces. PMID:27299380
Cleaved-edge-overgrowth nanogap electrodes
NASA Astrophysics Data System (ADS)
Luber, Sebastian M.; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc
2011-02-01
We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.
Nonlinear magnetohydrodynamics of edge localized mode precursors
Guo, Z. B.; Wang, Lu; Wang, X. G.
2015-02-15
A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.
Computational Investigation of Flap-Edges
NASA Technical Reports Server (NTRS)
Cummings, Russell M.
1997-01-01
The current study expands the application of computational fluid dynamics to three-dimensional multi-element high-lift systems by investigating the flow dynamics created by a slat edge. Flow is computed over a three-element high-lift configuration using an incompressible Navier-Stokes solver with structured, overset grids processed assuming full turbulence with the one-equation Baldwin-Barth turbulence model. The geometry consists of an unswept wing, which spans the wind tunnel test section, a single element half-span Fowler flap, and a three-quarter span slat. Results are presented for the wing configured for landing with a chord based Reynolds number of 3.7 million. Results for the three-quarter span slat case are compared to the full-span slat and two-dimensional investigations.
Introduction to Solid Edge(TM)
NASA Technical Reports Server (NTRS)
Smith, John C.
1997-01-01
Solid Edge was conceived and developed to provide breakthrough levels of productivity for engineers and designers by providing tools focused on their daily work. This user-oriented approach led to a focus on five key areas: 1) assembly-focused design, 2) ease of use, 3) plug and play software, 4) superior part modeling, and 5) production drafting. Mechanical designers work primarily with assemblies of parts that together perform a useful function. The parts themselves are principally a consequence of the function of the assembly and the interrelationships between parts. Breakthroughs in productivity will come through a focus on making the design of assemblies easier, with enhanced part design a prerequisite to that. Enhancements already in development are part to part interaction, more assembly features applying to multiple parts, exploded assemblies, assembly playback, enhanced BOM, etc.
Edge convection driven by externally applied potentials
D'Ippolito, D. A.; Myra, J. R.
2000-08-01
A theoretical model of convection in collisional tokamak edge and scrape-off-layer plasmas is described. In the linear theory, any mechanism for poloidal and toroidal symmetry breaking of the equilibrium will drive ExB flows; this result stems from the parallel thermal and pressure forces in Ohm's law. In the nonlinear theory, the quadratic coupling of the perturbations leads to quasilinear-type fluxes in the vorticity, density, and temperature equations. If the convection is strong enough, these fluxes lead to an ambipolarity constraint on the equilibrium electric field and to increased transport of particles and energy. The theory shows qualitative agreement with some tokamak experiments in which potential perturbations are externally driven by radio frequency antennas. (c) 2000 American Institute of Physics.
Casimir force at a knife's edge
Graham, Noah; Shpunt, Alexander; Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten; Jaffe, Robert L.
2010-03-15
The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, H and {theta}, and the cylinder's parabolic radius R. As H/R{yields}0, the proximity force approximation becomes exact. The opposite limit of R/H{yields}0 corresponds to a semi-infinite plate, where the effects of edge and inclination can be probed.
Gabor wavelets for texture edge extraction
NASA Astrophysics Data System (ADS)
Shao, Juliang; Foerstner, Wolfgang
1994-08-01
Textures in images have a natural order, both in orientation and multiple narrow-band frequency, which requires the user to employ multichannel local spatial/frequency filtering and orientation selectivity, and to have a multiscale characteristic. Each channel covers one part of a whole frequency domain, which indicates different information for the different texton. Gabor filter, as a near orthogonal wavelet used in this paper, has orientation selectivity, multiscale property, linear phase, and good localization both in spatial and frequency domains, which are suitable for texture analysis. Gabor filters are employed for clustering the similarity of the same type of textons. Gaussian filters are also used for detection of normal image edges. Then hybrid texture and nontexture gradient measurement is based on fusion of the difference of amplitude of the filter responses between Gabor and Gaussian filters at neighboring pixels by mainly using average squared gradient. Normalization, based on the noise response and based on maximum response, is computed.
Edge Diffusion Flame Propagation and Stabilization Studied
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Katta, Viswanath R.
2004-01-01
In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.
Wing Leading Edge Joint Laminar Flow Tests
NASA Technical Reports Server (NTRS)
Drake, Aaron; Westphal, Russell V.; Zuniga, Fanny A.; Kennelly, Robert A., Jr.; Koga, Dennis J.
1996-01-01
An F-104G aircraft at NASA's Dryden Flight Research Center has been equipped with a specially designed and instrumented test fixture to simulate surface imperfections of the type likely to be present near the leading edge on the wings of some laminar flow aircraft. The simulated imperfections consisted of five combinations of spanwise steps and gaps of various sizes. The unswept fixture yielded a pressure distribution similar to that of some laminar flow airfoils. The experiment was conducted at cruise conditions typical for business-jets and light transports: Mach numbers were in the range 0.5-0.8, and unit Reynolds numbers were 1.5-2.5 million per foot. Skin friction measurements indicated that laminar flow was often maintained for some distance downstream of the surface imperfections. Further work is needed to more precisely define transition location and to extend the experiments to swept-wing conditions and a broader range of imperfection geometries.
Edge Sheared Flows and Blob Dynamics
NASA Astrophysics Data System (ADS)
Myra, J. R.
2012-10-01
The dynamics of blob-filaments [S. I. Krasheninnikov, et al. J. Plasma Phys. 74, 679 (2008); D. A. D'Ippolito, et al., Phys. Plasmas 18, 060501 (2011)] in the strongly radially inhomogeneous edge and scrape-off-layer (SOL) region of a tokamak plasma is considered, with emphasis on sheared flow generation and interaction. The work is motivated by the potential importance of edge sheared flows for turbulence regulation, (e.g. the L-H transition), and the influence of flows on the character of emitted blob-filament structures which ultimately contact plasma-facing components. To study the dynamics of blobs and sheared flows, we employ both numerical simulations and experimental data analysis. The simulations use the fluid-based 2D curvature-interchange model embedded in the SOLT (SOL turbulence) code [D. A. Russell, et al, Phys. Plasmas 16, 122304 (2009)]. A blob-tracking algorithm has also been developed and applied to NSTX and Alcator C-Mod data. The algorithm is based on 2D time-resolved images from the gas puff imaging (GPI) diagnostic [S. J. Zweben, et al. Phys. Plasmas 9, 1981 (2002)]. The algorithm is able to track the blob motion and changes in blob structure, such as elliptical deformations, that can be affected by sheared flows. Results of seeded blob simulations are compared with the experimental data to determine the role of plasma parameters on the blob tracks and to evaluate the exchange of momentum between the blobs and flows. Seeded blob simulations are shown to reproduce many qualitative and quantitative features of the data including size, scale and direction of perpendicular (approximately poloidal) flows and the inferred Reynolds forces, poloidal reversal of blob tracks, and blob trapping and/or ejection. Simulation and experimental data comparisons permit the inference of dynamical mechanisms associated with blob motion and sheared flow generation in these shots, and their relation to previous theoretical work.
Slope Edge Deformation and Permafrost Dynamics Along the Arctic Shelf Edge, Beaufort Sea, Canada
NASA Astrophysics Data System (ADS)
Paull, C. K.; Dallimore, S.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Riedel, M.; Melling, H.
2015-12-01
The shelf of the Canadian Beaufort Sea is underlain by relict offshore permafrost that formed in the long intervals of terrestrial exposure during glacial periods. At the shelf edge the permafrost thins rapidly and also warms. This area has a very distinct morphology that we attribute to both the formation and degradation of ice bearing permafrost. Positive relief features include circular to oval shaped topographic mounds, up to 10 m high and ~50 m in diameter which occur at a density of ~6 per km2. Intermixed are circular topographic depressions up to 20 m deep. This topography was investigated using an autonomous underwater vehicle that provides 1 m horizontal resolution bathymetry and chirp profiles, a remotely operated vehicle to document seafloor textures, and sediment cores to sample pore waters. A consistent down-core freshening at rates of 14 to 96 mM Cl- per meter was found in these pore waters near the shelf edge. Downward extrapolation of these trends indicates water with ≤335 mM Cl- should occur at 2.3 to 22.4 m sub-seafloor depths within this shelf edge deformation band. Pore water with 335 mM Cl- or less freezes at -1.4°C. As bottom water temperatures in this area are persistently (<-1.4°C) cold and ground ice was observed in some core samples, we interpret the volume changes associated with mound formation are in part due to pore water freezing. Thermal models (Taylor et al., 2014) predict brackish water along the shelf edge may be sourced in relict permafrost melting under the adjacent continental shelf. Buoyant brackish water is hypothesized to migrate along the base of the relict permafrost, to emerge at the shelf edge and then refreeze when it encounters the colder seafloor. Expansion generated by the formation of ice-bearing permafrost generates the positive relief mounds and ridges. The associated negative relief features may be related to permafrost dynamics also. Permafrost dynamics may have geohazard implications that are unique to the
Sensory Organ Like Response of Zigzag Edge Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Shenoy, Vijay; Bhowmick, Somnath
2011-03-01
Using a continuum Dirac theory, we study the density and spin response of zigzag edge terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g.~width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism etc., and also suggest possibilities for device applications of graphene nanoribbons. Work supported by DST, India through MONAMI and Ramanujan grants.
Edge Minority Heating Experiment in Alcator C-Mod
S.J. Zweben; J.L. Terry; P. Bonoli; R. Budny; C.S. Chang; C. Fiore; G. Schilling; S. Wukitch; J. Hughes; Y. Lin; R. Perkins; M. Porkolab; the Alcator C-Mod Team
2005-03-25
An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of radio-frequency power is less than or equal to 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed.
An improved edge detection algorithm for depth map inpainting
NASA Astrophysics Data System (ADS)
Chen, Weihai; Yue, Haosong; Wang, Jianhua; Wu, Xingming
2014-04-01
Three-dimensional (3D) measurement technology has been widely used in many scientific and engineering areas. The emergence of Kinect sensor makes 3D measurement much easier. However the depth map captured by Kinect sensor has some invalid regions, especially at object boundaries. These missing regions should be filled firstly. This paper proposes a depth-assisted edge detection algorithm and improves existing depth map inpainting algorithm using extracted edges. In the proposed algorithm, both color image and raw depth data are used to extract initial edges. Then the edges are optimized and are utilized to assist depth map inpainting. Comparative experiments demonstrate that the proposed edge detection algorithm can extract object boundaries and inhibit non-boundary edges caused by textures on object surfaces. The proposed depth inpainting algorithm can predict missing depth values successfully and has better performance than existing algorithm around object boundaries.
Loops and multiple edges in modularity maximization of networks
NASA Astrophysics Data System (ADS)
Cafieri, Sonia; Hansen, Pierre; Liberti, Leo
2010-04-01
The modularity maximization model proposed by Newman and Girvan for the identification of communities in networks works for general graphs possibly with loops and multiple edges. However, the applications usually correspond to simple graphs. These graphs are compared to a null model where the degree distribution is maintained but edges are placed at random. Therefore, in this null model there will be loops and possibly multiple edges. Sharp bounds on the expected number of loops, and their impact on the modularity, are derived. Then, building upon the work of Massen and Doye, but using algebra rather than simulation, we propose modified null models associated with graphs without loops but with multiple edges, graphs with loops but without multiple edges and graphs without loops nor multiple edges. We validate our models by using the exact algorithm for clique partitioning of Grötschel and Wakabayashi.
Reconstruction of Fractional Quantum Hall Edges: Numerical Studies
NASA Astrophysics Data System (ADS)
Wan, Xin; Yang, Kun; Rezayi, E. H.
2003-03-01
The interplay of electron-electron interaction and confining potential can lead to the reconstruction of fractional quantum Hall edges (Xin Wan, Kun Yang, and E. H. Rezayi, Phys. Rev. Lett. 88, 056802 (2002).). We have performed exact diagonalization studies on microscopic models of fractional quantum Hall liquids, in finite size systems with disc geometry, and found numerical evidence that suggests edge reconstruction occurs under rather general conditions. Due to edge reconstruction, additional nonchiral edge modes can arise for both incompressible and compressible states. We have studied the electron dipole spectral function that is directly related to the microwave conductivity measurement of a two-dimensional electron gas with an array of antidots (P. D. Ye et al., Phys. Rev. B 65, 121305 (2002).). Our results are consistent with the enhanced microwave conductivity observed in experiments at low temperatures, and its suppression at higher temperatures. We also discuss the effects of the edge reconstruction on the fractional quantum Hall edge tunneling experiments.
Edge Response and NIIRS Estimates for Commercial Remote Sensing Satellites
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Ryan, Robert E.; Pagnutti, mary; Stanley, Thomas
2006-01-01
Spatial resolution of panchromatic imagery from commercial remote sensing satellites was characterized based on edge response measurements using edge targets and the tilted-edge technique. Relative Edge Response (RER) was estimated as a geometric mean of normalized edge response differences measured in two directions of image pixels at points distanced from the edge by -0.5 and 0.5 of ground sample distance. RER is one of the engineering parameters used in the General Image Quality Equation to provide predictions of imaging system performance expressed in terms of the National Imagery Interpretability Rating Scale (NIIRS). By assuming a plausible range of signal-to-noise ratio and assessing the effects of Modulation Transfer Function compensation, the NIIRS estimates were made and then compared with vendor-provided values and evaluations conducted by the National Geospatial-Intelligence Agency.
Leading-Edge "Pop-Up" Spoiler For Airfoil
NASA Technical Reports Server (NTRS)
Wilson, John C.; Lance, Michael B.
1991-01-01
New concept places spoiler in leading edge of airfoil, hinged along its trailing edge, so airflow helps to deploy it and force it against mechanical stop. Deployed "pop-up" spoiler quickly eliminates almost all aerodynamic lift of stabilator. Designed to be added to leading edge of existing stabilator, without major rework. Though initial application to be on helicopter stabilators, equally applicable to wings or winglike components.
Integral edge seals for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Granata, Jr., Samuel J. (Inventor); Woodle, Boyd M. (Inventor); Dunyak, Thomas J. (Inventor)
1992-01-01
A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.
Aerothermal/FEM Analysis of Hypersonic Sharp Leading Edges
NASA Technical Reports Server (NTRS)
Kolodziej, Paul; Bull, Jeffrey D.; Kowalski, Thomas R.; Rasky, Daniel J. (Technical Monitor)
1995-01-01
Advanced hypersonic vehicles, like wave riders, will have sharp leading edges to minimize drag. These designs require accurate finite element modeling (FEM) of the thermal-structural behavior of a diboride ceramic matrix composite sharp leading edge. By coupling the FEM solver to an engineering model of the aerothermodynamic heating environment the impact of non catalytic surfaces, rarefied flow effects, and multidimensional conduction on the performance envelopes of sharp leading edges can be examined.
Application technology of stacked film with highly controlled edge structure
NASA Astrophysics Data System (ADS)
Ichino, Katsunori; Tanouchi, Keiji; Iseki, Tomohiro; Ogata, Nobuhiro; Yamamoto, Taro; Yoshihara, Kosuke; Fujimoto, Akihiro
2008-03-01
On the device manufacturing, the film edge control around the wafer edge has been critical at the point of edge control of deposited film. So far, the film edge control is operated by the wafer edge exposure system and/or the edge beam remover. The immersion lithography which is applied to the device generation below 65 nm node requires more additional and severe items for film edge control. These typical requirements are position control of coating film and wafer bevel cleanness. For examples, top coat film is widely applied to the immersion lithography. But this topcoat film is easily peeled off, if top coat film edge should be directly located on the wafer substrate like Si wafer. Thus, the edge position of topcoat film must be controlled very carefully. And the particle or residues on the wafer bevel is thought to be one of the causes to generate immersion defect. Wafer bevel must be clean in order to reduce the immersion defect. Then we have developed novel application technology in order to solve these kinds of immersion defectivities. This new application technology is based on rinse solution technology and new hardware concept. This new application technology can control the edge position of coating film with high accuracy and can reduce the particle and residues. We show the edge position accuracy using our application technology and furthermore, the stability of edge position accuracy in case of multi-layered resist process. We also show the cleanness of the wafer bevel area at the same time. And we can achieve the immersion process with wide process latitude with innovative application technology.
Cue combination and color edge detection in natural scenes.
Zhou, Chunhong; Mel, Bartlett W
2008-01-01
Biological vision systems are adept at combining cues to maximize the reliability of object boundary detection, but given a set of co-localized edge detectors operating on different sensory channels, how should their responses be combined to compute overall edge probability? To approach this question, we collected joint responses of red-green and blue-yellow edge detectors both ON- and OFF-edges using a human-labeled image database as ground truth (D. Martin, C. Fowlkes, D. Tal, & J. Malik, 2001). From a Bayesian perspective, the rule for combining edge cues is linear in the individual cue strengths when the ON-edge and OFF-edge joint distributions are (1) statistically independent and (2) lie in an exponential ratio to each other. Neither condition held in the color edge data we collected, and the function P(ON cues)-dubbed the "combination rule"-was correspondingly complex and nonlinear. To characterize the statistical dependencies between edge cues, we developed a generative model ("saturated common factor," SCF) that provided good fits to the measured ON-edge and OFF-edge joint distributions. We also found that a divisive normalization scheme derived from the SCF model transformed raw edge detector responses into values with simpler distributions that satisfied both preconditions for a linear combination rule. A comparison to another normalization scheme (O. Schwartz & E. Simoncelli, 2001) suggests that apparently minor details of the normalization process can strongly influence its performance. Implications of the SCF normalization scheme for cue combination in biological sensory systems are discussed. PMID:18484843
The influence of surface rounding on trailing edge noise
NASA Astrophysics Data System (ADS)
Howe, M. S.
1988-11-01
The sound produced by low Mach number turbulent flow over an asymmetrically rounded trailing edge of an airfoil is investigated. Results are given for angles of the trailing edge wedge of 90 deg and less. It is found that, for a given turbulence intensity, surface beveling has a significant effect on the radiation only at sufficiently high frequencies that the trailing edge may be regarded as a straight-sided wedge over distances of the order of the turbulence length scale.
E2EDSM: An Edge-to-Edge Data Service Model for Mass Streaming Media Transmission
NASA Astrophysics Data System (ADS)
He, Junfeng; Wang, Hui; He, Ningwu; Sun, Zhigang; Gong, Zhenghu
Existing distributed content delivery systems like P2P applications may provide significant benefits for content providers and end users. However, they just shifted the considerable cost and burden to Internet Service Providers (ISPs) and well-behaved end users. In P2P applications, the amount of data served by each ISP and payment of many costly transit links are increasing, but the corresponding service revenue from the peer-hosted data services provided doesn’t return. In this paper, we present a novel Edge-to-Edge Data Service Model (E2EDSM) which aims to avoid transferring redundant data over the costly core transit links as well as improving the transmission efficiency of mass streaming media. E2EDSM describes a new way for ISP to take part in the processing of content distribution and makes an effort to achieve a winwin goal. Experimental results based on simulation show that E2EDSM achieves better network performance.
Laminar Flow Control Leading Edge Systems in Simulated Airline Service
NASA Technical Reports Server (NTRS)
Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.
1988-01-01
Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.
Separation bubble around a leading edge of compressor blade
NASA Astrophysics Data System (ADS)
Liu, Huo-xing; Liu, Bao-jie; Li, Ling; Jiang, Hao-Kang
2003-04-01
This paper presents an experimental study of the influence of 2D leading-edge geometry on transition and performance. The measurements were conducted on a special large-scale experimental facility, the pressure distribution and flow field were measured. The test model used in this study consists of circular leading edge and elliptic leading edge. Results are presented for a range of incidence. The measurement result indicated that the leading edge shape has a large influence on flow details, separation and transition as well as the boundary layer properties after reattached point.
Edge Turbulence Velocity Changes with Lithium Coating on NSTX
Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.
2012-08-10
Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________
Leading-edge singularities in thin-airfoil theory
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.