Stretch reflex excitability of the anti-gravity ankle extensor muscle in elderly humans.
Kawashima, N; Nakazawa, K; Yamamoto, S-I; Nozaki, D; Akai, M; Yano, H
2004-01-01
To examine whether the stretch reflex excitability of the soleus muscle changes with age, stretch reflexes at rest (REST) and during weak voluntary contractions (ACT) were elicited in 18 older and 14 younger subjects. The amplitude of the stretch reflex responses and gain, defined as the gradient of the regression line for the relation between stretch reflex responses against the angular velocity of the applied perturbation, were evaluated in each short-latency (M1) and two long-latency components (M2 and M3). It was found that in the older group, both the amplitude and gain of the M1 component did not change from the REST to the ACT conditions, whereas in the younger group both variables significantly increased from the REST to ACT conditions. The latency of the M1 component was significantly shorter under the REST condition (older vs. younger: 51.8 +/- 7.37 vs. 55.1 +/- 8.69 ms), while no group differences were found in those variables under the ACT condition, suggesting that the muscle-tendon complexes of SOL muscles of the older subjects were less elastic and had less slack, probably due to age-related histochemical alterations. Further, the Hoffman reflex (H-reflex), elicited during the REST condition in 10 older and 11 younger subjects showed no significant differences, suggesting that the soleus motoneuron response to the Ia input was comparable between the two subject groups. The histochemical alterations occurring with the ageing process might augment the short-latency stretch reflex in the SOL muscle without enhancement of motoneuronal excitability, and this effect might be masked when the muscle is voluntarily activated.
Soleus and lateral gastrocnemius H-reflexes during standing with unstable footwear.
Friesenbichler, Bernd; Lepers, Romuald; Maffiuletti, Nicola A
2015-05-01
Unstable footwear has been shown to increase lower extremity muscle activity, but the reflex response to perturbations induced by this intervention is unknown. Twenty healthy subjects stood in stable and unstable footwear conditions (presented randomly) while H-reflex amplitude and background muscle activity were measured in the soleus and lateral gastrocnemius (LG) muscles. Wearing unstable footwear resulted in larger H-reflexes (normalized to the maximal M-wave) for the LG (+12%; P = 0.025), but not for the soleus (+4%; P > 0.05). Background activity of both muscles was significantly higher in the unstable condition. The H-reflex facilitation observed with unstable footwear was unexpected, as challenging postural conditions usually result in reflex depression. Increased muscle activity, decreased presynaptic inhibition, and/or more forward postural position may have (over-)compensated the expected reflex depression. Differences between LG and soleus H-reflex modulation may be due to diverging motor unit recruitment thresholds. © 2015 Wiley Periodicals, Inc.
Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P
2010-07-26
To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.
Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L
2007-10-01
To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.
Aimola, Ettore; Valle, Maria Stella; Casabona, Antonino
2014-01-01
Muscle reflexes, evoked by opposing a sudden joint displacement, may be modulated by several factors associated with the features of the mechanical perturbation. We investigated the variations of muscle reflex response in relation to the predictability of load magnitude during a reactive grasping task. Subjects were instructed to flex the fingers 2–5 very quickly after a stretching was exerted by a handle pulled by loads of 750 or 1250 g. Two blocks of trials, one for each load (predictable condition), and one block of trials with a randomized distribution of the loads (unpredictable condition) were performed. Kinematic data were collected by an electrogoniometer attached to the middle phalanx of the digit III while the electromyography of the Flexor Digitorum Superficialis muscle was recorded by surface electrodes. For each trial we measured the kinematics of the finger angular rotation, the latency of muscle response and the level of muscle activation recorded below 50 ms (short-latency reflex), between 50 and 100 ms (long-latency reflex) and between 100 and 140 ms (initial portion of voluntary response) from the movement onset. We found that the latency of the muscle response lengthened from predictable (35.5±1.3 ms for 750 g and 35.5±2.5 ms for 1250 g) to unpredictable condition (43.6±1.3 ms for 750 g and 40.9±2.1 ms for 1250 g) and the level of muscle activation increased with load magnitude. The parallel increasing of muscle activation and load magnitude occurred within the window of the long-latency reflex during the predictable condition, and later, at the earliest portion of the voluntary response, in the unpredictable condition. Therefore, these results indicate that when the amount of an upcoming perturbation is known in advance, the muscle response improves, shortening the latency and modulating the muscle activity in relation to the mechanical demand. PMID:25271638
Age-related differences in trunk muscle reflexive behaviors.
Shojaei, Iman; Nussbaum, Maury A; Bazrgari, Babak
2016-10-03
Reports of larger passive and similar intrinsic trunk stiffness in older vs. younger populations suggest a diminishing demand for reflexive contributions of trunk muscles to spinal stability with aging. It remains unclear, though, whether such diminishing demands result in deterioration of trunk muscle reflexive behaviors. A cross-sectional study was completed to assess age-related differences in the latency and likelihood of trunk muscle reflexive responses to sudden perturbations. Sixty healthy individuals, aged 20-70 years, were recruited to form five equal-sized and gender-balanced age groups. Using a displacement-control, sudden perturbation paradigm, the latency and likelihood of trunk muscle reflexive responses to sudden perturbations were estimated, and the influences of age, gender, and level of effort (20% versus 30% of maximum voluntary exertion-MVE) were evaluated. There were no consistent age-related differences found in any of the measures of trunk muscle reflexive behavior. However, the latency of muscle response to perturbation was generally higher among older individuals, and this difference was significant in the condition involving 30% MVE effort. With an increase in level of effort (from 20% to 30% of MVE), there was a ~7% increase in the latency of trunk muscle responses to anteriorly-directed perturbations as well as ~ 15% (21%) decrease (increase) in response likelihood during anteriorly (posteriorly) directed perturbations. Furthermore, the reflexive response likelihood of trunk muscles was 28% (58%) larger (smaller) in female vs. male participants during anteriorly (posteriorly) directed perturbations. Our results did not, in general, support the hypothesis of an age-related decay in reflexive trunk muscle behaviors. Larger reflexive responses were associated with lower trunk intrinsic stiffness among females and during a lower level of effort, suggesting a secondary role for reflexive responses in spinal stability. Such secondary compensatory responses appear, however, to be consistent over a wide age range. Copyright © 2016 Elsevier Ltd. All rights reserved.
2010-01-01
Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton. PMID:20659331
The application of conditioning paradigms in the measurement of pain
Li, Jun-Xu
2013-01-01
Pain is a private experience that involves both sensory and emotional components. Animal studies of pain can only be inferred by their responses, and therefore the measurement of reflexive responses dominate the pain literature for nearly a century. It has been argued that although reflexive responses are important to unveil the sensory nature of pain in organisms, pain affect is equally important but largely ignored in pain studies primarily due to the lack of validated animal models. One strategy to begin to understand pain affect is to use conditioning principles to indirectly reveal the affective condition of pain. This review critically analyzed several procedures that are thought to measure affective learning of pain. The procedures regarding the current knowledge, the applications, and their advantages and disadvantages in pain research are discussed. It is proposed that these procedures should be combined with traditional reflex-based pain measurements in future studies of pain, which could greatly benefit both the understanding of neural underpinnings of pain and preclinical assessment of novel analgesics. PMID:23500202
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Goldberg, Jefim; Minor, Lloyd B.; Paloski, William H.; Young, Laurence R.; Zee, David S.
1999-01-01
Impairment of gaze and head stabilization reflexes can lead to disorientation and reduced performance in sensorimotor tasks such as piloting of spacecraft. Transitions between different gravitoinertial force (gif) environments - as during different phases of space flight - provide an extreme test of the adaptive capabilities of these mechanisms. We wish to determine to what extent the sensorimotor skills acquired in one gravity environment will transfer to others, and to what extent gravity serves as a context cue for inhibiting such transfer. We use the general approach of adapting a response (saccades, vestibuloocular reflex: VOR, or vestibulocollic reflex: VCR) to a particular change in gain or phase in one gif condition, adapting to a different gain or phase in a second gif condition, and then seeing if gif itself - the context cue - can recall the previously-learned adapted responses. Previous evidence indicates that unless there is specific training to induce context-specificity, reflex adaptation is sequential rather than simultaneous. Various experiments in this project investigate the behavioral properties, neurophysiological basis, and anatomical substrate of context-specific learning, using otolith (gravity) signals as a context cue. In the following, we outline the methods for all experiments in this project, and provide details and results on selected experiments.
Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France
2012-01-01
Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200
NASA Technical Reports Server (NTRS)
Gallagher, K. M.; Fadel, P. J.; Stromstad, M.; Ide, K.; Smith, S. A.; Querry, R. G.; Raven, P. B.; Secher, N. H.
2001-01-01
1. This investigation was designed to determine the contribution of the exercise pressor reflex to the resetting of the carotid baroreflex during exercise. 2. Ten subjects performed 3.5 min of static one-legged exercise (20 % maximal voluntary contraction) and 7 min dynamic cycling (20 % maximal oxygen uptake) under two conditions: control (no intervention) and with the application of medical anti-shock (MAS) trousers inflated to 100 mmHg (to activate the exercise pressor reflex). Carotid baroreflex function was determined at rest and during exercise using a rapid neck pressure/neck suction technique. 3. During exercise, the application of MAS trousers (MAS condition) increased mean arterial pressure (MAP), plasma noradrenaline concentration (dynamic exercise only) and perceived exertion (dynamic exercise only) when compared to control (P < 0.05). No effect of the MAS condition was evident at rest. The MAS condition had no effect on heart rate (HR), plasma lactate and adrenaline concentrations or oxygen uptake at rest and during exercise. The carotid baroreflex stimulus-response curve was reset upward on the response arm and rightward to a higher operating pressure by control exercise without alterations in gain. Activation of the exercise pressor reflex by MAS trousers further reset carotid baroreflex control of MAP, as indicated by the upward and rightward relocation of the curve. However, carotid baroreflex control of HR was only shifted rightward to higher operating pressures by MAS trousers. The sensitivity of the carotid baroreflex was unaltered by exercise pressor reflex activation. 4. These findings suggest that during dynamic and static exercise the exercise pressor reflex is capable of actively resetting carotid baroreflex control of mean arterial pressure; however, it would appear only to modulate carotid baroreflex control of heart rate.
Knikou, Maria; Chaudhuri, Debjani; Kay, Elizabeth; Schmit, Brian D.
2006-01-01
The aim of this study was to establish the contribution of hip-mediated sensory feedback to spinal interneuronal circuits during dynamic conditions in people with incomplete spinal cord injury (SCI). Specifically, we investigated the effects of synergistic and antagonistic group I afferents on the soleus H-reflex during imposed sinusoidal hip movements. The soleus H-reflex was conditioned by stimulating the common peroneal nerve (CPN) at short (2, 3, and 4 ms) and long (80, 100, and 120 ms) conditioning test (C-T) intervals to assess the reciprocal and pre-synaptic inhibition of the soleus H-reflex, respectively. The soleus H-reflex was also conditioned by medial gastrocnemius (MG) nerve stimulation at C-T intervals ranging from 4 to 7 ms to assess changes in autogenic Ib inhibition during hip movement. Sinusoidal hip movements were imposed to the right hip joint at 0.2 Hz by the Biodex system while subjects were supine. The effects of sinusoidal hip movement on five leg muscles along with hip, knee, and ankle joint torques were also established during sensorimotor conditioning of the reflex. Phase-dependent modulation of antagonistic and synergistic muscle afferents was present during hip movement, with the reciprocal, pre-synaptic, and Ib inhibition to be significantly reduced during hip extension and reinforced during hip flexion. Reflexive muscle and joint torque responses – induced by the hip movement – were entrained to specific phases of hip movement. This study provides evidence that hip-mediated input acts as a controlling signal of pre- and post-alpha motoneuronal control of the soleus H-reflex. The expression of these spinal interneuronal circuits during imposed sinusoidal hip movements is discussed with respect to motor recovery in humans after SCI. PMID:16782072
The application of conditioning paradigms in the measurement of pain.
Li, Jun-Xu
2013-09-15
Pain is a private experience that involves both sensory and emotional components. Animal studies of pain can only be inferred by their responses, and therefore the measurement of reflexive responses dominates the pain literature for nearly a century. It has been argued that although reflexive responses are important to unveil the sensory nature of pain in organisms, pain affect is equally important but largely ignored in pain studies primarily due to the lack of validated animal models. One strategy to begin to understand pain affect is to use conditioning principles to indirectly reveal the affective condition of pain. This review critically analyzed several procedures that are thought to measure affective learning of pain. The procedures regarding the current knowledge, the applications, and their advantages and disadvantages in pain research are discussed. It is proposed that these procedures should be combined with traditional reflex-based pain measurements in future studies of pain, which could greatly benefit both the understanding of neural underpinnings of pain and preclinical assessment of novel analgesics. © 2013 Elsevier B.V. All rights reserved.
Lundwall, Rebecca A; Sgro, Jordan F; Fanger, Julia
2018-01-01
Compared to sustained attention, only a small proportion of studies examine reflexive attention as a component of everyday attention. Understanding the significance of reflexive attention to everyday attention may inform better treatments for attentional disorders. Children from a general population (recruited when they were from 9-16 years old) completed an exogenously-cued task measuring the extent to which attention is captured by peripheral cue-target conditions. Parents completed a questionnaire reporting their child's day-to-day attention. A general linear model indicated that parent-rated inattention predicted the increase in response time over baseline when a bright cue preceded the target (whether it was valid or invalid) but not when a dim cue preceded the target. More attentive children had more pronounced response time increases from baseline. Our findings suggest a link between a basic measure of cognition (response time difference scores) and parent observations. The findings have implications for increased understanding of the role of reflexive attention in the everyday attention of children.
Experimenting With Baroreceptor Reflexes
NASA Technical Reports Server (NTRS)
Eckberg, Dwain L.; Goble, Ross L.
1988-01-01
Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.
Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.
Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R
2016-01-01
The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control. Copyright © 2015 Elsevier B.V. All rights reserved.
Neuromuscular function during drop jumps in young and elderly males.
Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne
2012-12-01
The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.
Role of renal sensory nerves in physiological and pathophysiological conditions
2014-01-01
Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation. PMID:25411364
Reduced servo-control of fatigued human finger extensor and flexor muscles.
Hagbarth, K E; Bongiovanni, L G; Nordin, M
1995-01-01
1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624
Cody, F W; Goodwin, C N; Richardson, H C
1987-01-01
1. The reflex electromyographic responses evoked in a wrist flexor muscle, flexor carpi radialis (f.c.r.), by forcible extension of the wrist ('stretch') and by vibration of the flexor tendon have been studied in normal subjects. Reflexes were elicited during the maintenance of a low level of voluntary flexor contraction (5% maximum). Stretch regularly produced a relatively prolonged (ca. 100 ms duration) increase in e.m.g. activity which was usually divisible into short-latency (ca. 25 ms, M1) and long-latency (ca. 50 ms, M2) peaks. Vibration produced a single, phasic peak, at short latency, with no sign of an accompanying long-latency wave comparable to the M2 stretch response. 2. Ischaemia was induced by inflation of a blood-pressure cuff around the upper arm and its effects upon the reflex patterns were studied. During ischaemia M1 stretch responses showed a more rapid and pronounced decline than did M2 responses and were abolished before voluntary power was appreciably affected. Vibration-evoked short-latency peaks changed in an essentially parallel manner to M1 stretch reflexes. During recovery from ischaemia M2 reflexes were restored before short-latency responses. 3. The patterns of reflex reductions in e.m.g. upon withdrawal of stimulation were also studied. Such troughs in activity, under non-ischaemic conditions, regularly commenced at short latency and were of relatively small amplitude. The records of several of the subjects, and particularly ones obtained during ischaemia, suggested that release of stretch (with concomitant stretch of antagonists) could elicit an additive, long-latency decline in e.m.g. The existence of any such separate, delayed component was never observed upon termination of vibration. 4. Measurements of changes in the latencies and durations of reflex components, accompanying the progression of ischaemia, indicated that depression of early reflex activity resulted in part from increases in the latencies of these initial peaks but predominantly reflected simultaneous and separate reductions in their amplitudes. 5. The generation of short-latency reflexes by stretch and vibration, both of which stimuli powerfully excite muscle spindle primary endings, and the marked susceptibility of these responses to ischaemia supports their being mediated by group Ia afferents. The contrasting behaviour of M2 stretch responses, both regarding their absence with vibration and their resistance to ischaemia, suggests that they depend crucially upon a separate group of reflex afferents.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3443959
Avian reflex and electroencephalogram responses in different states of consciousness.
Sandercock, Dale A; Auckburally, Adam; Flaherty, Derek; Sandilands, Victoria; McKeegan, Dorothy E F
2014-06-22
Defining states of clinical consciousness in animals is important in veterinary anaesthesia and in studies of euthanasia and welfare assessment at slaughter. The aim of this study was to validate readily observable reflex responses in relation to different conscious states, as confirmed by EEG analysis, in two species of birds under laboratory conditions (35-week-old layer hens (n=12) and 11-week-old turkeys (n=10)). We evaluated clinical reflexes and characterised electroencephalograph (EEG) activity (as a measure of brain function) using spectral analyses in four different clinical states of consciousness: conscious (fully awake), semi-conscious (sedated), unconscious-optimal (general anaesthesia), unconscious-sub optimal (deep hypnotic state), as well as assessment immediately following euthanasia. Jaw or neck muscle tone was the most reliable reflex measure distinguishing between conscious and unconscious states. Pupillary reflex was consistently observed until respiratory arrest. Nictitating membrane reflex persisted for a short time (<1 min) after respiratory arrest and brain death (isoelectric EEG). The results confirm that the nictitating membrane reflex is a conservative measure of death in poultry. Using spectral analyses of the EEG waveforms it was possible to readily distinguish between the different states of clinical consciousness. In all cases, when birds progressed from a conscious to unconscious state; total spectral power (PTOT) significantly increased, whereas median (F50) and spectral edge (F95) frequencies significantly decreased. This study demonstrates that EEG analysis can differentiate between clinical states (and loss of brain function at death) in birds and provides a unique integration of reflex responses and EEG activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Roller massage decreases spinal excitability to the soleus.
Young, James D; Spence, Alyssa-Joy; Behm, David G
2018-04-01
Roller massage (RM) interventions have shown acute increases in range of motion (ROM) and pain pressure threshold (PPT). It is unclear whether the RM-induced increases can be attributed to changes in neural or muscle responses. The purpose of this study was to evaluate the effect of altered afferent input via application of RM on spinal excitability, as measured with the Hoffmann (H-) reflex. A randomized within-subjects design was used. Three 30-s bouts of RM were implemented on a rested, nonexercised, injury-free muscle with 30 s of rest between bouts. The researcher applied RM to the plantar flexors at three intensities of pain: high, moderate, and sham. Measures included normalized M-wave and H-reflex peak-to-peak amplitudes before, during, and up to 3 min postintervention. M-wave and H-reflex measures were highly reliable. RM resulted in significant decreases in soleus H-reflex amplitudes. High-intensity, moderate-intensity, and sham conditions decreased soleus H-reflex amplitudes by 58%, 43%, and 19%, respectively. H-reflexes induced with high-intensity rolling discomfort or pain were significantly lower than moderate and sham conditions. The effects were transient in nature, with an immediate return to baseline following RM. This is the first evidence of RM-induced modulation of spinal excitability. The intensity-dependent response observed indicates that rolling pressure or pain perception may play a role in modulation of the inhibition. Roller massage-induced neural modulation of spinal excitability may explain previously reported increases in ROM and PPT. NEW & NOTEWORTHY Recent evidence indicates that the benefits of foam rolling and roller massage are primarily accrued through neural mechanisms. The present study attempts to determine the neuromuscular response to roller massage interventions. We provide strong evidence of roller massage-induced neural modulation of spinal excitability to the soleus. It is plausible that reflex inhibition may explain subsequent increases in pain pressure threshold.
Modulation of the masseteric reflex by gastric vagal afferents.
Pettorossi, V E
1983-04-01
Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.
Haker, H; Misslisch, H; Ott, M; Frens, M A; Henn, V; Hess, K; Sándor, P S
2003-07-01
We investigated gaze-stabilizing reflexes in the chameleon using the three-dimensional search-coil technique. Animals were rotated sinusoidally around an earth-vertical axis under head-fixed and head-free conditions, in the dark and in the light. Gain, phase and the influence of eye position on vestibulo-ocular reflex rotation axes were studied. During head-restrained stimulation in the dark, vestibulo-ocular reflex gaze gains were low (0.1-0.3) and phase lead decreased with increasing frequencies (from 100 degrees at 0.04 Hz to < 30 degrees at 1 Hz). Gaze gains were larger during stimulation in the light (0.1-0.8) with a smaller phase lead (< 30 degrees) and were close to unity during the head-free conditions (around 0.6 in the dark, around 0.8 in the light) with small phase leads. These results confirm earlier findings that chameleons have a low vestibulo-ocular reflex gain during head-fixed conditions and stimulation in the dark and higher gains during head-free stimulation in the light. Vestibulo-ocular reflex eye rotation axes were roughly aligned with the head's rotation axis and did not systematically tilt when the animals were looking eccentrically, up- or downward (as predicted by Listing's Law). Therefore, vestibulo-ocular reflex responses in the chameleon follow a strategy, which optimally stabilizes the entire retinal images, a result previously found in non-human primates.
Horizontal optokinetic reflex in the opossum Didelphis marsupialis aurita.
Nasi, J P; Bernardes, R F; Volchan, E; Rocha-Miranda, C E; Tecles, M
1989-01-01
Electro-oculographic recordings were performed in 10 opossums. The optokinetic reflex was elicited by projecting a random dot stimulus on a cylindrical screen moving horizontally from left to right or right to left at various constant speeds. Binocular stimulation yielded the same response as the temporal to nasal monocular condition. The nasal to temporal monocular response was always less than that to the opposite direction: 50% at 3 degrees/s and 15% at 18 degrees/s. These results are discussed in a comparative context.
LeMoyne, Robert; Mastroianni, Timothy
2014-01-01
The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.
The "where is it?" reflex: autoshaping the orienting response.
Buzsáki, G
1982-05-01
The goal of this review is to compare two divergent lines of research on signal-centered behavior: the orienting reflex (OR) and autoshaping. A review of conditioning experiments in animals and humans suggests that the novelty hypothesis of the OR is no longer tenable. Only stimuli that represent biological "relevance" elicit ORs. A stimulus may be relevant a priori (i.e., unconditioned) or as a result of conditioning. Exposure to a conditioned stimulus (CS) that predicts a positive reinforcer causes the animal to orient to it throughout conditioning. Within the CS-US interval, the initial CS-directed orienting response is followed by US-directed tendencies. Experimental evidence is shown that the development and maintenance of the conditioned OR occur in a similar fashion both in response-independent (classical) and response-dependent (instrumental) paradigms. It is proposed that the conditioned OR and the signal-directed autoshaped response are identical. Signals predicting aversive events repel the subject from the source of the CS. It is suggested that the function of the CS is not only to signal the probability of US occurrence, but also to serve as a spatial cue to guide the animal in the environment.
The "where is it?" reflex: autoshaping the orienting response.
Buzsáki, G
1982-01-01
The goal of this review is to compare two divergent lines of research on signal-centered behavior: the orienting reflex (OR) and autoshaping. A review of conditioning experiments in animals and humans suggests that the novelty hypothesis of the OR is no longer tenable. Only stimuli that represent biological "relevance" elicit ORs. A stimulus may be relevant a priori (i.e., unconditioned) or as a result of conditioning. Exposure to a conditioned stimulus (CS) that predicts a positive reinforcer causes the animal to orient to it throughout conditioning. Within the CS-US interval, the initial CS-directed orienting response is followed by US-directed tendencies. Experimental evidence is shown that the development and maintenance of the conditioned OR occur in a similar fashion both in response-independent (classical) and response-dependent (instrumental) paradigms. It is proposed that the conditioned OR and the signal-directed autoshaped response are identical. Signals predicting aversive events repel the subject from the source of the CS. It is suggested that the function of the CS is not only to signal the probability of US occurrence, but also to serve as a spatial cue to guide the animal in the environment. PMID:7097153
Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K
2014-09-15
In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.
A Cartesian reflex assessment of face processing.
Polewan, Robert J; Vigorito, Christopher M; Nason, Christopher D; Block, Richard A; Moore, John W
2006-03-01
Commands to blink were embedded within pictures of faces and simple geometric shapes or forms. The faces and shapes were conditioned stimuli (CSs), and the required responses were conditioned responses, or more properly, Cartesian reflexes (CRs). As in classical conditioning protocols, response times (RTs) were measured from CS onset. RTs provided a measure of the processing cost (PC) of attending to a CS. A PC is the extra time required to respond relative to RTs to unconditioned stimulus (US) commands presented alone. They reflect the interplay between attentional processing of the informational content of a CS and its signaling function with respect to the US command. This resulted in longer RTs to embedded commands. Differences between PCs of faces and geometric shapes represent a starting place for a new mental chronometry based on the traditional idea that differences in RT reflect differences in information processing.
LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa
2013-01-01
The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.
National Rugby League athletes and tendon tap reflex assessment: a matched cohort clinical study.
Maurini, James; Ohmsen, Paul; Condon, Greg; Pope, Rodney; Hing, Wayne
2016-11-04
Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players' careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. Right and left reflexes were well correlated for each tendon (r S = 0.7-0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r S = -0.3-0.6) were observed between reflex responses and lengths of players' careers. Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population.
Hundza, S R; de Ruiter, Geoff C; Klimstra, M; Zehr, E Paul
2012-12-01
Suppression of soleus H-reflex amplitude in stationary legs is seen during rhythmic arm cycling. We examined the influence of various arm-cycling parameters on this interlimb reflex modulation to determine the origin of the effect. We previously showed the suppression to be graded with the frequency of arm cycling but not largely influenced by changes in peripheral input associated with crank length. Here, we more explicitly explored the contribution of afferent feedback related to arm movement on the soleus H-reflex suppression. We explored the influence of load and rate of muscle stretch by manipulating crank-load and arm-muscle vibration during arm cycling. Furthermore, internally driven ("Active") and externally driven ("Passive") arm cycling was compared. Soleus H-reflexes were evoked with tibial nerve stimulation during stationary control and rhythmic arm-cycling conditions, including: 1) six different loads; 2) with and without vibration to arm muscles; and 3) Active and Passive conditions. No significant differences were seen in the level of suppression between the different crank loads or between conditions with and without arm-muscle vibration. Furthermore, in contrast to the clear effect seen during active cycling, passive arm cycling did not significantly suppress the soleus H-reflex amplitude. Current results, in conjunction with previous findings, suggest that the afferent feedback examined in these studies is not the primary source responsible for soleus H-reflex suppression. Instead, it appears that central motor commands (supraspinal or spinal in origin) associated with frequency of arm cycling are relatively more dominant sources.
Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
Bennett, D J; Sanelli, L; Cooke, C L; Harvey, P J; Gorassini, M A
2004-05-01
Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by descending control. This pEPSP is released from inhibition immediately after injury but does not produce a long-lasting reflex because of a lack of motoneuron excitability. With chronic injury the motoneuron excitability is increased markedly, and the pEPSP then triggers sustained motoneuron discharges associated with long-lasting reflexes and muscle spasms.
Reflex responses of lip muscles in young and older women.
Wohlert, A B
1996-06-01
The perioral reflex in response to innocuous mechanical stimulation of the lip vermilion was studied in 20 young and 20 older women. Responses to stimuli at the right and left sides of both the upper and lower lips were recorded. Results show significant specificity of response, especially for upper lip sites. Reflex response at the site of stimulation was greatest in amplitude and shortest in latency, followed by response at sites ipsilateral to the site of stimulation. Younger subjects showed greater localizing tendency than older subjects. Stimulation was significantly less likely to produce a reflex response in the older group. When reflex responses did occur, they were significantly lower in amplitude and longer in latency than the responses of the younger group. Nonetheless, reflex responses were common in both groups, with responses at the site of stimulation occurring 78% of the time in older women and 90% of the time in younger women. Every participant showed at least one reflex response to lip stimulation. Results suggest decreasing complexity of synaptic drive to the perioral system in old age but also show that reflexive response does not deteriorate completely, remaining an available element for motor control in normal older women.
THE EFFECT OF PENETRATING RADIATION ON THE REFLEXES FROM INTESTINAL RECEPTORS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzharakyan, T.K.; Fakhrutdinov, G.F.
1958-03-01
The reflexes from the chemo-, baro-, and thermoceptors of the small intestine were studied in acute and chronic experiments on dogs after the general action of penetrating radiation (400 r). Regular changes were revealed in the reflexes. They consisted of an increase of the vegetative components (vascular- motor, cardiac, and respiratory) and other components (movement of the head and the body) of the reflex reaction in response to the action of the stimulants of the threshold value, as well as in considerable increase of the consequent period. The changes in the reflexes appear on the 6th to 10th day aftermore » the actwon of penetrating radiation and increase with development of this disease. The intensity of these changes depend on the gravity of the radiation sickness. In the authors' opinion the changes in the reflexes are due to disturbance of the functional condition of the subcortical ganglia of the central nervous system. (tr-auth)« less
Knikou, Maria; Kay, Elizabeth; Schmit, Brian D.
2007-01-01
Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning–test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients. PMID:17543951
Changes in spinal reflex excitability associated with motor sequence learning.
Lungu, Ovidiu; Frigon, Alain; Piché, Mathieu; Rainville, Pierre; Rossignol, Serge; Doyon, Julien
2010-05-01
There is ample evidence that motor sequence learning is mediated by changes in brain activity. Yet the question of whether this form of learning elicits changes detectable at the spinal cord level has not been addressed. To date, studies in humans have revealed that spinal reflex activity may be altered during the acquisition of various motor skills, but a link between motor sequence learning and changes in spinal excitability has not been demonstrated. To address this issue, we studied the modulation of H-reflex amplitude evoked in the flexor carpi radialis muscle of 14 healthy individuals between blocks of movements that involved the implicit acquisition of a sequence versus other movements that did not require learning. Each participant performed the task in three conditions: "sequence"-externally triggered, repeating and sequential movements, "random"-similar movements, but performed in an arbitrary order, and "simple"- involving alternating movements in a left-right or up-down direction only. When controlling for background muscular activity, H-reflex amplitude was significantly more reduced in the sequence (43.8 +/- 1.47%. mean +/- SE) compared with the random (38.2 +/- 1.60%) and simple (31.5 +/- 1.82%) conditions, while the M-response was not different across conditions. Furthermore, H-reflex changes were observed from the beginning of the learning process up to when subjects reached asymptotic performance on the motor task. Changes also persisted for >60 s after motor activity ceased. Such findings suggest that the excitability in some spinal reflex circuits is altered during the implicit learning process of a new motor sequence.
[Sleep problems explainable by elements of cybernetic culture].
Cipollina Mangiameli, G
1980-04-28
A study of sleep in the light of Pavlovian conditioned reflexes is proposed. Sleep and its disturbances would appear to reflect different cell metabolic biorhythms, coinciding with intracellular states interdependent of extracellular chemical and physical values and strictly determined by reflexological factors. Reference is made to a personal paper ("Metodica psicoterapica su elementi di cultura cibernetica") for the view that the DNA memorising function, which is responsible for conditioned reflex patterns, genetic metabolism and new valid or non-valid metabolic equilibria via the synapses, could, by conditioning, lead to normal, eurhythmic sleep in terms of the subject's own pattern or that of the statistical mean of the population to which he belongs. Reharmonisation of subjectively disturbed sleep rhythms by new hetero- or autoinduced conditioning is suggested.
Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury
Chen, Yi; Chen, Lu; Liu, Rongliang; Wang, Yu; Wolpaw, Jonathan R.
2013-01-01
When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex, locomotion improved. Steps became longer, and step-cycle asymmetry (i.e., limping) disappeared. In contrast, when down-conditioning decreased the H-reflex, locomotion did not worsen. Steps did not become shorter, and asymmetry did not increase. Electromyographic and kinematic analyses explained how H-reflex increase improved locomotion and why H-reflex decrease did not further impair it. Although the impact of up-conditioning or down-conditioning on the H-reflex pathway was still present during locomotion, only up-conditioning affected the soleus locomotor burst. Additionally, compensatory plasticity apparently prevented the weaker H-reflex pathway caused by down-conditioning from weakening the locomotor burst and further impairing locomotion. The results support the hypothesis that the state of the spinal cord is a “negotiated equilibrium” that serves all the behaviors that depend on it. When new learning changes the spinal cord, old behaviors undergo concurrent relearning that preserves or improves their key features. Thus, if an old behavior has been impaired by trauma or disease, spinal reflex conditioning, by changing a specific pathway and triggering a new negotiation, may enable recovery beyond that achieved simply by practicing the old behavior. Spinal reflex conditioning protocols might complement other neurorehabilitation methods and enhance recovery. PMID:24371288
Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.
Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R
2017-08-23
When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory feedback to the brain guides further change that preserves old behaviors. This finding contributes to a new understanding of spinal cord function and to development of new rehabilitation therapies. Copyright © 2017 the authors 0270-6474/17/378198-09$15.00/0.
The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes
NASA Technical Reports Server (NTRS)
Ray, Chester A.; Monahan, Kevin D.
2002-01-01
1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.
Cholinergic modulation of stimulus-driven attentional capture.
Boucart, Muriel; Michael, George Andrew; Bubicco, Giovanna; Ponchel, Amelie; Waucquier, Nawal; Deplanque, Dominique; Deguil, Julie; Bordet, Régis
2015-04-15
Distraction is one of the main problems encountered by people with degenerative diseases that are associated with reduced cortical cholinergic innervations. We examined the effects of donepezil, a cholinesterase inhibitor, on stimulus-driven attentional capture. Reflexive attention shifts to a distractor are usually elicited by abrupt peripheral changes. This bottom-up shift of attention to a salient item is thought to be the result of relatively inflexible hardwired mechanisms. Thirty young male participants were randomly allocated to one of two groups: placebo first/donepezil second session or the opposite. They were asked to locate a target appearing above and below fixation whilst a peripheral distractor moved abruptly (motion-jitter attentional capture condition) or not (baseline condition). A classical attentional capture effect was observed under placebo: moving distractors interfered with the task in slowing down response times as compared to the baseline condition with fixed distractors. Increased interference from moving distractors was found under donepezil. We suggest that attentional capture in our paradigm likely involved low level mechanisms such as automatic reflexive orienting. Peripheral motion-jitter elicited a rapid reflexive orienting response initiated by a cholinergic signal from the brainstem pedunculo-pontine nucleus that activates nicotinic receptors in the superior colliculus. Copyright © 2015 Elsevier B.V. All rights reserved.
Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
Wetmore, Daniel Z; Mukamel, Eran A; Schnitzer, Mark J
2008-10-01
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
ERIC Educational Resources Information Center
Wolpaw, Jonathan R.; Chen, Xiang Yang
2006-01-01
Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining…
Fortunato-Tavares, Talita; de Andrade, Claudia R. F.; Befi-Lopes, Debora M.; Hestvik, Arild; Epstein, Baila; Tornyova, Lidiya; Schwartz, Richard G.
2013-01-01
Purpose In this study, the authors examined the comprehension of sentences with predicates and reflexives that are linked to a nonadjacent noun as a test of the hierarchical ordering deficit (HOD) hypothesis. That hypothesis and more modern versions posit that children with specific language impairment (SLI) have difficulty in establishing nonadjacent (hierarchical) relations among elements of a sentence. The authors also tested whether additional working memory demands in constructions containing reflexives affected the extent to which children with SLI incorrectly structure sentences as indicated by their picture-pointing comprehension responses. Method Sixteen Brazilian Portuguese-speaking children (8;4–l 0;6 [years;months]) with SLI and 16 children with typical language development (TLD) matched for age (±3 months), gender, and socioeconomic status participated in 2 experiments (predicate and reflexive interpretation). In the reflexive experiment, the authors also manipulated working memory demands. Each experiment involved a 4-choice picture selection sentence comprehension task. Results Children with SLI were significantly less accurate on all conditions. Both groups made more hierarchical syntactic construction errors in the long working memory condition than in the short working memory condition. Conclusion The HOD hypothesis was not confirmed. For both groups, syntactic factors (structural assignment) were more vulnerable than lexical factors (prepositions) to working memory effects in sentence miscomprehension. PMID:22232402
Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.
2016-01-01
Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479
Passive motion reduces vestibular balance and perceptual responses
Fitzpatrick, Richard C; Watson, Shaun R D
2015-01-01
With the hypothesis that vestibular sensitivity is regulated to deal with a range of environmental motion conditions, we explored the effects of passive whole-body motion on vestibular perceptual and balance responses. In 10 subjects, vestibular responses were measured before and after a period of imposed passive motion. Vestibulospinal balance reflexes during standing evoked by galvanic vestibular stimulation (GVS) were measured as shear reaction forces. Perceptual tests measured thresholds for detecting angular motion, perceptions of suprathreshold rotation and perceptions of GVS-evoked illusory rotation. The imposed conditioning motion was 10 min of stochastic yaw rotation (0.5–2.5 Hz ≤ 300 deg s−2) with subjects seated. This conditioning markedly reduced reflexive and perceptual responses. The medium latency galvanic reflex (300–350 ms) was halved in amplitude (48%; P = 0.011) but the short latency response was unaffected. Thresholds for detecting imposed rotation more than doubled (248%; P < 0.001) and remained elevated after 30 min. Over-estimation of whole-body rotation (30–180 deg every 5 s) before conditioning was significantly reduced (41.1 to 21.5%; P = 0.033). Conditioning reduced illusory vestibular sensations of rotation evoked by GVS (mean 113 deg for 10 s at 1 mA) by 44% (P < 0.01) and the effect persisted for at least 1 h (24% reduction; P < 0.05). We conclude that a system of vestibular sensory autoregulation exists and that this probably involves central and peripheral mechanisms, possibly through vestibular efferent regulation. We propose that failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. Key points Human activity exposes the vestibular organs to a wide dynamic range of motion. We aimed to discover whether the CNS regulates sensitivity to vestibular afference during exposure to ambient motion. Balance and perceptual responses to vestibular stimulation were measured before and after a 10 min period of imposed, moderate intensity, stochastic whole-body rotation. After this conditioning, vestibular balance reflexes evoked by galvanic vestibular stimulation were halved in amplitude. Conditioning doubled the thresholds for perceiving small rotations, and reduced perceptions of the amplitude of real rotations, and illusory rotation evoked by galvanic stimulation. We conclude that the CNS auto-regulates sensitivity to vestibular sensory afference and that this probably involves central and peripheral mechanisms, as might arise from vestibular efferent regulation. Failure of these regulatory mechanisms at different levels could lead to disorders of movement perception and balance control during standing. PMID:25809702
Impaired reflexive orienting to social cues in attention deficit hyperactivity disorder.
Marotta, Andrea; Casagrande, Maria; Rosa, Caterina; Maccari, Lisa; Berloco, Bianca; Pasini, Augusto
2014-08-01
The present study investigated whether another person's social attention, specifically the direction of their eye gaze, and non-social directional cues triggered reflexive orienting in individuals with Attention Deficit Hyperactivity Disorder (ADHD) and age-matched controls. A choice reaction time and a detection tasks were used in which eye gaze, arrow and peripheral cues correctly (congruent) or incorrectly (incongruent) signalled target location. Independently of the type of the task, differences between groups were specific to the cue condition. Typically developing individuals shifted attention to the location cued by both social and non-social cues, whereas ADHD group showed evidence of reflexive orienting only to locations previously cued by non-social stimuli (arrow and peripheral cues) but failed to show such orienting effect in response to social eye gaze cues. The absence of reflexive orienting effect for eye gaze cues observed in the participants with ADHD may reflect an attentional impairment in responding to socially relevant information.
Time course of the soleus M response and H reflex after lidocaine tibial nerve block in the rat.
Buffenoir, Kévin; Decq, Philippe; Pérot, Chantal
2013-01-01
In spastic subjects, lidocaine is often used to induce a block predictive of the result provided by subsequent surgery. Lidocaine has been demonstrated to inhibit the Hoffmann (H) reflex to a greater extent than the direct motor (M) response induced by electrical stimulation, but the timecourse of these responses has not been investigated. An animal (rat) model of the effects of lidocaine on M and H responses was therefore developed to assess this time course. M and H responses were recorded in 18 adult rats before and after application of lidocaine to the sciatic nerve. Two to five minutes after lidocaine injection, M responses were markedly reduced (mean reduction of 44%) and H reflexes were completely abolished. Changes were observed more rapidly for the H reflex. The effects of lidocaine then persisted for 100 minutes. The effect of lidocaine was therefore more prolonged on the H reflex than on the M response. This study confirms that lidocaine blocks not only alpha motoneurons but also Ia afferent fibres responsible for the H reflex. The authors describe, for the first time, the detailed time course of the effect of lidocaine on direct or reflex activation of motoneurons in the rat.
Reflex responses of paraspinal muscles to tapping
Dimitrijevic, M R; Gregoric, M R; Sherwood, A M; Spencer, W A
1980-01-01
Erector spinae reflex studies in healthy subjects revealed two responses: a 12·0±1·6 ms latency, oligosynaptic response, and a 30 to 50 ms latency response with polysynaptic reflex characteristics. There was a silent period after the first and second responses. The effect of limb position, trunk, neck, postural changes, Jendrassik manoeuvre and vibration on both responses were also evaluated. PMID:7217957
Initial Localization of the Memory Trace for a Basic Form of Learning
NASA Astrophysics Data System (ADS)
McCormick, David A.; Clark, Gregory A.; Lavond, David G.; Thompson, Richard F.
1982-04-01
Electrophysiological recording of neuronal unit activity during paired training trials from various regions of the ipsilateral cerebellum in rabbits well trained in the classically conditioned eyelid/nictitating membrane response have revealed both stimulus-evoked responses and responses that form an amplitude/temporal model of the learned behavioral response. Ablation of the ipsilateral, lateral cerebellum completely and permanently abolished the behavioral conditioned response in well-trained animals but had no effect at all on the unconditioned reflex response. In marked contrast, conditioned responses were easily trained in the eye contralateral to the cerebellar lesion. We suggest that at least part of the essential neuronal plasticity that codes the learned response may be localized to the cerebellum.
Measuring anxious responses to predictable and unpredictable threat in children and adolescents
Schmitz, Anja; Merikangas, Kathleen; Swendsen, Haruka; Cui, Lihong; Heaton, Leanne; Grillon, Christian
2011-01-01
Research has highlighted the need for new methods to assess emotions in children on multiple levels in order to gain better insight into the complex processes of emotional development. The startle reflex is a unique translational tool that has been utilized to study physiological processes during fear and anxiety in rodents and in human subjects. However, it has been challenging to implement developmentally-appropriate startle experiments in children. This paper describes a procedure that uses predictable and unpredictable aversive events to distinguish between phasic fear and sustained anxiety in children and adolescents. We investigated anxious responses, as measured with the startle reflex, in youth (N = 36, mean age[range] = 12.63 [7–17]) across three conditions: no aversive events (N), predictable aversive events (P), and unpredictable aversive events (U). Short-duration cues were presented several times in each condition. Aversive events were signaled by the cues in P, but were presented randomly in U. Participants showed fear-potentiated startle to the threat cue in P. Startle responses were also elevated between cues in U compared to N, suggesting that unpredictable aversive events can evoke a sustained state of anxiety in youth. This latter effect was influenced by sex, being greater in girls compared to boys. These findings indicate the feasibility of this experimental induction of the startle reflex in response to predictable and unpredictable events in children and adolescents, enabling future research on inter-individual differences in fear and anxiety and their development in youth. PMID:21440905
Kemmer, Laura; Coulson, Seana; Kutas, Marta
2014-02-01
Despite indications in the split-brain and lesion literatures that the right hemisphere is capable of some syntactic analysis, few studies have investigated right hemisphere contributions to syntactic processing in people with intact brains. Here we used the visual half-field paradigm in healthy adults to examine each hemisphere's processing of correct and incorrect grammatical number agreement marked either lexically, e.g., antecedent/reflexive pronoun ("The grateful niece asked herself/*themselves…") or morphologically, e.g., subject/verb ("Industrial scientists develop/*develops…"). For reflexives, response times and accuracy of grammaticality decisions suggested similar processing regardless of visual field of presentation. In the subject/verb condition, we observed similar response times and accuracies for central and right visual field (RVF) presentations. For left visual field (LVF) presentation, response times were longer and accuracy rates were reduced relative to RVF presentation. An event-related brain potential (ERP) study using the same materials revealed similar ERP responses to the reflexive pronouns in the two visual fields, but very different ERP effects to the subject/verb violations. For lexically marked violations on reflexives, P600 was elicited by stimuli in both the LVF and RVF; for morphologically marked violations on verbs, P600 was elicited only by RVF stimuli. These data suggest that both hemispheres can process lexically marked pronoun agreement violations, and do so in a similar fashion. Morphologically marked subject/verb agreement errors, however, showed a distinct LH advantage. Copyright © 2013 Elsevier B.V. All rights reserved.
Kemmer, Laura; Coulson, Seana; Kutas, Marta
2014-01-01
Despite indications in the split-brain and lesion literatures that the right hemisphere is capable of some syntactic analysis, few studies have investigated right hemisphere contributions to syntactic processing in people with intact brains. Here we used the visual half-field paradigm in healthy adults to examine each hemisphere’s processing of correct and incorrect grammatical number agreement marked either lexically, e.g., antecedent/reflexive pronoun (“The grateful niece asked herself/*themselves…”) or morphologically, e.g., subject/verb (“Industrial scientists develop/*develops…”). For reflexives, response times and accuracy of grammaticality decisions suggested similar processing regardless of visual field of presentation. In the subject/verb condition, we observed similar response times and accuracies for central and right visual field (RVF) presentations. For left visual field (LVF) presentation, response times were longer and accuracy rates were reduced relative to RVF presentation. An event-related brain potential (ERP) study using the same materials revealed similar ERP responses to the reflexive pronouns in the two visual fields, but very different ERP effects to the subject/verb violations. For lexically marked violations on reflexives, P600 was elicited by stimuli in both the LVF and RVF; for morphologically marked violations on verbs, P600 was elicited only by RVF stimuli. These data suggest that both hemispheres can process lexically marked pronoun agreement violations, and do so in a similar fashion. Morphologically marked subject/verb agreement errors, however, showed a distinct LH advantage. PMID:24326084
Bisio, Ambra; Garbarini, Francesca; Biggio, Monica; Fossataro, Carlotta; Ruggeri, Piero; Bove, Marco
2017-03-01
The hand blink reflex is a subcortical defensive response, known to dramatically increase when the stimulated hand is statically positioned inside the defensive peripersonal space (DPPS) of the face. Here, we tested in a group of healthy human subjects the hand blink reflex in dynamic conditions, investigating whether the direction of the hand movements (up-to/down-from the face) could modulate it. We found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This means that, when the hand is close to the face but the subject is planning to move the hand down, the predictive motor system can anticipate the consequence of the movement: the "near" becomes "far." We found similar results both in passive movement condition, when only afferent (visual and proprioceptive) information can be used to estimate the final state of the system, and in motor imagery task, when only efferent (intentional) information is available to predict the consequences of the movement. All these findings provide evidence that the DPPS is dynamically shaped by predictive mechanisms run by the motor system and based on the integration of feedforward and sensory feedback signals. SIGNIFICANCE STATEMENT The defensive peripersonal space (DPPS) has a crucial role for survival, and its modulation is fundamental when we interact with the environment, as when we move our arms. Here, we focused on a defensive response, the hand blink reflex, known to increase when a static hand is stimulated inside the DPPS of the face. We tested the hand blink reflex in dynamic conditions (voluntary, passive, and imagined movements) and we found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This suggests that, through the integration of efferent and afferent signals, the safety boundary around the body is continuously shaped by the predictive motor system. Copyright © 2017 the authors 0270-6474/17/372415-10$15.00/0.
2013-01-01
Background To investigate the impact of a short-term multimodal rehabilitation program for patients with low back pain (LBP) on trunk muscle reflex responses and feedforward activation induced by postural perturbations. Methods Case series (uncontrolled longitudinal study). Thirty chronic patients with LBP (21 women and 19 men, mean age 42.6 ± 8.6 years, mean weight 73 ± 14 kg, mean height 174 ± 10 cm) were included. The intervention consisted in a 5-day program including therapeutic education sessions (360 min), supervised abdominal and back muscle strength exercises (240 min), general aerobic training (150 min), stretching (150 min), postural education (150 min) and aqua therapy (150 min). Feedforward activation level and reflex amplitude determined by surface electromyographic activity triggered by postural perturbations were recorded from abdominal and paraspinal muscles in unexpected and expected conditions. Subjects were tested before, just after and again one month after the rehabilitation program. Results No main intervention effect was found on feedforward activation levels and reflex amplitudes underlining the absence of changes in the way patients with LBP reacted across perturbation conditions. However, we observed a shift in the behavioral strategy between conditions, in fact feedforward activation (similar in both conditions before the program) decreased in the unexpected condition after the program, whereas reflex amplitudes became similar in both conditions. Conclusions The results suggest that a short-term rehabilitation program modifies trunk behavioral strategies during postural perturbations. These results can be useful to clinicians for explaining to patients how to adapt to daily life activities before and after rehabilitation. PMID:24063646
Joyce, G. C.; Rack, Peter M. H.; Ross, H. F.
1974-01-01
1. The mechanical resistance of the human forearm has been measured during imposed sinusoidal flexion-extension movements of the elbow joint. 2. The force required to move the limb can be divided into components required to move the mass, and components required to overcome the resistance offered by elastic and frictional properties of the muscles and other soft tissues. 3. When during a vigorous flexing effort the limb was subjected to a small amplitude sinusoidal movement each extension was followed by a considerable reflex contraction of the flexor muscles. At low frequencies of movement this reflex provided an added resistance to extension, but at 8-12 Hz the delay in the reflex pathway was such that the reflex response to extension occurred after the extension phase of the movement was over and during the subsequent flexion movement. The reflex activity then assisted the movement whereas at other frequencies it impeded it. 4. The reflex response to movement increased as the subject exerted a greater flexing force. 5. Small movements generated a relatively larger reflex response than big ones. 6. Even with large amplitudes of movement when the reflex activity was relatively small, the limb resisted extension with a high level of stiffness; this was comparable with the short range stiffness of muscles in experimental animals. 7. The fact that at some frequencies the reflex response assisted the movement implies that with appropriate loading the limb could undergo a self-sustaining oscillation at those frequencies. PMID:4420490
Effects of whole body vibration on motor unit recruitment and threshold
Woledge, Roger C.; Martin, Finbarr C.; Newham, Di J.
2012-01-01
Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = −0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition. PMID:22096119
Effects of whole body vibration on motor unit recruitment and threshold.
Pollock, Ross D; Woledge, Roger C; Martin, Finbarr C; Newham, Di J
2012-02-01
Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = -0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition.
The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers
Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.
2015-01-01
Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889
Extinction of the soleus H reflex induced by conditioning stimulus given after test stimulus.
Hiraoka, Koichi
2002-02-01
To quantify the extinction of the soleus H reflex induced by a conditioning stimulus above the motor threshold to the post-tibial nerve applied 10-12 ms after a test stimulus (S2 method). Ten healthy subjects participated. The sizes of extinction induced by a test stimulus above the motor threshold (conventional method) and by the S2 method were measured. The size of the conditioned H reflex decreased as the intensity of the S2 conditioning stimulus increased. The decrease was less than that induced by the conventional method. The difference between the two methods correlated highly with the amount of orthodromically activated recurrent inhibition. When the S2 conditioning stimulus evoked an M wave that was roughly half of the maximum M wave, the decrease in the size of the conditioned H reflex depended on the size of the unconditioned H reflex. The S2 method allows us to observe extinction without changing the intensity of the test stimulus. The amount of the extinction depends partially on the size of the unconditioned H reflex. The difference in the sizes of extinction between the S2 and conventional methods should relate to recurrent inhibition.
Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury
Onushko, Tanya; Hyngstrom, Allison
2013-01-01
Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI. PMID:23615544
Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.
Thompson, Aiko K; Wolpaw, Jonathan R
2015-04-01
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders. © The Author(s) 2014.
Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E
2017-06-01
The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.
OPERANT CONDITIONING OF A SPINAL REFLEX CAN IMPROVE LOCOMOTION AFTER SPINAL CORD INJURY IN HUMANS
Thompson, Aiko K.; Pomerantz, Ferne; Wolpaw, Jonathan R.
2013-01-01
Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured (Unconditioned (UC) subjects), and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step-cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual’s particular deficits, and might thereby complement other rehabilitation methods. PMID:23392666
Sadnicka, A; Teo, J T; Kojovic, M; Pareés, I; Saifee, T A; Kassavetis, P; Schwingenschuh, P; Katschnig-Winter, P; Stamelou, M; Mencacci, N E; Rothwell, J C; Edwards, M J; Bhatia, K P
2015-05-01
Traditionally dystonia has been considered a disorder of basal ganglia dysfunction. However, recent research has advocated a more complex neuroanatomical network. In particular, there is increasing interest in the pathophysiological role of the cerebellum. Patients with cervical and focal hand dystonia have impaired cerebellar associative learning using the paradigm eyeblink conditioning. This is perhaps the most direct evidence to date that the cerebellum is implicated in patients. Eleven patients with DYT1 dystonia and five patients with DYT6 dystonia were examined and rates of eyeblink conditioning were compared with age-matched controls. A marker of brainstem excitability, the blink reflex recovery, was also studied in the same groups. Patients with DYT1 and DYT6 dystonia have a normal ability to acquire conditioned responses. Blink reflex recovery was enhanced in DYT1 but this effect was not seen in DYT6. If the cerebellum is an important driver in DYT1 and DYT6 dystonia our data suggest that there is specific cerebellar dysfunction such that the circuits essential for conditioning function normally. Our data are contrary to observations in focal dystonia and suggest that the cerebellum may have a distinct role in different subsets of dystonia. Evidence of enhanced blink reflex recovery in all patients with dystonia was not found and recent studies calling for the blink recovery reflex to be used as a diagnostic test for dystonic tremor may require further corroboration. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
Device for rapid quantification of human carotid baroreceptor-cardiac reflex responses
NASA Technical Reports Server (NTRS)
Sprenkle, J. M.; Eckberg, D. L.; Goble, R. L.; Schelhorn, J. J.; Halliday, H. C.
1986-01-01
A new device has been designed, constructed, and evaluated to characterize the human carotid baroreceptor-cardiac reflex response relation rapidly. This system was designed for study of reflex responses of astronauts before, during, and after space travel. The system comprises a new tightly sealing silicon rubber neck chamber, a stepping motor-driven electrodeposited nickel bellows pressure system, capable of delivering sequential R-wave-triggered neck chamber pressure changes between +40 and -65 mmHg, and a microprocessor-based electronics system for control of pressure steps and analysis and display of responses. This new system provokes classic sigmoid baroreceptor-cardiac reflex responses with threshold, linear, and saturation ranges in most human volunteers during one held expiration.
Adaptation to sensory-motor reflex perturbations is blind to the source of errors.
Hudson, Todd E; Landy, Michael S
2012-01-06
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
F response and H reflex analysis of physiological unity of gravity and antigravity muscles in man.
García, H A; Fisher, M A
1977-01-01
Observational differences between reflex (H reflex) and antidromic (F response) activation of segmental motoneurons by a peripheral electrical stimulus are described. In contrast to H reflexes, the percentage of F responses found after a series of stimuli is directly related to the pick-up field of the recording electrode consistent with this response being due to the variable activation of a small fraction of the available motoneuron pool. Despite the differing physiological mechanisms, both F responses and H reflexes can be used to demonstrate similar relative "central excitatory states" for antigravity muscles (i.e. extensors in the lower extremity and flexors in the upper extremity) and their antagonist gravity muscles. H reflexes were elicited not only in their usual location in certain antigravity muscles but also in unusual locations by length/tension changes in agonist and antagonist groups as well as by passive stretch. The data argue for the physiological unity of similarly acting gravity and antigravity muscles as well as supporting a meaningful role of group II afferents in normal segmental motoneuron pool excitability.
Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke
2010-01-01
We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.
Parks, Vanessa N.; Peng, Juan; Dzodzomenyo, Samuel; Fernandez, Soledad; Shaker, Reza; Splaingard, Mark
2012-01-01
Electrocortical arousal (ECA) as an effect of visceral provocation or of its temporal relationships with aerodigestive reflexes in premature neonates is not known. We tested the hypothesis that esophageal provocation results in both esophageal reflex responses and ECAs during sleep and that ECAs are dependent on the frequency characteristics of esophageal neuromotor responses. We defined the spatiotemporal relationship of ECAs in relation to 1) spontaneous pharyngoesophageal swallow sequences and gastroesophageal reflux (GER) events and 2) sensory-motor characteristics of esophageal reflexes. Sixteen healthy premature neonates born at 27.9 ± 3.4 wk were tested at 36.8 ± 1.9 wk postmenstrual age. Ninety-five midesophageal and 31 sham stimuli were given in sleep during concurrent manometry and videopolysomnography. With stimulus onset as reference point, we scored the response latency, frequency occurrence and duration of arousals, peristaltic reflex, and upper esophageal sphincter contractile reflex (UESCR). Changes in polysomnography-respiratory patterns and esophageal sensory-motor parameters were scored by blinded observers. Significantly (for each characteristic listed, P < 0.05), swallow sequences were associated with arousals and sleep state changes, and arousals were associated with incomplete peristalsis, response delays to lower esophageal sphincter relaxation, and prolonged esophageal clearance. GER events (73.5%) provoked arousals, and arousals were associated with response delays to peristaltic reflexes or clearance, sleep state modification, and prolonged respiratory arousal. Midesophageal stimuli (54%) provoked arousals and were associated with increased frequency, prolonged latency, prolonged response duration of peristaltic reflexes and UESCR, and increased frequency of sleep state changes and respiratory arousals. In human neonates, ECAs are provoked upon esophageal stimulation; the sensory-motor characteristics of esophageal reflexes are distinct when accompanied by arousals. Aerodigestive homeostasis is defended by multiple tiers of aerodigestive safety mechanisms, and when esophageal reflexes are delayed, cortical hypervigilance (ECAs) occurs. PMID:21852361
Gayzur, Nora D.; Langley, Linda K.; Kelland, Chris; Wyman, Sara V.; Saville, Alyson L.; Ciernia, Annie T.; Padmanabhan, Ganesh
2013-01-01
Shifting visual focus based on the perceived gaze direction of another person is one form of joint attention. The present study investigated if this socially-relevant form of orienting is reflexive and whether it is influenced by age. Green and Woldorff (2012) argued that rapid cueing effects (faster responses to validly-cued targets than to invalidly-cued targets) were limited to conditions in which a cue overlapped in time with a target. They attributed slower responses following invalid cues to the time needed to resolve incongruent spatial information provided by the concurrently-presented cue and target. The present study examined orienting responses of young (18-31 years), young-old (60-74 years), and old-old adults (75-91 years) following uninformative central gaze cues that overlapped in time with the target (Experiment 1) or that were removed prior to target presentation (Experiment 2). When the cue and target overlapped, all three groups localized validly-cued targets faster than invalidly-cued targets, and validity effects emerged earlier for the two younger groups (at 100 ms post cue onset) than for the old-old group (at 300 ms post cue onset). With a short duration cue (Experiment 2), validity effects developed rapidly (by 100 ms) for all three groups, suggesting that validity effects resulted from reflexive orienting based on gaze cue information rather than from cue-target conflict. Thus, although old-old adults may be slow to disengage from persistent gaze cues, attention continues to be reflexively guided by gaze cues late in life. PMID:24170377
Pupillary behavior in relation to wavelength and age
Lobato-Rincón, Luis-Lucio; Cabanillas-Campos, Maria del Carmen; Bonnin-Arias, Cristina; Chamorro-Gutiérrez, Eva; Murciano-Cespedosa, Antonio; Sánchez-Ramos Roda, Celia
2014-01-01
Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600°K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46–78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18–45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity. PMID:24795595
The Human Vertical Translation Vestibulo-ocular Reflex (tVOR): Normal and Abnormal Responses
Liao, Ke; Walker, Mark F.; Joshi, Anand; Reschke, Millard; Strupp, Michael; Leigh, R. John
2010-01-01
Geometric considerations indicate that the human translational vestibulo-ocular reflex (tVOR) should have substantially different properties than the angular vestibulo-ocular reflex (aVOR). Specifically, tVOR cannot simultaneously stabilize images of distant and near objects on the retina. Most studies make the tacit assumption that tVOR acts to stabilize foveal images even though, in humans, tVOR is reported to compensate for less than 60% of foveal image motion. We have determined that the compensation gain (eye rotational velocity / required eye rotational velocity to maintain foveal target fixation) of tVOR is held steady at ~ 0.6 during viewing of either near or distant targets during vertical (bob) translations in ambient illumination. We postulate that tVOR evolved not to stabilize the image of the target on the fovea, but rather to minimize retinal image motion between objects lying in different depth planes, in order to optimize motion parallax information. Such behavior is optimized when binocular visual cues of both far and distant targets are available in ambient light. Patients with progressive supranuclear palsy or cerebellar ataxia show impaired ability to increase tVOR responses appropriately when they view near targets. In cerebellar patients, impaired ability to adjust tVOR responses to viewing conditions occurs despite intact ability to converge at near. Loss of the ability to adjust tVOR according to viewing conditions appears to represent a distinct disorder of vestibular function. PMID:19645882
Does spasticity contribute to walking dysfunction after stroke?
Ada, L.; Vattanasilp, W.; O'Dwyer, N.; Crosbie, J.
1998-01-01
OBJECTIVES—Clinically, it is assumed that spasticity of the calf muscles interferes with walking after stroke. The aim was to examine this assumption by evaluating the contribution of spasticity in the gastrocnemius muscle to walking dysfunction in an ambulant stroke population several months after stroke. METHODS—Fourteen stroke patients who were able to walk independently and 15 neurologically normal control subjects were recruited. Both resting and action stretch reflexes of the gastrocnemius muscle were investigated under conditions that simulated walking. Resting tonic stretch reflexes were measured to assess spasticity whereas action tonic stretch reflexes were measured to assess the possible contribution of spasticity to gait dysfunction. RESULTS—Two thirds of the stroke patients exhibited resting tonic stretch reflexes which indicate spasticity, whereas none of the control subjects did. However, the stroke patients exhibited action tonic stretch reflexes that were of similar magnitude to the control subjects, suggesting that their reflex activity during walking was not different from that of control subjects. Furthermore, there was no evidence that the action stretch reflex in the stroke patients contributed a higher resistance to stretch than the control subjects. CONCLUSIONS—Whereas most of the stroke patients exhibited spasticity when measured both clinically and physiologically, they did not exhibit an increase in resistance to dorsiflexion due to exaggerated action tonic stretch reflexes. It is concluded that it is unlikely that spasticity causes problems in walking after stroke in ambulant patients. Therefore, it seems inappropriate to routinely reduce or inhibit the reflex response to improve functional movement in stroke rehabilitation. Factors other than spasticity should be considered when analysing walking after stroke, so that appropriate treatment is provided to patients. PMID:9598679
Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.
Happee, Riender; de Vlugt, Erwin; van Vliet, Bart
2015-01-01
Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including nonlinear muscular (e.g., Hill and Huxley) and reflexive components.
The Dynamics of the Stapedial Acoustic Reflex.
NASA Astrophysics Data System (ADS)
Moss, Sherrin Mary
Available from UMI in association with The British Library. This thesis aims to separate the neural and muscular components of the stapedial acoustic reflex, both anatomically and physiologically. It aims to present an hypothesis to account for the differences between ipsilateral and contralateral reflex characteristics which have so far been unexplained, and achieve a greater understanding of the mechanisms underlying the reflex dynamics. A technique enabling faithful reproduction of the time course of the reflex is used throughout the experimental work. The technique measures tympanic membrane displacement as a result of reflex stapedius muscle contraction. The recorded response can be directly related to the mechanics of the middle ear and stapedius muscle contraction. Some development of the technique is undertaken by the author. A model of the reflex neural arc and stapedius muscle dynamics is evolved that is based upon a second order system. The model is unique in that it includes a latency in the ipsilateral negative feedback loop. Oscillations commonly observed on reflex responses are seen to be produced because of the inclusion of a latency in the feedback loop. The model demonstrates and explains the complex relationships between neural and muscle dynamic parameters observed in the experimental work. This more comprehensive understanding of the interaction between the stapedius dynamics and the neural arc of the reflex would not usually have been possible using human subjects, coupled with a non-invasive measurement technique. Evidence from the experimental work revealed the ipsilateral reflex to have, on average, a 5 dB lower threshold than the contralateral reflex. The oscillatory charcteristics, and the steady state response, of the contralateral reflex are also seen to be significantly different from those of the ipsilateral reflex. An hypothesis to account for the experimental observations is proposed. It is propounded that chemical neurotransmitters, and their effect upon the contralateral reflex arc from the site of the superior olivary complex to the motoneurones innervating the stapedius, account for the difference between the contralateral and ipsilateral reflex thresholds and dynamic characteristics. In the past two years the measurement technique used for the experimental work has developed from an audiological to a neurological diagnostic tool. This has enabled the results from the study to be applied in the field for valuable biomechanical and neurological explanations of the reflex response. (Abstract shortened by UMI.).
Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.
2011-01-01
Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed rest period, with a return to baseline 3 to 5 days after bed rest, depending on the duration of bed rest. In addition, a relationship between CV and loss of muscle strength in the lower leg was observed post bed rest for most subjects. Immediately post-bed rest, most subjects showed decreased performance on SOTs, with the greater decrements on sway-referenced support and head movement conditions. Post-bed rest decrements were less than typically observed following spaceflight. Decrements in postural control and the stretch reflex can be primarily attributed to the unloading mechanisms this ground-based analog provides. The stretch reflex is a concise test measurement that can be obtained during the head-down phase of bed rest, as it does not interfere with the bed rest paradigm. This makes it an ideal tool that can detect, early on, whether a countermeasure is successful in preserving muscle function.
A computational model of pupil dilation
NASA Astrophysics Data System (ADS)
Johansson, Birger; Balkenius, Christian
2018-01-01
We present a system-level connectionist model of pupil control that includes brain regions believed to influence the size of the pupil. It includes parts of the sympathetic and parasympathetic nervous system together with the hypothalamus, amygdala, locus coeruleus, and cerebellum. Computer simulations show that the model is able to reproduce a number of important aspects of how the pupil reacts to different stimuli: (1) It reproduces the characteristic shape and latency of the light-reflex. (2) It elicits pupil dilation as a response to novel stimuli. (3) It produces pupil dilation when shown emotionally charged stimuli, and can be trained to respond to initially neutral stimuli through classical conditioning. (4) The model can learn to expect light changes for particular stimuli, such as images of the sun, and produces a "light-response" to such stimuli even when there is no change in light intensity. (5) It also reproduces the fear-inhibited light reflex effect where reactions to light increase is weaker after presentation of a conditioned stimulus that predicts punishment.
A comparison of procedures for unpairing conditioned reflexive motivating operations.
Kettering, Tracy L; Neef, Nancy A; Kelley, Michael E; Heward, William L
2018-03-01
This study compared the effectiveness of two procedures to reduce behavior evoked by a reflexive conditioned motivating operation (CMO-R). Task demands were shown to evoke escape-maintained problem behavior for 4 students with disabilities. Alternative communication responses were taught as an appropriate method to request escape and this treatment combined with extinction for problem behavior led to decreases in problem behavior for all students. A beeping timer was then arranged to temporally precede the task demand to create a CMO-R that evoked communication responses. When data showed that the sound of the timer was functioning as a CMO-R, two methods to reduce behavior evoked by a CMO-R-extinction unpairing and noncontingent unpairing-were evaluated. Results indicated that noncontingent unpairing was an effective method to reduce the evocative effects of the CMO-R. Extinction produced unsystematic effects across participants. Results are discussed in terms of abolishing CMOs and the implications of CMOs. © 2018 Society for the Experimental Analysis of Behavior.
Leal-Campanario, Rocío; Fairén, Alfonso; Delgado-García, José M.; Gruart, Agnès
2007-01-01
We have studied the role of rostral medial prefrontal cortex (mPFC) on reflexively evoked blinks and on classically conditioned eyelid responses in alert-behaving rabbits. The rostral mPFC was identified by its afferent projections from the medial half of the thalamic mediodorsal nuclear complex. Classical conditioning consisted of a delay paradigm using a 370-ms tone as the conditioned stimulus (CS) and a 100-ms air puff directed at the left cornea as the unconditioned stimulus (US). The CS coterminated with the US. Electrical train stimulation of the contralateral rostral mPFC produced a significant inhibition of air-puff-evoked blinks. The same train stimulation of the rostral mPFC presented during the CS–US interval for 10 successive conditioning sessions significantly reduced the generation of conditioned responses (CRs) as compared with values reached by control animals. Interestingly, the percentage of CRs almost reached control values when train stimulation of the rostral mPFC was removed from the fifth conditioning session on. The electrical stimulation of the rostral mPFC in well conditioned animals produced a significant decrease in the percentage of CRs. Moreover, the stimulation of the rostral mPFC was also able to modify the kinematics (latency, amplitude, and velocity) of evoked CRs. These results suggest that the rostral mPFC is a potent inhibitor of reflexively evoked and classically conditioned eyeblinks but that activation prevents only the expression of CRs, not their latent acquisition. Functional and behavioral implications of this inhibitory role of the rostral mPFC are discussed. PMID:17592148
Pharmacologic evaluation of pressor and visceromotor reflex responses to bladder distension.
Su, Xin; Riedel, Erin S; Leon, Lisa A; Laping, Nicholas J
2008-01-01
Several mechanisms that are involved in acute rat bladder nociception were examined. The nociceptive response was measured by analyzing both cardiovascular and visceromotor reflex responses to urinary bladder distension. The contributions of micro-opioid receptor, kappa-opioid receptor, sodium channels, muscarinic receptors, and cyclooxygenase, were explored with morphine, U50,488, mexiletine, oxybutynin, and naproxen, respectively. Female Sprague-Dawley rats were acutely instrumented with jugular venous, carotid arterial, and bladder cannulas. Needle electrodes were placed directly into the abdominal musculature to measure myoelectrical activity subsequent to repeated phasic urinary bladder distension (60 mmHg for 20 sec in 3 min intervals) under 1% isoflurane. Drugs were administered by i.v. bolus injection 2 min prior to distension. The analgesics morphine (ID50 0.69 mg/kg), U50,488 (1.34 mg/kg), and mexiletine (2.60 mg/kg) significantly inhibited the visceromotor reflex response to noxious urinary bladder distension. Oxybutynin also attenuated reflex responses to noxious urinary bladder distension to 41% of the maximal pressor response and 32% of the control visceromotor reflex response (3.01 and 5.05 mg/kg), respectively, indicating a role of muscarinic receptors in bladder nociception. Naproxen did not attenuate the pressor response, but moderately inhibited visceromotor reflex to 45% of control at 30 mg/kg (P < 0.05). Current results using the rat urinary bladder distension model are consistent with previous research demonstrating a role of the analgesics (morphine, U50,488, and mexiletine) in the inhibition of visceral nociceptive transmission. The utility of the reflex responses to urinary bladder distension may provide a method useful to examine mechanisms which target the bladder sensory pathway. (c) 2007 Wiley-Liss, Inc.
Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.
ERIC Educational Resources Information Center
Myklebust, Barbara M.; Gottlieb, Gerald L.
1993-01-01
When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…
Escobar-Corona, Carlos; Torres-Castillo, Sergio; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael; Quiroz-González, Salvador
2017-05-01
This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Persistence of deep-tendon reflexes during partial cataplexy.
Barateau, Lucie; Pizza, Fabio; Lopez, Régis; Antelmi, Elena; Plazzi, Giuseppe; Dauvilliers, Yves
2018-05-01
Deep-tendon reflexes are abolished during generalized cataplexy, but whether this is the case in partial cataplexy currently remains unknown. Partial cataplexy may mimic other neurologic/psychiatric phenomena, and knowledge of the reflexes status may provide information for differential diagnosis. We assessed whether deep-tendon reflexes are persistent during partial cataplexy. Five drug-free patients with typical diagnoses of narcolepsy and clear-cut partial cataplexy were diagnosed in Reference Narcolepsy Centers in France and Italy. Biceps and patellar reflexes were elicited by physicians in charge and video-documented during cataplexy. Reflexes were assessed several times for each patient in different conditions and for various localizations of cataplexy. The absence of tendon reflexes and complete loss of muscle tone during generalized cataplexy was confirmed, but the persistence of those reflexes during several partial cataplectic attacks at different ages, gender, localization of cataplexy (upper limbs, face) and reflexes (biceps, patellar) in drug-naive or withdrawal conditions was documented. The persistence of tendon reflexes during several partial cataplexy episodes contrasts with their absence during generalized cataplexy. This discovery has clinical implications: the persistence of tendon reflexes does not rule out cataplexy diagnosis for partial attacks, whereas their transient abolishment or persistence during generalized attacks indicates cataplexy or pseudocataplexy, respectively. Copyright © 2018. Published by Elsevier B.V.
Hoseini, Najmeh; Koceja, David M; Riley, Zachary A
2011-10-24
Spasticity in chronic hemiparetic stroke patients has primarily been treated pharmacologically. However, there is increasing evidence that physical rehabilitation can help manage hyper-excitability of reflexes (hyperreflexia), which is a primary contributor to spasticity. In the present study, one chronic hemiparetic stroke patient operantly conditioned the soleus H-reflex while training on a balance board for two weeks. The results showed a minimal decrease in the Hmax-Mmax ratio for both the affected and unaffected limb, indicating that the H-reflex was not significantly altered with training. Alternatively, paired-reflex depression (PRD), a measure of history-dependent changes in reflex excitability, could be conditioned. This was evident by the rightward shift and decreased slope of reflex excitability in the affected limb. The non-affected limb decreased as well, although the non-affected limb was very sensitive to PRD initially, whereas the affected limb was not. Based on these results, it was concluded that PRD is a better index of hyperreflexia, and this measurement could be more informative of synapse function than simple H-reflexes. This study presents a novel and non-pharmacological means of managing spasticity that warrants further investigation with the potential of being translated to the clinic. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Khosrawi, Saeid; Fallah, Salman
2013-03-01
The H-reflex is a useful electrophysiological procedure for evaluating the status of the peripheral nervous system, especially at the proximal segment of the peripheral nerve. The purpose of this study is to investigate the relation between triceps surae H-reflex and M- response latencies and thigh length in normal population, in order to determine if there is any regression equation between them. After screening 75 volunteers by considering inclusion and exclusion criteria, 72 of them were selected to enroll into our study (34 men and 38 women with the mean age of 36.04 ± 7.7 years). In all of the subjects H-reflex and M-response latencies were recorded by standard electrophysiological techniques and thigh length was measured. Finally, our data was analyzed for its relations with respect to ages in both sexes by appropriate statistical and mathematical methods. Mean ± SD for H-reflex latency was 27.94 ± 1.6 ms. We found a significant correlation between H-reflex latency and M-latency (r = 0.28), no significant correlation was found between H-reflex latency and thigh length (r = -0.051). Finally based on our findings we introduce a new formula in this paper. We found a significant correlation among of M-response latency and other variables (H-reflex latency and thigh length). Despite this it was eliminated from our formula. The relationship between H-reflex latency and age was significant. Further studies are required to delineate the clinical usage and interpretation of the formula, which we found in this study.
[Comparative study on the reflex responses of carotid and aortic baroreceptors in the rabbit].
Li, Z; Ho, S Y
1989-08-01
In 81 anesthetized rabbits, the baroreflex control of heart rate (HR), hind-limb vascular resistance (HVR) and renal sympathetic nerve activity (RSNA) was observed during arterial baroreceptor loading and unloading by intravenously injecting phenylephrine (PE) and nitroprusside (NP). The results were as follows: (1) An increase of arterial pressure with PE caused reduction in HR, HVR and RSNA, while a decrease of arterial pressure with NP evoked opposite responses. These reflex responses were reproducible. (2) By either carotid baroreceptor denervation (CBRX) or aortic baroreceptor denervation (ABRX), the reflex changes of HR induced by injecting PE and NP were impaired (P less than 0.01), while the reflex responses in HVP remained unchanged. Despite of the enhanced basal RSNA following ABRX or CBRX, the magnitude of reflex inhibition in RSNA during injecting NP was similar to that before denervation, whereas that of the reflex excitation in RSNA during injecting NP was reduced (P less than 0.05). (3) After complete sino-aortic denervation (SAD), the change of arterial pressure following PE or NP injection was enhanced, but the reflex changes in HR, HVR and RSNA were significantly diminished (P less than 0.001). (4) Vagotomy abolished the residual reflex changes observed after SAD. The results indicate that the aortic and carotid baroreceptors may regulate HR in a simple additive manner, while the aortic baroreceptor seems to be more important. Furthermore, both the aortic and carotid baroreceptors may play important roles for the reflex control of HVR and RSNA, and operate mutually by the way of inhibitory summation.
Indicators used in livestock to assess unconsciousness after stunning: a review.
Verhoeven, M T W; Gerritzen, M A; Hellebrekers, L J; Kemp, B
2015-02-01
Assessing unconsciousness is important to safeguard animal welfare shortly after stunning at the slaughter plant. Indicators that can be visually evaluated are most often used when assessing unconsciousness, as they can be easily applied in slaughter plants. These indicators include reflexes originating from the brain stem (e.g. eye reflexes) or from the spinal cord (e.g. pedal reflex) and behavioural indicators such as loss of posture, vocalisations and rhythmic breathing. When physically stunning an animal, for example, captive bolt, most important indicators looked at are posture, righting reflex, rhythmic breathing and the corneal or palpebral reflex that should all be absent if the animal is unconscious. Spinal reflexes are difficult as a measure of unconsciousness with this type of stunning, as they may occur more vigorous. For stunning methods that do not physically destroy the brain, for example, electrical and gas stunning, most important indicators looked at are posture, righting reflex, natural blinking response, rhythmic breathing, vocalisations and focused eye movement that should all be absent if the animal is unconscious. Brain stem reflexes such as the cornea reflex are difficult as measures of unconsciousness in electrically stunned animals, as they may reflect residual brain stem activity and not necessarily consciousness. Under commercial conditions, none of the indicators mentioned above should be used as a single indicator to determine unconsciousness after stunning. Multiple indicators should be used to determine unconsciousness and sufficient time should be left for the animal to die following exsanguination before starting invasive dressing procedures such as scalding or skinning. The recording and subsequent assessment of brain activity, as presented in an electroencephalogram (EEG), is considered the most objective way to assess unconsciousness compared with reflexes and behavioural indicators, but is only applied in experimental set-ups. Studies performed in an experimental set-up have often looked at either the EEG or reflexes and behavioural indicators and there is a scarcity of studies that correlate these different readout parameters. It is recommended to study these correlations in more detail to investigate the validity of reflexes and behavioural indicators and to accurately determine the point in time at which the animal loses consciousness.
The development of the pupillary light reflex and menace response in neonatal lambs and kids.
Raoofi, Afshin; Mirfakhraie, Pejman; Yourdkhani, Sorush
2011-03-01
The aim of this study was to investigate the development of the pupillary light reflex and menace response in neonatal lambs and goat kids. Thirty lambs and 33 kids were assessed daily from birth until the pupillary light reflex and menace response had become established. All animals had a controlled pupillary light reflex within 20 h of birth. Lambs and kids had developed menace responses by 8 ± 3 and 14 ± 2 days, respectively. The Mann-Whitney test revealed a significant difference (P < 0.001) in the ages at which lambs and kids developed a menace response. Male kids developed this response significantly (P = 0.006) later than females. There was no sex difference in the menace response in the lambs. Overall, the findings indicated that lambs develop a menace response earlier than kids, and female kids develop this response more rapidly than their male counterparts. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tudury, Eduardo Alberto; de Figueiredo, Marcella Luiz; Fernandes, Thaiza Helena Tavares; Araújo, Bruno Martins; Bonelli, Marília de Albuquerque; Diogo, Camila Cardoso; Silva, Amanda Camilo; Santos, Cássia Regina Oliveira; Rocha, Nadyne Lorrayne Farias Cardoso
2017-02-01
Objectives This study aimed to test the extensor carpi radialis and cranial tibial reflexes in cats before and after anesthetic block of the brachial and lumbosacral plexus, respectively, to determine whether they depend on a myotatic reflex arc. Methods Fifty-five cats with a normal neurologic examination that were referred for elective gonadectomy were divided into group 1 (29 cats) for testing the extensor carpi radialis reflex, and group 2 (26 cats) for testing the cranial tibial reflex. In group 1, the extensor carpi radialis reflex was tested after anesthetic induction and 15 mins after brachial plexus block with lidocaine. In group 2, the cranial tibial, withdrawal and patellar reflexes were elicited in 52 hindlimbs and retested 15 mins after epidural anesthesia. Results In group 1, before the anesthetic block, 55.17% of the cats had a decreased and 44.83% had a normal extensor carpi radialis reflex. After the block, 68.96% showed a decreased and 27.59% a normal reflex. No cat had an increased or absent reflex before anesthetic block. In group 2, prior to the anesthetic block, 15.38% of the cats had a decreased cranial tibial reflex and 84.62% had a normal response, whereas after the block it was decreased in 26.92% and normal in 73.08% of the cats. None of the cats had an increased or absent reflex. Regarding the presence of both reflexes before and after anesthetic block, there was no significant difference at 1% ( P = 0.013). Conclusions and relevance The extensor carpi radialis and cranial tibial reflexes in cats are not strictly myotatic reflexes, as they are independent of the reflex arc, and may be idiomuscular responses. Therefore, they are not reliable for neurologic examination in this species.
[Orienting reflex: "targeting reaction" and "searchlight of attention"].
Sokolov, E N; Nezlina, N I; Polianskiĭ, V B; Evtikhin, D V
2001-01-01
The concept of orienting reflex based on the principle of vector coding of cognitive and executive processes is proposed. The orienting reflex to non-signal and signal stimuli is a set of orienting reactions: motor, autonomic, neuronal, and subjective emphasizing new and significant stimuli. Two basic mechanisms can be identified within the orienting reflex: a "targeting reaction" and a "searchlight of attention". In the visual system the first one consists in a foveation of a target stimulus. The foveation is performed with participation of premotor neurons excited by saccadic command neurons of the superior colliculi. The "searchlight of attention" is based on the resonance of gamma-oscillations in the reticular thalamus selectively enhancing responses of cortical neurons (involuntary attention). The novelty signal is generated in novelty neurons of the hippocampus, which are selectively tuned to a repeatedly presented standard stimulus. The selective tuning is caused by the depression of plastic synapses representing a "neuronal model" of the standard stimulus. A mismatch of the novel stimulus with the established neuronal model gives rise to a "novelty signal" enhancing the novel input. The novelty signal inhibits current conditioned reflexes (external inhibition) contributing to redirecting the behavior. By triggering the expression of early genes the novelty signal initiates the formation of the long-term memory connected with neoneurogenesis.
Stance control is not affected by paresis and reflex hyperexcitability: the case of spastic patients
Nardone, A; Galante, M; Lucas, B; Schieppati, M
2001-01-01
OBJECTIVES—Spastic patients were studied to understand whether stance unsteadiness is associated with changes in the control of voluntary force, muscle tone, or reflex excitability, rather than to abnormal posture connected to the motor deficit itself. METHODS—Twenty four normal subjects, 12 patients affected by amyotrophic lateral sclerosis (ALS), seven by spastic paraparesis, and 14 by hemiparesis were studied. All patients featured various degrees of spasticity and paresis but were free from clinically evident sensory deficits. Body sway during quiet upright stance was assessed through a stabilometric platform under both eyes open (EO) and eyes closed (EC) conditions. The sudden rotation of a supporting platform, in a toe up and toe down direction respectively, evoked short (SLR) and medium latency (MLR) reflex responses to stretch of the soleus or the tibialis anterior (TA) muscle. RESULTS—No relation was found between clinical findings (tone, muscle strength, tendon reflexes, plantar response, and duration of disease) and body sway. On average, all patient groups exhibited a forward shift of the centre of foot pressure (CFP) with respect to normal subjects; in addition, paraparetic and to a much larger extent hemiparetic patients showed a lateral shift of CFP. Body sway area was significantly increased only in the hemiparetic patients. No relation was found between position of the CFP and sway within any patient group. Soleus SLR was increased in all patients with respect to normal subjects. TA SLR was often seen in both patients with ALS and paraparetic patients, but only rarely in normal subjects and hemiparetic patients. However, no relation was found between amplitude of soleus or TA SLRs and stabilometric variables. The frequency and size of soleus MLR and TA MLR were decreased in all patients. These responses were decreased in size and not modulated by background EMG in the affected leg of hemiparetic patients, suggesting a disturbed control of spinal reflexes fed by spindle group II afferent fibres. CONCLUSIONS—It is proposed that body posture, paresis, or monosynaptic reflex hyperexcitability do not affect the control of equilibrium during quiet upright stance. In hemiparetic patients, the decreased amplitude of MLRs might be the main cause of the large postural instability. The results are congruent with the hypothesis of a role for group II afferent input in the reflex control of equilibrium. PMID:11309458
Angell-James, Jennifer E.; Daly, M. de Burgh
1973-01-01
1. The effects on respiration and pulse interval of stimulation of the carotid body chemoreceptors before, during and after stimulation of receptors in the nose have been studied in the anaesthetized dog. 2. Stimulation of a carotid body by infusion of cyanide into the ipsi-lateral common carotid artery causes hyperpnoea and either an increase, decrease or no change in pulse interval. 3. Excitation of receptors in the nasal mucosa leads to reflex apnoea or a reduction in breathing, and an increase in pulse interval. 4. When the carotid bodies are excited by the same dose of cyanide during stimulation of the nasal mucosa, the chemoreceptor-respiratory response is abolished or reduced in size compared with the control effect. On the other hand, the chemoreceptor-cardio-inhibitory response is considerably enhanced. 5. The potentiated cardio-inhibitory response of combined chemoreceptor and nasal stimulation could not be accounted for by the change in pulmonary ventilation, arterial PO2 or PCO2, or mean arterial blood pressure. 6. These results indicate that excitation of the nasal reflex inhibits the chemoreceptor-respiratory reflex response but facilitates the chemoreceptor-cardio-inhibitory reflex response. The possible sites of these interactions between the nasal and chemoreceptor reflexes are discussed. PMID:4689961
Drummond, Peter D
2007-01-01
What is already known about this subject Repeated cycles of electrical stimulation inhibit cutaneous vasoconstriction to noradrenaline, but the mechanism is unknown. Investigating this is important because peripheral electrical stimulation is useful for pain modulation and appears to assist cutaneous wound healing. What this study adds Intermittent, brief electrical stimulation of the forearm over a 10-day period inhibited vasoconstriction and axon-reflex vasodilation to noradrenaline, but did not affect vasoconstriction to vasopressin or axon-reflex vasodilation to histamine. Thus, electrical stimulation may evoke a specific reduction in responsiveness to noradrenaline. Aim To investigate whether desensitization to the vasomotor effects of noradrenaline is a specific effect of electrical stimulation. Methods Three sites on the forearm of 10 healthy volunteers were stimulated with 0.2 mA direct current for 2 min twice daily for 10 days. Noradrenaline and histamine were then displaced from ring-shaped iontophoresis chambers into two of the pretreated sites and two untreated sites on the contralateral forearm. Axon-reflex vasodilation was measured from the centre of the ring described by the iontophoresis chamber with a laser Doppler flowmeter. One or two days later, noradrenaline and vasopressin were introduced into pretreated and untreated sites by iontophoresis, and vasoconstriction at sites of administration was measured in the heated forearm. Results The pretreatment blocked vasoconstriction to noradrenaline [median increase in flow 1%, interquartile range (IR) −41 to 52%; median decrease at the untreated site 53%, IR. −70 to −10%; P < 0.05], but did not block vasoconstriction to vasopressin (median decrease 42% at the untreated site and 45% at the pretreated site). Axon-reflex vasodilation to noradrenaline was diminished at the pretreated site (median increase in flow 33%, IR 2–321%; untreated site 247%, IR 31–1087%; P < 0.05). However, axon-reflex vasodilation to histamine did not differ significantly between the pretreated site (median increase 1085%) and the untreated site (median increase 1345%). Conclusions The conditioning pretreatment appears to evoke a specific decrease in responsiveness to noradrenaline. Repeated cycles of electrical stimulation may downregulate neural and vascular responses to noradrenaline by repetitively activating cutaneous sympathetic nerve fibres. PMID:17441931
Robotic investigation on effect of stretch reflex and crossed inhibitory response on bipedal hopping
Rosendo, Andre; Ikemoto, Shuhei; Shimizu, Masahiro; Hosoda, Koh
2018-01-01
To maintain balance during dynamic locomotion, the effects of proprioceptive sensory feedback control (e.g. reflexive control) should not be ignored because of its simple sensation and fast reaction time. Scientists have identified the pathways of reflexes; however, it is difficult to investigate their effects during locomotion because locomotion is controlled by a complex neural system and current technology does not allow us to change the control pathways in living humans. To understand these effects, we construct a musculoskeletal bipedal robot, which has similar body structure and dynamics to those of a human. By conducting experiments on this robot, we investigate the effects of reflexes (stretch reflex and crossed inhibitory response) on posture during hopping, a simple and representative bouncing gait with complex dynamics. Through over 300 hopping trials, we confirm that both the stretch reflex and crossed response can contribute to reducing the lateral inclination during hopping. These reflexive pathways do not use any prior knowledge of the dynamic information of the body such as its inclination. Beyond improving the understanding of the human neural system, this study provides roboticists with biomimetic ideas for robot locomotion control. PMID:29593088
Role of stretch reflex in voluntary movements. [of human foot
NASA Technical Reports Server (NTRS)
Gottlieb, G. L.; Agarwal, G. C.
1975-01-01
The stretch reflex is often described as a spinal servomechanism, a device for assisting in the regulation of muscle length. Observation of the EMG response to mechanical interruption of voluntary movements fails to demonstrate a significant role for spinal reflexes at 40 msec latency. Two functional responses with latencies of 120 msec and 200 msec, implying supraspinal mediation, are observed.
Johnson, P J; Bornstein, J C; Burcher, E
1998-01-01
The role of NK1 and NK3 receptors in synaptic transmission between myenteric neurons during motility reflexes in the guinea-pig ileum was investigated by recording intracellularly the reflex responses of the circular muscle to distension or compression of the mucosal villi. Experiments were performed in a three-chambered organ bath that enabled drugs to be selectively applied to different sites along the reflex pathways.When applied in the recording chamber, an NK1 receptor antagonist, SR140333 (100 nM), reduced by 40–50% the amplitudes of inhibitory junction potentials (i.j.ps) evoked in the circular muscle by activation of descending reflex pathways. This effect was abolished when synaptic transmission in the stimulus region was blocked with physiological saline containing 0.1 mM Ca2+ plus 10 mM Mg2+, leaving only the component of the descending reflex pathway conducted via long anally directed collaterals of intrinsic sensory neurons.SR140333 (100 nM) had no effect on descending reflex i.j.ps when applied to the stimulus region. Ascending reflexes were also unaffected by SR140333 in the stimulus region or between the stimulus and recording sites.Septide (10 nM), an NK1 receptor agonist, enhanced descending reflexes by 30–60% when in the recording chamber. [Sar9,Met(O2)11]substance P had no effect at 10 nM, but potentiated distension-evoked reflexes at 100 nM.A selective NK3 receptor antagonist, SR142801 (100 nM), when applied to the stimulus region, reduced the amplitude of descending reflex responses to compression by 40%, but had no effect on responses to distension. SR142801 (100 nM) had no effect when applied to other regions of the descending reflex pathways.SR142801 (100 nM) only inhibited ascending reflexes when applied at the recording site. However, after nicotinic transmission in the stimulus region was blocked, SR142801 (100 nM) at this site reduced responses to compression.Contractions of the circular muscle of isolated rings of ileum evoked by low concentrations of septide, but not [Sar9,Met(O2)11]substance P, were potentiated by tetrodotoxin (300 nM).Contractile responses evoked by an NK3 receptor agonist, senktide, were non-competitively inhibited by SR142801. After excitatory neuromuscular transmission was blocked, senktide produced inhibitory responses that were also antagonised by SR142801, but to a lesser extent and in an apparently competitive manner.These results indicate that tachykinins acting via NK1 receptors partly mediate transmission to inhibitory motor neurons. NK3 receptors play a role in transmission from intrinsic sensory neurons and from ascending interneurons to excitatory motor neurons during motility reflexes. PMID:9723948
Lujan, Heidi L; Palani, Gurunanthan; Chen, Ying; Peduzzi, Jean D; Dicarlo, Stephen E
2009-05-01
Cholera toxin B subunit conjugated to saporin (SAP, a ribosomal inactivating protein that binds to and inactivates ribosomes) was injected in both stellate ganglia to evaluate the physiological response to targeted ablation of cardiac sympathetic neurons. Resting cardiac sympathetic activity (cardiac sympathetic tonus), exercise-induced sympathetic activity (heart rate responses to graded exercise), and reflex sympathetic activity (heart rate responses to graded doses of sodium nitroprusside, SNP) were determined in 18 adult conscious Sprague-Dawley male rats. Rats were randomly divided into the following three groups (n = 6/group): 1) control (no injection), 2) bilateral stellate ganglia injection of unconjugated cholera toxin B (CTB), and 3) bilateral stellate ganglia injection of cholera toxin B conjugated to SAP (CTB-SAP). CTB-SAP rats, compared with control and CTB rats, had reduced cardiac sympathetic tonus and reduced heart rate responses to graded exercise and graded doses of SNP. Furthermore, the number of stained neurons in the stellate ganglia and spinal cord (segments T(1)-T(4)) was reduced in CTB-SAP rats. Thus CTB-SAP retrogradely transported from the stellate ganglia is effective at ablating cardiac sympathetic neurons and reducing resting, exercise, and reflex sympathetic activity. Additional studies are required to further characterize the physiological responses to this procedure as well as determine if this new approach is safe and efficacious for the treatment of conditions associated with excess sympathetic activity (e.g., autonomic dysreflexia, hypertension, heart failure, and ventricular arrhythmias).
Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat.
Hurteau, Marie-France; Thibaudier, Yann; Dambreville, Charline; Danner, Simon M; Rybak, Ilya A; Frigon, Alain
2018-04-25
When the foot contacts an obstacle during locomotion, cutaneous inputs activate spinal circuits to ensure dynamic balance and forward progression. In quadrupeds, this requires coordinated reflex responses between the four limbs. Here, we investigated the patterns and phasic modulation of cutaneous reflexes in forelimb and hindlimb muscles evoked by inputs from all four limbs. Five female cats were implanted to record muscle activity and to stimulate the superficial peroneal and superficial radial nerves during locomotion. Stimulating these nerves evoked short-, mid-, and longer-latency excitatory and/or inhibitory responses in all four limbs that were phase-dependent. The largest responses were generally observed during the peak activity of the muscle. Cutaneous reflexes during mid-swing were consistent with flexion of the homonymous limb and accompanied by modification of the stance phases of the other three limbs, by coactivating flexors and extensors and/or by delaying push-off. Cutaneous reflexes during mid-stance were consistent with stabilizing the homonymous limb by delaying and then facilitating its push-off and modifying the support phases of the homolateral and diagonal limbs, characterized by coactivating flexors and extensors, reinforcing extensor activity and/or delaying push-off. The shortest latencies of homolateral and diagonal responses were consistent with fast-conducting disynaptic or trisynaptic pathways. Descending homolateral and diagonal pathways from the forelimbs to the hindlimbs had a higher probability of eliciting responses compared with ascending pathways from the hindlimbs to the forelimbs. Thus, in quadrupeds, intralimb and interlimb reflexes activated by cutaneous inputs ensure dynamic coordination of the four limbs, producing a whole-body response. SIGNIFICANCE STATEMENT The skin contains receptors that, when activated, send inputs to spinal circuits, signaling a perturbation. Rapid responses, or reflexes, in muscles of the contacted limb and opposite homologous limb help maintain balance and forward progression. Here, we investigated reflexes during quadrupedal locomotion in the cat by electrically stimulating cutaneous nerves in each of the four limbs. Functionally, responses appear to modify the trajectory or stabilize the movement of the stimulated limb while modifying the support phase of the other limbs. Reflexes between limbs are mediated by fast-conducting pathways that involve excitatory and inhibitory circuits controlling each limb. The comparatively stronger descending pathways from cervical to lumbar circuits controlling the forelimbs and hindlimbs, respectively, could serve a protective function. Copyright © 2018 the authors 0270-6474/18/384104-19$15.00/0.
Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E
2009-09-20
The sense of taste is crucial in an animal's determination as to what is edible and what is not. This gustatory function is especially important in goldfish, who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe, which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons that have radially directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca(++)-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (+/-)-alpha-amino-3-hydroxy- 5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediate neurotransmission between reflex interneurons and vagal motoneurons. Thus, the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system.
Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E.
2009-01-01
The sense of taste is crucial in an animal’s determination as to what is edible and what is not. This gustatory function is especially important in goldfish who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons which have radially-directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca++-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (±)-α-amino-3-hydroxy-5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediates neurotransmission between reflex interneurons and vagal motoneurons. Thus the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system. PMID:19598285
Opioid modulation of reflex versus operant responses following stress in the rat.
King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P
2007-06-15
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.
Danziger, Zachary C; Grill, Warren M
2017-08-15
The lower urinary tract is regulated by reflexes responsible for maintaining continence and producing efficient voiding. It is unclear how sensory information from the bladder and urethra engages differential, state-dependent reflexes to either maintain continence or promote voiding. Using a new in vivo experimental approach, we quantified how sensory information from the bladder and urethra are integrated to switch reflex responses to urethral sensory feedback from maintaining continence to producing voiding. The results demonstrate how sensory information regulates state-dependent reflexes in the lower urinary tract and contribute to our understanding of the pathophysiology of urinary retention and incontinence where sensory feedback may engage these reflexes inappropriately. Lower urinary tract reflexes are mediated by peripheral afferents from the bladder (primarily in the pelvic nerve) and the urethra (in the pudendal and pelvic nerves) to maintain continence or initiate micturition. If fluid enters the urethra at low bladder volumes, reflexes relax the bladder and evoke external urethral sphincter (EUS) contraction (guarding reflex) to maintain continence. Conversely, urethral flow at high bladder volumes, excites the bladder (micturition reflex) and relaxes the EUS (augmenting reflex). We conducted measurements in a urethane-anaesthetized in vivo rat preparation to characterize systematically the reflexes evoked by fluid flow through the urethra. We used a novel preparation to manipulate sensory feedback from the bladder and urethra independently by controlling bladder volume and urethral flow. We found a distinct bladder volume threshold (74% of bladder capacity) above which flow-evoked bladder contractions were 252% larger and evoked phasic EUS activation 2.6 times as often as responses below threshold, clearly demonstrating a discrete transition between continence (guarding) and micturition (augmenting) reflexes. Below this threshold urethral flow evoked tonic EUS activity, indicative of the guarding reflex, that was proportional to the urethral flow rate. These results demonstrate the complementary roles of sensory feedback from the bladder and urethra in regulating reflexes in the lower urinary tract that depend on the state of the bladder. Understanding the neural control of functional reflexes and how they are mediated by sensory information in the bladder and urethra will open new opportunities, especially in neuromodulation, to treat pathologies of the lower urinary tract. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Emotion, reflexivity and social change in the era of extreme fossil fuels.
Davidson, Debra J
2018-05-09
Reflexivity is an important sociological lens through which to examine the means by which people engage in actions that contribute to social reproduction or social elaboration. Reflexivity theorists have largely overlooked the central place of emotions in reflexive processing, however, thus missing opportunities to enhance our understanding of reflexivity by capitalizing on recent scholarship on emotions emanating from other fields of inquiry. This paper explores the role of emotion in reflexivity, with a qualitative analysis of social responses to hydraulic fracturing in Alberta, Canada, utilizing narrative analysis of long-form interviews with rural landowners who have experienced direct impacts from hydraulic fracturing, and have attempted to voice their concerns in the public sphere. Based on interviews with a selection of two interview participants, the paper highlights the means by which emotions shape reflexivity in consequential ways, beginning with personal and highly individualized emotional responses to contingent situations, which then factor into the social interactions engaged in the pursuit of personal projects. The shared emotional context that emerges then plays a substantial role in shaping outcomes and their implications for social stasis or change. This study exemplifies the extent to which reflexive processing in response to breaches in the social order can be emotionally tumultuous affairs, constituting a significant personal toll that many may be unwilling to pay. © London School of Economics and Political Science 2018.
The behaviour of the long-latency stretch reflex in patients with Parkinson's disease
Rothwell, Jc; Obeso, Ja; Traub, Mm; Marsden, Cd
1983-01-01
The size of the long-latency stretch reflex was measured in a proximal (triceps) and distal (flexor pollicis longus) muscle in 47 patients with Parkinson's disease, and was compared with that seen in a group of 12 age-matched normal control subjects. The patients were classified clinically into four groups according to the degree of rigidity at the elbow or tremor. Stretch reflexes were evaluated while the subject was exerting a small force against a constant preload supplied by a torque motor, and the size of the reflex response was measured as fractional increase over basal levels of activity. When stretches were given at random intervals by increasing the force exerted by the motor by a factor of 2 or 3, there was a clear trend for the more severely affected patients to have larger long latency responses in the triceps muscle, although there was no change in the size of the short-latency, spinal component of the response. In contrast, there was no change in the size of the long-latency response of the flexor pollicis longus in any group of patients with Parkinson's disease. Despite any differences in reflex size, the inherent muscle stiffness of both muscles appeared to be normal in all groups of patients with Parkinson's disease, since the displacement trajectory of the limb following the force increase was the same as control values in the short (25 ms) period before reflex compensation could intervene. In 20 of the patients and in seven of the control subjects, servo-controlled, ramp positional disturbances were given to the thumb. Up to a velocity of 300°/s, the size of the long-latency stretch reflex was proportional to the log velocity of stretch. This technique revealed, in both moderately and severely rigid patients, increases in the reflex sensitivity of the flexor pollicis longus, which had not been clear using step torque stretches alone. However, whether using ramp or step displacements, long latency stretch reflex gain was not closely related to rigidity; reflex size was within the normal range in many patients with severe rigidity. Enhanced long latency stretch reflexes thus contribute to, but may not be solely responsible for, rigidity in Parkinson's disease. PMID:6842198
König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.
"On Becoming a Critically Reflexive Practitioner" Redux: What Does It Mean to "Be" Reflexive?
ERIC Educational Resources Information Center
Cunliffe, Ann L.
2016-01-01
In this commentary, Cunliffe states that is convinced that reflexivity offers a way of foregrounding our moral and ethical responsibility for people and for the world around us. To "BE" reflexive was defined as embracing "subjective understandings of reality as a basis for thinking more critically about the impact of our…
Plasticity of the human otolith-ocular reflex
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Smith, T. R.; Furman, J. M.
1992-01-01
The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.
Sadeghi, Soroush G.; Minor, Lloyd B.
2011-01-01
Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels. PMID:21148096
Sadeghi, Soroush G; Minor, Lloyd B; Cullen, Kathleen E
2011-02-01
Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels.
The role of nervus intermedius in side specific nasal responses.
Nichani, J R; Malik, V; Woolford, T J; Ramsden, R T; Homer, J J
2010-03-02
Nervus intermedius (NI) dysfunction is common in patients who have had vestibular schwannoma (VS) surgery. Such patients have a unilateral parasympathetic-denervated nasal cavity. A number of side-specific nasal reflexes have been demonstrated in normal individuals, including hand cold-water immersion. It is not understood whether these reflexes have parasympathetic or sympathic efferent pathways. We aimed to evaluate the side specific nasal reflex to cold-water immersion in post-operative VS patients with NI dysfunction, in order to determine the nature of the efferent pathway of these reflexes. Side specific responses to cold-water immersion were tested by acoustic rhinometry in 10 normal individuals and 18 patients with NI dysfunction (proven by Schirmer s test) after VS surgery. A consistent pattern of ipsilateral congestion and contralateral decongestion after the cold-water immersion was seen in normal individuals (p smaller than 0.001). We found no consistent response in VS patients both ipsilateral and contralateral to the side of NI dysfunction. We confirm the consistent side-specific nasal reflexes to cold-water hand immersion in normal individuals. This is disturbed in patients with NI dysfunction. We have also shown unexpectantly that the contralateral side-specific reflex is disturbed in these patients. These data suggest that the reflex is parasympathetic and crosses the midline.
Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige
2005-05-01
The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
NASA Technical Reports Server (NTRS)
Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869
Locomotor training improves premotoneuronal control after chronic spinal cord injury.
Knikou, Maria; Mummidisetty, Chaithanya K
2014-06-01
Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking. Copyright © 2014 the American Physiological Society.
Baudry, Stéphane; Gaillard, Vinciane
2014-02-01
This study was designed to investigate the influence of a cognitive task on the responsiveness of the homonymous Ia afferents pathway during upright standing in young and elderly adults. Twelve young and twelve elderly adults stood upright on a foam surface positioned over a force platform, and performed a colour-naming test (cognitive task) with two cognitive loads: congruent and incongruent colour conditions. The rate of correct response in naming colour (accuracy) and associated reaction time (RT) were recorded for the cognitive task. The excursion of the centre of pressure and surface electromyogramme (EMG) of leg muscles were measured. Modulation in the efficacy of homonymous Ia afferents to discharge spinal motor neurones was assessed by means of the Hoffmann (H) reflex method. The accuracy and RT were similar in the congruent condition between young and elderly adults (p > 0.05), and increased for both age groups in the incongruent condition, but more so for elderly adults (p = 0.014). In contrast, the H reflex amplitude did not change with the cognitive load. The excursions of the centre of pressure in the sagittal plane and muscle EMG did not vary with colour conditions in both groups (p > 0.05). This study indicates a lack of modulation in the efficacy of group Ia afferent to activate soleus motor neurones with the cognitive demand of a concurrent task during upright standing in young and elderly adults.
Mutoh, T; Kanamaru, A; Tsubone, H; Nishimura, R; Sasaki, N
2000-03-01
To characterize and determine the sensory innervation of respiratory reflexes elicited by nasal administration of halothane to dogs. 10 healthy Beagles. Dogs underwent permanent tracheostomy and, 2 to 3 weeks later, were anesthetized with thiopental and alpha-chloralose administered IV. The nasal passages were functionally isolated so that halothane could be administered to the nasal passages while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of halothane at concentrations of 1.25, 1.75, and 2.5 times the minimum alveolar concentration (MAC), and 5% (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of 5% halothane were also recorded following transection of the infraorbital nerve, transection of the caudal nasal nerve, and nasal administration of lidocaine. Nasal administration of halothane induced an inhibition of breathing characterized by a dose-dependent increase in expiratory time and a resultant decrease in expired volume per unit time. Effects were noticeable immediately after the onset of halothane administration and lasted until its cessation. Reflex responses to halothane administration were attenuated by transection of the caudal nasal nerve and by nasal administration of lidocaine, but transection of the infraorbital nerve had no effect. Nasal administration of halothane at concentrations generally used for mask induction of anesthesia induces reflex inhibition of breathing. Afferent fibers in the caudal nasal nerve appear to play an important role in the reflex inhibition of breathing induced by halothane administration.
A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.
Bach, Dominik R
2015-04-07
In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
van der Krogt, Hanneke; Klomp, Asbjørn; de Groot, Jurriaan H; de Vlugt, Erwin; van der Helm, Frans Ct; Meskers, Carel Gm; Arendzen, J Hans
2015-03-13
Understanding movement disorder after stroke and providing targeted treatment for post stroke patients requires valid and reliable identification of biomechanical (passive) and neural (active and reflexive) contributors. Aim of this study was to assess test-retest reliability of passive, active and reflexive parameters and to determine clinical responsiveness in a cohort of stroke patients with upper extremity impairments and healthy volunteers. Thirty-two community-residing chronic stroke patients with an impairment of an upper limb and fourteen healthy volunteers were assessed with a comprehensive neuromechanical assessment protocol consisting of active and passive tasks and different stretch reflex-eliciting measuring velocities, using a haptic manipulator and surface electromyography of wrist flexor and extensor muscles (Netherlands Trial Registry number NTR1424). Intraclass correlation coefficients (ICC) and Standard Error of Measurement were calculated to establish relative and absolute test-retest reliability of passive, active and reflexive parameters. Clinical responsiveness was tested with Kruskal Wallis test for differences between groups. ICC of passive parameters were fair to excellent (0.45 to 0.91). ICC of active parameters were excellent (0.88-0.99). ICC of reflexive parameters were fair to good (0.50-0.74). Only the reflexive loop time of the extensor muscles performed poor (ICC 0.18). Significant differences between chronic stroke patients and healthy volunteers were found in ten out of fourteen parameters. Passive, active and reflexive parameters can be assessed with high reliability in post-stroke patients. Parameters were responsive to clinical status. The next step is longitudinal measurement of passive, active and reflexive parameters to establish their predictive value for functional outcome after stroke.
Chin, Brian; Nelson, Brady D; Jackson, Felicia; Hajcak, Greg
2016-01-01
Fear conditioning research on threat predictability has primarily examined the impact of temporal (i.e., timing) predictability on the startle reflex. However, there are other key features of threat that can vary in predictability. For example, the reinforcement rate (i.e., frequency) of threat is a crucial factor underlying fear learning. The present study examined the impact of threat reinforcement rate on the startle reflex and self-reported anxiety during a fear conditioning paradigm. Forty-five participants completed a fear learning task in which the conditioned stimulus was reinforced with an electric shock to the forearm on 50% of trials in one block and 75% of trials in a second block, in counter-balanced order. The present study also examined whether intolerance of uncertainty (IU), the tendency to perceive or experience uncertainty as stressful or unpleasant, was associated with the startle reflex during conditions of low (50%) vs. high (75%) reinforcement. Results indicated that, across all participants, startle was greater during the 75% relative to the 50% reinforcement condition. IU was positively correlated with startle potentiation (i.e., increased startle response to the CS+ relative to the CS-) during the 50%, but not the 75%, reinforcement condition. Thus, despite receiving fewer electric shocks during the 50% reinforcement condition, individuals with high IU uniquely demonstrated greater defense system activation when impending threat was more uncertain. The association between IU and startle was independent of state anxiety. The present study adds to a growing literature on threat predictability and aversive responding, and suggests IU is associated with abnormal responding in the context of uncertain threat. Copyright © 2015 Elsevier B.V. All rights reserved.
'Diving reflex' in man - Its relation to isometric and dynamic exercise.
NASA Technical Reports Server (NTRS)
Bergman, S. A., Jr.; Campbell, J. K.; Wildenthal, K.
1972-01-01
To test the influence of physical activity on the diving reflex, 10 normal men held their breath with their faces immersed in 15 C water during rest, bicycle exercise, and sustained isometric handgrip contraction. At all conditions, a slight but statistically significant elevation of blood pressure and a marked decrease in heart rate occurred during each dive. During moderate bicycle exercise heart rate fell more rapidly than at rest and the final level of bradycardia approached that achieved at rest, despite the fact that predive heart rates were much higher during exercise. When diving occurred in combination with isometric exercise, bradycardia was less severe than during resting dives and final heart rates could be represented as the sum of the expected responses to each intervention alone. In all conditions apnea without face immersion caused bradycardia that was less severe than during wet dives.
New insights into differential baroreflex control of heart rate in humans
NASA Technical Reports Server (NTRS)
Fadel, P. J.; Stromstad, M.; Wray, D. W.; Smith, S. A.; Raven, P. B.; Secher, N. H.
2003-01-01
Recent data indicate that bilateral carotid sinus denervation in patients results in a chronic impairment in the rapid reflex control of blood pressure during orthostasis. These findings are inconsistent with previous human experimental investigations indicating a minimal role for the carotid baroreceptor-cardiac reflex in blood pressure control. Therefore, we reexamined arterial baroreflex [carotid (CBR) and aortic baroreflex (ABR)] control of heart rate (HR) using newly developed methodologies. In 10 healthy men, 27 +/- 1 yr old, an abrupt decrease in mean arterial pressure (MAP) was induced nonpharmacologically by releasing a unilateral arterial thigh cuff (300 Torr) after 9 min of resting leg ischemia under two conditions: 1) ABR and CBR deactivation (control) and 2) ABR deactivation. Under control conditions, cuff release decreased MAP by 13 +/- 1 mmHg, whereas HR increased 11 +/- 2 beats/min. During ABR deactivation, neck suction was gradually applied to maintain carotid sinus transmural pressure during the initial 20 s after cuff release (suction). This attenuated the increase in HR (6 +/- 1 beats/min) and caused a greater decrease in MAP (18 +/- 2 mmHg, P < 0.05). Furthermore, estimated cardiac baroreflex responsiveness (DeltaHR/DeltaMAP) was significantly reduced during suction compared with control conditions. These findings suggest that the carotid baroreceptors contribute more importantly to the reflex control of HR than previously reported in healthy individuals.
Olfactory-corporeal reflex: description of a new reflex and its role in the erectile process.
Shafik, A
1997-01-01
The dog approaches the bitch and smells the vulva. The relationship which seems to exist between a special smell in the bitch and sexual arousal in the male dog was investigated. 12 male dogs and 25 bitches were studied. The bitches were divided into five equal groups, each representing 1 of the 5 phases of the estrous cycle. A vaginal swab that soaked in the bitches' vaginal secretions was divided into two pieces: one was sent for estradiol and progesterone determination, and the other was smelt by the male dog. The responses of the intracorporeal pressure (IP) and the electromyographic activity of the bulbo- and ischiocavernosus (BC, IC) muscles of the male dog to the smelling of bitch's vaginal odor were assessed. The pressure response was also determined 10 min and 1 h after either the nasal mucosa or the corporeal tissue was anesthetized. Elevated IP was recorded in 12 of 12, 10 of 12 and 8 of 12 dogs smelling vaginal swabs of bitches in metestrus (p < 0.001), estrus (p < 0.001), and diestrus (p < 0.01), respectively. No pressure response occurred when the vaginal swab was smelt while the nasal mucosa or the corporeal tissue was anesthetized. The BC and IC muscles exhibited no response to smelling of the vaginal swab of bitches in any phase of the estrous cycle. The results were reproducible. The study showed that the IP increased with smelling of vaginal secretions containing high progesterone levels, whereas estradiol-17 beta did not effect IP elevations. The higher the progesterone level, the greater the IP. The increased IP is not due to BC and IC muscle contraction. It is postulated that a reflex relationship exists between IP elevation and olfactory stimulation. This reflex response was reproducible and was not evoked when the two arms of the reflex were anesthetized. We call this reflex 'olfactory-corporeal reflex'. This reflex seems to prime the male dog for sexual intercourse.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Does diurnal variation in cough reflex testing exist in healthy young adults?
Perry, Sarah; Huckabee, Maggie-Lee
2017-05-01
The aim of this study was to investigate whether diurnal variation in cough reflex sensitivity exists in healthy young adults when a tidal-breathing method is used. Fifty-three participants (19-37 years) underwent cough reflex testing on two occasions: once in the morning (between 9 am - midday) and once in the afternoon (between 2-5 pm). The order of testing was counter-balanced. Within each assessment, participants inhaled successively higher citric acid concentrations via a facemask, with saline solution randomly interspersed to control for a placebo response. The lowest concentration that elicited a reflexive cough response was recorded. Morning cough thresholds (mean=0.6mol/L) were not different from afternoon cough thresholds (mean=0.6mol/L), p=0.16, T=101, r=-0.14. We found no evidence of diurnal variability in cough reflex testing. There was, however, an order effect irrespective of time of day, confirming that healthy participants are able to volitionally modulate their cough response. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic simulation of perturbation responses in a closed-loop virtual arm model.
Du, Yu-Fan; He, Xin; Lan, Ning
2010-01-01
A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.
Predictive control of intersegmental tarsal movements in an insect.
Costalago-Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L
2017-08-01
In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.
Shanks, Julia; Xia, Zhiqiu; Lisco, Steven J; Rozanski, George J; Schultz, Harold D; Zucker, Irving H; Wang, Han-Jun
2018-06-01
The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1-sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague-Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1-expressing afferent soma at the level of T1-T4 dorsal root ganglia pleura. This treatment abolished all sympatho-excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9-10 weeks post-RTX. These data suggest the presence of an excitatory pulmonary chemosensitive sympathetic afferent reflex. This finding may have important clinical implications in pulmonary conditions inducing sensory nerve activation such as pulmonary inflammation and inhalation of chemical stimuli. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Mutoh, T; Kanamaru, A; Suzuki, H; Tsubone, H; Nishimura, R; Sasaki, N
2001-03-01
To characterize respiratory reflexes elicited by nasal administration of sevoflurane (Sevo), isoflurane (Iso), or halothane (Hal) in anesthetized dogs. 8 healthy Beagles. A permanent tracheostomy was created in each dog. Two to 3 weeks later, dogs were anesthetized by IV administration of thiopental and alpha-chloralose. Nasal passages were isolated such that inhalant anesthetics could be administered to the nasal passages while the dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of each anesthetic at 1.2 and 2.4 times the minimum alveolar concentration (MAC) and the full vaporizer setting (5%) were recorded. Reflexes in response to administration of 5% of each anesthetic also were recorded following administration of lidocaine to the nasal passages. Nasal administration of Sevo, Iso, and Hal induced an immediate ventilatory response characterized by a dose-dependent increase in expiratory time and a resulting decrease in expired volume per unit of time. All anesthetics had a significant effect, but for Sevo, the changes were smaller in magnitude. Responses to administration of each anesthetic were attenuated by administration of lidocaine to the nasal passages. Nasal administration of Sevo at concentrations generally used for mask induction of anesthesia induced milder reflex inhibition of breathing, presumably via afferent neurons in the nasal passages, than that of Iso or Hal. Respiratory reflexes attributable to stimulation of the nasal passages may contribute to speed of onset and could promote a smoother induction with Sevo, compared with Iso or Hal.
Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system.
Wang, Qian; Wang, Manqi; Whim, Matthew D
2013-07-31
Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.
Peroneus longus stretch reflex amplitude increases after ankle brace application
Cordova, M; Ingersoll, C
2003-01-01
Background: The use of external ankle support is widespread throughout sports medicine. However, the application of ankle bracing to a healthy ankle over a long period has been scrutinised because of possible neuromuscular adaptations resulting in diminished dynamic support offered by the peroneus longus. Objective: To investigate the immediate and chronic effects of ankle brace application on the amplitude of peroneus longus stretch reflex. Methods: Twenty physically active college students (mean (SD) age 23.6 (1.7) years, height 168.7 (8.4) cm, and mass 69.9 (12.0) kg) who had been free from lower extremity pathology for the 12 months preceding the study served as subjects. None had been involved in a strength training or conditioning programme in the six months preceding the study. A 3 x 3 x 2 (test condition x treatment condition x time) design with repeated measures on the first and third factor was used. The peroneus longus stretch reflex (% of maximum amplitude) during sudden foot inversion was evaluated under three ankle brace conditions (control, lace up, and semi-rigid) before and after eight weeks of ankle brace use. Results: A 3 x 3 x 2 repeated measures analysis of variance showed that peroneus longus stretch reflex amplitude increased immediately after application of a lace up brace (67.1 (4.4)) compared with the semi-rigid (57.9 (4.3)) and control (59.0 (5.2)) conditions (p<0.05). Peroneus longus stretch reflex also increased after eight weeks of use of the semi-rigid brace compared with the lace up and control conditions (p<0.05). Conclusions: Initial application of a lace up style ankle brace and chronic use of a semi-rigid brace facilitates the amplitude of the peroneus longus stretch reflex. It appears that initial and long term ankle brace use does not diminish the magnitude of this stretch reflex in the healthy ankle. PMID:12782553
No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.
Gibson, W; Campbell, A; Allison, G
2013-09-01
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of Acoustic Impulses on the Middle Ear
2015-10-01
and civilian law enforcement weapon systems, civilian recreational hunting and shooting, and industrial high-level impulsive noises (impacts and...PERSON USAMRMC a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area code) Standard Form...impulsive noises (impacts and impulses). Keywords: Noise exposure; hearing loss, noise -induced; impulsive noise ; reflex; conditioned response
The Etymology of Basic Concepts in the Experimental Analysis of Behavior
ERIC Educational Resources Information Center
Dinsmoor, James A.
2004-01-01
The origins of many of the basic concepts used in the experimental analysis of behavior can be traced to Pavlov's (1927/1960) discussion of unconditional and conditional reflexes in the dog, but often with substantial changes in meaning (e.g., stimulus, response, and reinforcement). Other terms were added by Skinner (1938/1991) to describe his…
Aural Acoustic Stapedius-Muscle Reflex Threshold Procedures to Test Human Infants and Adults.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2017-02-01
Power-based procedures are described to measure acoustic stapedius-muscle reflex threshold and supra-threshold responses in human adult and infant ears at frequencies from 0.2 to 8 kHz. The stimulus set included five clicks in which four pulsed activators were placed between each pair of clicks, with each stimulus set separated from the next by 0.79 s to allow for reflex decay. Each click response was used to detect the presence of reflex effects across frequency that were elicited by a pulsed broadband-noise or tonal activator in the ipsilateral or contralateral test ear. Acoustic reflex shifts were quantified in terms of the difference in absorbed sound power between the initial baseline click and the later four clicks in each set. Acoustic reflex shifts were measured over a 40-dB range of pulsed activators, and the acoustic reflex threshold was objectively calculated using a maximum 10 likelihood procedure. To illustrate the principles underlying these new reflex tests, reflex shifts in absorbed sound power and absorbance are presented for data acquired in an adult ear with normal hearing and in two infant ears in the initial and follow-up newborn hearing screening exams, one with normal hearing and the other with a conductive hearing loss. The use of absorbed sound power was helpful in classifying an acoustic reflex shift as present or absent. The resulting reflex tests are in use in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function in infant and adult ears.
FEFsem neuronal response during combined volitional and reflexive pursuit.
Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J
2017-05-01
Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations-whether the addition or subtraction of retinal input-may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals.
FEFsem neuronal response during combined volitional and reflexive pursuit
Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J.
2017-01-01
Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations—whether the addition or subtraction of retinal input—may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals. PMID:28538993
Baroreflex-mediated heart rate and vascular resistance responses 24 h after maximal exercise
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
2003-01-01
INTRODUCTION: Plasma volume, heart rate (HR) variability, and stimulus-response relationships for baroreflex control of forearm vascular resistance (FVR) and HR were studied in eight healthy men after and without performing a bout of maximal exercise to test the hypotheses that acute expansion of plasma volume is associated with 1) reduction in baroreflex-mediated HR response, and 2) altered operational range for central venous pressure (CVP). METHODS: The relationship between stimulus (DeltaCVP) and vasoconstrictive reflex response (DeltaFVR) during unloading of cardiopulmonary baroreceptors was assessed with lower-body negative pressure (LBNP, 0, -5, -10, -15, -20 mm Hg). The relationship between stimulus (Deltamean arterial pressure (MAP)) and cardiac reflex response (DeltaHR) during loading of arterial baroreceptors was assessed with steady-state infusion of phenylephrine (PE) designed to increase MAP by 15 mm Hg alone and during application of LBNP (PE+LBNP) and neck pressure (PE+LBNP+NP). Measurements of vascular volume and autonomic baroreflex responses were conducted on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested 24 h after graded cycle exercise to volitional exhaustion. On another day, measurement of baroreflex response was repeated with no exercise (control). The order of exercise and control treatments was counterbalanced. RESULTS: Baseline CVP was elevated (P = 0.04) from a control value of 10.5 +/- 0.4 to 12.3 +/- 0.4 mm Hg 24 h after exercise. Average DeltaFVR/DeltaCVP during LBNP was not different (P = 0.942) between the exercise (-1.35 +/- 0.32 pru x mm Hg-1) and control (-1.32 +/- 0.36 pru x mm Hg-1) conditions. However, maximal exercise caused a shift along the reflex response relationship to a higher CVP and lower FVR. HR baroreflex response (DeltaHR/DeltaMAP) to PE+LBNP+NP was lower (P = 0.015) after maximal exercise (-0.43 +/- 0.15 beats x min-1 x mm Hg-1) compared with the control condition (-0.83 +/- 0.14 beats x min-1 x mm Hg-1). CONCLUSION: Expansion of vascular volume after acute exercise is associated with altered operational range for CVP and reduced HR response to arterial baroreceptor stimulation.
Effect of altered core body temperature on glottal closing force.
Wadie, Mikhail; Li, Juan; Sasaki, Clarence T
2011-10-01
A basic function of the larynx is to provide sphincteric protection of the lower airway, initiated by a brain stem-mediated glottal closure reflex. Glottal closing force is defined as the measured pressure generated between the vocal folds during glottal closure. One of the factors thought to affect the glottal closure reflex is a variation in core body temperature. Four adult male Yorkshire pigs were used in this study. The subjects were studied under control conditions (37 degreesC), hyperthermic conditions (38 degrees C to 41 degrees C), and hypothermic conditions (36 degrees C to 34 degrees C). We demonstrated that the glottal closing force increased significantly with an increase in core body temperature and also decreased significantly with decreased core body temperature. These results are supported by neurophysiological changes demonstrated by other studies in pups and adult dogs in response to altered core body temperatures. The mechanism for these responses is thought to reside centrally, rather than in the peripheral nervous system. We hope that a better understanding of these aspects of glottal closure will alter the care of many patients with postanesthesia hypothermia and many sedated inmates and will also further enhance preventive measures needed to decrease the incidence of sudden infant death syndrome in overheated or febrile infants.
Journée, H-L; Polak, H E; De Kleuver, M
2007-12-01
In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded under general anaesthesia. Conditioning techniques can be used in this situation. To present clinical experimental data and models of motor-neuron (MN) excitability for homonymous and heteronymous conditioning and discuss their applications in IONM. Data were obtained in a prospective study on multipulse TES-conditioning of the monosynaptic H-reflex and double multipulse TES. The principle of facilitation by conditioning stimulation is to apply a test stimulus when motor neurons (MNs) have been made maximally excitable by a conditioning stimulus. Both conditioning and test stimuli recruit separate populations of MNs. The overlapping fraction of MNs controls the efficacy of facilitation. Heteronymous conditioning stimulation, which is performed at a different site from the test stimulus, is illustrated by the TES-conditioned H-reflex (HR). Autonomous conditioning stimulation, which is performed at the same stimulation site, is illustrated by double-train TES (dt-TES). The facilitating curves obtained by conditioning stimulation are often 3-modal and show peaks of facilitation at short intertrain intervals (S-ITIs) of 10ms and between 15 and 20ms and at longer intertrain intervals (L-ITI) of over 100ms. The facilitation curves from HR and dt-TES are not always identical since different alphaMN pools are involved. Dt-TES is often successful in neurologically impaired patients whereas facilitation of the HR can be used when conditioned by TES at subthreshold levels allowing continuous IONM without movement in the surgical field. Alternatively, facilitation by conditioning from peripheral-nerve stimulation can be used for selective transmission of subthreshold TES motor responses to peripheral muscles, permitting motor-monitoring by a so-called selective motor-gating technique. Facilitation techniques offer many possibilities in IONM by enhancing low-amplitude TES-MEP responses. They can also selectively enhance responses in a few muscle groups for the reduction of movement.
Matsugi, Akiyoshi
2018-05-06
The present study aimed to investigate whether spinal reflex excitability is influenced by the site of cerebellar transcranial magnetic stimulation (C-TMS). Fourteen healthy volunteers (mean age: 24.6 ± 6.6 years [11 men]) participated. Participants lay on a bed in the prone position, with both ankle joints fixed to prevent unwanted movement. Right tibial nerve stimulation was provided to elicit the H-reflex in the right soleus muscle. Conditioning transcranial magnetic stimulation (TMS) was delivered at one of the following sites 110 ms prior to tibial stimulation: right, central, or left cerebellum; midline parietal (Pz) region; or sham stimulation. A total of 10 test trials were included for each condition, in random order. The unconditioned and conditioned H-reflexes were measured during random inter-test trials, and the cerebellar spinal facilitation (CSpF) ratios for each site were calculated (the ratio of conditioned to unconditioned H-reflexes). CSpF ratios were compared among TMS sites. CSpF ratios were significantly higher at cerebellar sites than at the Pz site or during sham stimulation. However, there was no significant difference in CSpF ratio among cerebellar sites. TMS conditioning over any part of the cerebellum facilitated the excitability of the spinal motoneuron pool. Facilitation of the H-reflex due to C-TMS may involve the effects of the bilateral descending tract of the spinal cord on the spinal motoneuron pool. Alternatively, direct brainstem stimulation may have activated portions of the bilateral descending tract of the spinal cord.
The Reflexive Imperative among High-Achieving Adolescents: A Flemish Case Study
ERIC Educational Resources Information Center
Van Lancker, Inge
2016-01-01
The socio-cultural conditions of late modernity induce a "reflexive imperative" amongst young people, which also results in metapragmatic and metalinguistic behaviour, as has been demonstrated by linguistic ethnographers (LE). However, recent LE studies on reflexivity in Western European settings have mainly focused on how groups of…
Collaborative Research in Contexts of Inequality: The Role of Social Reflexivity
ERIC Educational Resources Information Center
Leibowitz, Brenda; Bozalek, Vivienne; Farmer, Jean; Garraway, James; Herman, Nicoline; Jawitz, Jeff; McMillan, Wendy; Mistri, Gita; Ndebele, Clever; Nkonki, Vuyisile; Quinn, Lynn; van Schalkwyk, Susan; Vorster, Jo-Anne; Winberg, Chris
2017-01-01
This article reports on the role and value of social reflexivity in collaborative research in contexts of extreme inequality. Social reflexivity mediates the enablements and constraints generated by the internal and external contextual conditions impinging on the research collaboration. It fosters the ability of participants in a collaborative…
Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
Elson, Matthew S; Berkowitz, Ari
2016-03-02
The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.
The effects of team reflexivity on psychological well-being in manufacturing teams.
Chen, Jingqiu; Bamberger, Peter A; Song, Yifan; Vashdi, Dana R
2018-04-01
While the impact of team reflexivity (a.k.a. after-event-reviews, team debriefs) on team performance has been widely examined, we know little about its implications on other team outcomes such as member well-being. Drawing from prior team reflexivity research, we propose that reflexivity-related team processes reduce demands, and enhance control and support. Given the centrality of these factors to work-based strain, we posit that team reflexivity, by affecting these factors, may have beneficial implications on 3 core dimensions of employee burnout, namely exhaustion, cynicism, and inefficacy (reduced personal accomplishment). Using a sample of 469 unskilled manufacturing workers employed in 73 production teams in a Southern Chinese factory, we implemented a time lagged, quasi-field experiment, with half of the teams trained in and executing an end-of-shift team debriefing, and the other half assigned to a control condition and undergoing periodic postshift team-building exercises. Our findings largely supported our hypotheses, demonstrating that relative to team members assigned to the control condition, those assigned to the reflexivity condition experienced a significant improvement in all 3 burnout dimensions over time. These effects were mediated by control and support (but not demands) and amplified as a function of team longevity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
[The evoked activity of the lateral hypothalamus during extinction and differential inhibition].
Vanetsian, G L
1995-01-01
Character of interaction between symmetric points of the cat's auditory cortex (A1) and the lateral hypothalamus (HL) was determined by calculating Spearman correlation coefficients between averaged summed sound-evoked activity (AEP) of the structures before, during elaboration, extinction and restoration, as well as differentiation of food-procuring conditioned reflex and in the eating full. Close mutual co-tuning between the cortex and hypothalamus characteristic for stable conditioned reflex was found to disrupted during its extinction, elaboration of differentiation and fullness eat inhibition due to entire reduction of hypothalamic AEP and disappearance of correlated with negativity of HL AEP "doubling" of the first positive wave of A1 AEP. Hyperactivity stage, expressed at the beginning of extinction and at the end of differentiation, preceded inactivation of hypothalamic afferents during elaboration of conditioned inhibition. The stage of hyperactivity, initiated by the elevated emotional state of the animal, testifies to an important role of emotional brain structures in the process of internal inhibition. The stage of HL and A1 hyperactivity initiated by emotional stress of the animal and following HL inactivation during inhibition of the conditioned response point to an important role of emotional subcortical brain structures in the mechanisms of inhibitory conditioning.
Zwambag, Derek P; Freeman, Nikole E; Brown, Stephen H M
2015-04-01
Sudden loads, originating at either the hands or the feet, can cause injury to spine structures. As muscles are primarily responsible for stabilization following a perturbation, the effect of spine muscle fatigue in this context has been well investigated. However, the effect of fatigue of arm muscles, which can help control perturbations originating at the hands, on the spine is unknown. The purpose of this study was to determine if the magnitude of spine flexion or the pre-activation, reflex amplitude, and reflex latency of spine muscles were altered by elbow flexor fatigue during a sudden loading (6.8 kg) perturbation at the hands. Elbow flexor fatigue was induced by an isometric 30% maximal elbow flexion moment until failure. Results demonstrate that spine kinematics were not altered in the presence of elbow flexor fatigue. Small magnitude differences in trunk muscle pre- and peak activation indicate that the presence of elbow flexor fatigue does not necessitate substantially greater spine muscle action under the tested conditions. Despite fatigued elbow flexors, the arm muscles were sufficiently able to control the perturbation. Interestingly, 5/14 participants demonstrated altered reflex latencies in all observed muscles that lasted up to 10 min after the fatiguing task. Copyright © 2015 Elsevier Ltd. All rights reserved.
Men and women who do not have orgasms.
Brindley, G S; Gillan, P
1982-04-01
In the well-known condition of primary complete anorgasmia in women, the glandipudendal ('bulbocavernosus') reflex is often absent, and this is strongly correlated with failure of treatment. From these facts, and from properties of the glandipudendal reflex, we argue that organic abnormalities in the spinal cord contribute to causing the condition in some cases. We report nine cases of complete primary anorgasmia in men, two of whom lacked glandipudendal reflexes. The condition need not imply sterility; in all these nine (as also in three incomplete cases) we were able to obtain semen by electroejaculation or vibratory stimulation, and the wife of one patient is now pregnant.
Vanuytsel, T; Karamanolis, G; Vos, R; Van Oudenhove, L; Farré, R; Tack, J
2013-05-01
Duodenal acid exposure induces a duodenogastric reflex resulting in gastric relaxation, inhibition of antral motility, and sensitization of the proximal stomach to distension. Duodenal hypersensitivity to acid has been identified as a potential pathogenic mechanism in functional dyspepsia. The nature and localization of the duodenal acid-sensitive receptors are still elusive. We hypothesize that acid directly activates superficial afferent nerve endings in the duodenal mucosa, triggering the duodenogastric reflex. In a double-blind, randomized, crossover study in 13 healthy volunteers, benzocaine, a local anesthetic, vs saline was perfused in the duodenum 15 min before duodenal acid perfusion. Gastric responses were monitored by a barostat. Stepwise isobaric gastric distensions were performed before and during acid perfusion. Symptoms were evaluated by visual analogue scales for six dyspeptic symptoms and an overall perception score. Benzocaine perfusion caused a relaxation of the stomach prior to duodenal acidification, indicating the existence of an excitatory duodenogastric tone. Pretreatment of the duodenum with benzocaine reduced the acid-induced gastric relaxation by 50% and abolished the inhibition of phasic motility of the proximal stomach. Finally, sensitization to distension was more pronounced in the benzocaine condition because of higher proximal gastric volumes. These findings support a model in which different neuronal subpopulations are responsible for the motor and sensory limb of the acid-sensitive duodenogastric reflex, making benzocaine an unsuitable drug to treat duodenal hypersensitivity to acid. These data provide more insight in the contribution of duodenal neuronal input to gastric physiology in the fasting state. © 2013 Blackwell Publishing Ltd.
Martin, B J; Roll, J P; Gauthier, G M
1984-01-01
Sensorimotor system performance is known to be altered by vibration applied locally to tendons and muscles or to the whole body. The present study is an attempt to determine the influence of vibration amplitude, acceleration, and frequency on the excitability of the motoneurons as evaluated by the amplitude of electrically induced spinal reflex response in man. The results show that a vibration applied to the legs of a seated subject (S) decreased the reflex response. The effect is directly related to the vibration intensity. The reflex amplitude is minimal in the 10-30 Hz range. At constant acceleration, the depressive effect decreased beyond 20-30 Hz while, at constant displacement amplitude, the reflex inhibition was almost constant throughout the frequency range of 20-60 Hz. These observations suggest that the diminution of the reflex response is mainly related to the amplitude of the vibration, regardless of the frequency. The results are interpreted in light of current knowledge of the effect of locally applied vibration on muscle tendons. The marked inhibition observed in the 10-30 Hz range, even with moderate intensity, suggests that particular attention should be devoted to avoid vibration in that frequency range in vehicles in order to prevent alteration of the performance of sensorimotor systems.
Kubota, Shinji; Uehara, Kazumasa; Morishita, Takuya; Hirano, Masato; Funase, Kozo
2014-02-01
We investigated the extent to which the corticospinal inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic reciprocal Ia inhibition. Seventeen healthy subjects participated in this study. The degree of reciprocal Ia inhibition was determined via short-latency (condition-test interval: 1-3ms) suppression of Sol H-reflex by conditioning stimulation of common peroneal nerve. The effect of corticospinal descending inputs on Ia inhibitory interneurons was assessed by evaluating the conditioning effect of transcranial magnetic stimulation (TMS) on the Sol H-reflex. Then, we determined the relationship between the degree of reciprocal Ia inhibition and the conditioning effect of TMS on the Sol H-reflex. We found that the degree of reciprocal Ia inhibition and the extent of change in the amplitude of the TMS-conditioned H-reflex, which was measured from short latency facilitation to inhibition, displayed a strong correlation (r=0.76, p<0.01) in the resting conditions. The extent of reciprocal Ia inhibition is affected by the corticospinal descending inputs delivered to Ia inhibitory interneurons, which might explain the inter-individual variations in reciprocal Ia inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.
Blackburn, Laura M; Ott, Swidbert R; Matheson, Tom; Burrows, Malcolm; Rogers, Stephen M
2010-08-01
Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Lashinger, Erin S R; Steiginga, Matthew S; Hieble, J Paul; Leon, Lisa A; Gardner, Scott D; Nagilla, Rakesh; Davenport, Elizabeth A; Hoffman, Bryan E; Laping, Nicholas J; Su, Xin
2008-09-01
The activation of the TRPM8 channel, a member of the large class of TRP ion channels, has been reported to be involved in overactive bladder and painful bladder syndrome, although an endogenous activator has not been identified. In this study, N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide hydrochloride salt (AMTB) was evaluated as a TRPM8 channel blocker and used as a tool to evaluate the effects of this class of ion channel blocker on volume-induced bladder contraction and nociceptive reflex responses to noxious bladder distension in the rat. AMTB inhibits icilin-induced TRPM8 channel activation as measured in a Ca(2+) influx assay, with a pIC(50) of 6.23. In the anesthetized rat, intravenous administration of AMTB (3 mg/kg) decreased the frequency of volume-induced bladder contractions, without reducing the amplitude of contraction. The nociceptive response was measured by analyzing both visceromotor reflex (VMR) and cardiovascular (pressor) responses to urinary bladder distension (UBD) under 1% isoflurane. AMTB (10 mg/kg) significantly attenuated reflex responses to noxious UBD to 5.42 and 56.51% of the maximal VMR response and pressor response, respectively. The ID50 value on VMR response was 2.42 +/- 0.46 mg/kg. These results demonstrate that TRPM8 channel blocker can act on the bladder afferent pathway to attenuate the bladder micturition reflex and nociceptive reflex responses in the rat. Targeting TRPM8 channel may provide a new therapeutic opportunity for overactive bladder and painful bladder syndrome.
Non-Grammatical Reflexive Binding Phenomena: The Case of Japanese.
ERIC Educational Resources Information Center
Sakakibara, Sonoko
Two non-syntactic phenomena of Japanese reflexive binding by "zibun" ("self") are analyzed with respect to a pragmatic use condition on "zibun," a culture-specific condition, and the Maxim of Politeness (Fukada 1986). The first phenomenon is the tendency by native speakers of Japanese to avoid referring to an honored…
Associative Mechanosensory Conditioning of the Proboscis Extension Reflex in Honeybees
ERIC Educational Resources Information Center
Giurfa, Martin; Malun, Dagmar
2004-01-01
The present work introduces a form of associative mechanosensory conditioning of the proboscis extension reflex (PER) in honeybees. In our paradigm, harnessed honeybees learn the elemental association between mechanosensory, antennal stimulation and a reward of sucrose solution delivered to the proboscis. Thereafter, bees extend their proboscis to…
Plant and Animal Gravitational Biology. Part 2
NASA Technical Reports Server (NTRS)
1997-01-01
Session WA2 includes short reports concerning: (1) The Asymmetrical Growth of Otoliths in Fish Affected by Altered Gravity and Causes Kinetosis; (2) Neurobiological Responses of Fish to Altered Gravity conditions: A Review; (3) An Age-Dependent Sensitivity of the Roll-Induced Vestibulocular Reflex to Hypergravity Exposure of Several Days in an Amphibian (Xenopus Laevis); (4) Mechanically-Induced Membrane Wounding During Parabolic Flight; and (5) Erythropoietin Stimulates Increased F Cell Numbers in Bone Marrow Cultures Established in Gravity and Microgravity Conditions.
Automatic gain control of neural coupling during cooperative hand movements.
Thomas, F A; Dietz, V; Schrafl-Altermatt, M
2018-04-13
Cooperative hand movements (e.g. opening a bottle) are controlled by a task-specific neural coupling, reflected in EMG reflex responses contralateral to the stimulation site. In this study the contralateral reflex responses in forearm extensor muscles to ipsilateral ulnar nerve stimulation was analyzed at various resistance and velocities of cooperative hand movements. The size of contralateral reflex responses was closely related to the level of forearm muscle activation required to accomplish the various cooperative hand movement tasks. This indicates an automatic gain control of neural coupling that allows a rapid matching of corrective forces exerted at both sides of an object with the goal 'two hands one action'.
Cardiorespiratory interactions in neural circulatory control in humans.
Shamsuzzaman, A S; Somers, V K
2001-06-01
The reflex mechanisms and interactions described in this overview provide some explanation for the range of neural circulatory responses evident during changes in breathing. The effects described represent the integrated responses to activation of several reflex mechanisms, including peripheral and central chemoreflexes, arterial baroreflexes, pulmonary stretch receptors, and ventricular mechanoreceptors. These interactions occur on a dynamic basis and the transfer characteristics of any single interaction are, in all likelihood, also highly dynamic. Nevertheless, it is only by attempting to understand individual reflexes and their modulating influences that a more thorough understanding of the responses to complex phenomena such as hyperventilation, apnea, and obstructive sleep apnea can be better understood.
The trigeminocardiac reflex – a comparison with the diving reflex in humans
Lemaitre, Frederic; Schaller, Bernhard
2015-01-01
The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans. PMID:25995761
Contributions of Altered Stretch Reflex Coordination to Arm Impairments Following Stroke
Ravichandran, Vengateswaran J.; Krutky, Matthew A.; Perreault, Eric J.
2010-01-01
Patterns of stereotyped muscle coactivation, clinically referred to as synergies, emerge following stroke and impair arm function. Although researchers have focused on cortical contributions, there is growing evidence that altered stretch reflex pathways may also contribute to impairment. However, most previous reflex studies have focused on passive, single-joint movements without regard to their coordination during volitional actions. The purpose of this study was to examine the effects of stroke on coordinated activity of stretch reflexes elicited in multiple arm muscles following multijoint perturbations. We hypothesized that cortical injury results in increased stretch reflexes of muscles characteristic of the abnormal flexor synergy during active arm conditions. To test this hypothesis, we used a robot to apply position perturbations to impaired arms of 10 stroke survivors and dominant arms of 8 healthy age-matched controls. Corresponding reflexes were assessed during volitional contractions simulating different levels of gravitational support, as well as during voluntary flexion and extension of the elbow and shoulder. Reflexes were quantified by average rectified surface electromyogram, recorded from eight muscles spanning the elbow and shoulder. Reflex coordination was quantified using an independent components analysis. We found stretch reflexes elicited in the stroke group were significantly less sensitive to changes in background muscle activation compared with those in the control group (P < 0.05). We also observed significantly increased reflex coupling between elbow flexor and shoulder abductor–extensor muscles in stroke subjects relative to that in control subjects. This increased coupling was present only during volitional tasks that required elbow flexion (P < 0.001), shoulder extension (P < 0.01), and gravity opposition (P < 0.01), but not during the “no load” condition. During volitional contractions, reflex amplitudes scaled with the level of impairment, as assessed by Fugl-Meyer scores (r2 = 0.63; P < 0.05). We conclude that altered reflex coordination is indicative of motor impairment level and may contribute to impaired arm function following stroke. PMID:20962072
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).
Nootropic activity of extracts from wild and cultivated Alfredia cernua.
Mustafin, R N; Shilova, I V; Suslov, N I; Kuvacheva, N V; Amelchenko, V P
2011-01-01
Antihypoxic and nootropic activities of extracts from aerial parts of wild and cultivated Alfredia cernua (L.) Cass. were studied on the models of pressure chamber hypoxia, open field test, and passive avoidance conditioning. The extracts of Alfredia cernua promoted retention of the orientation reflex and passive avoidance conditioned response and normalized orientation and exploratory activities disordered as a result of hypoxic injury. The efficiency of the extracts was superior to that of piracetam by the effect on retention of passive avoidance response throughout the greater part of the experiment. Nootropic activity of cultivated Alfredia cernua was not inferior to that of the wild plant.
Pagliaro, P; Zamparo, P
1999-04-01
The aim of this study was the quantitative evaluation of the myotatic reflex in a group of 26 patients affected by stationary spastic paresis (6: hemiparesis; 5: paraparesis; 8: tetraparesis; 7: multiple sclerosis) before and after a treatment of hydro-kinesy therapy. The treatment was carried out in an indoor pool containing warm (32 degrees C) sea water and consisted of active and passive motion exercises, coordination exercises and immersion walking. The measured parameters were: (i) the peak input force (FpH) measured by means of an instrumented hammer with which the patellar tendon was hit; and (ii) the peak value of the corresponding reflex force of the quadriceps femoris (FpQ) measured by means of a load cell connected to the subject's ankle. The peak values of the reflex response (FpQ) were found to increase as a function of the intensity of the imposed stimulus and to reach a plateau between 15 and 30 N of FpH. A Student's t test applied to the paired values of FpQ (as measured at plateau conditions) on both the lower limbs, before and after therapy, showed no significant changes due to the treatment in the four groups of subjects. However, if all subjects were grouped regardless the type of illness: 1) the average reflex response of the affected limb (the one characterized before therapy by the higher FpQ values) was found to decrease following the treatment (75.1+/-26.7 N pre therapy and 69.1+/-29.3 N post therapy, p = 0.07, n = 26); and 2) the effect of the treatment was found to be significantly larger (p = 0.04, n = 26) on the affected limb (delta FpQ = 6.07+/-16.5 N) as respect with the contra lateral one (delta FpQ = -0.16+/-12.1 N).
A pilot study on pupillary and cardiovascular changes induced by stereoscopic video movies
Oyamada, Hiroshi; Iijima, Atsuhiko; Tanaka, Akira; Ukai, Kazuhiko; Toda, Haruo; Sugita, Norihiro; Yoshizawa, Makoto; Bando, Takehiko
2007-01-01
Background Taking advantage of developed image technology, it is expected that image presentation would be utilized to promote health in the field of medical care and public health. To accumulate knowledge on biomedical effects induced by image presentation, an essential prerequisite for these purposes, studies on autonomic responses in more than one physiological system would be necessary. In this study, changes in parameters of the pupillary light reflex and cardiovascular reflex evoked by motion pictures were examined, which would be utilized to evaluate the effects of images, and to avoid side effects. Methods Three stereoscopic video movies with different properties were field-sequentially rear-projected through two LCD projectors on an 80-inch screen. Seven healthy young subjects watched movies in a dark room. Pupillary parameters were measured before and after presentation of movies by an infrared pupillometer. ECG and radial blood pressure were continuously monitored. The maximum cross-correlation coefficient between heart rate and blood pressure, ρmax, was used as an index to evaluate changes in the cardiovascular reflex. Results Parameters of pupillary and cardiovascular reflexes changed differently after subjects watched three different video movies. Amplitudes of the pupillary light reflex, CR, increased when subjects watched two CG movies (movies A and D), while they did not change after watching a movie with the real scenery (movie R). The ρmax was significantly larger after presentation of the movie D. Scores of the questionnaire for subjective evaluation of physical condition increased after presentation of all movies, but their relationship with changes in CR and ρmax was different in three movies. Possible causes of these biomedical differences are discussed. Conclusion The autonomic responses were effective to monitor biomedical effects induced by image presentation. Further accumulation of data on multiple autonomic functions would contribute to develop the tools which evaluate the effects of image presentation to select applicable procedures and to avoid side effects in the medical care and rehabilitation. PMID:17915031
A pilot study on pupillary and cardiovascular changes induced by stereoscopic video movies.
Oyamada, Hiroshi; Iijima, Atsuhiko; Tanaka, Akira; Ukai, Kazuhiko; Toda, Haruo; Sugita, Norihiro; Yoshizawa, Makoto; Bando, Takehiko
2007-10-04
Taking advantage of developed image technology, it is expected that image presentation would be utilized to promote health in the field of medical care and public health. To accumulate knowledge on biomedical effects induced by image presentation, an essential prerequisite for these purposes, studies on autonomic responses in more than one physiological system would be necessary. In this study, changes in parameters of the pupillary light reflex and cardiovascular reflex evoked by motion pictures were examined, which would be utilized to evaluate the effects of images, and to avoid side effects. Three stereoscopic video movies with different properties were field-sequentially rear-projected through two LCD projectors on an 80-inch screen. Seven healthy young subjects watched movies in a dark room. Pupillary parameters were measured before and after presentation of movies by an infrared pupillometer. ECG and radial blood pressure were continuously monitored. The maximum cross-correlation coefficient between heart rate and blood pressure, rho max, was used as an index to evaluate changes in the cardiovascular reflex. Parameters of pupillary and cardiovascular reflexes changed differently after subjects watched three different video movies. Amplitudes of the pupillary light reflex, CR, increased when subjects watched two CG movies (movies A and D), while they did not change after watching a movie with the real scenery (movie R). The rho max was significantly larger after presentation of the movie D. Scores of the questionnaire for subjective evaluation of physical condition increased after presentation of all movies, but their relationship with changes in CR and rho max was different in three movies. Possible causes of these biomedical differences are discussed. The autonomic responses were effective to monitor biomedical effects induced by image presentation. Further accumulation of data on multiple autonomic functions would contribute to develop the tools which evaluate the effects of image presentation to select applicable procedures and to avoid side effects in the medical care and rehabilitation.
Gender differences in emotional responses: a psychophysiological study.
Bianchin, Marta; Angrilli, Alessandro
2012-02-28
Gender differences in emotional responses have been investigated in two groups of students, 22 males and 21 females. Participants watched a set of sixty emotional standardized slides divided into pleasant, neutral and unpleasant, while Startle reflex, Evoked Potentials, Heart Rate, facial EMG and Skin Conductance were recorded. Startle reflex amplitude, an index modulated by amygdala and orbitofrontal cortex and sensitive to aversive emotional stimuli, was overall larger in women. In addition, startle emotion modulation was greater in women with respect to men. Slow Evoked Potentials (400-800 ms), a measure representing the cognitive component of the emotional response, revealed gender differences in the left prefrontal site, with women showing greater positivity to unpleasant compared with pleasant slides while men had greater positivity to pleasant vs. neutral slides. Women, compared with men, perceived all slides as less pleasant and reported greater arousal to unpleasant condition. Results are in line with known functional brain differences, at level of limbic and paralimbic structures, between men and women, and point to biologically grounded greater sensitivity and vulnerability of women to adverse/stressful events. Copyright © 2011 Elsevier Inc. All rights reserved.
Mechanical Characteristics of Reflex Durign Upright Posture in Paralyzed Subjects
NASA Astrophysics Data System (ADS)
Kim, Yongchul; Youm, Youngil; Lee, Bumsuk; Kim, Youngho; Choi, Hyeonki
The characteristics of flexor reflexes have been investigated in the previous studies with human subjects who were seated or supine position. However, researchers did not describe how the spinal circuits are used in different hip angles for paralyzed subjects, such as the standing position with walker or cane. In upright posture the compatibility between a flexor reflex of leg and body balance is a special problem for lower limb injured subjects. Therefore, the purpose of this study was to investigate the effects of hip angle change on the flexor reflex evoked in standing paralyzed subjects supported by walker. In this study, six spinal cord injured and four stroke subjects were recruited through the inpatient physical therapy clinics of Korea national rehabilitation hospital. A single axis electronic goniometer was mounted on the lateral side of the hip joint of the impaired limb to record movements in the sagittal plane at this joint. The electronic goniometer was connected to a data acquisition system, through amplifiers to a computer. Since subject' posture influenced characteristics of the flexion reflex response, the subjects were supported in an upright posture by the help of parallelogram walder. Two series of tests were performed on each leg. The first series of the tests investigated the influence of hip angle during stationary standing posture on flexion reflex response. The hip angle was adjusted by the foot plate. The second examined the effect of the voluntary action of subject on swing motion during the gait. The electrically induced flexion reflex simultaneously produced the flexion of the hip, knee and dorsiflexion of the ankle enabling the swing phase of walking. Form the experimental results we observed that the reflex response of hip joint was largerwith the hip in the extended position than in the flexed position during standing posture. Under voluntary movement on flexion reflex during gaint, the peak hip angle induced by stimulation was increased in spinal cord injury and stroke patients by subject' voluntary movement.
Reflexive Language and Ethnic Minority Activism in Hong Kong: A Trajectory-Based Analysis
ERIC Educational Resources Information Center
Pérez-Milans, Miguel; Soto, Carlos
2016-01-01
This article engages with Archer's call to further research on reflexivity and social change under conditions of late modernity (2007, 2010, 2012) from the perspective of existing work on reflexive discourse in the language disciplines (Silverstein 1976, Lucy 1993). Drawing from a linguistic ethnography of the networked trajectories of a group of…
Economic Demand and Essential Value
ERIC Educational Resources Information Center
Hursh, Steven R.; Silberberg, Alan
2008-01-01
The strength of a rat's eating reflex correlates with hunger level when strength is measured by the response frequency that precedes eating (B. F. Skinner, 1932a, 1932b). On the basis of this finding, Skinner argued response frequency could index reflex strength. Subsequent work documented difficulties with this notion because responding was…
Meinck, H M; Ricker, K; Conrad, B
1984-01-01
Neurophysiological investigations of a patient suffering from the stiff-man syndrome revealed that exteroceptive reflexes, in particular those elicited from the skin, were excessively enhanced. In contrast, no abnormalities were found within the monosynaptic reflex arc. Clomipramine injection severely aggravated the clinical symptoms whereas diazepam, clonidine, and tizanidine decreased both muscular stiffness and abnormal exteroceptive reflexes. The hypothesis is put forward that the stiff-man syndrome is a disorder of descending brain-stem systems which exert a net inhibitory control on axial and limb girdle muscle tone as well as on exteroceptive reflex transmission. Detection of abnormal exteroceptive reflex activity in conjunction with neuropharmacological testing might help in the diagnosis of this rare disease. PMID:6707674
A Comparison of Statistical Models for Calculating Reliability of the Hoffmann Reflex
ERIC Educational Resources Information Center
Christie, A.; Kamen, G.; Boucher, Jean P.; Inglis, J. Greig; Gabriel, David A.
2010-01-01
The Hoffmann reflex is obtained through surface electromyographic recordings, and it is one of the most common neurophysiological techniques in exercise science. Measurement and evaluation of the peak-to-peak amplitude of the Hoffmann reflex has been guided by the observation that it is a variable response that requires multiple trials to obtain a…
Healthy and pathological cerebellar Spiking Neural Networks in Vestibulo-Ocular Reflex.
Antonietti, Alberto; Casellato, Claudia; Geminiani, Alice; D'Angelo, Egidio; Pedrocchi, Alessandra
2015-01-01
Since the Marr-Albus model, computational neuroscientists have been developing a variety of models of the cerebellum, with different approaches and features. In this work, we developed and tested realistic artificial Spiking Neural Networks inspired to this brain region. We tested in computational simulations of the Vestibulo-Ocular Reflex protocol three different models: a network equipped with a single plasticity site, at the cortical level; a network equipped with a distributed plasticity, at both cortical and nuclear levels; a network with a pathological plasticity mechanism at the cortical level. We analyzed the learning performance of the three different models, highlighting the behavioral differences among them. We proved that the model with a distributed plasticity produces a faster and more accurate cerebellar response, especially during a second session of acquisition, compared with the single plasticity model. Furthermore, the pathological model shows an impaired learning capability in Vestibulo-Ocular Reflex acquisition, as found in neurophysiological studies. The effect of the different plasticity conditions, which change fast and slow dynamics, memory consolidation and, in general, learning capabilities of the cerebellar network, explains differences in the behavioral outcome.
[Biomechanical characteristics of the wiping reflex cycle].
Berkinblit, M B; Zharkova, I S; Fel'dman, A G; Fukson, O I
1984-01-01
Multijoint goal-directed hindlimb movements in response to chemical stimulation delivered to different skin sites on the medial back surface (wiping reflex-WR) were filmed and analysed in spinal or intact frogs Rana temporaria. Each WR cycle was divisible into five phases (flexion, lifting, aiming, wiping and extension) usually separated from each other by postural interruptions. One or several of the phases might spontaneously be reduced or deleted at all (e. g. the extension phase), although the WR was still effective. Such a reduction was, as a rule, observed in intact frogs while spinal ones usually exhibited the maximum phase sequence. It is suggested that the central spinal generator of the WR is formed of separate functional blocks each of which specifies a certain interjoint coordination and brings the joints to the central-conditioned equilibrium positions.
Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex
NASA Astrophysics Data System (ADS)
Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.
2018-03-01
We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.
Danner, Simon M.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen
2015-01-01
In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22–60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small. We analyzed responses concomitantly elicited in thigh and leg muscle groups bilaterally by epidural stimulation in eight motor-complete spinal cord-injured individuals. Periodic amplitude modulation of at least 20 successive responses occurred in 31.4% of all available data sets with stimulation frequency set at 5–26 Hz, with highest prevalence at 16 Hz. It could be evoked in a single muscle group only but was more strongly expressed and consistent when occurring in pairs of antagonists or in the same muscle group bilaterally. Latencies and waveforms of the modulated reflexes corresponded to those of the unmodulated, monosynaptic responses to 2-Hz stimulation. We suggest that the cyclical changes of reflex excitability resulted from the interaction of facilitatory and inhibitory mechanisms emerging after specific delays and with distinct durations, including postactivation depression, recurrent inhibition and facilitation, as well as reafferent feedback activation. The emergence of large responses within the patterns at a rate of 5.5/s or 8/s may further suggest the entrainment of spinal mechanisms as involved in clonus. The study demonstrates that the human lumbosacral spinal cord can organize a simple form of rhythmicity through the repetitive activation of spinal reflex circuits. PMID:25904708
Koba, Satoshi; Watanabe, Ryosuke; Kano, Naoko; Watanabe, Tatsuo
2013-01-01
Muscle contraction stimulates thin fiber muscle afferents and evokes reflex sympathoexcitation. In hypertension, this reflex is exaggerated. ANG II, which is elevated in hypertension, has been reported to trigger the production of superoxide and other reactive oxygen species. In the present study, we tested the hypothesis that increased ANG II in hypertension exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation by inducing oxidative stress in the muscle. In rats, subcutaneous infusion of ANG II at 450 ng·kg(-1)·min(-1) for 14 days significantly (P < 0.05) elevated blood pressure compared with sham-operated (sham) rats. Electrically induced 30-s hindlimb muscle contraction in decerebrate rats with hypertension evoked larger renal sympathoexcitatory and pressor responses [+1,173 ± 212 arbitrary units (AU) and +35 ± 5 mmHg, n = 10] compared with sham normotensive rats (+419 ± 103 AU and +13 ± 2 mmHg, n = 11). Tempol, a SOD mimetic, injected intra-arterially into the hindlimb circulation significantly reduced responses in hypertensive rats, whereas this compound had no effect on responses in sham rats. Tiron, another SOD mimetic, also significantly reduced reflex renal sympathetic and pressor responses in a subset of hypertensive rats (n = 10). Generation of muscle superoxide, as evaluated by dihydroethidium staining, was increased in hypertensive rats. RT-PCR and immunoblot experiments showed that mRNA and protein for gp91(phox), a NADPH oxidase subunit, in skeletal muscle tissue were upregulated in hypertensive rats. Taken together, hese results suggest that increased ANG II in hypertension induces oxidative stress in skeletal muscle, thereby exaggerating the muscle reflex.
The medial olivocochlear reflex in children during active listening.
Smith, Spencer B; Cone, Barbara
2015-08-01
To determine if active listening modulates the strength of the medial olivocochlear (MOC) reflex in children. Click-evoked otoacoustic emissions (CEOAEs) were recorded from the right ear in quiet and in four test conditions: one with contralateral broadband noise (BBN) only, and three with active listening tasks wherein attention was directed to speech embedded in contralateral BBN. Fifteen typically-developing children (ranging in age from 8 to14 years) with normal hearing. CEOAE levels were reduced in every condition with contralateral acoustic stimulus (CAS) when compared to preceding quiet conditions. There was an additional systematic decrease in CEOAE level with increased listening task difficulty, although this effect was very small. These CEOAE level differences were most apparent in the 8-18 ms region after click onset. Active listening may change the strength of the MOC reflex in children, although the effects reported here are very subtle. Further studies are needed to verify that task difficulty modulates the activity of the MOC reflex in children.
The medial olivocochlear reflex in children during active listening
Smith, Spencer B.; Cone, Barbara
2015-01-01
Objective To determine if active listening modulates the strength of the medial olivocochlear (MOC) reflex in children. Design Click-evoked otoacoustic emissions (CEOAEs) were recorded from the right ear in quiet and in four test conditions: one with contralateral broadband noise (BBN) only, and three with active listening tasks wherein attention was directed to speech embedded in contralateral BBN. Study sample Fifteen typically-developing children (ranging in age from 8 to 14 years) with normal hearing. Results CEOAE levels were reduced in every condition with contralateral acoustic stimulus (CAS) when compared to preceding quiet conditions. There was an additional systematic decrease in CEOAE level with increased listening task difficulty, although this effect was very small. These CEOAE level differences were most apparent in the 8–18 ms region after click onset. Conclusions Active listening may change the strength of the MOC reflex in children, although the effects reported here are very subtle. Further studies are needed to verify that task difficulty modulates the activity of the MOC reflex in children. PMID:25735203
The parallel programming of voluntary and reflexive saccades.
Walker, Robin; McSorley, Eugene
2006-06-01
A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.
[Early diagnosis and prognosis evaluation of Bell palsy with blink reflex ].
Xie, Dan-dan; Li, Xiao-song; Liu, Yuan-yuan
2014-11-01
To determine the value of blink reflex in early diagnosis and prognosis evaluation of Bell palsy. Blink reflex and facial nerve conduction were examined in 58 patients with Bell palsy within one week after symptom onset. The patients without response of R1 , R2 and R2 ' waves were classified as complete efferent retardarce (Group A, 30 cases), and those with response of R1 , R2 and R2 ' waves were classified as incomplete efferent anomalies (Group B, 28 cases). The clinical outcomes after three months of systemic therapy were evaluated using the House-Blackmann (H-B) scale. Efferent anomalies of blink reflex occurred in ail of the 58 patients. Abnormal results of facial nerve conduction appeared in 23 (39. 7%) patients. The three months therapy was effective in 93% patients in Group B and 70% patients in Group A (P<0. 05). Blink reflex can play a significant role in early diagnosis and prognosis evaluation of Bell palsy.
Pasma, J. H.; Schouten, A. C.; Aarts, R. G. K. M.; Meskers, C. G. M.; Maier, A. B.; van der Kooij, H.
2015-01-01
Standing balance requires multijoint coordination between the ankles and hips. We investigated how humans adapt their multijoint coordination to adjust to various conditions and whether the adaptation differed between healthy young participants and healthy elderly. Balance was disturbed by push/pull rods, applying two continuous and independent force disturbances at the level of the hip and between the shoulder blades. In addition, external force fields were applied, represented by an external stiffness at the hip, either stabilizing or destabilizing the participants' balance. Multivariate closed-loop system-identification techniques were used to describe the neuromuscular control mechanisms by quantifying the corrective joint torques as a response to body sway, represented by frequency response functions (FRFs). Model fits on the FRFs resulted in an estimation of time delays, intrinsic stiffness, reflexive stiffness, and reflexive damping of both the ankle and hip joint. The elderly generated similar corrective joint torques but had reduced body sway compared with the young participants, corresponding to the increased FRF magnitude with age. When a stabilizing or destabilizing external force field was applied at the hip, both young and elderly participants adapted their multijoint coordination by lowering or respectively increasing their neuromuscular control actions around the ankles, expressed in a change of FRF magnitude. However, the elderly adapted less compared with the young participants. Model fits on the FRFs showed that elderly had higher intrinsic and reflexive stiffness of the ankle, together with higher time delays of the hip. Furthermore, the elderly adapted their reflexive stiffness around the ankle joint less compared with young participants. These results imply that elderly were stiffer and were less able to adapt to external force fields. PMID:26719084
Long-term depression-like plasticity of the blink reflex for the treatment of blepharospasm.
Kranz, Gottfried; Shamim, Ejaz A; Lin, Peter T; Kranz, George S; Hallett, Mark
2013-04-01
Our previous work showed a beneficial therapeutic effect on blepharospasm using slow repetitive transcranial magnetic stimulation, which produces a long-term depression (LTD)-like effect. High-frequency supraorbital electrical stimulation, asynchronous with the R2 component of the blink reflex, can also induce LTD-like effects on the blink reflex circuit in healthy subjects. Patients with blepharospasm have reduced inhibition of their blink recovery curves; therefore, a LTD-like intervention might normalize the blink reflex recovery (BRR) and have a favorable therapeutic effect. This is a randomized, sham-controlled, observer-blinded prospective study. In 14 blepharospasm patients, we evaluated the effects of high-frequency supraorbital stimulation on three separate treatment days. We applied 28 trains of nine stimuli, 400 Hz, either before or after the R2 or used sham stimulation. The primary outcome was the blink rate, number of spasms rated by a blinded physician and patient rating before, immediately after and 1 hour after stimulation while resting, reading, and talking; secondary outcome was the BRR. Stimulation "before" and "after" the R2 both showed a similar improvement as sham stimulation in physician rating, but patients felt significantly better with the before condition. Improvement in recovery of the blink reflex was noted only in the before condition. Clinical symptoms differed in the three baseline conditions (resting, reading, and talking). Stimulation before R2 increased inhibition in trigeminal blink reflex circuits in blepharospasm toward normal values and produced subjective, but not objective, improvement. Inhibition of the blink reflex pathway by itself appeared to be insufficient for a useful therapeutic effect. Copyright © 2013 Movement Disorder Society.
More than Meets the Eye: Age Differences in the Capture and Suppression of Oculomotor Action
Ridderinkhof, K. Richard; Wijnen, Jasper G.
2011-01-01
Salient visual stimuli capture attention and trigger an eye-movement toward its location reflexively, regardless of an observer’s intentions. Here we aim to investigate the effect of aging (1) on the extent to which salient yet task-irrelevant stimuli capture saccades, and (2) on the ability to selectively suppress such oculomotor responses. Young and older adults were asked to direct their eyes to a target appearing in a stimulus array. Analysis of overall performance shows that saccades to the target object were disrupted by the appearance of a task-irrelevant abrupt-onset distractor when the location of this distractor did not coincide with that of the target object. Conditional capture function analyses revealed that, compared to young adults, older adults were more susceptible to oculomotor capture, and exhibited deficient selective suppression of the responses captured by task-irrelevant distractors. These effects were uncorrelated, suggesting two independent sources off age-related decline. Thus, with advancing age, salient visual distractors become more distracting; in part because they trigger reflexive eye-movements more potently; in part because of failing top-down control over such reflexes. The fact that these process-specific age effects remained concealed in overall oculomotor performance analyses emphasizes the utility of looking beyond the surface; indeed, there may be more than meets the eye. PMID:22046165
Kyröläinen, H; Komi, P V
1994-01-01
Neural, mechanical and muscle factors influence muscle force production. This study was therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P < 0.01-0.001) with higher rates for force production (P < 0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.
NASA Technical Reports Server (NTRS)
Watt, D. G.; Money, K. E.; Tomi, L. M.
1986-01-01
Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.
NASA Technical Reports Server (NTRS)
Watt, D. G. D.; Money, K. E.; Tomi, L. M.
1986-01-01
Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.
Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica.
Kempsell, Andrew T; Fieber, Lynne A
2014-01-01
Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed.
Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica
Kempsell, Andrew T.; Fieber, Lynne A.
2014-01-01
Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed. PMID:24847260
Weiss, Craig; Disterhoft, John F.
2008-01-01
Many laboratories studying eyeblinks in unanesthetized rodents use a periorbital shock to evoke the blink. The stimulus is typically delivered via a tether and usually obliterates detection of a full unconditioned response with electromyographic (EMG) recording. Here we describe the adapter we have used successfully for several years to deliver puffs of air to the cornea of freely moving rats during our studies of eyeblink conditioning. The stimulus evokes an unconditioned response that can be recorded without affecting the EMG signal. This allows a complete analysis of the unconditioned response which is important for studies examining reflex modification or the effect of drugs, genetic manipulations, or aging on the unconditioned blink reflex. We also describe an infrared reflective sensor that can be added to the tether to minimize the number of wires that need to be implanted around the eye, and which is relatively immune to electrical artifacts associated with a periorbital shock stimulus or other devices powered by alternating current. The responses recorded simultaneously by EMG wires and the optical sensor appear highly correlated and demonstrate that the optical sensor can measure responses that might otherwise be lost due to electrical interference from a shock stimulus. PMID:18598716
Electroacupuncture modulation of reflex hypertension in rats: role of cholecystokinin octapeptide
Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Longhurst, John C.
2013-01-01
Acupuncture or electroacupuncture (EA) potentially offers a nonpharmacological approach to reduce high blood pressure (BP). However, ∼70% of the patients and animal subjects respond to EA, while 30% do not. EA acts, in part, through an opioid mechanism in the rostral ventrolateral medulla (rVLM) to inhibit sympathoexcitatory reflexes induced by gastric distention. CCK-8 opposes the action of opioids during analgesia. Therefore, we hypothesized that CCK-8 in the rVLM antagonizes EA modulation of sympathoexcitatory cardiovascular reflex responses. Male rats anesthetized with ketamine and α-chloralose subjected to repeated gastric distension every 10 min were examined for their responsiveness to EA (2 Hz, 0.5 ms, 1–4 mA) at P5-P6 acupoints overlying median nerve. Repeated gastric distension every 10 min evoked consistent sympathoexcitatory responses. EA at P5-P6 modulated gastric distension-induced responses. Microinjection of CCK-8 in the rVLM reversed the EA effect in seven responders. The CCK1 receptor antagonist devazepide microinjected into the rVLM converted six nonresponders to responders by lowering the reflex response from 21 ± 2.2 to 10 ± 2.9 mmHg (first vs. second application of EA). The EA modulatory action in rats converted to responders with devazepide was reversed with rVLM microinjection of naloxone (n = 6). Microinjection of devazepide in the absence of a second application of EA did not influence the primary pressor reflexes of nonresponders. These data suggest that CCK-8 antagonizes EA modulation of sympathoexcitatory cardiovascular responses through an opioid mechanism and that inhibition of CCK-8 can convert animals that initially are unresponsive to EA to become responsive. PMID:23785073
Dishman, J Donald; Weber, Kenneth A; Corbin, Roger L; Burke, Jeanmarie R
2012-09-30
The purpose of this research was to characterize unique neurophysiologic events following a high velocity, low amplitude (HVLA) spinal manipulation (SM) procedure. Descriptive time series analysis techniques of time plots, outlier detection and autocorrelation functions were applied to time series of tibial nerve H-reflexes that were evoked at 10-s intervals from 100 s before the event until 100 s after three distinct events L5-S1 HVLA SM, or a L5-S1 joint pre-loading procedure, or the control condition. Sixty-six subjects were randomly assigned to three procedures, i.e., 22 time series per group. If the detection of outliers and correlograms revealed a pattern of non-randomness that was only time-locked to a single, specific event in the normalized time series, then an experimental effect would be inferred beyond the inherent variability of H-reflex responses. Tibial nerve F-wave responses were included to determine if any new information about central nervous function following a HVLA SM procedure could be ascertained. Time series analyses of H(max)/M(max) ratios, pre-post L5-S1 HVLA SM, substantiated the hypothesis that the specific aspects of the manipulative thrust lead to a greater attenuation of the H(max)/M(max) ratio as compared to the non-specific aspects related to the postural perturbation and joint pre-loading. The attenuation of the H(max)/M(max) ratio following the HVLA SM procedure was reliable and may hold promise as a translational tool to measure the consistency and accuracy of protocol implementation involving SM in clinical trials research. F-wave responses were not sensitive to mechanical perturbations of the lumbar spine. Copyright © 2012 Elsevier B.V. All rights reserved.
Variability in Hoffmann and tendon reflexes in healthy male subjects
NASA Technical Reports Server (NTRS)
Good, E.; Do, S.; Jaweed, M.
1992-01-01
There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.
Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza
2010-01-01
Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087
A Go-type opsin mediates the shadow reflex in the annelid Platynereis dumerilii.
Ayers, Thomas; Tsukamoto, Hisao; Gühmann, Martin; Veedin Rajan, Vinoth Babu; Tessmar-Raible, Kristin
2018-04-18
The presence of photoreceptive molecules outside the eye is widespread among animals, yet their functions in the periphery are less well understood. Marine organisms, such as annelid worms, exhibit a 'shadow reflex', a defensive withdrawal behaviour triggered by a decrease in illumination. Herein, we examine the cellular and molecular underpinnings of this response, identifying a role for a photoreceptor molecule of the G o -opsin class in the shadow response of the marine bristle worm Platynereis dumerilii. We found Pdu-Go-opsin1 expression in single specialised cells located in adult Platynereis head and trunk appendages, known as cirri. Using gene knock-out technology and ablation approaches, we show that the presence of Go-opsin1 and the cirri is necessary for the shadow reflex. Consistently, quantification of the shadow reflex reveals a chromatic dependence upon light of approximately 500 nm in wavelength, matching the photoexcitation characteristics of the Platynereis Go-opsin1. However, the loss of Go-opsin1 does not abolish the shadow reflex completely, suggesting the existence of a compensatory mechanism, possibly acting through a ciliary-type opsin, Pdu-c-opsin2, with a Lambda max of approximately 490 nm. We show that a Go-opsin is necessary for the shadow reflex in a marine annelid, describing a functional example for a peripherally expressed photoreceptor, and suggesting that, in different species, distinct opsins contribute to varying degrees to the shadow reflex.
Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex
Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.
2010-01-01
The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664
Abnormal reflex activation of hamstring muscles in dogs with cranial cruciate ligament rupture.
Hayes, Graham M; Granger, Nicolas; Langley-Hobbs, Sorrel J; Jeffery, Nick D
2013-06-01
The mechanisms underlying cranial cruciate ligament rupture (CCLR) in dogs are poorly understood. In this study hamstring muscle reflexes in response to cranial tibial translation were analysed to determine whether these active stabilisers of the stifle joint are differently activated in dogs with CCLR compared to control dogs. In a prospective clinical study reflex muscle activity from the lateral and medial hamstring muscles (biceps femoris and semimembranosus) was recorded using surface electrodes in control dogs (n=21) and dogs with CCLR (n=22). These electromyographic recordings were analysed using an algorithm previously validated in humans. The hamstring reflex was reliably and reproducibly recorded in normal dogs. Both a short latency response (SLR, 17.6±2.1ms) and a medium latency response (MLR, 37.7±2.7ms) could be identified. In dogs with unilateral CCLR, the SLR and MLR were not significantly different between the affected and the unaffected limbs, but the MLR latency of both affected and unaffected limbs in CCLR dogs were significantly prolonged compared to controls. In conclusion, the hamstring reflex can be recorded in dogs and the MLR is prolonged in dogs with CCLR. Since both affected and unaffected limbs exhibit prolonged MLR, it is possible that abnormal hamstring reflex activation is a mechanism by which progressive CCL damage may occur. The methodology allows for further investigation of the relationship between neuromuscular imbalance and CCLR or limitations in functional recovery following surgical intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maerz, Adam H.; Gould, Jeffrey R.; Enoka, Roger M.
2011-01-01
Presynaptic modulation of Ia afferents converging onto the motor neuron pool of the extensor carpi radialis (ECR) was compared during contractions (20% of maximal force) sustained to failure as subjects controlled either the angular position of the wrist while supporting an inertial load (position task) or exerted an equivalent force against a rigid restraint (force task). Test Hoffmann (H) reflexes were evoked in the ECR by stimulating the radial nerve above the elbow. Conditioned H reflexes were obtained by stimulating either the median nerve above the elbow or at the wrist (palmar branch) to assess presynaptic inhibition of homonymous (D1 inhibition) and heteronymous Ia afferents (heteronymous Ia facilitation), respectively. The position task was briefer than the force task (P = 0.001), although the maximal voluntary force and electromyograph for ECR declined similarly at failure for both tasks. Changes in the amplitude of the conditioned H reflex were positively correlated between the two conditioning methods (P = 0.02) and differed between the two tasks (P < 0.05). The amplitude of the conditioned H reflex during the position task first increased (129 ± 20.5% of the initial value, P < 0.001) before returning to its initial value (P = 0.22), whereas it increased progressively during the force task to reach 122 ± 17.4% of the initial value at failure (P < 0.001). Moreover, changes in conditioned H reflexes were associated with the time to task failure and force fluctuations. The results suggest a task- and time-dependent modulation of presynaptic inhibition of Ia afferents during fatiguing contractions. PMID:21543747
Baudry, Stéphane; Duchateau, Jacques
2012-01-01
This study investigated the modulation of Ia afferent input in young and elderly adults during quiet upright stance in normal and modified visual and proprioceptive conditions. The surface EMG of leg muscles, recruitment curve of the soleus (SOL) Hoffmann (H) reflex and presynaptic inhibition of Ia afferents from SOL, assessed with the D1 inhibition and single motor unit methods, were recorded when young and elderly adults stood with eyes open or closed on two surfaces (rigid vs. foam) placed over a force platform. The results showed that elderly adults had a longer path length for the centre of pressure and larger antero-posterior body sway across balance conditions (P < 0.05). Muscle EMG activities were greater in elderly compared with young adults (P < 0.05), whereas the Hmax expressed as a percentage of the Hmax was lower (P = 0.048) in elderly (38 ± 16%) than young adults (58 ± 16%). The conditioned H reflex/test H reflex ratio (D1 inhibition method) increased with eye closure and when standing on foam (P < 0.05), with greater increases for elderly adults (P = 0.019). These changes were accompanied by a reduced peak motor unit discharge probability when standing on rigid and foam surfaces (P ≤ 0.001), with a greater effect for elderly adults (P = 0.026). Based on these latter results, the increased conditioned H reflex/test H reflex ratio in similar sensory conditions is likely to reflect occlusion at the level of presynaptic inhibitory interneurones. Together, these findings indicate that elderly adults exhibit greater modulation of Ia presynaptic inhibition than young adults with variation in the sensory conditions during upright standing. PMID:22946095
Tooth pulp stimulation as an unconditioned stimulus in defensive instrumental conditioning.
Jastreboff, P J; Keller, O; Zieliński, K
1977-01-01
In an experiment performed on five cats, stable escape and avoidance reflexes in a bar-pressing situation were established using tooth pulp electric stimulation as the unconditioned stimulus. The influence of changes in parameters of the unconditioned stimulus (current intensity, single pulse and train durations, frequency of pulses and rate of train presentations) on unconditioned and instrumental responses was analysed in three additional subjects. Among other relationships the dependence of the threshold of bar press responses on the amount of charge in a single pulse was determined.
Grey, Michael J; Ladouceur, Michel; Andersen, Jacob B; Nielsen, Jens Bo; Sinkjær, Thomas
2001-01-01
The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h−1 with the left ankle attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (∼8 deg) dorsiflexion perturbations 200 ms after heel contact. Short and medium latency responses were observed with latencies of 55 ± 5 and 78 ± 6 ms, respectively. The short latency response was velocity sensitive (P < 0.001), while the medium latency response was not (P = 0.725). Nerve cooling increased the delay of the medium latency component to a greater extent than that of the short latency component (P < 0.005). Ischaemia strongly decreased the short latency component (P = 0.004), whereas the medium latency component was unchanged (P = 0.437). Two hours after the ingestion of tizanidine, an α2-adrenergic receptor agonist known to selectively depress the transmission in the group II afferent pathway, the medium latency reflex was strongly depressed (P = 0.007), whereas the short latency component was unchanged (P = 0.653). An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. Our results support the hypothesis that, during walking the medium latency component of the stretch reflex resulting from an unexpected perturbation is contributed to by group II muscle afferents. PMID:11483721
Reflex Responses to Ligament Loading: Implications for Knee Joint Stability
2001-10-25
white noise approach", Prentice-Hall".:, 1978. [15] B. Grenfield and B. Wyke, "Reflex innervation of the temporo - mandibular joint .". Nature. 211(52...selective, depending on the magnitude of the angular perturbation. Keywords - Reflex, Periarticular tissue afferents, Joint stability I...INTRODUCTION Traditionally, joint stability has been considered to be purely mechanical in origin, with little or no consideration of neuromuscular
Reflexes from pulmonary arterial baroreceptors in dogs: interaction with carotid sinus baroreceptors
Moore, Jonathan P; Hainsworth, Roger; Drinkhill, Mark J
2011-01-01
Abstract In contrast to the reflex vasodilatation occurring in response to stimulation of baroreceptors in the aortic arch, carotid sinuses and coronary arteries, stimulation of receptors in the wall of pulmonary arteries results in reflex systemic vasoconstriction. It is rare for interventions to activate only one reflexogenic region, therefore we investigated how these two types of reflexes interact. In anaesthetized dogs connected to cardiopulmonary bypass, reflexogenic areas of the carotid sinuses, aortic arch and coronary arteries and the pulmonary artery were subjected to independently controlled pressures. Systemic perfusion pressure (SPP) measured in the descending aorta (constant flow) provided an index of systemic vascular resistance. In other experiments, sympathetic efferent neural activity was recorded in fibres dissected from the renal nerve (RSNA). Physiological increases in pulmonary arterial pressure (PAP) induced significant increases in SPP (+39.1 ± 10.4 mmHg) and RSNA (+17.6 ± 2.2 impulses s−1) whereas increases in carotid sinus pressure (CSP) induced significant decreases in SPP (−42.6 ± 10.8 mmHg) and RSNA (−42.8 ± 18.2 impulses s−1) (P < 0.05 for each comparison; paired t test). To examine possible interactions, PAP was changed at different levels of CSP in both studies. With CSP controlled at 124 ± 2 mmHg, the threshold, ‘set point’ and saturation pressures of the PAP–SPP relationship were higher than those with CSP at 60 ± 1 mmHg; this rightward shift was associated with a significant decrease in the reflex gain. Similarly, increasing CSP produced a rightward shift of the PAP–RSNA relationship, although the effect on reflex gain was inconsistent. Furthermore, the responses to changes in CSP were influenced by setting PAP at different levels; increasing the level of PAP from 5 ± 1 to 33 ± 3 mmHg significantly increased the set point and threshold pressures of the CSP–SPP relationship; the reflex gain was not affected. These results indicate the existence of interaction between pulmonary arterial and carotid sinus baroreceptor reflexes; physiological and pathological states that alter the stimulus to one may alter the reflex responses from the other. PMID:21690195
Cussons, P D; Matthews, P B; Muir, R B
1979-01-01
1. Irregularities in the development of tension during the tonic vibration reflex of the soleus muscle of the decerebrate cat have been analysed into their frequency components. The reflex was recorded isometrically and elicited by longitudinal vibration, normally at 150 Hz. The amplitude of vibration was set so as to elicit a maximal reflex response, suggesting 1:1 driving of the majority of the Ia afferents at the frequency of vibration. 2. The resulting power spectrum regularly showed a well marked tremor peak separated by a trough from any slow irregularities. The predominant frequency of this tremor varied from 4 to 11 Hz in different preparations, with a mean of 7.4 Hz; on average, frequencies within 1.7 Hz on either side contained over half the power of the predominant frequency. Altering the frequency of vibration did not alter the distribution of tremor frequencies. 3. The root mean square value of the tension irregularities, over the range 4-14 Hz, varied from 12 to 110 mN in different preparations (median value, 23 mN); this was superimposed on mean active reflex tensions varying from 2 to 10 N. 4. The 'tremor' due to a single motor unit was estimated from spectral analysis of tetanic contractions of the whole muscle and decreased with increasing frequency of activation. Comparison of the single unit values with the tremor seen during vibration in the same preparations showed that equivalent amounts of tremor to the latter could typically have been produced by the continued synchronous contraction of about five 'average' motor units firing at the predominant tremor frequency. 5. When a tonic stretch reflex was present its tremor frequencies did not differ consistently from those of the tonic vibration reflex. On average, the tremor was smaller for the stretch reflex than for the tonic vibration reflex; the difference was usually slight and might have been related to the stretch refex tension being smaller. 6. Evidence was obtained that the tremor was not due to any insecurity of 1:1 driving of the Ia afferents by the vibration. First, the tremor did not increase when the amplitude of vibration was decreased sufficiently to ensure that the degree of 1:1 driving must have been reduced. Secondly, the introduction of a comparable 'artificial tremor' by sinusoidally oscillating the muscle at low frequency did not produce the e.m.g. response that would have been expected if the applied 'tremor' had been modulating the firing of the Ia or any other group of afferents. 7. It is concluded that the observed tremor cannot be attributed to 'oscillation in the stretch reflex arc', though without prejudice to the role of this mechanism under other conditions and especially when the recording is not isometric. However, the genesis of the tremor has not been established and much of it might result simply from the chance synchronization of motor units that are firing below their tetanic fusion frequency. PMID:158643
Tomilenko, R A; Dubrovina, N I
2007-06-01
The effects of an agonist (D-cycloserine) and an antagonist (dizocilpine) of N-methyl-D-aspartate (NMDA) receptors on the learning and extinction of a conditioned passive avoidance response were studied in mice with low, intermediate, and high levels of anxiety. In intermediate-anxiety mice, D-cycloserine (30 mg/kg) had no effect on learning but accelerated extinction, while dizocilpine (0.15 mg/kg) degraded acquisition of the reflex but delayed extinction. In high-anxiety mice, with good learning and no extinction, D-cycloserine had no effect, while dizocilpine decreased learning and facilitated retention of performance of the memory trace at the ongoing level in conditions promoting extinction. In low-anxiety mice, D-cycloserine degraded learning and accelerated extinction, while dizocilpine completely blocked learning and the retention of the passive avoidance response.
Oxygen-conserving reflexes of the brain: the current molecular knowledge.
Schaller, B; Cornelius, J F; Sandu, N; Ottaviani, G; Perez-Pinzon, M A
2009-04-01
The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called 'oxygen-conserving reflexes'. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO(2)) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO(2) or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain.
Studies of the vestibulo-ocular reflex on STS 4, 5 and 6
NASA Technical Reports Server (NTRS)
Thornton, William E.; Pool, Sam L.; Moore, Thomas P.; Uri, John J.
1988-01-01
The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results.
Scholes, Kirsty E; Martin-Iverson, Mathew T
2010-03-01
Controversy exists as to the cause of disturbed prepulse inhibition (PPI) in patients with schizophrenia. This study aimed to clarify the nature of PPI in schizophrenia using improved methodology. Startle and PPI were measured in 44 patients with schizophrenia and 32 controls across a range of startling stimulus intensities under two conditions, one while participants were attending to the auditory stimuli (ATTEND condition) and one while participants completed a visual task in order to ensure they were ignoring the auditory stimuli (IGNORE condition). Patients showed reduced PPI of R(MAX) (reflex capacity) and increased PPI of Hillslope (reflex efficacy) only under the INGORE condition, and failed to show the same pattern of attentional modulation of the reflex parameters as controls. In conclusion, disturbed PPI in schizophrenia appears to result from deficits in selective attention, rather than from preattentive dysfunction.
Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O
1999-03-01
1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.
Pettorossi, V E; Torre, G Della; Bortolami, R; Brunetti, O
1999-01-01
The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a ‘12-train’ series, an increasing inhibition. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots. PMID:10050025
Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior
Sprenger, Andreas; Weber, Frederik D.; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan
2015-01-01
Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. PMID:26048955
Racine, Sarah E; Hebert, Karen R; Benning, Stephen D
2018-01-01
Eating disorders are associated with both negative and positive emotional reactions towards food. Individual eating disorder symptoms may relate to distinct emotional responses to food, which could necessitate tailored treatments based on symptom presentation. We examined associations between eating disorder symptoms and psychophysiological responses to food versus neutral images in 87 college students [mean (SD) age = 19.70 (2.09); mean (SD) body mass index = 23.25(2.77)]. Reflexive and facial electromyography measures tapping negative emotional reactivity (startle blink reflex) and appraisal (corrugator muscle response) as well as positive emotional reactivity (postauricular reflex) and appraisal (zygomaticus muscle response) were collected. Eating disorder cognitions correlated with more corrugator activity to food versus neutral images, indicating negative appraisals of food. Binge eating was associated with increased postauricular reflex reactivity to food versus neutral images, suggesting enhanced appetitive motivation to food. The combination of cognitive eating disorder symptoms and binge eating may result in motivational conflict towards food. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
Morros, C; Cedo, F
1994-01-01
To assess the results obtained in treatment of sympathetic reflex dystrophy by sympathetic endovenous blockades with reserpine in working patients. We reviewed 170 diagnoses of sympathetic reflex dystrophy in 165 patients. One hundred seven were located in the foot, 13 were in the knee and 50 were in the hand. All were treated once a week for 3 weeks with local sympathetic endovenous blocks with reserpine (1 mg in the upper extremity and 1.5 mg in the lower extremity). We analyzed the location, etiology, course, X-rays, gammagrams, psychological state, other treatments, associated conditions, number of blocks received and side effects. The results were classified as excellent, good, fair and nil. We particularly reviewed sympathetic reflex dystrophy associated to Colles' fractures. Five hundred forty endovenous sympathetic blocks with reserpine were performed. Results obtained were excellent in 57 (34%) patients, good in 77 (45%), fair in 29 (17%) and nil in 7 (4%). Sympathetic reflex dystrophy leads to loss of 215 +/- 91 working days. In patients with Colles' fracture without sympathetic reflex dystrophy the loss is 96 +/- 31 days, although this period lengthens to 115 +/- 15 days if the two conditions are associated in stage I and to loss of 193 +/- 71 days if the association is in stage II. Results of treating sympathetic reflex dystrophy with sympathetic endovenous blocks with reserpine are satisfactory, particularly when diagnosis and treatment are early, clearly demonstrating the usefulness of this technique in workplace medicine.
Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor.
Antelmi, E; Di Stasio, F; Rocchi, L; Erro, R; Liguori, R; Ganos, C; Brugger, F; Teo, J; Berardelli, A; Rothwell, J; Bhatia, K P
2016-10-01
Tremor is frequently associated with dystonia, but its pathophysiology is still unclear. Dysfunctions of cerebellar circuits are known to play a role in the pathophysiology of action-induced tremors, and cerebellar impairment has frequently been associated to dystonia. However, a link between dystonic tremor and cerebellar abnormalities has not been demonstrated so far. Twenty-five patients with idiopathic isolated cervical dystonia, with and without tremor, were enrolled. We studied the excitability of inhibitory circuits in the brainstem by measuring the R2 blink reflex recovery cycle (BRC) and implicit learning mediated by the cerebellum by means of eyeblink classical conditioning (EBCC). Results were compared with those obtained in a group of age-matched healthy subjects (HS). Statistical analysis did not disclose any significant clinical differences among dystonic patients with and without tremor. Patients with dystonia (regardless of the presence of tremor) showed decreased inhibition of R2 blink reflex by conditioning pulses compared with HS. Patients with dystonic tremor showed a decreased number of conditioned responses in the EBCC paradigm compared to HS and dystonic patients without tremor. The present data show that cerebellar impairment segregates with the presence of tremor in patients with dystonia, suggesting that the cerebellum might have a role in the occurrence of dystonic tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nociceptive flexion reflexes during analgesic neurostimulation in man.
García-Larrea, L; Sindou, M; Mauguière, F
1989-11-01
Nociceptive flexion reflexes of the lower limbs (RIII responses) have been studied in 21 patients undergoing either epidural (DCS, n = 16) or transcutaneous (TENS, n = 5) analgesic neurostimulation (AN) for chronic intractable pain. Flexion reflex RIII was depressed or suppressed by AN in 11 patients (52.4%), while no modification was observed in 9 cases and a paradoxical increase during AN was evidenced in 1 case. In all but 2 patients, RIII changes were rapidly reversible after AN interruption. RIII depression was significantly associated with subjective pain relief, as assessed by conventional self-rating; moreover, in 2 patients it was possible to ameliorate the pain-suppressing effects of AN by selecting those stimulation parameters (intensity and frequency) that maximally depressed nociceptive reflex RIII. We recorded 2 cases of RIII attenuation after contralateral neurostimulation. AN appeared to affect nociceptive reflexes rather selectively, with no or very little effect on other cutaneous, non-nociceptive responses. Recording of RIII reflexes is relatively simple to implement as a routine paraclinical procedure. It facilitates the objective assessment of AN efficacy and may help to choose the most appropriate parameters of neurostimulation. In addition, RIII behavior in patients could be relevant to the understanding of some of the mechanisms involved in AN-induced pain relief.
Mu, Laiyong; Ritzmann, Roy E
2008-03-01
Tethered cockroaches turn from unilateral antennal contact using asymmetrical movements of mesothoracic (T2) legs (Mu and Ritzmann in J Comp Physiol A 191:1037-1054, 2005). During the turn, the leg on the inside of the turn (the inside T2 leg) has distinctly different motor patterns from those in straight walking. One possible neural mechanism for the transformation from walking to inside leg turning could be that the descending commands alter a few critical reflexes that start a cascade of physical changes in leg movement or posture, leading to further alterations. This hypothesis has two implications: first, the descending activities must be able to influence thoracic reflexes. Second, one should be able to initiate the turning motor pattern without descending signals by mimicking a point farther down in the reflex cascade. We addressed the first implication in this paper by experiments on chordotonal organ reflexes. The activity of depressor muscle (Ds) and slow extensor tibia muscle (SETi) was excited and inhibited by stretching and relaxing the femoral chordotonal organ. However, the Ds responses were altered after eliminating the descending activity, while the SETi responses remain similar. The inhibition to Ds activity by stretching the coxal chordotonal organ was also altered after eliminating the descending activity.
Voglar, Matej; Sarabon, Nejc
2014-09-01
Therapeutic Kinesio Taping method is used for treatment of various musculo-skeletal conditions. Kinesio Taping might have some small clinically important beneficial effects on range of motion and strength but findings about the effects on proprioception and muscle activation are inconsistent. The aim of this study was to test if Kinesio Taping influences anticipatory postural adjustments and postural reflex reactions. To test the hypothesis twelve healthy young participants were recruited in randomized, participants blinded, placebo controlled cross-over study. In the experimental condition the tape was applied over the paravertebral muscles and in placebo condition sham application of the tape was done transversally over the lumbar region. Timing of anticipatory postural adjustments to fast voluntary arms movement and postural reflex reactions to sudden loading over the hands were measured by means of superficial electromyography before and one hour after each tape application. Results showed no significant differences between Kinesio Taping and placebo taping conditions for any of the analyzed muscles in anticipatory postural adaptations (F1,11 < 0.23, p > 0.64, η2 < 0.04) or postural reflex reactions (F1,11 < 4.16, p > 0.07, η(2) < 0.49). Anticipatory postural adjustments of erector spinae and multifidus muscles were initiated significantly earlier after application of taping (regardless of technique) compared to pre-taping (F1,11 = 5.02, p = 0.046, η(2) = 0.31 and F1,11 = 6.18, p = 0.030, η(2) = 0.36 for erector spinae and multifidus, respectively). Taping application over lumbar region has potential beneficial effects on timing of anticipatory postural adjustments regardless of application technique but no effect on postural reflex reactions in young pain free participants. Further research in patients with low back pain would be encouraged. Key PointsApplication of Kinesio Taping does not affect postural reflex reactions in young healthy population.Earlier anticipatory postural adjustments were observed under both Kinesio Taping and placebo conditions.There were no significant differences between Kinesio Taping and placebo condition.
Camponogara, Silviamar; Ramos, Flávia Regina Sousa; Kirchhof, Ana Lucia Cardoso
2009-01-01
The article aims to analyze the interface of reflexivity, knowledge and ecologic awareness in the context of hospital work, based on data collected in a qualitative case study carried out at a public hospital. Field observation data and interviews are discussed in the light of sociologic and philosophic references. Workers expressed the interface between knowledge and action, in which there is a cycle of lack of knowledge, automatism in the actions and lack of environmental awareness, posing limits to individual awareness and to responsibility towards environmental preservation. Increased debate and education, including the environmental issue, are needed in the context of hospital work. Although hospital work is reflexively affected by the environmental problem, that does not guarantee the reorientation of practices and responsible action towards the environment.
Effect of experimental stress in 2 different pain conditions affecting the facial muscles.
Woda, Alain; L'heveder, Gildas; Ouchchane, Lemlih; Bodéré, Céline
2013-05-01
Chronic facial muscle pain is a common feature in both fibromyalgia (FM) and myofascial (MF) pain conditions. In this controlled study, a possible difference in the mode of deregulation of the physiological response to a stressing stimulus was explored by applying an acute mental stress to FM and MF patients and to controls. The effects of the stress test were observed on pain, sympathetic variables, and both tonic and reflex electromyographic activities of masseteric and temporal muscles. The statistical analyses were performed through a generalized linear model including mixed effects. Painful reaction to the stressor was stronger (P < .001) and longer (P = .011) in FM than in MF independently of a higher pain level at baseline. The stress-induced autonomic changes only seen in FM patients did not reach significance. The electromyographic responses to the stress test were strongest for controls and weakest for FM. The stress test had no effect on reflex activity (area under the curve [AUC]) or latency, although AUC was high in FM and latencies were low in both pain groups. It is suggested that FM is characterized by a lower ability to adapt to acute stress than MF. This study showed that an acute psychosocial stress triggered several changes in 2 pain conditions including an increase in pain of larger amplitude in FM than in MF pain. Similar stress-induced changes should be explored as possible mechanisms for differentiation between dysfunctional pain conditions. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Guarín, Diego L.; Kearney, Robert E.
2017-01-01
Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the movement in a manner that could not be predicted from quasi-stationary experiments. The new method provides the tool needed to explore the role of dynamic stiffness in the control of movement. PMID:28649196
Smith, Caroline J; Johnson, John M
2016-04-01
Under normothermic, resting conditions, humans dissipate heat from the body at a rate approximately equal to heat production. Small discrepancies between heat production and heat elimination would, over time, lead to significant changes in heat storage and body temperature. When heat production or environmental temperature is high the challenge of maintaining heat balance is much greater. This matching of heat elimination with heat production is a function of the skin circulation facilitating heat transport to the body surface and sweating, enabling evaporative heat loss. These processes are manifestations of the autonomic control of cutaneous vasomotor and sudomotor functions and form the basis of this review. We focus on these systems in the responses to hyperthermia. In particular, the cutaneous vascular responses to heat stress and the current understanding of the neurovascular mechanisms involved. The available research regarding cutaneous active vasodilation and vasoconstriction is highlighted, with emphasis on active vasodilation as a major responder to heat stress. Involvement of the vasoconstrictor and active vasodilator controls of the skin circulation in the context of heat stress and nonthermoregulatory reflexes (blood pressure, exercise) are also considered. Autonomic involvement in the cutaneous vascular responses to direct heating and cooling of the skin are also discussed. We examine the autonomic control of sweating, including cholinergic and noncholinergic mechanisms, the local control of sweating, thermoregulatory and nonthermoregulatory reflex control and the possible relationship between sudomotor and cutaneous vasodilator function. Finally, we comment on the clinical relevance of these control schemes in conditions of autonomic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.
2009-01-01
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J
2009-10-21
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.
Jadcherla, Sudarshan Rao; Hoffmann, Raymond G.; Shaker, Reza
2014-01-01
Objectives To investigate the effect of esophageal mechanosensitive and chemosensitive stimulation on the magnitude and recruitment of peristaltic reflexes and upper esophageal sphincter (UES)-contractile reflex in premature infants. Study design Esophageal manometry and provocation testing were performed in the same 18 neonates at 33 and 36 weeks postmenstrual age (PMA). Mechanoreceptor and chemoreceptor stimulation were performed using graded volumes of air, water, and apple juice (pH 3.7), respectively. The frequency and magnitude of the resulting esophago-deglutition response (EDR) or secondary peristalsis (SP), and esophago-UES-contractile reflex (EUCR) were quantified. Results Threshold volumes to evoke EDR, SP, or EUCR were similar. The recruitment and magnitude of SP and EUCR increased with volume increments of air and water in either study (P < .05). However, apple juice infusions resulted in increased recruitment of EDR in the 33 weeks group (P < .05), and SP in the 36 weeks group (P < .05). The magnitude of EUCR was also volume responsive (all media, P < .05), and significant differences between media were noted (P < .05). At maximal stimulation (1 mL, all media), sensory-motor characteristics of peristaltic and EUCR reflexes were different (P < .05) between media and groups. Conclusions Mechano- and chemosensitive stimuli evoke volume-dependent specific peristaltic and UES reflexes at 33 and 36 weeks PMA. The recruitment and magnitude of these reflexes are dependent on the physicochemical properties of the stimuli in healthy premature infants. PMID:16860132
Anger and aggression problems in veterans are associated with an increased acoustic startle reflex.
Heesink, Lieke; Kleber, Rolf; Häfner, Michael; van Bedaf, Laury; Eekhout, Iris; Geuze, Elbert
2017-02-01
Anger and aggression are frequent problems in deployed military personnel. A lowered threshold of perceiving and responding to threat can trigger impulsive aggression. This can be indicated by an exaggerated startle response. Fifty-two veterans with anger and aggression problems (Anger group) and 50 control veterans were tested using a startle experiment with 10 startle probes and 10 prepulse trials, presented in a random order and with a random interval between the trials. Predictors (demographics, Trait Anger, State Anger, Harm Avoidance and Anxious Arousal) for the startle response within the Anger group were tested. Increased EMG responses were found to the startle probes in the Anger Group compared to the Control group, but not to the prepulse trials. Furthermore, Harm Avoidance and State Anger predicted the increased startle reflex within the Anger group, whereas Trait Anger was negatively related to the startle reflex. These findings indicate that threat reactivity is increased in anger and aggression problems. These problems are not only caused by an anxious predisposition, the degree of anger also predicts the startle reflex. Copyright © 2016 Elsevier B.V. All rights reserved.
Matthews, P. B. C.
1966-01-01
1. Vibration was applied longitudinally to the fully innervated soleus muscle of the decerebrate cat by attaching its tendon to a vibrator. Vibration at frequencies of 50-500/sec with amplitudes of 10 μ upwards caused the muscle to contract reflexly for as long as the vibration was maintained. The response was recorded myographically by a myograph mounted upon the vibrator, and electromyographically by gross `belly-tendon' leads. The reflex contraction produced several hundred g wt. of tension and involved too many motor units for their discharges to be separable. The maintained reflex was abolished by making the preparation spinal or by anaesthetizing it with pentobarbitone, but it persisted after removing the cerebellum. 2. The minimum latency for the appearance of the reflex response at the beginning of a period of vibration was about 10 msec. The latency of cessation of the response at the end of vibration was similarly short. 3. On increasing the amplitude of vibration at any particular frequency in the range 100-300/sec the resulting reflex tension increased to an approximate plateau for amplitudes of vibration of 100-200 μ. Further increase in the amplitude decreased the size of the contraction, though there was no such reduction in records of the `integrated' electromyogram. 4. Such large amplitudes of vibration also reduced the tension, and shortened the duration, of a twitch contraction of the muscle elicited by stimulating its nerve. The strength of a tetanic contraction was much less affected by vibration than was that of the twitch contraction, and the muscle action potential elicited by stimulation of the nerve was unaffected. Thus, large-amplitude vibration influenced the contractile mechanism of the muscle (cf. Buchtal & Kaiser, 1951). 5. Increasing the frequency of vibration increased the value of the plateau tension reached on increasing the amplitude. The effect was, however, relatively small and the largest increase seen was 3 g wt. of contractile tension per c/s increase in vibration frequency. 6. The primary afferent ending of the muscle spindle is considered to be the receptor whose excitation leads to the reflex response to vibration. The vibration reflex thus appears to be the well-known stretch reflex, elicited by a rather unusual form of stretching. The size of the vibration reflex and its variation with frequency are discussed in relation to the servo theory of muscular contraction. PMID:5921840
When planning results in loss of control: intention-based reflexivity and working-memory
Meiran, Nachshon; Cole, Michael W.; Braver, Todd S.
2012-01-01
In this review, the authors discuss the seemingly paradoxical loss of control associated with states of high readiness to execute a plan, termed “intention-based reflexivity.” The review suggests that the neuro-cognitive systems involved in the preparation of novel plans are different than those involved in preparation of practiced plans (i.e., those that have been executed beforehand). When the plans are practiced, intention-based reflexivity depends on the prior availability of response codes in long-term memory (LTM). When the plans are novel, reflexivity is observed when the plan is pending and the goal has not yet been achieved. Intention-based reflexivity also depends on the availability of working-memory (WM) limited resources and the motivation to prepare. Reflexivity is probably related to the fact that, unlike reactive control (once a plan is prepared), proactive control tends to be relatively rigid. PMID:22586382
NASA Astrophysics Data System (ADS)
Flanagan, P. M.; Chutkow, J. G.; Riggs, M. T.; Cristiano, V. D.
1987-05-01
We describe the design of a reliable, user-friendly preprototype system for quantifying the tendon stretch reflexes in humans and large mammals. A hand-held, instrumented reflex gun, the impactor of which contains a single force sensor, interfaces with a computer. The resulting test system can deliver sequences of reproducible stimuli at graded intensities and adjustable durations to a muscle's tendon ("tendon taps"), measure the impacting force of each tap, and record the subsequent reflex muscle contraction from the same tendon -- all automatically. The parameters of the reflex muscle contraction include latency; mechanical threshold; and peak time, peak magnitude, and settling time. The results of clinical tests presented in this paper illustrate the system's potential usefulness in detecting neurologic dysfunction affecting the tendon stretch reflexes, in documenting the course of neurologic illnesses and their response to therapy, and in clinical and laboratory neurologic research.
Human ocular torsion during parabolic flights: an analysis with scleral search coil
NASA Technical Reports Server (NTRS)
Cheung, B. S.; Money, K.; Howard, I.; Kirienko, N.; Johnson, W.; Lackner, J.; Dizio, P.; Evanoff, J.
1992-01-01
Rotation of the eyes about the visual axis is known as ocular torsion. A lateral inclination (a "roll") of the head induces ocular torsion in the opposite direction, a response known as ocular counterrolling. For six subjects, we recorded the static (head still) and dynamic (head in oscillatory roll motion) ocular torsion in normal 1 g condition and also during the microgravity and hypergravity periods of parabolic flight, using the electromagnetic scleral search coil technique. With the head still, the direction and magnitude of torsion that occurred in response to microgravity and hypergravity differed substantially from one individual to another, but there was a significant difference in torsional magnitude between the microgravity and hypergravity periods, for all static head positions including the upright position. Under normal 1 g conditions, counterrolling compensated for about 16% of (voluntary) static head roll, while dynamic counterroll was much larger, up to 36% of head roll at 0.55 Hz. With increasing frequency of head oscillation between 0.33 Hz and 0.55 Hz, the gain of counterrolling increased and there was no change in the phase relationship. The gain of dynamic counterroll (in response to voluntary head rolling) was not significantly less in hypogravity, suggesting that on the ground at these frequencies the contribution of gravity and gravity receptors to this reflex is redundant: this reflex is probably driven by the semicircular canals. In some subjects, the torsional displacement in microgravity is accompanied by micro-torsional oscillatory motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-mccabe, Kirsten J; Wingo, Robert M; Haarmann, Timothy K
We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response tomore » TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.« less
Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide.
Davies, A; Dixon, M; Callanan, D; Huszczuk, A; Widdicombe, J G; Wise, J C
1978-07-01
Anaesthetized rabbits were given 200 ppm sulphur dioxide to breathe for 10 min. This abolished activity in 23 of 26 pulmonary stretch receptors, while leaving that of lung irritant receptors unimpaired. The Breuer-Hering reflex was abolished and breathing became deeper and slower. Inspiratory time (tI) was increased and expiratory time (tE) decreased. Subsequent vagotomy increased tidal volume (VT), tI and tE. In animals with stretch receptors blocked, injections of phenyl diguanide and histamine still increased breathing frequency and decreased VT, indicating that reflexes from lung irritant and J-receptors were intact. Inhalation of 8% CO2 caused a bigger increase in frequency and tidal volume in rabbits with stretch receptor block compared with controls or those after vagotomy. Induction of pneumothorax with stretch receptor block transiently prolonged tI and shortened tE; removal of the pneumothorax also transiently shortened tE and usually also decreased tI. The results suggest that lung irritant receptors reflexly shorten tE in all our experimental conditions, but have various effects on tI which may depend on the timing of the irritant receptor discharge and refractoriness of the inspiratory response.
Factors Affecting the Occurrence of Spinal Reflexes in Brain Dead Cases.
Hosseini, Mahsa Sadat; Ghorbani, Fariba; Ghobadi, Omid; Najafizadeh, Katayoun
2015-08-01
Brain death is defined as the permanent absence of all cortical and brain stem reflexes. A wide range of spontaneous or reflex movements that are considered medullary reflexes are observed in heart beating cases that appear brain dead, which may create uncertainty about the diagnosis of brain death and cause delays in deceased-donor organ donation process. We determined the frequency and type of medullary reflexes and factors affecting their occurrence in brain dead cases. During 1 year, 122 cases who fulfilled the criteria for brain death were admitted to the special intensive care unit for organ procurement of Masih Daneshvari Hospital. Presence of spinal reflexes was evaluated by trained coordinators and was recorded in a form in addition to other information including demographic characteristics, cause of brain death, time from detection of brain death, history of craniotomy, vital signs, serum electrolyte levels, and parameters of arterial blood gas determination. Most cases (63%) included in this study were male, and mean age was 33 ± 15 y. There was > 1 spinal reflex observed in 40 cases (33%). The most frequent reflex was plantar response (17%) following by myoclonus (10%), triple flexion reflex (9%), pronator extension reflex (8%), and undulating toe reflex (7%). Mean systolic blood pressure was significantly higher in cases who exhibited medullary reflexes than other cases (126 ± 19 mm Hg vs 116 ± 17 mm Hg; P = .007). Spinal reflexes occur frequently in brain dead cases, especially when they become hemodynamically stable after treatment in the organ procurement unit. Observing these movements by caregivers and family members has a negative effect on obtaining family consent and organ donation. Increasing awareness about spinal reflexes is necessary to avoid suspicion about the brain death diagnosis and delays in organ donation.
Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response.
Abramson, Charles I; Dinges, Christopher W; Wells, Harrington
2016-01-01
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees' learning did not carry over to the covered-well test treatments.
Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response
Abramson, Charles I.; Dinges, Christopher W.; Wells, Harrington
2016-01-01
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees’ learning did not carry over to the covered-well test treatments. PMID:27626797
NASA Technical Reports Server (NTRS)
Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.
2011-01-01
Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.
Interaction of semicircular canal stimulation with carotid baroreceptor reflex control of heart rate
NASA Technical Reports Server (NTRS)
Convertino, V. A.
1998-01-01
The carotid-cardiac baroreflex contributes to the prediction of orthostatic tolerance; experimental attenuation of the reflex response leads to orthostatic hypotension in humans and animals. Anecdotal observations indicate that rotational head movements about the vertical axis of the body can also induce orthostatic bradycardia and hypotension through increased parasympathetic activity. We therefore measured the chronotropic response to carotid baroreceptor stimulation in 12 men during varying conditions of vestibulo-oculomotor stimulation to test the hypothesis that stimulation of the semicircular canals associated with head movements in the yaw plane inhibits cardioacceleration through a vagally mediated baroreflex. Carotid-cardiac baroreflex response was assessed by plotting R-R intervals (ms) at each of 8 neck pressure steps with their respective carotid distending pressures (mmHg). Calculated baroreflex gain (maximal slope of the stimulus-response relationship) was measured under 4 experimental conditions: 1) sinusoidal whole-body yaw rotation of the subject in the dark without visual fixation (combined vestibular-oculomotor stimulation); 2) yaw oscillation of the subject while tracking a small head-fixed light moving with the subject (vestibular stimulation without eye movements); 3) subject stationary while fixating on a small light oscillating in yaw at the same frequency, peak acceleration, and velocity as the chair (eye movements without vestibular stimulation); and 4) subject stationary in the dark (no eye or head motion). Head motion alone and with eye movement reduced baseline baroreflex responsiveness to the same stimulus by 30%. Inhibition of cardioacceleration during rotational head movements may have significant impact on functional performance in aerospace environments, particularly in high-performance aircraft pilots during high angular acceleration in aerial combat maneuvers or in astronauts upon return from spaceflight who already have attenuated baroreflex functions.
Objective evaluation of binaural summation through acoustic reflex measures.
Rawool, Vishakha W; Parrill, Madaline
2018-02-12
A previous study [Rawool, V. W. (2016). Auditory processing deficits: Assessment and intervention. New York, NY: Thieme Medical Publishers, Inc., pp. 186-187] demonstrated objective assessment of binaural summation through right contralateral acoustic reflex thresholds (ARTs) in women. The current project examined if previous findings could be generalised to men and to the left ear. Cross-sectional. Sixty individuals participated in the study. Left and right contralateral ARTs were obtained in two conditions. In the alternated condition, the probe tone presentation was alternated with the presentation of the reflex activating clicks. In the simultaneous condition, the probe tone and the clicks were presented simultaneously. Binaural summation was calculated by subtracting the ARTs obtained in the simultaneous condition from the ARTs obtained in the alternated condition. MANOVA on ARTs revealed no significant gender or ear effects. The ARTs were significantly lower/better in the simultaneous condition compared to the alternated condition. Binaural summation was 4 dB or higher in 88% of the ears and 6 dB or higher in 76% of ears. Stimulation of six out of the total 120 (0.5%) ears resulted in worse thresholds in the simultaneous condition compared with the alternating condition, suggesting binaural interference.
Arm Dominance Affects Feedforward Strategy more than Feedback Sensitivity during a Postural Task
Walker, Elise H. E.; Perreault, Eric J.
2015-01-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors, and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture, and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23–51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development. PMID:25850407
Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task.
Walker, Elise H E; Perreault, Eric J
2015-07-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.
Caputo, M P; Alphin, R L; Pritchett, E; Hougentogler, D P; Johnson, A L; Benson, E R; Patil, C
2013-02-01
The mass depopulation of production birds remains an effective means of controlling fast-moving, highly infectious diseases such as avian influenza and virulent Newcastle disease. Water-based fire-fighting foam is a conditionally approved method of depopulating floor-reared gallinaceous poultry such as chickens and turkeys; however, ducks have physiological mechanisms that may make them more resistant to this method of depopulation. The following experiment was designed to assess the physiological responses of White Pekin ducks to nonterminal submersion in water-based foam compared with water. The hypothesis of this experiment was that submersion of ducks in water or water-based foam would trigger the diving reflex and lead to bradycardia. All treatments led to pronounced bradycardia. Heart rate was not significantly different between treatments during the final 30 s of the 60-s treatment period. Heart rate dropped significantly faster for the water dip and foam dip treatments and rose significantly faster than the foam pour treatment after the termination of the 60-s treatment period. Duration of bradycardia approached significance for the foam pour treatment, leading to a longer duration of bradycardia compared with the water pour, water dip, and foam dip treatments. The results of this experiment demonstrated that apnea and bradycardia as a result of the diving reflex can occur as a result of submersion in foam, which may have an impact on the time it takes White Pekin ducks to reach unconsciousness and death during water-based foam depopulation.
Modulation of defensive reflex conditioning in snails by serotonin
Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.
2015-01-01
Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063
Altered Timing of Postural Reflexes Contributes to Falling in Persons with Chronic Stroke
Marigold, Daniel S.; Eng, Janice J.
2011-01-01
The purpose of this study was to determine differences in the timing of postural reflexes and changes in kinematics between those who fell (Fallers) in response to standing platform translations and those who did not (Non-fallers). Forty-four persons with stroke were exposed to unexpected forward and backward platform translations while standing. Surface electromyography from bilateral tibialis anterior, gastrocnemius, rectus femoris, and biceps femoris were recorded along with kinematic data. Those that fell in response to the translations were compared to those who did not fall in terms of (1) postural reflex onset latency, (2) the time interval between the activation of distal and proximal muscles (i.e. intralimb coupling), and (3) changes in joint angles and trunk motion. Approximately 85% of falls occurred in response to the forward translations. Postural reflex onset latencies were delayed and intralimb coupling durations were longer in the Faller versus Non-faller group. At the time that the platform completed the translating motion (300 ms), the Faller group demonstrated higher trunk velocity, greater change in paretic ankle angle, and the trunk was further behind the ankle compared to the Non-faller group. This study suggests that following platform translations, delays in the timing of postural reflexes and disturbed intralimb coupling result in changes in kinematics, which contribute to falls in persons with stroke. PMID:16418855
Extreme startle and photomyoclonic response in severe hypocalcaemia.
Moccia, Marcello; Erro, Roberto; Nicolella, Elvira; Striano, Pasquale; Striano, Salvatore
2014-03-01
We report the case of 62-year-old woman referred to our department because of a clinical suspicion of tonic-clonic seizures. Clinical examination revealed an exaggerated startle reflex, EEG showed a photomyoclonic response, and blood tests indicated severe hypocalcaemia. Additional clinical data, treatment strategies, and long-term follow-up visits were reported. The present report discusses the difficulties in distinguishing between epileptic and non-epileptic startles, and shows, for the first time, exaggerated startle reflex and extreme photomyoclonic response due to severe hypocalcaemia.
Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure
The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome ...
De Pascalis, Vilfredo; Russo, Emanuela
2013-01-01
A working model of the neurophysiology of hypnosis suggests that highly hypnotizable individuals (HHs) have more effective frontal attentional systems implementing control, monitoring performance, and inhibiting unwanted stimuli from conscious awareness, than low hypnotizable individuals (LHs). Recent studies, using prepulse inhibition (PPI) of the auditory startle reflex (ASR), suggest that HHs, in the waking condition, may show reduced sensory gating although they may selectively attend and disattend different stimuli. Using a within subject design and a strict subject selection procedure, in waking and hypnosis conditions we tested whether HHs compared to LHs showed a significantly lower inhibition of the ASR and startle-related brain activity in both time and intracerebral source localization domains. HHs, as compared to LH participants, exhibited (a) longer latency of the eyeblink startle reflex, (b) reduced N100 responses to startle stimuli, and (c) higher PPI of eyeblink startle and of the P200 and P300 waves. Hypnosis yielded smaller N100 waves to startle stimuli and greater PPI of this component than in the waking condition. sLORETA analysis revealed that, for the N100 (107 msec) elicited during startle trials, HHs had a smaller activation in the left parietal lobe (BA2/40) than LHs. Auditory pulses of pulse-with prepulse trials in HHs yielded less activity of the P300 (280 msec) wave than LHs, in the cingulate and posterior cingulate gyrus (BA23/31). The present results, on the whole, are in the opposite direction to PPI findings on hypnotizability previously reported in the literature. These results provide support to the neuropsychophysiological model that HHs have more effective sensory integration and gating (or filtering) of irrelevant stimuli than LHs. PMID:24278150
De Pascalis, Vilfredo; Russo, Emanuela
2013-01-01
A working model of the neurophysiology of hypnosis suggests that highly hypnotizable individuals (HHs) have more effective frontal attentional systems implementing control, monitoring performance, and inhibiting unwanted stimuli from conscious awareness, than low hypnotizable individuals (LHs). Recent studies, using prepulse inhibition (PPI) of the auditory startle reflex (ASR), suggest that HHs, in the waking condition, may show reduced sensory gating although they may selectively attend and disattend different stimuli. Using a within subject design and a strict subject selection procedure, in waking and hypnosis conditions we tested whether HHs compared to LHs showed a significantly lower inhibition of the ASR and startle-related brain activity in both time and intracerebral source localization domains. HHs, as compared to LH participants, exhibited (a) longer latency of the eyeblink startle reflex, (b) reduced N100 responses to startle stimuli, and (c) higher PPI of eyeblink startle and of the P200 and P300 waves. Hypnosis yielded smaller N100 waves to startle stimuli and greater PPI of this component than in the waking condition. sLORETA analysis revealed that, for the N100 (107 msec) elicited during startle trials, HHs had a smaller activation in the left parietal lobe (BA2/40) than LHs. Auditory pulses of pulse-with prepulse trials in HHs yielded less activity of the P300 (280 msec) wave than LHs, in the cingulate and posterior cingulate gyrus (BA23/31). The present results, on the whole, are in the opposite direction to PPI findings on hypnotizability previously reported in the literature. These results provide support to the neuropsychophysiological model that HHs have more effective sensory integration and gating (or filtering) of irrelevant stimuli than LHs.
Genetic determination of the vascular reactions in humans in response to the diving reflex.
Baranova, Tatiana I; Berlov, Dmitrii N; Glotov, Oleg S; Korf, Ekaterina A; Minigalin, Alexey D; Mitrofanova, Alla V; Ahmetov, Ildus I; Glotov, Andrey S
2017-03-01
The purpose of this study was to investigate the genetic mechanisms of the defense vascular reactions in response to the diving reflex in humans with polymorphisms in the genes ADBR2, ACE, AGTR1, BDKRB2 , and REN We hypothesized that protective vascular reactions, in response to the diving reflex, are genetically determined and are distinguished in humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin system. A total of 80 subjects (19 ± 1.4 yr) participated in the study. The intensity of the vascular response was estimated using photoplethysmogram. The I/D polymorphism (rs4340) of ACE was analyzed by PCR. REN (G/A, rs2368564), AGTR1 (A/C, rs5186), BDKRB2 (T/C, rs1799722), and ADBR2 (A/G, rs1042713) polymorphisms were examined using the two-step multiplex PCR followed by carrying allele hybridization on the biochip. Subjects with the BDKRB2 (C/C), ACE (D/D), and ADBR2 (G/G, G/A) genotypes exhibited the strongest peripheral vasoconstriction in response to diving. In subjects with a combination of the BDKRB2 (C/C) plus ACE (D/D) genotypes, we observed the lowest pulse wave amplitude and pulse transit time values and the highest arterial blood pressure during face immersion compared with the heterozygous individuals, suggesting that these subjects are more susceptible to diving hypoxia. This study observed that humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin systems demonstrate various expressions of protective vascular reactions in response to the diving reflex. The obtained results might be used in estimation of resistance to hypoxia of any origin in human beings or in a medical practice. NEW & NOTEWORTHY Our study demonstrates that the vascular reactions in response to the diving reflex are genetically determined and depend on gene polymorphisms of the kinin-bradykinin and the renin-angiotensin systems. Copyright © 2017 the American Physiological Society.
Park, Kang Min; Kim, Sung Eun; Lee, Byung In
2016-01-01
The pathogenesis of card game-induced reflex epilepsy has not been determined so far. The aim of this study was to evaluate structural abnormalities using voxel-based morphometry (VBM) analysis, which may give some clue about the pathogenesis in card game-induced reflex epilepsy. The 3 subjects were diagnosed with card game-induced reflex epilepsy. Evaluation involved a structured interview to obtain clinical information and brain MRI. In VBM analysis, Statistical Parametric Mapping 8 running on the MATLAB platform was employed to analyze the structural differences between patients with card game-induced reflex epilepsy and age- and sex-matched control subjects. The results of VBM analysis revealed that patients with card game-induced reflex epilepsy had significantly increased gray matter volume in the right occipital and parietal lobe. However, there were no structures with decreased gray matter volume in patients with card game-induced reflex epilepsy compared with control subjects. In addition, we found that the patients with card game-induced reflex epilepsy had onset of seizures in adulthood rather than in adolescence, and all of the patients were men. The parieto-occipital lobes might be partially involved in the neuronal network responsible for card game-induced reflex epilepsy. © 2016 S. Karger AG, Basel.
Umeda, Masataka; Corbin, Lisa W.
2013-01-01
Fibromyalgia syndrome (FMS) is a widespread musculoskeletal pain condition with unclear physiologic mechanisms. The purpose of this investigation was to compare the responsiveness of nociceptive flexion reflex (NFR) pathways between women with and without FMS. A secondary purpose was to examine the influence of depression, fibromyalgia symptom severity, and cardiovascular health on NFR responses among women with FMS. Fifteen women with FMS and 14 healthy controls participated in an experimental session to assess NFR responses to sural nerve stimulation, resting mean arterial pressure (MAP) and heart rate (HR), and scores on the Beck Depression Inventory (BDI) and Fibromyalgia Impact Questionnaire (FIQ). NFR responses were successfully elicited from all healthy individuals, but only eight (53 %) of the women with FMS. These women did not differ in the minimum stimulus intensity required to elicit an NFR response compared to healthy controls (p ≥ 0.35). Further, these women had lower BDI (p = 0.04) and FIQ (p = 0.02) scores compared to women with FMS from whom NFR responses could not be elicited. Resting HR was higher in both groups of women with FMS compared to healthy individuals (p <0.05), and MAP was strongly associated with NFR thresholds only among women with FMS (r = 0.88, p <0.01). Findings from this preliminary investigation suggest that NFR pathways are impaired in women who are more severely impacted by symptoms of depression and fibromyalgia, potentially due to desensitization of NFR pathways with chronic autonomic arousal. PMID:23553516
Sozzi, Stefania; Nardone, Antonio; Schieppati, Marco
2016-01-01
Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders. PMID:27625599
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1997-01-01
The neural "learning rules" governing the induction of plasticity in the cerebellum were analyzed by recording the patterns of neural activity in awake, behaving animals during stimuli that induce a form of cerebellum-dependent learning. We recorded the simple- and complex-spike responses of a broad sample of Purkinje cells in the floccular complex during a number of stimulus conditions that induce motor learning in the vestibulo-ocular reflex (VOR). Each subclass of Purkinje cells carried essentially the same information about required changes in the gain of the VOR. The correlation of simple-spike activity in Purkinje cells with activity in vestibular pathways could guide learning during low-frequency but not high-frequency stimuli. Climbing fiber activity could guide learning during all stimuli tested but only if compared with the activity present approximately 100 msec earlier in either vestibular pathways or Purkinje cells.
Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics
Hall, Charlotte A.; Chilcott, Robert P.
2018-01-01
The pupillary light reflex (PLR) describes the constriction and subsequent dilation of the pupil in response to light as a result of the antagonistic actions of the iris sphincter and dilator muscles. Since these muscles are innervated by the parasympathetic and sympathetic nervous systems, respectively, different parameters of the PLR can be used as indicators for either sympathetic or parasympathetic modulation. Thus, the PLR provides an important metric of autonomic nervous system function that has been exploited for a wide range of clinical applications. Measurement of the PLR using dynamic pupillometry is now an established quantitative, non-invasive tool in assessment of traumatic head injuries. This review examines the more recent application of dynamic pupillometry as a diagnostic tool for a wide range of clinical conditions, varying from neurodegenerative disease to exposure to toxic chemicals, as well as its potential in the non-invasive diagnosis of infectious disease. PMID:29534018
Overactive bladder and pontine reticular formation.
Zorba, Orhan Ünal; Kırbaş, Serkan; Uzun, Hakkı; Cetinkaya, Mehmet; Önem, Kadir; Rifaioğlu, Mehmet Murat
2013-01-01
The etiology of overactive bladder (OAB) remains unclear. Observed neurogenic factors in the literature are limited to suprapontine or spinal pathologies. The blink reflex is a useful tool in the evaluation of brainstem functions. Blink reflex latency times were evaluated in order to reveal pathology in the brainstem. A total of 60 women, 30 patients with idiopathic OAB and 30 healthy controls, were enrolled in the study. Blink reflex latency times were analyzed by electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle, early ipsilateral response (R1) and late bilateral response (R2) latency times, were recorded. Mean ages of the patients and controls were 51.9 ± 5.3 and 49.2 ± 6.2 years, respectively. R2 latency times were significantly higher in patients than in controls. However, R1 latency times were similar between the two groups. The results of the study suggest a significant relation between late blink latency times and OAB. An oligosynaptic path via the trigeminal nuclei is responsible for R1; however, R2 response is relayed through the reticular formation. Stimulation of pontine reticular formation inhibits micturition contraction. In some patients, idiopathic OAB may result from reticular formation-originated pathology. Additional studies on other reticular formation-mediated reflexes are needed to reveal possible dysfunction of reticular formation. Copyright © 2013 S. Karger AG, Basel.
Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.
Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan
2015-11-01
Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.
Reflex peripheral vasoconstriction is diminished in older men.
Kenney, W L; Armstrong, C G
1996-02-01
The purpose of this study was to compare reflex control of limb blood flow in healthy young (Y; 26 +/- 2 yr) and older (O;61 +/- 2 yr) men during whole body cooling under resting conditions. To better isolate the effect of chronological age, the two age groups (n = 6 per group) were closely matched for maximal oxygen uptake, body surface area, skinfold thickness, and fat-free weight. Subjects sat in an environmentally controlled chamber clad in standardized (0.6-clo) light cotton clothing at a dry-bulb temperature (Tdb) of 28 degrees C. After 30 min, Tdb was decreased by 2 degrees C every 5 min until Tdb = 10 degrees C, where it was held constant for the remainder of the 120-min session. Esophageal and mean skin temperatures were monitored continuously. Forearm blood flow (FBF) was measured every 5 min by venous occlusion plethysmography by using a mercury-in-Silastic strain gauge while arm temperature between the wrist and elbow was clamped at 37.2 +/- 0.1 degrees C by localized warm air heating. In this way, limb vasoconstriction was driven solely by thermoregulatory reflexes and not by direct effects of localized cooling. Mean skin temperature decreased at a similar rate and to a similar extent (by approximately 6 degrees C over a 2-h period) in both age groups, whereas esophageal temperature was relatively unaffected. In response to the local heating, the Y group maintained a significantly higher FBF than did the O group during the initial 30 min but decreased FBF during the cooling phase at a greater rate and to a greater extent than did the O group, leading to a significantly lower FBF during the final 30 min (at Tdb = 10 degrees C). Because there was no age difference in the mean arterial pressure response, similar effects of age were seen on forearm vascular conductance (FBF/mean arterial pressure). It was concluded that older men have a diminished reflex limb vasoconstrictor response to skin cooling. Furthermore, this difference in control of peripheral blood flow appears to be related to age per se; i.e., it is not a reflection of age-related differences in maximal oxygen uptake or body composition.
Electromechanical analogs of human reflexes.
Littman, M G; Liker, M; Stubbeman, W; Russakow, J; McGee, C; Gelfand, J; Call, B J
1989-01-01
The conclusion to be drawn from our modeling is that the combined stretch and tendon reflexes alone can endow artificial muscle with a springlike feel as well as give it a baseline tone. In response to questions that motor physiologists often ask as to what variables the system controls, the answer here is clear: the stretch and tendon reflexes act together to maintain both a tension set-point and a length set-point, but in so doing they also give the system a springlike feel because of the existence of a servo error. The main goal of our studies is to understand the integration of reflexes, and thus far we have only begun to explore the two lowest-level spinal reflexes. We are in the process of expanding this work by developing a much more refined arm explicitly modeled after the human arm. This new arm is to be activated by a minimum of 10 muscles, each of which is reflexively driven, and it will allow us to explore the integration of higher-level reflex action such as automatic inhibition of antagonists and facilitation of synergists.
Chen, Yung-Sheng; Zhou, Shi; Cartwright, Colleen
2014-04-01
This study investigated the effects of ankle joint position and submaximal contraction intensity on soleus (SOL) H-reflex modulation. Twenty young (25.1 ± 4.8 years) and 20 older adults (74.2 ± 5.1 years) performed plantar flexions during 10%, 30% and 50% maximal voluntary contractions (MVC) and at ankle positions of neutral (0°), plantar flexion (20°) and dorsiflexion (-20°) in a sitting position. The SOL H-reflex gain in older adults was relatively lower than that in young adults during 10%, 30% and 50% MVC. The SOL H-reflex gain was significantly affected by the intensity of plantar flexion in the respective ankle joint position in both age groups. The latency of H-reflex was prolonged in older adults and was ankle joint dependent in young adults. Young adults demonstrated a shorter duration of the H-reflex response than that of older adults. The results indicated that there were age-related changes in the SOL H-reflex during the ankle plantar flexors activities.
Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor
2017-12-01
Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed in neurons pretreated with pertussis toxin, an uncoupler of G proteins and MOR. The endomorphin-mediated potentiation was a result of a leftward shift of the activation curve to higher pH values and a slight shift of the inactivation curve to lower pH values. Intra-arterial co-administration of lactic acid and E-2 led to a significantly greater pressor reflex than lactic acid alone in the presence of naloxone. Finally, E-2 effects were inhibited by pretreatment with the ASIC3 blocker APETx2 and enhanced by pretreatment with the ASIC1a blocker psalmotoxin-1. These findings have uncovered a novel role of endomorphins by which the opioids can enhance the lactic acid-mediated reflex increase in arterial pressure that is MOR stimulation-independent and APETx2-sensitive. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Kim, Jin-Kyoung; Park, Jung-Min; Lee, Cheol-Hee
2012-01-01
Background Although supplemental fentanyl has been widely used to blunt the hemodynamic responses to laryngoscopic intubation, its residual vagotonic effect may increase the risk of reflex bradycardia. We compared the incidence and severity of significant reflex bradycardia after a bolus injection of equivalent doses of fentanyl and remifentanil (control drug). Methods In this prospective, randomized, double-blind study, 220 adult patients undergoing major abdominal surgery were randomly assigned to receive fentanyl (1.5 µg/kg) or remifentanil (1.5 µg/kg). No anticholinergic prophylaxis was administered. Symptomatic reflex bradycardia was defined as a sudden decrease in heart rate to < 50 beats per minute (bpm) or to 50-59 bpm associated with a systolic arterial pressure < 70 mmHg in connection with surgical maneuvers. If bradycardia or hypotension developed, atropine or ephedrine was administered following a predefined treatment protocol. Results In total, 188 subjects (remifentanil, 95; fentanyl, 93) were included. The proportion of subjects with symptomatic reflex bradycardia in the fentanyl group was similar to that in the remifentanil group (30.1% vs. 28.4%, respectively). Atropine and/or ephedrine were needed similarly in both groups. The differences between the group of 55 patients who presented with symptomatic reflex bradycardia were not statistically significant with respect to the lowest heart rate, anesthetic depth-related data (bispectral index and end-tidal sevoflurane concentration), or the proportion of causative surgical maneuvers. Conclusions Fentanyl (1.5 µg/kg) administered intravenously during anesthetic induction is unlikely to increase the incidence and severity of significant reflex bradycardia in patients undergoing major abdominal surgery. PMID:23198032
Oxygen-conserving reflexes of the brain: the current molecular knowledge
Schaller, B; Cornelius, J F; Sandu, N; Ottaviani, G; Perez-Pinzon, M A
2009-01-01
Abstract The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called ‘oxygen-conserving reflexes’. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO2) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain. PMID:19438971
Shepard, Molly K; Divers, Stephen; Braun, Christina; Hofmeister, Erik H
2013-11-01
This study compares the pharmacodynamics of two different doses of alfaxalone administered intramuscularly (IM) to red-eared sliders at two ambient temperatures. Prospective blinded crossover experimental study. Nine adult female sliders (Trachemys scripta elegans). Following a 2-week acclimation at 22-25 °C, nine sliders were randomly assigned to receive alfaxalone, 10 mg kg(-1) (W10), or 20 mg kg(-1) (W20) IM. Each turtle received each dose, with a minimum 7-day washout period. A blinded observer evaluated heart rate (HR), palpebral and corneal reflexes, muscle relaxation, handling, and response to toe pinch at the following points: pre-injection, and 5, 12, 20, 30, 45, 60, and 120 minutes post-injection. Turtles then acclimated to 18-20 °C for 63 days, and the experiment was repeated in this lower-temperature environment, with treatment groups C10 (alfaxalone 10 mg kg(-1)) and C20 (alfaxalone 20 mg kg(-1)) subjected to the same crossover design. C10 and C20 groups had significantly lower intraanesthetic HR than W10 or W20, respectively. C10 and W20 were significantly more relaxed and easier to handle than W10. No significant differences were observed in palpebral reflex, nor responsiveness to the toe pinch stimulus. None of the turtles lost corneal reflex. W20 and C20 had prolonged recoveries, compared to low-dose groups within the same temperature environment. Recovery was also longer at C20 and C10 compared to W10. Turtles given 10 mg kg(-1) were more relaxed and easier to handle in cold than warm conditions. Warm turtles were more relaxed and easier to handle when given 20 mg kg(-1) than those given 10 mg kg(-1). Cold conditions correlated with lower HR and longer recovery time for each dose category. The turtles had dose-dependent and inconsistent responses to alfaxalone. Lower ambient temperature augmented the behavioral effects of this drug. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses
NASA Astrophysics Data System (ADS)
Fritsch, Janice M.; Charles, John B.; Bennett, Barbara S.; Jones, Michele M.; Eckberg, Dwain L.
1992-08-01
The effect of a spaceflight on the vagally mediated baroreceptor-cardiac reflex responses of humans were investigated by measuring the responses (provoked by neck pressure changes) in supine position and the heart rate and blood pressure in the supine and standing positions in 16 astronauts before and after 4- to 5-day long Space Shuttle missions. The results showed that exposures to spaceflight resulted in reduced baseline levels of the vagal-cardiac outflow and the vagally mediated responses to changes of the arterial baroreceptor input and that these changes contribute to postflight reductions of astronauts' ability to maintain standing arterial pressures.
The Role of Corticostriatal Systems in Speech Category Learning
Yi, Han-Gyol; Maddox, W. Todd; Mumford, Jeanette A.; Chandrasekaran, Bharath
2016-01-01
One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning. Keywords: category learning, fMRI, corticostriatal systems, speech, putamen PMID:25331600
Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure
Hazari, Mehdi S.; Farraj, Aimen K.
2016-01-01
The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome of these reflexes, particularly with respect to the cardiovascular system. Modulation of autonomic neural input to the heart and vasculature following direct activation of sensory nerves in the respiratory system, elicitation of oxidative stress and inflammation, or through other mechanisms is one of the primary ways that exposure to air pollution affects normal cardiovascular function. Any homeostatic process that utilizes the autonomic nervous system to regulate organ function might be affected. Thus, air pollution and other inhaled environmental irritants have the potential to alter both local airway function and baro-and chemoreflex responses, which modulate autonomic control of blood pressure and detect concentrations of key gases in the body. While each of these reflex pathways causes distinct responses, the systems are heavily integrated and communicate through overlapping regions of the brainstem to cause global effects. This short review summarizes the function of major pulmonary sensory receptors, baroreceptors, and carotid body chemoreceptors and discusses the impacts of air pollution exposure on these systems. PMID:25123706
Modulation of spinal reflexes by sexual films of increasing intensity.
Both, Stephanie; Boxtel, Geert; Stekelenburg, Jeroen; Everaerd, Walter; Laan, Ellen
2005-11-01
Sexual arousal can be viewed as an emotional state generating sex-specific autonomic and general somatic motor system responses that prepare for sexual action. In the present study modulation of spinal tendious (T) reflexes by sexual films of varying intensity was investigated. T reflexes were expected to increase as a function of increased film intensity. Through use of a between-subjects design, participants were exposed to three erotic films of low, moderate, and high intensity or to three films of moderate intensity. Self-report and genital data confirmed the induction of increasing versus stable levels of sexual arousal. Exposure to the films of increasing intensity resulted in increasing T reflexes. The results indicate that T reflex modulation is sensitive to varying levels of sexual arousal and may be of use in research on behavioral mechanisms underlying appetitive motivation.
Eme, John; Hicks, James W; Crossley, Dane A
2011-10-01
Hypoxia is a naturally occurring environmental challenge for embryonic non-avian reptiles, and this study is the first to investigate the impact of chronic hypoxia on a possible chemoreflex loop in a developing non-avian reptile. We measured heart rate and blood pressure in normoxic and hypoxic-incubated (10% O(2)) American alligator embryos (Alligator mississippiensis) at 70 and 90/95% of development. We hypothesized that hypoxic incubation would blunt embryonic alligators' response to a reflex loop stimulated by phenylbiguanide (PBG), a 5-HT(3) receptor agonist that stimulates vagal pulmonary C-fiber afferents. PBG injection caused a hypotensive bradycardia in 70 and 95% of development embryos (paired t tests, P < 0.05), a response similar to mammals breathing inspired air (all injections made through occlusive catheter in tertiary chorioallantoic membrane artery). Hypoxic incubation blunted the bradycardic response to PBG in embryos at 95% of development (two-way ANOVA, P < 0.01). We also demonstrated that the vagally mediated afferent limb of this reflex can be partially or completely blocked in ovo with a 5-HT(3) receptor blockade using ondansetron hydrochloride dihydrate (OHD), with a ganglionic blockade using hexamethonium, or with a cholinergic blockade using atropine. Atropine eliminated the hypotensive and bradycardic responses to PBG, and OHD and hexamethonium significantly blunted these responses. This cardiovascular reflex mediated by the vagus was affected by hypoxic incubation, suggesting that reptilian sympathetic and parasympathetic reflex loops have the potential for developmental plasticity in response to hypoxia. We suggest that the American alligator, with an extended length of time between each developmental stage relative to avian species, may provide an excellent model to test the cardiorespiratory effects of prolonged exposure to changes in atmospheric gases. This extended period allows for lengthy studies at each stage without the transition to a new stage, and the natural occurrence of hypoxia and hypercapnia in crocodilian nests makes this stress ecologically and evolutionarily relevant.
Jadcherla, Sudarshan R.; Stoner, Erin; Gupta, Alankar; Bates, D. Gregory; Fernandez, Soledad; Di Lorenzo, Carlo; Linscheid, Thomas
2013-01-01
Background and objectives Abnormal swallowing (dysphagia) among neonates is commonly evaluated using the videofluoroscopic swallow study (VSS). Radiological findings considered high risk for administration of oral feeding include nasopharyngeal reflux, laryngeal penetration, aspiration, or pooling. Our aims were to determine pharyngoesophageal motility correlates in neonates with dysphagia and the impact of multidisciplinary feeding strategy. Methods Twenty dysphagic neonates (mean gestation ± standard deviation [SD] = 30.9 ± 4.9 weeks; median 31.1 weeks; range = 23.7–38.6 weeks) with abnormal VSS results were evaluated at 49.9 ± 16.5 weeks (median 41.36 weeks) postmenstrual age. The subjects underwent a swallow-integrated pharyngoesophageal motility assessment of basal and adaptive swallowing reflexes using a micromanometry catheter and pneumohydraulic water perfusion system. Based on observations during the motility study, multidisciplinary feeding strategies were applied and included postural adaptation, sensory modification, hunger manipulation, and operant conditioning methods. To discriminate pharyngoesophageal manometry correlates between oral feeders and tube feeders, data were stratified based on the primary feeding method at discharge, oral feeding versus tube feeding. Results At discharge, 15 of 20 dysphagic neonates achieved oral feeding success, and the rest required chronic tube feeding. Pharyngoesophageal manometry correlates were significantly different (P <0.05) between the primary oral feeders versus the chronic tube feeders for swallow frequency, swallow propagation, presence of adaptive peristaltic reflexes, oral feeding challenge test results, and upper esophageal sphincter tone. VSS results or disease characteristics had little effect on the feeding outcomes (P = NS). Conclusions Swallow-integrated esophageal motility studies permit prolonged evaluation of swallowing reflexes and responses to stimuli under controlled conditions at cribside. The dysfunctional neuromotor mechanisms may be responsible for neonatal dysphagia or its consequences. Manometry may be a better predictor than VSS in identifying patients who are likely to succeed in vigorous intervention programs. PMID:19179881
Cutaneous reflexes in small muscles of the hand
Caccia, M. R.; McComas, A. J.; Upton, A. R. M.; Blogg, T.
1973-01-01
A study has been made of the responses of motoneurones innervating small muscles of the hand to electrical and mechanical stimulation of the skin. Both excitatory and inhibitory effects could be observed in the same muscle after a single stimulus to a given area of skin. The earliest excitatory and inhibitory responses are probably mediated by group III and the smaller group II afferent nerve fibres. A later inhibition results from activity in the larger group II fibres which are connected to cutaneous mechanoreceptors, especially those in the tips of the fingers and thumb. This late inhibitory reflex may operate through the fusimotor system. The possible roles of these reflexes are discussed in relation to previous investigations in man and the cat. PMID:4272546
Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury
Bandaru, Samira P.; Liu, Shujun; Waxman, Stephen G.
2014-01-01
Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI. PMID:25505110
Spaceflight alters autonomic regulation of arterial pressure in humans
NASA Technical Reports Server (NTRS)
Fritsch-Yelle, Janice M.; Charles, John B.; Jones, Michele M.; Beightol, Larry A.; Eckberg, Dwain L.
1994-01-01
Spaceflight is associated with decreased orthostatic tolerance after landing. Short-duration spaceflight (4 - 5 days) impairs one neutral mechanism: the carotid baroreceptor-cardiac reflex. To understand the effects of longer-duration spaceflight on baroreflex function, we measured R-R interval power spectra, antecubital vein plasma catecholamine levels, carotid baroreceptor-cardiac reflex responses, responses to Valsalva maneuvers, and orthostatic tolerance in 16 astronauts before and after shuttle missions lasting 8 - 14 days. We found the following changes between preflight and landing day: (1) orthostatic tolerance decreased; (2) R-R interval spectral power in the 0.05- to 0.15-Hz band increased; (3) plasma norepinephrine and epinephrine levels increased; (4) the slope, range, and operational point of the carotid baroreceptor cardiac reflex response decreased; and (5) blood pressure and heart rate responses to Valsalva maneuvers were altered. Autonomic changes persisted for several days after landing. These results provide further evidence of functionally relevent reductions in parasympathetic and increases in sympathetic influences on arterial pressure control after spaceflight.
Goodman, Shawn S; Keefe, Douglas H
2006-06-01
Otoacoustic emissions serve as a noninvasive probe of the medial olivocochlear (MOC) reflex. Stimulus frequency otoacoustic emissions (SFOAEs) elicited by a low-level probe tone may be the optimal type of emission for studying MOC effects because at low levels, the probe itself does not elicit the MOC reflex [Guinan et al. (2003) J. Assoc. Res. Otolaryngol. 4:521]. Based on anatomical considerations, the MOC reflex activated by ipsilateral acoustic stimulation (mediated by the crossed olivocochlear bundle) is predicted to be stronger than the reflex to contralateral stimulation. Broadband noise is an effective activator of the MOC reflex; however, it is also an effective activator of the middle-ear muscle (MEM) reflex, which can make results difficult to interpret. The MEM reflex may be activated at lower levels than measured clinically, and most previous human studies have not explicitly included measurements to rule out MEM reflex contamination. The current study addressed these issues using a higher-frequency SFOAE probe tone to test for cochlear changes mediated by the MOC reflex, while simultaneously monitoring the MEM reflex using a low-frequency probe tone. Broadband notched noise was presented ipsilaterally at various levels to elicit probe-tone shifts. Measurements are reported for 15 normal-hearing subjects. With the higher-frequency probe near 1.5 kHz, only 20% of subjects showed shifts consistent with an MOC reflex in the absence of an MEM-induced shift. With the higher-frequency probe near 3.5 kHz, up to 40% of subjects showed shifts in the absence of an MEM-induced shift. However, these responses had longer time courses than expected for MOC-induced shifts, and may have been dominated by other cochlear processes, rather than MOC reflex. These results suggest caution in the interpretation of effects observed using ipsilaterally presented acoustic activators intended to excite the MOC reflex.
The control of male sexual responses.
Courtois, Frédérique; Carrier, Serge; Charvier, Kathleen; Guertin, Pierre A; Journel, Nicolas Morel
2013-01-01
Male sexual responses are reflexes mediated by the spinal cord and modulated by neural circuitries involving both the peripheral and central nervous system. While the brain interact with the reflexes to allow perception of sexual sensations and to exert excitatory or inhibitory influences, penile reflexes can occur despite complete transections of the spinal cord, as demonstrated by the reviewed animal studies on spinalization and human studies on spinal cord injury. Neurophysiological and neuropharmacological substrates of the male sexual responses will be discussed in this review, starting with the spinal mediation of erection and its underlying mechanism with nitric oxide (NO), followed by the description of the ejaculation process, its neural mediation and its coordination by the spinal generator of ejaculation (SGE), followed by the occurrence of climax as a multisegmental sympathetic reflex discharge. Brain modulation of these reflexes will be discussed through neurophysiological evidence involving structures such as the medial preoptic area of hypothalamus (MPOA), the paraventricular nucleus (PVN), the periaqueductal gray (PAG), and the nucleus para-gigantocellularis (nPGI), and through neuropharmacological evidence involving neurotransmitters such as serotonin (5-HT), dopamine and oxytocin. The pharmacological developments based on these mechanisms to treat male sexual dysfunctions will complete this review, including phosphodiesterase (PDE-5) inhibitors and intracavernous injections (ICI) for the treatment of erectile dysfunctions (ED), selective serotonin reuptake inhibitor (SSRI) for the treatment of premature ejaculation, and cholinesterase inhibitors as well as alpha adrenergic drugs for the treatment of anejaculation and retrograde ejaculation. Evidence from spinal cord injured studies will be highlighted upon each step.
Introversion and individual differences in middle ear acoustic reflex function.
Bar-Haim, Yair
2002-10-01
A growing body of psychophysiological evidence points to the possibility that individual differences in early auditory processing may contribute to social withdrawal and introverted tendencies. The present study assessed the response characteristics of the acoustic reflex arc of introverted-withdrawn and extraverted-sociable individuals. Introverts displayed a greater incidence of abnormal middle ear acoustic reflexes and lower acoustic reflex amplitudes than extraverts. These findings were strongest for stimuli presented at a frequency of 2000 Hz. Results are discussed in light of the controversy concerning the anatomic loci (peripheral vs. central neuronal activity) of the individual differences between introverts and extraverts in early auditory processing. Copyright 2002 Elsevier Science B.V.
Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.
ERIC Educational Resources Information Center
Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.
1997-01-01
Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)
Limitations of learning in the proboscis reflex of the flower visiting syrphid fly Eristalis tenax
An, Lina; Donda, Miriam; Hohmann, Michele; Sermon, Leonie; Stegmanns, Vanessa
2018-01-01
Flower visiting Eristalis hoverflies feed on nectar and pollen and are known to rely on innate colour preferences. In addition to a preference for visiting yellow flowers, the flies possess an innate proboscis reflex elicited by chemical as well as yellow colour stimuli. In this study we show that the flies’ proboscis reflex is only triggered by yellow colour stimuli and not altered by conditioning to other colours. Neither in absolute nor in differential conditioning experiments the flies learned to associate other colours than yellow with reward. Even flies that experienced only blue nutrients during the first four days after hatching could not be trained to extend the proboscis towards other colours than yellow. The natural targets of the visually elicited proboscis reflex are yellow pollen and yellow anthers. One consequence of our findings is that flowers might advertise nectar and pollen rewards for Eristalis hoverflies by a yellow colour hue of nectar guides, nectaries, stamens or pollen. Alternatively, flowers might protect their pollen against Eristalis by displaying other pollen colours than yellow or direct flies by yellow pollen-mimicking floral guides towards nectar resources. Testing the proboscis extension of various hoverfly species in the field showed that only Eristalis hoverflies possess the proboscis reflex elicited by yellow colour hues. PMID:29558491
Effects of centrally acting analgesics on spinal segmental reflexes and wind-up.
Mazo, I; Roza, C; Zamanillo, D; Merlos, M; Vela, J M; Lopez-Garcia, J A
2015-08-01
The spinal cord is a prime site of action for analgesia. Here we characterize the effects of established analgesics on segmental spinal reflexes. The aim of the study was to look for the pattern of action or signature of analgesic effects on these reflexes. We used a spinal cord in vitro preparation of neonate mice to record ventral root responses to dorsal root stimulation. Pregabalin, clonidine, morphine and duloxetine and an experimental sigma-1 receptor antagonist (S1RA) were applied to the preparation in a cumulative concentration protocol. Drug effects on the wind-up produced by repetitive stimulation of C-fibres and on responses to single A- and C-fibre intensity stimuli were analysed. All compounds produced a concentration-dependent inhibition of total spikes elicited by repetitive stimulation. Concentrations producing ∼50% reduction in this parameter were (in μM) clonidine (0.01), morphine (0.1), pregabalin (1), duloxetine (10) and S1RA (30). At these concentrations clonidine, pregabalin and S1RA had significant effects on the wind-up index and little depressant effects on responses to single stimuli. Morphine and duloxetine did not depress wind-up index and showed large effects on responses to single stimuli. None of the compounds had strong effects on the amplitude of the non-nociceptive monosynaptic reflex. morphine and duloxetine had general depressant effects on spinal reflexes, whereas the effects of clonidine, pregabalin and S1RA appeared to be restricted to signals originated by strong repetitive activation of C-fibres. Results are discussed in the context of reported behavioural effects of the compounds studied. © 2014 European Pain Federation - EFIC®
Shafik, A; Shafik, A A; Shafik, I; el-Sibai, O
2005-01-01
The functional activity of the urethral sphincters during cavernosus muscles' contraction at coitus has been poorly addressed in the literature. We investigated the hypothesis that cavernosus muscles' contraction affects reflex contraction of the urethral sphincters to guard against semen reflux into the urinary bladder or urine leakage from the bladder during orgasm and ejaculation. The electromyographic (EMG) response of the external (EUS) and internal (IUS) urethral sphincters to ischio- (ICM) and bulbo- (BCM) cavernosus muscle stimulation was studied in 15 healthy volunteers (9 men, 6 women, age 39.3 +/- 8.2 SD years). An electrode was applied to each of ICM and BCM (stimulating electrodes) and the 2 urethral sphincters (recording electrodes). The test was repeated after individual anesthetization of the urethral sphincters and the 2 cavernosus muscles, and after using saline instead of lidocaine. Upon stimulation of each of the 2 cavernosus muscles, the EUS and IUS recorded increased EMG activity. Repeated cavernosus muscles' stimulation evoked the urethral sphincteric response without fatigue. The urethral sphincters did not respond to stimulation of the anesthetized cavernosus muscles nor did the anesthetized urethral sphincters respond to cavernosus muscle stimulation. Saline infiltration instead of lidocaine did not affect the urethral sphincteric response to cavernosal muscle stimulation. Results were reproducible. Cavernosus muscles' contraction is suggested to effect EUS and IUS contraction. This action seems to be reflex and mediated through the 'cavernoso-urethral reflex.' Urethral sphincters contraction upon cavernosus muscles contraction during sexual intercourse presumably prevents urine leak from the urinary bladder to urethra, prevents retrograde ejaculation, and propels ejaculate from the posterior to the penile urethra. The cavernoso-urethral reflex can act a diagnostic tool in the investigations of patients with ejaculatory disorders.
Iakimovskiĭ, A F
1988-01-01
Bilateral injection of 45 mcg of GABA into substantia nigra pars compacta produced in dogs a manifested improvement of parameters of the conditioned differentiation inhibition but failed to influence the positive Pavlovian alimentary conditioned reflex. Injection of GABA synaptic antagonist--picrotoxin impaired conditioned alimentary behaviour. Numerous injections of the GABAergic pharmacological agents resulted in motor disturbance--rotatory movements--and skin trophic deviations. The data obtained and literature references give ground for discussion of the role of striato-nigral and internal GABAergic substantia nigra systems in the positive modulation of adaptive alimentary behaviour and conditioned stimuli differentiation.
Chung, Sun G.; Ren, Yupeng; Liu, Lin; Roth, Elliot J.; Rymer, W. Zev
2013-01-01
This study characterizes tonic and phasic stretch reflex and stiffness and viscosity changes associated with spastic hemiparesis. Perturbations were applied to the ankle of 27 hemiparetic and 36 healthy subjects under relaxed or active contracting conditions. A nonlinear delay differential equation model characterized phasic and tonic stretch reflex gains, elastic stiffness, and viscous damping. Tendon reflex was characterized with reflex gain and threshold. Reflexively, tonic reflex gain was increased in spastic ankles at rest (P < 0.038) and was not regulated with muscle contraction, indicating impaired tonic stretch reflex. Phasic-reflex gain in spastic plantar flexors was higher and increased faster with plantar flexor contraction (P < 0.012) than controls (P < 0.023) and higher in dorsi-flexors at lower torques (P < 0.038), primarily because of its increase at rest (P = 0.045), indicating exaggerated phasic stretch reflex especially in more spastic plantar flexors, which showed higher phasic stretch reflex gain than dorsi-flexors (P < 0.032). Spasticity was associated with increased tendon reflex gain (P = 0.002) and decreased threshold (P < 0.001). Mechanically, stiffness in spastic ankles was higher than that in controls across plantar flexion/dorsi-flexion torque levels (P < 0.032), and the more spastic plantar flexors were stiffer than dorsi-flexors at comparable torques (P < 0.031). Increased stiffness in spastic ankles was mainly due to passive stiffness increase (P < 0.001), indicating increased connective tissues/shortened fascicles. Viscous damping in spastic ankles was increased across the plantar flexion torque levels and at lower dorsi-flexion torques, reflecting increased passive viscous damping (P = 0.033). The more spastic plantar flexors showed higher viscous damping than dorsi-flexors at comparable torque levels (P < 0.047). Simultaneous characterizations of reflex and nonreflex changes in spastic hemiparesis may help to evaluate and treat them more effectively. PMID:23636726
M-wave, H- and V-reflex recruitment curves during maximal voluntary contraction.
Racinais, Sebastien; Maffiuletti, Nicola A; Girard, Olivier
2013-08-01
To investigate whether the H reflex-M wave recruitment curves obtained during maximal voluntary contraction (MVC) differ from rest and to determine the stimulation intensities allowing to record stable reflex responses. Full recruitment curves (precision, 2 mA) were obtained from the soleus muscle in 14 volunteers at rest and during plantar flexion MVCs. Maximal M-wave reached significantly larger amplitude during MVC (+2.2 [0.4; 3.9] mV) for a higher stimulation intensity (+7.9 [-0.4; 16] mA). Similarly, maximal H-reflex reached significantly larger amplitude during MVC than at rest (+3.2 [0.9; 5.5] mV) for a much higher stimulation intensity (+17.7 [9.7; 25.7] mA). V-wave amplitude plateaued only when M-wave during MVC plateaued, that is, at higher intensity than M-wave at rest. V-wave was correlated to the maximal H-reflex during MVC (r = 0.79, P < 0.05). Electrically evoked potentials showed a specific recruitment curve during MVC with higher maximal values attained for higher stimulation intensities. Thus, recording reflex responses during MVC based on intensities determined at rest or as a percentage of M-wave may yield inaccurate results. V-wave presented a plateau for stimulation intensity of 1.5 times the onset of the resting M-wave plateau. Evoked potentials obtained during actual contractions should be normalized to M-waves obtained during contractions of the same force level.
A Frontal Dopamine System for Reflective Exploratory Behavior
Blanco, Nathaniel J.; Love, Bradley C.; Cooper, Jessica A.; McGeary, John E.; Knopik, Valerie S.; Maddox, W. Todd
2015-01-01
The COMT gene modulates dopamine levels in prefrontal cortex with Met allele carriers having lower COMT enzyme activity and, therefore, higher dopamine levels compared to Val/Val homozygotes. Concordantly, Val/Val homozygotes tend to perform worse and display increased (interpreted as inefficient) frontal activation in certain cognitive tasks. In a sample of 209 participants, we test the hypothesis that Met carriers will be advantaged in a decision-making task that demands sequencing exploratory and exploitive choices to minimize uncertainty about the reward structure in the environment. Previous work suggests that optimal performance depends on limited cognitive resources supported by prefrontal systems. If so, Met carriers should outperform Val/Val homozygotes, particularly under dual-task conditions that tax limited cognitive resources. In accord with these a priori predictions, Met carriers were more resilient in the face of cognitive load, continuing to explore in a sophisticated manner. We fit computational models that embody sophisticated reflective and simple reflexive strategies to further evaluate participants' exploration behavior. The Ideal Actor model reflectively updates beliefs and plans ahead, taking into account the information gained by each choice and making choices that maximize long-term payoffs. In contrast, the Naïve Reinforcement Learning (RL) model instantiates the reflexive account of choice, in which the values of actions are based only on the rewards experienced so far. Its beliefs are updated reflexively in response to observed changes in rewards. Converging with standard analyses, Met carriers were best characterized by the Ideal Actor model, whereas Val/Val homozygotes were best characterized by the Naive RL model, particularly under dual-task conditions. PMID:26004676
Reflex modification (RM) of the startle response is a very useful tool for testing sensory function and the integrity of a well-defined complement of neural circuits. Advantages of this procedure include the ability to rapidly acquire objective measurements and differentiate sen...
Simulating Reflex Induced Changes in the Acoustic Impedance of the Ear.
ERIC Educational Resources Information Center
Sirlin, Mindy W.; Levitt, Harry
1991-01-01
A simple procedure for measuring changes in the acoustic impedance of the ear is described. The technique has several applications, including simulation using a standard coupler of changes in real ear impedance produced by the acoustic reflex, and calibration of response time of an otoadmittance meter. (Author/DB)
Effects of Acoustic Impulses on the Middle Ear
2017-10-01
conditioned response; middle ear; damage-risk criteria; health hazard evaluation ACCOMPLISHMENTS: What were the major goals of the project? The...participants declined to participate after the study was described during the informed consent process. The results of V1 were used to evaluate participant...0.64 0.73 4000 Hz 0.82 0.78 0.85 0.68 0.63 0.73 1 or 2 kHz 0.93 0.90 0.95 – – – 13 Evaluation of RTs Analyses of reflexive tasks
The Mammalian Diving Response: An Enigmatic Reflex to Preserve Life?
2013-01-01
The mammalian diving response is a remarkable behavior that overrides basic homeostatic reflexes. It is most studied in large aquatic mammals but is seen in all vertebrates. Pelagic mammals have developed several physiological adaptations to conserve intrinsic oxygen stores, but the apnea, bradycardia, and vasoconstriction is shared with those terrestrial and is neurally mediated. The adaptations of aquatic mammals are reviewed here as well as the neural control of cardiorespiratory physiology during diving in rodents. PMID:23997188
The Reflexes of the Fundus Oculi
Ballantyne, A. J.
1940-01-01
The fundus reflexes reveal, in a manner not yet completely understood, the texture and contour of the reflecting surfaces and the condition of the underlying tissues. In this way they may play an important part in the biomicroscopy of the eye. The physiological reflexes are seen at their best in the eyes of young subjects, in well-pigmented eyes, with undilated pupils and with emmetropic refraction. Their absence during the first two decades, or their presence after the forties, their occurrence in one eye only, their appearance, disappearance or change of character should suggest the possibility of some pathological state. The investigation and interpretation of the reflexes are notably assisted by comparing the appearances seen with long and short wave lights such as those of the sodium and mercury vapour lamps, in addition to the usual ophthalmoscopic lights. Most of the surface reflexes disappear in the light of the sodium lamp, sometimes revealing important changes in the deeper layers of the retina and choroid. The physiological reflexes, chiefly formed on the surface of the internal limiting membrane, take the forms of the familiar watered silk or patchy reflexes, the peri-macular halo, the fan reflex in the macular depression and the reflex from the foveal pit. The watered silk or patchy reflexes often show a delicate striation which follows the pattern of the nerve-fibre layer, or there may be a granular or criss-cross texture. Reflexes which entirely lack these indications of “texture” should be considered as possibly pathological. This applies to the “beaten metal” reflexes and to those formed on the so-called hyaloid membrane. The occurrence of physiological reflexes in linear form is doubtful, and the only admittedly physiological punctate reflexes are the so-called Gunn's dots. Surface reflexes which are broken up into small points or flakes are pathological, and are most frequently seen in the central area of the fundus in cases of pigmentary degeneration of the retina or after the subsidence of severe retinitis or retino-choroiditis. A mirror reflex from the layer of pigmented epithelium or from the external limiting membrane is sometimes recognizable in normal eyes, especially in the brunette fundus. In such, it forms the background to a striking picture of the fine circumfoveal vessels. Pathological reflexes from the level of the pigmented epithelium or of the external limiting membrane are also observed, and these often present a granular, frosted or crystalline appearance. They may indicate a senile change, or result from trauma or from retino-choroidal degeneraion. Somewhat similar reflexes may sometimes be present as small frosted patches anterior to the retinal vessels. Linear sinuous, whether appearing in annular form, as straight needles, as broader single sinuous lines, as the tapering, branched double reflexes of Vogt, or in association with traction or pressure folds, in the retina, are probably always pathological. By the use of selected light of long and short wave lengths, it can be shown that intraretinal or true retinal folds may exist with or without the surface reflexes which indicate a corresponding folding of the internal limiting membrane. On the other hand, superficial linear reflexes of various types may occur without evidence of retinal folding. Annular reflexes usually accompany a rounded elevation of the retina due to tumour, hæmorrhage or exudate, but may indicate the presence of rounded depressions; traction folds occur where there is choroido-retinal scarring, or in association with macular hole or cystic degeneraion at the macula; pressure folds in cases of orbital cyst, abscess or neoplasm; and the other linear reflexes in association with papillo-retinal œdema, for example, in retrobulbar neuritis, in hypertensive neuro-retinitis, in contusio bulbi and in anterior uveitis. Punctate reflexes, other than Gunn's dots, are also pathological. They may occur as one variety of “fragmented” surface reflexes, or as evidence of the presence of some highly refractile substance, such as cholesterin or calcium carbonate, in a retinal exudate or other lesion. It is characteristic of the pathological reflexes that they come and go and change their character according to the progress of the pathological condition. The linear reflexes in particular may change from one from to another, and may be finally transformed into surface reflexes of physiological character. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:19992307
Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...
2015-11-05
Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~10 18mmore » –3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less
Bonham, A C; Coles, S K; McCrimmon, D R
1993-05-01
1. The goal of the present study was to identify potential neurotransmitter candidates in the Breuer-Hering (BH) reflex pathway, specifically at synapses between the primary afferents and probable second-order neurones (pump cells) within the nucleus tractus solitarii (NTS). We hypothesized that if activation of specific receptors in the NTS is required for production of the BH reflex, then (1) injection of the receptor agonist(s) would mimic the reflex response (apnoea), (2) injection of appropriate antagonists would impair the apnoea produced by either lung inflation or agonist injection, and (3) second-order neurones in the pathway would be excited by either lung inflation or agonists while antagonists would prevent the response to either. 2. Studies were carried out either in spontaneously breathing or in paralysed, thoracotomized and ventilated rats in which either diaphragm EMG or phrenic nerve activity, expired CO2 concentration and arterial pressure were continuously monitored. The BH reflex was physiologically activated by inflating the lungs. 3. Pressure injections (0.03-15 pmol) of selective excitatory amino acid (EAA) receptor agonists, quisqualic acid (Quis) and N-methyl-D-aspartic acid (NMDA) into an area of the NTS shown previously to contain neurones required for production of the BH reflex produced dose-dependent apnoeas that mimicked the response to lung inflation. Injection of substance P (0.03-4 pmol) did not alter baseline respiratory pattern. 4. Injections of the EAA antagonists, kynurenic acid (Kyn; 0.6-240 pmol), 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) or 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the BH region of the NTS reversibly impaired the apnoea produced by lung inflation. All three antagonists reduced or abolished the apnoeas resulting from injection of Quis or NMDA, and slowed baseline respiratory frequency. In contrast, injections of the highly selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acids (AP5), in doses sufficient to block the apnoeic response to NMDA, neither altered the reflex apnoea evoked by lung inflation nor the baseline respiratory pattern. 5. Pump cells located within the BH region were excited by pressure injections of the broad spectrum EAA agonist, DL-homocysteic acid (DLH). Kyn reversibly blocked the excitation of pump cells in response to either lung inflation or DLH injection. 6. These findings suggest that EAAs mediate primary afferent excitation of second-order neurones in the Breuer-Hering reflex pathway, primarily through the activation of non-NMDA EAA receptor subtypes.
GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement
Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei
2011-01-01
Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433
The effect of (+)-lysergic acid diethylamide and other drugs on the carotid sinus reflex
Ginzel, K. H.
1958-01-01
In cats, lysergic acid diethylamide (LSD) selectively blocked the reflex blood pressure rise following carotid chemoreceptor stimulation. It also reduced or abolished the chemoreceptor component of the pressor response to occlusion of the common carotid arteries. It did not inhibit the respiratory reflexes arising from the carotid chemoreceptors, unless spontaneous respiration was interfered with as a whole. The site of action was central, probably below the intercollicular level, regardless of whether the drug was administered by the intravenous route or into the lateral ventricle of the brain. LSD did not block the baroreceptor depressor reflex elicited by stimulation of one carotid sinus nerve. LSD frequently caused the systemic pressure to fall, even after vagotomy and atropine, and this effect might account for the occasional reduction of the baroreceptor component of the carotid occlusion response. On the other hand, no relationship was found between the action of LSD on vasomotor tone and its blocking effect on the chemoreceptor pressor reflex. Some derivatives of LSD produced effects similar to those described for LSD, whether or not they possessed a psychotropic action in man, and independently of their efficiency as antagonists to 5-hydroxytryptamine. Of a series of compounds chemically unrelated to LSD, chlorpromazine was found to block the chemoreceptor pressor rise after intracerebroventricular injection. PMID:13584725
The effect of (+)-lysergic acid diethylamide and other drugs on the carotid sinus reflex.
GINZEL, K H
1958-09-01
In cats, lysergic acid diethylamide (LSD) selectively blocked the reflex blood pressure rise following carotid chemoreceptor stimulation. It also reduced or abolished the chemoreceptor component of the pressor response to occlusion of the common carotid arteries. It did not inhibit the respiratory reflexes arising from the carotid chemoreceptors, unless spontaneous respiration was interfered with as a whole. The site of action was central, probably below the intercollicular level, regardless of whether the drug was administered by the intravenous route or into the lateral ventricle of the brain.LSD did not block the baroreceptor depressor reflex elicited by stimulation of one carotid sinus nerve. LSD frequently caused the systemic pressure to fall, even after vagotomy and atropine, and this effect might account for the occasional reduction of the baroreceptor component of the carotid occlusion response. On the other hand, no relationship was found between the action of LSD on vasomotor tone and its blocking effect on the chemoreceptor pressor reflex.Some derivatives of LSD produced effects similar to those described for LSD, whether or not they possessed a psychotropic action in man, and independently of their efficiency as antagonists to 5-hydroxytryptamine. Of a series of compounds chemically unrelated to LSD, chlorpromazine was found to block the chemoreceptor pressor rise after intracerebroventricular injection.
NASA Technical Reports Server (NTRS)
Overton, J. Michael; Tipton, Charles M.
1990-01-01
To determine whether hindlimb suspension is associated with the development of cardiovascular deconditioning, male rats were studied before and after undergoing one of three treatment conditions for 9 days: (1) cage control (n = 15, CON), (2) horizontal suspension (n = 15, HOZ), and (3) head-down suspension (n = 18, HDS). Testing included lower body negative pressure administered during chloralose-urethan anesthesia and graded doses of sympathomimetic agents (norepinephrine, phenylephrine, and tyramine) administered to conscious unrestrained animals. Both HDS and HOZ were associated with a small decrease in the hypotensive response to lower body negative pressure. The HOZ group, but not the HDS group, exhibited augmented reflex tachycardia. Furthermore, both HDS and HOZ groups manifested reduced pressor responses to phenylephrine after treatment. These reductions were associated with significantly attenuated increases in mesenteric vascular resistance. However, baroreflex control of heart rate was not altered by the treatment conditions. Collectively, these results indicate that 9 days of HDS in rats does not elicit hemodynamic response patterns generally associated with cardiovascular deconditioning induced by hypogravic conditions.
Ulrich, Beverly D.; Martin, Bernard
2015-01-01
In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional movements. This will tailor the neuromuscular connectivity to support adaptive motor behaviors. PMID:21140137
Brandimore, Alexandra E.; Troche, Michelle S.; Huber, Jessica E.; Hegland, Karen W.
2015-01-01
Background: Cough is a defensive behavior that can be initiated in response to a stimulus in the airway (reflexively), or on command (voluntarily). There is evidence to suggest that physiological differences exist between reflex and voluntary cough; however, the output (mechanistic and airflow) differences between the cough types are not fully understood. Therefore, the aims of this study were to determine the lung volume, respiratory kinematic, and airflow differences between reflex and voluntary cough in healthy young adults. Methods: Twenty-five participants (14 female; 18–29 years) were recruited for this study. Participants were evaluated using respiratory inductance plethysmography calibrated with spirometry. Experimental procedures included: (1) respiratory calibration, (2) three voluntary sequential cough trials, and (3) three reflex cough trials induced with 200 μM capsaicin. Results: Lung volume initiation (LVI; p = 0.003) and lung volume excursion (LVE; p < 0.001) were significantly greater for voluntary cough compared to reflex cough. The rib cage and abdomen significantly influenced LVI for voluntary cough (p < 0.001); however, only the rib cage significantly impacted LVI for reflex cough (p < 0.001). LVI significantly influenced peak expiratory flow rate (PEFR) for voluntary cough (p = 0.029), but not reflex cough (p = 0.610). Discussion: Production of a reflex cough results in significant mechanistic and airflow differences compared to voluntary cough. These findings suggest that detection of a tussigenic stimulus modifies motor aspects of the reflex cough behavior. Further understanding of the differences between reflex and voluntary cough in older adults and in persons with dystussia (cough dysfunction) will be essential to facilitate the development of successful cough treatment paradigms. PMID:26500560
Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.
Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. Conclusions: The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm. PMID:25210572
Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.
Farrugia, David; Woodman, Dan
2015-12-01
Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; El-gowilly, Sahar M.; Fouda, Mohamed A.
Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 {mu}g/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 {mu}g/kg i.v.) dose-dependently reduced BRS{sub SNP} in contrast to no effect on BRS{submore » PE}. BRS{sub SNP} was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS{sub SNP} were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS{sub SNP} was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A{sub 2A} antagonist), or VUF5574 (A{sub 3} antagonist). In contrast, BRS{sub SNP} was preserved after blockade of A{sub 1} (DPCPX) or A{sub 2B} (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS{sub SNP} depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A{sub 2A} receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research Highlights: > The role of central adenosinergic sites in the nicotine-baroreflex interaction was investigated. > Inhibition of reflex sympathoinhibition mediates the BRS depressant action of nicotine. > Nicotine preferentially impairs reflex tachycardia via disruption of adenosine A{sub 2A} signaling. > The attenuation by nicotine of reflex sympathetic activity is clinically important.« less
Florence Nightingale: light to illuminate the world from the woman with the lantern.
Dinc, Gulten; Naderi, Sait; Kanpolat, Yücel
2013-01-01
The Ottoman-Russian war of 1853 to 1855 was significant not only as a war, but also in response to a reflex from the West brought with itself novel approaches related to care of patients under severe health conditions. Florence Nightingale and her associates assigned at that time to care for soldiers in Istanbul who were severely ailing as a result of battle conditions were instrumental in the emergence of a hitherto unknown profession. This article examines the progress of events in the London-Istanbul axis that led to this development. Copyright © 2013 Elsevier Inc. All rights reserved.
Role of arterial baroreceptors in mediating cardiovascular response to exercise
NASA Technical Reports Server (NTRS)
Mcritchie, R. J.; Vatner, S. F.; Patrick, T. A.; Braunwald, E.; Boettcher, D.; Heyndrickx, G. R.
1976-01-01
Experiments were conducted to define the role of the major arterial baroreceptors during moderately severe exercise by comparing the responses of untethered conscious dogs instrumented for the measurement of aortic pressure and cardiac output with those of dogs with total arterial baroreceptor denervation. The reflex heart rate responses to intravenous bolus doses of methoxamine were also examined in intact animals, both at rest and during exercise. Methoxamine is found to cause striking bradycardia at rest, but little bradycardia during exercise. Experimental findings suggest that the arterial baroreceptor reflex is normally inhibited during severe exercise and therefore plays little role in modulating the cardiovascular response to exercise.
Vo, Lechi; Drummond, Peter D
2017-06-01
The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α 2 -adrenoceptor antagonist that blocks α 2 -autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.
Boumans, L J; Rodenburg, M; Maas, A J
1983-01-01
The response of the human vestibulo-ocular reflex system to a constant angular acceleration is calculated using a second order model with an adaptation term. After first reaching a maximum the peracceleratory response declines. When the stimulus duration is long the decay is mainly governed by the adaptation time constant Ta, which enables to reliably estimate this time constant. In the postacceleratory period of constant velocity there is a reversal in response. The magnitude and the time course of the per- and postacceleratory response are calculated for various values of the cupular time constant T1, the adaptation time constant Ta, and the stimulus duration, thus enabling their influence to be assessed.
Effect of cervicolabyrinthine impulsation on the spinal reflex apparatus
NASA Technical Reports Server (NTRS)
Yarotskiy, A. I.
1980-01-01
In view of the fact that the convergence effect of vestibular impulsation may both stimulate and inhibit intra and intersystemic coordination of physiological processes, an attempt was made to define the physiological effect on the spinal reflex apparatus of the convergence of cervicolabyrinthine impulsation on a model of the unconditioned motor reflex as a mechanism of the common final pathway conditioning the formation and realization of a focused beneficial result of human motor activities. More than 100 persons subjected to rolling effect and angular acceleration during complexly coordinated muscular loading were divided according to typical variants of the functional structure of the patella reflex in an experiment requiring 30 rapid counterclockwise head revolutions at 2/sec with synchronous recording of a 20 item series of patella reflex acts. A knee jerk coefficient was used in calculations. In 85 percent of the cases 2 patellar reflexograms show typical braking and release of knee reflex and 1 shows an extreme local variant. The diagnostic and prognostic value of these tests is suggested for determining adaptive possibilities of functional systems in respect to acceleration and proprioceptive stimuli.
Yagura, Saki; Onimaru, Hiroshi; Kanzaki, Koji; Izumizaki, Masahiko
2018-06-01
Eugenol is contained in several plants including clove and is thought to exert an analgesic effect. It has been suggested that the slow ventral root potential induced by ipsilateral dorsal root stimulation in the isolated (typically lumbar) spinal cord of newborn rats reflects the nociceptive response, and this in vitro experimental model is useful to assess the actions of analgesics. To further elucidate neuronal mechanisms of eugenol-induced analgesia, we examined the effects of extracellularly applied eugenol on the nociceptive spinal reflex response. To evaluate the effects of eugenol on putative nociceptive responses, the ipsilateral fifth lumbar (L5) dorsal root was stimulated using a glass suction electrode, and the induced reflex responses were recorded from the L5 and twelfth thoracic (Th12) ventral roots in spinal cord preparations (Th10-L5) from newborn rats (postnatal day 0-3). We found that eugenol (0.25-1.0 mM) caused dose-dependent attenuation of the reflex response and also depressed spontaneous ventral root activity. We also found that the slow ventral root potential was further divided into two components: initial and late components. A lower concentration of eugenol selectively depressed the late component. The inhibitory effects by 1.0 mM eugenol were not reversed by 10 µM capsazepine (TRPV1 antagonist) or 40 µM HC-030031 (TRPA1 antagonist). The depressive effect of eugenol on the reflex response was also confirmed by optical recordings using voltage-sensitive dye. Our report provides additional evidence on the basic neuronal mechanisms of eugenol to support its clinical use as a potential analgesic treatment.
The defence-arousal system and its relevance for circulatory and respiratory control.
Hilton, S M
1982-10-01
It was proposed some fifty years ago that the visceral and hormonal changes accompanying fear and rage reactions can best be understood as adaptations which prepare an organism to cope with an emergency and specifically to perform the extreme muscular exertion of flight or attack. This is well exemplified by the pattern of cardiovascular response which is characteristic of the alerting stage of these reactions and consists of an increase in cardiac output directed mainly to the skeletal muscles. This group of behavioural responses has been collectively termed the defence reaction. The regions of the hypothalamus and brainstem which organize it have been mapped. They function as a reflex centre for the visceral components of the altering response as well as initiating the behavioural response. So far as the cardiovascular system is concerned, this is a preparatory reflex and not compatible with short-term homeostasis. Indeed, the baroreceptor reflex, which is homeostatic, is strongly inhibited. By contrast, the chemoreceptor reflex is facilitated. The input from peripheral chemoreceptors is itself an alerting stimulus. The visceral alerting response has been studied in most detail in the cat, but there is evidence for the same cardiovascular pattern and an accompanying group of respiratory changes in other mammalian species (rat, rabbit, dog, monkey and man). On the efferent pathway for the cardiovascular response pattern, there is a group of relay neurones near the ventral surface of the caudal medulla, which seem important for the maintenance of arterial blood pressure. The visceral alerting system may therefore be continually engaged to some extent in the awake state, as well as being acutely activated in response to novel, and especially to noxious, stimuli.
Ocular Counter-Rolling During Centrifugation and Static Tilt
NASA Technical Reports Server (NTRS)
Cohen, Bernard; Clement, Gilles; Moore, Steven; Curthoys, Ian; Dai, Mingjia; Koizuka, Izumi; Kubo, Takeshi; Raphan, Theodore
2003-01-01
Activation of the gravity sensors in the inner ear-the otoliths-generates reflexes that act to maintain posture and gaze. Ocular counter-rolling (OCR) is an example of such a reflex. When the head is tilted to the side, the eyes rotate around the line of sight in the opposite direction (i.e., counter-rolling). While turning comers, undergoing centrifugation, or making side-to-side tilting head movements, the OCR reflex orients the eyes towards the sum of the accelerations from body movements and gravity. Deconditioning of otolith-mediated reflexes following adaptation to microgravity has been proposed as the basis of many of the postural, locomotor, and gaze control problems experienced by returning astronauts. Evidence suggests that OCR is reduced postflight in about 75% of astronauts tested; but the data are sparse, primarily due to difficulties in recording rotational eye movements. During the Neurolab mission, a short-arm human centrifuge was flown that generated sustained sideways accelerations of 0.5-G and one-G to the head and upper body. This produces OCR; and so for the first time, the responses to sustained centrifugation could be studied without the influence of Earth's gravity on the results. This allowed us to determine the relative importance of sideways and vertical acceleration in the generation of OCR. This also provided the first test of the effects of exposure to artificial gravity in space on postflight otolith-ocular reflexes. There was little difference between the responses to centrifugation in microgravity and on Earth. In both conditions, the induced OCR was roughly proportional to the applied acceleration, with the OCR magnitude during 0.5-G centrifugation approximately 60% of that generated during one-G centrifugation. The overall mean OCR from the four payload crewmembers in response to one-G of sideways acceleration was 5.7 plus or minus 1.1 degree (mean and SD) on Earth. Inflight one-G centrifugation generated 5.7 plus or minus 1.1 degree of OCR, which was a small but significant decrease in OCR magnitude. The postflight OCR was 5.9 plus or minus 1.4 degree, which was not significantly different from preflight values. During both 0.5-G and one-G centrifugation in microgravity, where the head vertical gravitational component was absent, the OCR magnitude was not significantly different from that produced by an equivalent acceleration during static tilt on Earth. This suggests that the larger OCR magnitude observed during centrifugation on Earth was due to the larger body vertical linear acceleration component, which may have activated either the otoliths or the body tilt receptors. In contrast to previous studies, there was no decrease in OCR gain postflight. Our findings raise the possibility that inflight exposure to artificial gravity, in the form of intermittent one-G and 0.5-G centripetal acceleration, may have been a countermeasure to deconditioning of otolith-based orientation reflexes.
Implementation of reflex loops in a biomechanical finite element model.
Salin, Dorian; Arnoux, Pierre-Jean; Kayvantash, Kambiz; Behr, Michel
2016-11-01
In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models.
Laryngeal Reflexes: Physiology, Technique and Clinical Use
Ludlow, Christy L.
2015-01-01
This review examines the current level of knowledge and techniques available for the study of laryngeal reflexes. Overall, the larynx is under constant control of several systems (including respiration, swallowing and cough) as well as sensory-motor reflex responses involving glossopharyngeal, pharyngeal, laryngeal and tracheobronchial sensory receptors. Techniques for the clinical assessment of these reflexes are emerging and need to be examined for sensitivity and specificity in identifying laryngeal sensory disorders. Quantitative assessment methods for the diagnosis of sensory reductions as well as sensory hypersensitivity may account for laryngeal disorders such as chronic cough, paradoxical vocal fold disorder and muscular tension dysphonia. The development of accurate assessment techniques could improve our understanding of the mechanisms involved in these disorders. PMID:26241237
The Role of Corticostriatal Systems in Speech Category Learning.
Yi, Han-Gyol; Maddox, W Todd; Mumford, Jeanette A; Chandrasekaran, Bharath
2016-04-01
One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Normal and abnormal human vestibular ocular function
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.
1986-01-01
The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.
Dual-learning systems during speech category learning
Chandrasekaran, Bharath; Yi, Han-Gyol; Maddox, W. Todd
2013-01-01
Dual-systems models of visual category learning posit the existence of an explicit, hypothesis-testing ‘reflective’ system, as well as an implicit, procedural-based ‘reflexive’ system. The reflective and reflexive learning systems are competitive and neurally dissociable. Relatively little is known about the role of these domain-general learning systems in speech category learning. Given the multidimensional, redundant, and variable nature of acoustic cues in speech categories, our working hypothesis is that speech categories are learned reflexively. To this end, we examined the relative contribution of these learning systems to speech learning in adults. Native English speakers learned to categorize Mandarin tone categories over 480 trials. The training protocol involved trial-by-trial feedback and multiple talkers. Experiment 1 and 2 examined the effect of manipulating the timing (immediate vs. delayed) and information content (full vs. minimal) of feedback. Dual-systems models of visual category learning predict that delayed feedback and providing rich, informational feedback enhance reflective learning, while immediate and minimally informative feedback enhance reflexive learning. Across the two experiments, our results show feedback manipulations that targeted reflexive learning enhanced category learning success. In Experiment 3, we examined the role of trial-to-trial talker information (mixed vs. blocked presentation) on speech category learning success. We hypothesized that the mixed condition would enhance reflexive learning by not allowing an association between talker-related acoustic cues and speech categories. Our results show that the mixed talker condition led to relatively greater accuracies. Our experiments demonstrate that speech categories are optimally learned by training methods that target the reflexive learning system. PMID:24002965
Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.
2006-01-01
Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.
Brownscombe, Jacob W; Marchand, Kelsey; Tisshaw, Kathryn; Fewster, Victoria; Groff, Olivia; Pichette, Melissa; Seed, Marian; Gutowsky, Lee F G; Wilson, Alexander D M; Cooke, Steven J
2014-01-01
Release of fish captured by recreational anglers is a common practice due to angler conservation ethics or compliance with fisheries regulations. As such, there is a need to understand the factors that influence mortality and sub-lethal impairments to ensure that catch-and-release angling is a sustainable practice. Longer angling times generally contribute to increased stress and mortality in fish such that reducing these times putatively reduces stress and improves survival. However, the relative importance of fight intensity (rather than simply duration) on fish condition is poorly understood. The objective of this research was to examine the effects of fight intensity on physiological stress and reflex impairment of largemouth bass (Micropterus salmoides). The largemouth bass were angled using conventional recreational fishing gear in May (water temperature ∼12°C) and June (∼22°C) of 2014 in Lake Opinicon, Ontario, Canada. Fight intensity was quantified using tri-axial accelerometer loggers mounted on the tips of fishing rods. Upon capture, reflex impairment measures were assessed, and fish were held for 1 h prior to blood sampling for measurement of physiological stress (blood glucose and lactate concentrations and pH). Physiological stress values showed a negative trend with fight duration and total fight intensity, but a positive trend with average fight intensity. Water temperature emerged as the most important predictor of the stress response in largemouth bass, while fight duration and intensity were not strong predictors. Reflex impairment was minimal, but higher reflex impairment scores were associated with elevated blood glucose. Overall, the findings of this study suggest that angling for largemouth bass at colder temperatures (<15°C) causes greater physiological stress than at warmer temperatures (>20°C). Based on our findings, we conclude that fight intensity is likely not to be a major driver of physiological stress in this species using typical largemouth bass angling gear, owing to the relatively short fight times (i.e. <2 min).
Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology
ERIC Educational Resources Information Center
Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne
2014-01-01
During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…
Kojima, Yu; Fujii, Hisao; Katsui, Renta; Nakajima, Yoshiyuki; Takaki, Miyako
2006-10-01
The defecation reflex is composed of rectal distension-evoked rectal (R-R) reflex contractions and synchronous internal anal sphincter (R-IAS) reflex relaxations in guinea pigs. These R-R and R-IAS reflexes are controlled via extrinsic sacral excitatory nerve pathway (pelvic nerves), lumbar inhibitory nerve pathways (colonic nerves) and by intrinsic cholinergic excitatory and nitrergic inhibitory nerve pathways. The effect of mosapride (a prokinetic benzamide) on the intrinsic reflexes, mediated via enteric 5-HT(4) receptors, was evaluated by measuring the mechanical activity of the rectum and IAS in anesthetized guinea pigs using an intrinsic R-R and R-IAS reflex model resulting from chronic (two to nine days) lumbosacral denervation (PITH). In this model, the myenteric plexus remains undamaged and the distribution of myenteric and intramuscular interstitial cells of Cajal is unchanged. Although R-R and R-IAS reflex patterns markedly changed, the reflex indices (reflex pressure or force curve-time integral) of both the R-R contractions and the synchronous R-IAS relaxations were unchanged. The frequency of the spontaneous R and IAS motility was also unchanged. Mosapride (0.1-1.0 mg/kg) dose-dependently increased both intrinsic R-R (maximum: 1.82) and R-IAS reflex indices (maximum: 2.76) from that of the control (1.0) 6-9 days following chronic PITH. The dose-response curve was similar to that in the intact guinea pig, and had shifted to the left from that in the guinea pig after acute PITH. A specific 5-HT(4) receptor antagonist, GR 113808 (1.0 mg/kg), decreased both reflex indices by approximately 50% and antagonized the effect of mosapride 1.0 mg/kg. This was quite different from the result in the intact guinea pig where GR 113808 (1.0 mg/kg) did not affect either of the reflex indices. The present results indicate that mosapride enhanced the intrinsic R-R and R-IAS reflexes and functionally compensated for the deprivation of extrinsic innervation. The actions of mosapride were mediated through endogenously active, intrinsic 5-HT(4) receptors which may be post-synaptically located in the myenteric plexus of the anorectum.
Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans.
Oza, Preeti D; Dudley-Javoroski, Shauna; Shields, Richard K
2017-01-01
Depression of the Hoffman reflex (H-reflex) is used to examine spinal control mechanisms during exercise, fatigue, and vibration and in response to training. H-reflex depression protocols frequently use trains of stimuli; this is time-consuming and prevents instantaneous assessment of motor neuronal excitability. The purpose of this study was to determine if paired-pulse H-reflex depression is reproducible and whether paired-pulse stimulation adequately estimates the depression induced by the more traditional ten-pulse train. H-reflexes were elicited via ten-pulse trains at 0.1, 0.2, 1, 2, and 5 Hz in ten neurologically intact individuals on two separate days. We measured the depression elicited by the second pulse (H2) and the mean depression elicited by pulses 2-10 (Hmean). H2 was consistent at all frequencies on both days ( r 2 = 0.97, p < 0.05, and ICC (3,1) = 0.81). H2 did not differ from Hmean ( p > 0.05). The results indicate that paired-pulse H-reflex depression has high between-day reliability and yields depression estimates that are comparable to those obtained via ten-pulse trains. Paired-pulse H-reflex depression may be especially useful for studies that require rapid assessment of motor neuronal excitability, such as during exercise, fatigue, and vibration, or to establish recovery curves following inhibition.
Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy
2017-05-01
Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s 2 ) vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and coherence positively scaled with increases in stimulus amplitude. Our findings suggest that noisy tendon vibration, along with linear systems analysis, is an effective novel approach to study somatosensory reflex actions in active muscles. Copyright © 2017 the American Physiological Society.
Evidence for two concurrent inhibitory mechanisms during response preparation
Duque, Julie; Lew, David; Mazzocchio, Riccardo; Olivier, Etienne; Ivry, Richard B.
2010-01-01
Inhibitory mechanisms are critically involved in goal-directed behaviors. To gain further insight into how such mechanisms shape motor representations during response preparation, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and H-reflexes were recorded from left hand muscles during choice reaction time tasks. The imperative signal, which indicated the required response, was always preceded by a preparatory cue. During the post-cue delay period, left MEPs were suppressed when the left hand had been cued for the forthcoming response, suggestive of a form of inhibition specifically directed at selected response representations. H-reflexes were also suppressed on these trials, indicating that the effects of this inhibition extend to spinal circuits. In addition, left MEPs were suppressed when the right hand was cued, but only when left hand movements were a possible response option before the onset of the cue. Notably, left hand H-reflexes were not modulated on these trials, consistent with a cortical locus of inhibition that lowers the activation of task-relevant, but non-selected responses. These results suggest the concurrent operation of two inhibitory mechanisms during response preparation: one decreases the activation of selected responses at the spinal level, helping to control when selected movements should be initiated by preventing their premature release; a second, upstream mechanism helps to determine what response to make during a competitive selection process. PMID:20220014
The Relationship between MOC Reflex and Masked Threshold
Garinis, Angela; Werner, Lynne; Abdala, Carolina
2011-01-01
Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for a 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of 300-ms masker bursts at 600-ms intervals. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency interval from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes. PMID:21878379
Dutia, M B; Price, R F
1987-01-01
1. Interactions between the sagittal vestibulo-collic reflex (v.c.r.) and the cervico-collic stretch reflex (c.c.r.) have been studied in the neck extensor muscles biventer cervicis (b.c.) in the decerebrate cat. The v.c.r. was evoked by a 'standard' vestibular stimulus consisting of a sinusoidal nose-up, nose-down head movement of 6-8 deg amplitude at 1 Hz. The c.c.r. was evoked by sinusoidal stretching of the b.c. muscles at 1 Hz. The amplitude of muscle stretching, and its phase in relation to head movement, were systematically varied. 2. When muscle stretching was applied in phase with head movement (so that the muscles were stretched as the head moved in the nose-down direction), the gain of the combined (v.c.r. + c.c.r.) reflex in the b.c. muscles increased above that of the v.c.r. If the muscle stretching was applied out of phase with head movement (so that the muscles shortened as the head moved downward), the gain of the combined reflex was reduced to a value below that of the v.c.r. 3. The effects on the gain of the combined reflex varied in proportion to the amplitude of muscle stretching. The gain and phase of the combined reflex is modelled reasonably well by a linear vectorial addition between the v.c.r. and the c.c.r. over a wide range of amplitudes of muscle stretching. The linear summation model contains a proportionality constant K, which may represent a factor by which the two reflexes are 'calibrated' against each other. 4. If one of the b.c. muscles was held at a fixed length and the other stretched sinusoidally, the c.c.r. was evoked only in the stimulated muscle. Vestibular stimulation then summed with the c.c.r in the stimulated muscle, while on the contralateral side the reflex response was the same as that of the v.c.r. alone. It would appear therefore that the motoneurone pools of the b.c. muscles are organized as independent entities without mutually excitatory or inhibitory reflex linkages. This arrangement presumably allows flexibility in the supraspinal control of the b.c. muscles, which are often used either as synergists during sagittal head movement or as antagonists during horizontal or roll movements of the head. 5. The interaction between the v.c.r. and the c.c.r. results in an apparent 'servo-assistance' role for the muscle afferent feed-back from the b.c. muscles, amplifying or attenuating the reflex response of the muscles to a given head movement.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3498829
NASA Technical Reports Server (NTRS)
Cerisano, J. M.; Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Harm, D. L.
2010-01-01
INTRODUCTION: Spaceflight is acknowledged to have significant effects on the major postural muscles. However, it has been difficult to separate the effects of ascending somatosensory changes caused by the unloading of these muscles during flight from changes in sensorimotor function caused by a descending vestibulo-cerebellar response to microgravity. It is hypothesized that bed rest is an adequate model to investigate postural muscle unloading given that spaceflight and bed rest may produce similar results in both nerve axon and muscle tissue. METHODS: To investigate this hypothesis, stretch reflexes were measured on 18 subjects who spent 60 to 90 days in continuous 6 head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 deg at a peak velocity of approximately 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender and compared with spaceflight data. RESULTS: Although no gender differences were found, bed rest induced changes in reflex latency and CV similar to the ones observed during spaceflight. Also, a relationship between CV and loss of muscle strength in the lower leg was observed for most bed rest subjects. CONCLUSION: Even though bed rest (limb unloading) alone may not mimic all of the synaptic and muscle tissue loss that is observed as a result of spaceflight, it can serve as a working analog of flight for the evaluation of potential countermeasures that may be beneficial in mitigating unwanted changes in the major postural muscles that are observed post flight.
Baroreflex Responses to Acute Changes in Blood Volume in Humans
NASA Technical Reports Server (NTRS)
Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.
1990-01-01
To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro-reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationship, of the cardio-pulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venous Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). The results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulmonary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.
Goldstein, David S; Eldadah, Basil A; Holmes, Courtney; Pechnik, Sandra; Moak, Jeffrey; Saleem, Ahmed; Sharabi, Yehonatan
2005-12-01
Patients with Parkinson disease often have orthostatic hypotension. Neurocirculatory abnormalities underlying orthostatic hypotension might reflect levodopa treatment. Sixty-six Parkinson disease patients (36 with orthostatic hypotension, 15 off and 21 on levodopa; 30 without orthostatic hypotension) had tests of reflexive cardiovagal gain (decrease in interbeat interval per unit decrease in systolic pressure during the Valsalva maneuver; orthostatic increase in heart rate per unit decrease in pressure); reflexive sympathoneural function (decrease in pressure during the Valsalva maneuver; orthostatic increment in plasma norepinephrine); and cardiac and extracardiac noradrenergic innervation (septal myocardial 6-[18F]fluorodopamine-derived radioactivity; supine plasma norepinephrine). Severity of orthostatic hypotension did not differ between the levodopa-untreated and levodopa-treated groups with Parkinson disease and orthostatic hypotension (-52+/-6 [SEM] versus -49+/-5 mm Hg systolic). The 2 groups had similarly low reflexive cardiovagal gain (0.84+/-0.23 versus 1.33+/-0.35 ms/mm Hg during Valsalva; 0.43+/-0.09 versus 0.27+/-0.06 bpm/mm Hg during orthostasis); and had similarly attenuated reflexive sympathoneural responses (97+/-29 versus 71+/-23 pg/mL during orthostasis; -82+/-10 versus -73+/-8 mm Hg during Valsalva). In patients off levodopa, plasma norepinephrine was lower in those with (193+/-19 pg/mL) than without (348+/-46 pg/mL) orthostatic hypotension. Low values for reflexive cardiovagal gain, sympathoneural responses, and noradrenergic innervation were strongly related to orthostatic hypotension. Parkinson disease with orthostatic hypotension features reflexive cardiovagal and sympathoneural failure and cardiac and partial extracardiac sympathetic denervation, independent of levodopa treatment.
Are H-reflex and M-wave recruitment curve parameters related to aerobic capacity?
Piscione, Julien; Grosset, Jean-François; Gamet, Didier; Pérot, Chantal
2012-10-01
Soleus Hoffmann reflex (H-reflex) amplitude is affected by a training period and type and level of training are also well known to modify aerobic capacities. Previously, paired changes in H-reflex and aerobic capacity have been evidenced after endurance training. The aim of this study was to investigate possible links between H- and M-recruitment curve parameters and aerobic capacity collected on a cohort of subjects (56 young men) that were not involved in regular physical training. Maximal H-reflex normalized with respect to maximal M-wave (H(max)/M(max)) was measured as well as other parameters of the H- or M-recruitment curves that provide information about the reflex or direct excitability of the motoneuron pool, such as thresholds of stimulus intensity to obtain H or M response (H(th) and M(th)), the ascending slope of H-reflex, or M-wave recruitment curves (H(slp) and M(slp)) and their ratio (H(slp)/M(slp)). Aerobic capacity, i.e., maximal oxygen consumption and maximal aerobic power (MAP) were, respectively, estimated from a running field test and from an incremental test on a cycle ergometer. Maximal oxygen consumption was only correlated with M(slp), an indicator of muscle fiber heterogeneity (p < 0.05), whereas MAP was not correlated with any of the tested parameters (p > 0.05). Although higher H-reflex are often described for subjects with a high aerobic capacity because of endurance training, at a basic level (i.e., without training period context) no correlation was observed between maximal H-reflex and aerobic capacity. Thus, none of the H-reflex or M-wave recruitment curve parameters, except M(slp), was related to the aerobic capacity of young, untrained male subjects.
de Oliveira Silva, Danilo; Magalhães, Fernando Henrique; Faria, Nathálie Clara; Ferrari, Deisi; Pazzinatto, Marcella Ferraz; Pappas, Evangelos; de Azevedo, Fábio Mícolis
2017-01-01
To determine the association between the amplitude of vastus medialis (VM) Hoffmann reflex (H-reflex) and pain level, self-reported physical function, and chronicity of pain in women with patellofemoral pain (PFP). Cross-sectional study. Laboratory of biomechanics and motor control. Women diagnosed with PFP (N=15) aged 18 to 35 years. Not applicable. Data on worst pain level during the previous month, self-reported physical function, and symptom duration (chronicity) were collected from the participants. Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve and peak-to-peak amplitudes of normalized maximal H-reflexes (maximal Hoffmann reflex/maximal motor wave ratios) of the VM were calculated. A Pearson product-moment correlation matrix (r) was used to explore the relations between the amplitude of VM H-reflex and worst pain during the previous month, self-reported function, and chronicity of pain. Strong negative correlations were found between the amplitude of VM H-reflex and worst pain in the previous month (r=-.71; P=.003) and chronicity (r=-.74; P=.001). A strong positive correlation was found between the amplitude of VM H-reflex and self-reported physical function (r=.62; P=.012). The strong and significant relations reported in this study suggest that women with PFP showing greater VM H-reflex excitability tend to have lower pain, better physical function, and more recent symptoms. Therefore, rehabilitation strategies designed to increase the excitability of the monosynaptic stretch reflex should be considered in the treatment of women with PFP if their effectiveness is demonstrated in future studies. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Submucosal reflexes: distension-evoked ion transport in the guinea pig distal colon.
Frieling, T; Wood, J D; Cooke, H J
1992-07-01
Muscle-stripped segments of distal colon from guinea pigs were mounted in modified flux chambers to determine the effect of distension on mucosal secretion. Ion secretion was monitored as changes in short-circuit current (Isc). Distending forces were pressure gradients established by controlled reduction in liquid volume of the submucosal compartment of the chamber. Volume removal for 10 s or 5 min evoked a monophasic or biphasic increase in Isc, which returned to baseline within 5-20 min. The amplitude of the response correlated with the volume removed and was reduced by bumetanide and Cl-free solutions but not by tetraethylammonium or amiloride. Tetrodotoxin and atropine also suppressed the response. Neither the nicotinic receptor antagonist mecamylamine, the 5-hydroxytryptamine3 (5-HT3) receptor antagonist ICS 205-930, or the prostaglandin synthesis inhibitor piroxicam altered the response. Addition of prostaglandin D2 to the submucosal bath significantly enhanced the response. The results suggest that distension of the colon evokes anion secretion by activation of reflex circuits with cholinergic neurons and muscarinic synapses. Prostaglandins and 5-hydroxytryptamine acting at 5-HT3 receptors appear not to be signal substances in the reflex pathway, which evokes the secretory response to distension.
Using stimulation of the diving reflex in humans to teach integrative physiology.
Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne
2014-12-01
During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.
Comparison of voluntary and reflex cough effectiveness in Parkinson’s disease
Hegland, Karen Wheeler; Troche, Michelle S.; Brandimore, Alexandra E.; Davenport, Paul W.; Okun, Michael S.
2016-01-01
Introduction Multiple airway protective mechanisms are impacted with Parkinson’s disease (PD), including swallowing and cough. Cough serves to eject material from the lower airways, and can be produced voluntarily (on command) and reflexively in response to aspirate material or other airway irritants. Voluntary cough effectiveness is reduced in PD however it is not known whether reflex cough is affected as well. The goal of this study was to compare the effectiveness between voluntary and reflex cough in patients with idiopathic PD. Methods Twenty patients with idiopathic PD participated. Cough airflow data were recorded via facemask in line with a pneumotachograph. A side delivery port connected the nebulizer for delivery of capsaicin, which was used to induce cough. Three voluntary coughs and three reflex coughs were analyzed from each participant. A two-way repeated measures analysis of variance was used to compare voluntary versus reflex cough airflow parameters. Results Significant differences were found for peak expiratory flow rate (PEFR) and cough expired volume (CEV) between voluntary and reflex cough. Specifically, both PEFR and CEV were reduced for reflex as compared to voluntary cough. Conclusion Cough PEFR and CEV are indicative of cough effectiveness in terms of the ability to remove material from the lower airways. Differences between these two cough types likely reflect differences in the coordination of the respiratory and laryngeal subsystems. Clinicians should be aware that evaluation of cough function using voluntary cough tasks overestimates the PEFR and CEV that would be achieved during reflex cough in patients with PD. PMID:25246315
[The effect of bemitil on conditioned-reflex memory in normal rats and under stress exposures].
Pragina, L L; Tushmalova, N A; Inozemtsev, A N; Smirnov, A V
1999-01-01
The authors studied the effect of the actoprotector bemitil on the conditional-reflex memory of rats and its functional disorder by disturbance of the cause-effect (abatement of the avoidance reaction) or space relations. Intraperitoneal injections of 1.8 mg/kg of bemitil were given daily 30 min before the experiment. The training of animals improved authentically from experiment to experiment. Thus, the drug, possesses the nootropic properties. Exposure to stressogenic factors of various depth demonstrated the stress-protective effect of bemitil.
Abbruzzese, M; Minatel, C; Reni, L; Favale, E
2001-09-01
Changes in amplitude of the soleus H (S(H))-reflex and its neurographic correlates (P(1) and P(2) waves) after vibration of the soleus muscle have been evaluated as a function of mechanical stimulation frequency, duration of the conditioning train, and test stimulus intensity. Additional experiments aimed at assessing the nervous system mechanisms underlying the postvibration depression (PVD) have been performed. In particular, homonymous (S(HMR) or S(H)) versus heteronymous (S(HTR)) soleus response, evoked respectively by tibial nerve and femoral nerve electrical stimulation, the effectiveness of sub-H threshold tibial nerve conditioning volleys on the S(HTR), and the respective effects of a brief passive stretching of the quadriceps and soleus muscles on the recovery of both the S(HMR) and S(HTR) after vibration of the homologous muscle were investigated under suitable experimental conditions. It was found that PVD occurs in the absence of changes in amplitude of the P(1) wave and the S(HTR), is paralleled by a reduced effectiveness of tibial nerve-conditioning volleys on the S(HTR) and is shortened consistently by brief passive stretching of the homologous muscle. It follows that PVD may be the result of a long-lasting reduction of the transmitter release from Ia presynaptic terminals depending, at least in part, on a protracted postvibration Ia afferent discharge caused by spindles thixotropy. These findings may provide a better understanding of the pathophysiologic mechanisms underlying spasticity in humans.
Classical conditioning through auditory stimuli in Drosophila: methods and models
Menda, Gil; Bar, Haim Y.; Arthur, Ben J.; Rivlin, Patricia K.; Wyttenbach, Robert A.; Strawderman, Robert L.; Hoy, Ronald R.
2011-01-01
SUMMARY The role of sound in Drosophila melanogaster courtship, along with its perception via the antennae, is well established, as is the ability of this fly to learn in classical conditioning protocols. Here, we demonstrate that a neutral acoustic stimulus paired with a sucrose reward can be used to condition the proboscis-extension reflex, part of normal feeding behavior. This appetitive conditioning produces results comparable to those obtained with chemical stimuli in aversive conditioning protocols. We applied a logistic model with general estimating equations to predict the dynamics of learning, which successfully predicts the outcome of training and provides a quantitative estimate of the rate of learning. Use of acoustic stimuli with appetitive conditioning provides both an alternative to models most commonly used in studies of learning and memory in Drosophila and a means of testing hearing in both sexes, independently of courtship responsiveness. PMID:21832129
A frontal dopamine system for reflective exploratory behavior.
Blanco, Nathaniel J; Love, Bradley C; Cooper, Jessica A; McGeary, John E; Knopik, Valerie S; Maddox, W Todd
2015-09-01
The COMT gene modulates dopamine levels in prefrontal cortex with Met allele carriers having lower COMT enzyme activity and, therefore, higher dopamine levels compared to Val/Val homozygotes. Concordantly, Val/Val homozygotes tend to perform worse and display increased (interpreted as inefficient) frontal activation in certain cognitive tasks. In a sample of 209 participants, we test the hypothesis that Met carriers will be advantaged in a decision-making task that demands sequencing exploratory and exploitive choices to minimize uncertainty about the reward structure in the environment. Previous work suggests that optimal performance depends on limited cognitive resources supported by prefrontal systems. If so, Met carriers should outperform Val/Val homozygotes, particularly under dual-task conditions that tax limited cognitive resources. In accord with these a priori predictions, Met carriers were more resilient in the face of cognitive load, continuing to explore in a sophisticated manner. We fit computational models that embody sophisticated reflective and simple reflexive strategies to further evaluate participants' exploration behavior. The Ideal Actor model reflectively updates beliefs and plans ahead, taking into account the information gained by each choice and making choices that maximize long-term payoffs. In contrast, the Naïve Reinforcement Learning (RL) model instantiates the reflexive account of choice, in which the values of actions are based only on the rewards experienced so far. Its beliefs are updated reflexively in response to observed changes in rewards. Converging with standard analyses, Met carriers were best characterized by the Ideal Actor model, whereas Val/Val homozygotes were best characterized by the Naive RL model, particularly under dual-task conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Smalt, Christopher J; Heinz, Michael G; Strickland, Elizabeth A
2014-04-01
The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noisy environments. This advantage can be attributed to a feedback mechanism that suppresses auditory nerve (AN) firing in continuous background noise, resulting in increased sensitivity to a tone or speech. MOC neurons synapse on outer hair cells (OHCs), and their activity effectively reduces cochlear gain. The computational model developed in this study implements the time-varying, characteristic frequency (CF) and level-dependent effects of the MOCR within the framework of a well-established model for normal and hearing-impaired AN responses. A second-order linear system was used to model the time-course of the MOCR using physiological data in humans. The stimulus-level-dependent parameters of the efferent pathway were estimated by fitting AN sensitivity derived from responses in decerebrate cats using a tone-in-noise paradigm. The resulting model uses a binaural, time-varying, CF-dependent, level-dependent OHC gain reduction for both ipsilateral and contralateral stimuli that improves detection of a tone in noise, similarly to recorded AN responses. The MOCR may be important for speech recognition in continuous background noise as well as for protection from acoustic trauma. Further study of this model and its efferent feedback loop may improve our understanding of the effects of sensorineural hearing loss in noisy situations, a condition in which hearing aids currently struggle to restore normal speech perception.
Hyper-excitability of brainstem pathways in cerebral palsy.
Smith, Allison Teresa; Gorassini, Monica Ann
2018-06-27
Individuals with cerebral palsy (CP) experience impairments in the control of head and neck movements, suggesting dysfunction in brainstem circuitry. To examine if brainstem circuitry is altered in CP we compared reflexes evoked in the sternocleidomastoid (SCM) muscle by trigeminal nerve stimulation in adults with CP and age/sex-matched controls. Increasing the intensity of trigeminal nerve stimulation produced progressive increases in the long-latency suppression of ongoing SCM EMG in controls. In contrast, participants with CP showed progressively increased facilitation around the same reflex window, suggesting heightened excitability of brainstem pathways. We also examined if there was altered activation of cortico-brainstem pathways in response to pre-natal injury of the brain. Motor-evoked potentials (MEPs) in the SCM that were conditioned by a prior trigeminal afferent stimulation were more facilitated in CP compared to controls, especially in ipsilateral MEPs that are likely mediated by cortico-reticulospinal pathways. In some participants with CP, but not in controls, a combined trigeminal nerve and cortical stimulation near threshold intensities produced large, long-lasting responses in both the SCM and biceps brachii muscles. We propose that the enhanced excitatory responses evoked from trigeminal and cortical inputs in CP are produced by heightened excitability of brainstem circuits, resulting in the augmented activation of reticulospinal pathways. Enhanced activation of reticulospinal pathways in response to early injury of the corticospinal tract may provide a compensated activation of the spinal cord, or alternatively, contribute to impairments in the precise control of head and neck functions.
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Angelaki, D. E.
1999-01-01
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.
Cooperative hand movements in post-stroke subjects: Neural reorganization.
Schrafl-Altermatt, Miriam; Dietz, Volker
2016-01-01
Recent research indicates a task-specific neural coupling controlling cooperative hand movements reflected in bilateral electromyographic reflex responses in arm muscles following unilateral nerve stimulation. Reorganization of this mechanism was explored in post-stroke patients in this study. Electromyographic reflex responses in forearm muscles to unilateral electrical ulnar nerve stimulation were examined during cooperative and non-cooperative hand movements. Stimulation of the unaffected arm during cooperative hand movements led to electromyographic responses in bilateral forearm muscles, similar to those seen in healthy subjects, while stimulation of the affected side was followed only by ipsilateral responses. No contralateral reflex responses could be evoked in severely affected patients. The presence of contralateral responses correlated with the clinical motor impairment as assessed by the Fugl-Meyer test. The observations suggest that after stroke an impaired processing of afferent input from the affected side leads to a defective neural coupling and is associated with a greater involvement of fiber tracts from the unaffected hemisphere during cooperative hand movements. The mechanism of neural coupling underlying cooperative hand movements is shown to be defective in post-stroke patients. The neural re-organizations observed have consequences for the rehabilitation of hand function. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.
Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P
2014-03-01
Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.
Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-08-01
To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.
Guzmán-López, Jessica; Selvi, Aikaterini; Solà-Valls, Núria; Casanova-Molla, Jordi; Valls-Solé, Josep
2015-12-01
Modulation of spinal reflexes depends largely on the integrity of the corticospinal tract. A useful method to document the influence of descending tracts on reflexes is to examine the effects of transcranial magnetic stimulation (TMS) on the soleus H reflex elicited by posterior tibial nerve electrical stimuli (PTS). In 12 healthy volunteers, we investigated how postural or voluntary muscle contraction modified such descending modulation. We first characterized the effects of TMS at 95 % of motor threshold for leg responses on the H reflex elicited by a preceding PTS at inter-stimuli intervals (ISIs) between 0 and 120 ms at rest and, then, during voluntary plantar flexion (pf), dorsal flexion (df), and standing still (ss). During pf, there was an increase in the facilitation of the H reflex at ISIs 0-20 ms. During df, there were no effects of TMS on the H reflex. During ss, there was inhibition at ISIs 40-60 ms. Our observations suggest that muscle contraction prevails over the baseline effects of TMS on the soleus H reflex. While contraction of the antagonist (df) suppressed most of the effects, contraction of the agonist had different effects depending on the type of activity (pf or ss). The characterization of the interaction between descending corticospinal volleys and segmental peripheral inputs provides useful information on motor control for physiological research and further understanding of the effects of spinal cord lesions.
Yochum, Noëlle; Kochzius, Marc; Ampe, Bart; Tuyttens, Frank A. M.
2017-01-01
Scoring reflex responsiveness and injury of aquatic organisms has gained popularity as predictors of discard survival. Given this method relies upon the individual interpretation of scoring criteria, an evaluation of its robustness is done here to test whether protocol-instructed, multiple raters with diverse backgrounds (research scientist, technician, and student) are able to produce similar or the same reflex and injury score for one of the same flatfish (European plaice, Pleuronectes platessa) after experiencing commercial fishing stressors. Inter-rater reliability for three raters was assessed by using a 3-point categorical scale (‘absent’, ‘weak’, ‘strong’) and a tagged visual analogue continuous scale (tVAS, a 10 cm bar split in three labelled sections: 0 for ‘absent’, ‘weak’, ‘moderate’, and ‘strong’) for six reflex responses, and a 4-point scale for four injury types. Plaice (n = 304) were sampled from 17 research beam-trawl deployments during four trips. Fleiss kappa (categorical scores) and intra-class correlation coefficients (ICC, continuous scores) indicated variable inter-rater agreement by reflex type (ranging between 0.55 and 0.88, and 67% and 91% for Fleiss kappa and ICC, respectively), with least agreement among raters on extent of injury (Fleiss kappa between 0.08 and 0.27). Despite differences among raters, which did not significantly influence the relationship between impairment and predicted survival, combining categorical reflex and injury scores always produced a close relationship of such vitality indices and observed delayed mortality. The use of the continuous scale did not improve fit of these models compared with using the reflex impairment index based on categorical scores. Given these findings, we recommend using a 3-point categorical over a continuous scale. We also determined that training rather than experience of raters minimised inter-rater differences. Our results suggest that cost-efficient reflex impairment and injury scoring may be considered a robust technique to evaluate lethal stress and damage of this flatfish species on-board commercial beam-trawl vessels. PMID:28704390
Stable reflexive sheaves of degree zero on Calabi-Yau manifolds
NASA Astrophysics Data System (ADS)
Nakashima, Tohru
2017-11-01
We give sufficient conditions for the existence of μ-stable reflexive sheaves E on a Calabi-Yau threefold such that the first Chern classes c1(E) satisfy c1(E) ṡH2 = 0 for some ample line bundle H. We also prove a result concerning deformations to construct rank two μ-stable sheaves on arbitrary smooth projective varieties.
Brozoski, Thomas J; Bauer, Carol A
2016-08-01
Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or motivational manipulation, but its sensitivity, reliability, mechanism, and optimal implementation are incompletely understood. While to date animal models have significantly expanded the neuroscience of tinnitus, they have been limited to examining sensory features. In the human condition, emotional and cognitive factors are also important. It is not clear that the emotional features of tinnitus can be further understood using animal models, but models may be applied to examine cognitive factors. A recently developed model is described that reveals an interaction between tinnitus and auditory attention. This research suggests that effective tinnitus therapy could rely on modifying attention to the sensation rather than modifying the sensation itself. This article is part of a Special Issue entitled
Applegate, Jeffrey R; Dombrowski, Daniel S; Christian, Larry Shane; Bayer, Meredith P; Harms, Craig A; Lewbart, Gregory A
2016-12-01
The purple-spined sea urchin ( Arbacia punctulata ) is commonly found in shallow waters of the western Atlantic Ocean from the New England area of the United States to the Caribbean. Sea urchins play a major role in ocean ecology, echinoculture, and biomedical research. Additionally, sea urchins are commonly displayed in public aquaria. Baseline parameters were developed in unanesthetized urchins for righting reflex (time to regain oral recumbency) and spine response time to tactile stimulus. Tricaine methanesulfonate (MS-222) was used to sedate and anesthetize purple-spined sea urchins and assess sedation and anesthetic parameters, including adhesion to and release from a vertical surface, times to loss of response to tactile stimulus and recovery of righting reflex, and qualitative observations of induction of spawning and position of spines and pseudopodia. Sedation and anesthetic parameters were evaluated in 11 individuals in three circumstances: unaltered aquarium water for baseline behaviors, 0.4 g/L MS-222, and 0.8 g/L MS-222. Induction was defined as the release from a vertical surface with the loss of righting reflex, sedation as loss of righting reflex with retained tactile spine response, anesthesia as loss of righting reflex and loss of tactile spine response, and recovery as voluntary return to oral recumbency. MS-222 proved to be an effective sedative and anesthetic for the purple-spined sea urchin at 0.4 and 0.8 g/L, respectively. Sodium bicarbonate used to buffer MS-222 had no measurable sedative effects when used alone. Anesthesia was quickly reversed with transfer of each individual to anesthesia-free seawater, and no anesthetic-related mortality occurred. The parameters assessed in this study provide a baseline for sea urchin anesthesia and may provide helpful comparisons to similar species and populations that are in need of anesthesia for surgical procedures or research.
McLean, Montana F.; Hanson, Kyle C.; Cooke, Steven J.; Hinch, Scott G.; Patterson, David A.; Nettles, Taylor L.; Litvak, Matt K.; Crossin, Glenn T.
2016-01-01
White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations. PMID:27766153
Comparison of aortic and carotid baroreflex stimulus-response characteristics in humans
NASA Technical Reports Server (NTRS)
Smith, S. A.; Querry, R. G.; Fadel, P. J.; Weiss, M. W.; Olivencia-Yurvati, A.; Shi, X.; Raven, P. B.
2001-01-01
In order to characterize the stimulus-response relationships of the arterial, aortic, and carotid baroreflexes in mediating cardiac chronotropic function, we measured heart rate (HR) responses elicited by acute changes in mean arterial pressure (MAP) and carotid sinus pressure (CSP) in 11 healthy individuals. Arterial (aortic + carotid) baroreflex control of HR was quantified using ramped changes in MAP induced by bolus injection of phenylephrine (PE) and sodium nitroprusside (SN). To assess aortic-cardiac responses, neck pressure (NP) and suction (NS) were applied during PE and SN administration, respectively, to counter alterations in CSP thereby isolating the aortic baroreflex. Graded levels of NP and NS were delivered to the carotid sinus using a customized neck collar device to assess the carotid-cardiac baroreflex, independent of drug infusion. The operating characteristics of each reflex were determined from the logistic function of the elicited HR response to the induced change in MAP. The arterial pressures at which the threshold was located on the stimulus-response curves determined for the arterial, aortic and carotid baroreflexes were not significantly different (72+/-4, 67+/-3, and 72+/-4 mm Hg, respectively, P > 0.05). Similarly, the MAP at which the saturation of the reflex responses were elicited did not differ among the baroreflex arcs examined (98+/-3, 99+/-2, and 102+/-3 mm Hg, respectively). These data suggest that the baroreceptor populations studied operate over the same range of arterial pressures. This finding indicates each baroreflex functions as both an important anti-hypotensive and anti-hypertensive mechanism. In addition, this investigation describes a model of aortic baroreflex function in normal healthy humans, which may prove useful in identifying the origin of baroreflex dysfunction in disease- and training-induced conditions.
LeMoyne, Robert; Mastroianni, Timothy
2015-01-01
Smartphones and portable media devices are both equipped with sensor components, such as accelerometers. A software application enables these devices to function as a robust wireless accelerometer platform. The recorded accelerometer waveform can be transmitted wireless as an e-mail attachment through connectivity to the Internet. The implication of such devices as a wireless accelerometer platform is the experimental and post-processing locations can be placed anywhere in the world. Gait was quantified by mounting a smartphone or portable media device proximal to the lateral malleolus of the ankle joint. Attributes of the gait cycle were quantified with a considerable accuracy and reliability. The patellar tendon reflex response was quantified by using the device in tandem with a potential energy impact pendulum to evoke the patellar tendon reflex. The acceleration waveform maximum acceleration feature of the reflex response displayed considerable accuracy and reliability. By mounting the smartphone or portable media device to the dorsum of the hand through a glove, Parkinson's disease hand tremor was quantified and contrasted with significance to a non-Parkinson's disease steady hand control. With the methods advocated in this chapter, any aspect of human movement may be quantified through smartphones or portable media devices and post-processed anywhere in the world. These wearable devices are anticipated to substantially impact the biomedical and healthcare industry.
Effect of betel nut chewing on the otolithic reflex system.
Lin, Chuan-Yi; Young, Yi-Ho
2017-01-01
This study investigated the effect of betel nut chewing on the otolithic reflex system. Seventeen healthy volunteers without any experience of chewing betel nut (fresh chewers) and 17 habitual chewers underwent vital sign measurements, ocular vestibular-evoked myogenic potential (oVEMP), and cervical VEMP (cVEMP) tests prior to the study. Each subject then chewed two pieces of betel nut for 2min (dosing). The same paradigm was repeated immediately, 10min, and 20min after chewing. On a different day, 10 fresh chewers masticated chewing gum as control. Fresh chewers exhibited significantly decreased response rates of oVEMP (53%) and cVEMP (71%) after dosing compared with those from the predosing period. These abnormal VEMPs returned to normal 20min after dosing. In contrast, 100% response rates of oVEMP and cVEMP were observed before and after masticating chewing gum. In habitual chewers, the response rates of oVEMP and cVEMP were 32% and 29%, respectively, 20min after dosing. Chewing betel nuts induced a transient loss of the otolithic reflexes in fresh chewers but may cause permanent loss in habitual chewers. Chewing betel nuts can cause a loss of otholitic reflex function. This creates a risk for disturbed balance and malfunction, for instance, during driving. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Subspace methods for identification of human ankle joint stiffness.
Zhao, Y; Westwick, D T; Kearney, R E
2011-11-01
Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.
Motor neurons in Drosophila flight control: could b1 be the one?
NASA Astrophysics Data System (ADS)
Whitehead, Samuel; Shirangi, Troy; Cohen, Itai
Similar to balancing a stick on one's fingertip, flapping flight is inherently unstable; maintaining stability is a delicate balancing act made possible only by near-constant, often-subtle corrective actions. For fruit flies, such corrective responses need not only be robust, but also fast: the Drosophila flight control reflex has a response latency time of ~5 ms, ranking it among the fastest reflexes in the animal kingdom. How is such rapid, robust control implemented physiologically? Here we present an analysis of a putatively crucial component of the Drosophila flight control circuit: the b1 motor neuron. Specifically, we apply mechanical perturbations to freely-flying Drosophila and analyze the differences in kinematics patterns between flies with manipulated and un-manipulated b1 motor neurons. Ultimately, we hope to identify the functional role of b1 in flight stabilization, with the aim of linking it to previously-proposed, reduced-order models for reflexive control.
Subjective and physiological reactivity to chocolate images in high and low chocolate cravers.
Rodríguez, Sonia; Fernández, María Carmen; Cepeda-Benito, Antonio; Vila, Jaime
2005-09-01
Cue-reactivity to chocolate images was assessed using self-report and physiological measures. From a pre-screening sample of 454, young women were selected and assigned to high and low chocolate craving groups (N = 36/group). The experimental procedure consisted in the elicitation and measurement of the cardiac defense and startle reflexes while viewing chocolate and standard affective images selected from the International Affective Picture System. In response to chocolate images, high cravers reported more pleasure and arousal but less control than low cravers. In high cravers, viewing chocolate images inhibited the cardiac defense but potentiated the startle reflex, as compared to low cravers. The results confirmed at the physiological level that the motivational state that underlies the experience of chocolate craving include both appetitive (inhibition of the defense reflex) and aversive (potentiation of the startle response) components. The findings supported a motivational conflict theory of chocolate craving.
Emergency braking is affected by the use of cruise control.
Jammes, Yves; Behr, Michel; Llari, Maxime; Bonicel, Sarah; Weber, Jean Paul; Berdah, Stephane
2017-08-18
We compared the differences in the braking response to vehicle collision between an active human emergency braking (control condition) and cruise control (CC) or adaptive cruise control (ACC). In 11 male subjects, age 22 to 67 years, we measured the active emergency braking response during manual driving using the accelerator pedal (control condition) or in condition mimicking CC or ACC. In both conditions, we measured the brake reaction time (BRT), delay to produce the peak braking force (PBD), total emergency braking response (BRT + PBD), and peak braking force (PBF). Electromyograms of leg and thigh muscles were recorded during braking. The tonic vibratory response (TVR), Hoffman reflex (HR), and M-waves were recorded in leg muscles to explore the change in sensorimotor control. No difference in PBF, TVR amplitude, HR latency, and H max /M max ratio were found between the control and CC/ACC conditions. On the other hand, BRT and PBD were significantly lengthened in the CC/ACC condition (240 ± 13 ms and 704 ± 70 ms, respectively) compared to control (183 ± 7 ms and 568 ± 36 ms, respectively). BRT increased with the age of participants and the driving experience shortened PBD and increased PBF. In male subjects, driving in a CC/ACC condition significantly delays the active emergency braking response to vehicle collision. This could result from higher amplitude of leg motion in the CC/ACC condition and/or by the age-related changes in motor control. Car and truck drivers must take account of the significant increase in the braking distance in a CC/ACC condition.
ERIC Educational Resources Information Center
Fataar, A.
2010-01-01
This article is a discussion of the educational being and becoming of university students. It focuses on the reflexive adaptations of a group of teacher education students at a South African university. I consider some key processes related to their formal epistemological induction into their professional becoming as teachers. Based on a…
Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy.
Willemze, Rose A; Luyer, Misha D; Buurman, Wim A; de Jonge, Wouter J
2015-06-01
Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes. Sympathetic immune modulation and reflexes are well described, and in the past decade the parasympathetic efferent vagus nerve has been added to this immune-regulation network. This system, designated 'the inflammatory reflex', comprises an afferent arm that senses inflammation and an efferent arm that inhibits innate immune responses. Intervention in this system as an innovative principle is currently being tested in pioneering trials of vagus nerve stimulation using implantable devices to treat IBD. Patients benefit from this treatment, but some of the working mechanisms remain to be established, for instance, treatment is effective despite the vagus nerve not always directly innervating the inflamed tissue. In this Review, we will focus on the direct neuronal regulatory mechanisms of immunity in the intestine, taking into account current advances regarding the innervation of the spleen and lymphoid organs, with a focus on the potential for treatment in IBD and other gastrointestinal pathologies.
Chen, Siyuan; Epps, Julien; Chen, Fang
2013-01-01
Using the task-evoked pupillary response (TEPR) to index cognitive load can contribute significantly to the assessment of memory function and cognitive skills in patients. However, the measurement of pupillary response is currently limited to a well-controlled lab environment due to light reflex and also relies heavily on expensive video-based eye trackers. Furthermore, commercial eye trackers are usually dedicated to gaze direction measurement, and their calibration procedure and computing resource are largely redundant for pupil-based cognitive load measurement (PCLM). In this study, we investigate the validity of cognitive load measurement with (i) pupil light reflex in a less controlled luminance background; (ii) a low-cost infrared (IR) webcam for the TEPR in a controlled luminance background. ANOVA results show that with an appropriate baseline selection and subtraction, the light reflex is significantly reduced, suggesting the possibility of less constrained practical applications of PCLM. Compared with the TEPR from a commercial remote eye tracker, a low-cost IR webcam achieved a similar TEPR pattern and no significant difference was found between the two devices in terms of cognitive load measurement across five induced load levels.
Tsang, Kenneth; de Bruin, Hubert; Archambeault, Mark
2008-01-01
Although most muscle spindle investigations have used the cat model and invasive measurement techniques, several investigators have used microneurography to record from the Ia and II fibres in humans during tendon vibration. In these studies the muscle spindle primary endings are stimulated using transverse vibration of the tendon at reflex sub-threshold amplitudes. Others have used low amplitude vibration and the stretch evoked M-wave response to determine reflex properties during both agonist and antagonist voluntary contractions. In the past we have developed a PC based instrument that uses Labview and a linear servomotor to study tendon reflex properties by recording stretch evoked M-wave responses from single tendon taps or electrical stimuli to the afferent nerve. In this paper we describe a further development of this system to provide precise vibrations of the tendon up to 65 Hz with amplitudes up to 4 mm. The resultant M-wave train is extracted from background noise via phase coherent subtractive filtering. Test results from vibrating the human distal flexor carpi radialis tendon at 10 and 30 Hz, for relaxed, slight flexion and slight extension, are also presented.
Vitton, V; Grimaud, J-C; Bouvier, M; Abysique, A
2006-11-01
A pontine centre located near the micturition centre controlling external anal sphincter (EAS) motility via noradrenergic neurones has been described in cats. The aim of this study was to determine (i) whether a similar centre controls EAS motility in humans and (ii) whether this centre is involved in vesico-sphincteric reflexes in cats and humans. The effects of an alpha-1-adrenoceptor antagonist (nicergoline) and those of vesical distension on the electrical activity of the EAS were studied in paraplegic and non-paraplegic volunteers. The effects of vesical distension by injecting saline at physiological levels on the responses of the EAS to pudendal nerve stimulation were investigated in intact cats and cats with nerve sections. In non-paraplegic subjects, nicergoline and vesical distension abolished the activity of the EAS. These effects were no longer observed in paraplegic patients. In cats, vesical distension inhibited the reflex response of the EAS to pudendal nerve stimulation. This vesico-sphincteric reflex, which was no longer observed in spinal animals, persisted after nicergoline injection. These findings indicate that in humans, there exists a supra-spinal centre facilitating the tonic activity of the EAS via noradrenergic neurones not involved in the inhibitory vesico-sphincteric reflex.
Reflexive composites: self-healing composite structures
NASA Astrophysics Data System (ADS)
Margraf, Thomas W., Jr.; Barnell, Thomas J.; Havens, Ernie; Hemmelgarn, Christopher D.
2008-03-01
Cornerstone Research Group Inc. has developed reflexive composites achieving increased vehicle survivability through integrated structural awareness and responsiveness to damage. Reflexive composites can sense damage through integrated piezoelectric sensing networks and respond to damage by heating discrete locations to activate the healable polymer matrix in areas of damage. The polymer matrix is a modified thermoset shape memory polymer that heals based on phenomena known as reptation. In theory, the reptation healing phenomena should occur in microseconds; however, during experimentation, it has been observed that to maximize healing and restore up to 85 % of mechanical properties a healing cycle of at least three minutes is required. This paper will focus on work conducted to determine the healing mechanisms at work in CRG's reflexive composites, the optimal healing cycles, and an explanation of the difference between the reptation model and actual healing times.
Cerebellar interaction with the acoustic reflex.
Jastreboff, P J
1981-01-01
The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.
Wine, Jeffrey J.
2007-01-01
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences. Introduction and overviewProtecting the Airways: mucus and submucosal glands.The airway intrinsic nervous system: a special role in innate defense?Innate defense: prophylactic secretion and local responses.Acute ‘Emergency’ airway defense reflexesAirway receptors: Improved methods reveal greater diversityHijacking emergency defense for innate defense: receptor plasticity and airways sensitization.Conclusion: Implications for cystic fibrosis and lung transplantation. PMID:17350348
The second modern condition? Compressed modernity as internalized reflexive cosmopolitization.
Kyung-Sup, Chang
2010-09-01
Compressed modernity is a civilizational condition in which economic, political, social and/or cultural changes occur in an extremely condensed manner in respect to both time and space, and in which the dynamic coexistence of mutually disparate historical and social elements leads to the construction and reconstruction of a highly complex and fluid social system. During what Beck considers the second modern stage of humanity, every society reflexively internalizes cosmopolitanized risks. Societies (or their civilizational conditions) are thereby being internalized into each other, making compressed modernity a universal feature of contemporary societies. This paper theoretically discusses compressed modernity as nationally ramified from reflexive cosmopolitization, and, then, comparatively illustrates varying instances of compressed modernity in advanced capitalist societies, un(der)developed capitalist societies, and system transition societies. In lieu of a conclusion, I point out the declining status of national societies as the dominant unit of (compressed) modernity and the interactive acceleration of compressed modernity among different levels of human life ranging from individuals to the global community. © London School of Economics and Political Science 2010.
Temporal order judgments are disrupted more by reflexive than by voluntary saccades.
Yabe, Yoshiko; Goodale, Melvyn A; Shigemasu, Hiroaki
2014-05-01
We do not always perceive the sequence of events as they actually unfold. For example, when two events occur before a rapid eye movement (saccade), the interval between them is often perceived as shorter than it really is and the order of those events can be sometimes reversed (Morrone MC, Ross J, Burr DC. Nat Neurosci 8: 950-954, 2005). In the present article we show that these misperceptions of the temporal order of events critically depend on whether the saccade is reflexive or voluntary. In the first experiment, participants judged the temporal order of two visual stimuli that were presented one after the other just before a reflexive or voluntary saccadic eye movement. In the reflexive saccade condition, participants moved their eyes to a target that suddenly appeared. In the voluntary saccade condition, participants moved their eyes to a target that was present already. Similarly to the above-cited study, we found that the temporal order of events was often misjudged just before a reflexive saccade to a suddenly appearing target. However, when people made a voluntary saccade to a target that was already present, there was a significant reduction in the probability of misjudging the temporal order of the same events. In the second experiment, the reduction was seen in a memory-delay task. It is likely that the nature of the motor command and its origin determine how time is perceived during the moments preceding the motor act. Copyright © 2014 the American Physiological Society.
Gravity and Neuronal Adaptation. Neurophysiology of Reflexes from Hypo- to Hypergravity Conditions
NASA Astrophysics Data System (ADS)
Ritzmann, Ramona; Krause, Anne; Freyler, Kathrin; Gollhofer, Albert
2017-02-01
Introduction: For interplanetary and orbital missions in human space flight, knowledge about the gravity-sensitivity of the central nervous system (CNS) is required. The objective of this study was to assess neurophysiological correlates in variable hetero gravity conditions in regard to their timing and shaping. Methods: In ten subjects, peripheral nerve stimulation was used to elicit H-reflexes and M-waves in the M. soleus in Lunar, Martian, Earth and hypergravity. Gravity-dependencies were described by means of reflex latency, inter-peak-interval, duration, stimulation threshold and maximal amplitudes. Experiments were executed during the CNES/ESA/DLR JEPPFs. Results: H-reflex latency, inter-peak-interval and duration decreased with increasing gravitation (P<0.05); likewise, M-wave inter-peak-interval was diminished and latency prolonged with increasing gravity (P<0.05). Stimulation threshold of H-reflexes and M-waves decreased (P<0.05) while maximal amplitudes increased with an increase in gravitation (P<0.05). Conclusion: Adaptations in neurophysiological correlates in hetero gravity are associated with a shift in timing and shaping. For the first time, our results indicate that synaptic and axonal nerve conduction velocity as well as axonal and spinal excitability are diminished with reduced gravitational forces on the Moon and Mars and gradually increased when gravitation is progressively augmented up to hypergravity. Interrelated with the adaptation in threshold we conclude that neuronal circuitries are significantly affected by gravitation. As a consequence, movement control and countermeasures may be biased in extended space missions involving transitions between different force environments.
Reflex regulation during sustained and intermittent submaximal contractions in humans
Duchateau, Jacques; Balestra, Costantino; Carpentier, Alain; Hainaut, Karl
2002-01-01
To investigate whether the intensity and duration of a sustained contraction influences reflex regulation, we compared sustained fatiguing contractions at 25 % and 50 % of maximal voluntary contraction (MVC) force in the human abductor pollicis brevis (APB) muscle. Because the activation of motoneurones during fatigue may be reflexively controlled by the metabolic status of the muscle, we also compared reflex activities during sustained and intermittent (6 s contraction, 4 s rest) contractions at 25 % MVC for an identical duration. The short-latency Hoffmann(H) reflex and the long-latency reflex (LLR) were recorded during voluntary contractions, before, during and after the fatigue tests, with each response normalised to the compound muscle action potential (M-wave). The results showed that fatigue during sustained contractions was inversely related to the intensity, and hence the duration, of the effort. The MVC force and associated surface electromyogram (EMG) declined by 26.2 % and 35.2 %, respectively, after the sustained contraction at 50 % MVC, and by 34.2 % and 44.2 % after the sustained contraction at 25 % MVC. Although the average EMG increased progressively with time during the two sustained fatiguing contractions, the amplitudes of the H and LLR reflexes decreased significantly. Combined with previous data (Duchateau & Hainaut, 1993), the results show that the effect on the H reflex is independent of the intensity of the sustained contraction, whereas the decline in the LLR is closely related to the duration of the contraction. Because there were no changes in the intermittent test at 25 % MVC, the results indicate that the net excitatory spinal and supraspinal reflex-mediated input to the motoneurone pool is reduced. This decline in excitation to the motoneurones, however, can be temporarily compensated by an enhancement of the central drive. PMID:12068054
Conte, Antonella; Bettolo, Chiara Marini; Onesti, Emanuela; Frasca, Vittorio; Iacovelli, Elisa; Gilio, Francesca; Giacomelli, Elena; Gabriele, Maria; Aragona, Massimiliano; Tomassini, Valentina; Pantano, Patrizia; Pozzilli, Carlo; Inghilleri, Maurizio
2009-05-01
Although clinical studies show that cannabinoids improve central pain in patients with multiple sclerosis (MS) neurophysiological studies are lacking to investigate whether they also suppress these patients' electrophysiological responses to noxious stimulation. The flexion reflex (FR) in humans is a widely used technique for assessing the pain threshold and for studying spinal and supraspinal pain pathways and the neurotransmitter system involved in pain control. In a randomized, double-blind, placebo-controlled, cross-over study we investigated cannabinoid-induced changes in RIII reflex variables (threshold, latency and area) in a group of 18 patients with secondary progressive MS. To investigate whether cannabinoids act indirectly on the nociceptive reflex by modulating lower motoneuron excitability we also evaluated the H-reflex size after tibial nerve stimulation and calculated the H wave/M wave (H/M) ratio. Of the 18 patients recruited and randomized 17 completed the study. After patients used a commercial delta-9-tetrahydrocannabinol (THC) and cannabidiol mixture as an oromucosal spray the RIII reflex threshold increased and RIII reflex area decreased. The visual analogue scale score for pain also decreased, though not significantly. Conversely, the H/M ratio measured before patients received cannabinoids remained unchanged after therapy. In conclusion, the cannabinoid-induced changes in the RIII reflex threshold and area in patients with MS provide objective neurophysiological evidence that cannabinoids modulate the nociceptive system in patients with MS.
Bertolini, Giovanni; Ramat, Stefano; Bockisch, Christopher J.; Marti, Sarah; Straumann, Dominik; Palla, Antonella
2012-01-01
Background The rotational vestibulo-ocular reflex (rVOR) generates compensatory eye movements in response to rotational head accelerations. The velocity-storage mechanism (VSM), which is controlled by the vestibulo-cerebellar nodulus and uvula, determines the rVOR time constant. In healthy subjects, it has been suggested that self-motion perception in response to earth-vertical axis rotations depends on the VSM in a similar way as reflexive eye movements. We aimed at further investigating this hypothesis and speculated that if the rVOR and rotational self-motion perception share a common VSM, alteration in the latter, such as those occurring after a loss of the regulatory control by vestibulo-cerebellar structures, would result in similar reflexive and perceptual response changes. We therefore set out to explore both responses in patients with vestibulo-cerebellar degeneration. Methodology/Principal Findings Reflexive eye movements and perceived rotational velocity were simultaneously recorded in 14 patients with chronic vestibulo-cerebellar degeneration (28–81yrs) and 12 age-matched healthy subjects (30–72yrs) after the sudden deceleration (90°/s2) from constant-velocity (90°/s) rotations about the earth-vertical yaw and pitch axes. rVOR and perceived rotational velocity data were analyzed using a two-exponential model with a direct pathway, representing semicircular canal activity, and an indirect pathway, implementing the VSM. We found that VSM time constants of rVOR and perceived rotational velocity co-varied in cerebellar patients and in healthy controls (Pearson correlation coefficient for yaw 0.95; for pitch 0.93, p<0.01). When constraining model parameters to use the same VSM time constant for rVOR and perceived rotational velocity, moreover, no significant deterioration of the quality of fit was found for both populations (variance-accounted-for >0.8). Conclusions/Significance Our results confirm that self-motion perception in response to rotational velocity-steps may be controlled by the same velocity storage network that controls reflexive eye movements and that no additional, e.g. cortical, mechanisms are required to explain perceptual dynamics. PMID:22719833
Capriotti, Matthew R; Brandt, Bryan C; Ricketts, Emily J; Espil, Flint M; Woods, Douglas W
2012-01-01
Tics are rapid, repetitive, stereotyped movements or vocalizations that arise from neurobiological dysfunction and are influenced by environmental factors. Although persons with tic disorders often experience aversive social reactions in response to tics, little is known about the behavioral effects of such consequences. Along several dimensions, the present study compared the effects of two treatments on tics: response cost (RC) and differential reinforcement of other behavior (DRO). Four children with Tourette syndrome were exposed to free-to-tic baseline, DRO, RC, and quasibaseline rebound evaluation conditions using an alternating treatments design. Both DRO and RC produced substantial decreases in tics from baseline levels. No differential effects of DRO and RC contingencies were seen on self-reported stress or in the strength of the reflexive motivating operation (i.e., premonitory urge) believed to trigger tics, and neither condition produced tic-rebound effects. Implications of these findings and directions for future research are discussed.
Capriotti, Matthew R; Brandt, Bryan C; Ricketts, Emily J; Espil, Flint M; Woods, Douglas W
2012-01-01
Tics are rapid, repetitive, stereotyped movements or vocalizations that arise from neurobiological dysfunction and are influenced by environmental factors. Although persons with tic disorders often experience aversive social reactions in response to tics, little is known about the behavioral effects of such consequences. Along several dimensions, the present study compared the effects of two treatments on tics: response cost (RC) and differential reinforcement of other behavior (DRO). Four children with Tourette syndrome were exposed to free-to-tic baseline, DRO, RC, and quasibaseline rebound evaluation conditions using an alternating treatments design. Both DRO and RC produced substantial decreases in tics from baseline levels. No differential effects of DRO and RC contingencies were seen on self-reported stress or in the strength of the reflexive motivating operation (i.e., premonitory urge) believed to trigger tics, and neither condition produced tic-rebound effects. Implications of these findings and directions for future research are discussed. PMID:22844135
The capsaicin cough reflex in eczema patients with respiratory symptoms elicited by perfume.
Elberling, Jesper; Dirksen, Asger; Johansen, Jeanne Duus; Mosbech, Holger
2006-03-01
Respiratory symptoms elicited by perfume are common in the population but have unclear pathophysiology. Increased capsaicin cough responsiveness has been associated with the symptoms, but it is unknown whether the site of the symptoms in the airways influences this association. The aim of this study was to investigate the association between the site of airway symptoms elicited by perfume and cough responsiveness to bronchial challenge with capsaicin. 21 eczema patients with respiratory symptoms elicited by perfume were compared with 21 healthy volunteers in a sex- and age-matched case control study. The participants completed a symptom questionnaire and underwent a bronchial challenge with capsaicin. Lower, but not upper, respiratory symptoms elicited by perfume were associated with increased capsaicin cough responsiveness. Having severe symptoms to perfume (n=11) did not relate to the site of the symptoms in the airways and was not associated with increased capsaicin cough responsiveness. In conclusion, respiratory symptoms elicited by perfume may reflect local hyperreactivity related to defensive reflexes in the airways, and measurements of the capsaicin cough reflex are relevant when patients with lower respiratory symptoms related to environmental perfume exposures are investigated.
Diurnal variation in the diving bradycardia response in young men.
Konishi, Masayuki; Kawano, Hiroshi; Xiang, Mi; Kim, Hyeon-Ki; Ando, Karina; Tabata, Hiroki; Nishimaki, Mio; Sakamoto, Shizuo
2016-04-01
The present study aimed to examine diurnal variation of the diving bradycardia responses on the same day. Eighteen young men (age 26 ± 2 years; height 174.2 ± 6.0 cm; body mass 70.2 ± 8.1 kg; body fat 18.0 ± 3.8 %; mean ± standard deviation) participated in this study. Oral temperature, heart rate variability (HRV) from 5-min of electrocardiogram data, and diving bradycardia responses were measured at 0900, 1300, and 1700 hours daily. All participants performed diving reflex tests twice in the sitting position with the face immersed in cold water (1.9-3.1 °C) and apnea at midinspiration for a minimum of 30 s and as long as possible, in consecutive order. Oral temperature was found to be less in the morning (0900) than in the afternoon (1300) and evening (1700). In the frequency domain parameters of heart rate variability, the natural logarithms of high-frequency power were higher in the morning than in the evening. All participants showed bradycardia response to the two diving reflex tests. The peak values of R-R interval during the diving reflex test both for as long as possible and 30 s were longer in the morning than in the afternoon and evening. Our results indicated that the maximal bradycardia during the diving reflex test exhibits a diurnal variation, with peak levels at morning and gradual decrease towards the evening. The HRV indexes show the same variation.
Hayes, Don; Collins, Paul B; Khosravi, Mehdi; Lin, Ruei-Lung; Lee, Lu-Yuan
2012-06-01
Hyperventilation of hot humid air induces transient bronchoconstriction in patients with asthma; the underlying mechanism is not known. Recent studies showed that an increase in temperature activates vagal bronchopulmonary C-fiber sensory nerves, which upon activation can elicit reflex bronchoconstriction. This study was designed to test the hypothesis that the bronchoconstriction induced by increasing airway temperature in patients with asthma is mediated through cholinergic reflex resulting from activation of these airway sensory nerves. Specific airway resistance (SR(aw)) and pulmonary function were measured to determine the airway responses to isocapnic hyperventilation of humidified air at hot (49°C; HA) and room temperature (20-22°C; RA) for 4 minutes in six patients with mild asthma and six healthy subjects. A double-blind design was used to compare the effects between pretreatments with ipratropium bromide and placebo aerosols on the airway responses to HA challenge in these patients. SR(aw) increased by 112% immediately after hyperventilation of HA and by only 38% after RA in patients with asthma. Breathing HA, but not RA, triggered coughs in these patients. In contrast, hyperventilation of HA did not cause cough and increased SR(aw) by only 22% in healthy subjects; there was no difference between their SR(aw) responses to HA and RA challenges. More importantly, pretreatment with ipratropium completely prevented the HA-induced bronchoconstriction in patients with asthma. Bronchoconstriction induced by increasing airway temperature in patients with asthma is mediated through the cholinergic reflex pathway. The concomitant increase in cough response further indicates an involvement of airway sensory nerves, presumably the thermosensitive C-fiber afferents.
Role of the middle ear muscle apparatus in mechanisms of speech signal discrimination
NASA Technical Reports Server (NTRS)
Moroz, B. S.; Bazarov, V. G.; Sachenko, S. V.
1980-01-01
A method of impedance reflexometry was used to examine 101 students with hearing impairment in order to clarify the interrelation between speech discrimination and the state of the middle ear muscles. Ability to discriminate speech signals depends to some extent on the functional state of intraaural muscles. Speech discrimination was greatly impaired in the absence of stapedial muscle acoustic reflex, in the presence of low thresholds of stimulation and in very small values of reflex amplitude increase. Discrimination was not impeded in positive AR, high values of relative thresholds and normal increase of reflex amplitude in response to speech signals with augmenting intensity.
Kilimov, N
1977-09-01
We examined a 31 year-old female patient who, since her first year of life and following a parotis operation, had suffered from left-sided Bell's palsy. The electromyographical examinations disclosed a complete loss of voluntary muscle control and of the trigemino-facial reflexes, although the direct responses of the facial nerve could be demonstrated with delayed latences. The findings indicated peripheral regeneration of the facial nerve with absence of central programming and reflex pathways. By means of rhythmic muscle stimulation, voluntary control and reflex excitability was re-established, to a limited extent, on the formerly inactive side within a short space of time.
Patterning of somatosympathetic reflexes
NASA Technical Reports Server (NTRS)
Kerman, I. A.; Yates, B. J.
1999-01-01
In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.
Cionni, Robert J.; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-01-01
Purpose To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. Methods This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Results Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. Conclusions The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. Translational Relevance This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery. PMID:26290778
Contribution of the maculo-ocular reflex to gaze stability in the rabbit.
Pettorossi, V E; Errico, P; Santarelli, R M
1991-01-01
The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)
Facilitation of the flexor reflex in the cat by intrathecal injection of catecholamines
Dhawan, B. N.; Sharma, J. N.
1970-01-01
1. Effects of some α- and β-adrenoceptor stimulants and antagonists were investigated on flexor reflex (FR) in chloralosed cats. 2. Noradrenaline (NA) produced facilitation of FR which was dose-dependent and reproducible and was blocked by α-adrenoceptor blocking agents. 3. Strychnine also produced facilitation of FR but the response was unaffected by α-adrenoceptor blocking agents. 4. Metaraminol and α-methyl-noradrenaline had little effect on FR but blocked the NA response. 5. β-adrenoceptor stimulants and antagonists had neither any effect on FR nor modified the NA response. 6. Vasopressin and histamine also failed to modify FR. 7. Possibility of α-adrenoceptors in the neurones integrating FR is suggested. PMID:4395376
Retrieval and Encoding Interference: Cross-Linguistic Evidence from Anaphor Processing
Laurinavichyute, Anna; Jäger, Lena A.; Akinina, Yulia; Roß, Jennifer; Dragoy, Olga
2017-01-01
The main goal of this paper was to disentangle encoding and retrieval interference effects in anaphor processing and thus to evaluate the hypothesis predicting that structurally inaccessible nouns (distractors) are not considered to be potential anaphor antecedents during language processing (Nicol and Swinney, 1989). Three self-paced reading experiments were conducted: one in German, comparing gender-unmarked reflexives and gender-marked pronouns, and two in Russian, comparing gender-marked and -unmarked reflexives. In the German experiment, no interference effects were found. In the first experiment in Russian, an unexpected reading times pattern emerged: in the condition where the distractor matched the gender of the reflexive's antecedent, reading of the gender-unmarked, but not the gender-marked reflexives was slowed down. The same reading times pattern was replicated in a second experiment in Russian where the order of the reflexive and the main verb was inverted. We conclude that the results of the two experiments in Russian are inconsistent with the retrieval interference account, but can be explained by encoding interference and additional semantic processing efforts associated with the processing of gender-marked reflexives. In sum, we found no evidence that would allow us to reject the syntax as an early filer account (Nicol and Swinney, 1989). PMID:28649216
Kofler, Markus; Stetkarova, Ivana; Stokic, Dobrivoje S.
2010-01-01
Electromyographic (EMG) activity from voluntarily contracting hand muscles undergoes transient suppression following nociceptive fingertip stimulation. This suppression is mediated by a spinal inhibitory reflex designated the cutaneous silent period (CSP). The CSP is abolished or altered in a variety of myelopathic conditions. However, before the CSP can gain acceptance as an aid in the diagnosis of myelopathy, the contribution of non-myelopathic conditions that can interrupt the afferent pathways responsible for the CSP needs to be considered. Accordingly, we examined the effect of radiculopathy on the CSP. Nociceptive stimulation was applied to thumb (C6 dermatome), middle (C7) and little (C8) fingers of 23 patients with cervical radiculopathy. Four or more CSP responses were recorded in abductor pollicis brevis muscle following digital stimulation. The patients had C6 (n = 10), C7 (n = 7), or C8 (n = 6) radiculopathy documented by EMG. A complete CSP was elicited in 21 of 23 patients with comparable latencies and durations irrespective of digit stimulated. We conclude that the CSP is preserved in radiculopathy, probably because afferent impulses are carried by smaller, slower conducting ‘injury-resistant’ A-delta fibers. These results provide important missing evidence that ensures specificity of CSP alterations in the diagnosis of cervical myelopathy. The finding that the CSP is spared in radiculopathy should open the door for investigators and clinicians to adopt this simple spinal inhibitory reflex as a physiologic aid in the diagnosis of spinal cord dysfunction. PMID:21132557
Burke, S L; Dorward, P K; Korner, P I
1986-09-01
In both anaesthetized and conscious rabbits, perivascular balloon inflations slowly raised or lowered mean arterial pressure (M.A.P.), at 1-2 mmHg/s, from resting to various plateau pressures. Deflations then returned the M.A.P. to resting. 'Steady-state' curves relating M.A.P. to unitary aortic baroreceptor firing, integrated aortic nerve activity and heart rate were derived during the primary and return pressure changes and they formed typical hysteresis loops. In single units, return M.A.P.-frequency curves were shifted in the same direction as the primary pressure changes by an average 0.37 mmHg per mmHg change in M.A.P. Shifts were linearly related to the changes in M.A.P. between resting and plateau levels for all pressure rises and for falls less than 30 mmHg. They were established within 30 s and were quantitatively similar to the rapid resetting of baroreceptor function curves found 15 min-2 h after a change in resting M.A.P. (Dorward, Andresen, Burke, Oliver & Korner, 1982). Unit threshold pressures were shifted within 20 s to the same extent as the over-all curve shift to which they contributed. In the whole aortic nerve, return M.A.P.-integrated activity curves were shifted to same degree as unit function curves in both anaesthetized and conscious rabbits. Simultaneous shifts of return reflex M.A.P.-heart rate curves were also seen in conscious rabbits within 30 s. During M.A.P. falls, receptor and reflex hysteresis was similar, but during M.A.P. rises, reflex shifts were double baroreceptor shifts, suggesting the involvement of other pressure-sensitive receptors. We conclude that hysteresis shifts in baroreceptor function curves, which follow the reversal of slow ramp changes in blood pressure are a form of rapid resetting. They are accompanied by rapid resetting of reflex heart rate responses. We regard this as an important mechanism in blood pressure control which produces relatively high-gain reflex responses, during slow directional pressure changes, over a wider range of absolute pressure levels than would otherwise be possible.
Sundin, L; Turesson, J; Taylor, E W
2003-03-01
Glutamate is a major neurotransmitter of chemoreceptor and baroreceptor afferent pathways in mammals and therefore plays a central role in the development of cardiorespiratory reflexes. In fish, the gills are the major sites of these receptors, and, consequently, the terminal field (sensory area) of their afferents (glossopharyngus and vagus) in the medulla must be an important site for the integration of chemoreceptor and baroreceptor signals. This investigation explored whether fish have glutamatergic mechanisms in the vagal sensory area (Xs) that could be involved in the generation of cardiorespiratory reflexes. The locations of the vagal sensory and motor (Xm) areas in the medulla were established by the orthograde and retrograde axonal transport of the neural tract tracer Fast Blue following its injection into the ganglion nodosum. Glutamate was then microinjected into identified sites within the Xs in an attempt to mimic chemoreceptor- and baroreceptor-induced reflexes commonly observed in fish. By necessity, the brain injections were performed on anaesthetised animals that were fixed by 'eye bars' in a recirculating water system. Blood pressure and heart rate were measured using an arterial cannula positioned in the afferent branchial artery of the 3rd gill arch, and ventilation was measured by impedance probes sutured onto the operculum. Unilateral injection of glutamate (40-100 nl, 10 mmol l(-1)) into the Xs caused marked cardiorespiratory changes. Injection (0.1-0.3 mm deep) in different rostrocaudal, medial-lateral positions induced a bradycardia, either increased or decreased blood pressure, ventilation frequency and amplitude and, sometimes, an initial apnea. Often these responses occurred simultaneously in various different combinations but, occasionally, they appeared singly, suggesting specific projections into the Xs for each cardiorespiratory variable and local determination of the modality of the response. Response patterns related to chemoreceptor reflex activation were predominantly located rostral of obex, whereas patterns related to baroreceptor reflex activation were more caudal, around obex. The glutamate-induced bradycardia was N-methyl-D-aspartate (NMDA) receptor dependent and atropine sensitive. Taken together, our data provide evidence that glutamate is a putative player in the central integration of chemoreceptor and baroreceptor information in fish.
Reflexive aerostructures: increased vehicle survivability
NASA Astrophysics Data System (ADS)
Margraf, Thomas W.; Hemmelgarn, Christopher D.; Barnell, Thomas J.; Franklin, Mark A.
2007-04-01
Aerospace systems stand to benefit significantly from the advancement of reflexive aerostructure technologies for increased vehicle survivability. Cornerstone Research Group Inc. (CRG) is developing lightweight, healable composite systems for use as primary load-bearing aircraft components. The reflexive system is comprised of piezoelectric structural health monitoring systems, localized thermal activation systems, and lightweight, healable composite structures. The reflexive system is designed to mimic the involuntary human response to damage. Upon impact, the structural health monitoring system will identify the location and magnitude of the damage, sending a signal to a discrete thermal activation control system to resistively heat the shape memory polymer (SMP) matrix composite above activation temperature, resulting in localized shape recovery and healing of the damaged areas. CRG has demonstrated SMP composites that can recover 90 percent of flexural yield stress and modulus after postfailure healing. During the development, CRG has overcome issues of discrete activation, structural health monitoring integration, and healable resin systems. This paper will address the challenges associated with development of a reflexive aerostructure, including integration of structural health monitoring, discrete healing, and healable shape memory resin systems.
Behavioral and Physiological Effects of Hindlimb Unloading in Rats
NASA Technical Reports Server (NTRS)
Fox, Robert A.
1998-01-01
The overarching objective of this project was to identify changes in neural and biochemical systems of the central and peripheral nervous systems (the CNS and PNS) that are related to disruptions of functional motor responses, or motor control. The identification of neural and biochemical changes that are related to sensory-motor adaptation elicited as animals react to changes in the gravitational field was of particular interest. Thus, the major objective of this work was to study disruptions of motor responses that arise after (sic. due to) chronic exposure to altered gravity (G). To do this, parallel studies investigating changes in neural, sensory, and neuromuscular systems were conducted after animals (rats) experienced chronic exposure to conditions of altered-G. Conditions of altered-G included hyper-G produced by centrifugation, micro-G produced by orbital flight, and simulated micro-G produced by hind limb suspension. A second major interest was to examine the contribution of putative changes in sensory systems to disruptions of motor responses. To do this, motor responses and reflexes of rats were studied following chronic treatment with streptomycin sulfate (STP, an ototoxic chemical) to damage the vestibular hair cells.
NASA Technical Reports Server (NTRS)
Minor, L. B.; Lasker, D. M.; Backous, D. D.; Hullar, T. E.; Shelhamer, M. J. (Principal Investigator)
1999-01-01
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head velocity are used to represent the dynamics of this pathway. This model accounts for the experimental findings and provides a method for interpreting responses to these stimuli after vestibular lesions.
Electromyographic reflexes evoked in human flexor carpi radialis by tendon vibration.
Cody, F W; Goodwin, C N; Richardson, H C
1990-10-01
The rectified, electromyographic (EMG) reflexes evoked in the voluntarily contracting flexor carpi radialis (FCR) muscle by vibration of its tendon were studied in healthy human subjects. Responses comprised a prominent, transient, short-latency (SL, 20-25 ms) increase in EMG, attributed to Ia mono- and/or oligo-synaptic action, followed by a series of less pronounced troughs and peaks of activity. Evidence of continuing Ia mono- or oligo-synaptic action was indicated by (i) the presence of small subpeaks, at vibration frequency, superimposed upon the excitatory components and (ii) the occurrence of a separate reduction in EMG, of consistent latency (ca. 30 ms), after cessation of stimulation. Progressively shortening the train of vibration from 29 cycles (at 145 Hz) to a single cycle significantly reduced net, excitatory reflex activity. Gradually increasing the level (10-50% maximum) of pre-existing voluntary contraction on top of which reflexes were elicited, by moderately prolonged (29 cycles) trains of vibration, resulted in small increases, in absolute terms, in SL peaks and in later, excitatory EMG activity. Excitatory reflexes, when normalised for pre-stimulus EMG, however, declined in an approximately hyperbolic manner with increasing background activity over this range. Thus, effective "automatic gain compensation" does not operate for vibration reflexes in FCR.
Parvin, Sh; Taghiloo, A; Irani, A; Mirbagheri, M Mehdi
2017-07-01
We aimed to study therapeutic effects of antigravity treadmill (AlterG) training on reflex hyper-excitability, muscle stiffness, and corticospinal tract (CST) function in children with spastic hemiplegic cerebral palsy (CP). Three children received AlterG training 3 days per week for 8 weeks as experimental group. Each session lasted 45 minutes. One child as control group received typical occupational therapy for the same amount of time. We evaluated hyper-excitability of lower limb muscles by H-reflex response. We quantified muscle stiffness by sonoelastography images of the affected muscles. We quantified CST activity by transcranial magnetic stimulation (TMS). We performed the evaluations before and after training for both groups. H response latency and maximum M-wave amplitude were improved in experimental group after training compared to control group. Two children of experimental group had TMS response. Major parameters of TMS (i.e. peak-to-peak amplitude of motor evoked potential (MEP), latency of MEP, cortical silent period, and intensity of pulse) improved for both of them. Three parameters of texture analysis of sonoelastography images were improved for experimental group (i.e. contrast, entropy, and shear wave velocity). These findings indicate that AlterG training can improve reflexes, muscle stiffness, and CST activity in children with spastic hemiplegic CP and can be considered as a therapeutic tool to improve neuromuscular abnormalities occurring secondary to CP.
Della Torre, G; Brunetti, O; Pettorossi, V E
2002-01-01
The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.
Brownscombe, Jacob W.; Marchand, Kelsey; Tisshaw, Kathryn; Fewster, Victoria; Groff, Olivia; Pichette, Melissa; Seed, Marian; Gutowsky, Lee F. G.; Wilson, Alexander D. M.; Cooke, Steven J.
2014-01-01
Release of fish captured by recreational anglers is a common practice due to angler conservation ethics or compliance with fisheries regulations. As such, there is a need to understand the factors that influence mortality and sub-lethal impairments to ensure that catch-and-release angling is a sustainable practice. Longer angling times generally contribute to increased stress and mortality in fish such that reducing these times putatively reduces stress and improves survival. However, the relative importance of fight intensity (rather than simply duration) on fish condition is poorly understood. The objective of this research was to examine the effects of fight intensity on physiological stress and reflex impairment of largemouth bass (Micropterus salmoides). The largemouth bass were angled using conventional recreational fishing gear in May (water temperature ∼12°C) and June (∼22°C) of 2014 in Lake Opinicon, Ontario, Canada. Fight intensity was quantified using tri-axial accelerometer loggers mounted on the tips of fishing rods. Upon capture, reflex impairment measures were assessed, and fish were held for 1 h prior to blood sampling for measurement of physiological stress (blood glucose and lactate concentrations and pH). Physiological stress values showed a negative trend with fight duration and total fight intensity, but a positive trend with average fight intensity. Water temperature emerged as the most important predictor of the stress response in largemouth bass, while fight duration and intensity were not strong predictors. Reflex impairment was minimal, but higher reflex impairment scores were associated with elevated blood glucose. Overall, the findings of this study suggest that angling for largemouth bass at colder temperatures (<15°C) causes greater physiological stress than at warmer temperatures (>20°C). Based on our findings, we conclude that fight intensity is likely not to be a major driver of physiological stress in this species using typical largemouth bass angling gear, owing to the relatively short fight times (i.e. <2 min). PMID:27293678
Spasm of the near reflex: A case report.
Rhatigan, Maedbh; Byrne, Caroline; Logan, Patricia
2017-06-01
Spasm of the near reflex (SNR) is a triad of miosis, excess accommodation and excess convergence. Primary SNR is most often functional in origin We aim to highlight the clinical features which distinguish primary convergence from other conditions with a similar presentation but more sinister underlying aetiology, for example bilateral abducens nerve palsy. There is a paucity of published data on SNR, in particular diagnostic criteria and treatment. We report a case of SNR of functional origin in an otherwise healthy young female and discuss the clinical features that differentiate this condition from similar conditions with underlying neurological origin. SNR is predominantly a clinical diagnosis, and often leads to patients undergoing unnecessary investigations and sometimes treatment. Recognising the salient features that differentiate it could potentially avoid this.
Peters, Ryan M.; McKeown, Monica D.; Carpenter, Mark G.
2016-01-01
Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults. PMID:27489366
Volitional control of reflex cough
Bolser, Donald C.; Davenport, Paul W.
2012-01-01
Multiple studies suggest a role for the cerebral cortex in the generation of reflex cough in awake humans. Reflex cough is preceded by detection of an urge to cough; strokes specifically within the cerebral cortex can affect parameters of reflex cough, and reflex cough can be voluntarily suppressed. However, it is not known to what extent healthy, awake humans can volitionally modulate the cough reflex, aside from suppression. The aims of this study were to determine whether conscious humans can volitionally modify their reflexive cough and, if so, to determine what parameters of the cough waveform and corresponding muscle activity can be modified. Twenty adults (18–40 yr, 4 men) volunteered for study participation and gave verbal and written informed consent. Participants were seated and outfitted with a facemask and pneumotacograph, and two surface EMG electrodes were positioned over expiratory muscles. Capsaicin (200 μM) was delivered via dosimeter and one-way (inspiratory) valve attached to a side port between the facemask and pneumotachograph. Cough airflow and surface EMG activity were recorded across tasks including 1) baseline, 2) small cough (cough smaller or softer than normal), 3) long cough (cough longer or louder than normal), and 4) not cough (alternative behavior). All participants coughed in response to 200 μM capsaicin and were able to modify the cough. Variables exhibiting changes include those related to the peak airflow during the expiratory phase. Results demonstrate that it is possible to volitionally modify cough motor output characteristics. PMID:22492938
James, Peter J; Nyby, John G; Saviolakis, George A
2006-09-01
In virtually every mammalian species examined, some males exhibit reflexive testosterone release upon encountering a novel female (or female-related stimulus). At the same time, not every individual male (or every published study) provides evidence for reflexive testosterone release. Four experiments using house mice (Mus musculus) examined the hypothesis that both the male's genotype and his degree of sexual arousal (as indexed by ultrasonic mating calls) are related to such variability. In Experiment 1, CF-1 males exhibited reflexive testosterone elevations 30 min after encountering female urine. CK males, on the other hand, did not exhibit testosterone elevations 20, 30, 50, 60, or 80 min after encountering female urine (Experiments 1 and 2) suggesting this strain incapable of reflexive release. In Experiment 3, we measured both mating calls and reflexive testosterone release in response to female urine in CF-1 and CK males. Most males of both strains called vigorously to female urine but not to water. But, only CF-1 males exhibited significant testosterone elevations to female urine. In Experiment 4, DBA/2J males called vigorously to females followed by testosterone elevations 30 min later. The first 3 experiments support the hypothesis that male genotype is an important variable underlying mammalian reflexive testosterone release. Statistically significant correlations between mating calls in the first minute after stimulus exposure and testosterone elevations 30 min later (Experiments 3 and 4) support the hypothesis that, in capable males, reflexive testosterone release is related to the male's initial sexual arousal.
Renden, Peter G; Savelsbergh, Geert J P; Oudejans, Raôul R D
2017-05-01
We investigated the effects of reflex-based self-defence training on police performance in simulated high-pressure arrest situations. Police officers received this training as well as a regular police arrest and self-defence skills training (control training) in a crossover design. Officers' performance was tested on several variables in six reality-based scenarios before and after each training intervention. Results showed improved performance after the reflex-based training, while there was no such effect of the regular police training. Improved performance could be attributed to better communication, situational awareness (scanning area, alertness), assertiveness, resolution, proportionality, control and converting primary responses into tactical movements. As officers trained complete violent situations (and not just physical skills), they learned to use their actions before physical contact for de-escalation but also for anticipation on possible attacks. Furthermore, they learned to respond against attacks with skills based on their primary reflexes. The results of this study seem to suggest that reflex-based self-defence training better prepares officers for performing in high-pressure arrest situations than the current form of police arrest and self-defence skills training. Practitioner Summary: Police officers' performance in high-pressure arrest situations improved after a reflex-based self-defence training, while there was no such effect of a regular police training. As officers learned to anticipate on possible attacks and to respond with skills based on their primary reflexes, they were better able to perform effectively.
de Oliveira Silva, Danilo; Magalhães, Fernando Henrique; Faria, Nathálie Clara; Pazzinatto, Marcella Ferraz; Ferrari, Deisi; Pappas, Evangelos; de Azevedo, Fábio Mícolis
2016-07-01
To investigate whether vastus medialis (VM) Hoffmann reflexes (H-reflexes) differ on the basis of the presence or absence of patellofemoral pain (PFP) and to assess the capability of VM H-reflex measurements in accurately discriminating between women with and without PFP. Cross-sectional study. Laboratory of biomechanics and motor control. Women (N=30) aged 18 to 35 years were recruited, consisting of 2 groups: women with PFP (n=15) and asymptomatic controls (n=15). Not applicable. Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve, and peak-to-peak amplitudes of maximal Hoffmann reflex (Hmax) and maximal motor wave (Mmax) ratios were calculated. Independent samples t tests were performed to identify differences between groups, and a receiver operating characteristic curve was constructed to assess the discriminatory capability of VM H-reflex measurements. VM Hmax/Mmax ratios were significantly lower in participants with PFP than in pain-free participants (P=.007). In addition, the VM Hmax/Mmax ratios presented large and balanced discriminatory capability values (sensitivity, 73%; specificity, 67%). This study is the first to show that VM H-reflexes are lower in women with PFP than in asymptomatic controls. Therefore, increasing the excitation of the spinal cord in PFP participants may be essential to maintaining the gains acquired during the rehabilitation programs. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Reflex epileptic mechanisms in humans: Lessons about natural ictogenesis.
Wolf, Peter
2017-06-01
The definition of reflex epileptic seizures is that specific seizure types can be triggered by certain sensory or cognitive stimuli. Simple triggers are sensory (most often visual, more rarely tactile or proprioceptive; simple audiogenic triggers in humans are practically nonexistent) and act within seconds, whereas complex triggers like praxis, reading and talking, and music are mostly cognitive and work within minutes. The constant relation between a qualitatively, often even quantitatively, well-defined stimulus and a specific epileptic response provides unique possibilities to investigate seizure generation in natural human epilepsies. For several reflex epileptic mechanisms (REMs), this has been done. Reflex epileptic mechanisms have been reported less often in focal lesional epilepsies than in idiopathic "generalized" epilepsies (IGEs) which are primarily genetically determined. The key syndrome of IGE is juvenile myoclonic epilepsy (JME), where more than half of the patients present reflex epileptic traits (photosensitivity, eye closure sensitivity, praxis induction, and language-induced orofacial reflex myocloni). Findings with multimodal investigations of cerebral function concur to indicate that ictogenic mechanisms in IGEs largely (ab)use preexisting functional anatomic networks (CNS subsystems) normally serving highly complex physiological functions (e.g., deliberate complex actions and linguistic communication) which supports the concept of system epilepsy. Whereas REMs in IGEs, thus, are primarily function-related, in focal epilepsies, they are primarily localization-related. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.
Aviation spatial orientation in relationship to head position, altitude interpretation, and control.
Smith, D R; Cacioppo, A J; Hinman, G E
1997-06-01
Recently, a visually driven neck reflex was identified as causing head tilt toward the horizon during VMC flight. If this is the case, then pilots orient about a fixed rather than moving horizon, implying current attitude instruments inaccurately present spatial information. The purpose of this study was to determine if the opto-kinetic cervical neck reflex has an effect dependent on passive (autopilot) or active control of the aircraft. Further, findings could help determine if the opto-kinetic cervical reflex is characteristic of other flight crewmembers. There were 16 military pilots who flew two 13-min VMC low-level routes in a large dome flight simulator. Head position in relation to aircraft bank angle was recorded by a head tracker device. During one low-level route, the pilot had a supervisory role as the autopilot flew the aircraft (passive). The other route was flow manually by the pilot (active). Pilots consistently tilted the head to maintain alignment with the horizon. Similar head tilt angles were found in both the active and passive flight phases. However, head tilt had a faster onset rate in the passive condition. Results indicate the opto-kinetic cervical reflex affects pilots while actively flying or in a supervisory role as the autopilot flies. The consistent head tilt angles in both conditions should be considered in attitude indicator, HUD, and HMD designs. Further, results seem to indicate that non-pilot flight crewmembers are affected by the opto-kinetic cervical reflex which should be considered in spatial disorientation and airsickness discussions.
Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders
2017-01-01
In this article children's musical improvisation is investigated through the "reflexive interaction" paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a "reflexive" output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6-7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children's abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children's ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education.
Bedding material affects mechanical thresholds, heat thresholds and texture preference
Moehring, Francie; O’Hara, Crystal L.; Stucky, Cheryl L.
2015-01-01
It has long been known that the bedding type animals are housed on can affect breeding behavior and cage environment. Yet little is known about its effects on evoked behavior responses or non-reflexive behaviors. C57BL/6 mice were housed for two weeks on one of five bedding types: Aspen Sani Chips® (standard bedding for our institute), ALPHA-Dri®, Cellu-Dri™, Pure-o’Cel™ or TEK-Fresh. Mice housed on Aspen exhibited the lowest (most sensitive) mechanical thresholds while those on TEK-Fresh exhibited 3-fold higher thresholds. While bedding type had no effect on responses to punctate or dynamic light touch stimuli, TEK-Fresh housed animals exhibited greater responsiveness in a noxious needle assay, than those housed on the other bedding types. Heat sensitivity was also affected by bedding as animals housed on Aspen exhibited the shortest (most sensitive) latencies to withdrawal whereas those housed on TEK-Fresh had the longest (least sensitive) latencies to response. Slight differences between bedding types were also seen in a moderate cold temperature preference assay. A modified tactile conditioned place preference chamber assay revealed that animals preferred TEK-Fresh to Aspen bedding. Bedding type had no effect in a non-reflexive wheel running assay. In both acute (two day) and chronic (5 week) inflammation induced by injection of Complete Freund’s Adjuvant in the hindpaw, mechanical thresholds were reduced in all groups regardless of bedding type, but TEK-Fresh and Pure-o’Cel™ groups exhibited a greater dynamic range between controls and inflamed cohorts than Aspen housed mice. PMID:26456764
Lin, K; Chan, S H; Chan, J Y
2001-04-01
We evaluated the role of endogenous angiotensins at the rostral nucleus reticularis ventrolateralis (NRVL) in the modulation of spontaneous baroreceptor reflex (BRR) response and the subtype of angiotensin receptors involved using rats anesthetized and maintained with pentobarbital sodium. Bilateral microinjection of angiotensin II (ANG II) or its active metabolite angiotensin III (ANG III) (5, 10, or 20 pmol) into the NRVL significantly suppressed the spontaneous BRR response, as represented by the magnitude of transfer function between systemic arterial pressure and heart rate signals. The inhibitory effect of ANG III (20 pmol) was discernibly reversed by coadministration with its peptide antagonist, [Ile(7)]ANG III (1.6 nmol), or the nonpeptide AT(2) receptor antagonist, PD-123319 (1.6 nmol), but not by the nonpeptide AT(1) receptor antagonist, losartan (1.6 nmol). On the other hand, the peptide antagonist, [Sar(1), Ile(8)]ANG II (1.6 nmol) or both non-peptide antagonists appreciably reversed the suppressive action of ANG II (20 pmol). Whereas losartan produced minimal effect, blocking the endogenous activity of the angiotensins by microinjection into the bilateral NRVL of PD-123319, [Sar(1), Ile(8)]ANG II or [Ile(7)]ANG III elicited significant enhancement of the spontaneous BRR response. We conclude that under physiologic conditions both endogenous ANG II and ANG III may exert a tonic inhibitory modulation on the spontaneous BRR response by acting selectively on the AT(2) subtype receptors at the NRVL. Copyright 2001 Wiley-Liss, Inc.
Henry, J L; Sessle, B J
1985-03-01
Recent studies have implicated glutamate and substance P in synaptic transmission in the nuclei tractus solitarii and in central regulation of cardiorespiratory functions. Consequently, in chloralose-anaesthetized cats that were artificially ventilated, we examined the effects of the microiontophoretic application of both chemicals (and the substance P homologue, eledoisin-related peptide) on single neurones of the nuclei tractus solitarii implicated in the control of respiration and respiratory tract reflexes. These neurones were functionally identified as either respiratory neurones or presumed reflex interneurones, and showed functional properties comparable to those previously documented for each of these two types. The iontophoretic application of glutamate produced an excitation of rapid onset in 23 or 25 reflex interneurones tested, but the respiratory neurones showed a differential sensitivity: one type (n = 32) was "glutamate-sensitive" and showed rapid excitation with glutamate applications of less than 30 nA, the other type of respiratory neurone (n = 26) was termed "glutamate-insensitive" since it either showed excitation only with applications of 60 nA or more or showed no response even with currents up to 94 nA. Each neurone studied was clearly of one type or the other. Glutamate could increase the number of spikes per rhythmic burst and the burst duration of respiratory neurones, it facilitated evoked activity in the reflex interneurones and in those respiratory neurones having a superior laryngeal nerve or vagus nerve afferent input, and the magnitude of the excitatory responses to glutamate varied directly with the amount of ejecting current. Substance P and eledoisin-related peptide also had excitatory effects on respiratory neurones and reflex interneurones, but compared with glutamate-induced effects the excitation was slower in onset and more prolonged in after-discharge. Both rhythmic and evoked activity could be facilitated, and the magnitude of the effect varied directly with the magnitude of the ejecting current. In showing that both glutamate and substance P (and its analogue, eledoisin-related peptide) have excitatory effects on the activity of respiratory neurones and reflex interneurones, this study provides evidence suggesting that these neurones have receptors for these neural chemicals, supportive of a role for each chemical in the regulation of respiration and respiratory tract reflexes.
Biologically inspired adaptive walking of a quadruped robot.
Kimura, Hiroshi; Fukuoka, Yasuhiro; Cohen, Avis H
2007-01-15
We describe here the efforts to induce a quadruped robot to walk with medium-walking speed on irregular terrain based on biological concepts. We propose the necessary conditions for stable dynamic walking on irregular terrain in general, and we design the mechanical and the neural systems by comparing biological concepts with those necessary conditions described in physical terms. PD-controller at joints constructs the virtual spring-damper system as the viscoelasticity model of a muscle. The neural system model consists of a central pattern generator (CPG), reflexes and responses. We validate the effectiveness of the proposed neural system model control using the quadruped robots called 'Tekken1&2'. MPEG footage of experiments can be seen at http://www.kimura.is.uec.ac.jp.
Physiology of Developing Gravity Receptors and Otolith-Ocular Reflexes in Rat
NASA Technical Reports Server (NTRS)
Blanks, Robert H.
1997-01-01
This proposal had the long-term objective of examining the effects of microgravity on the physiology of the adult and developing mammalian gravity receptors. The grant outlined three-years of ground-based studies to examine. 1) the physiologic responses or otolith afferents in the adult rat and during postnatal development, and 2) the otolith organ contributions to the vertical vestibulo-ocular (VOR) and postural reflexes.
ERIC Educational Resources Information Center
Matthews, Blair
2017-01-01
International students at universities away from their home context experience a significant change to the way they engage with the world, as they think, reflect and act in response to the new context. Drawing on Archer's concept of reflexivity (2003; 2007; 2012), this paper demonstrates that international students are compelled into reflexive…
Perez Fornos, Angelica; Guinand, Nils; van de Berg, Raymond; Stokroos, Robert; Micera, Silvestro; Kingma, Herman; Pelizzone, Marco; Guyot, Jean-Philippe
2014-01-01
The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss. PMID:24808890
2013-01-01
Background Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Methods Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Results Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information. The results also indicate that the relationship between the reflex area and the projection to the primary somatosensory cortex has a lateral pattern that differs from that of the actual somatotopical representation of the body. Conclusion These findings suggest that a robust relationship exists between neural processing of somatosensory percepts for reflexological stimulation and the tactile sensation of a specific reflex area. PMID:23711332
NASA Astrophysics Data System (ADS)
Ohnishi, T.; Ohnishi, K.; Okamoto, N.; Yamamoto, T.; Hosoi, H.; Takahashi, A.; Kawai, H.
A kind of catfish, Synodontis nigriventris, has a unique habit of maintaining an upside-down posture under normal gravity conditions (1 G). We exposed S. nigriventris to a microgravity environment provided by the parabolic flights of an aircraft and observed the dorsal light reflex (DLR), which is well known to be an important visually guided postural reaction in fish. In general, fish directs its back to an illuminated direction, depending on DLR: DLR is observed more clearly under microgravity as compared with 1 G. Interestingly, S. nigriventris exhibited no DLR response even under microgravity. In contrast, clear DLR was observed under microgravity in two other species, which have an upside-up swimming habit, Synodontis multipunctatus, belonging to the same Synodontis family, and Corydoras paleatus, belonging to a different catfish family. Our parabolic flight experiments have confirmed for the first time that S. nigriventris has a novel balance sensation which does not induce DLR. This allows us to address a new and attractive strategy for the analysis of the postural control mechanism of vertebrate.
Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Dobrovinskaya, O; Melnikov, V; Lemus, M; de Álvarez-Buylla, E Roces
2015-01-01
Glutamate, released from central terminals of glossopharyngeal nerve, is a major excitatory neurotransmitter of commissural nucleus tractus solitarii (cNTS) afferent terminals, and brain derived neurotrophic factor (BDNF) has been shown to attenuate glutamatergic AMPA currents in NTS neurons. To test the hypothesis that AMPA contributes to glucose regulation in vivo modulating the hyperglycemic reflex with brain glucose retention (BGR), we microinjected AMPA and NBQX (AMPA antagonist) into the cNTS before carotid chemoreceptor stimulation in anesthetized normal Wistar rats, while hyperglycemic reflex an brain glucose retention (BGR) were analyzed. To investigate the underlying mechanisms, GluR2/3 receptor and c-Fos protein expressions in cNTS neurons were determined. We showed that AMPA in the cNTS before CChr stimulation inhibited BGR observed in aCSF group. In contrast, NBQX in similar conditions, did not modify the effects on glucose variables observed in aCSF control group. These experiments suggest that glutamatergic pathways, via AMPA receptors, in the cNTS may play a role in glucose homeostasis.
Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo
Kellogg, Dean L; Zhao, Joan L; Wu, Yubo
2008-01-01
The physiological roles of constituitively expressed nitric oxide synthase (NOS) isoforms in humans, in vivo, are unknown. Cutaneous vasodilatation during both central nervous system-mediated, thermoregulatory reflex responses to whole-body heat stress and during peripheral axon reflex-mediated, local responses to skin warming in humans depend on nitric oxide (NO) generation by constituitively expressed NOS of uncertain isoform. We hypothesized that neuronal NOS (nNOS, NOS I) effects cutaneous vasodilatation during whole-body heat stress, but not during local skin warming. We examined the effects of the nNOS inhibitor 7-nitroindazole (7-NI) administered by intradermal microdialysis on vasodilatation induced by whole-body heat stress or local skin warming. Skin blood flow (SkBF) was monitored by laser–Doppler flowmetry (LDF). Blood pressure (MAP) was monitored and cutaneous vascular conductance calculated (CVC = LDF/MAP). In protocol 1, whole-body heat stress was induced with water-perfused suits. In protocol 2, local skin warming was induced through local warming units at LDF sites. At the end of each protocol, 56 mm sodium nitroprusside was perfused at microdialysis sites to raise SkBF to maximal levels for data normalization. 7-NI significantly attenuated CVC increases during whole-body heat stress (P < 0.05), but had no effect on CVC increases induced by local skin warming (P > 0.05). These diametrically opposite effects of 7-NI on two NO-dependent processes verify selective nNOS antagonism, thus proving that the nNOS isoform affects NO increases and hence vasodilatation during centrally mediated, reflex responses to whole-body heat stress, but not during locally mediated, axon reflex responses to local skin warming. We conclude that the constituitively expressed nNOS isoform has distinct physiological roles in cardiovascular control mechanisms in humans, in vivo. PMID:18048451
Zajac, David J.; Weissler, Mark C.
2011-01-01
Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults produced syllable trains of /pΛ/ using a mouthpiece coupled to a computer-controlled perturbator. The device randomly created bleed apertures that ranged from 0 to 40 mm2 during production of the 2nd or 4th syllable of an utterance. Although peak oral air pressure dropped in a linear manner across bleed apertures, it averaged 2 to 3 cm H2O at the largest bleed. While slope of oral pressure also decreased in a linear trend, duration of the oral pressure pulse remained relatively constant. The patterns suggest that respiratory reflexes, if present, have little effect on oral air pressure levels. In Study 2, both oral and subglottal air pressure responses were monitored in 2 adults while bleed apertures of 20 and 40 mm2 were randomly created. For 1 participant, peak oral air pressure dropped across bleed apertures, as in Study 1. Subglottal air pressure and slope, however, remained relatively stable. These patterns provide some support for the occurrence of respiratory reflexes to regulate subglottal air pressure. Overall, the studies indicate that the inherent physiologic processes of the respiratory system, which may involve reflexes, and passive aeromechanical resistance of the upper airway are capable of developing oral air pressure in the face of substantial pressure bleeds. Implications for understanding speech production and the characteristics of individuals with velopharyngeal dysfunction are discussed. PMID:15324286
Estañol, Bruno; Rivera, Ana Leonor; Martínez Memije, Raúl; Fossion, Ruben; Gómez, Fermín; Bernal, Katherine; Murúa Beltrán, Sofía; Delgado-García, Guillermo; Frank, Alejandro
2016-12-01
Myogenic vascular response is a form of systemic and regional vasoconstriction produced increasing the intra-arterial pressure by gravity. Here, the vasoconstriction due to the myogenic response, induced by the gravitational action in a dependent limb, is separated from that caused by the baroreceptor reflex. Regional changes of skin blood flow (SBF), total blood volume of the finger (TBVF), pulse pressure (PP), heart rate (HR), systolic, and diastolic blood pressure (BP) were analyzed in 10 healthy young subjects in supine and upright positions. By lowering the arm in supine position, SBF decreased compared to its basal measurement, PR increased, and PP contracted, indicating arterial vasoconstriction that rise BP TBVF increased, demonstrating an increment in venous volume. HR did not change, reflecting no action of the baroreceptor reflex. In upright position with lowered arm, there was an additional increase in BP variables, demonstrating vasoconstriction. Moreover, BP and HR showed oscillations at 0.1 Hz reflecting the entrance of the baroreceptor reflex. The action of gravity in a dependent limb in supine position induces a regional vasoconstriction and an increase of BP due to activation of the myogenic response, while the baroreceptor reflex or other neural factors do not appear to operate. In the upright position with the arm dependent, there is a further increase in regional vasoconstriction and BP with reciprocal changes in HR, indicating the entrance of the baroreceptor superimposed to the myogenic response. This study demonstrates that the myogenic and baroreceptor vasoconstriction can be separated in vivo. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Objective evaluation of cutaneous thermal sensivity
NASA Technical Reports Server (NTRS)
Vanbeaumont, W.
1972-01-01
The possibility of obtaining reliable and objective quantitative responses was investigated under conditions where only temperature changes in localized cutaneous areas evoked measurable changes in remote sudomotor activity. Both male and female subjects were studied to evaluate sex difference in thermal sensitivity. The results discussed include: sweat rate responses to contralateral cooling, comparison of sweat rate responses between men and women to contralateral cooling, influence of the menstrual cycle on the sweat rate responses to contralateral cooling, comparison of threshold of sweating responses between men and women, and correlation of latency to threshold for whole body sweating. It is concluded that the quantitative aspects of the reflex response is affected by both the density and activation of receptors as well as the rate of heat loss; men responded 8-10% more frequently than women to thermode cooling, the magnitude of responses being greater for men; and women responded 7-9% more frequently to thermode cooling on day 1 of menstruation, as compared to day 15.
Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations
Abboud, Jacques; Nougarou, François; Lardon, Arnaud; Dugas, Claude; Descarreaux, Martin
2016-01-01
Introduction: When the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g., attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG) may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. Aim: To characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG. Methods: Twenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess: (1) the adaptation effect across trials; (2) the fatigue effect; and (3) the interaction effect (fatigue × adaptation) for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity). Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. Results: An attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle fatigue, as well as reduction through perturbation trials. Main effects of fatigue and adaptation were found for time to peak velocity. No adaptation nor fatigue effect were identified for reflex latency, flexion angle or trunk velocity. Conclusion: The results show that muscle fatigue leads to reduced spatial distribution of back muscle activity and suggest a limited ability to use across-trial redundancy to adapt EMG reflex peak and optimize spinal stabilization using retroactive control. PMID:27895569
Sambo, C F; Liang, M; Cruccu, G; Iannetti, G D
2012-02-01
Electrical stimulation of the median nerve at the wrist may elicit a blink reflex [hand blink reflex (HBR)] mediated by a neural circuit at brain stem level. As, in a Sherringtonian sense, the blink reflex is a defensive response, in a series of experiments we tested, in healthy volunteers, whether and how the HBR is modulated by the proximity of the stimulated hand to the face. Electromyographic activity was recorded from the orbicularis oculi, bilaterally. We observed that the HBR is enhanced when the stimulated hand is inside the peripersonal space of the face, compared with when it is outside, irrespective of whether the proximity of the hand to the face is manipulated by changing the position of the arm (experiment 1) or by rotating the head while keeping the arm position constant (experiment 3). Experiment 2 showed that such HBR enhancement has similar magnitude when the participants have their eyes closed. Experiments 4 and 5 showed, respectively, that the blink reflex elicited by the electrical stimulation of the supraorbital nerve, as well as the N20 wave of the somatosensory evoked potentials elicited by the median nerve stimulation, are entirely unaffected by hand position. Taken together, our results provide compelling evidence that the brain stem circuits mediating the HBR in humans undergo tonic and selective top-down modulation from higher order cortical areas responsible for encoding the location of somatosensory stimuli in external space coordinates. These findings support the existence of a "defensive" peripersonal space, representing a safety margin advantageous for survival.
NASA Technical Reports Server (NTRS)
Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard
2005-01-01
Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.
NASA Technical Reports Server (NTRS)
Leigh, R. John; Brandt, Thomas
1992-01-01
Conventional views of the Vestibulo-Ocular Reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved-locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (less than 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).
Bond, S. M.; Cervero, F.; McQueen, D. S.
1982-01-01
1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938
Localization of the cutaneus trunci muscle reflex in horses.
Essig, Cynthia M; Merritt, Jonathan S; Stubbs, Narelle C; Clayton, Hilary M
2013-11-01
To determine the magnitude and location of skin movement attributable to the cutaneus trunci muscle reflex in response to localized stimulation of the skin of the dorsolateral aspect of the thoracic wall in horses. 8 horses. A grid of 56 reflective markers was applied to the lateral aspect of the body wall of each horse; markers were placed at 10-cm intervals in 7 rows and 8 columns. A motion analysis system with 10 infrared cameras was used to track movements of the markers in response to tactile stimulation of the dorsolateral aspect of the thoracic wall at the levels of T6, T11, and T16. Marker movement data determined after skin stimulation were used to create a skin deformation gradient tensor field, which was analyzed with custom software. The sites of maximal skin deformation were located close to the stimulation sites; the centers of the twitch responses were located a mean distance of 7.7 to 12.8 cm ventral and between 6.6 cm cranial and 3.1 cm caudal to the stimulation sites. Findings of this study may have implications for assessment of nerve conduction velocities of the cutaneus trunci muscle reflex and may enhance understanding of the responses of horses to placement of tack or other equipment on skin over the cutaneus trunci muscles.
Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers
2013-09-01
right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event detected by the filter. (d) A mild curse word...experimental conditions were chosen to simulate testing cognitively impaired observers. Reflex Stimulus Functions Visual Nystagmus luminance grating low-level...developed a new stimulus for visual nystagmus to 8 test visual motion processing in the presence of incoherent motion noise. The drifting equiluminant
Campbell, Matthew D.; Patino, Reynaldo; Tolan, J.M.; Strauss, R.E.; Diamond, S.
2009-01-01
The sublethal effects of simulated capture of red snapper (Lutjanus campechanus) were analysed using physiological responses, condition indexing, and performance variables. Simulated catch-and-release fishing included combinations of depth of capture and thermocline exposure reflective of environmental conditions experienced in the Gulf of Mexico. Frequency of occurrence of barotrauma and lack of reflex response exhibited considerable individual variation. When combined into a single condition or impairment index, individual variation was reduced, and impairment showed significant increases as depth increased and with the addition of thermocline exposure. Performance variables, such as burst swimming speed (BSS) and simulated predator approach distance (AD), were also significantly different by depth. BSSs and predator ADs decreased with increasing depth, were lowest immediately after release, and were affected for up to 15 min, with longer recovery times required as depth increased. The impairment score developed was positively correlated with cortisol concentration and negatively correlated with both BSS and simulated predator AD. The impairment index proved to be an efficient method to estimate the overall impairment of red snapper in the laboratory simulations of capture and shows promise for use in field conditions, to estimate release mortality and vulnerability to predation.
Burhans, Lauren B; Smith-Bell, Carrie A; Schreurs, Bernard G
2017-10-01
Glutamatergic dysfunction is implicated in many neuropsychiatric conditions, including post-traumatic stress disorder (PTSD). Glutamate antagonists have shown some utility in treating PTSD symptoms, whereas glutamate agonists may facilitate cognitive behavioral therapy outcomes. We have developed an animal model of PTSD, based on conditioning of the rabbit's eyeblink response, that addresses two key features: conditioned responses (CRs) to cues associated with an aversive event and a form of conditioned hyperarousal referred to as conditioning-specific reflex modification (CRM). The optimal treatment to reduce both CRs and CRM is unpaired extinction. The goals of the study were to examine whether treatment with the N-methyl-D-aspartate glutamate receptor antagonist ketamine could reduce CRs and CRM, and whether the N-methyl-D-aspartate agonist D-cycloserine combined with unpaired extinction treatment could enhance the extinction of both. Administration of a single dose of subanesthetic ketamine had no significant immediate or delayed effect on CRs or CRM. Combining D-cycloserine with a single day of unpaired extinction facilitated extinction of CRs in the short term while having no impact on CRM. These results caution that treatments may improve one aspect of the PTSD symptomology while having no significant effects on other symptoms, stressing the importance of a multiple-treatment approach to PTSD and of animal models that address multiple symptoms.
Fisher, M A
1980-01-01
F responses were recorded from the surface of the tibialis muscle and medial aspect of the soleus muscle in 14 normal subjects. The persistence (that is the fraction of measurable F responses found with a series of supramaximal stimuli) and average F amplitudes (measured peak-to-peak and based on at least five F responses) were determined both at rest and with isometric contraction with the ankle maintained at 90 degrees. Although the persistence at rest was significantly less in the tibialis anterior soleus than the (p less than 0.001), no significant difference was found with the muscles contracted. This was associated with a significant increase in both average F amplitudes and average F amplitude/direct motor response ratios in the tibialis anterior in comparison to the soleus. In four of the subjects, studies were also performed when the H reflex in the soleus muscle was eliminated by thigh compression. Comparable changes in both F response persistence and average F amplitude were found with and without an H reflex. These data indicate that, in contrast to the situation at rest, with isometric contraction the "central excitatory state" of the tibialis anterior is at least as great as in its antagonist antigravity muscles and that this is not due simply to increased large fiber reflex input associated with agonist contraction. PMID:7373321
Shingles, A; McKenzie, D J; Claireaux, G; Domenici, P
2005-01-01
In hypoxia, gray mullet surface to ventilate well-oxygenated water in contact with air, an adaptive response known as aquatic surface respiration (ASR). Reflex control of ASR and its behavioral modulation by perceived threat of aerial predation and turbid water were studied on mullet in a partly sheltered aquarium with free surface access. Injections of sodium cyanide (NaCN) into either the bloodstream (internal) or ventilatory water stream (external) revealed that ASR, hypoxic bradycardia, and branchial hyperventilation were stimulated by chemoreceptors sensitive to both systemic and water O2 levels. Sight of a model avian predator elicited bradycardia and hypoventilation, a fear response that inhibited reflex hyperventilation following external NaCN. The time lag to initiation of ASR following NaCN increased, but response intensity (number of events, time at the surface) was unchanged. Mullet, however, modified their behavior to surface under shelter or near the aquarium edges. Turbid water abolished the fear response and effects of the predator on gill ventilation and timing of ASR following external NaCN, presumably because of reduced visibility. However, in turbidity, mullet consistently performed ASR under shelter or near the aquarium edges. These adaptive modulations of ASR behavior would allow mullet to retain advantages of the chemoreflex when threatened by avian predators or when unable to perceive potential threats in turbidity.
Bergadano, Alessandra; Andersen, Ole K; Arendt-Nielsen, Lars; Spadavecchia, Claudia
2007-08-01
To investigate the facilitation of the nociceptive withdrawal reflex (NWR) by repeated electrical stimuli and the associated behavioral response scores in conscious, nonmedicated dogs as a measure of temporal summation and analyze the influence of stimulus intensity and frequency on temporal summation responses. 8 adult Beagles. Surface electromyographic responses evoked by transcutaneous constant-current electrical stimulation of ulnaris and digital plantar nerves were recorded from the deltoideus, cleidobrachialis, biceps femoris, and cranial tibial muscles. A repeated stimulus was given at 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 x I(t) (the individual NWR threshold intensity) at 2, 5, and 20 Hz. Threshold intensity and relative amplitude and latency of the reflex were analyzed for each stimulus configuration. Behavioral reactions were subjectively scored. Repeated sub-I(t) stimuli summated and facilitated the NWR. To elicit temporal summation, significantly lower intensities were needed for the hind limb, compared with the forelimb. Stimulus frequency did not influence temporal summation, whereas increasing intensity resulted in significantly stronger electromyographic responses and nociception (determined via behavioral response scoring) among the dogs. In dogs, it is possible to elicit nociceptive temporal summation that correlates with behavioral reactions. These data suggest that this experimental technique can be used to evaluate nociceptive system excitability and efficacy of analgesics in canids.
Acoustic Reflex Testing in Neonatal Hearing Screening and Subsequent Audiological Evaluation.
Jacob-Corteletti, Lilian Cássia Bórnia; Araújo, Eliene Silva; Duarte, Josilene Luciene; Zucki, Fernanda; Alvarenga, Kátia de Freitas
2018-06-18
The aims of the study were to examine the acoustic reflex screening and threshold in healthy neonates and those at risk of hearing loss and to determine the effect of birth weight and gestational age on acoustic stapedial reflex (ASR). We assessed 18 healthy neonates (Group I) and 16 with at least 1 risk factor for hearing loss (Group II); all of them passed the transient evoked otoacoustic emission test that assessed neonatal hearing. The test battery included an acoustic reflex screening with activators of 0.5, 1, 2, and 4 kHz and broadband noise and an acoustic reflex threshold test with all of them, except for the broadband noise activator. In the evaluated neonates, the main risk factors were the gestational age at birth and a low birth weight; hence, these were further analyzed. The lower the gestational age at birth and birth weight, the less likely that an acoustic reflex would be elicited by pure-tone activators. This effect was significant at the frequencies of 0.5, 1, and 2 kHz for gestational age at birth and at the frequencies of 1 and 2 kHz for birth weight. When the broadband noise stimulus was used, a response was elicited in all neonates in both groups. When the pure-tone stimulus was used, the Group II showed the highest acoustic reflex thresholds and the highest percentage of cases with an absent ASR. The ASR threshold varied from 50 to 100 dB HL in both groups. Group II presented higher mean ASR thresholds than Group I, this difference being significant at frequencies of 1, 2, and 4 kHz. Birth weight and gestational age at birth were related to the elicitation of the acoustic reflex. Neonates with these risk factors for hearing impairment were less likely to exhibit the acoustic reflex and had higher thresholds.
Activity of masticatory muscles in subjects with different orofacial pain conditions.
Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain
2005-07-01
The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.
McGrath, G. J.; Matthews, P. B. C.
1973-01-01
1. Experiments have been performed to test the hypothesis that the group II fibres from the secondary endings of the muscle spindle provide an excitatory contribution to the tonic stretch reflex of the decerebrate cat. They have consisted of studying the effect of fusimotor paralysis by procaine, applied to the muscle nerve, on the reflex response to the combined stimuli of stretch (5-9 mm at 5 mm/sec) and of high-frequency vibration (100-150 Hz, 150 μm). 2. The reflex response to the combined stimuli was found to be paralysed in two distinct stages which paralleled those of the ordinary stretch reflex described earlier. The two phases of paralysis may be attributed to an early paralysis of the γ efferents followed by a later paralysis of the Ia afferents and α motor fibres. However, the Ia discharges elicited by the combined stimuli, unlike those elicited by simple stretch, should have remained unchanged on γ efferent paralysis since the Ia firing frequency may be presumed to have been clamped at the vibration frequency by the occurrence of one-to-one `driving'. The early reduction of the response to the combined stimuli may thus be attributed to the removal of a stretchevoked autogenetic excitatory input other than that long known to be provided by the Ia pathway. This supports the view that the spindle group II fibres have such an action, since their firing will be appropriately reduced on γ efferent paralysis by removal of their pre-existing fusimotor bias; there is no evidence for the existence of any other group of fibres with the right properties. 3. Recording of compound action potentials and of single units confirmed the great sensitivity of the γ efferents to procaine but showed that the group II fibres were nearly as resistant as the Ia fibres and α motor fibres. 4. The reliability of one-to-one driving of the Ia discharges by the vibration was tested in control experiments in which the reflex was elicited by an asymmetrical vibratory waveform with a rapid rising phase (1·5 or 1·9 msec at 140 Hz) and a slower falling phase. Recordings from single units showed that the use of this wave form greatly diminished any tendency to double driving (2 spikes/cycle of vibration) during the dynamic phase of stretch and never elicited it during the static phase of stretch when the reflex measurements were made. These `pulsed' vibrations elicited reflex contractions which were of the same general size and which were paralysed in the same two phases by procaine as those elicited by sinusoidal vibrations. This eliminates the possibility that the early phase of paralysis might have been due to conversion of the pattern of Ia firing from double to single driving on γ efferent paralysis. 5. Wedensky inhibition of the afferent fibres could not be held responsible for the early phase of paralysis. 6. The results are taken to strengthen the hypothesis that the spindle group II fibres contribute excitation rather than inhibition to the stretch reflex. The particular support derived from the present experiments is that all measurements of the size of the reflex at various times were made with the muscle at the same length so that the findings cannot be attributed to the tension-length properties of muscle. The detailed mechanism of the excitation, however, remains to be established and certain of the present findings suggest that it may not be a direct one. PMID:4271734
Effect of a single dose of levodopa on sexual response in men and women.
Both, Stephanie; Everaerd, Walter; Laan, Ellen; Gooren, Louis
2005-01-01
From animal research, there is ample evidence for a facilitating effect of dopamine on sexual behavior. In humans, little experimental research has been conducted on the inter-relation between dopamine and sexual response, even less so in women than in men. We investigated the effect of levodopa (100 mg) on sexual response in men and women following a double-blind, placebo-controlled crossover design. Genital and subjective sexual responses were measured as well as somatic motor system activity by means of Achilles tendon (T) reflex modulation. Genital and subjective sexual arousal were not affected by levodopa. However, the drug increased T reflex magnitude in response to sexual stimulation in men, but not in women. These results support the view that dopamine is involved in the energetic aspects of appetitive sexual behavior in men. The observed gender difference in the effect of levodopa is discussed in the perspective of possible dopamine-steroid interaction.
Nonauditory-system response to noise and effects on health
NASA Technical Reports Server (NTRS)
1984-01-01
Continued exposure to noise in real life can be a source of physiological stress possibly capable of causing health disorders beyond that of direct damage to the auditory receptor system. Some theorists hold that some of these effects occur because of innate, reflexive responses to noise that cannot be prevented or, when suppressed, that require some effort that may itself become somewhat debilitting in time. An alternative theory is that the truly nonhabituating reflexive responses to noise are not sufficient in character to cause any ill health, and that those responses to noise that are or could be significant in this regard are not directly the result of exposure to noise but are responses to the emotional meanings conveyed by the sounds. Obviously, the degree to which noise can lead to harm to nonauditory physiological systems of the body are questions of utmost importance for the assessment of the need for noise control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; Fouda, Mohamed A.; El-gowilly, Sahar M.
We have previously shown that acute exposure of male rats to nicotine preferentially attenuates baroreceptor-mediated control of reflex tachycardia in contrast to no effect on reflex bradycardia. Here, we investigated whether female rats are as sensitive as their male counterparts to the baroreflex depressant effect of nicotine and whether this interaction is modulated by estrogen. Baroreflex curves relating reflex chronotropic responses evoked by i.v. doses (1–16 μg/kg) of phenylephrine (PE) or sodium nitroprusside (SNP), were constructed in conscious freely moving proestrus, ovariectomized (OVX), and estrogen (50 μg/kg/day s.c., 5 days)-replaced OVX (OVXE{sub 2}) rats. Slopes of the curves were takenmore » as a measure of baroreflex sensitivity (BRS{sub PE} and BRS{sub SNP}). Nicotine (100 μg/kg i.v.) reduced BRS{sub SNP} in OVX rats but not in proestrus or OVXE{sub 2} rats. The attenuation of reflex tachycardia by nicotine was also evident in diestrus rats, which exhibited plasma estrogen levels similar to those of OVX rats. BRS{sub PE} was not affected by nicotine in all rat preparations. Experiments were then extended to determine whether central estrogenic receptors modulate the nicotine–BRS{sub SNP} interaction. Intracisteral (i.c.) treatment of OVX rats with estrogen sulfate (0.2 μg/rat) abolished the BRS{sub SNP} attenuating effect of i.v. nicotine. This protective effect of estrogen disappeared when OVX rats were pretreated with i.c. ICI 182,780 (50 μg/rat, selective estrogen receptor antagonist). Together, these findings suggest that central neural pools of estrogen receptors underlie the protection offered by E{sub 2} against nicotine-induced baroreceptor dysfunction in female rats. -- Highlights: ► Estrogen protects against the depressant effect of nicotine on reflex tachycardia. ► The baroreflex response and estrogen status affect the nicotine–BRS interaction. ► The protection offered by estrogen is mediated via central estrogen receptors.« less
Wine, Jeffrey J
2007-04-30
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences.
ERIC Educational Resources Information Center
Flexer, Carol; Gans, Donald P.
1986-01-01
A study compared the responsiveness to sound by normal infants and profoundly multihandicapped children. Results revealed that the profoundly multihandicapped subjects displayed relatively more reflexive than attentive type behaviors and exhibited fewer behaviors per response. (Author/CB)
Central Cannabinoid Receptors Modulate Acquisition of Eyeblink Conditioning
ERIC Educational Resources Information Center
Steinmetz, Adam B.; Freeman, John H.
2010-01-01
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex,…
2013-10-01
voiding contractions (NVC) during normal bladder filling. These NVC are responsible for incontinence episodes, bladder and bladder neck damage, as...eliminated, however, voiding occurred by a combination of augmented overflow incontinence (NVC-driven and a vesicosomatic reflex of the hindquarters...spinal micturition reflex, but rather an augmented overflow incontinence with a locomotor component (High amplitude pressure swings in bottom trace
Cardiac effects of electrically induced intrathoracic autonomic reflexes.
Armour, J A
1988-06-01
Electrical stimulation of the afferent components in one cardiopulmonary nerve (the left vagosympathetic complex at a level immediately caudal to the origin of the left recurrent laryngeal nerve) in acutely decentralized thoracic autonomic ganglionic preparations altered cardiac chronotropism and inotropism in 17 of 44 dogs. Since these neural preparations were acutely decentralized, the effects were mediated presumably via intrathoracic autonomic reflexes. The lack of consistency of these reflexly generated cardiac responses presumably were due in part to anatomical variation of afferent axons in the afferent nerve stimulated. As stimulation of the afferent components in the same neural structure caudal to the heart (where cardiopulmonary afferent axons are not present) failed to elicit cardiac responses in any dog, it is presumed that when cardiac responses were elicited by the more cranially located stimulations, these were due to activation of afferent axons arising from the heart and (or) lungs. When cardiac responses were elicited, intramyocardial pressures in the right ventricular conus as well as the ventral and lateral walls of the left ventricle were augmented. Either bradycardia or tachycardia was elicited. Following hexamethonium administration no responses were produced, demonstrating that nicotonic cholinergic synaptic mechanisms were involved in these intrathoracic cardiopulmonary-cardiac reflexes. In six of the animals, when atropine was administered before hexamethonium, reflexly generated responses were attenuated. The same thing occurred when morphine was administered in four animals. In contrast, in four animals following administration of phentolamine, the reflexly generated changes were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)
Neural Excitability and Joint Laxity in Chronic Ankle Instability, Coper, and Control Groups.
Bowker, Samantha; Terada, Masafumi; Thomas, Abbey C; Pietrosimone, Brian G; Hiller, Claire E; Gribble, Phillip A
2016-04-01
Neuromuscular and mechanical deficiencies are commonly studied in participants with chronic ankle instability (CAI). Few investigators have attempted to comprehensively consider sensorimotor and mechanical differences among people with CAI, copers who did not present with prolonged dysfunctions after an initial ankle sprain, and a healthy control group. To determine if differences exist in spinal reflex excitability and ankle laxity among participants with CAI, copers, and healthy controls. Case-control study. Research laboratory. Thirty-seven participants with CAI, 30 participants categorized as copers, and 26 healthy control participants. We assessed spinal reflex excitability of the soleus using the Hoffmann reflex protocol. Participants' ankle laxity was measured with an instrumented ankle arthrometer. The maximum Hoffmann reflex : maximal muscle response ratio was calculated. Ankle laxity was measured as the total displacement in the anterior-posterior directions (mm) and total rotation in the inversion and eversion directions (°). Spinal reflex excitability was diminished in participants with CAI compared with copers and control participants (P = .01). No differences were observed among any of the groups for ankle laxity. Changes in the spinal reflex excitability of the soleus that likely affect ankle stability were seen only in the CAI group, yet no mechanical differences were noted across the groups. These findings support the importance of finding effective ways to increase spinal reflex excitability for the purpose of treating neural excitability dysfunction in patients with CAI.
Acoustic reflex on newborns: the influence of the 226 and 1,000 Hz probes.
Jacob-Corteletti, Lilian Cássia Bórnia; Duarte, Josilene Luciene; Zucki, Fernanda; Mariotto, Luciane Domingues Figueiredo; Lauris, José Roberto Pereira; Alvarenga, Kátia de Freitas
2015-01-01
To analyze the occurrence of acoustic reflex and its threshold on newborns using the 226 and 1,000 Hz probes. Thirty-six newborns with "PASS" results in newborn hearing screening and tympanogram with one or two peaks for both probe tones were included. Group I comprised 20 full-term newborns without risk indicator for hearing loss, and Group II comprised 16 newborns with at least one risk indicator. The study about ipsilateral acoustic reflex thresholds was conducted in 500, 1,000, 2,000, and 4,000 Hz. The groups presented the acoustic reflex thresholds between 50 and 100 dB for both probe tones. In the comparison between the probes, there were differences in all frequencies evaluated in Group I, with the lowest threshold mean for the 1,000 Hz probe. In Group II, differences were detected at 2,000 Hz. The mean acoustic reflex thresholds were similar in both groups for the 226 Hz probe. There was a difference for the 1,000 Hz probe in all tested frequencies. The percentage of response was higher in both groups for the 1,000 Hz probe. The kappa test showed extremely poor agreement in the comparison of results between both probes. The occurrence of acoustic reflex was higher in newborns and its thresholds were lower with the 1,000 Hz probe both for healthy newborns and for newborns at risk.
Berry, Gunnel; Svarovska, Beth
2014-08-01
Reflex Therapy (RT), akin to reflexology, is a non-invasive physiotherapy modality approved by the UK Chartered Society of Physiotherapists. One hundred members of the Association of Chartered Physiotherapists in Reflex Therapy (ACPIRT) participated in an audit to establish a baseline of practice. Findings indicate that experienced therapists use RT in conjunction with their professional skills to induce relaxation (95%) and reduce pain (86%) for patients with conditions including whiplash injury and chronic pain. According to 68% of respondents, RT is "very good," "good" or "as good as" orthodox physiotherapy practices. Requiring minimal equipment, RT may be as cost effective as orthodox physiotherapy with regards to duration and frequency of treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Berkowitz, Murray R
2015-01-01
Psychosis is a rare initial presentation of new-onset hypothyroidism. The author describes the case of a 29-year-old woman who presented with psychosis caused by hypothyroidism, or myxedema madness. Although the patient's psychosis resolved after standard monotherapy using levothyroxine sodium, her hypothyroidism persisted. Imaging of the patient's cervical spine showed that previous C5-C6 and C6-C7 fusions had failed. The failed fusions were corrected, and the patient's hypothyroidism resolved, suggesting that the somatovisceral reflex was the cause of the patient's hypothyroidism. Although somatovisceral reflex dysfunctions are rare, physicians should consider them as potential underlying causes of their patients' presenting medical conditions. © 2015 The American Osteopathic Association.
Raoof, Naz; Dai, Shuan
2016-07-15
Red reflex testing forms an essential part of newborn (within the first week of life) and infant (6 weeks of age) screening in New Zealand, as outlined in the Well Child/Tamariki Ora handbook. This survey of practitioners undertaking red reflex screening aimed to determine current practices and attitudes of screeners, as well as any barriers to screening. A short, multiple-choice, on-line questionnaire was sent to approximately 1,500 health care professionals undertaking red reflex screening, over a 4-week period. Four hundred and eighty-three survey responses were received from 267 GPs (55.4%), 153 midwives (31.7%), and 50 paediatricians (10.4%). Thirty-six respondents (7.8%) performed red reflex screening only when they had time to do so, 13 (2.8%) only undertook this when there were concerns raised by the parents. Most respondents (97.3%) used an ophthalmoscope to perform screening. Seventynine respondents (16.6%) felt they were "not sure/underconfident" at performing this test. Only 83 of 479 respondents (17.3%) had received any formal training. The development of an online resource or practical 'refresher' sessions would be well received and likely to improve current practices.
Kallesen, Molly; Psirides, Alex; Huckabee, Maggie-Lee
2016-06-01
Orotracheal intubation is known to impair cough reflex, but the validity of cough reflex testing (CRT) as a screening tool for silent aspiration in this population is unknown. One hundred and six participants in a tertiary-level intensive care unit (ICU) underwent CRT and videoendoscopic evaluation of swallowing (VES) within 24 hours of extubation. Cough reflex threshold was established for each participant using nebulized citric acid. Thirty-nine (37%) participants had an absent cough to CRT. Thirteen (12%) participants aspirated on VES, 9 (69%) without a cough response. Sensitivity of CRT to identify silent aspiration was excellent, but specificity was poor. There was a significant correlation between intubation duration and presence of aspiration on VES (P= .0107). There was no significant correlation between silent aspiration on VES and length of intubation, age, sex, diagnosis at intensive care unit admission, indication for intubation, Acute Physiology and Chronic Health Evaluation III score, morphine equivalent dose, or time of testing postextubation. Intensive care unit patients are at increased risk of aspiration in the 24 hours following extubation, and an impaired cough reflex is common. However, CRT overidentifies risk of silent aspiration in this population. Copyright © 2016 Elsevier Inc. All rights reserved.
Additive Effects of Threat-of-Shock and Picture Valence on Startle Reflex Modulation
Bublatzky, Florian; Guerra, Pedro M.; Pastor, M. Carmen; Schupp, Harald T.; Vila, Jaime
2013-01-01
The present study examined the effects of sustained anticipatory anxiety on the affective modulation of the eyeblink startle reflex. Towards this end, pleasant, neutral and unpleasant pictures were presented as a continuous stream during alternating threat-of-shock and safety periods, which were cued by colored picture frames. Orbicularis-EMG to auditory startle probes and electrodermal activity were recorded. Previous findings regarding affective picture valence and threat-of-shock modulation were replicated. Of main interest, anticipating aversive events and viewing affective pictures additively modulated defensive activation. Specifically, despite overall potentiated startle blink magnitude in threat-of-shock conditions, the startle reflex remained sensitive to hedonic picture valence. Finally, skin conductance level revealed sustained sympathetic activation throughout the entire experiment during threat- compared to safety-periods. Overall, defensive activation by physical threat appears to operate independently from reflex modulation by picture media. The present data confirms the importance of simultaneously manipulating phasic-fear and sustained-anxiety in studying both normal and abnormal anxiety. PMID:23342060
O'Donnell, Emma; Goodman, Jack M; Mak, Susanna; Murai, Hisayoshi; Morris, Beverley L; Floras, John S; Harvey, Paula J
2015-05-01
Our prior observations in normotensive postmenopausal women stimulated the hypotheses that compared with eumenorrheic women, active hypoestrogenic premenopausal women with functional hypothalamic amenorrhea would demonstrate attenuated reflex renin-angiotensin-aldosterone system responses to an orthostatic challenge, whereas to defend blood pressure reflex increases in muscle, sympathetic nerve activity would be augmented. To test these hypotheses, we assessed, in recreationally active women, 12 with amenorrhea (ExFHA; aged 25 ± 1 years; body mass index 20.7 ± 0.7 kg/m(2); mean ± SEM) and 17 with eumenorrhea (ExOv; 24 ± 1 years; 20.9 ± 0.5 kg/m(2)), blood pressure, heart rate, plasma renin, angiotensin II, aldosterone, and muscle sympathetic nerve activity at supine rest and during graded lower body negative pressure (-10, -20, and -40 mm Hg). At baseline, heart rate and systolic blood pressure were lower (P<0.05) in ExFHA (47 ± 2 beats/min and 94 ± 2 mm Hg) compared with ExOv (56 ± 2 beats/min and 105 ± 2 mm Hg), but muscle sympathetic nerve activity and renin-angiotensin-aldosterone system constituents were similar (P>0.05). In response to graded lower body negative pressure, heart rate increased (P<0.05) and systolic blood pressure decreased (P<0.05) in both groups, but these remained consistently lower in ExFHA (P<0.05). Lower body negative pressure elicited increases (P<0.05) in renin, angiotensin II, and aldosterone in ExOv, but not in ExFHA (P>0.05). Muscle sympathetic nerve activity burst incidence increased reflexively in both groups, but more so in ExFHA (P<0.05). Otherwise, healthy hypoestrogenic ExFHA women demonstrate low blood pressure and disruption of the normal circulatory response to an orthostatic challenge: plasma renin, angiotensin II, and aldosterone fail to increase and blood pressure is defended by an augmented sympathetic vasoconstrictor response. © 2015 American Heart Association, Inc.
Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders
2017-01-01
In this article children’s musical improvisation is investigated through the “reflexive interaction” paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a “reflexive” output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6–7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children’s abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children’s ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education. PMID:28184205
The role of attention in human motor resonance
Leonetti, Antonella; Landau, Ayelet; Fornia, Luca; Cerri, Gabriella; Borroni, Paola
2017-01-01
Observation of others' actions evokes in primary motor cortex and spinal circuits of observers a subliminal motor resonance response, which reflects the motor program encoding observed actions. We investigated the role of attention in human motor resonance with four experimental conditions, explored in different subject groups: in the first explicit condition, subjects were asked to observe a rhythmic hand flexion-extension movement performed live in front of them. In two other conditions subjects had to monitor the activity of a LED light mounted on the oscillating hand. The hand was clearly visible but it was not the focus of subjects’ attention: in the semi-implicit condition hand movement was relevant to task completion, while in the implicit condition it was irrelevant. In a fourth, baseline, condition subjects observed the rhythmic oscillation of a metal platform. Motor resonance was measured with the H-reflex technique as the excitability modulation of cortico-spinal motorneurons driving a hand flexor muscle. As expected, a normal resonant response developed in the explicit condition, and no resonant response in the baseline condition. Resonant responses also developed in both semi-implicit and implicit conditions and, surprisingly, were not different from each other, indicating that viewing an action is, per se, a powerful stimulus for the action observation network, even when it is not the primary focus of subjects’ attention and even when irrelevant to the task. However, the amplitude of these responses was much reduced compared to the explicit condition, and the phase-lock between the time courses of observed movement and resonant motor program was lost. In conclusion, different parameters of the response were differently affected by subtraction of attentional resources with respect to the explicit condition: time course and muscle selection were preserved while the activation of motor circuits resulted in much reduced amplitude and lost its kinematic specificity. PMID:28510605
Duclay, Julien; Pasquet, Benjamin; Martin, Alain; Duchateau, Jacques
2011-01-01
Abstract This study was designed to investigate the cortical and spinal mechanisms involved in the modulations of neural activation during lengthening compared with isometric and shortening maximal voluntary contractions (MVCs). Two muscles susceptible to different neural adjustments at the spinal level, the soleus (SOL) and medial gastrocnemius (MG), were compared. Twelve healthy males participated in at least two experimental sessions designed to assess corticospinal and spinal excitabilities. We compared the modulation of motor evoked potentials (MEPs) in response to transcranial magnetic stimulation and Hoffmann reflexes (H-reflexes) during isometric and anisometric MVCs. The H-reflex and MEP responses, recorded during lengthening and shortening MVCs, were compared with those obtained during isometric MVCs. The results indicate that the maximal amplitude of both MEP and H-reflex in the SOL were smaller (P < 0.01) during lengthening MVCs compared with isometric and shortening MVCs but similar (P > 0.05) in MG for all three muscle contraction types. The silent period that follows maximal MEPs was reduced (P < 0.01) during lengthening MVCs in the SOL but not the MG. Similar observations were obtained regardless of the initial length of the MG muscle. Collectively, the current results indicate that the relative contribution of both cortical and spinal mechanisms to the modulation of neural activation differs during lengthening MVCs and between two synergist muscles. The comparison of SOL and MG responses further suggests that the specific modulation of the corticospinal excitability during lengthening MVCs depends mainly on pre- and postsynaptic inhibitory mechanisms acting at the spinal level. PMID:21502288
Role of central command in carotid baroreflex resetting in humans during static exercise
NASA Technical Reports Server (NTRS)
Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.
2002-01-01
The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.
State-dependent and reflex drives to the upper airway: basic physiology with clinical implications
Hughes, Stuart W.; Malhotra, Atul
2013-01-01
The root cause of the most common and serious of the sleep disorders is impairment of breathing, and a number of factors predispose a particular individual to hypoventilation during sleep. In turn, obstructive hypopneas and apneas are the most common of the sleep-related respiratory problems and are caused by dysfunction of the upper airway as a conduit for airflow. The overarching principle that underpins the full spectrum of clinical sleep-related breathing disorders is that the sleeping brain modifies respiratory muscle activity and control mechanisms and diminishes the ability to respond to respiratory distress. Depression of upper airway muscle activity and reflex responses, and suppression of arousal (i.e., “waking-up”) responses to respiratory disturbance, can also occur with commonly used sedating agents (e.g., hypnotics and anesthetics). Growing evidence indicates that the sometimes critical problems of sleep and sedation-induced depression of breathing and arousal responses may be working through common brain pathways acting on common cellular mechanisms. To identify these state-dependent pathways and reflex mechanisms, as they affect the upper airway, is the focus of this paper. Major emphasis is on the synthesis of established and recent findings. In particular, we specifically focus on 1) the recently defined mechanism of genioglossus muscle inhibition in rapid-eye-movement sleep; 2) convergence of diverse neurotransmitters and signaling pathways onto one root mechanism that may explain pharyngeal motor suppression in sleep and drug-induced brain sedation; 3) the lateral reticular formation as a key hub of respiratory and reflex drives to the upper airway. PMID:23970535
Blood pressure responses to LBNP in nontrained and trained hypertensive rats
NASA Technical Reports Server (NTRS)
Bedford, T. G.; Tipton, C. M.
1992-01-01
To study the influences of 16 wk of endurance training on the reflex regulation of resting blood pressure, nontrained (NT) and trained (T) female hypertensive rats (SHR) were subjected to conditions of lower body negative pressure (LBNP). Measurements of muscle cytochrome oxidase activity and run time to exhaustion indicated that the animals were endurance trained. The rats (NT = 6, T = 7) were tranquilized with 300-600 micrograms.kg-1 diazepam (IV) before heart rates and blood pressures were measured over a range of 2.5-10.0 mm Hg of negative pressure. When subjected to conditions of LBNP, the reflex tachycardia of the T group was greater than the NT at the lower (-2.5 and -5.0 mm Hg) negative pressures. Although arterial pressure declines were similar in both groups, the T group experienced significantly less of a decline in central venous pressure than the NT animals. When chlorisondamine was used as a ganglionic blocker (2.5 mg.kg-1, IV), the fall in CVP at 10 mm Hg negative pressure was greater for the NT group while the fall in the initial systemic arterial pressure was more for the T group. From these results we concluded that training had altered the interaction between cardiopulmonary and arterial baroreflexes in these hypertensive rats and a nonneural component had been altered such as cardiac function.
Ivane S. Beritashvili (1884-1974): from spinal cord reflexes to image-driven behavior.
Tsagareli, M G; Doty, R W
2009-10-20
Ivane Beritashvili ("Beritoff" in Russian, and often in Western languages) was a major figure in 20th-century neuroscience. Mastering the string galvanometer, he founded the electrophysiology of spinal cord reflexes, showing that inhibition is a distinctly different process from excitation, contrary to the concepts of his famous mentor, Wedensky. Work on postural reflexes with Magnus was cut short by World War I, but he later demonstrated that navigation in two-dimensional space without vision is a function solely of the vestibular system rather than of muscle proprioception. Persevering in his experiments despite postwar turmoil he founded an enduring Physiology Institute in Tbilisi, where he pursued an ingenious and extensive investigation of comparative memory in vertebrates. This revealed the unique nature of mammalian memory processes, which he forthrightly called "image driven," and distinguished them unequivocally from those underlying conditional reflexes. For some 30 years the Stalinist terror confined his publications to the Russian language. Work with his colleague, Chichinadze, discovering that memory confined to one cerebral hemisphere could be accessed by the other via a specific forebrain commissure, did reach the West, and ultimately led to recognition of the fascinating "split brain" condition. In the 1950s he was removed from his professorial position for 5 years as being "anti-Pavlovian." Restored to favor, he was honorary president of the "Moscow Colloquium" that saw the foundation of the International Brain Research Organization.
The startle response and toxicology: Methods, use and interpretation.
The startle response (SR) is a sensory-evoked motor reflex that has been used successfully in toxicology for decades. Advantages of this procedure include: rapidly objective measurement of a defined neural circuit, measurement of habituation of the response, and a high potential ...
Rosa, Alberto L; Molina, Irma; Kowaljow, Valeria; Conde, Cecilia B
2006-01-01
Slow saccades, postural/intention tremor, peripheral neuropathy, and decreased deep-tendon reflexes are valuable neurological signs for clinical suspicion of spinocerebellar ataxia type 2 (SCA2). We report the presence of abnormally brisk deep-tendon reflexes in nonsymptomatic carriers and mildly and severely affected subjects of a large Argentinean SCA2 pedigree. The identification of this distinctive SCA2 phenotype in an entire pedigree reinforces the current concept that clinical algorithms are of limited value as indicators for genetic testing in SCA. Combined with published pedigrees of SCA2 manifesting as levodopa-responsive parkinsonism, this finding suggests that modifier genes could influence the clinical phenotype of SCA2. Copyright (c) 2005 Movement Disorder Society.
Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Tsuji, Kojun; Nagoya, Kouta; Magara, Jin; Tsujimura, Takanori; Inoue, Makoto
2018-05-03
This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 sec. In the middle 10 sec, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-sec periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-sec SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed. Copyright © 2018. Published by Elsevier B.V.
Exocrine and endocrine release of kallikrein after reflex-induced salivary secretion.
Berg, T; Johansen, L; Poulsen, K
1990-05-01
Exocrine and endocrine release of rat submandibular gland kallikrein has been shown to be low after parasympathetic and beta-adrenergic stimulation but greatly increased after alpha-adrenergic stimulation. In the present study, release of glandular kallikrein was investigated under conditions known to give a reflex-induced salivary gland response. Heat stress induced a rich flow of saliva originating in the submandibular glands. Salivary kallikrein secretory rate was higher than after parasympathetic stimulation but lower than after sympathetic stimulation (P less than 0.005). Only heat stress increased circulating glandular kallikrein (12.7 +/- 0.8 ng ml-1 before heat exposure and 53.3 +/- 14.1 ng ml-1 40 min afterwards, P less than 0.005). There were no indications that the endocrine release of kallikrein was due to non-specific leakage. Atropine abolished heat-induced salivation and endocrine kallikrein secretion, possibly through interference with central pathways (P less than 0.05). However, phentolamine did not, which may indicate as an yet unidentified mediator of endogenous kallikrein release. The salivary gland response to acid and ether was comparable to that observed after parasympathetic nerve stimulation and was abolished by atropine (P less than 0.005). Stimuli known to influence other salivary gland ductal cells, such as aggression and starvation followed by drinking, also did not increase the plasma concentration of glandular kallikrein. The fact that various conditions which induce salivation did not increase circulating glandular kallikrein, coupled with the fact that kallikrein concentration was the highest in animals that died from heat stress, may suggest that the increase in circulating glandular kallikrein seen after heat stress may be pathological and could contribute to the development of heat shock.
Werner, D. F.; Swihart, A.; Rau, V.; Jia, F.; Borghese, C. M.; McCracken, M. L.; Iyer, S.; Fanselow, M. S.; Oh, I.; Sonner, J. M.; Eger, E. I.; Harrison, N. L.; Harris, R. A.
2011-01-01
The mechanism by which the inhaled anesthetic isoflurane produces amnesia and immobility is not understood. Isoflurane modulates GABAA receptors (GABAA-Rs) in a manner that makes them plausible targets. We asked whether GABAA-R α2 subunits contribute to a site of anesthetic action in vivo. Previous studies demonstrated that Ser270 in the second transmembrane domain is involved in the modulation of GABAA-Rs by volatile anesthetics and alcohol, either as a binding site or a critical allosteric residue. We engineered GABAA-Rs with two mutations in the α2 subunit, changing Ser270 to His and Leu277 to Ala. Recombinant receptors with these mutations demonstrated normal affinity for GABA, but substantially reduced responses to isoflurane. We then produced mutant (knockin) mice in which this mutated subunit replaced the wild-type α2 subunit. The adult mutant mice were overtly normal, although there was evidence of enhanced neonatal mortality and fear conditioning. Electrophysiological recordings from dentate granule neurons in brain slices confirmed the decreased actions of isoflurane on mutant receptors contributing to inhibitory synaptic currents. The loss of righting reflex EC50 for isoflurane did not differ between genotypes, but time to regain the righting reflex was increased in N2 generation knockins. This effect was not observed at the N4 generation. Isoflurane produced immobility (as measured by tail clamp) and amnesia (as measured by fear conditioning) in both wild-type and mutant mice, and potencies (EC50) did not differ between the strains for these actions of isoflurane. Thus, immobility or amnesia does not require isoflurane potentiation of the α2 subunit. PMID:20807777
Saavedra, Y; Vergara, P
2003-03-28
Several studies demonstrate that intestinal mucosal mast cells (IMMC) are modulated by nervous reflexes as well as by intraluminal content. We recently demonstrated that peptones, such as ovalbumin hydrolysate (OVH), induce the release of rat mast cell protease II (RMCP II), indicating IMMC degranulation. The response is due to complex neuroendocrine reflexes. Somatostatin (SS) and its analogues have been used as potential treatments for inflammation in other body systems with contradictory results. The aim of this study was to evaluate if somatostatin could contribute to the reduction of intestinal mucosal mast cell degranulation. Anesthetized rats were prepared for duodenal perfusion and mast cell activation was measured by analysis of RMCP II concentration in the duodenal perfusate. Somatostatin significantly decreased RMCP II concentration in both nonstimulated conditions and after ovalbumin hydrolysate perfusion. However, when somatostatin was given previously to OVH, the peptone still induced a slight increase of RMCP II. Similar effects were observed in animals previously treated with capsaicin. These protocols were repeated in animals infected with Trichinella spiralis, which induces mucosal mast cell hyperplasia. In these cases, somatostatin blocked the effect of OVH, thus, preventing an increase in RMCP II concentration. Fresh frozen tissue sections from the duodenum were processed in an attempt to demonstrate the presence of SS receptors in mast cells using immunofluorescence and Fluo-peptide labeling techniques. Confocal images from duodenum specimens demonstrate the existence of SS receptors in positive cells for RMCP II. Taken together, these results indicate that somatostatin diminishes mast cell activity and in consequence could prevent the intestinal responses to mast cell hyperplasia. Copyright 2002 Elsevier Science B.V.
Assessment of Ipsilateral Efferent Effects in Human via ECochG
Verschooten, Eric; Strickland, Elizabeth A.; Verhaert, Nicolas; Joris, Philip X.
2017-01-01
Development of electrophysiological means to assess the medial olivocochlear (MOC) system in humans is important to further our understanding of the function of that system and for the refinement and validation of psychoacoustical and otoacoustic emission methods which are thought to probe the MOC. Based on measurements in anesthetized animals it has been hypothesized that the MOC-reflex (MOCR) can enhance the response to signals in noise, and several lines of evidence support such a role in humans. A difficulty in these studies is the isolation of efferent effects. Efferent activation can be triggered by acoustic stimulation of the contralateral or ipsilateral ear, but ipsilateral stimulation is thought to be more effective. However, ipsilateral stimulation complicates interpretation of effects since these sounds can affect the perception of other ipsilateral sounds by mechanisms not involving olivocochlear efferents. We assessed the ipsilaterally evoked MOCR in human using a transtympanic procedure to record mass-potentials from the cochlear promontory or the niche of the round window. Averaged compound action potential (CAP) responses to masked probe tones of 4 kHz with and without a precursor (designed to activate the MOCR but not the stapedius reflex) were extracted with a polarity alternating paradigm. The masker was either a simultaneous narrow band noise masker or a short (20-ms) tonal ON- or OFF-frequency forward masker. The subjects were screened for normal hearing (audiogram, tympanogram, threshold stapedius reflex) and psychoacoustically tested for the presence of a precursor effect. We observed a clear reduction of CAP amplitude by the precursor, for different masking conditions. Even without an MOCR, this is expected because the precursor will affect the response to subsequent stimuli via neural adaptation. To determine whether the precursor also activated the efferent system, we measured the CAP over a range of masker levels, with or without precursor, and for different types of masker. The results show CAP reduction consistent with the type of gain reduction caused by the MOCR. These results generally support psychoacoustical paradigms designed to probe the efferent system as indeed activating the MOCR system, but not all observations are consistent with this mechanism. PMID:28642679
Frisardi, Gianni; Iani, Cesare; Sau, Gianfranco; Frisardi, Flavio; Leornadis, Carlo; Lumbau, Aurea; Enrico, Paolo; Sirca, Donatella; Staderini, Enrico Maria; Chessa, Giacomo
2013-10-28
In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Electrophysiological studies included bilateral electrical transcranial stimulation of the trigeminal roots, analysis of the jaw jerk reflex, recovery cycle of masseter inhibitory reflex, and a magnetic resonance imaging study of the brain. The neuromuscular responses of the left- and right-side bilateral trigeminal motor potentials showed a high degree of symmetry in latency (1.92 ms and 1.96 ms, respectively) and amplitude (11 mV and 11.4 mV, respectively), whereas the jaw jerk reflex amplitude of the right and left masseters was 5.1 mV and 8.9 mV, respectively. The test stimulus for the recovery cycle of masseter inhibitory reflex evoked both silent periods at an interstimulus interval of 150 ms. The duration of the second silent period evoked by the test stimulus was 61 ms and 54 ms on the right and left masseters, respectively, which was greater than that evoked by the conditioning stimulus (39 ms and 35 ms, respectively). We found evidence of activation and peripheral sensitization of the nociceptive fibers, the primary and secondary nociceptive neurons in the central nervous system, and the endogenous pain control systems (including both the inhibitory and facilitatory processes), in the tested subject. These data suggest that bruxism and central orofacial pain can coexist, but are two independent symptoms, which may explain why numerous experimental and clinical studies fail to reach unequivocal conclusions.
2013-01-01
Background In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Methods Electrophysiological studies included bilateral electrical transcranial stimulation of the trigeminal roots, analysis of the jaw jerk reflex, recovery cycle of masseter inhibitory reflex, and a magnetic resonance imaging study of the brain. Results The neuromuscular responses of the left- and right-side bilateral trigeminal motor potentials showed a high degree of symmetry in latency (1.92 ms and 1.96 ms, respectively) and amplitude (11 mV and 11.4 mV, respectively), whereas the jaw jerk reflex amplitude of the right and left masseters was 5.1 mV and 8.9 mV, respectively. The test stimulus for the recovery cycle of masseter inhibitory reflex evoked both silent periods at an interstimulus interval of 150 ms. The duration of the second silent period evoked by the test stimulus was 61 ms and 54 ms on the right and left masseters, respectively, which was greater than that evoked by the conditioning stimulus (39 ms and 35 ms, respectively). Conclusions We found evidence of activation and peripheral sensitization of the nociceptive fibers, the primary and secondary nociceptive neurons in the central nervous system, and the endogenous pain control systems (including both the inhibitory and facilitatory processes), in the tested subject. These data suggest that bruxism and central orofacial pain can coexist, but are two independent symptoms, which may explain why numerous experimental and clinical studies fail to reach unequivocal conclusions. PMID:24165294
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Balance performance was recorded under normal loading (NL, 1 g), UL (0.16 g 0.38 g) and OL (1.8 g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5 Hz (LF), medium 0.5-2 Hz (MF), high 2-6 Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support.
Saxena, Udit; Allan, Chris; Allen, Prudence
2017-06-01
Previous studies have suggested elevated reflex thresholds in children with auditory processing disorders (APDs). However, some aspects of the child's ear such as ear canal volume and static compliance of the middle ear could possibly affect the measurements of reflex thresholds and thus impact its interpretation. Sound levels used to elicit reflexes in a child's ear may be higher than predicted by calibration in a standard 2-cc coupler, and lower static compliance could make visualization of very small changes in impedance at threshold difficult. For this purpose, it is important to evaluate threshold data with consideration of differences between children and adults. A set of studies were conducted. The first compared reflex thresholds obtained using standard clinical procedures in children with suspected APD to that of typically developing children and adults to test the replicability of previous studies. The second study examined the impact of ear canal volume on estimates of reflex thresholds by applying real-ear corrections. Lastly, the relationship between static compliance and reflex threshold estimates was explored. The research is a set of case-control studies with a repeated measures design. The first study included data from 20 normal-hearing adults, 28 typically developing children, and 66 children suspected of having an APD. The second study included 28 normal-hearing adults and 30 typically developing children. In the first study, crossed and uncrossed reflex thresholds were measured in 5-dB step size. Reflex thresholds were analyzed using repeated measures analysis of variance (RM-ANOVA). In the second study, uncrossed reflex thresholds, real-ear correction, ear canal volume, and static compliance were measured. Reflex thresholds were measured using a 1-dB step size. The effect of real-ear correction and static compliance on reflex threshold was examined using RM-ANOVA and Pearson correlation coefficient, respectively. Study 1 replicated previous studies showing elevated reflex thresholds in many children with suspected APD when compared to data from adults using standard clinical procedures, especially in the crossed condition. The thresholds measured in children with suspected APD tended to be higher than those measured in the typically developing children. There were no significant differences between the typically developing children and adults. However, when real-ear calibrated stimulus levels were used, it was found that children's thresholds were elicited at higher levels than in the adults. A significant relationship between reflex thresholds and static compliance was found in the adult data, showing a trend for higher thresholds in ears with lower static compliance, but no such relationship was found in the data from the children. This study suggests that reflex measures in children should be adjusted for real-ear-to-coupler differences before interpretation. The data in children with suspected APD support previous studies suggesting abnormalities in reflex thresholds. The lack of correlation between threshold and static compliance estimates in children as was observed in the adults may suggest a nonmechanical explanation for age and clinically related effects. American Academy of Audiology
Effects of minoxidil and nitroprusside on reflex increases in myocardial contractility.
Robie, N W
1978-01-01
1 The effects of nitroprusside and minoxidil on increases in myocardial contractility resulting from carotid artery occlusion were investigated in anaesthetized dogs. The results were compared with those produced by intravenous influsion of noradrenaline. 2 Nitroprusside and minoxidil attenuated the pressor responses produced by carotid artery occlusion. 3 Nitroprusside, but not minoxidil, attenuated the maximal myocardial contractility resulting from carotid occlusion. 4 The pressor and contractility responses to noradrenaline infusion were unaffected by either agent. 5 Nitroprusside failed to alter the myocardial responses produced by dimethylphenylpiperazinium. 6 These results, in conjunction with those of other investigators who have demonstrated that nitroprusside does not affect the release of noradrenaline from adrenergic neurons, suggest that nitroprusside may inhibit sympathetic nervous system reflex activity via an afferent and/or central component. PMID:620094
Heredia, Dante J; Gershon, Michael D; Koh, Sang Don; Corrigan, Robert D; Okamoto, Takanubu; Smith, Terence K
2013-12-01
Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1(-/-) mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT. We used video analysis of faecal pellet propulsion, tension transducers to record colonic migrating motor complexes (CMMCs) and intracellular microelectrodes to record circular muscle activity occurring spontaneously or following intraluminal distension. When compared with control (Tph1(+/+)) mice, Tph1(-/-) animals exhibited: (1) an elongated colon; (2) larger faecal pellets; (3) orthograde propulsion followed by retropulsion (not observed in Tph1(+/+) colon); (4) slower in vitro propulsion of larger faecal pellets (28% of Tph1(+/+)); (5) CMMCs that infrequently propagated in an oral to anal direction because of impaired descending inhibition; (6) reduced CMMCs and inhibitory responses to intraluminal balloon distension; (7) an absence of reflex activity in response to mucosal stimulation. In addition, (8) thin pellets that propagated along the control colon failed to do so in Tph1(-/-) colon; and (9) the 5-HT3 receptor antagonist ondansetron, which reduced CMMCs and blocked their propagation in Tph1(+/+) mice, failed to alter CMMCs in Tph1(-/-) animals. Our observations suggest that mucosal 5-HT is essential for reflexes driven by mucosal stimulation and is also important for normal propagation of CMMCs and propulsion of pellets in the isolated colon.
Missing Optomotor Head-Turning Reflex in the DBA/2J Mouse
Huang, Wei; Chen, Hui; Koehler, Christopher L.; Howell, Gareth; John, Simon W. M.; Tian, Ning; Rentería, René C.; Križaj, David
2011-01-01
Purpose. The optomotor reflex of DBA/2J (D2), DBA/2J-Gpnmb+ (D2-Gpnmb+), and C57BL/6J (B6) mouse strains was assayed, and the retinal ganglion cell (RGC) firing patterns, direction selectivity, vestibulomotor function and central vision was compared between the D2 and B6 mouse lines. Methods. Intraocular pressure (IOP) measurements, real-time PCR, and immunohistochemical analysis were used to assess the time course of glaucomatous changes in D2 retinas. Behavioral analyses of optomotor head-turning reflex, visible platform Morris water maze and Rotarod measurements were conducted to test vision and vestibulomotor function. Electroretinogram (ERG) measurements were used to assay outer retinal function. The multielectrode array (MEA) technique was used to characterize RGC spiking and direction selectivity in D2 and B6 retinas. Results. Progressive increase in IOP and loss of Brn3a signals in D2 animals were consistent with glaucoma progression starting after 6 months of age. D2 mice showed no response to visual stimulation that evoked robust optomotor responses in B6 mice at any age after eye opening. Spatial frequency threshold was also not measurable in the D2-Gpnmb+ strain control. ERG a- and b-waves, central vision, vestibulomotor function, the spiking properties of ON, OFF, ON-OFF, and direction-selective RGCs were normal in young D2 mice. Conclusions. The D2 strain is characterized by a lack of optomotor reflex before IOP elevation and RGC degeneration are observed. This behavioral deficit is D2 strain–specific, but is independent of retinal function and glaucoma. Caution is advised when using the optomotor reflex to follow glaucoma progression in D2 mice. PMID:21757588
Shafik, Ahmed; Shafik, Ali A; el-Sibai, Olfat
2003-01-01
In chronic constipation due to delayed colonic transit, stasis of the ileal contents with resulting ileal distension may occur. The current study investigated the effect of ileal and jejunal distension on the gastric motility, aiming at elucidating the possible existence of a relationship and its role in the flow through the gut. The response of the gastric pressure to ileal and jejunal balloon distension in increments of 2 mL of saline was recorded in 12 mongrel dogs. The test was repeated after separate local anesthetization of the ileum, jejunum and stomach. 2- and 4-mL ileal balloon distension produced no significant gastric pressure response, while 6- and up to 10-mL distension effected decrease of the antral and corporeal pressures (p < 0.05, p < 0.05, respectively). Jejunal distension produced a gastric pressure decline (p < 0.05) with 4 and up to 10 mL of saline. The gastric pressure decrease did not show significant changes with the various distending volumes. It was maintained as long as ileal or jejunal distension was continued. Distension of the anesthetized ileum or jejunum caused no gastric pressure changes, nor did ileal or jejunal distension produce pressure changes in the anesthetized stomach. The gastric pressure decline and presumably hypotonia upon ileal or jejunal distension with big volumes postulate a reflex relationship which we call "entero-gastric inhibitory reflex". The small intestine is suggested to slow down gastric emptying through this reflex. A balance is thus created between chyme delivery from the stomach and chyme processing by the small intestine. Reflex derangement in neurogenic and myogenic diseases may result in gastrointestinal disorders, a point that needs to be investigated.
McPherson, Jacob G.; McPherson, Laura M.; Thompson, Christopher K.; Ellis, Michael D.; Heckman, Charles J.; Dewald, Julius P. A.
2018-01-01
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms. PMID:29686611
Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli
NASA Technical Reports Server (NTRS)
Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.
1989-01-01
The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).
Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control
Bessac, Bret F.; Jordt, Sven-Eric
2009-01-01
New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough and airway inflammation in asthma, COPD and reactive airway dysfunction syndrome. PMID:19074743
Magee, Barry; Elwood, Robert W
2016-09-01
Arthropods have long been thought to respond to noxious stimuli by reflex reaction. One way of testing if this is true is to provide the animal with a way to avoid the stimulus but to vary the potential cost of avoidance. If avoidance varies with potential cost then a decision making process is evident and the behaviour is not a mere reflex. Here we examine the responses of hermit crabs to electric shock within their shell when also exposed to predator or non-predator odours or to no odour. The electric shocks start with low voltage but increase in voltage with each repetition to determine how odour affects the voltage at which the shell is abandoned. There was no treatment effect on the voltage at which hermit crabs left their shells, however, those exposed to predator odours were less likely to evacuate their shells compared with no odour or low concentrations of non-predator odour. However, highly concentrated non-predator also inhibited evacuation. The data show that these crabs trade-off avoidance of electric shock with predator avoidance. They are thus not responding purely by reflex and the data are thus consistent with predictions of pain but do not prove pain. Copyright © 2016 Elsevier B.V. All rights reserved.
Åsli, Ole; Flaten, Magne A.
2012-01-01
The latency of startle reflex potentiation may shed light on the aware and unaware processes underlying associative learning, especially associative fear learning. We review research suggesting that single-cue delay classical conditioning is independent of awareness of the contingency between the conditioned stimulus (CS) and the unconditioned stimulus (US). Moreover, we discuss research that argues that conditioning independent of awareness has not been proven. Subsequently, three studies from our lab are presented that have investigated the role of awareness in classical conditioning, by measuring the minimum latency from CS onset to observed changes in reflexive behavior. In sum, research using this method shows that startle is potentiated 30 to 100 ms after CS onset following delay conditioning. Following trace fear conditioning, startle is potentiated 1500 ms after CS presentation. These results indicate that the process underlying delay conditioned responding is independent of awareness, and that trace fear conditioned responding is dependent on awareness. Finally, this method of investigating the role of awareness is discussed and future research possibilities are proposed. PMID:24962686
Clark, F J; Matthews, P B; Muir, R B
1981-02-01
1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor.2. When the amplitude of vibration was 50 mum, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 mum vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut.3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 mum vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 mum vibration; at the same time the reflex tension increased.4. Additional, indirect evidence favouring widespread security of Ia driving by 50 mum vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action.5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general similarity to the tremor in the same preparation, but measurement of coherence demonstrated that the tremor and Ia firing were not well related. This was probably because individual Ia afferents were primarily influenced by local factors, and provides further evidence against the tremor of this preparation being attributable to the action of the stretch reflex.
Clark, F. J.; Matthews, P. B. C.; Muir, R. B.
1981-01-01
1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor. 2. When the amplitude of vibration was 50 μm, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 μm vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut. 3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 μm vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 μm vibration; at the same time the reflex tension increased. 4. Additional, indirect evidence favouring widespread security of Ia driving by 50 μm vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action. 5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general similarity to the tremor in the same preparation, but measurement of coherence demonstrated that the tremor and Ia firing were not well related. This was probably because individual Ia afferents were primarily influenced by local factors, and provides further evidence against the tremor of this preparation being attributable to the action of the stretch reflex. PMID:7264987
Glycine Receptors Containing α2 or α3 Subunits Regulate Specific Ethanol-Mediated Behaviors
Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth
2015-01-01
Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol. PMID:25678534
Effects of teeth clenching on the soleus H reflex during lower limb muscle fatigue.
Mitsuyama, Akihiro; Takahashi, Toshiyuki; Ueno, Toshiaki
2017-04-01
We assessed whether the soleus H reflex was depressed or facilitated in association with voluntary teeth clenching during muscle fatigue. A total of 13 and 9 healthy adult subjects were instructed to perform right-side tiptoe standing for 5 (TS1) and 10min (TS2) to induce the soleus muscle fatigue. Electromyograms (EMGs) were recorded from the bilateral masseter as well as the right-side soleus muscles. H reflex was evoked using a surface electrode. The isometric muscle strength during plantar flexion was measured. We tested two dental occlusal conditions (1) with maximal voluntary teeth clenching (MVTC) and (2) at mandibular rest position (RP). H reflex was evoked before and after TS1 and TS2. The isometric muscle strength during plantar flexion was measured before and after TS1 and TS2. Mean amplitudes of H reflex with MVTC before and after TS1 were significantly larger than that with RP before and after TS1. The mean peak torque (PT) during isometric plantar flexion was observed significant differences in all subjects. The mean amplitude of H reflex with MVTC before TS2 was significantly larger than that with RP before TS2. No significant difference between RP after TS2 and MVTC after TS2. The mean PT with MVTC before TS2 was significantly larger than that with RP before TS2. There was no significant difference between RP and MVTC after TS2. The present study demonstrated that teeth clenching could facilitate H reflex regardless of the degree of muscle fatigue. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Cabib, Christopher; Cipullo, Federica; Morales, Merche; Valls-Solé, Josep
2016-01-01
Transcranial direct current stimulation (tDCS) causes a tiny burning sensation through activation of local cutaneous trigeminal afferents. Trigeminal sensory inputs from tDCS may generate excitability changes in the trigemino-facial reflex circuits. Sixteen healthy volunteers were submitted to 20 minutes tDCS sessions with two types of electrode-montage conditions: 1. Real vs Sham 'bi-hemispheric' tDCS (cathode/anode: C4/C3), for blinded assessment of effects, and 2. 'uni-hemispheric' tDCS (cathode/anode: Fp3/C3), for assessment of laterality of the effects. Supraorbital nerve stimuli were used to obtain blink reflexes before, during (10 minutes from onset) and after (30 minutes from onset) the tDCS session. Outcome measures were R2 habituation (R2H) to repeated stimuli, the blink reflex excitability recovery (BRER) to paired stimuli and the blink reflex inhibition by a prepulse (BRIP). Real but not sham bi-hemispheric tDCS caused a significant decrease of R2H and leftward shift of BRER curve (p < 0.05 for all measures). The effects of uni-hemispheric tDCS on BRER and BRIP were larger on ipsilateral than on contralateral blink reflexes (p < 0.05). Excitability changes were still present 10 minutes after the end of stimulation in a lesser extent. This study shows that 20 minute tDCS enhances the excitability of trigemino-facial reflex circuits. The finding of larger ipsilateral than contralateral effects suggests that sensitization through cutaneous trigeminal afferents adds on other possible mechanisms such as activation of cortico-nuclear or cortico-reticular connections. Copyright © 2016 Elsevier Inc. All rights reserved.
Nelson, Brady D; Hajcak, Greg
2017-02-01
There is growing evidence that heightened sensitivity to unpredictability is a core mechanism of anxiety disorders. In adults, multiple anxiety disorders have been associated with a heightened startle reflex in anticipation of unpredictable threat. Child and adolescent anxiety has been linked to an increased startle reflex across baseline, safety, and threat conditions. However, it is unclear whether anxiety in youth is related to the startle reflex as a function of threat predictability. In a sample of 90 8 to 14 year-old girls, the present study examined the association between anxiety symptom dimensions and startle potentiation during a no, predictable, and unpredictable threat task. Depression symptom dimensions were also examined given their high comorbidity with anxiety and mixed relationship with the startle reflex and sensitivity to unpredictability. To assess current symptoms, participants completed the self-report Screen for Child Anxiety Related Emotional Disorders and Children's Depression Inventory. Results indicated that social phobia symptoms were associated with heightened startle potentiation in anticipation of unpredictable threat and attenuated startle potentiation in anticipation of predictable threat. Negative mood and negative self-esteem symptoms were associated with attenuated and heightened startle potentiation in anticipation of unpredictable threat, respectively. All results remained significant after controlling for the other symptom dimensions. The present study provides initial evidence that anxiety and depression symptom dimensions demonstrate unique associations with the startle reflex in anticipation of unpredictable threat in children and adolescents.
Nelson, Brady D.; Hajcak, Greg
2016-01-01
There is growing evidence that heightened sensitivity to unpredictability is a core mechanism of anxiety disorders. In adults, multiple anxiety disorders have been associated with a heightened startle reflex in anticipation of unpredictable threat. Child and adolescent anxiety has been linked to an increased startle reflex across baseline, safety, and threat conditions. However, it is unclear whether anxiety in youth is related to the startle reflex as a function of threat predictability. In a sample of 90 8 to 14 year-old girls, the present study examined the association between anxiety symptom dimensions and startle potentiation during a no, predictable, and unpredictable threat task. Depression symptom dimensions were also examined given their high comorbidity with anxiety and mixed relationship with the startle reflex and sensitivity to unpredictability. To assess current symptoms, participants completed the self-report Screen for Child Anxiety Related Emotional Disorders and Children’s Depression Inventory. Results indicated that social phobia symptoms were associated with heightened startle potentiation in anticipation of unpredictable threat and attenuated startle potentiation in anticipation of predictable threat. Negative mood and negative self-esteem symptoms were associated with attenuated and heightened startle potentiation in anticipation of unpredictable threat, respectively. All results remained significant after controlling for the other symptom dimensions. The present study provides initial evidence that anxiety and depression symptom dimensions demonstrate unique associations with the startle reflex in anticipation of unpredictable threat in children and adolescents. PMID:27224989
Vestibulo-Sympathetic Responses
Yates, Bill J; Bolton, Philip S.; Macefield, Vaughan G.
2014-01-01
Evidence accumulated over 30 years, from experiments on animals and human subjects, has conclusively demonstrated that inputs from the vestibular otolith organs contribute to the control of blood pressure during movement and changes in posture. This review considers the effects of gravity on the body axis, and the consequences of postural changes on blood distribution in the body. It then separately considers findings collected in experiments on animals and human subjects demonstrating that the vestibular system regulates blood distribution in the body during movement. Vestibulosympathetic reflexes differ from responses triggered by unloading of cardiovascular receptors such as baroreceptors and cardiopulmonary receptors, as they can be elicited before a change in blood distribution occurs in the body. Dissimilarities in the expression of vestibulosympathetic reflexes in humans and animals are also described. In particular, there is evidence from experiments in animals, but not humans, that vestibulosympathetic reflexes are patterned, and differ between body regions. Results from neurophysiological and neuroanatomical studies in animals are discussed that identify the neurons that mediate vestibulosympathetic responses, which include cells in the caudal aspect of the vestibular nucleus complex, interneurons in the lateral medullary reticular formation, and bulbospinal neurons in the rostral ventrolateral medulla (RVLM). Recent findings showing that cognition can modify the gain of vestibulosympathetic responses are also presented, and neural pathways that could mediate adaptive plasticity in the responses are proposed, including connections of the posterior cerebellar vermis with the vestibular nuclei and brainstem nuclei that regulate blood pressure. PMID:24715571
Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.
Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo
2015-03-25
Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya
2013-02-01
The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.
Lei, Shaobo; Goltz, Herbert C; Chen, Xingqiao; Zivcevska, Marija; Wong, Agnes M F
2017-03-01
To investigate the chromatic characteristics and intensity-response function of light-induced reflex lacrimation and its correlation with the melanopsin-driven postillumination pupil response (PIPR). Eleven visually normal participants completed the experiment. Lacrimation was measured in one eye by placing a calibrated filter paper strip in the conjunctival sac over a 1 minute-interval (Schirmer's test) during which participants received either no light stimulation (baseline trial) or one flash of blue or red light stimuli presented binocularly with a Ganzfeld stimulator, while the pupil response was recorded simultaneously from the fellow eye by using an eye tracker. Light stimulation trials were presented in alternating fashion at seven incremental intensity steps (0.1, 1, 3.16, 10, 31.6, 100, and 400 cd/m2). Postillumination pupil response was defined as the mean pupil constriction from 10 to 30 seconds post illumination. The amount of lacrimation in response to 10 to 400 cd/m2 blue light was significantly greater than baseline and increased monotonically with increasing light intensity. Red light did not induce significant reflex lacrimation until the brightest stimulation at 400 cd/m2. There was a positive linear correlation between PIPR and lacrimation in response to blue light (r = 0.74, P < 0.001) but not to red light (r = 0.13, P = 0.25). The chromatic characteristics and intensity-response of light-induced lacrimation are highly consistent with the features of melanopsin phototransduction. This finding is the first in vivo evidence in humans, supporting the hypothesis that light-induced reflex lacrimation is mediated primarily by melanopsin photoactivity, and provides new insight into the putative mechanisms of photophobia.
Magnetic Sensing through the Abdomen of the Honey bee.
Liang, Chao-Hung; Chuang, Cheng-Long; Jiang, Joe-Air; Yang, En-Cheng
2016-03-23
Honey bees have the ability to detect the Earth's magnetic field, and the suspected magnetoreceptors are the iron granules in the abdomens of the bees. To identify the sensing route of honey bee magnetoreception, we conducted a classical conditioning experiment in which the responses of the proboscis extension reflex (PER) were monitored. Honey bees were successfully trained to associate the magnetic stimulus with a sucrose reward after two days of training. When the neural connection of the ventral nerve cord (VNC) between the abdomen and the thorax was cut, the honey bees no longer associated the magnetic stimulus with the sucrose reward but still responded to an olfactory PER task. The neural responses elicited in response to the change of magnetic field were also recorded at the VNC. Our results suggest that the honey bee is a new model animal for the investigation of magnetite-based magnetoreception.
Aseyev, Nikolay; Vinarskaya, Alia Kh; Roshchin, Matvey; Korshunova, Tatiana A; Malyshev, Aleksey Yu; Zuzina, Alena B; Ierusalimsky, Victor N; Lemak, Maria S; Zakharov, Igor S; Novikov, Ivan A; Kolosov, Peter; Chesnokova, Ekaterina; Volkova, Svetlana; Kasianov, Artem; Uroshlev, Leonid; Popova, Yekaterina; Boyle, Richard D; Balaban, Pavel M
2017-01-01
The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.
Bogle, Jamie M; Zapala, David A; Criter, Robin; Burkard, Robert
2013-02-01
The cervical vestibular evoked myogenic potential (cVEMP) is a reflexive change in sternocleidomastoid (SCM) muscle contraction activity thought to be mediated by a saccular vestibulo-collic reflex. CVEMP amplitude varies with the state of the afferent (vestibular) limb of the vestibulo-collic reflex pathway, as well as with the level of SCM muscle contraction. It follows that in order for cVEMP amplitude to reflect the status of the afferent portion of the reflex pathway, muscle contraction level must be controlled. Historically, this has been accomplished by volitionally controlling muscle contraction level either with the aid of a biofeedback method, or by an a posteriori method that normalizes cVEMP amplitude by the level of muscle contraction. A posteriori normalization methods make the implicit assumption that mathematical normalization precisely removes the influence of the efferent limb of the vestibulo-collic pathway. With the cVEMP, however, we are violating basic assumptions of signal averaging: specifically, the background noise and the response are not independent. The influence of this signal-averaging violation on our ability to normalize cVEMP amplitude using a posteriori methods is not well understood. The aims of this investigation were to describe the effect of muscle contraction, as measured by a prestimulus electromyogenic estimate, on cVEMP amplitude and interaural amplitude asymmetry ratio, and to evaluate the benefit of using a commonly advocated a posteriori normalization method on cVEMP amplitude and asymmetry ratio variability. Prospective, repeated-measures design using a convenience sample. Ten healthy adult participants between 25 and 61 yr of age. cVEMP responses to 500 Hz tone bursts (120 dB pSPL) for three conditions describing maximum, moderate, and minimal muscle contraction. Mean (standard deviation) cVEMP amplitude and asymmetry ratios were calculated for each muscle-contraction condition. Repeated measures analysis of variance and t-tests compared the variability in cVEMP amplitude between sides and conditions. Linear regression analyses compared asymmetry ratios. Polynomial regression analyses described the corrected and uncorrected cVEMP amplitude growth functions. While cVEMP amplitude increased with increased muscle contraction, the relationship was not linear or even proportionate. In the majority of cases, once muscle contraction reached a certain "threshold" level, cVEMP amplitude increased rapidly and then saturated. Normalizing cVEMP amplitudes did not remove the relationship between cVEMP amplitude and muscle contraction level. As muscle contraction increased, the normalized amplitude increased, and then decreased, corresponding with the observed amplitude saturation. Abnormal asymmetry ratios (based on values reported in the literature) were noted for four instances of uncorrected amplitude asymmetry at less than maximum muscle contraction levels. Amplitude normalization did not substantially change the number of observed asymmetry ratios. Because cVEMP amplitude did not typically grow proportionally with muscle contraction level, amplitude normalization did not lead to stable cVEMP amplitudes or asymmetry ratios across varying muscle contraction levels. Until we better understand the relationships between muscle contraction level, surface electromyography (EMG) estimates of muscle contraction level, and cVEMP amplitude, the application of normalization methods to correct cVEMP amplitude appears unjustified. American Academy of Audiology.
Hunt, Pamela S.; Burk, Joshua A.; Barnet, Robert C.
2016-01-01
Adolescence is a time of critical brain changes that pave the way for adult learning processes. However, the extent to which learning in adolescence is best characterized as a transitional linear progression from childhood to adulthood, or represents a period that differs from earlier and later developmental stages, remains unclear. Here we examine behavioral literature on associative fear conditioning and complex choice behavior with rodent models. Many aspects of fear conditioning are intact by adolescence and do not differ from adult patterns. Sufficient evidence, however, suggests that adolescent learning cannot be characterized simply as an immature precursor to adulthood. Across different paradigms assessing choice behavior, literature suggests that adolescent animals typically display more impulsive patterns of responding compared to adults. The extent to which the development of basic conditioning processes serves as a scaffold for later adult decision making is an additional research area that is important for theory, but also has widespread applications for numerous psychological conditions. PMID:27339692
Merfeld, D M; Zupan, L H; Gifford, C A
2001-04-01
All linear accelerometers, including the otolith organs, respond equivalently to gravity and linear acceleration. To investigate how the nervous system resolves this ambiguity, we measured perceived roll tilt and reflexive eye movements in humans in the dark using two different centrifugation motion paradigms (fixed radius and variable radius) combined with two different subject orientations (facing-motion and back-to-motion). In the fixed radius trials, the radius at which the subject was seated was held constant while the rotation speed was changed to yield changes in the centrifugal force. In variable radius trials, the rotation speed was held constant while the radius was varied to yield a centrifugal force that nearly duplicated that measured during the fixed radius condition. The total gravito-inertial force (GIF) measured by the otolith organs was nearly identical in the two paradigms; the primary difference was the presence (fixed radius) or absence (variable radius) of yaw rotational cues. We found that the yaw rotational cues had a large statistically significant effect on the time course of perceived tilt, demonstrating that yaw rotational cues contribute substantially to the neural processing of roll tilt. We also found that the orientation of the subject relative to the centripetal acceleration had a dramatic influence on the eye movements measured during fixed radius centrifugation. Specifically, the horizontal vestibuloocular reflex (VOR) measured in our human subjects was always greater when the subject faced the direction of motion than when the subjects had their backs toward the motion during fixed radius rotation. This difference was consistent with the presence of a horizontal translational VOR response induced by the centripetal acceleration. Most importantly, by comparing the perceptual tilt responses to the eye movement responses, we found that the translational VOR component decayed as the subjective tilt indication aligned with the tilt of the GIF. This was true for both the fixed radius and variable radius conditions even though the time course of the responses was significantly different for these two conditions. These findings are consistent with the hypothesis that the nervous system resolves the ambiguous measurements of GIF into neural estimates of gravity and linear acceleration. More generally, these findings are consistent with the hypothesis that the nervous system uses internal models to process and interpret sensory motor cues.
Neural control of airway to deep inhalation in rabbits.
Schweitzer, Cyril; Demoulin, Bruno; Varechova, Silvia; Poussel, Mathias; Marchal, François
2011-07-31
Bronchodilation induced by a deep inhalation (DI) is usually attributed to the mechanical interdependence between airways and parenchyma. The aim of the study was to evaluate the contribution of neural control of the airway in the response to DI. In mechanically ventilated rabbits, cervical vagi were cooled using 2 Peltier elements. Lung resistance was measured before and up to 2 min after a DI at vagus nerve temperature = 37 °C (R(L37 °C)), 8 °C (R(L8 °C)) and 4 °C (R(L4 °C)). Measurements were performed in control conditions (Ctrl) and during infusion of methacholine (Mch). At Ctrl, R(L8 °C) and R(L4 °C) were significantly lower than R(L37 °C). After Mch, however, R(L4 °C) was not different from R(L37 °C), both being significantly higher than R(L8 °C). Vagal cold block (VCB) abolished the bronchodilation observed after the control DI and reduced its magnitude after Mch. The magnitude of bronchodilation immediately after the DI was significantly related to baseline R(L) at any vagal temperature (p < 0.001), but the renarrowing was more strongly related to baseline R(L) after VCB than at baseline. The data indicate a significant contribution of respiratory reflexes to the airway response after DI, highlight the influence of vagal control of airway wall visco-elasticity and suggests the occurrence of a moderate reflex bronchodilation in response to Mch. Copyright © 2011 Elsevier B.V. All rights reserved.
2013-01-01
Background Non-pharmacological options for symptomatic management of cough are desired. Although chest wall mechanical vibration is known to ameliorate cough reflex sensitivity, the effect of mechanical vibrations on perceptions of urge-to-cough has not been studied. Therefore, we investigated the effect of mechanical vibration of cervical trachea, chest wall and femoral muscle on cough reflex sensitivity, perceptions of urge-to-cough as well as dyspnea. Methods Twenty-four healthy male never-smokers were investigated for cough reflex sensitivity, perceptions of the urge-to-cough and dyspnea with or without mechanical vibration. Cough reflex sensitivity and urge-to-cough were evaluated by the inhalation of citric acid. The perception of dyspnea was evaluated by Borg scores during applications of external inspiratory resistive loads. Mechanical vibration was applied by placing a vibrating tuning fork on the skin surface of cervical trachea, chest wall and femoral muscle. Results Cervical trachea vibration significantly increased cough reflex threshold, as expressed by the lowest concentration of citric acid that elicited five or more coughs (C5), and urge-to-cough threshold, as expressed by the lowest concentration of citric acid that elicited urge-to-cough (Cu), but did not significantly affect dypnea sensation during inspiratory resistive loading. On the other hand, the chest wall vibration not only significantly increased C5 and Cu but also significantly ameliorated the load-response curve of dyspnea sensation. Conclusions Both cervical and trachea vibrations significantly inhibited cough reflex sensitivity and perception of urge-to-cough. These vibration techniques might be options for symptomatic cough management. PMID:24088411
Angeles-Medina, F; Nuño-Licona, A; Alfaro-Moctezuma, P; Osorno-Escareño, C
2000-01-01
There has been controversy with respect to the diagnostic value of the inhibitory masseteric reflex in temporomandibular joint dysfunction (TMJD) because the whole reflex response was not considered. The purpose of this study was to characterize the reflex changes that occur in patients with different levels of TMJD and in a control group. Eighty-nine patients (ages 31.14 +/- 12.74 years) divided into three groups were studied and compared. The control group was without TMJD (n = 30), with moderate symptoms (n = 30), and with severe symptoms (n = 29). Using an instrument and a software program developed by our group (Reflexodent), the masseteric inhibitory reflex was studied. The electromyography record (EMG) was captured with surface electrodes and the inhibitory reflex was produced by tapping the chin. The EMG signal was processed, filtered, and averaged with the Reflexodent. Twenty series of records were applied to each patient. The faulty inhibitory area, the area's relation (potentiation/inhibition) regarding the values of healthy subjects previously characterized, and the bilateral symmetry were measured. Discriminate analysis showed a statistically significant correlation between clinical groups and electromyographic findings. Statistical function explained 91.8% of the discrimination among groups (canonical correlation = 0.918, chi(2) = 164.435, p <0.001). The study of whole inhibitory masseteric reflex and the Reflexodent technique are useful as a diagnostic tool to evaluate TMJ illness in the dental clinic.
Reflexive intergroup bias in third-party punishment.
Yudkin, Daniel A; Rothmund, Tobias; Twardawski, Mathias; Thalla, Natasha; Van Bavel, Jay J
2016-11-01
Humans show a rare tendency to punish norm-violators who have not harmed them directly-a behavior known as third-party punishment. Research has found that third-party punishment is subject to intergroup bias, whereby people punish members of the out-group more severely than the in-group. Although the prevalence of this behavior is well-documented, the psychological processes underlying it remain largely unexplored. Some work suggests that it stems from people's inherent predisposition to form alliances with in-group members and aggress against out-group members. This implies that people will show reflexive intergroup bias in third-party punishment, favoring in-group over out-group members especially when their capacity for deliberation is impaired. Here we test this hypothesis directly, examining whether intergroup bias in third-party punishment emerges from reflexive, as opposed to deliberative, components of moral cognition. In 3 experiments, utilizing a simulated economic game, we varied participants' group relationship to a transgressor, measured or manipulated the extent to which they relied on reflexive or deliberative judgment, and observed people's punishment decisions. Across group-membership manipulations (American football teams, nationalities, and baseball teams) and 2 assessments of reflexive judgment (response time and cognitive load), reflexive judgment heightened intergroup bias, suggesting that such bias in punishment is inherent to human moral cognition. We discuss the implications of these studies for theories of punishment, cooperation, social behavior, and legal practice. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Changes in crossed spinal reflexes after peripheral nerve injury and repair.
Valero-Cabré, Antoni; Navarro, Xavier
2002-04-01
We investigated the changes induced in crossed extensor reflex responses after peripheral nerve injury and repair in the rat. Adults rats were submitted to non repaired sciatic nerve crush (CRH, n = 9), section repaired by either aligned epineurial suture (CS, n = 11) or silicone tube (SIL4, n = 13), and 8 mm resection repaired by tubulization (SIL8, n = 12). To assess reinnervation, the sciatic nerve was stimulated proximal to the injury site, and the evoked compound muscle action potential (M and H waves) from tibialis anterior and plantar muscles and nerve action potential (CNAP) from the tibial nerve and the 4th digital nerve were recorded at monthly intervals for 3 mo postoperation. Nociceptive reinnervation to the hindpaw was also assessed by plantar algesimetry. Crossed extensor reflexes were evoked by stimulation of the tibial nerve at the ankle and recorded from the contralateral tibialis anterior muscle. Reinnervation of the hindpaw increased progressively with time during the 3 mo after lesion. The degree of muscle and sensory target reinnervation was dependent on the severity of the injury and the nerve gap created. The crossed extensor reflex consisted of three bursts of activity (C1, C2, and C3) of gradually longer latency, lower amplitude, and higher threshold in control rats. During follow-up after sciatic nerve injury, all animals in the operated groups showed recovery of components C1 and C2 and of the reflex H wave, whereas component C3 was detected in a significantly lower proportion of animals in groups with tube repair. The maximal amplitude of components C1 and C2 recovered to values higher than preoperative values, reaching final levels between 150 and 245% at the end of the follow-up in groups CRH, CS, and SIL4. When reflex amplitude was normalized by the CNAP amplitude of the regenerated tibial nerve, components C1 (300-400%) and C2 (150-350%) showed highly increased responses, while C3 was similar to baseline levels. In conclusion, reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.
The role of the superior laryngeal nerve in esophageal reflexes
Medda, B. K.; Jadcherla, S.; Shaker, R.
2012-01-01
The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not a motor nerve for any of these reflexes, the role of the SLN in control of these reflexes is sensory in nature only. PMID:22403790
Shafik, Ahmed; Shafik, Ali A; El-Sibai, Olfat; Ahmed, Ismail
2003-08-01
Upon feeling the urge to urinate, the urinary bladder contracts, the urethral sphincters relax and urine flows through the urethra. These actions are mediated by the micturition reflex. We investigated the hypothesis that vesical contraction is maintained by positive feedback through continuous flow of urine through the urethra, and that the cessation of urine flow aborts detrusor contraction. Normal saline was infused into the urinary bladders of 17 healthy volunteers (age 35.2 years+/-4.2(SD); ten women and seven men) at a rate of 100 ml/min. On urge, which occurred at a mean volume of 408.6 ml+/-28.7 of saline, the subject micturated while the vesical and urethral pressures during voiding were being recorded; residual urine was measured. The test was repeated after anesthetizing the urethra with xylocaine gel or, on another occasion, after applying a bland gel. On micturition, the urine was evacuated as a continuous stream without straining; no residual fluid was collected. After urethral anesthetization, the fluid came out of the urethra in multiple intermittent spurts and only with excessive straining. There was a large amount of residual fluid (184.6 ml+/-28.4). The results of bland gel application showed no significant difference ( P>0.05) from those without gel. Detrusor contraction during micturition is suggested to be maintained by positive urethrovesical feedback elicited by the continued passage of urine through the urethra. This feedback seems to be effected through the urethrovesical reflex, which produces vesical contraction on stimulation of the urethral stretch receptors. Abortion of this reflex by urethral anesthetization resulted in failure of detrusor contraction and excessive straining was needed to achieve bladder evacuation in multiple spurts. The urethrovesical reflex is thus assumed to constitute a second micturition reflex responsible for the continuation of detrusor contraction and urination. The role of this reflex in the pathogenesis of micturition disorders needs to be studied.
Is There a Relation between Reticular Formation and Storage Symptoms in Men.
Zorba, Orhan Ü; Kirbaş, Serkan; Uzun, Hakkı; Önem, Kadir; Çetinkaya, Mehmet; Rifaioğlu, Mehmet M
2014-01-01
To reveal brainstem originated pathology in men with different types of lower urinary tract symptoms blink reflex latency times were assessed. A total of 32 men, 16 with storage and 16 with voiding symptoms, were enrolled in the study. Blink reflex latency times were analyzed through electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle were recorded: the latency times for the early ipsilateral response, R1, and the late bilateral responses, R2. The mean ages of the patients with storage and voiding symptoms were 57.31 ± 6.87 and 58.06 ± 6.29 years, respectively. The R2 latency times were significantly longer in men with storage symptoms. However, the R1 latency times were similar for the two groups. Late blink latency times were long only in patients who had storage symptoms. An oligosynaptic path through the trigeminal nuclei, which includes one or two interneurons, is responsible for early response; however, late response is relayed through a polysynaptic path, including neurons in the reticular formation. It has also been shown that stimulation of the pontine reticular formation inhibits the micturition contraction. In some patients, storage symptoms may result from pathology that originates with the reticular formation and this pathology may lead to increases in late blink latency times. Additional studies are needed on other reflexes that are mediated through reticular formation, in order to show the possible dysfunction of the reticular formation in men with storage symptoms. © 2013 Wiley Publishing Asia Pty Ltd.
Konstantinidou, Sylvia; Soultanakis, Helen
2016-01-01
Apnea after exercise may evoke a neurally mediated conflict that may affect apneic time and create a cardiovascular strain. The physiological responses, induced by apnea with face immersion in cold water (10 °C), after a 3-min exercise bout, at 85% of VO2max,were examined in 10 swimmers. A pre-selected 40-s apnea, completed after rest (AAR), could not be met after exercise (AAE), and was terminated with an agonal gasp reflex, and a reduction of apneic time, by 75%. Bradycardia was evident with immersion after both, 40-s of AAR and after AAE (P<0.05). The dramatic elevation of, systolic pressure and pulse pressure, after AAE, were indicative of cardiovascular stress. Blood pressure after exercise without apnea was not equally elevated. The activation of neurally opposing functions as those elicited by the diving reflex after high intensity exercise may create an autonomic conflict possibly related to oxygen-conserving reflexes stimulated by the trigeminal nerve, and those elicited by exercise. Copyright © 2015. Published by Elsevier B.V.
Effect of stress and attention on startle response and prepulse inhibition.
De la Casa, Luis Gonzalo; Mena, Auxiliadora; Ruiz-Salas, Juan Carlos
2016-10-15
The startle reflex magnitude can be modulated when a weak stimulus is presented before the onset of the startle stimulus, a phenomenon termed prepulse inhibition (PPI). Previous research has demonstrated that emotional processes can modulate PPI and startle intensity, but the available evidence is inconclusive. In order to obtain additional evidence in this domain, we conducted two experiments intended to analyze the effect of induced stress and attentional load on PPI and startle magnitude. Specifically, in Experiment 1 we used a between subject strategy to evaluate the effect on startle response and PPI magnitude of performing a difficult task intended to induce stress in the participants, as compared to a group exposed to a control task. In Experiment 2 we evaluated the effect of diverting attention from the acoustic stimulus on startle and PPI intensity. The results seem to indicate that induced stress can reduce PPI, and that startle reflex intensity is reduced when attention is directed away from the auditory stimulus that induces the reflex. Copyright © 2016 Elsevier Inc. All rights reserved.
Renal dopamine containing nerves. What is their functional significance?
DiBona, G F
1990-06-01
Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.
Mitsuhashi, Masahiro; Hitomi, Takefumi; Aoyama, Akihiro; Kaido, Toshimi; Ikeda, Akio; Takahashi, Ryosuke
2017-08-31
Patient 1: A 35-year-old woman became deep coma because of intracranial hemorrhage after pulmonary surgery. Patient 2: A 39-year-old woman became deep coma because of cerebellar hemorrhage after hepatic surgery. Scalp-recorded digital electroencephalography (EEG) showed electrocerebral inactivity in both cases. In addition, both EEG showed repetitive discharges at bilateral frontopolar electrodes in response to photic stimuli. The amplitude and latency of the discharges was 17 μV and 24 msec in case 1, and 9 μV and 27 msec in case 2 respectively. The activity at left frontopolar electrode disappeared after coverage of the ipsilateral eye. Based on these findings, we could exclude the possibility of brainstem response and judged it as electroretinogram (ERG). Photic stimulation is a useful activation method in EEG recording, and we can also evaluate brainstem function by checking photic blink reflex if it is evoked. However, we should be cautious about the distinction of ERG from photic blink reflex when brain death is clinically suspected.
NASA Technical Reports Server (NTRS)
Leigh, R. J.; Brandt, T.
1993-01-01
Conventional views of the vestibulo-ocular reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved--locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (< 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).
Estrogen attenuates the cardiovascular and ventilatory responses to central command in cats.
Hayes, Shawn G; Moya Del Pino, Nicolas B; Kaufman, Marc P
2002-04-01
Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.
Tran, Tuan D.; Matre, Dagfinn; Casey, Kenneth L.
2008-01-01
Finely myelinated (type Aδ) and unmyelinated (type C) fibers are the major afferent inputs to spinothalamic tract neurons mediating sensory and reflex responses to noxious and thermal stimuli. These two fiber types differ in their sensory and biophysical properties, raising questions about the interaction of their supraspinal responses. Therefore, we investigated the interaction of cortical responses to stimuli that preferentially excite these fibers in human subjects using evoked potential recordings in a paired conditioning stimulation (CS) and test stimulation (TS) paradigm. There were two experiments, one with Aδ as CS and C as TS (Aδ-C) and another with these stimuli reversed (C-Aδ). We used intra-epidermal electrical pulses applied to the dorsal left hand at 2 and 1 × pinprick threshold (pp) for the preferential stimulation of Aδ fibers and 37 – 50°C contact heat pulses applied to the left or right thenar and left hypothenar eminences for the preferential stimulation of C fibers. We found that the cortical response to preferential Aδ or C fiber stimulation was attenuated whenever either cortical response preceded the other. Standardized values of peak and integrated amplitudes were < 1 in all paring conditions and in all subjects in both experiments. The suppressive effect varied in magnitude with the intensity of the conditioning stimulus in both Aδ-C and C-Aδ experiments. Furthermore, intra-segmental interaction was differentially effective for Aδ conditioning, (peak amplitude, p < 0.008; ANOVA). Our experiments provide the first neurophysiological evidence for a somatotopically distributed, mutually suppressive interaction between cortical responses to preferentially activated Aδ and C afferents in humans. This suppressive interaction of cortical responses suggests contrasting and possibly mutually exclusive sensori-motor functions mediated through the Aδ and C fiber afferent channels. PMID:18308475