Science.gov

Sample records for reflex receptive fields

  1. Reflex receptive fields for human withdrawal reflexes elicited by non-painful and painful electrical stimulation of the foot sole.

    PubMed

    Andersen, O K; Sonnenborg, F A; Arendt-Nielsen, L

    2001-04-01

    Human withdrawal reflex receptive fields (RRFs) were assessed for 4 different electrical stimulus intensities, ranging from below the pain threshold (PTh) to up to two times the PTh intensity (0.8x, 1.2x, 1.6x, and 2.0xPTh). Thirteen subjects participated, and the reflexes were recorded in a sitting position. The stimuli were delivered in random order to 12 positions distributed over the foot sole. Tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL), and biceps femoris (BF) reflexes were recorded. Further, knee and ankle joint angle changes were recorded. The strongest reflexes were seen in the TA compared with the other 3 muscles. Dorsi-flexion dominated distal to the talocrural joint corresponding to the TA receptive field area. An expansion of the RRF for the TA and GM was seen when increasing the stimulus intensity from 0.8xPTh to 1.2xPTh and from 1.2xPTh to 1.6xPTh, indicating a gradually increasing reflex threshold towards the border, where TA contraction is inappropriate in a withdrawal reaction. For the BF and VL, the borders of the RRF areas were not detected. By integrating the reflex size within the RRF (i.e. the reflex volume), gradually increasing reflexes for increasing stimulus intensity were seen in all 4 muscles tested, most clearly in the TA and GM. The subjective pain intensity correlated to the reflex volume for the TA, GM, and BF. In conclusion, the highest reflex sensitivity was seen in the centre of the RRF, while the stimulus intensity needed for eliciting a reflex increased towards the receptive field border. Within the RRF, stronger reflexes were evoked for increasing stimulus intensity. The limit in the size of the receptive field size for the TA and GM supports a modular withdrawal reflex organisation.

  2. New method for quantification and statistical analysis of nociceptive reflex receptive fields in humans.

    PubMed

    Neziri, Alban Y; Curatolo, Michele; Bergadano, Alessandra; Petersen-Felix, Steen; Dickenson, Anthony; Arendt-Nielsen, Lars; Andersen, Ole K

    2009-03-30

    A method for quantifying nociceptive withdrawal reflex receptive fields in human volunteers and patients is described. The reflex receptive field (RRF) for a specific muscle denotes the cutaneous area from which a muscle contraction can be evoked by a nociceptive stimulus. The method is based on random stimulations presented in a blinded sequence to 10 stimulation sites. The sensitivity map is derived by interpolating the reflex responses evoked from the 10 sites. A set of features describing the size and location of the RRF is presented based on statistical analysis of the sensitivity map within every subject. The features include RRF area, volume, peak location and center of gravity. The method was applied to 30 healthy volunteers. Electrical stimuli were applied to the sole of the foot evoking reflexes in the ankle flexor tibialis anterior. The RRF area covered a fraction of 0.57+/-0.06 (S.E.M.) of the foot and was located on the medial, distal part of the sole of the foot. An intramuscular injection into flexor digitorum brevis of capsaicin was performed in one spinal cord injured subject to attempt modulation of the reflex receptive field. The RRF area, RRF volume and location of the peak reflex response appear to be the most sensitive measures for detecting modulation of spinal nociceptive processing. This new method has important potential applications for exploring aspects of central plasticity in volunteers and patients. It may be utilized as a new diagnostic tool for central hypersensitivity and quantification of therapeutic interventions.

  3. Gradual enlargement of human withdrawal reflex receptive fields following repetitive painful stimulation.

    PubMed

    Andersen, Ole K; Spaich, Erika G; Madeleine, Pascal; Arendt-Nielsen, Lars

    2005-05-03

    Dynamic changes in the topography of the human withdrawal reflex receptive fields (RRF) were assessed by repetitive painful stimuli in 15 healthy subjects. A train of five electrical stimuli was delivered at a frequency of 3 Hz (total train duration 1.33 s). The train was delivered in random order to 10 electrode sites on the sole of the foot. Reflexes were recorded from tibialis anterior, soleus, vastus lateralis, biceps femoris, and iliopsoas (IL). The RRF changes during the stimulus train were assessed during standing with even support on both legs and while seated. The degree of temporal summation was depending on stimulation site. At the most sensitive part of the RRF, a statistically significant increase in reflex size was seen after two stimuli while four stimuli were needed to observe reflex facilitation at less sensitive electrode sites. Hence, the region from which reflexes could be evoked using the same stimulus intensity became larger through the train, that is, the RRF was gradually expanding. Reflexes evoked by stimuli four and five were of the same size. No reflex facilitation was seen at other stimulus sites outside the RRF. In all muscles except in IL, the largest reflexes were evoked when the subjects were standing. In the ankle joint, the main withdrawal pattern consisted of plantar flexion and inversion when the subjects were standing while dorsi-flexion was prevalent in the sitting position. Up to 35 degrees of knee and hip flexion were evoked often leading to a lift of the foot from the floor during standing. In conclusion, a gradual expansion of the RRF was seen in all muscles during the stimulus train. Furthermore, the motor programme task controls the reflex sensitivity within the reflex receptive field and, hence, the sensitivity of the temporal summation mechanism.

  4. Development of a data acquisition and analysis system for nociceptive withdrawal reflex and reflex receptive fields in humans.

    PubMed

    Biurrun Manresa, Jose A; Hansen, John; Andersen, Ole K

    2010-01-01

    A system for data acquisition and analysis of nociceptive withdrawal reflex (NWR) and reflex receptive field (RRF) is introduced. The system is constituted by hardware and software components. The hardware consists of devices commonly used for electrical stimulation and electromyographic and kinematic data recording. The software comprises two different programs: Wirex, a stand-alone program developed in LabView for data acquisition, and Reflex Lab, a Matlab-based toolbox for data analysis. These programs were developed to maximize the potential of the hardware, turning it into a complete stimulation system capable of automatic quantification of NWR and RRF. In this article, a brief review of NWR and RRF analysis is presented, the system features are described in detail and its present and future applications are discussed.

  5. A new objective method for acquisition and quantification of reflex receptive fields.

    PubMed

    Jensen, Michael Brun; Manresa, José Biurrun; Andersen, Ole Kæseler

    2015-03-01

    The nociceptive withdrawal reflex (NWR) is a polysynaptic spinal reflex correlated with pain perception. Assessment of this objective physiological measure constitutes the core of existing methods for quantification of reflex receptive fields (RRFs), which however still suffer from a certain degree of subjective involvement. This article proposes a strictly objective methodology for RRF quantification based on automated identification of NWR thresholds (NWR-Ts). Nociceptive withdrawal reflex thresholds were determined for 10 individual stimulation sites using an interleaved up-down staircase method. Reflexes were detected from electromyography by evaluation of interval peak z scores and application of conduction velocity analysis. Reflex receptive field areas were quantified from interpolated mappings of NWR-Ts and compared with existing RRF quantifications. A total of 3 repeated measures were performed in 2 different sessions to evaluate the test-retest reliability of the various quantifications, using coefficients of repeatability (CRs) and hypothetical sample sizes. The novel quantifications based on identification of NWR-Ts showed a similar level of reliability within and between sessions, whereas existing quantifications all demonstrated worse between-session than within-session reliability. The NWR-T-based quantifications required a smaller sample size than any of the existing RRF measures to detect a clinically relevant effect in a crossover study design involving more than 1 session. Of all measures, quantification from mapping of inversed NWR-Ts demonstrated superior reliability both within (CR, 0.25) and between sessions (CR, 0.28). The study presents a more reliable and robust quantification of the RRF to be used as biomarker of pain hypersensitivity in clinical and experimental research.

  6. Discriminative ability of reflex receptive fields to distinguish patients with acute and chronic low back pain.

    PubMed

    Müller, Monika; Biurrun Manresa, José A; Treichel, Fabienne; Agten, Christoph A; Heini, Paul; Andersen, Ole K; Curatolo, Michele; Jüni, Peter

    2016-12-01

    Low back pain has a life time prevalence of 70% to 85%. Approximately 10% to 20% of all patients experience recurrent episodes or develop chronic low back pain. Sociodemographic, clinical, and psychological characteristics explain the transition from acute to chronic low back pain only to a limited extent. Altered central pain processing may be a contributing mechanism. The measurement of reflex receptive fields (RRF) is a novel method to assess altered central pain processing. The RRF area denotes the area of the foot sole from which spinal nociceptive reflexes can be elicited. It was shown to be enlarged in patients with acute and chronic low back pain compared with pain-free individuals. The aim of the study was to explore the discriminative ability of the RRF to distinguish patients with acute and chronic low back pain with the hypothesis that enlarged RRF are associated with chronic low back pain. We included 214 patients with either acute or chronic low back pain and compared RRF between groups in both univariable and multivariable analyses adjusted for different sociodemographic and clinical characteristics possibly associated with the transition to chronic pain. We found a mean difference between patients with acute and chronic low back pain of -0.01 (95% confidence interval [CI], -0.06 to 0.04) in the crude, -0.02 (95% CI, -0.08 to 0.04) in the age and sex adjusted, and -0.02 (95% CI, -0.09 to 0.05) in the fully adjusted model. Our results suggest that the enlargement of RRF area may not be associated with the transition from acute to chronic low back pain.

  7. Receptive fields and visual representations

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1989-01-01

    Efficient representation of images for human use requires an understanding of how the brain processes and represents visual information. Spatial imagery is represented in the brain in the receptive fields of visual neurons. Models of these neurons lead to models of image fidelity, and to digital implementations of these neural codes. This approach will be illustrated by two example codes. The advantages and difficulties of this approach will be discussed.

  8. Bayesian population receptive field modelling.

    PubMed

    Zeidman, Peter; Silson, Edward Harry; Schwarzkopf, Dietrich Samuel; Baker, Chris Ian; Penny, Will

    2017-09-08

    We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Laplace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian methods we describe when making inferences. We used the framework to compare the evidence for six variants of pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with any number of dimensions onto the anatomy of the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Mapping receptive fields in primary visual cortex

    PubMed Central

    Ringach, Dario L

    2004-01-01

    Nearly 40 years ago, in the pages of this journal, Hubel and Wiesel provided the first description of receptive fields in the primary visual cortex of higher mammals. They defined two classes of cortical cells, ‘simple’ and ‘complex’, based on neural responses to simple visual stimuli. The notion of a hierarchy of receptive fields, where increasingly intricate receptive fields are constructed from more elementary ones, was introduced. Since those early days we have witnessed the birth of quantitative methods to map receptive fields and mathematical descriptions of simple and complex cell function. Insights gained from these models, along with new theoretical concepts, are refining our understanding of receptive field structure and the underlying cortical circuitry. Here, I provide a brief historical account of the evolution of receptive field mapping in visual cortex along with the associated conceptual advancements, and speculate on the shape novel theories of the cortex may take as a result these measurements. PMID:15155794

  10. Mismatch Receptive Fields in Mouse Visual Cortex.

    PubMed

    Zmarz, Pawel; Keller, Georg B

    2016-11-23

    In primary visual cortex, a subset of neurons responds when a particular stimulus is encountered in a certain location in visual space. This activity can be modeled using a visual receptive field. In addition to visually driven activity, there are neurons in visual cortex that integrate visual and motor-related input to signal a mismatch between actual and predicted visual flow. Here we show that these mismatch neurons have receptive fields and signal a local mismatch between actual and predicted visual flow in restricted regions of visual space. These mismatch receptive fields are aligned to the retinotopic map of visual cortex and are similar in size to visual receptive fields. Thus, neurons with mismatch receptive fields signal local deviations of actual visual flow from visual flow predicted based on self-motion and could therefore underlie the detection of objects moving relative to the visual flow caused by self-motion. VIDEO ABSTRACT.

  11. Central auditory neurons have composite receptive fields

    PubMed Central

    Kozlov, Andrei S.; Gentner, Timothy Q.

    2016-01-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  12. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  13. Idealized computational models for auditory receptive fields.

    PubMed

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals.

  14. Receptive Field Inference with Localized Priors

    PubMed Central

    Park, Mijung; Pillow, Jonathan W.

    2011-01-01

    The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110

  15. A computational theory of visual receptive fields.

    PubMed

    Lindeberg, Tony

    2013-12-01

    A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative

  16. Circuits that build visual cortical receptive fields.

    PubMed

    Hirsch, Judith A; Martinez, Luis M

    2006-01-01

    Neural sensitivity to basic elements of the visual scene changes dramatically as information is handed from the thalamus to the primary visual cortex in cats. Famously, thalamic neurons are insensitive to stimulus orientation whereas their cortical targets easily resolve small changes in stimulus angle. There are two main types of cells in the visual cortex, simple and complex, defined by the structure of their receptive fields. Simple cells are thought to lay the groundwork for orientation selectivity. This review focuses on approaches that combine anatomy with physiology at the intracellular level, to explore the circuits that build simple receptive fields and that help to maintain neural sensitivity to stimulus features even when luminance contrast changes.

  17. Auditory Spatial Receptive Fields Created by Multiplication

    NASA Astrophysics Data System (ADS)

    Peña, José Luis; Konishi, Masakazu

    2001-04-01

    Examples of multiplication by neurons or neural circuits are scarce, although many computational models use this basic operation. The owl's auditory system computes interaural time (ITD) and level (ILD) differences to create a two-dimensional map of auditory space. Space-specific neurons are selective for combinations of ITD and ILD, which define, respectively, the horizontal and vertical dimensions of their receptive fields. A multiplication of separate postsynaptic potentials tuned to ITD and ILD, rather than an addition, can account for the subthreshold responses of these neurons to ITD-ILD pairs. Other nonlinear processes improve the spatial tuning of the spike output and reduce the fit to the multiplicative model.

  18. Invariance of visual operations at the level of receptive fields

    PubMed Central

    Lindeberg, Tony

    2013-01-01

    The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the

  19. Mounting and brief noncontact exposure of males to receptive females facilitate reflexive erection in rats, even after hypogastric nerve section.

    PubMed

    Sachs, B D; Liu, Y C

    1998-12-01

    In three experiments, reflexive erection in male rats was facilitated by housing the males for 2 min with inaccessible sexually receptive females. In Experiment 1, males were sexually naive or experienced and received two reflexive erection tests, 1 week apart, immediately after the males were exposed to receptive females, to unreceptive females, or to no females (n = 8 per group). In both tests, experienced males exposed to estrous females had the shortest reflexive erection latencies; in Test 1 the differences among groups were of borderline significance (p = 0.057), but in Test 2 the differences among groups were highly reliable (p<0.01). Further analysis indicated that only experienced males exposed to receptive females were significantly different from other groups. In Experiment 2, sexually experienced males (n = 11) received four reflexive erection tests: after being with no female, and 0, 5, or 10 min after exposure to estrous females. As the interval between exposure and test increased, the males had progressively shorter erection latencies (p<0.01) and more intense glans erections (p<0.03). Experiments 1 and 2 may be viewed as demonstrating the psychogenic facilitation of reflexive erections. In Experiment 3, males underwent sham surgery (sham, n = 10) or bilateral transection of the hypogastric nerves (HgNx, n = 10), which are conventionally viewed as mediating psychogenic erection. After males mounted a receptive female for 5 min without intromission or had 2 min of non-contact exposure to receptive females, the males had shorter erection latencies (p<0.001) and more erections (p<0.02). These facilitative effects of pretest stimulation were unaffected by HgN transection. During copulation tests, HgNx males had longer ejaculation latencies (p<0.05) and lower intromission ratios (p<0.05), possible signs of impaired erectile function. However, in Experiment 4, other males were tested twice for reflexive erection and copulation after sham (n = 8) or HgNx (n

  20. Determining the receptive field of a neural filter

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji

    2004-12-01

    In this paper, a method for determining the receptive field and the structure of hidden layers of a neural filter (NF) was developed and evaluated. With the proposed method, redundant units are removed from input and hidden layers in an NF based on the influence of removal of units on the error between output and teaching images. By performing the removal of units and retraining for recovery of the loss of the removal repeatedly, the receptive field and a reduced structure of hidden layers are determined. Experiments with NFs were performed for acquiring the function of a known filter, for the reduction of noise in natural images and for the reduction of noise in medical image sequences. By use of the proposed method, redundant units were able to be removed from NFs, while the performance of the NFs was maintained. Experimental results suggested that, with the proposed method, a reasonable receptive field for a given image-processing task could be determined, i.e., the receptive field of the NF trained to obtain the function of a filter corresponded to the kernel of the filter, and the receptive fields of the NFs for noise reduction gathered around the object pixels in the input regions of the NFs.

  1. Mechanisms Underlying Development of Visual Maps and Receptive Fields

    PubMed Central

    Huberman, Andrew D.; Feller, Marla B.; Chapman, Barbara

    2008-01-01

    Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent years, attention has shifted to understanding the mechanisms by which spontaneous activity in the developing retina, lateral geniculate nucleus, and visual cortex instruct the axonal and dendritic refinements that give rise to orderly connections in the visual system. Axon guidance cues and a growing list of other molecules, including immune system factors, have also recently been implicated in visual circuit wiring. A major goal now is to determine how these molecules cooperate with spontaneous and visually evoked activity to give rise to the circuits underlying precise receptive field tuning and orderly visual maps. PMID:18558864

  2. Active vision and receptive field development in evolutionary robots.

    PubMed

    Floreano, Dario; Suzuki, Mototaka; Mattiussi, Dario

    2005-01-01

    In this paper, we describe the artificial evolution of adaptive neural controllers for an outdoor mobile robot equipped with a mobile camera. The robot can dynamically select the gazing direction by moving the body and/or the camera. The neural control system, which maps visual information to motor commands, is evolved online by means of a genetic algorithm, but the synaptic connections (receptive fields) from visual photoreceptors to internal neurons can also be modified by Hebbian plasticity while the robot moves in the environment. We show that robots evolved in physics-based simulations with Hebbian visual plasticity display more robust adaptive behavior when transferred to real outdoor environments as compared to robots evolved without visual plasticity. We also show that the formation of visual receptive fields is significantly and consistently affected by active vision as compared to the formation of receptive fields with grid sample images in the environment of the robot. Finally, we show that the interplay between active vision and receptive field formation amounts to the selection and exploitation of a small and constant subset of visual features available to the robot.

  3. Spectrotemporal Dynamics of Auditory Cortical Synaptic Receptive Field Plasticity

    PubMed Central

    Froemke, Robert C.; Martins, Ana Raquel O.

    2011-01-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. PMID:21426927

  4. The spatial structure of a nonlinear receptive field

    PubMed Central

    Schwartz, Gregory W.; Okawa, Haruhisa; Dunn, Felice A.; Morgan, Josh L.; Kerschensteiner, Daniel; Wong, Rachel O.; Rieke, Fred

    2012-01-01

    Understanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. Existing models of this process generalize poorly to predict responses to novel stimuli. This failure arises in part from properties of the ganglion cell response that are not well captured by standard receptive field mapping techniques: nonlinear spatial integration and fine-scale heterogeneities in spatial sampling. Here, we characterize a ganglion cell’s spatial receptive field using a mechanistic model based on measurements of the physiological properties and connectivity of only the primary excitatory circuitry of the retina. The resulting simplified circuit model successfully predicts ganglion cell responses to a variety of spatial patterns and thus provides a direct correspondence between circuit connectivity and retinal output. PMID:23001060

  5. Highly selective receptive fields in mouse visual cortex.

    PubMed

    Niell, Cristopher M; Stryker, Michael P

    2008-07-23

    Genetic methods available in mice are likely to be powerful tools in dissecting cortical circuits. However, the visual cortex, in which sensory coding has been most thoroughly studied in other species, has essentially been neglected in mice perhaps because of their poor spatial acuity and the lack of columnar organization such as orientation maps. We have now applied quantitative methods to characterize visual receptive fields in mouse primary visual cortex V1 by making extracellular recordings with silicon electrode arrays in anesthetized mice. We used current source density analysis to determine laminar location and spike waveforms to discriminate putative excitatory and inhibitory units. We find that, although the spatial scale of mouse receptive fields is up to one or two orders of magnitude larger, neurons show selectivity for stimulus parameters such as orientation and spatial frequency that is near to that found in other species. Furthermore, typical response properties such as linear versus nonlinear spatial summation (i.e., simple and complex cells) and contrast-invariant tuning are also present in mouse V1 and correlate with laminar position and cell type. Interestingly, we find that putative inhibitory neurons generally have less selective, and nonlinear, responses. This quantitative description of receptive field properties should facilitate the use of mouse visual cortex as a system to address longstanding questions of visual neuroscience and cortical processing.

  6. Ontogenesis of receptive fields in the rabbit striate cortex

    NASA Technical Reports Server (NTRS)

    Mathers, L. H.; Chow, K. L.; Spear, P. D.; Grobstein, P.

    1974-01-01

    The development of receptive fields in rabbit pups was investigated by measuring their responses to various light stimuli and to electric shock delivered to the optic nerve head. The pups ranged in age from three to twenty-five days, allowing correlation of findings with maturation. The data, classified according to relation with symmetric or asymmetric field types, strongly suggest that retina maturation is the key factor in the rate of development in central visual pathways, and that central synaptic connections are made before the onset of retinal activity.

  7. Ontogenesis of receptive fields in the rabbit striate cortex

    NASA Technical Reports Server (NTRS)

    Mathers, L. H.; Chow, K. L.; Spear, P. D.; Grobstein, P.

    1974-01-01

    The development of receptive fields in rabbit pups was investigated by measuring their responses to various light stimuli and to electric shock delivered to the optic nerve head. The pups ranged in age from three to twenty-five days, allowing correlation of findings with maturation. The data, classified according to relation with symmetric or asymmetric field types, strongly suggest that retina maturation is the key factor in the rate of development in central visual pathways, and that central synaptic connections are made before the onset of retinal activity.

  8. [Striate receptive fields mapped with single and bipartite stimuli].

    PubMed

    Lazareva, N A; Shevelev, I A; Saltykov, K A; Novikova, R V; Tikhomirov, A S; Sharaev, G A; Tsutskiridze, D Iu; Eĭdeland, P V

    2008-01-01

    In 22 acute experiments with anesthetized and immobilized adult cats, 364 maps of receptive fields (RF) of 47 striate neurons were obtained by means of single local stimuli flashed at different parts of the visual field, or with additional asynchronous activation of the RF excitatory center with oscillating bar of the optimal orientation. Under bipartite stimulation, considerable and significant decrease in the square and weight of the central excitatory RF zone was revealed in more then 75% of the studied cells. Additional excitatory zones appeared in 54% of cases, or the square and weight of the excitatory zones substantially increased, and inhibitory zones developed in 90% of cases. These effects were correlated with the degree of increase in the background firing during transition from the mode of mapping with single stimulation to that with bipartite stimulation. The mechanism and possible functional role of cooperative excitatory and inhibitory intracortical interactions in organization of receptive fields and detection of features of a visual image are discussed.

  9. Sensory noise predicts divisive reshaping of receptive fields

    PubMed Central

    Deneve, Sophie; Gutkin, Boris

    2017-01-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. PMID:28622330

  10. Bilateral receptive fields of cells in rat Sm1 cortex.

    PubMed

    Armstrong-James, M; George, M J

    1988-01-01

    Single cells in the primary somatosensory (Sm1) cortex were investigated for responses to bilateral hindpaw stimulation in Wistar rats anaesthetised by continuous intravenous administration of Althesin. Fifty-one percent of cells sampled (N = 134) responded to equivalent punctate mechanical stimuli delivered to both the contralateral and ipsilateral hindpaws under light anaesthesia. The distribution by cortical depth of cells with receptive fields (RFs) on both hindpaws was not significantly different from cells which had only contralateral RFs. No cell was found with a purely ipsilateral RF. For 86% of cells tested (N = 44) the ipsilateral RF was partly or completely homologous with areas within the contralateral RF. The sizes of ipsilateral RFs were smaller on 66% of occasions when tested against their contralateral RFs. Modal latencies to ipsilateral mechanical stimulation were longer than to contralateral stimulation (34.1 +/- 9.1 ms (S.D) cf. 26.4 +/- 7.2 ms, N = 44). Ipsilateral RFs were lost for 77% of cells tested following a 33% increase in anaesthetic infusion rate. Conditioning mechanical stimuli applied to the centre receptive field (CRF) on the ipsilateral hindpaw reduced or abolished a cell's responses to equivalent test stimuli applied to it's contralateral CRF with C-T intervals of 20-200 ms. Conditioning stimuli applied to the CRF contralateral to the cell reduced or abolished responses to test stimuli on the cell's ipsilateral CRF using C-T intervals of 0-900 ms. Responses in one cortex to stimulation of the ipsilateral hindpaw were unaffected by elimination of responses from the same hindpaw in the opposite contralateral Sm1 cortex, where responses had been suppressed by topical Lignocaine administration. Retrograde transport of horseradish peroxidase from hindpaw Sm1 cortex labelled many cells in homolateral thalamus, but failed to label cells in the entire forebrain contralateral to the injection site. It is concluded that direct crossed

  11. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  12. Optimum spatiotemporal receptive fields for vision in dim light.

    PubMed

    Klaus, Andreas; Warrant, Eric J

    2009-04-22

    Many nocturnal insects depend on vision for daily life and have evolved different strategies to improve their visual capabilities in dim light. Neural summation of visual signals is one strategy to improve visual performance, and this is likely to be especially important for insects with apposition compound eyes. Here we develop a model to determine the optimum spatiotemporal sampling of natural scenes at gradually decreasing light levels. Image anisotropy has a strong influence on the receptive field properties predicted to be optimal at low light intensities. Spatial summation between visual channels is predicted to extend more strongly in the direction with higher correlations between the input signals. Increased spatiotemporal summation increases signal-to-noise ratio at low frequencies but sacrifices signal-to-noise ratio at higher frequencies. These results, while obtained from a model of the insect visual system, are likely to apply to visual systems in general.

  13. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.

    PubMed

    Harper, Nicol S; Schoppe, Oliver; Willmore, Ben D B; Cui, Zhanfeng; Schnupp, Jan W H; King, Andrew J

    2016-11-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context.

  14. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons

    PubMed Central

    Willmore, Ben D. B.; Cui, Zhanfeng; Schnupp, Jan W. H.; King, Andrew J.

    2016-01-01

    Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1–7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context. PMID:27835647

  15. Attention operates uniformly throughout the classical receptive field and the surround.

    PubMed

    Verhoef, Bram-Ernst; Maunsell, John Hr

    2016-08-22

    Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround.

  16. Discriminant Operators For The Emulation Of The Visual Receptive Fields

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Hungenahally, Suresh K.

    1989-11-01

    Low level visual information processing and information extraction are important aspects of any machine vision system. The biological retina is a robust visual low level preprocessor for the extraction of information in the visual channel. Extraction of transition and edge information from signals and visual images in the presence of noise is an important class of problems, both in the field of signal and image processing. In this paper we describe a class of discriminant operators for the extraction of transition information from noisy one dimensional signals. The discriminant operator, as briefly introduced in this paper, attempts to emulate the robust information extraction properties of the receptive fields found in the retina and the visual channel leading to the visual cortex. The discriminant operator, (0 operator) has differential properties with inherent aggregation. The differentiation property helps to extract transition and edge information, while the aggregation operation provides noise immunity. This theory will be used in the development of robust algorithms for robotics, medical image processing and vision prosthesis.

  17. Larger Extrastriate Population Receptive Fields in Autism Spectrum Disorders

    PubMed Central

    Anderson, Elaine J.; de Haas, Benjamin; White, Sarah J.; Rees, Geraint

    2014-01-01

    Previous behavioral research suggests enhanced local visual processing in individuals with autism spectrum disorders (ASDs). Here we used functional MRI and population receptive field (pRF) analysis to test whether the response selectivity of human visual cortex is atypical in individuals with high-functioning ASDs compared with neurotypical, demographically matched controls. For each voxel, we fitted a pRF model to fMRI signals measured while participants viewed flickering bar stimuli traversing the visual field. In most extrastriate regions, perifoveal pRFs were larger in the ASD group than in controls. We observed no differences in V1 or V3A. Differences in the hemodynamic response function, eye movements, or increased measurement noise could not account for these results; individuals with ASDs showed stronger, more reliable responses to visual stimulation. Interestingly, pRF sizes also correlated with individual differences in autistic traits but there were no correlations with behavioral measures of visual processing. Our findings thus suggest that visual cortex in ASDs is not characterized by sharper spatial selectivity. Instead, we speculate that visual cortical function in ASDs may be characterized by extrastriate cortical hyperexcitability or differential attentional deployment. PMID:24523560

  18. Neurophysiological and simulation studies of striate cortex receptive field maps: the role of intracortical interneuronal interactions.

    PubMed

    Lazareva, N A; Saltykov, K A; Shevelev, I A; Tikhomirov, A S; Novikova, R V; Tsutskiridze, D Yu

    2007-07-01

    Acute experiments on 27 adult anesthetized and immobilized cats investigated 101 on and off receptive fields in 67 neurons in visual cortex field 17 by mapping using single local stimuli presented sequentially at different parts of the visual field, as well as in combination with additional stimulation of the center of the receptive field. Both classical and combined mapping identified receptive fields with single receptive zones (63.4% and 29.3% respectively), along with fields consisting of several (2-5) excitatory and/or inhibitory zones (36.6% and 70.7%). We provide the first report of receptive fields with horseshoe, cross, and T shapes. Simulations of horizontal interneuronal interactions in the visual cortex responsible for the multiplicity of excitatory and inhibitory zones of receptive fields were performed. A role for cooperative interactions of neurons in this effect was demonstrated. The possible functional role of receptive fields of different types in extracting the features of visual images is discussed.

  19. Spatiotemporal receptive field structures in retinogeniculate connections of cat

    PubMed Central

    Suematsu, Naofumi; Naito, Tomoyuki; Miyoshi, Tomomitsu; Sawai, Hajime; Sato, Hiromichi

    2013-01-01

    The spatial structure of the receptive field (RF) of cat lateral geniculate nucleus (LGN) neurons is significantly elliptical, which may provide a basis for the orientation tuning of LGN neurons, especially at high spatial frequency stimuli. However, the input mechanisms generating this elliptical RF structure are poorly defined. We therefore compared the spatiotemporal RF structures of pairs of retinal ganglion cells (RGCs) and LGN neurons that form monosynaptic connections based on the cross-correlation analysis of their firing activities. We found that the spatial RF structure of both RGCs and LGN neurons were comparably elliptical and oriented in a direction toward the area centralis. Additionally, the spatial RF structures of pairs with the same response sign were often overlapped and similarly oriented. We also found there was a small population of pairs with RF structures that had the opposite response sign and were spatially displaced and independently oriented. Finally, the temporal RF structure of an RGC was tightly correlated with that of its target LGN neuron, though the response duration of the LGN neuron was significantly longer. Our results suggest that the elliptical RF structure of an LGN neuron is mainly inherited from the primary projecting RGC and is affected by convergent inputs from multiple RGCs. We discuss how the convergent inputs may enhance the stimulus feature sensitivity of LGN neurons. PMID:24367299

  20. Effects of spike-triggered negative feedback on receptive-field properties.

    PubMed

    Urdapilleta, Eugenio; Samengo, Inés

    2015-04-01

    Sensory neurons are often described in terms of a receptive field, that is, a linear kernel through which stimuli are filtered before they are further processed. If information transmission is assumed to proceed in a feedforward cascade, the receptive field may be interpreted as the external stimulus' profile maximizing neuronal output. The nervous system, however, contains many feedback loops, and sensory neurons filter more currents than the ones representing the transduced external stimulus. Some of the additional currents are generated by the output activity of the neuron itself, and therefore constitute feedback signals. By means of a time-frequency analysis of the input/output transformation, here we show how feedback modifies the receptive field. The model is applicable to various types of feedback processes, from spike-triggered intrinsic conductances to inhibitory synaptic inputs from nearby neurons. We distinguish between the intrinsic receptive field (filtering all input currents) and the effective receptive field (filtering only external stimuli). Whereas the intrinsic receptive field summarizes the biophysical properties of the neuron associated to subthreshold integration and spike generation, only the effective receptive field can be interpreted as the external stimulus' profile maximizing neuronal output. We demonstrate that spike-triggered feedback shifts low-pass filtering towards band-pass processing, transforming integrator neurons into resonators. For strong feedback, a sharp resonance in the spectral neuronal selectivity may appear. Our results provide a unified framework to interpret a collection of previous experimental studies where specific feedback mechanisms were shown to modify the filtering properties of neurons.

  1. Altered somatosensory receptive fields in hamster colliculus after infraorbital nerve section and xylocaine injection.

    PubMed Central

    Jacquin, M F; Mooney, R D; Rhoades, R W

    1984-01-01

    The effects of acute infraorbital (i.o.) nerve section upon the responses of somatosensory cells in the rostral part of the deep layers of the hamster's superior colliculus were studied using standard extracellular single-unit recording and receptive field mapping techniques. In nine animals a given cell's receptive field was determined both before and after i.o. nerve section and, in all cases, new areas of sensitivity were unmasked within 15 min after the nerve was cut. In a given electrode penetration where the i.o. nerve was sectioned (n = 13), somatosensory cells recorded after the nerve was cut, as the electrode was being withdrawn from the colliculus, exhibited receptive fields considerably different from those of somatosensory cells isolated during the descent of the recording electrode. Seventeen deep-layer somatosensory cells (in eight hamsters) were tested before and after subcutaneous injections of xylocaine into their receptive fields. This manipulation unmasked new areas of cutaneous sensitivity for sixteen units. Of these, the new receptive fields of nine cells disappeared as sensitivity in the original receptive field returned; five ultimately retained both the new and old receptive fields; in two instances, sensitivity in the original receptive field never returned over the 3 h of testing. Control experiments (n = 7) demonstrated that the changes observed did not result from spontaneous alterations in receptive field borders, changes induced by variations in the level of general anaesthesia, or non-specific trauma associated with the xylocaine injections or the surgery required to expose the i.o. nerve. Images Fig. 7 Fig. 8 Plate 1 PMID:6716292

  2. Temporal response of protein-based artificial ganglion cell receptive field (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Okada-Shudo, Yoshiko

    2016-10-01

    We propose ganglion cell receptive-field-type filters with the use of the photoreceptor protein bacteriorhodopsin. Visual image processing is possible with the use of only one sensing element. We also demonstrate that our difference of Gaussians (DOG) filter, which mimics on-center off-suround ganglion cell receptive fields, has the function of a Laplacian filter and can act as an edge detecor. The X-type receptive field responses obtained by the filter, for a variety of stimuli, are compared with available electrophysiological recodings.

  3. An analysis of neural receptive field plasticity by point process adaptive filtering

    PubMed Central

    Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor

    2001-01-01

    Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043

  4. State-space receptive fields of semicircular canal afferent neurons in the bullfrog

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.

  5. Receptive fields of retinal bipolar cells are mediated by heterogeneous synaptic circuitry

    PubMed Central

    Zhang, Ai-Jun; Wu, Samuel M.

    2009-01-01

    Center-surround antagonistic receptive field (CSARF) organization is the basic synaptic circuit that serves as elementary building blocks for spatial information processing in the visual system. Cells with such receptive fields converge into higher-order visual neurons to form more complex receptive fields. Retinal bipolar cells (BCs) are the first neurons along the visual pathway that exhibit CSARF organization. BCs have been classified according to their response polarities and rod/cone inputs, and they project signals to target cells at different sublaminae of the inner plexiform layer. On the other hand, CSARFs of various types of BCs have been assumed be organized the same way. Here we examined center and surround responses of over 250 salamander BCs, and demonstrated that different types of BCs exhibit different patterns of dye coupling, receptive field center size, surround response strength, and conductance changes associated with center and surround responses. We show that BC receptive field center sizes varied with the degree of BC-BC coupling, and that surround responses of different BCs are mediated by different combinations of five lateral synaptic pathways mediated by the horizontal cells and amacrine cells. The finding of heterogeneous receptive field circuitry fundamentally challenges the common assumption that CSARFs of different subtypes of visual neurons are mediated by the same synaptic pathways. BCs carrying different visual signals use different synaptic circuits to process spatial information, allowing shape and contrast computation be differentially modulated by various lighting and adaptation conditions. PMID:19158304

  6. Modulation of shifting receptive field activity in frontal eye field by visual salience

    PubMed Central

    Cavanaugh, James; Wurtz, Robert H.

    2011-01-01

    In the monkey frontal eye field (FEF), the sensitivity of some neurons to visual stimulation changes just before a saccade. Sensitivity shifts from the spatial location of its current receptive field (RF) to the location of that field after the saccade is completed (the future field, FF). These shifting RFs are thought to contribute to the stability of visual perception across saccades, and in this study we investigated whether the salience of the FF stimulus alters the magnitude of FF activity. We reduced the salience of the usually single flashed stimulus by adding other visual stimuli. We isolated 171 neurons in the FEF of 2 monkeys and did experiments on 50 that had FF activity. In 30% of these, that activity was higher before salience was reduced by adding stimuli. The mean magnitude reduction was 16%. We then determined whether the shifting RFs were more frequent in the central visual field, which would be expected if vision across saccades were only stabilized for the visual field near the fovea. We found no evidence of any skewing of the frequency of shifting receptive fields (or the effects of salience) toward the central visual field. We conclude that the salience of the FF stimulus makes a substantial contribution to the magnitude of FF activity in FEF. In so far as FF activity contributes to visual stability, the salience of the stimulus is probably more important than the region of the visual field in which it falls for determining which objects remain perceptually stable across saccades. PMID:21653709

  7. Chromatic sensitivity and spatial organization of LGN neurone receptive fields in cat: cone-rod interaction

    PubMed Central

    Hammond, P.

    1972-01-01

    1. The results described are for detailed analyses of fifty-four isolated LGN units, in response to monochromatic stimuli presented against achromatic, mid-mesopic backgrounds. Forty-seven were positively identified cells from the A-laminae; the remaining seven were fibres from the optic radiation. 2. Cells are classified according to firing pattern. Phasic cells respond almost exclusively with a discharge transient. Tonic cells, by contrast, give a maintained component in addition. In general, tonic cells possess higher spontaneous firing frequencies than phasic cells and the antagonistic surrounds of their receptive fields are more potent. In other respects the two classes appear to be functionally similar. 3. All cells within the A-laminae receive input involving both rods and 556 nm cones. 4. The spatial organization of geniculate receptive fields, unlike retinal fields, is little different for cone and rod vision. In the infrequent instances where a change is apparent, it is small and can go in either direction: rod fields are then on balance slightly larger than cone fields. 5. The locus of maximum sensitivity for the receptive field surround is described by a circle, concentric with the field centre; it is invariant with respect to stimulus geometry, or changeover from cone to rod vision. 6. This result implies that the receptive field surround mechanism does not extend through the field centre. It supports the notion that the centre and surround of each geniculate cell receptive field are mediated by discrete retinal inputs. PMID:4561483

  8. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

    PubMed

    Gharat, Amol; Baker, Curtis L

    2017-01-25

    Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode

  9. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex

    PubMed Central

    Meyer, Arne F.; Diepenbrock, Jan-Philipp; Ohl, Frank W.; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5–30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design. PMID:25566049

  10. Crossed receptive field components and crossed dendrites in cat sacrocaudal dorsal horn.

    PubMed

    Gladfelter, W E; Millecchia, R J; Pubols, L M; Sonty, R V; Ritz, L A; Covalt-Dunning, D; Culberson, J; Brown, P B

    1993-10-01

    The hypothesis that sacrocaudal dorsal horn neurons with crossed receptive field components on the tail have dendrites which cross to the contralateral dorsal horn was tested in a combined electrophysiological and morphological study. Dorsal horn cells in the sacrocaudal spinal cord of anesthetized cats were penetrated with horseradish peroxidase-filled microelectrodes. After mapping their low threshold mechanoreceptive fields, cells were iontophoretically injected with horseradish peroxidase. A sample of 16 well-stained cells was obtained in laminae III and IV. Cells with receptive fields crossing the dorsal midline of the tail (n = 8) had somata in the lateral ipsilateral dorsal horn, and some of these cells (5/8) had dendrites which crossed to the lateral contralateral dorsal horn. Cells with receptive fields spanning the ventral midline (n = 2) were located near the center of the fused dorsal horn, and one of these had bilateral dendrites in this region. Cells with receptive fields on the lateral tail, crossing neither the dorsal nor the ventral midline (n = 6), had cell bodies in the middle of the ipsilateral dorsal horn; half had only ipsilateral dendrites, and half had crossed dendritic branches. Although the relationship between cell receptive field (RF) location (RF center, expressed as distance from tips of toes) and mediolateral location of the cell body was statistically significant, the correlation between crossed RF components and crossed dendritic branches was not significant.

  11. Attention operates uniformly throughout the classical receptive field and the surround

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John HR

    2016-01-01

    Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround. DOI: http://dx.doi.org/10.7554/eLife.17256.001 PMID:27547989

  12. Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation

    PubMed Central

    Gerstner, Wulfram

    2016-01-01

    The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities. PMID:27690349

  13. Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation.

    PubMed

    Brito, Carlos S N; Gerstner, Wulfram

    2016-09-01

    The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities.

  14. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input.

  15. A new nonconvex variational approach for sensory neurons receptive field estimation

    NASA Astrophysics Data System (ADS)

    Drogoul, A.; Aubert, G.; Cessac, B.; Kornprobst, P.

    2016-10-01

    Determining the receptive field of a visual sensory neuron is crucial to characterize the region of the visual field and the stimuli this neuron is sensitive to. We propose a new method to estimate receptive fields by a nonconvex variational approach, thus relaxing the simplifying and unrealistic assumption of convexity made by standard approaches. The method consists of solving a relaxed discrete energy minimization problem using a proximal alternating algorithm. We compare our approach with the classical spike-triggered-average technique on simulated data, considering a typical retinal ganglion cell as ground truth. Results show a high improvement in terms of accuracy and convergence with respect to the duration of the experiment.

  16. Spatial organization of the bipolar cell's receptive field in the retina of the tiger salamander.

    PubMed Central

    Hare, W A; Owen, W G

    1990-01-01

    1. The spatial properties of rods, horizontal cells and bipolar cells were studied by intracellular recording in the isolated, perfused retina of the tiger salamander, Ambystoma tigrinum. Low stimulus intensities were used in order to keep cell responses close to, or within, their linear intensity/response range. 2. Spatial properties of bipolar cell receptive fields, measured while perfusing with normal Ringer solution, were compared with those measured during exposure to agents that eliminated the bipolar cells' receptive field surround (RFS). In this way, the spatial properties of the receptive field centre (RFC) and those of the RFS could be characterized independently. 3. To a good approximation, the contribution to the horizontal cell's response of unit area of its receptive field declined exponentially with distance from the centre of the receptive field. The (apparent) length constant describing this decay was 200 microns. The one-dimensional length constant of the horizontal cell syncytium was thus 248 microns. The variation of response amplitude with the radius of a centred circular stimulus was consistent with this finding. 4. This was true also of the RFCs of bipolar cells. The one-dimensional length constant of the RFC of off-centre bipolar cells averaged 124 microns. That of the RFC of on-centre cells averaged 62 microns though values were more variable, the RFCs of some on-centre cells being comparable to those of off-centre cells. These values were independent of the class of photoreceptor driving the bipolar cell. 5. The large size of the RFCs of off-centre cells and many on-centre cells cannot by explained by light scatter within the retina or by voltage spread within the rod syncytium. We proposed that off-centre cells are tightly coupled in a syncytium. On-centre cells, on average, are less tightly coupled. 6. The spatial properties of the bipolar cell's RFS were consistent with the notion that the RFS represents a convolution of the horizontal

  17. Scale-invariance of receptive field properties in primary visual cortex.

    PubMed

    Teichert, Tobias; Wachtler, Thomas; Michler, Frank; Gail, Alexander; Eckhorn, Reinhard

    2007-06-11

    Our visual system enables us to recognize visual objects across a wide range of spatial scales. The neural mechanisms underlying these abilities are still poorly understood. Size- or scale-independent representation of visual objects might be supported by processing in primary visual cortex (V1). Neurons in V1 are selective for spatial frequency and thus represent visual information in specific spatial wavebands. We tested whether different receptive field properties of neurons in V1 scale with preferred spatial wavelength. Specifically, we investigated the size of the area that enhances responses, i.e., the grating summation field, the size of the inhibitory surround, and the distance dependence of signal coupling, i.e., the linking field. We found that the sizes of both grating summation field and inhibitory surround increase with preferred spatial wavelength. For the summation field this increase, however, is not strictly linear. No evidence was found that size of the linking field depends on preferred spatial wavelength. Our data show that some receptive field properties are related to preferred spatial wavelength. This speaks in favor of the hypothesis that processing in V1 supports scale-invariant aspects of visual performance. However, not all properties of receptive fields in V1 scale with preferred spatial wavelength. Spatial-wavelength independence of the linking field implies a constant spatial range of signal coupling between neurons with different preferred spatial wavelengths. This might be important for encoding extended broad-band visual features such as edges.

  18. Reception and learning of electric fields in bees

    PubMed Central

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf

    2013-01-01

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603

  19. Receptive field properties of color opponent neurons in the cat lateral geniculate nucleus.

    PubMed

    Buzás, Péter; Kóbor, Péter; Petykó, Zoltán; Telkes, Ildikó; Martin, Paul R; Lénárd, László

    2013-01-23

    Most nonprimate mammals possess dichromatic ("red-green color blind") color vision based on short-wavelength-sensitive (S) and medium/long-wavelength-sensitive (ML) cone photoreceptor classes. However, the neural pathways carrying signals underlying the primitive "blue-yellow" axis of color vision in nonprimate mammals are largely unexplored. Here, we have characterized a population of color opponent (blue-ON) cells in recordings from the dorsal lateral geniculate nucleus of anesthetized cats. We found five points of similarity to previous descriptions of primate blue-ON cells. First, cat blue-ON cells receive ON-type excitation from S-cones, and OFF-type excitation from ML-cones. We found no blue-OFF cells. Second, the S- and ML-cone-driven receptive field regions of cat blue-ON cells are closely matched in size, consistent with specialization for detecting color contrast. Third, the receptive field center diameter of cat blue-ON cells is approximately three times larger than the center diameter of non-color opponent receptive fields at any eccentricity. Fourth, S- and ML-cones contribute weak surround inhibition to cat blue-ON cells. These data show that blue-ON receptive fields in cats are functionally very similar to blue-ON type receptive fields previously described in macaque and marmoset monkeys. Finally, cat blue-ON cells are found in the same layers as W-cells, which are thought to be homologous to the primate koniocellular system. Based on these data, we suggest that cat blue-ON cells are part of a "blue-yellow" color opponent system that is the evolutionary homolog of the blue-ON division of the koniocellular pathway in primates.

  20. Somatosensory receptive field properties of corpus callosum fibres in the raccoon.

    PubMed

    Guillemot, J P; Richer, L; Ptito, M; Guilbert, M; Lepore, F

    1992-07-01

    Anatomical studies in a number of species have shown that most areas of the somatosensory cortex are callosally interconnected. This is also true for the raccoon, at least for those parts representing proximal and axial body regions. Electrophysiologically, studies carried out in cats and monkeys have demonstrated that all sensory sub-modalities cross in the callosum. Moreover, cells representing the paws and fingers, though occupying a large portion of areas SI and SII, seem to send proportionately fewer axons through the callosum than axial structures. No comparable study has been carried out in the raccoon. The purpose of the present experiment was therefore to investigate the functional organization of the callosal system in this animal by examining the receptive field properties of the somatosensory fibres crossing in the callosum. Axonal activity was recorded directly through tungsten microelectrodes in the corpus callosum of eight raccoons. Results indicated that somatosensory information is transmitted in its rostral portion. Most receptive fields concerned axial and proximal body regions and the head and face. Some receptive fields represented para-axial regions of the body and a few concerned the hands and fingers. Slowly and rapidly adapting fibres were found, as were all the sensory sub-modalities tested. A substantial proportion of the axons had bilateral receptive fields. These results are discussed in relation to those obtained in other species, with particular reference to: (1) the midline fusion hypothesis of callosal function; (2) the representation within this structure of the distal extremities, and (3) the origin of the bilateral receptive fields.

  1. Receptive field properties of rod-driven horizontal cells in the skate retina

    PubMed Central

    1992-01-01

    The large receptive fields of retinal horizontal cells result primarily from extensive intercellular coupling via gap (electrical) junctions; thus, the extent of the receptive field provides an index of the degree to which the cells are electrically coupled. For rod-driven horizontal cells in the dark-adapted skate retina, a space constant of 1.18 +/- 0.15 mm (SD) was obtained from measurements with a moving slit stimulus, and a comparable value (1.43 +/- 0.55 mm) was obtained with variation in spot diameter. These values, and the extensive spread of a fluorescent dye (Lucifer Yellow) from the site of injection to neighboring cells, indicate that the horizontal cells of the all-rod retina of skate are well coupled electrically. Neither the receptive field properties nor the gap-junctional features of skate horizontal cells were influenced by the adaptive state of the retina: (a) the receptive field organization was unaffected by light adaptation, (b) similar dye coupling was seen in both dark- and light-adapted retinae, and (c) no significant differences were found in the gap-junctional particle densities measured in dark- and light-adapted retinas, i.e., 3,184 +/- 286/microns 2 (n = 8) and 3,073 +/- 494/microns 2 (n = 11), respectively. Moreover, the receptive fields of skate horizontal cells were not altered by either dopamine, glycine, GABA, or the GABAA receptor antagonists bicuculline and picrotoxin. We conclude that the rod-driven horizontal cells of the skate retina are tightly coupled to one another, and that the coupling is not affected by photic and pharmacological conditions that are known to modulate intercellular coupling between cone-driven horizontal cells in other species. PMID:1359000

  2. Investigation of the asymmetric distributions of RF transmission and reception fields at high static field.

    PubMed

    Watanabe, Hidehiro

    2012-01-01

    When radiofrequency (RF) transmission field represents B(1)(+), the reception field represents B(1)(-)*. The distribution of those maps demonstrates asymmetric features at high field magnetic resonance (MR) imaging. Both maps are in mirror symmetry to one another. Almost symmetric distribution of the B(1) field was expected on the laboratory frame in a symmetric sample loaded inside the RF coil designed to achieve a homogeneous B(1) field. Then, a simple change was made in the coordinate transformation equation of RF fields between the rotating and laboratory frames in both linear and quadrature modes to investigate the source of this feature of asymmetry. The magnitude of rotating frame components, B(1)(+) and B(1)(-), consists of the magnitude and the phase difference of the laboratory frame components. The rotating frame components differ in the sign of the sinusoidal phase difference. B(1)(+) is equal to B(1)(-) at lower field because phase changes that depend on position can be ignored. At higher fields, the magnitude component has a symmetric profile, and distribution in the phase component is antisymmetric. Thus, the distributions of B(1)(+) and B(1)(-) maps demonstrate mirror symmetry. Maps of magnitude and phase components were examined in the laboratory frame. Their maps were computed from B(1)(+) and B(1)(-) maps of the human brain and of a spherical saline phantom measured at 4.7T. It was concluded from these analytical and experimental results that the asymmetric and mirror symmetric distributions in B(1)(+) and B(1)(-) are derived from the phase difference in the laboratory frame.

  3. Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation

    PubMed Central

    Haider, Bilal; Krause, Matthew R.; Duque, Alvaro; Yu, Yuguo; Touryan, Jonathan; Mazer, James A.; McCormick, David A.

    2011-01-01

    SUMMARY During natural vision, the entire visual field is stimulated by images rich in spatiotemporal structure. Although many visual system studies restrict stimuli to the classical receptive field (CRF), it is known that costimulation of the CRF and the surrounding nonclassical receptive field (nCRF) increases neuronal response sparseness. The cellular and network mechanisms underlying increased response sparseness remain largely unexplored. Here we show that combined CRF + nCRF stimulation increases the sparseness, reliability, and precision of spiking and membrane potential responses in classical regular spiking (RSC) pyramidal neurons of cat primary visual cortex. Conversely, fast-spiking interneurons exhibit increased activity and decreased selectivity during CRF + nCRF stimulation. The increased sparseness and reliability of RSC neuron spiking is associated with increased inhibitory barrages and narrower visually evoked synaptic potentials. Our experimental observations were replicated with a simple computational model, suggesting that network interactions among neuronal subtypes ultimately sharpen recurrent excitation, producing specific and reliable visual responses. PMID:20152117

  4. Distinctive receptive field and physiological properties of a wide-field amacrine cell in the macaque monkey retina

    PubMed Central

    Puller, Christian; Rieke, Fred; Neitz, Jay; Neitz, Maureen

    2015-01-01

    At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these long-range effects would certainly require signal propagation via active membrane properties. Here the physiology of a wide-field amacrine cell—the wiry cell—in macaque monkey retina is explored, revealing receptive fields that represent a striking departure from the classic structure. A single wiry cell integrates signals over wide regions of retina, 5–10 times larger than the classic receptive fields of most retinal ganglion cells. Wiry cells integrate signals over space much more effectively than predicted from passive signal propagation, and spatial integration is strongly attenuated during blockade of NMDA spikes but integration is insensitive to blockade of NaV channels with TTX. Thus these cells appear well suited for contributing to the long-range interactions of visual signals that characterize many aspects of visual perception. PMID:26133804

  5. Teaching Critical Reflexivity in Short-Term International Field Courses: Practices and Problems

    ERIC Educational Resources Information Center

    Glass, Michael R.

    2015-01-01

    This study critiques the use of critical reflexivity in short-term international field courses. Critical reflexivity's benefits include preparing students for professional research, deepening their learning, and giving the chance to see how student perspectives on fieldwork sites are influenced by their own identity and positionality. I use an…

  6. Teaching Critical Reflexivity in Short-Term International Field Courses: Practices and Problems

    ERIC Educational Resources Information Center

    Glass, Michael R.

    2015-01-01

    This study critiques the use of critical reflexivity in short-term international field courses. Critical reflexivity's benefits include preparing students for professional research, deepening their learning, and giving the chance to see how student perspectives on fieldwork sites are influenced by their own identity and positionality. I use an…

  7. Receptive field focus of visual area V4 neurons determines responses to illusory surfaces

    PubMed Central

    Cox, Michele A.; Schmid, Michael C.; Peters, Andrew J.; Saunders, Richard C.; Leopold, David A.; Maier, Alexander

    2013-01-01

    Illusory figures demonstrate the visual system’s ability to infer surfaces under conditions of fragmented sensory input. To investigate the role of midlevel visual area V4 in visual surface completion, we used multielectrode arrays to measure spiking responses to two types of visual stimuli: Kanizsa patterns that induce the perception of an illusory surface and physically similar control stimuli that do not. Neurons in V4 exhibited stronger and sometimes rhythmic spiking responses for the illusion-promoting configurations compared with controls. Moreover, this elevated response depended on the precise alignment of the neuron’s peak visual field sensitivity (receptive field focus) with the illusory surface itself. Neurons whose receptive field focus was over adjacent inducing elements, less than 1.5° away, did not show response enhancement to the illusion. Neither receptive field sizes nor fixational eye movements could account for this effect, which was present in both single-unit signals and multiunit activity. These results suggest that the active perceptual completion of surfaces and shapes, which is a fundamental problem in natural visual experience, draws upon the selective enhancement of activity within a distinct subpopulation of neurons in cortical area V4. PMID:24085849

  8. Signal-tuned Gabor functions as models for stimulus-dependent cortical receptive fields.

    PubMed

    Torreão, José R A; Victer, Silvia M C; Amaral, Marcos S

    2014-05-01

    We propose and analyze a model, based on signal-tuned Gabor functions, for the receptive fields and responses of V1 cells. Signal-tuned Gabor functions are gaussian-modulated sinusoids whose parameters are obtained from a given, spatial, or spectral "tuning" signal. These functions can be proven to yield exact representations of their tuning signals and have recently been proposed as the kernels of a variant Gabor transform-the signal-tuned Gabor transform (STGT)-which allows the accurate detection of spatial and spectral events. Here we show that by modeling the receptive fields of simple and complex cells as signal-tuned Gabor functions and expressing their responses as STGTs, we are able to replicate the properties of these cells when tested with standard grating and slit inputs, at the same time emulating their stimulus-dependent character as revealed by recent neurophysiological studies.

  9. Responses and Receptive Fields of Amacrine Cells and Ganglion Cells in the Salamander Retina

    PubMed Central

    Zhang, Ai-Jun; Wu, Samuel M.

    2013-01-01

    Retinal amacrine cells (ACs) and ganglion cells (GCs) have been shown to display large morphological diversity, and here we show that four types of ACs and three types of GCs exhibit physiologically-distinguishable properties. They are the sustained ON ACs; sustained OFF ACs; transient ON-OFF ACs; transient ON-OFF ACs with wide receptive fields; sustained ON-center/OFF-surround GCs; sustained OFF-center/ON-surround GCs and transient ON-OFF GCs. By comparing response waveforms, receptive fields and relative rod/cone inputs of ACs and GCs with the corresponding parameters of various types of the presynaptic bipolar cells (BCs), we analyze how different types of BCs mediate synaptic inputs to various ACs and GCs. Although more types of third-order retinal neurons may be identified by more refined classification criteria, our observations suggest that many morphologically-distinct ACs and GCs share very similar physiological responses. PMID:20085780

  10. Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles

    PubMed Central

    Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and

  11. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields

    PubMed Central

    Lee, Joonyeol; Maunsell, John H.R.

    2010-01-01

    Descriptions of how attention modulates neuronal responses suggest that the strength of its effects depends on stimulus conditions. Attention to an isolated stimulus in the receptive field of an individual neuron typically produces a moderate enhancement of the cell's response, but neuronal responses are often strongly modulated when attention is shifted between multiple stimuli that lie within the receptive field. However, previous reports have not compared these stimulus effects under equivalent conditions, so differences in task difficulty could have been responsible for much of the difference. Consequently, the quantitative effects of stimulus conditions have remained unknown, and it has not been possible to address the question of whether the differences that have been observed could be explained by a single mechanism. We measured the attentional modulation of the responses of 70 single neurons in area MT of two rhesus monkeys using a task design that kept attention stable across different stimulus configurations. We found that attentional modulation was indeed much stronger when more than one stimulus was within the receptive field. Nevertheless, the broad range of attentional modulations seen across the different conditions could be readily explained by single mechanism. The neurophysiological data from all stimulus conditions were well fit by a model in which attention acts through a response normalization mechanism (Lee and Maunsell, 2009). Collectively, these results validate previous impressions of the effects of stimulus configuration on attentional modulation, and add support to hypothesis that attention modulation depends on a response normalization mechanism. PMID:20181602

  12. Local signals from beyond the receptive fields of striate cortical neurons.

    PubMed

    Müller, James R; Metha, Andrew B; Krauskopf, John; Lennie, Peter

    2003-08-01

    We examined in anesthetized macaque how the responses of a striate cortical neuron to patterns inside the receptive field were altered by surrounding patterns outside it. The changes in a neuron's response brought about by a surround are immediate and transient: they arise with the same latency as the response to a stimulus within the receptive field (this argues for a source locally in striate cortex) and become less effective as soon as 27 ms later. Surround signals appeared to exert their influence through divisive interaction (normalization) with those arising in the receptive field. Surrounding patterns presented at orientations slightly oblique to the preferred orientation consistently deformed orientation tuning curves of complex (but not simple) cells, repelling the preferred orientation but without decreasing the discriminability of the preferred grating and ones at slightly oblique orientations. By reducing responsivity and changing the tuning of complex cells locally in stimulus space, surrounding patterns reduce the correlations among responses of neurons to a particular stimulus, thus reducing the redundancy of image representation.

  13. New variation on the derivation of spectro-temporal receptive fields for primary auditory afferent axons.

    PubMed

    Lewis, Edwin R; van Dijk, Pim

    2004-03-01

    The spectro-temporal receptive field [Hear. Res 5 (1981) 147; IEEE Trans BME 15 (1993) 177] provides an explicit image of the spectral and temporal aspects of the responsiveness of a primary auditory afferent axon. It exhibits the net effects of the competition between excitatory and inhibitory (or suppressive) phenomena. In this paper, we introduce a method for derivation of the spectro-temporal receptive field directly from a second-order Wiener kernel (produced by second-order reverse correlation between spike responses and broad-band white-noise stimulus); and we expand the concept of the spectro-temporal receptive field by applying the new method not only to the second-order kernel itself, but also to its excitatory and inhibitory subkernels. This produces separate spectro-temporal images of the excitatory and inhibitory phenomena putatively underlying the competition. Applied, in simulations, to models with known underlying excitatory and suppressive tuning and timing properties, the method successfully extracted a faithful image of those properties for excitation and one for inhibition. Applied to three auditory axons from the frog, it produced images consistent with previously published physiology.

  14. New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons.

    PubMed

    Lewis, Edwin R; van Dijk, Pim

    2003-12-01

    The spectro-temporal receptive field [Hear. Res 5 (1981) 147; IEEE Trans BME 15 (1993) 177] provides an explicit image of the spectral and temporal aspects of the responsiveness of a primary auditory afferent axon. It exhibits the net effects of the competition between excitatory and inhibitory (or suppressive) phenomena. In this paper, we introduce a method for derivation of the spectro-temporal receptive field directly from a second-order Wiener kernel (produced by second-order reverse correlation between spike responses and broad-band white-noise stimulus); and we expand the concept of the spectro-temporal receptive field by applying the new method not only to the second-order kernel itself, but also to its excitatory and inhibitory subkernels. This produces separate spectro-temporal images of the excitatory and inhibitory phenomena putatively underlying the competition. Applied, in simulations, to models with known underlying excitatory and suppressive tuning and timing properties, the method successfully extracted a faithful image of those properties for excitation and one for inhibition. Applied to three auditory axons from the frog, it produced images consistent with previously published physiology.

  15. Spatiotemporal receptive fields of barrel cortex revealed by reverse correlation of synaptic input.

    PubMed

    Ramirez, Alejandro; Pnevmatikakis, Eftychios A; Merel, Josh; Paninski, Liam; Miller, Kenneth D; Bruno, Randy M

    2014-06-01

    Of all of the sensory areas, barrel cortex is among the best understood in terms of circuitry, yet least understood in terms of sensory function. We combined intracellular recording in rats with a multi-directional, multi-whisker stimulator system to estimate receptive fields by reverse correlation of stimuli to synaptic inputs. Spatiotemporal receptive fields were identified orders of magnitude faster than by conventional spike-based approaches, even for neurons with little spiking activity. Given a suitable stimulus representation, a linear model captured the stimulus-response relationship for all neurons with high accuracy. In contrast with conventional single-whisker stimuli, complex stimuli revealed markedly sharpened receptive fields, largely as a result of adaptation. This phenomenon allowed the surround to facilitate rather than to suppress responses to the principal whisker. Optimized stimuli enhanced firing in layers 4-6, but not in layers 2/3, which remained sparsely active. Surround facilitation through adaptation may be required for discriminating complex shapes and textures during natural sensing.

  16. Neurons in Primate Visual Cortex Alternate between Responses to Multiple Stimuli in Their Receptive Field

    PubMed Central

    Li, Kang; Kozyrev, Vladislav; Kyllingsbæk, Søren; Treue, Stefan; Ditlevsen, Susanne; Bundesen, Claus

    2016-01-01

    A fundamental question concerning representation of the visual world in our brain is how a cortical cell responds when presented with more than a single stimulus. We find supportive evidence that most cells presented with a pair of stimuli respond predominantly to one stimulus at a time, rather than a weighted average response. Traditionally, the firing rate is assumed to be a weighted average of the firing rates to the individual stimuli (response-averaging model) (Bundesen et al., 2005). Here, we also evaluate a probability-mixing model (Bundesen et al., 2005), where neurons temporally multiplex the responses to the individual stimuli. This provides a mechanism by which the representational identity of multiple stimuli in complex visual scenes can be maintained despite the large receptive fields in higher extrastriate visual cortex in primates. We compare the two models through analysis of data from single cells in the middle temporal visual area (MT) of rhesus monkeys when presented with two separate stimuli inside their receptive field with attention directed to one of the two stimuli or outside the receptive field. The spike trains were modeled by stochastic point processes, including memory effects of past spikes and attentional effects, and statistical model selection between the two models was performed by information theoretic measures as well as the predictive accuracy of the models. As an auxiliary measure, we also tested for uni- or multimodality in interspike interval distributions, and performed a correlation analysis of simultaneously recorded pairs of neurons, to evaluate population behavior. PMID:28082892

  17. Division of labor in frontal eye field neurons during presaccadic remapping of visual receptive fields

    PubMed Central

    Shin, SooYoon

    2012-01-01

    Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry. PMID:22815407

  18. Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields

    PubMed Central

    Brewer, Alyssa A.; Barton, Brian

    2012-01-01

    Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD. PMID:24570669

  19. Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas

    PubMed Central

    Papanikolaou, Amalia; Keliris, Georgios A.; Lee, Sangkyun; Logothetis, Nikos K.; Smirnakis, Stelios M.

    2016-01-01

    There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and assess the capacity of the human visual cortex to reorganize following injury. However, these methods are prone to biases near the boundaries of the scotoma. Retinotopic changes resembling reorganization have been observed in the early visual cortex of normal subjects when the visual stimulus is masked to simulate retinal or cortical scotomas. It is not known how the receptive fields of higher visual areas, like hV5/MT+, are affected by partial stimulus deprivation. We measured population receptive field (pRF) responses in human area V5/MT+ of 5 healthy participants under full stimulation and compared them with responses obtained from the same area while masking the left superior quadrant of the visual field (“artificial scotoma” or AS). We found that pRF estimations in area hV5/MT+ are nonlinearly affected by the AS. Specifically, pRF centers shift towards the AS, while the pRF amplitude increases and the pRF size decreases near the AS border. The observed pRF changes do not reflect reorganization but reveal important properties of normal visual processing under different test-stimulus conditions. PMID:26146195

  20. Enlargement of the receptive field size to low intensity mechanical stimulation in the rat spinal nerve ligation model of neuropathy.

    PubMed

    Suzuki, R; Kontinen, V K; Matthews, E; Williams, E; Dickenson, A H

    2000-06-01

    One characteristic of plasticity after peripheral tissue or nerve damage is receptive field reorganization, and enlargement of receptive field size has been suggested to occur in certain models of neuropathic pain. The aim of the present study was to explore whether enlargement of neuronal receptive fields could contribute to the mechanical allodynia found on the ipsilateral paw in the spinal nerve ligation model of neuropathy. After ligation of L(5)-L(6) spinal nerves, all rats developed behavioral signs of mechanical allodynia, while the sham-operated control group displayed no such changes. The characteristics of the evoked responses of the neurones recorded in the dorsal horn of the rats were similar between the spinal nerve ligation, the sham operated control group, and the nonoperated control group, except for spontaneous activity, which was significantly increased in the spinal nerve ligation group. The mean size of the receptive field on the ipsilateral hindpaw, mapped using low-intensity stimulation with 9-g von Frey hair, was significantly increased in the spinal nerve ligation group, as compared to the sham-operated group. No significant difference was seen with 15- or 75-g von Frey hairs. The distribution of the receptive fields over the plantar surface of the paw was similar between the study groups. The enlargement of receptive field for non-noxious touch could be an indication of central sensitization in this model.

  1. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone

    PubMed Central

    Garwicz, Martin; Jörntell, Henrik; Ekerot, Carl-Fredrik

    1998-01-01

    The topographical organization of mossy fibre input to the forelimb area of the paravermal C3 zone in cerebellar lobules IV and V was investigated in barbiturate-anaesthetized cats and compared with the previously described microzonal organization of climbing fibre input to the same part of the cortex. Recordings were made in the Purkinje cell and granule cell layers from single climbing fibre and mossy fibre units, respectively, and the organization of cutaneous receptive fields was assessed for both types of afferents.Based on spatial characteristics, receptive fields of single mossy fibres could be systematized into ten classes and a total of thirty-two subclasses, mainly in accordance with a scheme previously used for classification of climbing fibres. Different mossy fibres displayed a substantial range of sensitivity to natural peripheral stimulation, responded preferentially to phasic or tonic stimuli and were activated by brushing of hairs or light tapping of the skin.Overall, mossy fibres to any given microzone had receptive fields resembling the climbing fibre receptive field defining that microzone. However, compared with the climbing fibre input, the mossy fibre input had a more intricate topographical organization. Mossy fibres with very similar receptive fields projected to circumscribed cortical regions, with a specific termination not only in the mediolateral, but also in some cases in the rostrocaudal and dorsoventral, dimensions of the zone. On the other hand, mossy fibre units with non-identical, albeit usually similar, receptive fields were frequently found in the same microelectrode track. PMID:9729638

  2. 3-D components of a biological neural network visualized in computer generated imagery. I - Macular receptive field organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw

    1990-01-01

    Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.

  3. 3-D components of a biological neural network visualized in computer generated imagery. I - Macular receptive field organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw

    1990-01-01

    Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.

  4. Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis).

    PubMed

    Van Hooser, Stephen D; Heimel, J Alexander F; Nelson, Sacha B

    2003-11-01

    Physiological studies of the lateral geniculate nucleus (LGN) have revealed three classes of relay neurons, called X, Y, and W cells in carnivores and parvocellular (P), magnocellular (M), and koniocellular (K) in primates. The homological relationships among these cell classes and how receptive field (RF) properties of these cells compare with LGN cells in other mammals are poorly understood. To address these questions, we have characterized RF properties and laminar organization in LGN of a highly visual diurnal rodent, the gray squirrel, under isoflurane anesthesia. We identified three classes of LGN cells. One class found in layers 1 and 2 showed sustained, reliable firing, center-surround organization, and was almost exclusively linear in spatial summation. Another class, found in layer 3, showed short response latencies, transient and reliable firing, center-surround organization, and could show either linear (76%) or nonlinear (24%) spatial summation. A third, heterogeneous class found throughout the LGN but primarily in layer 3 showed highly variable responses, a variety of response latencies and could show either center-surround or noncenter-surround receptive field organization and either linear (77%) or nonlinear (23%) spatial summation. RF sizes of all cell classes showed little dependency on eccentricity, and all of these classes showed low contrast gains. When compared with LGN cells in other mammals, our data are consistent with the idea that all mammals contain three basic classes of LGN neurons, one showing reliable, sustained responses, and center-surround organization (X or P); another showing transient but reliable responses, short latencies, and center-surround organization (Y or M); and a third, highly variable and heterogeneous class of cells (W or K). Other properties such as dependency of receptive field size on eccentricity, linearity of spatial summation, and contrast gain appear to vary from species to species.

  5. A competition-based mechanism mediates developmental refinement of tectal neuron receptive fields.

    PubMed

    Dong, Wei; Aizenman, Carlos D

    2012-11-21

    Neural activity plays an important role in development and maturation of visual circuits in the brain. Activity can be instructive in refining visual projections by directly mediating formation and elimination of specific synaptic contacts through competition-based mechanisms. Alternatively, activity could be permissive-regulating production of factors that create a favorable environment for circuit refinement. Here we used the Xenopus laevis tadpole visual system to test whether activity is instructive or permissive for shaping development of the retinotectal circuit. In vivo spike output was dampened in a small subgroup of tectal neurons, starting from developmental stages 44-46, by overexpressing Shaker-like Xenopus Kv1.1 potassium channels using electroporation. Tadpoles were then reared until stage 49, a time period when significant refinement of the retinotectal map occurs. Kv1.1-expressing neurons had significantly decreased spike output in response to both current injection and visual stimuli compared to untransfected controls, with spiking occurring during a more limited time interval. We found that Kv1.1-expressing neurons had larger visual receptive fields, decreased receptive field sharpness, and more persistent recurrent excitation than control neurons, all of which are characteristics of immature neurons. Transfected cells, however, had normal spontaneous excitatory synaptic currents and dendritic arbors. These results suggest that spike output of a tectal neuron plays an important instructive role in development of its receptive field properties and refinement of local circuits. However, other activity-dependent processes, such as synaptogenesis and dendritic growth, remain unaffected due to the permissive environment created by otherwise normal network activity.

  6. Response characteristics and receptive field widths of on-bipolar cells in the mouse retina

    PubMed Central

    Berntson, Amy; Taylor, W Rowland

    2000-01-01

    Voltage-clamp and current-clamp recordings were made from bipolar cells in dark-adapted mouse retinal slices. Light-evoked responses fell into three groups corresponding to the rod bipolar cells, on-cone bipolar cells and off-cone bipolar cells. The morphology of the recorded cells confirmed this classification. Intensity-response relations were well fitted by a Michaelis saturation function with Hill coefficients of 1.15 ± 0.11 (n = 6) for rod bipolar cells and 2.33 ± 0.06 (n = 4) for cone inputs onto on-cone bipolar cells. In the absence of antagonists for GABA or glycine receptors, light-evoked synaptic currents for all cells displayed linear current-voltage relations that reversed near 0 mV, indicating that very little inhibition was activated under dark-adapted recording conditions. Saturating light stimuli evoked conductances of 0.81 ± 0.56 nS (n = 4) in rod bipolar cells and 1.1 ± 0.8 nS (n = 4) in on-cone bipolar cells. Receptive field widths were estimated by flashing a vertical light bar at various locations along the slice. Rod and on-cone bipolar cells had receptive field widths of 67 ± 16 μm (n = 6) and 43 ± 7 μm (n = 5), respectively. The maximum spatial resolution of an array of such cone bipolar cells was estimated to be 0.3 cycles deg−1, compared with a maximum resolution of 0.5 cycles deg−1 obtained from behavioural studies in mice. Our results suggest that this limit to spatial resolution could be imposed early in the visual system by the size of the bipolar cell receptive fields. PMID:10790165

  7. Sensory activation and receptive field organization of the lateral giant escape neurons in crayfish.

    PubMed

    Liu, Yen-Chyi; Herberholz, Jens

    2010-08-01

    Crayfish (Procambarus clarkii) have bilateral pairs of giant interneurons that control rapid escape movements in response to predatory threats. The medial giant neurons (MGs) can be made to fire an action potential by visual or tactile stimuli directed to the front of the animal and this leads to an escape tail-flip that thrusts the animal directly backward. The lateral giant neurons (LGs) can be made to fire an action potential by strong tactile stimuli directed to the rear of the animal, and this produces flexions of the abdomen that propel the crayfish upward and forward. These observations have led to the notion that the receptive fields of the giant neurons are locally restricted and do not overlap with each other. Using extra- and intracellular electrophysiology in whole animal preparations of juvenile crayfish, we found that the receptive fields of the LGs are far more extensive than previously assumed. The LGs receive excitatory inputs from descending interneurons originating in the brain; these interneurons can be activated by stimulation of the antenna II nerve or the protocerebral tract. In our experiments, descending inputs alone could not cause action potentials in the LGs, but when paired with excitatory postsynaptic potentials elicited by stimulation of tail afferents, the inputs summed to yield firing. Thus the LG escape neurons integrate sensory information received through both rostral and caudal receptive fields, and excitatory inputs that are activated rostrally can bring the LGs' membrane potential closer to threshold. This enhances the animal's sensitivity to an approaching predator, a finding that may generalize to other species with similarly organized escape systems.

  8. Receptive field properties of trigeminothalamic neurons in the rostral trigeminal sensory nuclei of cats.

    PubMed

    Ro, J Y; Capra, N F

    1994-01-01

    This study described topographic and receptive field representation in the region of the rostral trigeminal nuclei, and evaluated whether thalamic neurons from the principal sensory nucleus relay muscle afferent information to the thalamus. Extracellular single-unit activity was recorded from anesthetized cats. Units were tested for responses to natural stimuli (i.e., air bursts, brushing, light pressure, and pinch) applied to the face and oral cavity, electrical stimulation of the masseter nerve, and ramp-and-hold movements of the jaw. The receptive fields and physiological properties for 110 units were studied; we were able to verify the recording site for 96 of these units. Most of the units had discrete receptive fields in the oral cavity, skin, hair, and masseter muscle. Only 2 units received convergent inputs. Stimulation of the ipsilateral and contralateral ventroposteromedial nucleus of the thalamus was performed to identify antidromically activated units. The results showed that the dorsal principal sensory nucleus received its input primarily from the oral cavity. Most of the units (85%) that were activated by antidromic stimulation from the ipsilateral thalamus were located in this nucleus. In contrast, 82% of the units that projected to the contralateral thalamus were located in the ventral principal sensory nucleus. A complete somatotopic representation of the ipsilateral face and oral cavity was observed in the ventral principal sensory nucleus. Although 24 units had muscle receptive fields, none were activated by stimulation of the ipsilateral thalamus, and only 1 responded to stimulation of the contralateral thalamus. Most of the units that were not antidromically driven were recorded outside of the cytoarchitectural boundaries of the principal sensory nucleus. Retrograde labeling of the rostral trigeminal nuclei indicated that most of the neurons in the dorsal principal sensory nucleus projected to the ipsilateral thalamus, whereas those in the

  9. Short-term expansion of receptive fields in rat primary somatosensory cortex after hindpaw digit denervation.

    PubMed

    Byrne, J A; Calford, M B

    1991-11-29

    The immediate effect of changing the driving cutaneous input to locations within primary somatosensory cortex (SI) was examined by denervating one or more digits of the rat hindpaw by amputation or local anesthesia. When all or part of a receptive field of a cluster of neurons was denervated, it was found that the cortical location recorded from gained responsiveness to cutaneous stimulation of hindpaw areas bordering the denervated region. In 22 of the 29 animals studied this expansion took place within 5 min of the denervation.

  10. Receptive Field Properties of the Macaque Second Somatosensory Cortex: Evidence for Multiple Functional Representations

    PubMed Central

    Fitzgerald, Paul J.; Lane, John W.; Thakur, Pramodsingh H.; Hsiao, Steven S.

    2007-01-01

    The detailed functional organization of the macaque second somatosensory cortex (SII) is not well understood. Here we report the results of a study of the functional organization of the SII hand region that combines microelectrode mapping using hand-held stimuli with single-unit recordings using a motorized, computer-controlled tactile oriented bar. The data indicate that the SII hand region extends ~10 mm in the anteroposterior (AP) dimension, primarily within the upper bank of the lateral sulcus. Furthermore, we find evidence that this region consists of multiple functional fields, with a central field containing neurons that are driven well by cutaneous stimuli, flanked by an anterior field and a posterior field that each contain neurons that are driven well by proprioceptive stimuli and less well by cutaneous stimuli. The anterior field extends ~4 –5 mm AP, the central field extends ~3– 4 mm, and the posterior field extends ~3 mm. Data from the motorized stimulator indicate that neurons in the central field are more responsive to oriented bars, more frequently exhibit orientation tuning, and have larger receptive fields than neurons in the anterior and posterior fields. We speculate that the three putative fields play different functional roles in tactile perception; the anterior and posterior fields process information that involves both proprioceptive and cutaneous input such as sensorimotor integration or stereognosis, whereas the central field processes primarily cutaneous information. PMID:15590936

  11. Structure of the excitatory receptive fields of infragranular forelimb neurons in the rat primary somatosensory cortex responding to touch.

    PubMed

    Tutunculer, Banu; Foffani, Guglielmo; Himes, B Timothy; Moxon, Karen A

    2006-06-01

    We quantitatively studied the excitatory receptive fields of 297 neurons recorded from the forelimb infragranular somatosensory cortex of the rat while touch stimuli were applied to discrete locations on the forelimbs. Receptive fields were highly heterogeneous, but they were regulated, on average, by an underlying spatio-temporal structure. We found the following. (i) Neurons responded with decreasing magnitude and increasing latency when the stimulus was moved from the primary location to secondary locations and to far ispilateral locations of their excitatory receptive fields, displaying smooth transitions from the primary location to secondary locations. (ii) Receptive field patterns revealed functional connectivity between the digits and ventral palm, which did not depend on whether the digits were stimulated dorsally or ventrally. (iii) The structure of the receptive fields (i.e. the neural responses to stimulation of secondary locations compared to the neural responses to stimulation of the primary location), reflected cortical (rather than body) distances. (iv) There was a functional separation between the forepaw and the rest of the forelimb. Namely: if the primary location was in the digits or palm, secondary locations were biased toward the digits and palm; if the primary location was in rest of the forelimb, secondary locations appeared equally distributed over forelimb, digits and palm. (v) More than 40% of neurons extended their receptive field to the ipsilateral forelimb, without any evident spatial organization. Overall, the stimuli evoked approximately 3 times more spikes from secondary responses than from primary responses. These results suggest that a rich repertoire of spatio-temporal responses is available for encoding tactile information. This highly distributed receptive field structure provides the electrophysiological architecture for studying organization and plasticity of cortical somatosensory processing.

  12. Receptive Field Properties of the Macaque Second Somatosensory Cortex: Nonlinear Mechanisms Underlying the Representation of Orientation Within a Finger Pad

    PubMed Central

    Thakur, Pramodsingh H.; Fitzgerald, Paul J.; Lane, John W.; Hsiao, Steven S.

    2007-01-01

    We investigate the position invariant receptive field properties of neurons in the macaque second somatosensory (SII) cortical region. Previously we reported that many SII region neurons show orientation tuning in the center of multiple finger pads of the hand and further that the tuning is similar on different pads, which can be interpreted as position invariance. Here we study the receptive field properties of a single finger pad for a subset (n = 61) of those 928 neurons, using a motorized oriented bar that we positioned at multiple locations across the pad. We calculate both vector fields and linear receptive fields of the finger pad to characterize the receptive field properties that give rise to the tuning, and we perform an additional regression analysis to quantify linearity, invariance, or both in individual neurons. We show that orientation tuning of SII region neurons is based on a variety of mechanisms. For some neurons, the tuning is explained by simple excitatory regions, simple inhibitory regions, or some combination of these structures. However, a large fraction of the neurons (n = 20 of 61, 33%) show position invariance that is not explained well by their linear receptive fields. Finding invariance within a finger pad, coupled with the previous result of similar tuning on different pads, indicates that some SII region neurons may exhibit similar tuning throughout large regions of the hand. We hypothesize that invariant neurons play an important role in tactile form recognition. PMID:17192440

  13. Understanding spike-triggered covariance using Wiener theory for receptive field identification

    PubMed Central

    Sandler, Roman A.; Marmarelis, Vasilis Z.

    2015-01-01

    Receptive field identification is a vital problem in sensory neurophysiology and vision. Much research has been done in identifying the receptive fields of nonlinear neurons whose firing rate is determined by the nonlinear interactions of a small number of linear filters. Despite more advanced methods that have been proposed, spike-triggered covariance (STC) continues to be the most widely used method in such situations due to its simplicity and intuitiveness. Although the connection between STC and Wiener/Volterra kernels has often been mentioned in the literature, this relationship has never been explicitly derived. Here we derive this relationship and show that the STC matrix is actually a modified version of the second-order Wiener kernel, which incorporates the input autocorrelation and mixes first- and second-order dynamics. It is then shown how, with little modification of the STC method, the Wiener kernels may be obtained and, from them, the principal dynamic modes, a set of compact and efficient linear filters that essentially combine the spike-triggered average and STC matrix and generalize to systems with both continuous and point-process outputs. Finally, using Wiener theory, we show how these obtained filters may be corrected when they were estimated using correlated inputs. Our correction technique is shown to be superior to those commonly used in the literature for both correlated Gaussian images and natural images. PMID:26230978

  14. Visual receptive field properties of cells in the optic tectum of the archer fish.

    PubMed

    Ben-Tov, Mor; Kopilevich, Ivgeny; Donchin, Opher; Ben-Shahar, Ohad; Giladi, Chen; Segev, Ronen

    2013-08-01

    The archer fish is well known for its extreme visual behavior in shooting water jets at prey hanging on vegetation above water. This fish is a promising model in the study of visual system function because it can be trained to respond to artificial targets and thus to provide valuable psychophysical data. Although much behavioral data have indeed been collected over the past two decades, little is known about the functional organization of the main visual area supporting this visual behavior, namely, the fish optic tectum. In this article we focus on a fundamental aspect of this functional organization and provide a detailed analysis of receptive field properties of cells in the archer fish optic tectum. Using extracellular measurements to record activities of single cells, we first measure their retinotectal mapping. We then determine their receptive field properties such as size, selectivity for stimulus direction and orientation, tuning for spatial frequency, and tuning for temporal frequency. Finally, on the basis of all these measurements, we demonstrate that optic tectum cells can be classified into three categories: orientation-tuned cells, direction-tuned cells, and direction-agnostic cells. Our results provide an essential basis for future investigations of information processing in the archer fish visual system.

  15. Comparing different stimulus configurations for population receptive field mapping in human fMRI

    PubMed Central

    Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel

    2015-01-01

    Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620

  16. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.

    PubMed

    Theunissen, F E; Sen, K; Doupe, A J

    2000-03-15

    The stimulus-response function of many visual and auditory neurons has been described by a spatial-temporal receptive field (STRF), a linear model that for mathematical reasons has until recently been estimated with the reverse correlation method, using simple stimulus ensembles such as white noise. Such stimuli, however, often do not effectively activate high-level sensory neurons, which may be optimized to analyze natural sounds and images. We show that it is possible to overcome the simple-stimulus limitation and then use this approach to calculate the STRFs of avian auditory forebrain neurons from an ensemble of birdsongs. We find that in many cases the STRFs derived using natural sounds are strikingly different from the STRFs that we obtained using an ensemble of random tone pips. When we compare these two models by assessing their predictions of neural response to the actual data, we find that the STRFs obtained from natural sounds are superior. Our results show that the STRF model is an incomplete description of response properties of nonlinear auditory neurons, but that linear receptive fields are still useful models for understanding higher level sensory processing, as long as the STRFs are estimated from the responses to relevant complex stimuli.

  17. Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys

    PubMed Central

    Tailby, Chris; Cheong, Soon Keen; Pietersen, Alexander N; Solomon, Samuel G; Martin, Paul R

    2012-01-01

    The main subcortical visual targets of retinal output neurones (ganglion cells) are the parvocellular and magnocellular layers of the dorsal lateral geniculate nucleus (LGN) in the thalamus. In addition, a small and heterogeneous collection of ganglion cell axons projects to the koniocellular layers of the LGN, to the superior colliculus (SC), and to other subcortical targets. The functional (receptive field) properties and target specificity of these non-parvocellular, non-magnocellular populations remain poorly understood. It is known that one population of koniocellular layer cells in the LGN (blue-On cells) receives dominant functional input from short-wavelength sensitive (S or ‘blue’) cones. Here we asked whether SC neurones also receive S cone inputs. We made extracellular recordings from single neurones (n = 38) in the SC of anaesthetised marmoset monkeys. Responses to drifting and flashed gratings providing defined levels of cone contrast were measured. The SC receptive fields we recorded were often binocular, showed ‘complex cell’ like responses (On–Off responses), strong bandpass spatial frequency tuning, direction selectivity, and many showed strong and rapid habituation to repeatedly presented stimuli. We found no evidence for dominant S cone input to any SC neurone recorded. These data suggest that S cone signals may reach cortical pathways for colour vision exclusively through the koniocellular division of the lateral geniculate nucleus. PMID:22687612

  18. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus

    NASA Astrophysics Data System (ADS)

    Reid, R. Clay; Shapley, Robert M.

    1992-04-01

    HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4-8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.

  19. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies.

    PubMed

    Nishimoto, Shinji; Gallant, Jack L

    2011-10-12

    Area MT has been an important target for studies of motion processing. However, previous neurophysiological studies of MT have used simple stimuli that do not contain many of the motion signals that occur during natural vision. In this study we sought to determine whether views of area MT neurons developed using simple stimuli can account for MT responses under more naturalistic conditions. We recorded responses from macaque area MT neurons during stimulation with naturalistic movies. We then used a quantitative modeling framework to discover which specific mechanisms best predict neuronal responses under these challenging conditions. We find that the simplest model that accurately predicts responses of MT neurons consists of a bank of V1-like filters, each followed by a compressive nonlinearity, a divisive nonlinearity, and linear pooling. Inspection of the fit models shows that the excitatory receptive fields of MT neurons tend to lie on a single plane within the three-dimensional spatiotemporal frequency domain, and suppressive receptive fields lie off this plane. However, most excitatory receptive fields form a partial ring in the plane and avoid low temporal frequencies. This receptive field organization ensures that most MT neurons are tuned for velocity but do not tend to respond to ambiguous static textures that are aligned with the direction of motion. In sum, MT responses to naturalistic movies are largely consistent with predictions based on simple stimuli. However, models fit using naturalistic stimuli reveal several novel properties of MT receptive fields that had not been shown in prior experiments.

  20. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies

    PubMed Central

    Nishimoto, Shinji; Gallant, Jack L.

    2012-01-01

    Area MT has been an important target for studies of motion processing. However, previous neurophysiological studies of MT have used simple stimuli that do not contain many of the motion signals that occur during natural vision. In this study we sought to determine whether views of area MT neurons developed using simple stimuli can account for MT responses under more naturalistic conditions. We recorded responses from macaque area MT neurons during stimulation with naturalistic movies. We then used a quantitative modeling framework to discover which specific mechanisms best predict neuronal responses under these challenging conditions. We find that the simplest model that accurately predicts responses of MT neurons consists of a bank of V1-like filters, each followed by a compressive nonlinearity, a divisive nonlinearity and linear pooling. Inspection of the fit models shows that the excitatory receptive fields of MT neurons tend to lie on a single plane within the three-dimensional spatiotemporal frequency domain, and suppressive receptive fields lie off this plane. However, most excitatory receptive fields form a partial ring in the plane and avoid low temporal frequencies. This receptive field organization ensures that most MT neurons are tuned for velocity but do not tend to respond to ambiguous static textures that are aligned with the direction of motion. In sum, MT responses to naturalistic movies are largely consistent with predictions based on simple stimuli. However, models fit using naturalistic stimuli reveal several novel properties of MT receptive fields that had not been shown in prior experiments. PMID:21994372

  1. Spatiotemporal profiles of receptive fields of neurons in the lateral posterior nucleus of the cat LP-pulvinar complex

    PubMed Central

    Piché, Marilyse; Thomas, Sébastien

    2015-01-01

    The pulvinar is the largest extrageniculate thalamic visual nucleus in mammals. It establishes reciprocal connections with virtually all visual cortexes and likely plays a role in transthalamic cortico-cortical communication. In cats, the lateral posterior nucleus (LP) of the LP-pulvinar complex can be subdivided in two subregions, the lateral (LPl) and medial (LPm) parts, which receive a predominant input from the striate cortex and the superior colliculus, respectively. Here, we revisit the receptive field structure of LPl and LPm cells in anesthetized cats by determining their first-order spatiotemporal profiles through reverse correlation analysis following sparse noise stimulation. Our data reveal the existence of previously unidentified receptive field profiles in the LP nucleus both in space and time domains. While some cells responded to only one stimulus polarity, the majority of neurons had receptive fields comprised of bright and dark responsive subfields. For these neurons, dark subfields' size was larger than that of bright subfields. A variety of receptive field spatial organization types were identified, ranging from totally overlapped to segregated bright and dark subfields. In the time domain, a large spectrum of activity overlap was found, from cells with temporally coinciding subfield activity to neurons with distinct, time-dissociated subfield peak activity windows. We also found LP neurons with space-time inseparable receptive fields and neurons with multiple activity periods. Finally, a substantial degree of homology was found between LPl and LPm first-order receptive field spatiotemporal profiles, suggesting a high integration of cortical and subcortical inputs within the LP-pulvinar complex. PMID:26289469

  2. Spatiotemporal profiles of receptive fields of neurons in the lateral posterior nucleus of the cat LP-pulvinar complex.

    PubMed

    Piché, Marilyse; Thomas, Sébastien; Casanova, Christian

    2015-10-01

    The pulvinar is the largest extrageniculate thalamic visual nucleus in mammals. It establishes reciprocal connections with virtually all visual cortexes and likely plays a role in transthalamic cortico-cortical communication. In cats, the lateral posterior nucleus (LP) of the LP-pulvinar complex can be subdivided in two subregions, the lateral (LPl) and medial (LPm) parts, which receive a predominant input from the striate cortex and the superior colliculus, respectively. Here, we revisit the receptive field structure of LPl and LPm cells in anesthetized cats by determining their first-order spatiotemporal profiles through reverse correlation analysis following sparse noise stimulation. Our data reveal the existence of previously unidentified receptive field profiles in the LP nucleus both in space and time domains. While some cells responded to only one stimulus polarity, the majority of neurons had receptive fields comprised of bright and dark responsive subfields. For these neurons, dark subfields' size was larger than that of bright subfields. A variety of receptive field spatial organization types were identified, ranging from totally overlapped to segregated bright and dark subfields. In the time domain, a large spectrum of activity overlap was found, from cells with temporally coinciding subfield activity to neurons with distinct, time-dissociated subfield peak activity windows. We also found LP neurons with space-time inseparable receptive fields and neurons with multiple activity periods. Finally, a substantial degree of homology was found between LPl and LPm first-order receptive field spatiotemporal profiles, suggesting a high integration of cortical and subcortical inputs within the LP-pulvinar complex. Copyright © 2015 the American Physiological Society.

  3. Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image

    PubMed Central

    Wang, Xin; Sommer, Friedrich T.; Hirsch, Judith A.

    2014-01-01

    Summary It is widely assumed that mosaics of retinal ganglion cells establish the optimal representation of visual space. However, relay cells in the visual thalamus often receive convergent input from several retinal afferents and, in cat, outnumber ganglion cells. To explore how the thalamus transforms the retinal image, we built a model of the retinothalamic circuit using experimental data and simple wiring rules. The model shows how the thalamus might form a resampled map of visual space with the potential to facilitate detection of stimulus position in the presence of sensor noise. Bayesian decoding conducted with the model provides support for this scenario. Despite its benefits, however, resampling introduces image blur, thus impairing edge perception. Whole-cell recordings obtained in vivo suggest that this problem is mitigated by arrangements of excitation and inhibition within the receptive field that effectively boost contrast borders, much like strategies used in digital image processing. PMID:24559681

  4. Large developing receptive fields using a distributed and locally reprogrammable address-event receiver.

    PubMed

    Bamford, Simeon A; Murray, Alan F; Willshaw, David J

    2010-02-01

    A distributed and locally reprogrammable address-event receiver has been designed, in which incoming address-events are monitored simultaneously by all synapses, allowing for arbitrarily large axonal fan-out without reducing channel capacity. Synapses can change the address of their presynaptic neuron, allowing the distributed implementation of a biologically realistic learning rule, with both synapse formation and elimination (synaptic rewiring). Probabilistic synapse formation leads to topographic map development, made possible by a cross-chip current-mode calculation of Euclidean distance. As well as synaptic plasticity in rewiring, synapses change weights using a competitive Hebbian learning rule (spike-timing-dependent plasticity). The weight plasticity allows receptive fields to be modified based on spatio-temporal correlations in the inputs, and the rewiring plasticity allows these modifications to become embedded in the network topology.

  5. Spinal reflex evoked by a pair of opposing pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Hiwaki, O.

    1991-04-01

    A noninvasive method of magnetic stimulation of the spinal roots was designed. The basic idea is to concentrate induced eddy currents in a target by a pair of opposing pulsed magnetic fields. A figure-eight coil was positioned outside the median of the back so that time varying magnetic fields pass through the body in opposite directions around the target. Magnetic stimulation of the spinal roots of human and a rabbit was carried out. It was found that each spine level can be stimulated selectively, producing electromyographic waves related to both the H-reflex and M-wave. The results indicate that the M-wave can be produced by currents flowing either in the rostral or caudal direction, whereas the H-reflex is only generated by currents flowing in the caudal direction. The H-reflex elicited by magnetic stimulation of nerves in the vicinity of the spine becomes a new tool in diagnosis of neuromuscular system diseases.

  6. Visual Population Receptive Fields in People with Schizophrenia Have Reduced Inhibitory Surrounds

    PubMed Central

    Tibber, Marc S.; Schwarzkopf, D. Sam; Shergill, Sukhwinder S.; Fernandez-Egea, Emilio

    2017-01-01

    People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However, differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reported in vivo. Here, we probed the neural basis of these deficits using fMRI and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a difference-of-Gaussian model to capture the center-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex, as well as a reduction in size and depth of the inhibitory surround in V1, V2, and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ. SIGNIFICANCE STATEMENT People with schizophrenia (SZ) experience abnormal perception on a range of visual tasks, which has been linked to abnormal synaptic transmission and an imbalance between cortical excitation/inhibition. However, associated differences in the functional architecture of visual cortex neurons have yet to be reported in vivo. We used fMRI and population receptive field (pRF) mapping to demonstrate that the fine-grained functional architecture of visual cortex in people with SZ differs from unaffected controls. SZ is associated with reduced pRF size in early retinotopic visual cortex largely due to reduced inhibitory surrounds. An imbalance between cortical excitation and inhibition could drive such a change in the center-surround pRF configuration and ultimately explain the range of visual deficits experienced in SZ. PMID:28025253

  7. Visual Population Receptive Fields in People with Schizophrenia Have Reduced Inhibitory Surrounds.

    PubMed

    Anderson, Elaine J; Tibber, Marc S; Schwarzkopf, D Sam; Shergill, Sukhwinder S; Fernandez-Egea, Emilio; Rees, Geraint; Dakin, Steven C

    2017-02-08

    People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However, differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reported in vivo Here, we probed the neural basis of these deficits using fMRI and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a difference-of-Gaussian model to capture the center-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex, as well as a reduction in size and depth of the inhibitory surround in V1, V2, and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ.SIGNIFICANCE STATEMENT People with schizophrenia (SZ) experience abnormal perception on a range of visual tasks, which has been linked to abnormal synaptic transmission and an imbalance between cortical excitation/inhibition. However, associated differences in the functional architecture of visual cortex neurons have yet to be reported in vivo We used fMRI and population receptive field (pRF) mapping to demonstrate that the fine-grained functional architecture of visual cortex in people with SZ differs from unaffected controls. SZ is associated with reduced pRF size in early retinotopic visual cortex largely due to reduced inhibitory surrounds. An imbalance between cortical excitation and inhibition could drive such a change in the center-surround pRF configuration and ultimately explain the range of visual deficits experienced in SZ.

  8. Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells

    PubMed Central

    Ariel, M.; Daw, N. W.

    1982-01-01

    1. Retinal ganglion cells were recorded extracellularly from the rabbit's eye in situ to study the effects of cholinergic drugs on receptive field properties. Physostigmine, an acetylcholinesterase inhibitor, and nicotine increased the spontaneous activity of nearly all retinal ganglion cell types. The effectiveness of physostigmine was roughly correlated with the neurone's inherent level of spontaneous activity. Brisk cells, having high rates of spontaneous firing, showed large increases in their maintained discharge, whereas sluggish cells, with few or no spontaneous spikes, showed small and sometimes transient increases in spontaneous activity during physostigmine. 2. The sensitivity of ganglion cells to spots of optimal size and position did not change substantially during the infusion of physostigmine. However, the responsiveness to light (number of spikes per stimulus above the spontaneous level) increased. This effect occurred with sluggish and more complex cells, rarely with brisk cells. 3. Another effect of physostigmine on sluggish and more complex cells was to make these cells `on—off'. The additional response to the inappropriate change in contrast had a long latency and lacked an initial transient burst. 4. Complex receptive field properties such as orientation sensitivity, radial grating inhibition, speed tuning and size specificity were also examined. These inhibitory properties were still present during infusion of physostigmine and, in most cases, the trigger feature of each cell type remained. 5. These results are consistent with pharmacological results on ACh release from the retina. There appear to be two types of release of ACh, having their most powerful influences on separate classes of cells. One release (transient), occurs at light onset and offset and acts primarily on sluggish and more complex ganglion cells; the other release (tonic) is not light-modulated and acts primarily on brisk cells. A wiring diagram for the ACh cells is

  9. Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-09-13

    The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1.SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.

  10. Influence of electrotonic structure and synaptic mapping on the receptive field properties of a collision-detecting neuron.

    PubMed

    Peron, Simon P; Krapp, Holger G; Gabbiani, Fabrizio

    2007-01-01

    The lobula giant movement detector (LGMD) is a visual interneuron of Orthopteran insects involved in collision avoidance and escape behavior. The LGMD possesses a large dendritic field thought to receive excitatory, retinotopic projections from the entire compound eye. We investigated whether the LGMD's receptive field for local motion stimuli can be explained by its electrotonic structure and the eye's anisotropic sampling of visual space. Five locust (Schistocerca americana) LGMD neurons were stained and reconstructed. We show that the excitatory dendritic field and eye can be fitted by ellipsoids having similar geometries. A passive compartmental model fit to electrophysiological data was used to demonstrate that the LGMD is not electrotonically compact. We derived a spike rate to membrane potential transform using intracellular recordings under visual stimulation, allowing direct comparison between experimental and simulated receptive field properties. By assuming a retinotopic mapping giving equal weight to each ommatidium and equally spaced synapses, the model reproduced the experimental data along the eye equator, though it failed to reproduce the receptive field along the ventral-dorsal axis. Our results illustrate how interactions between the distribution of synaptic inputs and the electrotonic properties of neurons contribute to shaping their receptive fields.

  11. Influence of Electrotonic Structure and Synaptic Mapping on the Receptive Field Properties of a Collision-Detecting Neuron

    PubMed Central

    Peron, Simon P.; Krapp, Holger G.; Gabbiani, Fabrizio

    2007-01-01

    The lobula giant movement detector (LGMD) is a visual interneuron of Orthopteran insects involved in collision avoidance and escape behavior. The LGMD possesses a large dendritic field thought to receive excitatory, retinotopic projections from the entire compound eye. We investigated whether the LGMD’s receptive field for local motion stimuli can be explained by its electrotonic structure and the eye’s anisotropic sampling of visual space. Five locust (Schistocerca americana) LGMD neurons were stained and reconstructed. We show that the excitatory dendritic field and eye can be fitted by ellipsoids having similar geometries. A passive compartmental model fit to electrophysiological data was used to demonstrate that the LGMD is not electrotonically compact. We derived a spike rate to membrane potential transform using intracellular recordings under visual stimulation, allowing direct comparison between experimental and simulated receptive field properties. By assuming a retinotopic mapping giving equal weight to each ommatidium and equally spaced synapses, the model reproduced the experimental data along the eye equator, though it failed to reproduce the receptive field along the ventral-dorsal axis. Our results illustrate how interactions between the distribution of synaptic inputs and the electrotonic properties of neurons contribute to shaping their receptive fields. PMID:17021031

  12. Identified antennular near-field receptors trigger reflex flicking in the crayfish.

    PubMed

    Mellon, DeForest; Hamid, Omer A Abdul

    2012-05-01

    Near-field disturbances in the water column are known to trigger reflex antennular flicking in the crayfish Procambarus clarkii. We have identified the hydrodynamic sensors on the lateral antennular flagellum that constitute an afferent limb of this reflex and have measured the relative directionally dependent thresholds of the sensory neurons associated with these structures to hydrodynamic stimulation. Twenty-five individual standing feathered sensilla, comprising a sparse, linearly arrayed population of near-field sensors along the lateral and medial antennular flagella, were exposed to standardized pulsatile stimuli at 20 deg intervals along a 320 deg circular track. The results indicate that the sensilla are most sensitive to such stimulation in the plane of the flagellar axis. Identification and mechanical stimulation of single feathered sensilla in some preparations consistently evoked a flick reflex at maximal response latency, indicating that these sensors constitute at least one afferent limb for the reflex behavior. Experiments in which response latencies were measured following mechanical stimulation of truncated flagella, and were compared with the latencies in respective intact flagella, suggest that summation of inputs from the feathered sensillar pathways generates reflex flicking at minimal latencies. We discuss the possible central mechanisms that may underlie detection of critically important signals from this population of highly sensitive, inherently noisy sensors.

  13. Receptive field self-organization in a model of the fine structure in v1 cortical columns.

    PubMed

    Lücke, Jörg

    2009-10-01

    We study a dynamical model of processing and learning in the visual cortex, which reflects the anatomy of V1 cortical columns and properties of their neuronal receptive fields. Based on recent results on the fine-scale structure of columns in V1, we model the activity dynamics in subpopulations of excitatory neurons and their interaction with systems of inhibitory neurons. We find that a dynamical model based on these aspects of columnar anatomy can give rise to specific types of computations that result in self-organization of afferents to the column. For a given type of input, self-organization reliably extracts the basic input components represented by neuronal receptive fields. Self-organization is very noise tolerant and can robustly be applied to different types of input. To quantitatively analyze the system's component extraction capabilities, we use two standard benchmarks: the bars test and natural images. In the bars test, the system shows the highest noise robustness reported so far. If natural image patches are used as input, self-organization results in Gabor-like receptive fields. In quantitative comparison with in vivo measurements, we find that the obtained receptive fields capture statistical properties of V1 simple cells that algorithms such as independent component analysis or sparse coding do not reproduce.

  14. Receptive Field (RF) Properties of the Macaque Second Somatosensory Cortex: RF Size, Shape, and Somatotopic Organization

    PubMed Central

    Fitzgerald, Paul J.; Lane, John W.; Thakur, Pramodsingh H.; Hsiao, Steven S.

    2007-01-01

    The detailed structure of multidigit receptive fields (RFs) in somatosensory cortical areas such as the SII region has not been investigated previously using systematically controlled stimuli. Recently (Fitzgerald et al., 2004), we showed that the SII region comprises three adjoining fields: posterior, central, and anterior. Here we characterize the RF structures of the 928 neurons that were reported in that study using a motorized oriented bar that was indented into the 12 finger pads of digits 2–5. Most (81%) of the neurons were responsive to the oriented bar stimuli, and 81% of those neurons had RFs that spanned multiple digits. Furthermore, the RFs varied greatly in size, shape, and complexity. Some RFs contained only excitatory finger pads, some contained only inhibitory pads, and some contained both types of pads. A subset of the neurons (23%) showed orientation tuning within one or more pads. The RFs spread across different digits more than within individual digits, and the responsive finger pads for a given neuron tended to cluster together within the hand. Distal and lateral finger pads were better represented than proximal and medial finger pads. Furthermore, neurons in the posterior, central, and anterior SII region fields contained different proportions of RF types. These results collectively indicate that most SII region neurons are selective for different stimulus forms either within single finger pads or across multiple pads. We hypothesize that these RFs represent the kernels underlying the representation of tactile shape. PMID:16775136

  15. Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze.

    PubMed

    Ben Hamed, S; Duhamel, J-R; Bremmer, F; Graf, W

    2002-03-01

    The receptive field (RF) of neurons recorded from the lateral intraparietal area (LIP) was quantified using a rapid, computer-driven mapping procedure. For each neuron, the RF was mapped: (1) during attentive fixation and (2) during free visual exploration. RF location, size and internal structure were modulated by the mapping context in over two-thirds of the recorded neurons. The major trend was a proportionally larger amount of neuronal visual resources allocated to central space during fixation, and an attenuated center-to-periphery gradient in the visual field representation during free gaze. A population approach shows that these spatial modulations are accompanied by changes in the signal-to-noise ratio of the information carried in the RF substructure. We related these neurophysiological observations to behavior, by comparing the characteristics of saccades elicited during fixation and free gaze. Together, the results suggest that the dynamics of LIP visual RFs may characterize both the state of engagement of attention and the power of resolution of visual analysis: during fixation, the neural population is locked in a filter state concentrating the processing resources at the fovea, while during free gaze, the population shifts to a detector state spreading the resources more evenly across the visual field.

  16. Heterogeneity in the spatial receptive field architecture of multisensory neurons of the superior colliculus and its effects on multisensory integration.

    PubMed

    Ghose, D; Wallace, M T

    2014-01-03

    Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although these stimulus-specific factors have generally been considered in isolation (i.e., manipulating stimulus location while holding all other factors constant), they have an intrinsic interdependency that has yet to be fully elucidated. For example, changes in stimulus location will likely also impact both the temporal profile of response and the effectiveness of the stimulus. The importance of better describing this interdependency is further reinforced by the fact that SC neurons have large receptive fields, and that responses at different locations within these receptive fields are far from equivalent. To address these issues, the current study was designed to examine the interdependency between the stimulus factors of space and effectiveness in dictating the multisensory responses of SC neurons. The results show that neuronal responsiveness changes dramatically with changes in stimulus location - highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping

  17. Automatic mapping of visual cortex receptive fields: a fast and precise algorithm.

    PubMed

    Fiorani, Mario; Azzi, João C B; Soares, Juliana G M; Gattass, Ricardo

    2014-01-15

    An important issue for neurophysiological studies of the visual system is the definition of the region of the visual field that can modify a neuron's activity (i.e., the neuron's receptive field - RF). Usually a trade-off exists between precision and the time required to map a RF. Manual methods (qualitative) are fast but impose a variable degree of imprecision, while quantitative methods are more precise but usually require more time. We describe a rapid quantitative method for mapping visual RFs that is derived from computerized tomography and named back-projection. This method finds the intersection of responsive regions of the visual field based on spike density functions that are generated over time in response to long bars moving in different directions. An algorithm corrects the response profiles for latencies and allows for the conversion of the time domain into a 2D-space domain. The final product is an RF map that shows the distribution of the neuronal activity in visual-spatial coordinates. In addition to mapping the RF, this method also provides functional properties, such as latency, orientation and direction preference indexes. This method exhibits the following beneficial properties: (a) speed; (b) ease of implementation; (c) precise RF localization; (d) sensitivity (this method can map RFs based on few responses); (e) reliability (this method provides consistent information about RF shapes and sizes, which will allow for comparative studies); (f) comprehensiveness (this method can scan for RFs over an extensive area of the visual field); (g) informativeness (it provides functional quantitative data about the RF); and (h) usefulness (this method can map RFs in regions without direct retinal inputs, such as the cortical representations of the optic disc and of retinal lesions, which should allow for studies of functional connectivity, reorganization and neural plasticity). Furthermore, our method allows for precise mapping of RFs in a 30° by 30

  18. Receptive field properties of neurons in the macaque anterior intraparietal area.

    PubMed

    Romero, Maria C; Janssen, Peter

    2016-03-01

    Visual object information is necessary for grasping. In primates, the anterior intraparietal area (AIP) plays an essential role in visually guided grasping. Neurons in AIP encode features of objects, but no study has systematically investigated the receptive field (RF) of AIP neurons. We mapped the RF of posterior AIP (pAIP) neurons in the central visual field, using images of objects and small line fragments that evoked robust responses, together with less effective stimuli. The RF sizes we measured varied between 3°(2)and 90°(2), with the highest response either at the fixation point or at parafoveal positions. A large fraction of pAIP neurons showed nonuniform RFs, with multiple local maxima in both ipsilateral and contralateral hemifields. Moreover, the RF profile could depend strongly on the stimulus used to map the RF. Highly similar results were obtained with the smallest stimulus that evoked reliable responses (line fragments measuring 1-2°). The nonuniformity and dependence of the RF profile on the stimulus in pAIP were comparable to previous observations in the anterior part of the lateral intraparietal area (aLIP), but the average RF of pAIP neurons was located at the fovea whereas the average RF of aLIP neurons was located parafoveally. Thus nonuniformity and stimulus dependence of the RF may represent general RF properties of neurons in the dorsal visual stream involved in object analysis, which contrast markedly with those of neurons in the ventral visual stream.

  19. Receptive field properties of neurons in the macaque anterior intraparietal area

    PubMed Central

    2016-01-01

    Visual object information is necessary for grasping. In primates, the anterior intraparietal area (AIP) plays an essential role in visually guided grasping. Neurons in AIP encode features of objects, but no study has systematically investigated the receptive field (RF) of AIP neurons. We mapped the RF of posterior AIP (pAIP) neurons in the central visual field, using images of objects and small line fragments that evoked robust responses, together with less effective stimuli. The RF sizes we measured varied between 3°2 and 90°2, with the highest response either at the fixation point or at parafoveal positions. A large fraction of pAIP neurons showed nonuniform RFs, with multiple local maxima in both ipsilateral and contralateral hemifields. Moreover, the RF profile could depend strongly on the stimulus used to map the RF. Highly similar results were obtained with the smallest stimulus that evoked reliable responses (line fragments measuring 1–2°). The nonuniformity and dependence of the RF profile on the stimulus in pAIP were comparable to previous observations in the anterior part of the lateral intraparietal area (aLIP), but the average RF of pAIP neurons was located at the fovea whereas the average RF of aLIP neurons was located parafoveally. Thus nonuniformity and stimulus dependence of the RF may represent general RF properties of neurons in the dorsal visual stream involved in object analysis, which contrast markedly with those of neurons in the ventral visual stream. PMID:26792887

  20. Delayed inhibition in cortical receptive fields and the discrimination of complex stimuli.

    PubMed

    Narayan, Rajiv; Ergün, Ayla; Sen, Kamal

    2005-10-01

    Although auditory cortex is thought to play an important role in processing complex natural sounds such as speech and animal vocalizations, the specific functional roles of cortical receptive fields (RFs) remain unclear. Here, we study the relationship between a behaviorally important function: the discrimination of natural sounds and the structure of cortical RFs. We examine this problem in the model system of songbirds, using a computational approach. First, we constructed model neurons based on the spectral temporal RF (STRF), a widely used description of auditory cortical RFs. We focused on delayed inhibitory STRFs, a class of STRFs experimentally observed in primary auditory cortex (ACx) and its analog in songbirds (field L), which consist of an excitatory subregion and a delayed inhibitory subregion cotuned to a characteristic frequency. We quantified the discrimination of birdsongs by model neurons, examining both the dynamics and temporal resolution of discrimination, using a recently proposed spike distance metric (SDM). We found that single model neurons with delayed inhibitory STRFs can discriminate accurately between songs. Discrimination improves dramatically when the temporal structure of the neural response at fine timescales is considered. When we compared discrimination by model neurons with and without the inhibitory subregion, we found that the presence of the inhibitory subregion can improve discrimination. Finally, we modeled a cortical microcircuit with delayed synaptic inhibition, a candidate mechanism underlying delayed inhibitory STRFs, and showed that blocking inhibition in this model circuit degrades discrimination.

  1. Attentional Modulation of Receptive Field Structure in Area 7a of the Behaving Monkey

    PubMed Central

    Quraishi, Salma; Heider, Barbara; Siegel, Ralph M.

    2007-01-01

    Spatial attention modulates the activity of inferior parietal neurons. A statistically rigorous approach to classical retinotopic mapping was used to quantify the receptive fields of area 7a neurons under two attentional conditions. Measurements were made with retinal stimulation held constant and the locus of attention manipulated covertly. Both tasks required central fixation but differed in the locus of covert attention (either on the center fixation point, or on a peripheral square target in one of 25 locations). The neuron's identity over the recording session was confirmed using chaos theory to characterize unique temporal patterns. Sixty-six percent of the neurons changed prestimulus activity based on task state. Retinotopic mapping showed no evidence for foveal sparing. Attentional factors influenced visual responses for ∼30% of the neurons. Two types of modulation were equally observed. One group of cells had a multiplicative scaling of response, with equal instances of enhancement and suppression. A second group of cells had a complex interaction of visual and attentional signals, such that spatial tuning was subject to a non-linear modulation across the visual field based on attentional constraints. These two cell groups may have different roles in the shift of attention preceding motor behaviors and may underlie shifts in parietal retinotopic maps observed with intrinsic optical imaging. PMID:17077161

  2. Emulating the Visual Receptive Field Properties of MST Neurons with a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John A.; Stone, Leland S.

    1997-01-01

    We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.

  3. Experience-Dependent Specialization of Receptive Field Surround for Selective Coding of Natural Scenes

    PubMed Central

    Pecka, Michael; Han, Yunyun; Sader, Elie; Mrsic-Flogel, Thomas D.

    2014-01-01

    Summary At eye opening, neurons in primary visual cortex (V1) are selective for stimulus features, but circuits continue to refine in an experience-dependent manner for some weeks thereafter. How these changes contribute to the coding of visual features embedded in complex natural scenes remains unknown. Here we show that normal visual experience after eye opening is required for V1 neurons to develop a sensitivity for the statistical structure of natural stimuli extending beyond the boundaries of their receptive fields (RFs), which leads to improvements in coding efficiency for full-field natural scenes (increased selectivity and information rate). These improvements are mediated by an experience-dependent increase in the effectiveness of natural surround stimuli to hyperpolarize the membrane potential specifically during RF-stimulus epochs triggering action potentials. We suggest that neural circuits underlying surround modulation are shaped by the statistical structure of visual input, which leads to more selective coding of features in natural scenes. PMID:25263755

  4. Topographical Estimation of Visual Population Receptive Fields by fMRI

    PubMed Central

    Lee, Sangkyun; Papanikolaou, Amalia; Keliris, Georgios A.; Smirnakis, Stelios M.

    2015-01-01

    Visual cortex is retinotopically organized so that neighboring populations of cells map to neighboring parts of the visual field. Functional magnetic resonance imaging allows us to estimate voxel-based population receptive fields (pRF), i.e., the part of the visual field that activates the cells within each voxel. Prior, direct, pRF estimation methods1 suffer from certain limitations: 1) the pRF model is chosen a-priori and may not fully capture the actual pRF shape, and 2) pRF centers are prone to mislocalization near the border of the stimulus space. Here a new topographical pRF estimation method2 is proposed that largely circumvents these limitations. A linear model is used to predict the Blood Oxygen Level-Dependent (BOLD) signal by convolving the linear response of the pRF to the visual stimulus with the canonical hemodynamic response function. PRF topography is represented as a weight vector whose components represent the strength of the aggregate response of voxel neurons to stimuli presented at different visual field locations. The resulting linear equations can be solved for the pRF weight vector using ridge regression3, yielding the pRF topography. A pRF model that is matched to the estimated topography can then be chosen post-hoc, thereby improving the estimates of pRF parameters such as pRF-center location, pRF orientation, size, etc. Having the pRF topography available also allows the visual verification of pRF parameter estimates allowing the extraction of various pRF properties without having to make a-priori assumptions about the pRF structure. This approach promises to be particularly useful for investigating the pRF organization of patients with disorders of the visual system. PMID:25741774

  5. Assessing the modified receptive field (MRF) theory: Evidence from Sinhalese-English bilinguals.

    PubMed

    Jayawardena, Ravini; Winskel, Heather

    2016-11-01

    The current study aimed to test the applicability of the modified receptive field (MRF) theory (Tydgat & Grainger, 2009) with English native speakers (Experiment 1) and Sinhalese native speakers (Experiment 2), who were skilled readers of both Sinhala and Roman scripts. A two-alternative forced choice (2AFC) procedure to measure identification accuracy for all positions in a string of five characters, which consisted of Roman script letters, Sinhala letters or symbols was conducted. For Roman script, the English and Sinhalese speakers displayed analogous results as in previous studies for Roman letters and symbols (i.e., an initial letter advantage and W-shaped function for Roman letters and a Λ-shaped function for symbols). In contrast for Sinhala script, the Sinhalese speakers displayed a strong linear function with accuracy for letter positions 1, 2 and 3 similarly advantaged. We propose that this characteristic pattern for Sinhala script has developed as a specialised adaptive mechanism to optimise the processing of letters when reading in this distinctive script.

  6. Testing the flexibility of the modified receptive field (MRF) theory: evidence from an unspaced orthography (Thai).

    PubMed

    Winskel, Heather; Perea, Manuel; Peart, Emma

    2014-07-01

    In the current study, we tested the generality of the modified receptive field (MRF) theory (Tydgat & Grainger, 2009) with English native speakers (Experiment 1) and Thai native speakers (Experiment 2). Thai has a distinctive alphabetic orthography with visually complex letters (ฝ ฟ or ผ พ) and nonlinear characteristics and lacks interword spaces. We used a two-alternative forced choice (2AFC) procedure to measure identification accuracy for all positions in a string of five characters, which consisted of Roman script letters, Thai letters, or symbols. For the English speakers, we found a similar pattern of results as in previous studies (i.e., a dissociation between letters and symbols). In contrast, for the Thai participants, we found that the pattern for Thai letters, Roman letters and symbols displayed a remarkably similar linear trend. Thus, while we observed qualified support for the MRF theory, in that we found an advantage for initial position, this effect also applied to symbols (i.e., our data revealed a language-specific effect). We propose that this pattern for letters and symbols in Thai has developed as a specialized adaptive mechanism for reading in this visually complex and crowded nonlinear script without interword spaces.

  7. Experience-dependent and independent binocular correspondence of receptive field subregions in mouse visual cortex.

    PubMed

    Sarnaik, Rashmi; Wang, Bor-Shuen; Cang, Jianhua

    2014-06-01

    The convergence of eye-specific thalamic inputs to visual cortical neurons forms the basis of binocular vision. Inputs from the same eye that signal light increment (On) and decrement (Off) are spatially segregated into subregions, giving rise to cortical receptive fields (RFs) that are selective for stimulus orientation. Here we map RFs of binocular neurons in the mouse primary visual cortex using spike-triggered average. We find that subregions of the same sign (On-On and Off-Off) preferentially overlap between the 2 monocular RFs, leading to binocularly matched orientation tuning. We further demonstrate that such subregion correspondence and the consequent matching of RF orientation are disrupted in mice reared in darkness during development. Surprisingly, despite the lack of all postnatal visual experience, a substantial degree of subregion correspondence still remains. In addition, dark-reared mice show normal monocular RF structures and binocular overlap. These results thus reveal the specific roles of experience-dependent and -independent processes in binocular convergence and refinement of On and Off inputs onto single cortical neurons.

  8. Image identification from brain activity using the population receptive field model.

    PubMed

    Zuiderbaan, Wietske; Harvey, Ben M; Dumoulin, Serge O

    2017-01-01

    A goal of computational models is not only to explain experimental data but also to make new predictions. A current focus of computational neuroimaging is to predict features of the presented stimulus from measured brain signals. These computational neuroimaging approaches may be agnostic about the underlying neural processes or may be biologically inspired. Here, we use the biologically inspired population receptive field (pRF) approach to identify presented images from fMRI recordings of the visual cortex, using an explicit model of the underlying neural response selectivity. The advantage of the pRF-model is its simplicity: it is defined by a handful of parameters, which can be estimated from fMRI data that was collected within half an hour. Using 7T MRI, we measured responses elicited by different visual stimuli: (i) conventional pRF mapping stimuli, (ii) semi-random synthetic images and (iii) natural images. The pRF mapping stimuli were used to estimate the pRF-properties of each cortical location in early visual cortex. Next, we used these pRFs to identify which synthetic or natural images was presented to the subject from the fMRI responses. We show that image identification using V1 responses is far above chance, both for the synthetic and natural images. Thus, we can identify visual images, including natural images, using the most fundamental low-parameter pRF model estimated from conventional pRF mapping stimuli. This allows broader application of image identification.

  9. Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats.

    PubMed

    Recanzone, G H; Allard, T T; Jenkins, W M; Merzenich, M M

    1990-05-01

    1. Receptive fields (RFs) of neurons in the primary somatosensory (SI) cortex were defined before, during, and after electrical stimulation of myelinated fibers in the dorsal cutaneous branch of the ulnar nerve in adult pentobarbital sodium-anesthetized cats. 2. This stimulation resulted in an approximately threefold increase of SI multiunit RF sizes. Substantial changes were first recorded within 1-2 h of stimulation. RFs typically enlarged continuously over a several-hour stimulation period, then stabilized. 3. RF-area increases were observed within both the forepaw and hindpaw representational zones in the SI cortex contralateral to the stimulated forepaw nerve. RF sizes did not increase in the ipsilateral SI body surface representation or in sham-stimulation control animals. 4. Preliminary studies indicate that stimulation-induced changes can be halted and often reversed by the intravenous administration of the opiate antagonist naloxone. 5. These observations suggest a global naloxone-sensitive modulatory system that operates on large-diameter afferent inputs in the cat somatosensory system. The increases in RF size occur under nerve-stimulation conditions similar to those that result in the generation of widespread analgesia (Chung et al. 1984a,b; Gamble and Milne 1986; Toda and Ichioka 1978).

  10. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    PubMed

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation.

  11. Analysis of auditory spatial receptive fields: An application of virtual auditory space technology

    NASA Astrophysics Data System (ADS)

    Takahashi, Terry T.; Keller, Clifford H.; Euston, David R.; Spezio, Michael L.

    2002-05-01

    Virtual auditory space technology, typically used to simulate acoustical environments, also allows one to vary one sound localization cue independently of others. VAST was used to determine the contributions of interaural time and level differences (ITD, ILD) to the spatial receptive fields (RFs) of neurons in the owl's midbrain. The presentation of noise filtered so that only ITD varied evoked a response along a vertical strip of virtual space, called the ITD-alone RF. Conversely, when ITD was fixed at the cell's optimum and the ILD spectrum of each location was presented, the cell responded along a horizontal strip, called the ILD-alone RF. The spatial RF was at the intersection of the ITD and ILD-alone RFs. The cell's ILD tuning across frequency, combined with individualized head-related transfer functions, was transformed into an ILD-alone RF that predicted half the variance in the measured one. This discrepancy was due partly to the poor response of the neurons to tones, and a new method of inferring frequency-specific ILD tuning from responses to noise explained about 75% of the variance. By understanding how spatial RFs are constructed, it is possible to infer the neural image of complex auditory scenes containing multiple sources and echoes. [Work supported by NIDCD.

  12. Refinement but Not Maintenance of Visual Receptive Fields Is Independent of Visual Experience

    PubMed Central

    Balmer, Timothy S.; Pallas, Sarah L.

    2015-01-01

    Visual deprivation is reported to prevent or delay the development of mature receptive field (RF) properties in primary visual cortex (V1) in several species. In contrast, visual deprivation neither prevents nor delays refinement of RF size in the superior colliculus (SC) of Syrian hamsters, although vision is required for RF maintenance in the SC. Here, we report that, contrary to expectation, visual cortical RF refinement occurs normally in dark-reared animals. As in the SC, a brief period of visual experience is required to maintain V1 RF refinement in adulthood. Whereas in the SC, 3 days of visual experience within a sensitive period (P37–40) was sufficient to protect RFs from deprivation-induced enlargement in adulthood, 7 days (P33–40) were required for RF size maintenance in V1. Thus, spontaneous activity is sufficient for RF refinement at these 2 levels of the visual pathway, and visual input is necessary only to prevent deprivation-induced RF enlargement in adulthood. These studies show that sensory experience during a late juvenile sensitive period protects the visual pathway against sensory deprivation in adulthood, and suggest that more importance may have been placed on the role of early visual experience in visual RF development than is warranted. PMID:24108803

  13. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  14. Refinement but not maintenance of visual receptive fields is independent of visual experience.

    PubMed

    Balmer, Timothy S; Pallas, Sarah L

    2015-04-01

    Visual deprivation is reported to prevent or delay the development of mature receptive field (RF) properties in primary visual cortex (V1) in several species. In contrast, visual deprivation neither prevents nor delays refinement of RF size in the superior colliculus (SC) of Syrian hamsters, although vision is required for RF maintenance in the SC. Here, we report that, contrary to expectation, visual cortical RF refinement occurs normally in dark-reared animals. As in the SC, a brief period of visual experience is required to maintain V1 RF refinement in adulthood. Whereas in the SC, 3 days of visual experience within a sensitive period (P37-40) was sufficient to protect RFs from deprivation-induced enlargement in adulthood, 7 days (P33-40) were required for RF size maintenance in V1. Thus, spontaneous activity is sufficient for RF refinement at these 2 levels of the visual pathway, and visual input is necessary only to prevent deprivation-induced RF enlargement in adulthood. These studies show that sensory experience during a late juvenile sensitive period protects the visual pathway against sensory deprivation in adulthood, and suggest that more importance may have been placed on the role of early visual experience in visual RF development than is warranted. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Cluster-based analysis improves predictive validity of spike-triggered receptive field estimates.

    PubMed

    Bigelow, James; Malone, Brian J

    2017-01-01

    Spectrotemporal receptive field (STRF) characterization is a central goal of auditory physiology. STRFs are often approximated by the spike-triggered average (STA), which reflects the average stimulus preceding a spike. In many cases, the raw STA is subjected to a threshold defined by gain values expected by chance. However, such correction methods have not been universally adopted, and the consequences of specific gain-thresholding approaches have not been investigated systematically. Here, we evaluate two classes of statistical correction techniques, using the resulting STRF estimates to predict responses to a novel validation stimulus. The first, more traditional technique eliminated STRF pixels (time-frequency bins) with gain values expected by chance. This correction method yielded significant increases in prediction accuracy, including when the threshold setting was optimized for each unit. The second technique was a two-step thresholding procedure wherein clusters of contiguous pixels surviving an initial gain threshold were then subjected to a cluster mass threshold based on summed pixel values. This approach significantly improved upon even the best gain-thresholding techniques. Additional analyses suggested that allowing threshold settings to vary independently for excitatory and inhibitory subfields of the STRF resulted in only marginal additional gains, at best. In summary, augmenting reverse correlation techniques with principled statistical correction choices increased prediction accuracy by over 80% for multi-unit STRFs and by over 40% for single-unit STRFs, furthering the interpretational relevance of the recovered spectrotemporal filters for auditory systems analysis.

  16. Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2)

    PubMed Central

    Liu, Lu; She, Liang; Chen, Ming; Liu, Tianyi; Lu, Haidong D.; Dan, Yang; Poo, Mu-ming

    2016-01-01

    Visual processing depends critically on the receptive field (RF) properties of visual neurons. However, comprehensive characterization of RFs beyond the primary visual cortex (V1) remains a challenge. Here we report fine RF structures in secondary visual cortex (V2) of awake macaque monkeys, identified through a projection pursuit regression analysis of neuronal responses to natural images. We found that V2 RFs could be broadly classified as V1-like (typical Gabor-shaped subunits), ultralong (subunits with high aspect ratios), or complex-shaped (subunits with multiple oriented components). Furthermore, single-unit recordings from functional domains identified by intrinsic optical imaging showed that neurons with ultralong RFs were primarily localized within pale stripes, whereas neurons with complex-shaped RFs were more concentrated in thin stripes. Thus, by combining single-unit recording with optical imaging and a computational approach, we identified RF subunits underlying spatial feature selectivity of V2 neurons and demonstrated the functional organization of these RF properties. PMID:26839410

  17. Improved contour detection model with spatial summation properties based on nonclassical receptive field

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya

    2016-07-01

    The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.

  18. Feedforward and recurrent inhibitory receptive fields of principal cells in the cat’s dorsal lateral geniculate nucleus

    PubMed Central

    Lindström, Sivert

    2010-01-01

    Principal cells in the dorsal lateral geniculate nucleus receive both feedforward and recurrent inhibition. Despite many years of study, the receptive field structure of these inhibitory mechanisms has not been determined. Here, we have used intracellular recordings in vivo to differentiate between the two types of inhibition and map their respective receptive fields. The feedforward inhibition of a principal cell originates from the same type of retinal ganglion cells as its excitation, while the recurrent inhibition is provided by both on- and off-centre cells. Both inhibitory effects are strongest at the centre of the excitatory receptive field. The diameter of the feedforward inhibitory field is two times larger, and the recurrent two to four times larger than the excitatory field centre. The inhibitory circuitry is similar for X and Y principal cells. Electronic supplementary material The online version of this article (doi:10.1007/s00424-010-0900-7) contains supplementary material, which is available to authorized users. PMID:21127903

  19. Electrical coupling, receptive fields, and relative rod/cone inputs of horizontal cells in the tiger salamander retina.

    PubMed

    Zhang, Ai-Jun; Zhang, Jian; Wu, Samuel M

    2006-11-20

    Light responses, dendritic/axonal morphology, receptive field diameters, patterns of dye coupling, and relative rod/cone inputs of various types of horizontal cells (HCs) were studied using intracellular recording and Lucifer yellow/neurobiotin dye injection methods in the flatmount tiger salamander retina. Three physiologically and morphologically distinct types of HC entities were identified. 1) The A-type HCs are somas that do not bear axons, with average (+/-SE) soma diameters of 20.01 +/- 0.59 microm, relatively sparse and thick dendrites, and they resemble the A-type HC in mammals. The average receptive field diameter of these cells is 529.6 +/- 10.87 microm and they receive inputs predominantly from cones. 2) The B-type HCs are broad-field somas that bear thin and long axons, with average soma diameters of 17.67 +/- 0.38 microm, thinner dendrites of higher density, and they resemble the B-type HC in mammals. The average receptive field diameter of these cells is 1,633.55 +/- 37.34 microm and they receive mixed inputs from rods and cones. 3) The B-type HC axon terminals are broad-field, coarse axon terminal processes and they resemble the B-type HC axon terminal in rabbits. The average receptive field diameter of these axon terminals is 1,291.67 +/- 24.02 microm and they receive mixed inputs from rods and cones. All these types of HC are dye-coupled with adjacent HCs of the same type. Additionally, B-type HCs and axon terminals are dye-coupled with subpopulations of bipolar cells whose axon terminals ramify in the proximal half of the inner plexiform layer, raising the possibility that these HCs may send feedforward antagonistic surround responses to depolarizing bipolar cells through electrical synapses.

  20. Receptive field size in V1 neurons limits acuity for perceiving disparity modulation.

    PubMed

    Nienborg, Hendrikje; Bridge, Holly; Parker, Andrew J; Cumming, Bruce G

    2004-03-03

    Disparity selectivity in the striate cortex has generally been studied with uniform disparity fields covering the receptive field (RF). In four awake behaving monkeys, we quantitatively characterized the spatial three-dimensional structure of 55 V1 RFs using random dot stereograms in which disparity varied as a sinusoidal function of vertical position ("corrugations"). At low spatial frequencies, this produced a modulation in neuronal firing at the temporal frequency of the stimulus. As the spatial frequency increased, the modulation reduced. The mean response rate changed little and was close to that produced by a uniform stimulus at the mean disparity of the corrugation. In 48 of 55 (91%) neurons, the modulation strength was a lowpass function of spatial frequency. These results are compatible with a response determined only by the weighted mean of the disparities of the dots (the weights being set by the RF envelope) and suggest that there is no disparity-based surround inhibition or selectivity for disparity gradients. This simple weighting scheme predicts a relationship between RF size and the high-frequency cutoff. Comparison with independent measurements of RF size was compatible with this. All of this behavior closely matches the binocular energy model. The mean cutoff frequency, 0.5 cycles per degree, is similar to equivalent measures of decline in human psychophysical sensitivity for such depth corrugations as a function of frequency (Tyler, 1974; Prince and Rogers, 1998; Banks et al., 2004). This suggests that human cyclopean acuity for disparity modulations is limited by the selectivity of V1 neurons. This in turn is primarily limited by the RF size, because we find no sensitivity for disparity gradients or other disparity differences within the RFs.

  1. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  2. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system

    PubMed Central

    Mender, Bedeho M. W.; Stringer, Simon M.

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions. PMID:25717301

  3. Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury.

    PubMed

    Torsney, Carole; Fitzgerald, Maria

    2003-07-01

    Local tissue damage in newborn rats can lead to changes in skin sensitivity that last into adulthood and this is likely to be due to plasticity of developing peripheral and central sensory connections. This study examines the functional connections of dorsal horn neurons in young and adult rats that have undergone local skin damage at birth. Newborn rat pups were halothane anaesthetised and received either a unilateral subcutaneous plantar injection of 1 % lambda-carrageenan or a unilateral plantar foot injury made by removal of 2 mm x 2 mm of skin. At 3 weeks, (postnatal day (P) 19-23) and 6 weeks (P40-44) in vivo extracellular recordings of single dorsal horn cells with plantar cutaneous receptive fields were made under urethane anaesthesia (2 g kg-1) and responses to mechanical and electrical stimulation of the skin were assessed. Following neonatal carrageenan inflammation, dorsal horn neuron properties and receptive field sizes at 3 weeks were the same as those of controls. In contrast, following neonatal skin injury, dorsal horn cell receptive field sizes were significantly greater than those of controls at 3 weeks (2.5-fold) and at 6 weeks (2.2-fold). Mechanical thresholds, mechanical response magnitudes and evoked responses to single and repeated A and C fibre stimulation remained unaffected. These results show that early skin injury can cause prolonged changes in central sensory connections that persist into adult life, long after the skin has healed. Enlarged dorsal horn neuron receptive field sizes provide a physiological mechanism for the persistent behavioural hypersensitivity that follows neonatal skin injury in rats and for the prolonged sensory changes reported in human infants after early pain and injury.

  4. Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex.

    PubMed

    Kastner, S; De Weerd, P; Pinsk, M A; Elizondo, M I; Desimone, R; Ungerleider, L G

    2001-09-01

    Neurophysiological studies in monkeys show that when multiple visual stimuli appear simultaneously in the visual field, they are not processed independently, but rather interact in a mutually suppressive way. This suggests that multiple stimuli compete for neural representation. Consistent with this notion, we have previously found in humans that functional magnetic resonance imaging (fMRI) signals in V1 and ventral extrastriate areas V2, V4, and TEO are smaller for simultaneously presented (i.e., competing) stimuli than for the same stimuli presented sequentially (i.e., not competing). Here we report that suppressive interactions between stimuli are also present in dorsal extrastriate areas V3A and MT, and we compare these interactions to those in areas V1 through TEO. To exclude the possibility that the differences in responses to simultaneously and sequentially presented stimuli were due to differences in the number of transient onsets, we tested for suppressive interactions in area V4, in an experiment that held constant the number of transient onsets. We found that the fMRI response to a stimulus in the upper visual field was suppressed by the presence of nearby stimuli in the lower visual field. Further, we excluded the possibility that the greater fMRI responses to sequential compared with simultaneous presentations were due to exogeneous attentional cueing by having our subjects count T's or L's at fixation, an attentionally demanding task. Behavioral testing demonstrated that neither condition interfered with performance of the T/L task. Our previous findings suggested that suppressive interactions among nearby stimuli in areas V1 through TEO were scaled to the receptive field (RF) sizes of neurons in those areas. Here we tested this idea by parametrically varying the spatial separation among stimuli in the display. Display sizes ranged from 2 x 2 degrees to 7 x 7 degrees and were centered at 5.5 degrees eccentricity. Based on the effects of display size

  5. Increased WDR spontaneous activity and receptive field size in rats following a neuropathic or inflammatory injury: implications for mechanical sensitivity.

    PubMed

    Chu, Katharine L; Faltynek, Connie R; Jarvis, Michael F; McGaraughty, Steve

    2004-11-30

    Spontaneous activity and receptive field size for spinal wide dynamic range (WDR) neurons were measured and related to the mechanical allodynia in both neuropathic (L5-L6 ligation, 14 days post-injury) and complete Freund's adjuvant-inflamed rats (CFA, 2 days post-injury). The size of the WDR receptive field located on the hindpaw expanded significantly (p<0.01) following both modes of injury, with no difference between CFA and neuropathic animals. Likewise, the spontaneous firing of WDR neurons was significantly elevated following both the CFA (4.4+/-0.6 spikes/s, p<0.01) and neuropathic (3.2+/-0.3 spikes/s, p<0.05) injuries compared to naive (2.1+/-0.2 spikes/s) and sham-neuropathic (1.9+/-0.3 spikes/s) rats. Furthermore, the spontaneous WDR activity recorded from CFA rats was also significantly greater (p<0.05) than neuropathic rats. Mechanical allodynia, as measured by application of a von Frey hair stimulus, was observed from both CFA and neuropathic rats, however, the degree of sensitivity was significantly greater (p<0.01) for the CFA animals. These data suggest that the differences in mechanical sensitivity between CFA and neuropathic rats may be related to their respective changes in WDR spontaneous activity, but not to the changes in receptive field size, and is further demonstration of the importance of spontaneous WDR activity in determining mechanical sensitivity following injury.

  6. Position shifts of fMRI-based population receptive fields in human visual cortex induced by Ponzo illusion.

    PubMed

    He, Dongjun; Mo, Ce; Wang, Yizhou; Fang, Fang

    2015-12-01

    Ponzo illusion is a well-known perceptual phenomenon in which the perceived sizes of visual objects are altered by visual depth cues created by converging lines at the horizon. One possible neural mechanism of the Ponzo illusion is the receptive field position shifts of V1 neurons, as supported by a recent monkey electrophysiological study (Ni et al. in Curr Biol 24(14):1653-1658, 2014). Here, we used fMRI-based population receptive field (pRF) mapping technique in combination of psychophysics to investigate this idea. We found that, relative to the close apparent depth in a 3D scene, the far apparent depth in the scene caused the pRF positions of voxels in V1-V3 to shift toward the fovea, in line with subjects' percept of the Ponzo illusion. Moreover, the pRF position shift in V1 significantly correlated with the magnitude of the Ponzo illusion across individual subjects. Our findings thus provide evidence for the close association between the perceived object size and the pRF position shift in human visual areas, especially in V1, lending further support for the receptive field position shift explanation for the Ponzo illusion.

  7. Dynamic stimulation evokes spatially focused receptive fields in bat auditory cortex.

    PubMed

    Hoffmann, Susanne; Schuller, Gerd; Firzlaff, Uwe

    2010-01-01

    Bats can orient and hunt for prey in complete darkness using echolocation. Due to the pulse-like character of call emission they receive a stroboscopic view of their environment. During target approach, bats adjust their emitted echolocation calls to the specific requirements of the dynamically changing environmental and behavioral context. In addition to changes of the spectro-temporal call features, the spatial focusing of the beam of the sonar emissions onto the target is a conspicuous feature during target tracking. The neural processes underlying the complex sensory-motor interactions during target tracking are not well understood. In this study, we used a two-tone-pulse paradigm with 81 combinations of inter-aural intensity differences and six inter-pulse intervals in a passive hearing task to tackle the question of how transient changes in the azimuthal position of successive sounds are encoded by neurons in the auditory cortex of the bat Phyllostomus discolor. In a population of cortical neurons (11%, 24 of 217), spatial receptive fields were focused to a small region of frontal azimuthal positions during dynamic stimulation with tone-pulse pairs at short inter-pulse intervals. The response of these neurons might be important for the behaviorally observed locking of the sonar beam onto a selected target during the later stages of target tracking. Most interestingly, the majority of these neurons (88%, 21 of 24) were located in the posterior dorsal part of the auditory cortex. This cortical subfield might thus be specifically involved in the analysis of dynamic acoustic scenes.

  8. Matching Pursuit Analysis of Auditory Receptive Fields' Spectro-Temporal Properties

    PubMed Central

    Bach, Jörg-Hendrik; Kollmeier, Birger; Anemüller, Jörn

    2017-01-01

    Gabor filters have long been proposed as models for spectro-temporal receptive fields (STRFs), with their specific spectral and temporal rate of modulation qualitatively replicating characteristics of STRF filters estimated from responses to auditory stimuli in physiological data. The present study builds on the Gabor-STRF model by proposing a methodology to quantitatively decompose STRFs into a set of optimally matched Gabor filters through matching pursuit, and by quantitatively evaluating spectral and temporal characteristics of STRFs in terms of the derived optimal Gabor-parameters. To summarize a neuron's spectro-temporal characteristics, we introduce a measure for the “diagonality,” i.e., the extent to which an STRF exhibits spectro-temporal transients which cannot be factorized into a product of a spectral and a temporal modulation. With this methodology, it is shown that approximately half of 52 analyzed zebra finch STRFs can each be well approximated by a single Gabor or a linear combination of two Gabor filters. Moreover, the dominant Gabor functions tend to be oriented either in the spectral or in the temporal direction, with truly “diagonal” Gabor functions rarely being necessary for reconstruction of an STRF's main characteristics. As a toy example for the applicability of STRF and Gabor-STRF filters to auditory detection tasks, we use STRF filters as features in an automatic event detection task and compare them to idealized Gabor filters and mel-frequency cepstral coefficients (MFCCs). STRFs classify a set of six everyday sounds with an accuracy similar to reference Gabor features (94% recognition rate). Spectro-temporal STRF and Gabor features outperform reference spectral MFCCs in quiet and in low noise conditions (down to 0 dB signal to noise ratio). PMID:28232791

  9. Primate area V1: Largest response gain for receptive fields in the straight-ahead direction

    PubMed Central

    Przybyszewski, Andrzej W.; Kagan, Igor; Snodderly, D. Max

    2014-01-01

    Although neuronal responses in behaving monkeys are typically studied while the monkey fixates straight ahead, it is known that eye position modulates responses of visual neurons. The modulation has been found to enhance neuronal responses when the receptive field is placed in the straight-ahead position for neurons receiving input from the peripheral, but not the central retina [1]. We studied the effect of eye position on the responses of V1 complex cells receiving input from the central retina (1.1–5.7° eccentricity) while minimizing the effect of fixational eye movements. Contrast response functions were obtained separately with drifting light and dark bars. Data were fit with the Naka-Rushton equation: r(c)=Rmax∗cn/(cn+c50n)+s, where r(c) is mean spike rate at contrast c, Rmax the maximum response, c50 the contrast that elicits half of Rmax and s the spontaneous activity. Contrast sensitivity as measured by c50 was not affected by eye position. For dark bars there was a statistically significant decline in the normalized Rmax with increasing deviation from straight-ahead. Data for bright bars showed a similar trend with a less rapid decline. Our results indicate neurons representing the central retina show a bias for the straight-ahead position resulting from modulation of the response gain without an accompanying modulation of contrast sensitivity. The modulation is especially obvious for dark stimuli, which might be useful for directing attention to hazardous situations such as dark holes, or shadows concealing important objects (Supplement 1: Video Abstract, Supplemental Digital Content 1, http://links.lww.com/WNR/A295). PMID:25055141

  10. Second-order receptive fields reveal multidigit interactions in area 3b of the macaque monkey

    PubMed Central

    Thakur, Pramodsingh H.; Fitzgerald, Paul J.

    2012-01-01

    Linear receptive field (RF) models of area 3b neurons reveal a three-component structure: a central excitatory region flanked by two inhibitory regions that are spatially and temporally nonoverlapping with the excitation. Previous studies also report that there is an “infield” inhibitory region throughout the neuronal RF, which is a nonlinear interactive (second order) effect whereby stimuli lagging an input to the excitatory region are suppressed. Thus linear models may be inaccurate approximations of the neurons' true RFs. In this study, we characterize the RFs of area 3b neurons, using a second-order quadratic model. Data were collected from 80 neurons of two awake, behaving macaque monkeys while a random dot pattern was scanned simultaneously across the distal pads of digits D2, 3, and 4. We used an iterative method derived from matching pursuit to identify a set of linear and nonlinear terms with significant effects on the neuronal response. For most neurons (65/80), the linear component of the quadratic RF was characterized by a single excitatory region on the dominant digit. Interactions within the dominant digit were characterized by two quadratic filters that capture the spatial aspects of the interactive infield inhibition. Interactions between the dominant (most responsive) digit and its adjacent digit(s) formed the largest class of cross-digit interactions. The results demonstrate that a significant part of area 3b responses is due to nonlinear mechanisms, and furthermore, the data support the notion that area 3b neurons have “nonclassical RF”-like input from adjacent fingers, indicating that area 3b plays a role in integrating shape inputs across digits. PMID:22457468

  11. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    SciTech Connect

    Maguire, G.W.; Smith, E.L. III

    1985-06-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by (/sup 3/H)dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced (/sup 3/H)dopamine uptake compared with that of their matched controls. Normal appearing (/sup 3/H)GABA and (/sup 3/H)-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry.

  12. Two Types of Receptive Field Dynamics in Area V4 at the Time of Eye Movements?

    PubMed Central

    Hartmann, Till S.; Zirnsak, Marc; Marquis, Michael; Hamker, Fred H.; Moore, Tirin

    2017-01-01

    How we perceive the world as stable despite the frequent disruptions of the retinal image caused by eye movements is one of the fundamental questions in sensory neuroscience. Seemingly convergent evidence points towards a mechanism which dynamically updates representations of visual space in anticipation of a movement (Wurtz, 2008). In particular, receptive fields (RFs) of neurons, predominantly within oculomotor and attention related brain structures (Duhamel et al., 1992; Walker et al., 1995; Umeno and Goldberg, 1997), are thought to “remap” to their future, post-movement location prior to an impending eye movement. New studies (Neupane et al., 2016a,b) report observations on RF dynamics at the time of eye movements of neurons in area V4. These dynamics are interpreted as being largely dominated by a remapping of RFs. Critically, these observations appear at odds with a previous study reporting a different type of RF dynamics within the same brain structure (Tolias et al., 2001), consisting of a shrinkage and shift of RFs towards the movement target. Importantly, RFs have been measured with different techniques in those studies. Here, we measured V4 RFs comparable to Neupane et al. (2016a,b) and observe a shrinkage and shift of RFs towards the movement target when analyzing the immediate stimulus response (Zirnsak et al., 2014). When analyzing the late stimulus response (Neupane et al., 2016a,b), we observe RF shifts resembling remapping. We discuss possible causes for these shifts and point out important issues which future studies on RF dynamics need to address. PMID:28377700

  13. A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds

    PubMed Central

    Calabrese, Ana; Schumacher, Joseph W.; Schneider, David M.; Paninski, Liam; Woolley, Sarah M. N.

    2011-01-01

    In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons. PMID:21264310

  14. Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal reflex in the rat.

    PubMed

    Morgan, M M

    1998-01-01

    Although the sensory coding of nociceptive neurons in the dorsal horn has been studied extensively, surprisingly little is known about how these neurons contribute to nociceptive reflexes. The objective of the present study was to examine the characteristics of dorsal horn neurons capable of initiating hindpaw withdrawal. To this end, neural and reflex activity were measured simultaneously in response to noxious radiant heat applied to the hindpaw in lightly anesthetized rats. Subsets of both multireceptive (MR; 52/95) and nociceptive-specific (NS; 19/46) neurons showed a consistent burst of activity that preceded the reflex. However, when compared with NS neurons, MR neurons as a group were: more likely to be active before the reflex (55 vs. 41%); more active before the reflex (31 vs. 23 Hz); and active earlier (2.8 vs. 2.3 s before the reflex). Subsets of MR neurons were active before the reflex regardless of receptive field size or location in the dorsal horn. In contrast, NS neurons with small receptive fields or those located outside of superficial laminae were rarely active before the reflex and thus unlikely to be part of the reflex circuit. These results suggest that current classification schemes, in particular MR and NS categories, cannot be used as the sole criterion to predict involvement in nociceptive reflexes. However, simultaneous measurement of neural and reflex activity provides an opportunity to determine the characteristics of nociceptive neurons involved in withdrawal reflexes.

  15. The plantar cushion reflex circuit: an oligosynaptic cutaneous reflex

    PubMed Central

    Egger, M. David; Wall, Patrick D.

    1971-01-01

    1. Reflex toe extension elicited by pressure on the plantar cushion (PC) was studied in cats anaesthetized with Dial. Receptive fields and adequate stimuli for the reflex were evaluated. It was concluded that the receptors for the reflex were chiefly cutaneous pressure receptors in PC. 2. The fastest impulses from the PC receptors for this reflex are conducted to the spinal cord at about 64 m/sec via fibres about 10-11 μm in diameter, i.e. the largest afferent fibres from PC. The motoneurones active in the reflex mainly supplied the intrinsic plantar muscles. Most active axons ran in the S1 ventral root. 3. Extracellular recordings of interneurones in the dorsal horn of L7 spinal segment revealed that many units at the medial edge of the dorsal horn, chiefly in Rexed's laminae IV and V, were activated by stimuli similar to those eliciting the PC—toe extension reflex. These were termed intermediate threshold PC units. Some of these medially located units were activated monosynaptically by PC stimulation. Intermediate threshold PC units activated disynaptically or polysynaptically were also found in this medial region of the dorsal horn, as well as ventrolaterally and caudally in lamina V. 4. No intermediate threshold PC units sent axons into dorsolateral ipsilateral thoracic white matter, in contrast to lower threshold PC units, 42% of which were driven by lateral column stimulation. 5. Extracellular and intracellular recordings were made from motoneurones activated by adequate stimuli for the reflex. Minimum latencies of EPSPs revealed that, for the fastest component of the reflex, at most two interneurones could be interposed between a primary sensory neurone and a motoneurone. 6. Although convergence of low threshold PC units on to intermediate threshold PC units or on to motoneurones may play a part in the PC—toe extension reflex, it appears probable that the two populations of intermediate threshold PC interneurones described above, that is, the

  16. Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion.

    PubMed

    Jacoby, Jason; Schwartz, Gregory W

    2017-01-18

    Retinal ganglion cells (RGCs) are frequently divided into functional types by their ability to extract and relay specific features from a visual scene, such as the capacity to discern local or global motion, direction of motion, stimulus orientation, contrast or uniformity, or the presence of large or small objects. Here we introduce three previously uncharacterized, nondirection-selective ON-OFF RGC types that represent a distinct set of feature detectors in the mouse retina. The three high-definition (HD) RGCs possess small receptive-field centers and strong surround suppression. They respond selectively to objects of specific sizes, speeds, and types of motion. We present comprehensive morphological characterization of the HD RGCs and physiological recordings of their light responses, receptive-field size and structure, and synaptic mechanisms of surround suppression. We also explore the similarities and differences between the HD RGCs and a well characterized RGC with a comparably small receptive field, the local edge detector, in response to moving objects and textures. We model populations of each RGC type to study how they differ in their performance tracking a moving object. These results, besides introducing three new RGC types that together constitute a substantial fraction of mouse RGCs, provide insights into the role of different circuits in shaping RGC receptive fields and establish a foundation for continued study of the mechanisms of surround suppression and the neural basis of motion detection. The output cells of the retina, retinal ganglion cells (RGCs), are a diverse group of ∼40 distinct neuron types that are often assigned "feature detection" profiles based on the specific aspects of the visual scene to which they respond. Here we describe, for the first time, morphological and physiological characterization of three new RGC types in the mouse retina, substantially augmenting our understanding of feature selectivity. Experiments and modeling

  17. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus

    PubMed Central

    Chakraborty, Subhojit; Schultz, Simon R.

    2016-01-01

    The lateral geniculate nucleus (LGN) is increasingly regarded as a “smart-gating” operator for processing visual information. Therefore, characterizing the response properties of LGN neurons will enable us to better understand how neurons encode and transfer visual signals. Efforts have been devoted to study its anatomical and functional features, and recent advances have highlighted the existence in rodents of complex features such as direction/orientation selectivity. However, unlike well-researched higher-order mammals such as primates, the full array of response characteristics vis-à-vis its morphological features have remained relatively unexplored in the mouse LGN. To address the issue, we recorded from mouse LGN neurons using multisite-electrode-arrays (MEAs) and analysed their discharge patterns in relation to their location under a series of visual stimulation paradigms. Several response properties paralleled results from earlier studies in the field and these include centre-surround organization, size of receptive field, spontaneous firing rate and linearity of spatial summation. However, our results also revealed “high-pass” and “low-pass” features in the temporal frequency tuning of some cells, and greater average contrast gain than reported by earlier studies. In addition, a small proportion of cells had direction/orientation selectivity. Both “high-pass” and “low-pass” cells, as well as direction and orientation selective cells, were found only in small numbers, supporting the notion that these properties emerge in the cortex. ON- and OFF-cells showed distinct contrast sensitivity and temporal frequency tuning properties, suggesting parallel projections from the retina. Incorporating a novel histological technique, we created a 3-D LGN volume model explicitly capturing the morphological features of mouse LGN and localising individual cells into anterior/middle/posterior LGN. Based on this categorization, we show that the ON

  18. Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects

    PubMed Central

    Papanikolaou, Amalia; Keliris, Georgios A.; Papageorgiou, T. Dorina; Shao, Yibin; Krapp, Elke; Papageorgiou, Eleni; Stingl, Katarina; Bruckmann, Anna; Schiefer, Ulrich; Logothetis, Nikos K.; Smirnakis, Stelios M.

    2014-01-01

    Injury to the primary visual cortex (V1) typically leads to loss of conscious vision in the corresponding, homonymous region of the contralateral visual hemifield (scotoma). Several studies suggest that V1 is highly plastic after injury to the visual pathways, whereas others have called this conclusion into question. We used functional magnetic resonance imaging (fMRI) to measure area V1 population receptive field (pRF) properties in five patients with partial or complete quadrantic visual field loss as a result of partial V1+ or optic radiation lesions. Comparisons were made with healthy controls deprived of visual stimulation in one quadrant [“artificial scotoma” (AS)]. We observed no large-scale changes in spared-V1 topography as the V1/V2 border remained stable, and pRF eccentricity versus cortical-distance plots were similar to those of controls. Interestingly, three observations suggest limited reorganization: (i) the distribution of pRF centers in spared-V1 was shifted slightly toward the scotoma border in 2 of 5 patients compared with AS controls; (ii) pRF size in spared-V1 was slightly increased in patients near the scotoma border; and (iii) pRF size in the contralesional hemisphere was slightly increased compared with AS controls. Importantly, pRF measurements yield information about the functional properties of spared-V1 cortex not provided by standard perimetry mapping. In three patients, spared-V1 pRF maps overlapped significantly with dense regions of the perimetric scotoma, suggesting that pRF analysis may help identify visual field locations amenable to rehabilitation. Conversely, in the remaining two patients, spared-V1 pRF maps failed to cover sighted locations in the perimetric map, indicating the existence of V1-bypassing pathways able to mediate useful vision. PMID:24706881

  19. The receptive-field spatial structure of cat retinal Y cells.

    PubMed Central

    Enroth-Cugell, C; Freeman, A W

    1987-01-01

    1. Y-type ganglion cells in the cat's retina were stimulated with bars of light and grating patterns at photopic luminances. Stimuli were stationary, and luminance at each point was varied sinusoidally in time at 2 Hz. Impulse rates were recorded from single cells. 2. When the stimulus was a narrow bar of light, the impulse rate approached a sinusoidal function of time as contrast was reduced. The linear behaviour of each cell was therefore characterized by taking the limit of response parameters as contrast approached zero. 3. The ratio of surround strength to centre strength varied widely between cells but the two strengths were approximately equal on average. The difference between surround phase and centre phase averaged 168 deg. 4. As contrast increased, responses became rectified. Rectifier output was well described by a power law of stimulus amplitude, where the power was usually 1.4 or 1.5. 5. Response phase advanced with increasing contrast, and at high response amplitudes grew less than proportionally with contrast. These effects were assumed due to the contrast gain control described by Shapley & Victor (1978). 6. Gratings in which luminance varied sinusoidally with distance were used to determine Y cell spatial resolution. The second-harmonic amplitude of the response diminished rapidly with increasing spatial frequency: the radius of the best-fitting Gaussian mechanism was about 0.25 deg for a cell at 10 deg eccentricity. 7. This spatial resolution is close to the linear resolution of X cells as determined by Linsenmeier, Frishman, Jakiela & Enroth-Cugell (1982). 8. A receptive field model incorporating both linear and non-linear elements is described. The model consists of an array of subunit pathways, each of which has a centre-surround organization followed by a rectifier; a pool weights and sums subunit outputs, and signals are then passed through a contrast gain control. 9. The model accounts qualitatively for the over-all centre

  20. Receptive field properties of human periodontal afferents responding to loading of premolar and molar teeth.

    PubMed

    Johnsen, Skjalg E; Trulsson, Mats

    2003-03-01

    Impulses in 45 single mechanoreceptive afferents were recorded from the human inferior alveolar nerve with permucosally inserted tungsten microelectrodes. All afferents responded to mechanical stimulation of one or more premolar or molar teeth and most likely innervated their periodontal ligaments. For each afferent, isolated "ramp-and-hold" shaped force profiles of similar magnitudes (252 +/- 24 mN; mean +/- SD) were applied to the lower first premolar, the second premolar, and the first molar on the recording side. The tooth loads were applied in six directions: lingual, facial, mesial, and distal in the horizontal plane and up and down in the vertical direction of the tooth. The afferents response during the static phase of the stimulus was analyzed. All afferents were slowly adapting, discharging continuously in response to static forces in at least one stimulation direction. Twenty-nine afferents (64%) were spontaneously active, exhibiting an ongoing discharge in the absence of external stimulation. Stimulation of a single tooth was found to excite each afferent most strongly. The most sensitive tooth (MST) was the first premolar for 23, the second premolar for 13, and the first molar for 9 afferents. About half of the afferent population also responded to loading of one or two more teeth. The response profiles of these afferents indicated that the multiple-teeth receptive fields were due to mechanical coupling between the teeth rather than branching of single afferents to innervate several teeth. The afferent responses to loading the mesial and distal halves of the first molars were very similar. Thus both intensive and directional aspects of the afferent response when loading one side of the tooth was preserved to a great extent when loading the other side. When loading the MST, the afferents typically showed excitatory responses in two to four of the six stimulation directions, i.e., the afferents were broadly tuned to direction of tooth loading. In the

  1. Nonlinear and extra-classical receptive field properties and the statistics of natural scenes.

    PubMed

    Zetzsche, C; Röhrbein, F

    2001-08-01

    -stopping, complex-cell properties and extra-classical receptive field properties, but the 'ideal' complex cells seem only to occur with PCA. Thus, a combination of ON/OFF nonlinearities with an integrated PCA-ICA strategy seems necessary to exploit the statistical properties of natural images.

  2. Optical wide field monitor AROMA-W using multiple digital single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Takahashi, Ichiro; Tsunashima, Kosuke; Tatsuhito, Takeda; Saori, Ono; Kazutaka, Yamaoka; Yoshida, Atsumasa

    2010-12-01

    We have developed and operated the automatic optical observation device Aoyama Gakuin University Robotic Optical Monitor for Astrophysical objects - Wide field (AROMA-W). It covers a large field of view of about 45 degrees W 30 degrees at a time by the multiple digital single-lens reflex cameras, and provides photometric data in four bands with a limiting V magnitude of about 12-13 magnitude (20 seconds, 3 sigma level). The automatic analysis pipeline which can analyze in parallel with observation has been constructed so far. It can draw the light curves of all stars in the field of view of AROMA-W. We are aiming at the simultaneous observation of the transients (e.g., X-ray nova, Supernova, GRB) that MAXI discovered by using the AROMA-W. We report the developmental status, the observational results of AROMA-W and a possibility of the simultaneous observation to the X-ray transients discovered with MAXI.

  3. Möbius-strip-like columnar functional connections are revealed in somato-sensory receptive field centroids

    PubMed Central

    Wright, James Joseph; Bourke, Paul David; Favorov, Oleg Vyachesslavovich

    2014-01-01

    Receptive fields of neurons in the forelimb region of areas 3b and 1 of primary somatosensory cortex, in cats and monkeys, were mapped using extracellular recordings obtained sequentially from nearly radial penetrations. Locations of the field centroids indicated the presence of a functional system in which cortical homotypic representations of the limb surfaces are entwined in three-dimensional Möbius-strip-like patterns of synaptic connections. Boundaries of somatosensory receptive field in nested groups irregularly overlie the centroid order, and are interpreted as arising from the superposition of learned connections upon the embryonic order. Since the theory of embryonic synaptic self-organization used to model these results was devised and earlier used to explain findings in primary visual cortex, the present findings suggest the theory may be of general application throughout cortex and may reveal a modular functional synaptic system, which, only in some parts of the cortex, and in some species, is manifest as anatomical ordering into columns. PMID:25400552

  4. Dynamic functional connectivity among neuronal population during modulation of extra-classical receptive field in primary visual cortex.

    PubMed

    Niu, Xiaoke; Shi, Li; Wan, Hong; Wang, Zhizhong; Shang, Zhigang; Li, Zhihui

    2015-08-01

    The neuronal activity evoked by stimuli confined in a receptive field can be modulated by surround stimuli of the extra-classical receptive field (eCRF). The surrounding modulation, hypothesized to be the basis of visual feature integration and figure-ground segregation, has drawn much attention in the field of neuroscience and engineering. However, most studies focused on surround modulation of individual neuronal response. In this study, we analyzed surround modulation of the population response recorded from rat primary visual cortex, and further investigated dynamic functional connectivity modulated by the surrounding stimuli. The functional connectivity was estimated using Granger causality (GC) and then determined by thresholding the p-matrix with different significance α values. Four scalar indexes were calculated to describe the functional connectivity of neuronal population: averaged connection strength (mGC), connection density (D), clustering coefficient (C) and path length (L). The statistical results from 5 rats showed that these network characteristics were dynamically changed during modulation of surrounding stimuli, which suggested that the neuronal population may connect in a dynamic way during modulation of eCRF. We further guessed that the neurons may happened to be organized in a more efficient way underlying surrounding modulation conditions, which helps to process larger images efficiently with the same number of neurons. This study provided new insights for a better understanding of the underlying neural mechanisms responsible for surround modulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Reversible deactivation of higher-order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing

    PubMed Central

    Cooke, Dylan F.; Goldring, Adam B.; Baldwin, Mary K. L.; Recanzone, Gregg H.; Chen, Arnold; Pan, Tingrui; Simon, Scott I.

    2014-01-01

    Somatosensory processing in the anesthetized macaque monkey was examined by reversibly deactivating posterior parietal areas 5L and 7b and motor/premotor cortex (M1/PM) with microfluidic thermal regulators developed by our laboratories. We examined changes in receptive field size and configuration for neurons in areas 1 and 2 that occurred during and after cooling deactivation. Together the deactivated fields and areas 1 and 2 form part of a network for reaching and grasping in human and nonhuman primates. Cooling area 7b had a dramatic effect on receptive field size for neurons in areas 1 and 2, while cooling area 5 had moderate effects and cooling M1/PM had little effect. Specifically, cooling discrete locations in 7b resulted in expansions of the receptive fields for neurons in areas 1 and 2 that were greater in magnitude and occurred in a higher proportion of sites than similar changes evoked by cooling the other fields. At some sites, the neural receptive field returned to the precooling configuration within 5–22 min of rewarming, but at other sites changes in receptive fields persisted. These results indicate that there are profound top-down influences on sensory processing of early cortical areas in the somatosensory cortex. PMID:25143546

  6. Understanding auditory spectro-temporal receptive fields and their changes with input statistics by efficient coding principles.

    PubMed

    Zhao, Lingyun; Zhaoping, Li

    2011-08-01

    Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed.

  7. Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye.

    PubMed

    Schmeling, Fabian; Tegtmeier, Jennifer; Kinoshita, Michiyo; Homberg, Uwe

    2015-05-01

    In many insect species, photoreceptors of a small dorsal rim area of the eye are specialized for sensitivity to the oscillation plane of polarized skylight and, thus, serve a role in sky compass orientation. To further understand peripheral mechanisms of polarized-light processing in the optic lobe, we have studied the projections of photoreceptors and their receptive fields in the main eye and dorsal rim area of the desert locust, a model system for polarization vision analysis. In both eye regions, one photoreceptor per ommatidium, R7, has a long visual fiber projecting through the lamina to the medulla. Axonal fibers from R7 receptors of the dorsal rim area have short side branches throughout the depth of the dorsal lamina and maintain retinotopic projections to the dorsal medulla following the first optic chiasma. Receptive fields of dorsal rim photoreceptors are considerably larger (average acceptance angle 33°) than those of the main eye (average acceptance angle 2.04°) and, taken together, cover almost the entire sky. The data challenge previous reports of two long visual fibers per ommatidium in the main eye of the locust and provide data for future analysis of peripheral networks underlying polarization opponency in the locust brain.

  8. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish.

    PubMed

    Hofmann, Volker; Chacron, Maurice J

    2017-09-01

    Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity.

  9. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D

    2005-09-01

    In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.

  10. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish

    PubMed Central

    2017-01-01

    Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity. PMID:28863136

  11. Functional Characterization of the Extra-Classical Receptive Field in Macaque V1: Contrast, Orientation, and Temporal Dynamics

    PubMed Central

    Henry, Christopher A.; Joshi, Siddhartha; Xing, Dajun; Shapley, Robert M.; Hawken, Michael J.

    2013-01-01

    Neurons in primary visual cortex, V1, very often have extra-classical receptive fields (eCRFs). The eCRF is defined as the region of visual space where stimuli cannot elicit a spiking response but can modulate the response of a stimulus in the classical receptive field (CRF). We investigated the dependence of the eCRF on stimulus contrast and orientation in macaque V1 cells for which the laminar location was determined. The eCRF was more sensitive to contrast than the CRF across the whole population of V1 cells with the greatest contrast differential in layer 2/3. We confirmed that many V1 cells experience stronger suppression for collinear than orthogonal stimuli in the eCRF. Laminar analysis revealed that the predominant bias for collinear suppression was found in layers 2/3 and 4b. The laminar pattern of contrast and orientation dependence suggests that eCRF suppression may derive from different neural circuits in different layers, and may be comprised of two distinct components: orientation-tuned and untuned suppression. On average tuned suppression was delayed by about 25 milliseconds compared to the onset of untuned suppression. Therefore, response modulation by the eCRF develops dynamically and rapidly in time. PMID:23554504

  12. Response suppression by extending sine-wave gratings within the receptive fields of neurons in visual cortical area V3A of the macaque monkey.

    PubMed

    Gaska, J P; Jacobson, L D; Pollen, D A

    1987-01-01

    Even though there are many more cycles of the "optimal" grating extending across the receptive fields of cells in V3A than of cells in V1 and V2, the spatial frequency bandwidths in V3A are no narrower than in V1 or V2. Thus, the inputs to V3A cells are not combined in a phase coherent manner across the entire receptive field. Moreover, the defined receptive fields of cells in V3A are generally surrounded by suppressive regions which are, on average, much stronger than those found for neurons in V1 and V2. Even within the classical receptive field, most neurons in V3A respond far more vigorously to a limited patch of a few cycles of a grating at the preferred spatial frequency than to wider grating stimuli. This intra-receptive field suppression demonstrates a new level of response complexity, and suggests that V3A cells may antagonistically combine nonlinear mechanisms that themselves encode stimulus energy over a restricted region of space and spatial-frequency.

  13. Infant reflexes

    MedlinePlus

    ... in other age groups. These include: Moro reflex Sucking reflex (sucks when area around mouth is touched) ... side that was stroked and begin to make sucking motions. PARACHUTE REFLEX This reflex occurs in slightly ...

  14. Relationship between mechano-receptive fields of dorsal horn convergent neurons and the response to noxious immersion of the ipsilateral hindpaw in rats.

    PubMed

    McGaraughty, S; Henry, J L

    1997-04-01

    This study examines the relationship between mechano-receptive fields (inhibitory and excitatory, located on the ipsilateral hindpaw) of convergent dorsal horn neurons, and the responses of the neurons to noxious immersion of an entire paw in noxious hot water. In pentobarbital anesthetized rats with intact spinal cords and in unanesthetized decerebrate-spinalized rats, rat hindpaws were immersed in 50 degrees C water for 10 s after the mechano-receptive fields had been delineated using 5-s noxious pinches. Convergent neurons were either excited or inhibited by noxious immersion of the hindpaw. In both groups, a significant association (chi2, P < 0.01) was found between the make-up of the mechano-receptive field and the response of the neuron to immersion. Immersion-inhibited neurons (intact = 27, spinalized = 13), always had both an excitatory and an inhibitory mechano-receptive field on the same hindpaw. Additionally, when the hindpaw was removed from the noxious water, these immersion-inhibited cells displayed a strong afterdischarge which was immediately inhibited once the paw was reimmersed. Pinch-induced and immersion-induced inhibition were found in both spinalized and intact rats suggesting spinal mechanisms were sufficient to mediate this effect. The majority of immersion-excited cells showed only an excitatory mechano-receptive field on the hindpaw (intact rats = 18/23 or 78.3%, spinalized rats = 24/36 or 66.7%). However, other immersion-excited cells had both an inhibitory and an excitatory mechano-receptive field on the hindpaw (intact rats = 5/23 or 21.7%, spinalized rats = 12/36 or 33.3%). The response of a convergent neuron, which has its excitatory receptive field located on a paw, to noxious immersion of the entire paw can be predicted by the make-up of the mechano-receptive fields. Additionally, since noxious paw immersion affects ipsilateral convergent neurons in two opposite manners, it suggests that other effects, such as heterotopic actions

  15. Responses of Leaky Integrate-and-Fire Neurons to a Plurality of Stimuli in Their Receptive Fields.

    PubMed

    Li, Kang; Bundesen, Claus; Ditlevsen, Susanne

    2016-12-01

    A fundamental question concerning the way the visual world is represented in our brain is how a cortical cell responds when its classical receptive field contains a plurality of stimuli. Two opposing models have been proposed. In the response-averaging model, the neuron responds with a weighted average of all individual stimuli. By contrast, in the probability-mixing model, the cell responds to a plurality of stimuli as if only one of the stimuli were present. Here we apply the probability-mixing and the response-averaging model to leaky integrate-and-fire neurons, to describe neuronal behavior based on observed spike trains. We first estimate the parameters of either model using numerical methods, and then test which model is most likely to have generated the observed data. Results show that the parameters can be successfully estimated and the two models are distinguishable using model selection.

  16. Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones

    PubMed Central

    Bishop, P. O.; Coombs, J. S.; Henry, G. H.

    1971-01-01

    1. The properties of the receptive fields of simple cells in the cat striate cortex have been studied by preparing average response histograms both to moving slits of light of different width and to single light-dark edges or contours. 2. The movement of a narrow (< 0·3°) slit across the receptive field gives rise to average response histograms that are either unimodal, bimodal or multimodal. A slit of light has leading (light) and trailing (dark) edges. By increasing the width of the slit it was shown that a discharge peak in the histogram coincides with the passage of one or other of the two edges over a particular region (discharge centre) in the receptive field. Each edge has its own discharge centre which is fired when the edge has the correct orientation and direction of movement. 3. The discharge centres in forty-three simple cell receptive fields were located by using one or more of the following stimuli for each cell: (i) slits of different width; (ii) single light and dark edges; (iii) a wide (3°) slit moved over a range of different velocities. The same locations were obtained when all three procedures were used on the same cell. 4. Most cells (79%) discharged to both edges though not necessarily in the same direction of movement. The majority (72%) fired in only one direction and most commonly (51%) the cells responded to both edges in this one direction. In only 16% of cells did both types of edge excite in both directions of movement. When the one type of edge, light or dark, was considered, 84% of the cells were direction selective and, for these cells, the other edge fired only in the same direction (51%), in both directions (7%), only in the opposite direction (5%) or not at all (21%). 5. Cells responding in one direction with a unimodal average response histogram may be responding to both edges, the two responses being concealed in the one discharge peak. The two discharge centres are then either nearly coincident or, more usually, slightly

  17. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions

    PubMed Central

    Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435

  18. Understanding Auditory Spectro-Temporal Receptive Fields and Their Changes with Input Statistics by Efficient Coding Principles

    PubMed Central

    Zhao, Lingyun; Zhaoping, Li

    2011-01-01

    Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed. PMID:21887121

  19. Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: an adaptive filtering approach.

    PubMed

    Frank, Loren M; Eden, Uri T; Solo, Victor; Wilson, Matthew A; Brown, Emery N

    2002-05-01

    Neural receptive fields are frequently plastic: a neural response to a stimulus can change over time as a result of experience. We developed an adaptive point process filtering algorithm that allowed us to estimate the dynamics of both the spatial receptive field (spatial intensity function) and the interspike interval structure (temporal intensity function) of neural spike trains on a millisecond time scale without binning over time or space. We applied this algorithm to both simulated data and recordings of putative excitatory neurons from the CA1 region of the hippocampus and the deep layers of the entorhinal cortex (EC) of awake, behaving rats. Our simulation results demonstrate that the algorithm accurately tracks simultaneous changes in the spatial and temporal structure of the spike train. When we applied the algorithm to experimental data, we found consistent patterns of plasticity in the spatial and temporal intensity functions of both CA1 and deep EC neurons. These patterns tended to be opposite in sign, in that the spatial intensity functions of CA1 neurons showed a consistent increase over time, whereas those of deep EC neurons tended to decrease, and the temporal intensity functions of CA1 neurons showed a consistent increase only in the "theta" (75-150 msec) region, whereas those of deep EC neurons decreased in the region between 20 and 75 msec. In addition, the minority of deep EC neurons whose spatial intensity functions increased in area over time fired in a significantly more spatially specific manner than non-increasing deep EC neurons. We hypothesize that this subset of deep EC neurons may receive more direct input from CA1 and may be part of a neural circuit that transmits information about the animal's location to the neocortex.

  20. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions.

    PubMed

    Katz, Matthew L; Viney, Tim J; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information ("Quadratic Mutual Information"). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells' response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types.

  1. Stimulus size and intensity alter fundamental receptive-field properties of mouse retinal ganglion cells in vivo.

    PubMed

    Sagdullaev, Botir T; McCall, Maureen A

    2005-01-01

    The receptive field (RF) of most retinal ganglion cells (RGCs) is comprised of an excitatory center and an antagonistic surround. Interactions between these RF elements shape most of the visual responses of RGCs. To begin to investigate center-surround interactions of mouse RGCs quantitatively, we characterized their responses in an in vivo preparation to a variety of spot and full-field stimuli. When RGCs were stimulated with a spot that matched the cell's RF center diameter (optimal spot), all RGCs could be categorized as either ON- or OFF-center. In all RGCs, full-field stimulation significantly reduced both the peak and the mean firing rates evoked with an optimal spot stimulus. Full-field stimulation revealed differences in other response properties between ON- and OFF-center RGCs. With a full-field stimulus, the duration of the OFF-center RGCs response was reduced making them more transient, while the duration of the ON-center RGCs increased making them more sustained. Of most interest, full-field stimulation altered the RF center response sign in approximately half of the OFF-center RGCs, which became either OFF/ON or ON only. In contrast, all ON-center and the other OFF-center cells conserved their RF response sign in the presence of the full-field stimulus. We propose that sign-altering OFF-center RGCs possess an additional RF surround mechanism that underlies this alteration in their response. Of general interest these results suggest that the sole use of full-field stimulation to categorize visual response properties of RGCs does not adequately reflect their RF organization and, therefore, is not an optimal strategy for their classification.

  2. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields.

    PubMed

    Cowan, Cameron S; Sabharwal, Jasdeep; Wu, Samuel M

    2016-09-01

    Reverse correlation methods such as spike-triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space-time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space-time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Differences between Spectro-Temporal Receptive Fields Derived from Artificial and Natural Stimuli in the Auditory Cortex

    PubMed Central

    Laudanski, Jonathan; Edeline, Jean-Marc; Huetz, Chloé

    2012-01-01

    Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRFvoc) and DMR-derived STRFs (STRFdmr), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRFvoc predicted neural responses to vocalizations more accurately than STRFdmr predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRFvoc and STRFdmr. Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli. PMID:23209771

  4. Stability of simple/complex classification with contrast and extraclassical receptive field modulation in macaque V1

    PubMed Central

    Henry, Christopher A.

    2013-01-01

    A key property of neurons in primary visual cortex (V1) is the distinction between simple and complex cells. Recent reports in cat visual cortex indicate the categorization of simple and complex can change depending on stimulus conditions. We investigated the stability of the simple/complex classification with changes in drive produced by either contrast or modulation by the extraclassical receptive field (eCRF). These two conditions were reported to increase the proportion of simple cells in cat cortex. The ratio of the modulation depth of the response (F1) to the elevation of response (F0) to a drifting grating (F1/F0 ratio) was used as the measure of simple/complex. The majority of V1 complex cells remained classified as complex with decreasing contrast. Near contrast threshold, an equal proportion of simple and complex cells changed their classification. The F1/F0 ratio was stable between optimal and large stimulus areas even for those neurons that showed strong eCRF suppression. There was no discernible overall effect of surrounding spatial context on the F1/F0 ratio. Simple/complex cell classification is relatively stable across a range of stimulus drives, produced by either contrast or eCRF suppression. PMID:23303859

  5. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1

    PubMed Central

    Kremkow, Jens; Perrinet, Laurent U.; Monier, Cyril; Alonso, Jose-Manuel; Aertsen, Ad; Frégnac, Yves; Masson, Guillaume S.

    2016-01-01

    Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of “effective” feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events. PMID:27242445

  6. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex

    PubMed Central

    Jenison, Rick L.; Reale, Richard A.; Armstrong, Amanda L.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl’s gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl’s gyrus recordings elicited by click-train stimuli. PMID:26367010

  7. [Effectiveness of perforated film mulching on maize field in rainfall reception and soil ventilation].

    PubMed

    Chi, Baoliang; Huang, Xuefang; Zhang, Dongmei

    2006-04-01

    To improve the light rain availability and soil ventilation in semi-arid area, this paper studied the effectiveness of perforated plastic film mulching on maize field. The results showed that perforated plastic film mulching had the benefits of receiving rainfall and supplementing soil moisture. Soil CO2 content increased with increasing area of mulching, and was lower under perforated plastic film mulching than under common plastic film mulching. A negative correlation was observed between maize root vitality and soil CO2 content. The maize yield under perforated film mulching was 8.98% higher than that under common film mulching.

  8. A study on reception electrodes for the vital-sign monitor using near-field intra-body communication enhanced by spread spectrum technique.

    PubMed

    Kobayashi, Takumi; Shimatani, Yuichi; Kyoso, Masaki

    2013-01-01

    As a novel vital sign monitor, we have developed wireless ECG monitoring system with Near-field intra-body communication (NF-IBC) technique. However, it was hard to ensure communication reliability because transmission channel is noisy and unstable. In order to solve the problem, we utilize spread spectrum (SS), which is known as robust communication technique even through poor transmission channel. In previous study, we have already developed an ECG monitor using NF-IBC enhanced by SS. In this paper, we evaluated on structure of the reception electrode for reliable communication. Based on the evaluations with bit error rate, we suggested the reception electrode structure which can keep the communication reliability. As the results we considered that we can expand the reception electrode up to 2.25 m(2). Moreover, we proposed the structure of the reception electrodes that can keep the communication reliability. Finally we suggested how to use the SS NF-IBC vital-sign monitor in room that larger than 2.25 m(2), and we had shown the practicability of the systems.

  9. Weak edge enhancement based on contextual modulation of non-classical receptive field

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Chao

    2015-12-01

    Edges and contours of an object contain a lot of information, so the detection and extraction of saliency edges and contours in the image become one of the most active issues in the research field of automatic target recognition. Weak edge enhancement plays an important role in contour detection. Based on psychophysical and physiological findings, a contour detection method which focuses on weak edge enhancement and inspired by the visual mechanism in the primary visual cortex (V1) is proposed in this paper. The method is divided in three steps. Firstly, the response of every single visual neuron in V1 is computed by local energy. Secondly, the local contrast which corresponds to the CRF is computed. If the local contrast in the image is below the low contrast threshold, expand NCRF to change the spatially modulatory range by increasing the NCRF radius. Thirdly, the facilitation and suppression (the contextual influence) on a neuron through horizontal interactions are obtained by using a spatially unified modulating function. We tested it on synthetic images and encouraging results were acquired.

  10. Binocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression

    PubMed Central

    Wang, Chun; Dreher, Bogdan

    2014-01-01

    Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision. PMID:24927276

  11. Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation

    NASA Technical Reports Server (NTRS)

    Perrone, J. A.; Stone, L. S.

    1998-01-01

    We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.

  12. Rapid mapping of visual receptive fields by filtered back projection: application to multi-neuronal electrophysiology and imaging.

    PubMed

    Johnston, Jamie; Ding, Huayu; Seibel, Sofie H; Esposti, Federico; Lagnado, Leon

    2014-11-15

    Neurons in the visual system vary widely in the spatiotemporal properties of their receptive fields (RFs), and understanding these variations is key to elucidating how visual information is processed. We present a new approach for mapping RFs based on the filtered back projection (FBP), an algorithm used for tomographic reconstructions. To estimate RFs, a series of bars were flashed across the retina at pseudo-random positions and at a minimum of five orientations. We apply this method to retinal neurons and show that it can accurately recover the spatial RF and impulse response of ganglion cells recorded on a multi-electrode array. We also demonstrate its utility for in vivo imaging by mapping the RFs of an array of bipolar cell synapses expressing a genetically encoded Ca(2+) indicator. We find that FBP offers several advantages over the commonly used spike-triggered average (STA): (i) ON and OFF components of a RF can be separated; (ii) the impulse response can be reconstructed at sample rates of 125 Hz, rather than the refresh rate of a monitor; (iii) FBP reveals the response properties of neurons that are not evident using STA, including those that display orientation selectivity, or fire at low mean spike rates; and (iv) the FBP method is fast, allowing the RFs of all the bipolar cell synaptic terminals in a field of view to be reconstructed in under 4 min. Use of the FBP will benefit investigations of the visual system that employ electrophysiology or optical reporters to measure activity across populations of neurons.

  13. Receptive Field Properties of the Macaque Second Somatosensory Cortex: Representation of Orientation on Different Finger Pads

    PubMed Central

    Fitzgerald, Paul J.; Lane, John W.; Thakur, Pramodsingh H.; Hsiao, Steven S.

    2007-01-01

    Orientation tuning has been studied extensively in the visual system, but little is known about it in the somatosensory system. Here we investigate tuning in the second somatosensory (SII) region using a motorized stimulator that presented a small oriented bar to the 12 finger pads of digits 2–5 (D2–D5) of the macaque monkey. A subset (23%; n = 218) of the 928 SII region neurons [the same 928 neurons studied by Fitzgerald et al. (2004, 2006)] exhibited tuning, and most of these were tuned on one or two finger pads. All eight 22.5° separated orientations were represented as the preferred orientation of multiple neurons, although not necessarily in equal numbers. A measure of bandwidth indicated that tuning in the SII region is sharp and is similar to the tuning observed in visual cortical areas. In addition, two-dimensional Gaussians that were fit to the tuning curves had very high r2 values, indicating that most tuning curves are both unimodal and symmetrical with respect to their preferred orientation. Most tuned neurons had additional untuned pads, although the responsiveness of these pads tended to be less than the responsiveness of tuned pads. Neurons with multiple tuned pads tended to have similar preferred orientations on their tuned pads, which can be interpreted as evidence for integration of information across fingers or as a form of positional invariance. Finally, comparison of the tuning properties showed that there are small but significant differences between the posterior, central, and anterior fields of the SII region. PMID:16775135

  14. Kiddie QR (Quieting Reflex): Field Testing a Relaxation Program for Young Children.

    ERIC Educational Resources Information Center

    Ragan, Lynne; Hiebert, Bryan

    1987-01-01

    Investigated the efficacy of implementing "Kiddie QR (Quieting Reflex)," a self-regulation procedure with primary grade students in a classroom setting. Results were not strongly supportive. Low pretest scores of anxiety and lack of adherence to the program by teachers have influenced the outcome. (ABB)

  15. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity

    PubMed Central

    Eguchi, Akihiro; Neymotin, Samuel A.; Stringer, Simon M.

    2014-01-01

    Although many computational models have been proposed to explain orientation maps in primary visual cortex (V1), it is not yet known how similar clusters of color-selective neurons in macaque V1/V2 are connected and develop. In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. Each color input is decomposed into a red, green, and blue representation and transmitted to the visual cortex via a simulated optic nerve in a luminance channel and red–green and blue–yellow opponent color channels. Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. Each neuron in the V1 output layer makes synaptic connections to neighboring neurons and receives the three types of signals in the different channels from the corresponding photoreceptor position. Synaptic weights are randomized and learned using spike-timing-dependent plasticity (STDP). After training with natural images, the neurons display heightened sensitivity to specific colors. Information-theoretic analysis reveals mutual information between particular stimuli and responses, and that the information reaches a maximum with fewer neurons in the higher layers, indicating that estimations of the input colors can be done using the output of fewer cells in the later stages of cortical processing. In addition, cells with similar color receptive fields form clusters. Analysis of spiking activity reveals increased firing synchrony between neurons when particular color inputs are presented or removed (ON-cell/OFF-cell). PMID:24659956

  16. Transformation of Receptive Field Properties from Lateral Geniculate Nucleus to Superficial V1 in the Tree Shrew

    PubMed Central

    Roy, Arani; Rhodes, Heather J.; Culp, Julie H.; Fitzpatrick, David

    2013-01-01

    Tree shrew primary visual cortex (V1) exhibits a pronounced laminar segregation of inputs from different classes of relay neurons in the lateral geniculate nucleus (LGN). We examined how several receptive field (RF) properties were transformed from LGN to V1 layer 4 to V1 layer 2/3. The progression of RF properties across these stages differed markedly from that found in the cat. V1 layer 4 cells are largely similar to the the LGN cells that provide their input, being dominated by a single sign (ON or OFF) and being strongly modulated by sinusoidal gratings. Some layer 4 neurons, notably those near the edges of layer 4, exhibited increased orientation selectivity, and most layer 4 neurons exhibited a preference for lower temporal frequencies. Neurons in cortical layer 2/3 differ significantly from those in the LGN; most exhibited strong orientation tuning and both ON and OFF responses. The strength of orientation selectivity exhibited a notable sublaminar organization, with the strongest orientation tuned neurons in the most superficial parts of layer 2/3. Modulation indexes provide evidence for simple and complex cells in both layer 4 and layer 2/3. However, neurons with high modulation indexes were heterogenous in the spatial organization of ON and OFF responses, with many of them exhibiting unbalanced ON and OFF responses rather than well-segregated ON and OFF subunits. When compared to the laminar organization of V1 in other mammals, these data show that the process of natural selection can result in significantly altered structure/function relationships in homologous cortical circuits. PMID:23843520

  17. Transformation of receptive field properties from lateral geniculate nucleus to superficial V1 in the tree shrew.

    PubMed

    Van Hooser, Stephen D; Roy, Arani; Rhodes, Heather J; Culp, Julie H; Fitzpatrick, David

    2013-07-10

    Tree shrew primary visual cortex (V1) exhibits a pronounced laminar segregation of inputs from different classes of relay neurons in the lateral geniculate nucleus (LGN). We examined how several receptive field (RF) properties were transformed from LGN to V1 layer 4 to V1 layer 2/3. The progression of RF properties across these stages differed markedly from that found in the cat. V1 layer 4 cells are largely similar to the the LGN cells that provide their input, being dominated by a single sign (ON or OFF) and being strongly modulated by sinusoidal gratings. Some layer 4 neurons, notably those near the edges of layer 4, exhibited increased orientation selectivity, and most layer 4 neurons exhibited a preference for lower temporal frequencies. Neurons in cortical layer 2/3 differ significantly from those in the LGN; most exhibited strong orientation tuning and both ON and OFF responses. The strength of orientation selectivity exhibited a notable sublaminar organization, with the strongest orientation tuned neurons in the most superficial parts of layer 2/3. Modulation indexes provide evidence for simple and complex cells in both layer 4 and layer 2/3. However, neurons with high modulation indexes were heterogenous in the spatial organization of ON and OFF responses, with many of them exhibiting unbalanced ON and OFF responses rather than well-segregated ON and OFF subunits. When compared to the laminar organization of V1 in other mammals, these data show that the process of natural selection can result in significantly altered structure/function relationships in homologous cortical circuits.

  18. Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields.

    PubMed

    Peters, Ryan M; Staibano, Phillip; Goldreich, Daniel

    2015-12-01

    The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning.

  19. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity.

    PubMed

    Eguchi, Akihiro; Neymotin, Samuel A; Stringer, Simon M

    2014-01-01

    Although many computational models have been proposed to explain orientation maps in primary visual cortex (V1), it is not yet known how similar clusters of color-selective neurons in macaque V1/V2 are connected and develop. In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. Each color input is decomposed into a red, green, and blue representation and transmitted to the visual cortex via a simulated optic nerve in a luminance channel and red-green and blue-yellow opponent color channels. Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. Each neuron in the V1 output layer makes synaptic connections to neighboring neurons and receives the three types of signals in the different channels from the corresponding photoreceptor position. Synaptic weights are randomized and learned using spike-timing-dependent plasticity (STDP). After training with natural images, the neurons display heightened sensitivity to specific colors. Information-theoretic analysis reveals mutual information between particular stimuli and responses, and that the information reaches a maximum with fewer neurons in the higher layers, indicating that estimations of the input colors can be done using the output of fewer cells in the later stages of cortical processing. In addition, cells with similar color receptive fields form clusters. Analysis of spiking activity reveals increased firing synchrony between neurons when particular color inputs are presented or removed (ON-cell/OFF-cell).

  20. Early Monocular Defocus Disrupts the Normal Development of Receptive-Field Structure in V2 Neurons of Macaque Monkeys

    PubMed Central

    Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L.; Nishimoto, Shinji; Ohzawa, Izumi

    2014-01-01

    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. PMID:25297110

  1. Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields

    PubMed Central

    Peters, Ryan M.; Staibano, Phillip

    2015-01-01

    The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning. PMID:26354318

  2. On receptivity to environmental disturbances

    NASA Technical Reports Server (NTRS)

    Morkovin, Mark V.

    1990-01-01

    The instability dehomogenization of shear-layer vorticity is addressed, and conditions for stimulation of unstable normal modes are considered with emphasis on spatially-unstable flows. Minute wall changes as an example of Tollmien-Schlichting wave forcing by sound is analyzed, rapid and moderate x-variations in mean and disturbance fields are considered, and it is pointed out that x-dependences within the whole system of a shear layer can provide one or several receptivity paths. The role of the leading edge in covered along with its idealization. Detailed validation of receptivity paths, receptivity to free-stream turbulence, and nonperiodic excitation are also discussed.

  3. The menace reflex.

    PubMed

    van Ballegoij, Wouter J C; Koehler, Peter J; Meulen, Bastiaan C Ter

    2015-06-01

    The menace reflex (blink reflex to visual threat) tests visual processing at the bedside in patients who cannot participate in normal visual field testing. We reviewed a collection of recently discovered historical movies showing the experiments of the Dutch physiologist Gysbertus Rademaker (1887-1957), exploring the anatomy of this reflex by making cerebral lesions in dogs. The experiments show not only that the menace reflex is cortically mediated, but also that lesions outside the visual cortex can abolish the reflex. Therefore, although often erroneously used in this way, an absent menace does not always indicate a visual field deficit. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Caring Reflexivity

    ERIC Educational Resources Information Center

    Rallis, Sharon F.; Rossman, Gretchen B.

    2010-01-01

    This article provides a brief summary of the seven articles in this special issue through the lens of the concept of "caring reflexivity". In joining "caring" and "reflexivity", we deepen the conversation about what constitutes reflexivity, encouraging an explicit focus on the relational. Revisiting the first article,…

  5. Caring Reflexivity

    ERIC Educational Resources Information Center

    Rallis, Sharon F.; Rossman, Gretchen B.

    2010-01-01

    This article provides a brief summary of the seven articles in this special issue through the lens of the concept of "caring reflexivity". In joining "caring" and "reflexivity", we deepen the conversation about what constitutes reflexivity, encouraging an explicit focus on the relational. Revisiting the first article,…

  6. Receptive field scatter, topography and map variability in different layers of the hindpaw representation of rat somatosensory cortex.

    PubMed

    Haupt, S Shuichi; Spengler, Friederike; Husemann, Robert; Dinse, Hubert R

    2004-04-01

    We recorded neurons extracellularly in layers II/III, IV, and V of the hindpaw representation of primary somatosensory cortex in anesthetized rats and studied laminar features of receptive fields (RFs) and representational maps. On average, RFs were smallest in layer IV and largest in layer V; however, for individual penetrations we found substantial deviations from this rule. Within the hindpaw representation, a distinct rostrocaudal gradient of RF size was present in all layers. While layer V RFs were generally largest independent of this gradient, layer IV RFs recorded caudally representing the proximal portions of the paw were larger than layer II/III RFs recorded rostrally representing the digits. The individual scatter of the locations of RFs across laminar groups was in the range of several millimeters, corresponding to about 25% of the average RF diameter. The cutaneous representations of the hindpaw in extragranular layers were confined to the areal extent defined by responsive sites in layer IV. Comparison between RFs determined quantitatively and by handplotting showed a reliable correspondence. Repeated measurements of RFs revealed spontaneous fluctuations of RF size of no more than 5% of the initial condition over an observation period of several hours. The topography and variability of cortical maps of the hindpaw representation were studied with a quantitative interpolation method taking into account the geometric centers of RFs and the corresponding cortical recording sites. On average, the overall topography in terms of preservation of neighborhood relations was present in all layers, although some individual maps showed severe distortions of topography. Factors contributing to map variability were overall position of the representation on the cortical surface, internal topography and spatial extent. Interindividual variability of map layout was always highest in the digit representations. Local topographic orderliness was lowest in layer V, but

  7. Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.

    PubMed

    Ruksenas, O; Fjeld, I T; Heggelund, P

    2000-01-01

    Spatial summation and degree of center-surround antagonism were examined in the receptive field of nonlagged cells in the dorsal lateral geniculate nucleus (dLGN). We recorded responses to stationary light or dark circular spots that were stepwise varied in width. The spots were centered on the receptive field. For a sample of nonlagged X-cells, we made simultaneous recordings of action potentials and S-potentials, and could thereby compare spatial summation in the dLGN cell and in the retinal input to the cell. Plots of response versus spot diameter showed that the response for a dLGN cell was consistently below the response in the retinal input at all spot sizes. There was a marked increase of antagonism at the retinogeniculate relay. The difference between the retinal input and dLGN cell response suggested that the direct retinal input to a relay cell is counteracted in dLGN by an inhibitory field that has an antagonistic center-surround organization. The inhibitory field seems to have the same center sign (ON- or OFF-center), but a wider receptive-field center than the direct retinal input to the relay cell. The broader center of the inhibitory field can explain the increased center-surround antagonism at the retinogeniculate relay. The ratio between the response of a dLGN cell and its retinal input (transfer ratio) varied with spot width. This variation did not necessarily reflect a nonlinearity at the retinogeniculate relay. Plots of dLGN cell response against retinal input were piecewise linear, suggesting that both excitatory and inhibitory transmission in dLGN are close to linear. The variation in transfer ratio could be explained by sustained suppression evoked by the background stimulation, because such suppression has relatively stronger effect on the response to a spot evoking weak response than to a spot evoking a strong response. A simple model for the spatial receptive-field organization of nonlagged X-cells, that is consistent with our findings, is

  8. Effect of electrical water bath stunning on physical reflexes of broilers: evaluation of stunning efficacy under field conditions.

    PubMed

    Girasole, M; Marrone, R; Anastasio, A; Chianese, Antonio; Mercogliano, R; Cortesi, M L

    2016-05-01

    The effects of different amounts and frequencies of stunning sine wave alternating current were investigated under field conditions. Seven hundred and fifty broilers were stunned in an electrical water bath with an average root mean square (RMS) current of 150, 200, and 250 mA and frequencies of 200, 400, 600, 800, and 1,200 Hz. The occurrence of corneal reflex, spontaneous eye blinking, and a positive response to a painful stimulus were monitored and recorded immediately after the stunning and at 20 s post-stun. Statistical analysis showed that the electrical stunning frequency (P=0.0004), the stunning RMS current (P<0.0001) and the interaction between stunning frequency and stunning current (P<0.0001) had a significant effect on the occurrence of animals experiencing an abolition of corneal reflex at 20 s post-stun.At a current of 150 mA, the probability of a successful stun was over 90% at 200 Hz, approximately 40% at 400 Hz, and below 5% for frequencies greater than 600 Hz. So, stunning at frequencies greater than 600 Hz cannot be recommended when a RMS current of 150 mA is applied. The maximum probability of a successful stun was obtained for a current level of 200 mA at 400 Hz and for a current level of 250 mA at 400 and 600 Hz, whereas the stunning treatments at 1,200 Hz provided the lowest probability of a successful stun. Assessment of spontaneous eye blinking and responses to comb pinching confirmed the indications coming from the analysis of corneal reflex.

  9. Dopamine Regulation of GABAA Receptors Contributes to Light/Dark Modulation of the ON-Cone Bipolar Cell Receptive Field Surround in the Retina.

    PubMed

    Chaffiol, Antoine; Ishii, Masaaki; Cao, Yu; Mangel, Stuart C

    2017-09-11

    Cone bipolar cells are interneurons that receive synaptic input from cone photoreceptor cells and provide the output of the first synaptic layer of the retina. These cells exhibit center-surround receptive fields, a prototype of lateral inhibition between neighboring sensory cells in which stimulation of the receptive field center excites the cell whereas stimulation of the surrounding region laterally inhibits the cell. This fundamental sensory coding mechanism facilitates spatial discrimination and detection of stimulus edges. However, although it is well established that the receptive field surround is strongest when ambient or background illumination is most intense, e.g., at midday, and that the surround is minimal following maintained darkness, the synaptic mechanisms that produce and modulate the surround have not been resolved. Using electrical recording of bipolar cells under experimental conditions in which the cells exhibited surround light responses, and light and electron microscopic immunocytochemistry, we show in the rabbit retina that bright-light-induced activation of dopamine D1 receptors located on ON-center cone bipolar cell dendrites increases the expression and activity of GABAA receptors on the dendrites of the cells and that surround light responses depend on endogenous GABAA receptor activation. We also show that maintained darkness and D1 receptor blockade following maintained illumination and D1 receptor activation result in minimal GABAA receptor expression and activity and greatly diminished surrounds. Modulation of the D1/GABAA receptor signaling pathway of ON-cBC dendrites by the ambient light level facilitates detection of spatial details on bright days and large dim objects on moonless nights. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A survey of spinal dorsal horn neurones encoding the spatial organization of withdrawal reflexes in the rat.

    PubMed

    Schouenborg, J; Weng, H R; Kalliomäki, J; Holmberg, H

    1995-01-01

    The withdrawal reflex pathways to hindlimb muscles have an elaborate spatial organization in the rat. In short, the distribution of sensitivity within the cutaneous receptive field of a single muscle has a spatial pattern that is a mirror image of the spatial pattern of the withdrawal of the skin surface ensuing on contraction in the respective muscle. In the present study, a search for neurones encoding the specific spatial input-output relationship of withdrawal reflexes to single muscles was made in the lumbosacral spinal cord in halothane/nitrous oxide-anaesthetized rats. The cutaneous receptive fields of 147 dorsal horn neurones in the L4-5 segments receiving a nociceptive input and a convergent input from A and C fibres from the hindpaw were studied. The spatial pattern of the response amplitude within the receptive fields of 118 neurones was quantitatively compared with those of withdrawal reflexes to single muscles. Response patterns exhibiting a high similarity to those of withdrawal reflexes to single muscles were found in 27 neurones located in the deep dorsal horn. Twenty-six of these belonged to class 2 (responding to tactile and nociceptive input) and one belonged to class 3 (responding only to nociceptive input). None of the neurones tested (n = 20) with reflex-like response patterns could be antidromically driven from the upper cervical cord, suggesting that they were spinal interneurones. With some overlap, putative interneurones of the withdrawal reflexes to the plantar flexors of the digits, the plantar flexors of the ankle, the pronators, the dorsiflexors of the ankle, and a flexor of the knee, were found in succession in a mediolateral direction.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys.

    PubMed

    Tao, X; Zhang, B; Smith, E L; Nishimoto, S; Ohzawa, I; Chino, Y M

    2012-02-01

    We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features.

  12. Influence of a 60 Hz, 3 microT, electromagnetic field on the reflex maturation of Wistar rats offspring from mothers fed a regional basic diet during pregnancy.

    PubMed

    Anselmo, Caroline W S F; Santos, Ana A A; Freire, Conciana M A; Ferreira, Lúcia M P; Cabral Filho, José E; Catanho, Maria Teresa J A; Medeiros, Maria Do Carmo

    2006-01-01

    The aim of the present study was to observe how the exposition of the pregnant rats to the electromagnetic field (EMF), with frequency of 60 Hz, magnetic field of 3 microT for 2 h per day and/or using the so-called regional basic diet (RBD) influenced the reflex maturation in their offspring. Four groups were formed: Group A (casein), B (casein and EMF), C (RBD) and D (RBD and EMF). The diet manipulation occurred during the pregnancy. The reflexes--assessed daily between 12:00 and 14:00--were: palm grasp (PG), righting reflex (RR), cliff avoidance (CA), vibrissae placing (VP), negative geotaxis (NG), auditory startle (AS) and free-fall righting (FFR). The association between EMF and deficient diet caused a delay in all reflexes when compared with Group A. When the diets were compared with both groups exposed to EMF, the delay occurred in the RR, VP, NG and CA in Group D. In the Groups C and A, the delay was observed in RR, CA, VP, NG, AS and PG. In relation to the EMF, Group B differed from Group A in CA, AS, FFR and PG and Group D differed from C in the PG. In conclusion, all the reflexes studied in this research were delayed by the association of the EMF with undernutrition during pregnancy.

  13. Moro reflex

    MedlinePlus

    ... Causes This is a normal reflex present in newborn infants. Absence of the Moro reflex in an infant ... A.M. Editorial team. Related MedlinePlus Health Topics Infant and Newborn Care Browse the Encyclopedia A.D.A.M., ...

  14. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  15. Serotonin 5-HT2 receptors induce a long-lasting facilitation of spinal reflexes independent of ionotropic receptor activity.

    PubMed

    Shay, Barbara L; Sawchuk, Michael; Machacek, David W; Hochman, Shawn

    2005-10-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT(2C) receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT(2A/2C) and 5-HT(1A) receptor agonists, respectively, regardless of substrain. LLFR was predominantly Abeta afferent fiber mediated, consistent with prominent 5-HT(2C) receptor expression in the Abeta fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABA(A) and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors.

  16. Rostral ventrolateral medullary but not medullary lateral tegmental field neurons mediate sympatho-sympathetic reflexes in cats.

    PubMed

    Barman, Susan M; Orer, Hakan S

    2010-11-01

    This study was designed to build on past work from this laboratory by testing the hypothesis that medullary lateral tegmental field (LTF) neurons play a critical role in mediating sympathoexcitatory responses to activation of sympathetic afferent fibers. We studied the effects of microinjection of N-methyl-d-aspartate (NMDA) or non-NMDA receptor antagonists or muscimol bilaterally into the LTF on the area under the curve of the computer-averaged sympathoexcitatory potential in the right inferior cardiac nerve elicited by short trains of stimuli applied to afferent fibers in the left inferior cardiac or left splanchnic nerve (CN, SN) of baroreceptor-denervated and vagotomized cats anesthetized with a mixture of diallylbarbiturate and urethane. In contrast to our hypothesis, sympathoexcitatory responses to stimulation of CN (n = 5-7) or SN (n = 4-7) afferent fibers were not significantly affected by these procedures. We then determined whether the rostral and caudal ventrolateral medulla (RVLM, CVLM) and nucleus tractus solitarius (NTS) were involved in mediating these reflexes. Blockade of non-NMDA, but not NMDA, receptors in the RVLM significantly reduced the area under the curve of the sympathoexcitatory responses to electrical stimulation of either CN (P = 0.0110; n = 6) or SN (P = 0.0131; n = 5) afferent fibers. Neither blockade of excitatory amino acid receptors nor chemical inactivation of CVLM or NTS significantly affected the responses. These data show that activation of non-NMDA receptors in the RVLM is a critical step in mediating the sympatho-sympathetic reflex.

  17. Rostral ventrolateral medullary but not medullary lateral tegmental field neurons mediate sympatho-sympathetic reflexes in cats

    PubMed Central

    2010-01-01

    This study was designed to build on past work from this laboratory by testing the hypothesis that medullary lateral tegmental field (LTF) neurons play a critical role in mediating sympathoexcitatory responses to activation of sympathetic afferent fibers. We studied the effects of microinjection of N-methyl-d-aspartate (NMDA) or non-NMDA receptor antagonists or muscimol bilaterally into the LTF on the area under the curve of the computer-averaged sympathoexcitatory potential in the right inferior cardiac nerve elicited by short trains of stimuli applied to afferent fibers in the left inferior cardiac or left splanchnic nerve (CN, SN) of baroreceptor-denervated and vagotomized cats anesthetized with a mixture of diallylbarbiturate and urethane. In contrast to our hypothesis, sympathoexcitatory responses to stimulation of CN (n = 5–7) or SN (n = 4–7) afferent fibers were not significantly affected by these procedures. We then determined whether the rostral and caudal ventrolateral medulla (RVLM, CVLM) and nucleus tractus solitarius (NTS) were involved in mediating these reflexes. Blockade of non-NMDA, but not NMDA, receptors in the RVLM significantly reduced the area under the curve of the sympathoexcitatory responses to electrical stimulation of either CN (P = 0.0110; n = 6) or SN (P = 0.0131; n = 5) afferent fibers. Neither blockade of excitatory amino acid receptors nor chemical inactivation of CVLM or NTS significantly affected the responses. These data show that activation of non-NMDA receptors in the RVLM is a critical step in mediating the sympatho-sympathetic reflex. PMID:20811005

  18. Hebbian learning in a model with dynamic rate-coded neurons: an alternative to the generative model approach for learning receptive fields from natural scenes.

    PubMed

    Hamker, Fred H; Wiltschut, Jan

    2007-09-01

    Most computational models of coding are based on a generative model according to which the feedback signal aims to reconstruct the visual scene as close as possible. We here explore an alternative model of feedback. It is derived from studies of attention and thus, probably more flexible with respect to attentive processing in higher brain areas. According to this model, feedback implements a gain increase of the feedforward signal. We use a dynamic model with presynaptic inhibition and Hebbian learning to simultaneously learn feedforward and feedback weights. The weights converge to localized, oriented, and bandpass filters similar as the ones found in V1. Due to presynaptic inhibition the model predicts the organization of receptive fields within the feedforward pathway, whereas feedback primarily serves to tune early visual processing according to the needs of the task.

  19. Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity.

    PubMed

    Cang, Jianhua; Niell, Cristopher M; Liu, Xiaorong; Pfeiffenberger, Cory; Feldheim, David A; Stryker, Michael P

    2008-02-28

    The topographic representation of visual space is preserved from retina to thalamus to cortex. We have previously shown that precise mapping of thalamocortical projections requires both molecular cues and structured retinal activity. To probe the interaction between these two mechanisms, we studied mice deficient in both ephrin-As and retinal waves. Functional and anatomical cortical maps in these mice were nearly abolished along the nasotemporal (azimuth) axis of the visual space. Both the structure of single-cell receptive fields and large-scale topography were severely distorted. These results demonstrate that ephrin-As and structured neuronal activity are two distinct pathways that mediate map formation in the visual cortex and together account almost completely for the formation of the azimuth map. Despite the dramatic disruption of azimuthal topography, the dorsoventral (elevation) map was relatively normal, indicating that the two axes of the cortical map are organized by separate mechanisms.

  20. Effects of voltage perturbation of the lingual receptive field on chorda tympani responses to Na+ and K+ salts in the rat: implications for gustatory transduction

    PubMed Central

    1994-01-01

    Taste sensory responses from the chorda tympani nerve of the rat were recorded with the lingual receptive field under current or voltage clamp. Consistent with previous results (Ye, Q., G. L. Heck, and J. A. DeSimone. 1993. Journal of Neurophysiology. 70:167-178), responses to NaCl were highly sensitive to lingual voltage clamp condition. This can be attributed to changes in the electrochemical driving force for Na+ ions through apical membrane transducer channels in taste cells. In contrast, responses to KCl over the concentration range 50-500 mM were insensitive to the voltage clamp condition of the receptive field. These results indicate the absence of K+ conductances comparable to those for Na+ in the apical membranes of taste cells. This was supported by the strong anion dependence of K salt responses. At zero current clamp, the potassium gluconate (KGlu) threshold was > 250 mM, and onset kinetics were slow (12 s to reach half-maximal response). Faster onset kinetics and larger responses to KGlu occurred at negative voltage clamp (-50 mV). This indicates that when K+ ion is transported as a current, and thereby uncoupled from gluconate mobility, its rate of delivery to the K+ taste transducer increases. Analysis of conductances shows that the paracellular pathway in the lingual epithelium is 28 times more permeable to KCl than to KGlu. Responses to KGlu under negative voltage clamp were not affected by agents that are K+ channel blockers in other systems. The results indicate that K salt taste transduction is under paracellular diffusion control, which limits chemoreception efficiency. We conclude that rat K salt taste occurs by means of a subtight junctional transducer for K+ ions with access limited by anion mobility. The data suggest that this transducer is not cation selective which also accounts for the voltage and amiloride insensitive part of the response to NaCl. PMID:7876827

  1. Developmental differences in peripheral glabrous skin mechanosensory nerve receptive field and intracellular electrophysiologic properties: phenotypic characterization in infant and juvenile rats.

    PubMed

    Boada, M Danilo; Gutierrez, Silvia; Houle, Timothy; Eisenach, James C; Ririe, Douglas G

    2011-12-01

    Developmental differences in peripheral neuron characteristics and functionality exist. Direct measurement of active and passive electrophysiologic and receptive field characteristics of single mechanosensitive neurons in glabrous skin was performed and phenotypic characterization of fiber subtypes was applied to analyze developmental differences in peripheral mechanosensitive afferents. After Institutional approval, male Sprague-Dawley infant (P7: postnatal day 7) and juvenile (P28) rats were anesthetized and single cell intracellular electrophysiology was performed in the dorsal root ganglion (DRG) soma of mechanosensitive cells with receptive field (RF) in the glabrous skin of the hindpaw. Passive and active electrical properties of the cells and RF size and characteristics determined. Fiber subtype classification was performed and developmental differences in fiber subtype properties analyzed. RF size was smaller at P7 for both low and high threshold mechanoreceptor (LTMR and HTMR) with no differences between A- and C-HTMR (AHTMR and CHTMR). The RF size was also correlated to anatomic location on glabrous skin, toes having smaller RF. Conduction velocity (CV) was adequate at P28 for AHTMR and CHTMR classification, but not at P7. Only width of the action potential at half height (D50) was significantly different between HTMR at P7, while D50, CV and amplitude of the AP were significant for HTMR at P28. RF size is determined in part by the RF distribution of the peripheral neuron. Developmental differences in RF size occur with larger RF sizes occurring in younger animals. This is consistent with RF size differences determined by measuring RF in the spinal cord, except the peripheral RF is much smaller, more refined, and in some cases pinpoint. Developmental differences make CV alone unreliable for neuron classification. Utilizing integration of all measured parameters allows classification of neurons into subtypes even at the younger ages. This will prove

  2. Brain activations evoked by tactile stimulation varies with the intensity and not with number of receptive fields stimulated: An fMRI study

    NASA Astrophysics Data System (ADS)

    Ramirez Garzón, Y. T.; Pasaye, E. H.; Barrios, F. A.

    2014-11-01

    Using functional Magnetic Resonance Imaging (fMRI) it is possible to study the functional anatomy of primary cortices. Cortical representations in the primary somatosensory cortex have shown discrepancies between activations related to the same body region in some studies; these differences have been more pronounced for lower limb representations. The aim of this study was to observe the influence of the tactile stimulus intensity in somatosensory cortical responses using fMRI. Based in the sensitivity and pain threshold of each subject, we used Von Frey filaments for stimulate 12 control subject in three receptive fields on the right thigh. One filament near to sensitivity threshold (VFS), other close to pain threshold (VFP) and one intermediate filament between the two previous thresholds (VFI). The tactile stimulation with VFS produced no activation on SI, while that the contralateral SI was activated by stimulation with VFI in 5 subjects and with the stimulation of VFP in all subjects. Second level statistical analysis showed significant differences between SI activations related to the stimulation with VFP and VFI (VFP > VFI), in the comparison between the applied different intensities, a small cluster of activation was observed on SI for the unique possible contrast (VFP > VFI). The time course per trial for each subject was extracted and averaged to extract the activation in the contralateral SI and compared across the stimulus modalities, between the sites of field receptive stimulated and the intensities used. The time course of tactile stimulus responses revealed a consistent single peak of activity per cycle (30 s), approximately 12 s after the onset of the stimulus, with exception of the VFI stimulation,_which showed the peak at 10 s. Thus, our results indicate that the cortical representation of a tactile stimulus with fMRI is modulated for the intensity of the stimulus applied.

  3. Symmetry of the Pupillary Light Reflex and Its Relationship to Retinal Nerve Fiber Layer Thickness and Visual Field Defect

    PubMed Central

    Chang, Dolly S.; Boland, Michael V.; Arora, Karun S.; Supakontanasan, Wasu; Chen, Bei Bei; Friedman, David S.

    2013-01-01

    Purpose. To assess the relationship between the pupillary light reflex (PLR) and visual field (VF) mean deviation (MD) and retinal nerve fiber layer (RNFL) thickness. Methods. A total of 148 patients with glaucoma (mean age 67 ± 11, 49% female) and 71 controls (mean age 60 ± 10, 69% female) were included in this study. Using a pupillometer, we recorded and analyzed pupillary responses at varied stimulus patterns (full field, superonasal and inferonasal quadrant arcs). We compared the responses between the two eyes, compared responses to stimuli in the superonasal and inferonasal fields within each eye, and calculated the absolute PLR value of each individual eye. We assessed the relationship among PLR, MD, and RNFL thickness using the Pearson correlation coefficient. For analyses performed at the level of individual eyes, we used multilevel modeling to account for between-eye correlations within individuals. Results. For every 0.3 log unit difference in between-eye asymmetry of PLR, there was an average 2.6-dB difference in visual field MD (correlation coefficient R = 0.83, P < 0.001) and a 3.2-μm difference in RNFL thickness between the two eyes (R = 0.67, P < 0.001). Greater VF damage and thinner RNFL for each individual eye were associated with smaller response amplitude, slower velocity, and longer time to peak constriction and dilation after adjusting for age and sex (all P < 0.001). However, within-eye asymmetry of PLR between superonasal and inferonasal stimulation was not associated with corresponding within-eye differences in VF or RNFL. Conclusions. As measured by this particular device, the PLR is strongly correlated with VF functional testing and measurements of RNFL thickness. PMID:23860751

  4. Teaching Receptive Language Skills

    PubMed Central

    Grow, Laura; LeBlanc, Linda

    2013-01-01

    Receptive language refers to responding appropriately to another person's spoken language. Most curricula dedicate a proportion of early intervention to developing receptive language skills. The specific terms used to refer to the receptive language programs and the recommendations for teaching such skills vary considerably across the early intervention curricula. The present paper will provide a conceptual analysis of the desired controlling variables for different receptive language programs, teaching recommendations, a brief review of the literature to substantiate the teaching recommendations, and a discussion of the potential negative effects of deviating from the recommendations. PMID:25729507

  5. Reception and office organisation.

    PubMed

    Wilkinson, M D

    1989-05-20

    The reception area is central to efficient administrative procedures and is the embodiment of the style of a practice as regularly seen by every patient. Planning a reception office is not difficult but it should be done carefully to ensure that it is efficient and cost effective. In the second of his articles on practice management, Michael Wilkinson looks at the essentials.

  6. Raphe lesions and 5,7-dihydroxytryptamine induce grooming reflexes in adrenalectomized cats.

    PubMed

    Swenson, R M; Randall, W

    1980-04-01

    Grooming reflexes are induced by frontal neocortical, pontile, or spinal lesions in dogs and cats. In intact cats, the combined treatments of adrenalectomy and para-chlorophenylalanine administration induce grooming reflexes. Two other ways of depleting serotonin (with 5,7-dihydroxytryptamine and raphe lesions) were combined with adrenalectomy in the present study as further tests that serotonin and glucocorticoid hormones are the critical factors in the induction of grooming reflexes. Because the deficit in serotonin is confined to the superior colliculi in cats with frontal and pontile lesions, 5,7-dihydroxytryptamine (5,7-DHT) was injected directly into the superior colliculi at eight sites, 2 microgram/site (1 microliter at .5 microliter/min). Electrolytic dc lesions of the dorsal and superior central raphe nuclei were made in another group, and then both groups were adrenalectomized. There were three control groups: (a) a group with vehicle injections in the superior colliculi and laporatomies, (b) a group with 5,7-DHT injections in the superior colliculi, and (c) a group with the raphe lesions. Large receptive fields for grooming reflexes occurred only in the groups with combined treatments. Thus the mechanism of induction of grooming reflexes by central nervous system lesions involves independent changes in a hormonal and a neurotransmitter system which combine to effect the change in behavior.

  7. A systematic analysis of neurons with large somatosensory receptive fields covering multiple body regions in the secondary somatosensory area of macaque monkeys

    PubMed Central

    Toda, T.; Hihara, S.; Tanaka, M.; Iriki, A.; Iwamura, Y.

    2016-01-01

    Previous neurophysiological studies performed in macaque monkeys have revealed complex somatosensory responses in the secondary somatosensory area (SII), such as large receptive fields (RFs), as well as bilateral ones. However, systematic analyses of neurons with large RFs have not been performed. In the present study, we recorded single-unit activities in SII of awake macaque monkeys to investigate systematically large RFs by dividing the whole body into four body regions (head, trunk, forelimb, and hindlimb). Recorded neurons were classified into two types, according to whether the RFs were confined to one body region: single (n = 817) and combined (n = 282) body-region types. These two types were distinct in terms of the percentage of bilateral RFs: 55% in the single-region type and 90% in the combined type, demonstrating that two types of RF enlargement occur simultaneously in the combined type, namely, RF convergence from different body regions and RF convergence from both hemibodies. Among the combined-type RFs, two tendencies of RF convergence were found: 1) the distal parts of the limbs (i.e., hand and foot) and the mouth are interconnected, and 2) the trunk RFs extend continuously toward the distal parts of the limb and head to cover the entire body surface. Our distribution analysis on unfolded maps clarified that neurons having RFs with these two tendencies were distributed within specific subregions in SII. PMID:27559139

  8. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes.

    PubMed

    Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M

    2016-01-01

    Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.

  9. Facilitating Reflexivity in Preservice Science Teacher Education Using Video Analysis and Cogenerative Dialogue in Field-Based Methods Courses

    ERIC Educational Resources Information Center

    Siry, Christina; Martin, Sonya N.

    2014-01-01

    This paper presents an approach to preservice science teacher education coupling video analysis with dialogue as tools for fostering teachers' ability to notice and reflexively interpret events captured during teaching practicum with the intent of transforming classroom practice. In this approach, video becomes a tool with which teachers connect…

  10. Common-mode differential-mode (CMDM) method for double-nuclear MR signal excitation and reception at ultrahigh fields.

    PubMed

    Pang, Yong; Zhang, Xiaoliang; Xie, Zhentian; Wang, Chunsheng; Vigneron, Daniel B

    2011-11-01

    Double-tuned radio-frequency (RF) coils for heteronuclear mangentic resonance (MR) require sufficient electromagnetic isolation between the two resonators operating at two Larmor frequencies and independent tuning in order to attain highly efficient signal acquisition at each frequency. In this work, a novel method for double-tuned coil design at 7T based on the concept of common-mode differential-mode (CMDM) was developed and tested. Common mode (CM) and differential mode (DM) currents exist within two coupled parallel transmission lines, e.g., microstrip lines, yielding two different current distributions. The electromagnetic (EM) fields of the CM and DM are orthogonal to each other, and thus, the two modes are intrinsically EM decoupled. The modes can be tuned independently to desired frequencies, thus satisfying the requirement of dual-frequency MR applications. To demonstrate the feasibility and efficiency of the proposed CMDM technique, CMDM surface coils and volume coils using microstrip transmission line for (1)H and (13)C MRI/MRSI were designed, constructed, and tested at 7T. Bench test results showed that the isolations between the two frequency channels of the CMDM surface coil and volume coil were better than -30 and -25 dB, respectively. High quality MR phantom images were also obtained using the CMDM coils. The performance of the CMDM technique was validated through a comparison with the conventional two-pole design method at 7T. The proposed CMDM technique can be also implemented by using other coil techniques such as lumped element method, and can be applied to designing double-tuned parallel imaging coil arrays. Furthermore, if the two resonant modes of a CMDM coil were tuned to the same frequency, the CMDM coil becomes a quadrature coil due to the intrinsic orthogonal field distribution of CM and DM.

  11. Defective endometrial receptivity.

    PubMed

    Revel, Ariel

    2012-05-01

    The endometrium is one of the most fascinating tissues in the human body. Its sole purpose is to enable implantation of an embryo during a relatively short window of opportunity in the menstrual cycle. It is becoming clear that overcoming the current bottleneck in improvements to assisted reproductive techniques will require a closer look at the interface between uterus and embryo. Indeed, embryo implantation requires a cross talk with a receptive endometrium. Using sonography, hysteroscopy and endometrial biopsy we can learn about anatomical and functional markers of endometrial receptivity. This article reviews the factors which might cause defective endometrial receptivity. These include uterine polyps, septa, leiomyomata and adhesions. The effect of thin endometrium, endometriosis and hydrosalpinx is also described. Finally contemporary investigation of molecular markers of endometrial receptivity is described. Improving embryo implantation by a closer look inside the uterus is the key to increasing pregnancy rates in IVF.

  12. Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts.

    PubMed

    el Jundi, Basil; Homberg, Uwe

    2012-09-01

    Many migrating insects rely on the plane of sky polarization as a cue to detect spatial directions. Desert locusts (Schistocerca gregaria), like other insects, perceive polarized light through specialized photoreceptors in a dorsal eye region. Desert locusts occur in two phases: a gregarious swarming phase, which migrates during the day, and a solitarious nocturnal phase. Neurons in a small brain area, the anterior optic tubercle (AOTu), are critically involved in processing polarized light in the locust brain. While polarization-sensitive intertubercle cells [lobula-tubercle neuron 1 (LoTu1) and tubercle-tubercle neuron 1 (TuTu1)] interconnect the AOTu of both hemispheres, tubercle-lateral accessory lobe tract (TuLAL1) neurons transmit sky compass signals to a polarization compass in the central brain. To better understand the neural network underlying polarized light processing in the AOTu and to investigate possible adaptations of the polarization vision system to a diurnal versus nocturnal lifestyle, we analyzed receptive field properties, intensity-response relationships, and daytime dependence of responses of AOTu neurons in gregarious and solitarious locusts. Surprisingly, no differences in the physiology of these neurons were found between the two locust phases. Instead, clear differences were observed between the different types of AOTu neurons. Whereas TuTu1 and TuLAL1 neurons encoded E-vector orientation independent of light intensity and would thus be operational in bright daylight, LoTu1 neurons were inhibited by high light intensity and provided strong polarization signaling only under dim light conditions. The presence of high- and low-intensity polarization channels might, therefore, allow solitarious and gregarious locusts to use the same polarization coding system despite their different activity cycles.

  13. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions

    PubMed Central

    Vinck, Martin; Bosman, Conrado A.

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that

  14. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions.

    PubMed

    Vinck, Martin; Bosman, Conrado A

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30-90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other's CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is

  15. The visual development of hand-centered receptive fields in a neural network model of the primate visual system trained with experimentally recorded human gaze changes

    PubMed Central

    Galeazzi, Juan M.; Navajas, Joaquín; Mender, Bedeho M. W.; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M.

    2016-01-01

    ABSTRACT Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant’s gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views. PMID:27253452

  16. Infantile reflexes (image)

    MedlinePlus

    Infantile reflexes are tested and observed by medical professionals to evaluate neurological function and development. Absent or ... reflex is normally lost, or redevelopment of an infantile reflex in an older child or adult may ...

  17. Receptive Field Structures for Recognition

    DTIC Science & Technology

    2005-03-01

    that such statistics might be useful for pattern recognition is not new, indeed Julesz (Julesz 1975) suggested that ‘ needle statistics’ could be useful...Gaussians to be manipulated independently of either one’s spatial constant (Figure 4) In so doing, we lose the ability to create ‘ steerable ’ filters...the goal of sensory coding?" Neural Computation 6: 559-601. Freeman, W. T. and E. H. Adelson (1991). "The design and use of steerable filters

  18. Wireless quantified reflex device

    NASA Astrophysics Data System (ADS)

    Lemoyne, Robert Charles

    The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight for the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency, however these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three dimensional wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: 1. Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. 2. Evaluate the precision of the device using an artificial reflex system. 3.Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to the steady evolution of the wireless quantified reflex device from a singular two dimensional wireless accelerometer capable of measuring reflex response to a tandem three dimensional wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless three dimensional MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that

  19. Measurement of Nonlinear Receptivity to Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Davila-Acaron, Jose B.; Hajj, Muhammad R.

    1998-01-01

    Acoustic receptivity is the process by which acoustic disturbances are internalized into the shear layer to generate instability waves. Experiments have shown that, when tuned to the eigenvalue modes, the amplitude of the resulting T-S waves scales with the acoustic field intensity. When a surface irregularity is present, the characteristic wall wavenumber forces a spatial mode onto the near-wall mean velocity field, thus providing modal length scales comparable to those of T-S waves. In this experiment an attempt was made to increase the acoustic receptivity by exciting a difference mode via a quadratic interaction between two larger-wavenumber, forced modes. The difference mode is tuned to the dominant T-S eigenmode wavenumber. As expected, an increased receptivity corresponding to the difference mode was measured downstream of branch I, suggesting the presence of the nonlinearity.

  20. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  1. Diversity Networking Reception

    NASA Astrophysics Data System (ADS)

    2014-03-01

    Join us at the APS Diversity Reception to relax, network with colleagues, and learn about programs and initiatives for women, underrepresented minorities, and LGBT physicists. You'll have a great time meeting friends in a supportive environment and making connections.

  2. The Reception Learning Paradigm.

    ERIC Educational Resources Information Center

    Novak, Joseph D.

    This report suggests that research in education, as well as the design of instruction, can be importantly influenced by the paradigm that guides the work. The application of a paradigm to educational research is illustrated, and two paradigms (reception learning and discovery learning) are contrasted. Finally, it is suggested that all educational…

  3. The Reception Learning Paradigm.

    ERIC Educational Resources Information Center

    Novak, Joseph D.

    This report suggests that research in education, as well as the design of instruction, can be importantly influenced by the paradigm that guides the work. The application of a paradigm to educational research is illustrated, and two paradigms (reception learning and discovery learning) are contrasted. Finally, it is suggested that all educational…

  4. The Reception Learning Paradigm.

    ERIC Educational Resources Information Center

    Novak, Joseph D.

    1979-01-01

    Presented is a paradigm for science education research. The paradigm advances the reception learning theory, where regularities to be learned are presented explicitly to the learner. A tool for the study of knowledge production in science education, the Gowin "V," is presented. (RE)

  5. Cell-type-specific sub- and suprathreshold receptive fields of layer 4 and layer 2/3 pyramids in rat primary visual cortex.

    PubMed

    Medini, P

    2011-09-08

    Connectivity of cortical pyramidal neurons is layer-specific in the primary visual cortex (V1) and this is thought to be reflected in different receptive field (RF) properties of layer 4 and layer 2/3 pyramidal neurons (L4Ps and L2/3Ps, respectively). However, it remains unclear how the two cell populations convert incoming visually driven synaptic inputs into action potential (AP) outputs. Here I compared postsynaptic potentials (PSPs) and AP responses of L4Ps and L2/3Ps in the binocular portion of rat V1 by intrinsic optical imaging (IOI)-targeted whole-cell recordings followed by anatomical identification and dendritic reconstructions. L2/3Ps had about 2-fold longer dendritic branches and a higher number of branch points and endings in their apical portions. Functionally, L2/3Ps had more hyperpolarized resting potentials and lower rates of spontaneous APs (medians: 0.07 vs. 0.60 AP/s). PSP responses to optimally oriented moving bars were comparable in terms of amplitude (16.0±0.9 vs. 17.3±1.1 mV for L2/3Ps and L4Ps, respectively), reliability and size of the RF. The modulated component of subthreshold responses of L4Ps to optimal sinusoidal drifting gratings was larger and their PSP onset latency in response to bars flashed in the cell's RF center were shorter (60 vs. 86 ms). In contrast to the similarities of PSP responses to moving bars, AP responses of L2/3Ps were more sparse (medians: 0.7 vs. 2.9 APs/stimulus passage), less reliable, but sharper in terms of angular size. Based on the differences of subthreshold inputs, I conclude that L4Ps may receive mostly thalamic inputs, whereas L2/3Ps may receive both thalamic and cortical inputs from layer 4. The comparable subthreshold responses to moving bars are converted by L2/3Ps into sparser but sharper AP outputs possibly by cell-type-specific AP-generating mechanisms or differences in visually driven inhibitory inputs.

  6. Reflexes in psychiatry.

    PubMed

    Sanders, Richard D; Gillig, Paulette Marie

    2011-04-01

    Psychiatric patients often do not cooperate fully with the neurologic examination. Reflexes virtually bypass patient effort and are difficult to consciously determine. This article reviews muscle stretch (deep tendon) reflexes, and pathological reflexes including the extensor plantar (Babinski) and primitive release reflexes. Topics include findings in common psychiatric and neurologic conditions and methods for eliciting these signs.

  7. Reflexives in Veracruz Huastec.

    ERIC Educational Resources Information Center

    Constable, Peter G.

    A study examines various Huastec clause types that are reflexive in some sense, including ordinary reflexives, which involve co-reference. Two mutually exclusive morphosyntactic devices are used in Huastec: reflexive pronouns and verbal morphology. In this way, Huastec is like various European languages. Clauses involving reflexive pronouns and…

  8. The nasocardiac reflex.

    PubMed

    Baxandall, M L; Thorn, J L

    1988-06-01

    The oculocardiac reflex is well described and recognised in anaesthesia. The nasocardiac reflex is less well-known. We describe a clinical manifestation of this reflex and describe the relevant anatomy. This reflex may be obtunded during general anaesthesia. during general anaesthesia.

  9. Reflexives in Japanese

    ERIC Educational Resources Information Center

    Kishida, Maki

    2011-01-01

    The purpose of this dissertation is to reconsider reflexives in Japanese through the following three steps: (a) separation of genuine reflexive elements from elements that are confounded as reflexives, (b) classification of reflexive anaphors into subtypes based on their semantic difference, and (c) classification of predicates that occur with…

  10. Interferons and uterine receptivity.

    PubMed

    Bazer, Fuller W; Spencer, Thomas E; Johnson, Gregory A

    2009-01-01

    This article focuses on the potential roles of interferons (IFNs) in establishing uterine receptivity to implantation. A common feature of the peri-implantation period of pregnancy in most mammals is production of type I and/or type II IFNs by trophoblasts that induce and/or stimulate expression of an array of IFN-stimulate genes (ISGs). These effects range from pregnancy recognition signaling in ruminants through IFN tau to effects on cellular functions of the uterus and uterine vasculature. For actions of IFNs, progesterone (P4) is permissive to the expression of many effects and to the expression of ISGs that are induced directly by an IFN or induced by P4 and stimulated by an IFN in a temporal and/or cell-specific manner. Uterine receptivity to implantation is P4 dependent; however, implantation events are preceded by loss of expression of progesterone (PGR) and estrogen (ESR1) receptors by uterine epithelia. Therefore, P4 likely acts via PGR-positive stromal cells to induce expression of fibroblast growth factors-7 and -10 and/or hepatocyte growth factor (progestamedins) that then act via their respective receptors on uterine epithelia and trophectoderm to affect expression of ISGs. The permissive effects of P4 on the expression of ISGs and the effects of P4 to induce and IFNs to stimulate gene expression raise the question of whether uterine receptivity to implantation requires P4 and IFN to activate unique, but complementary, cell signaling pathways. Uterine receptivity to implantation, depending on species, involves changes in the expression of genes for the attachment of trophectoderm to the uterine lumenal epithelium (LE) and superficial glandular epithelium (sGE), modification of the phenotype of uterine stromal cells, the silencing of PGR and ESR1 genes, the suppression of genes for immune recognition, alterations in membrane permeability to enhance conceptus-maternal exchange of factors, increased vascularity of the endometrium, activation of genes for

  11. Portraying Reflexivity in Health Services Research.

    PubMed

    Rae, John; Green, Bill

    2016-09-01

    A model is proposed for supporting reflexivity in qualitative health research, informed by arguments from Bourdieu and Finlay. Bourdieu refers to mastering the subjective relation to the object at three levels-the overall social space, the field of specialists, and the scholastic universe. The model overlays Bourdieu's levels of objectivation with Finlay's three stages of research (pre-research, data collection, and data analysis). The intersections of these two ways of considering reflexivity, displayed as cells of a matrix, pose questions and offer prompts to productively challenge health researchers' reflexivity. Portraiture is used to show how these challenges and prompts can facilitate such reflexivity, as illustrated in a research project.

  12. The Limits of Institutional Reflexivity in Bulgarian Universities

    ERIC Educational Resources Information Center

    Slantcheva, Snejana

    2004-01-01

    This article focuses on the notion of institutional reflexivity. Its theoretical framework is based on the views of a group of sociologists--Anthony Giddens, Ulrich Beck, Scott Lash--who developed the concept of reflexive modernization. The article applies the notion of institutional reflexivity to the field of higher education and reviews the…

  13. The Limits of Institutional Reflexivity in Bulgarian Universities

    ERIC Educational Resources Information Center

    Slantcheva, Snejana

    2004-01-01

    This article focuses on the notion of institutional reflexivity. Its theoretical framework is based on the views of a group of sociologists--Anthony Giddens, Ulrich Beck, Scott Lash--who developed the concept of reflexive modernization. The article applies the notion of institutional reflexivity to the field of higher education and reviews the…

  14. Whether radial receptive field organization of the fourth extrastriate crescent (area V4A) gives special advantage for analysis of the optic flow. Comparison with the first crescent (area V2).

    PubMed

    Levichkina, E V; Loshkarev, A A; Rodionova, E I; Popova, E P; Pigarev, I N

    2007-09-01

    Recently, elongated comet-shaped receptive fields were discovered in the fourth extrastriate crescent (area V4A) of cats and monkeys. It was shown that the long axes of these receptive fields were oriented radially toward the centre of the retina. Such unusual "radial" organization of this extrastriate area led to the assumption that these neurons may contribute to the analysis of optic flow. To investigate this assumption we recorded activity of neurons in the V4A of cats during real motion in depth toward or away from a stationary visual scene. Responses of neurons in area V4A were compared with activity of neurons in area V2 under similar conditions of stimulation. Area V2 is known to be sensitive to motion but does not have radial organization. It was found that a substantial number of visual neurons in both areas did not fire at all when cats were exposed to motion in depth. Nevertheless, neurons with selective activation to direction of motion in depth were identified, but comparable numbers were found in both areas studied. We conclude that radial organization of the fourth extrastriate crescent does not provide any special advantage for the analysis of optic flow information.

  15. Interior view of Gold Star Mothers' reception room from southeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of Gold Star Mothers' reception room from southeast. Note door to current office area on left. - Flanders Field American Cemetery & Memorial, Superintendent's Quarters, Wortegemseweg 117, Waregem, West Flanders (Belgium)

  16. Interior view of Gold Star Mothers' reception room from northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of Gold Star Mothers' reception room from northwest. Note c. 1935 furniture and fireplace with early electric grate. - Flanders Field American Cemetery & Memorial, Superintendent's Quarters, Wortegemseweg 117, Waregem, West Flanders (Belgium)

  17. Embodied Self-Reflexivity

    ERIC Educational Resources Information Center

    Pagis, Michal

    2009-01-01

    Drawing on G. H. Mead and Merleau-Ponty, this paper aims to extend our understanding of self-reflexivity beyond the notion of a discursive, abstract, and symbolic process. It offers a framework for embodied self-reflexivity, which anchors the self in the reflexive capacity of bodily sensations. The data consist of two years of ethnographic…

  18. Embodied Self-Reflexivity

    ERIC Educational Resources Information Center

    Pagis, Michal

    2009-01-01

    Drawing on G. H. Mead and Merleau-Ponty, this paper aims to extend our understanding of self-reflexivity beyond the notion of a discursive, abstract, and symbolic process. It offers a framework for embodied self-reflexivity, which anchors the self in the reflexive capacity of bodily sensations. The data consist of two years of ethnographic…

  19. Adjoint analysis for receptivity prediction

    NASA Astrophysics Data System (ADS)

    Dobrinsky, Alexander Y.

    Physical knowledge of the laminar-turbulent transition process, prediction of the transition location, as well as the ability to control transition are essential in many engineering applications. However, control of the laminar-turbulent transition depends critically on various environmental sources and their ability to excite the instability waves in the flow, which are responsible for the laminar-turbulent transition. The process by which external disturbances are converted into instability waves is called receptivity. The research described in this thesis focuses on the receptivity of two- and three-dimensional boundary layers. The main objective of this research is to formulate, validate and apply adjoint analysis in order to predict receptivity. Adjoint analysis is a powerful approach for investigating the receptivity of different flows for arbitrary environmental sources. In this work, Adjoint Navier-Stokes (ANS) equations are formulated based on the sensitivity approach, and adjoint predictions are validated against Linearized Navier-Stokes (LNS) calculations. Further, Adjoint Parabolized Stability Equations (APSE) are derived as an approximation of ANS equations and compared against the ANS results. Our studies indicate that the APSE method should be constructed as an approximation to the ANS equations, not as the formal adjoint of the PSE. When implemented in this manner, we show that APSE is a viable method for receptivity prediction, even in highly nonparallel flows. The APSE is first applied to predict receptivity of weakly nonparallel two-dimensional boundary layer flows for a variety of parameters. We find that these flows are generally more receptivity to oblique disturbances although two-dimensional disturbances are less stable. We also find that favorable pressure gradient boundary layers are more receptive then adverse pressure gradient boundary layers, although adverse pressure gradients are destabilizing. The APSE are then applied to highly

  20. The Dynamics of the Stapedial Acoustic Reflex.

    NASA Astrophysics Data System (ADS)

    Moss, Sherrin Mary

    , and their effect upon the contralateral reflex arc from the site of the superior olivary complex to the motoneurones innervating the stapedius, account for the difference between the contralateral and ipsilateral reflex thresholds and dynamic characteristics. In the past two years the measurement technique used for the experimental work has developed from an audiological to a neurological diagnostic tool. This has enabled the results from the study to be applied in the field for valuable biomechanical and neurological explanations of the reflex response. (Abstract shortened by UMI.).

  1. Endometrial receptivity: evaluation with ultrasound.

    PubMed

    Bonilla-Musoles, Fernando; Raga, Francisco; Osborne, Newton G; Castillo, Juan Carlos; Bonilla, Francisco

    2013-03-01

    An adequate endometrial receptivity is a crucial factor for embryo implantation. We describe endometrial morphology (endometrial appearance or pattern, endometrial thickness, volume, and delimitation), based on the concepts and possibilities of the new ultrasound modalities (3-dimensional/4-dimensional ultrasound, automatic volume calculation, virtual organ computer-aided analysis, tomographic ultrasound image, inverse mode, and 3-dimensional Doppler angiography) as markers of endometrial receptivity.

  2. Predicting Volleyball Serve-Reception

    PubMed Central

    Paulo, Ana; Zaal, Frank T. J. M.; Fonseca, Sofia; Araújo, Duarte

    2016-01-01

    Serve and serve-reception performance have predicted success in volleyball. Given the impact of serve-reception on the game, we aimed at understanding what it is in the serve and receiver's actions that determines the selection of the type of pass used in serve-reception and its efficacy. Four high-level volleyball players received jump-float serves from four servers in two reception zones—zone 1 and 5. The ball and the receiver's head were tracked with two video cameras, allowing 3D world-coordinates reconstruction. Logistic-regression models were used to predict the type of pass used (overhand or underhand) and serve-reception efficacy (error, out, or effective) from variables related with the serve kinematics and related with the receiver's on-court positioning and movement. Receivers' initial position was different when in zone 1 and 5. This influenced the serve-related variables as well as the type of pass used. Strong predictors of using an underhand rather than overhand pass were higher ball contact of the server, reception in zone 1, receiver's initial position more to the back of the court and backward receiver movement. Receiver's larger longitudinal displacements and an initial position more to the back of the court had a strong relationship with the decreasing of the serve-reception efficacy. Receivers' positioning and movement were the factors with the largest impact on the type of pass used and the efficacy of the reception. Reception zone affected the variance in the ball's kinematics (with the exception of the ball's lateral displacement), as well as in the receivers' positioning (distances from the net and from the target). Also the reception zone was associated with the type of pass used by the receiver but not with reception efficacy. Given volleyball's rotation rule, the receiver needs to master receiving in the different reception zones; he/she needs to adapt to the diverse constraints of each zone to maintain performance efficacy. Thus

  3. Predicting Volleyball Serve-Reception.

    PubMed

    Paulo, Ana; Zaal, Frank T J M; Fonseca, Sofia; Araújo, Duarte

    2016-01-01

    Serve and serve-reception performance have predicted success in volleyball. Given the impact of serve-reception on the game, we aimed at understanding what it is in the serve and receiver's actions that determines the selection of the type of pass used in serve-reception and its efficacy. Four high-level volleyball players received jump-float serves from four servers in two reception zones-zone 1 and 5. The ball and the receiver's head were tracked with two video cameras, allowing 3D world-coordinates reconstruction. Logistic-regression models were used to predict the type of pass used (overhand or underhand) and serve-reception efficacy (error, out, or effective) from variables related with the serve kinematics and related with the receiver's on-court positioning and movement. Receivers' initial position was different when in zone 1 and 5. This influenced the serve-related variables as well as the type of pass used. Strong predictors of using an underhand rather than overhand pass were higher ball contact of the server, reception in zone 1, receiver's initial position more to the back of the court and backward receiver movement. Receiver's larger longitudinal displacements and an initial position more to the back of the court had a strong relationship with the decreasing of the serve-reception efficacy. Receivers' positioning and movement were the factors with the largest impact on the type of pass used and the efficacy of the reception. Reception zone affected the variance in the ball's kinematics (with the exception of the ball's lateral displacement), as well as in the receivers' positioning (distances from the net and from the target). Also the reception zone was associated with the type of pass used by the receiver but not with reception efficacy. Given volleyball's rotation rule, the receiver needs to master receiving in the different reception zones; he/she needs to adapt to the diverse constraints of each zone to maintain performance efficacy. Thus, being

  4. Accelerating Reflexivity? An Ethno-Theater Interpretation of a Pre-Service Teacher Literacy Methods Field Experience

    ERIC Educational Resources Information Center

    Schneider, Jenifer Jasinski; King, James R.; Kozdras, Deborah; Minick, Vanessa; Welsh, James L.

    2012-01-01

    During a teaching methods field experience, we initiated several processes to facilitate pre-service teachers' reflection, empowerment, and performance as they learned to teach students. Through an ethno-theater presentation and subsequent revisions to an ethno-theater script, we turned the reflective lens on ourselves as we discovered instances…

  5. Accelerating Reflexivity? An Ethno-Theater Interpretation of a Pre-Service Teacher Literacy Methods Field Experience

    ERIC Educational Resources Information Center

    Schneider, Jenifer Jasinski; King, James R.; Kozdras, Deborah; Minick, Vanessa; Welsh, James L.

    2012-01-01

    During a teaching methods field experience, we initiated several processes to facilitate pre-service teachers' reflection, empowerment, and performance as they learned to teach students. Through an ethno-theater presentation and subsequent revisions to an ethno-theater script, we turned the reflective lens on ourselves as we discovered instances…

  6. The neonatal acoustic reflex.

    PubMed

    Weatherby, L A; Bennett, M J

    1980-01-01

    Probe tones from 220 Hz to 2 000 Hz were used to measure the static and dynamic acoustic impedance of 44 neonates. Acoustic reflex thresholds to broad band noise were obtained from every neonate tested when employing the higher frequency probe tones. The reflex threshold levels measured are similar to those of adults. The static impedance values are discussed to give a possible explanation of why reflex thresholds cannot be detected using conventional 220 Hz impedance bridges.

  7. Stigma Development and Receptivity in Almond (Prunus dulcis)

    PubMed Central

    YI, WEIGUANG; LAW, S. EDWARD; MCCOY, DENNIS; WETZSTEIN, HAZEL Y.

    2006-01-01

    • Background and Aims Fertilization is essential in almond production, and pollination can be limiting in production areas. This study investigated stigma receptivity under defined developmental stages to clarify the relationship between stigma morphology, pollen germination, tube growth and fruit set. • Methods Light and scanning electron microscopy were employed to examine stigma development at seven stages of flower development ranging from buds that were swollen to flowers in which petals were abscising. Flowers at different stages were hand pollinated and pollen germination and tube growth assessed. Artificial pollinations in the field were conducted to determine the effect of flower age on fruit set. • Key Results Later stages of flower development exhibited greater stigma receptivity, i.e. higher percentages of pollen germination and more extensive tube growth occurred in older (those opened to the flat petal stage or exhibiting petal fall) than younger flowers. Enhanced stigma receptivity was associated with elongation of stigmatic papillae and increased amounts of stigmatic exudate that inundated papillae at later developmental stages. Field pollinations indicated that the stigma was still receptive and nut set was maintained in older flowers. • Conclusions Stigma receptivity in almond does not become optimal until flowers are past the fully open stage. The stigma is still receptive and fruit set is maintained in flowers even at the stage when petals are abscising. Strategies to enhance pollination and crop yield, including the timing and placement of honey bees, should consider the effectiveness of developmentally advanced flowers. PMID:16287904

  8. Stigma development and receptivity in almond (Prunus dulcis).

    PubMed

    Yi, Weiguang; Law, S Edward; McCoy, Dennis; Wetzstein, Hazel Y

    2006-01-01

    Fertilization is essential in almond production, and pollination can be limiting in production areas. This study investigated stigma receptivity under defined developmental stages to clarify the relationship between stigma morphology, pollen germination, tube growth and fruit set. Light and scanning electron microscopy were employed to examine stigma development at seven stages of flower development ranging from buds that were swollen to flowers in which petals were abscising. Flowers at different stages were hand pollinated and pollen germination and tube growth assessed. Artificial pollinations in the field were conducted to determine the effect of flower age on fruit set. Later stages of flower development exhibited greater stigma receptivity, i.e. higher percentages of pollen germination and more extensive tube growth occurred in older (those opened to the flat petal stage or exhibiting petal fall) than younger flowers. Enhanced stigma receptivity was associated with elongation of stigmatic papillae and increased amounts of stigmatic exudate that inundated papillae at later developmental stages. Field pollinations indicated that the stigma was still receptive and nut set was maintained in older flowers. Stigma receptivity in almond does not become optimal until flowers are past the fully open stage. The stigma is still receptive and fruit set is maintained in flowers even at the stage when petals are abscising. Strategies to enhance pollination and crop yield, including the timing and placement of honey bees, should consider the effectiveness of developmentally advanced flowers.

  9. What is a reflex?

    PubMed Central

    Truog, Robert D.

    2015-01-01

    Uncertainty in diagnosing disorders of consciousness, and specifically in determining whether consciousness has been lost or retained, poses challenging scientific and ethical questions. Recent neuroimaging-based tests for consciousness have cast doubt on the reliability of behavioral criteria in assessing states of consciousness and generate new questions about the assumptions used in formulating coherent diagnostic criteria. The reflex, a foundational diagnostic tool, offers unique insight into these disorders; behaviors produced by unconscious patients are thought to be purely reflexive, whereas those produced by conscious patients can be volitional. Further investigation, however, reveals that reflexes cannot be reliably distinguished from conscious behaviors on the basis of any generalizable empirical characteristics. Ambiguity between reflexive and conscious behaviors undermines the capacity of the reflex to distinguish between disorders of consciousness and has implications for how these disorders should be conceptualized in future diagnostic criteria. PMID:26085602

  10. Enhanced AIS receiver design for satellite reception

    NASA Astrophysics Data System (ADS)

    Clazzer, Federico; Lázaro, Francisco; Plass, Simon

    2016-12-01

    The possibility to detect Automatic Identification System (AIS) messages from low earth orbit (LEO) satellites paves the road for a plurality of new and unexplored services. Besides worldwide tracking of vessels, maritime traffic monitoring, analysis of vessel routes employing big data, and oceans monitoring are just few of the fields, where satellite-aided AIS is beneficial. Designed for ship-to-ship communication and collision avoidance, AIS satellite reception performs poorly in regions with a high density of vessels. This calls for the development of advanced satellite AIS receivers able to improve the decoding capabilities. In this context, our contribution focuses on the introduction of a new enhanced AIS receiver design and its performance evaluation. The enhanced receiver makes use of a coherent receiver for the low signal-to-noise ratio (SNR) region, while for medium to high SNRs, a differential Viterbi receiver is used. Additional novelty of our work is in the exploitation of previously decoded packets from one vessel that is still under the LEO reception range, to improve the vessel detection probability. The assessment of the performance against a common receiver is done making the use of a simple and tight model of the medium access (MAC) layer and the multi-packet reception (MPR) matrix for physical layer (PHY) representation. Performance results show the benefits of such enhanced receiver, especially when it is bundled with successive interference cancellation (SIC).

  11. Bourdieu and Science Studies: Toward a Reflexive Sociology

    ERIC Educational Resources Information Center

    Hess, David J.

    2011-01-01

    Two of Bourdieu's fundamental contributions to science studies--the reflexive analysis of the social and human sciences and the concept of an intellectual field--are used to frame a reflexive study of the history and social studies of science and technology as an intellectual field in the United States. The universe of large, Ph.D.-granting…

  12. Bourdieu and Science Studies: Toward a Reflexive Sociology

    ERIC Educational Resources Information Center

    Hess, David J.

    2011-01-01

    Two of Bourdieu's fundamental contributions to science studies--the reflexive analysis of the social and human sciences and the concept of an intellectual field--are used to frame a reflexive study of the history and social studies of science and technology as an intellectual field in the United States. The universe of large, Ph.D.-granting…

  13. Boundary layer receptivity and control

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    Receptivity processes initiate natural instabilities in a boundary layer. The instabilities grow and eventually break down to turbulence. Consequently, receptivity questions are a critical element of the analysis of the transition process. Success in modeling the physics of receptivity processes thus has a direct bearing on technological issues of drag reduction. The means by which transitional flows can be controlled is also a major concern: questions of control are tied inevitably to those of receptivity. Adjoint systems provide a highly effective mathematical method for approaching many of the questions associated with both receptivity and control. The long term objective is to develop adjoint methods to handle increasingly complex receptivity questions, and to find systematic procedures for deducing effective control strategies. The most elementary receptivity problem is that in which a parallel boundary layer is forced by time-harmonic sources of various types. The characteristics of the response to such forcing form the building blocks for more complex receptivity mechanisms. The first objective of this year's research effort was to investigate how a parallel Blasius boundary layer responds to general direct forcing. Acoustic disturbances in the freestream can be scattered by flow non-uniformities to produce Tollmien-Schlichting waves. For example, scattering by surface roughness is known to provide an efficient receptivity path. The present effort is directed towards finding a solution by a simple adjoint analysis, because adjoint methods can be extended to more complex problems. In practice, flows are non-parallel and often three-dimensional. Compressibility may also be significant in some cases. Recent developments in the use of Parabolized Stability Equations (PSE) offer a promising possibility. By formulating and solving a set of adjoint parabolized equations, a method for mapping the efficiency with which external forcing excites the three

  14. Clinical management of endometrial receptivity.

    PubMed

    Blesa, David; Ruiz-Alonso, María; Simón, Carlos

    2014-09-01

    The endometrial window of implantation (WOI), the cycle days during which normal embryo implantation can occur, has generally been assumed to begin on cycle day 19 or 20 of an idealized 28 days cycle and last for 4 to 5 days. Noyes et al took the first steps in defining the WOI by establishing a set of morphological criteria to evaluate endometrial development and receptivity, but recent studies have invalidated their use in the routine evaluation of infertility. Based on greater than 10 years of extensive research, our group has developed a molecular diagnostic tool (the endometrial receptivity array [ERA] test) based on the specific transcriptomic signature that identifies the receptive endometrium in natural and artificial (hormonal replacement therapy) cycles. The ERA test has shown that some patients have a delayed WOI, others have an advanced WOI, and others can have unusually short windows of receptivity. This identification and characterization of the WOI allows the personalization of the embryo transfer. In this review, we describe the ERA and our experience with its use in assessment of the endometrial receptivity in patients undergoing assisted reproduction.

  15. Paraspinal muscle reflex dynamics.

    PubMed

    Granata, K P; Slota, G P; Bennett, B C

    2004-02-01

    Neuromuscular control of spinal stability may be represented as a control system wherein the paraspinal muscle reflex acts as feedback response to kinetic and kinematic disturbances of the trunk. The influence of preparatory muscle recruitment for the control of spinal stability has been previously examined, but there are few reported studies that characterize paraspinal reflex gain as feedback response. In the current study, the input-output dynamics of paraspinal reflexes were quantified by means of the impulse response function (IRF), with trunk perturbation force representing the input signal and EMG the output signal. Surface EMGs were collected from the trunk muscles in response to a brief anteriorly directed impact force applied to the trunk of healthy participants. Reflex behavior was measured in response to three levels of force impulse, 6.1, 9.2 and 12.0 Ns, and two different levels of external trunk flexion preload, 0 and 110 N anterior force. Reflex EMG was quantifiable in response to 91% of the perturbations. Mean reflex onset latency was 30.7+/-21.3 ms and reflex amplitude increased with perturbation amplitude. Impulse response function gain, G(IRF), was defined as the peak amplitude of the measured IRF and provided a consistent measure of response behavior. EMG reflex amplitude and G(IRF) increased with force impulse. Mean G(IRF) was 2.27+/-1.31% MVC/Ns and demonstrated declining trend with flexion preload. Results agree with a simple systems model of the neuromechanical feedback behavior. The relative contribution of the reflex dynamics to spinal stability must be investigated in future research.

  16. On Reflexive Data Models

    SciTech Connect

    Petrov, S.

    2000-08-20

    An information system is reflexive if it stores a description of its current structure in the body of stored information and is acting on the base of this information. A data model is reflexive, if its language is meta-closed and can be used to build such a system. The need for reflexive data models in new areas of information technology applications is argued. An attempt to express basic notions related to information systems is made in the case when the system supports and uses meta-closed representation of the data.

  17. Temporal development of anticipatory reflex modulation to dynamical interactions during arm movement.

    PubMed

    Kimura, Toshitaka; Gomi, Hiroaki

    2009-10-01

    It is known that somatosensory reflex during voluntary arm movement is modulated anticipatorily according to given tasks or environments. However, when and how reflex amplitude is set remains controversial. Is the reflex modulation completed preparatorily before movement execution or does it vary with the movement? Is the reflex amplitude coded in a temporal manner or in a spatial (or state-dependent) manner? Here we studied these issues while subjects performed planar reaching movements with upcoming opposite (rightward/leftward) directions of force fields. Somatosensory reflex responses of shoulder muscles induced by a small force perturbation were evaluated at several points before the arm encountered predictable force fields after movement start. We found that the shoulder flexor reflex responses were generally higher for the rightward than for the leftward upcoming force fields, whereas the extensor reflex responses were higher for the leftward force field. This reflex amplitude depending on the upcoming force field direction became prominent as the reflex was evoked closer to the force fields, indicating continuous changes in reflex modulation during movement. An additional experiment further showed that the reflex modulation developed as a function of the temporal distance to the force fields rather than the spatial distance. Taken together, the results suggest that, in the force field interaction task, somatosensory reflex amplitude during the course of movement is set anticipatorily on the basis of an estimate of the time-to-contact rather than the state-to-contact, to upcoming dynamical interaction during voluntary movement.

  18. Reflex operculoinsular seizures.

    PubMed

    Xiao, Handsun; Tran, Thi Phuoc Yen; Pétrin, Myriam; Boucher, Olivier; Mohamed, Ismail; Bouthillier, Alain; Nguyen, Dang Khoa

    2016-03-01

    Activation of specific cortical territories by certain stimuli is known to trigger focal seizures. We report three cases of well documented operculo-insular reflex seizures, triggered by somatosensory stimuli in two and loud noises in the third. Limited operculoinsular resection resulted in an excellent outcome for all. We discuss these observations in regard to the literature on reflex epilepsy and known functions of the insula. [Published with video sequences online].

  19. The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive Reflex Responses

    PubMed Central

    Futagi, Yasuyuki; Toribe, Yasuhisa; Suzuki, Yasuhiro

    2012-01-01

    The plantar grasp reflex is of great clinical significance, especially in terms of the detection of spasticity. The palmar grasp reflex also has diagnostic significance. This grasp reflex of the hands and feet is mediated by a spinal reflex mechanism, which appears to be under the regulatory control of nonprimary motor areas through the spinal interneurons. This reflex in human infants can be regarded as a rudiment of phylogenetic function. The absence of the Moro reflex during the neonatal period and early infancy is highly diagnostic, indicating a variety of compromised conditions. The center of the reflex is probably in the lower region of the pons to the medulla. The phylogenetic meaning of the reflex remains unclear. However, the hierarchical interrelation among these primitive reflexes seems to be essential for the arboreal life of monkey newborns, and the possible role of the Moro reflex in these newborns was discussed in relation to the interrelationship. PMID:22778756

  20. Endometrial receptivity array: Clinical application.

    PubMed

    Mahajan, Nalini

    2015-01-01

    Human implantation is a complex process requiring synchrony between a healthy embryo and a functionally competent or receptive endometrium. Diagnosis of endometrial receptivity (ER) has posed a challenge and so far most available tests have been subjective and lack accuracy and a predictive value. Microarray technology has allowed identification of the transcriptomic signature of the window of receptivity window of implantation (WOI). This technology has led to the development of a molecular diagnostic tool, the ER array (ERA) for diagnosis of ER. Use of this test in patients with recurrent implantation failure (RIF) has shown that the WOI is displaced in a quarter of these patients and use of a personalized embryo transfer (pET) on the day designated by ERA improves reproductive performance. Our results in the Indian population revealed an endometrial factor in 27.5% RIF patients, which was significantly greater than the non-RIF group 15% (P = 0.04). After pET, the overall ongoing pregnancy rate was 42.4% and implantation rate was 33%, which was at par with our in-vitro fertilization results over 1-year. We also performed ERA in patients with persistently thin endometrium, and it was reassuring to find that the endometrium in 75% of these patients was receptive despite being 6 mm or less. A pregnancy rate of 66.7% was achieved in this group. Though larger studies are required to validate these results ERA has become a useful tool in our diagnostic armamentarium for ER.

  1. Endometrial receptivity array: Clinical application

    PubMed Central

    Mahajan, Nalini

    2015-01-01

    Human implantation is a complex process requiring synchrony between a healthy embryo and a functionally competent or receptive endometrium. Diagnosis of endometrial receptivity (ER) has posed a challenge and so far most available tests have been subjective and lack accuracy and a predictive value. Microarray technology has allowed identification of the transcriptomic signature of the window of receptivity window of implantation (WOI). This technology has led to the development of a molecular diagnostic tool, the ER array (ERA) for diagnosis of ER. Use of this test in patients with recurrent implantation failure (RIF) has shown that the WOI is displaced in a quarter of these patients and use of a personalized embryo transfer (pET) on the day designated by ERA improves reproductive performance. Our results in the Indian population revealed an endometrial factor in 27.5% RIF patients, which was significantly greater than the non-RIF group 15% (P = 0.04). After pET, the overall ongoing pregnancy rate was 42.4% and implantation rate was 33%, which was at par with our in-vitro fertilization results over 1-year. We also performed ERA in patients with persistently thin endometrium, and it was reassuring to find that the endometrium in 75% of these patients was receptive despite being 6 mm or less. A pregnancy rate of 66.7% was achieved in this group. Though larger studies are required to validate these results ERA has become a useful tool in our diagnostic armamentarium for ER. PMID:26538853

  2. The Receptive Side of Teaching

    ERIC Educational Resources Information Center

    Hruska, Barbara

    2008-01-01

    When observing teachers in action, one is likely to witness explaining, modeling, managing, guiding, and encouraging. These expressive behaviors constitute a directive force moving outward from teacher to students. Though less visible to an outside observer, teaching also requires receptive skills, the ability to take in information by being fully…

  3. Sexual conflict over floral receptivity.

    PubMed

    Lankinen, Asa; Hellriegel, Barbara; Bernasconi, Giorgina

    2006-12-01

    In flowering plants, the onset and duration of female receptivity vary among species. In several species the receptive structures wilt upon pollination. Here we explore the hypothesis that postpollination wilting may be influenced by pollen and serve as a general means to secure paternity of the pollen donor at the expense of female fitness. Taking a game-theoretical approach, we examine the potential for the evolution of a pollen-borne wilting substance, and for the coevolution of a defense strategy by the recipient plant. The model without defense predicts an evolutionarily stable strategy (ESS) for the production of wilting substance. The ESS value is highest when pollinator visiting rates are intermediate and when the probability that pollen from several donors arrives at the same time is low. This finding has general implications in that it shows that male traits to secure paternity also can evolve in species, such as plants, where mating is not strictly sequential. We further model coevolution of the wilting substance with the timing of stigma receptivity. We assume that pollen-receiving plants can reduce the costs induced by toxic pollen by delaying the onset of stigmatic receptivity. The model predicts a joint ESS, but no female counter-adaptation when the wilting substance is highly toxic. This indicates that toxicity affects the probability that a male manipulative trait stays beneficial (i.e., not countered by female defense) over evolutionary time. We discuss parallels to male induced changes in female receptivity known to occur in animals and the role of harm for the evolution of male manipulative adaptations.

  4. Facilitation of a nociceptive flexion reflex in man by nonnoxious radiant heat produced by a laser.

    PubMed

    Plaghki, L; Bragard, D; Le Bars, D; Willer, J C; Godfraind, J M

    1998-05-01

    Electromyographic recordings were made in healthy volunteers from the knee-flexor biceps femoris muscle of the nociceptive RIII reflex elicited by electrical stimulation of the cutaneous sural nerve. The stimulus intensity was adjusted to produce a moderate pricking-pain sensation. The test responses were conditioned by a nonnoxious thermal (receptive field of the sural nerve. This stimulus was delivered by a CO2 laser stimulator and consisted of a 100-ms pulse of heat with a beam diameter of 20 mm. Its power was 22.7 +/- 4.2 W (7.2 mJ/mm2), and it produced a sensation of warmth. The maximum surface temperature reached at the end of the period of stimulation was calculated to be 7 degrees C above the actual reference temperature of the skin (32 degrees C). The interval between the laser (conditioning) and electrical (test) stimuli was varied from 50 to 3, 000 ms in steps of 50 ms. It was found that the nociceptive flexion reflex was facilitated by the thermal stimulus; this modulation occurred with particular conditioning-test intervals, which peaked at 500 and 1,100 ms with an additional late, long-lasting phase between 1,600 and 2,300 ms. It was calculated that the conduction velocities of the cutaneous afferent fibers responsible for facilitating the RIII reflex, fell into three ranges: one corresponding to A delta fibers (3.2 m/s) and two in the C fiber range (1.3 and 0.7 m/s). It is concluded that information emanating from warm receptors and nociceptors converges. In this respect, the present data show, for the first time, that in man, conditioning nonnociceptive warm thermoreceptive A delta and C fibers results in an interaction at the spinal level with a nociceptive reflex. This interaction may constitute a useful means whereby signals add together to trigger flexion reflexes in defensive reactions and other basic motor behaviors. It also may contribute to hyperalgesia in inflammatory processes. The methodology used

  5. Introducing Reflexivity to Evaluation Practice: An In-Depth Case Study

    ERIC Educational Resources Information Center

    van Draanen, Jenna

    2017-01-01

    There is currently a paucity of literature in the field of evaluation regarding the practice of reflection and reflexivity and a lack of available tools to guide this practice--yet using a reflexive model can enhance evaluation practice. This paper focuses on the methods and results of a reflexive inquiry that was conducted during a participatory…

  6. Experimenting With Baroreceptor Reflexes

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.; Goble, Ross L.

    1988-01-01

    Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.

  7. The inhibitory control reflex.

    PubMed

    Verbruggen, Frederick; Best, Maisy; Bowditch, William A; Stevens, Tobias; McLaren, Ian P L

    2014-12-01

    Response inhibition is typically considered a hallmark of deliberate executive control. In this article, we review work showing that response inhibition can also become a 'prepared reflex', readily triggered by information in the environment, or after sufficient training, or a 'learned reflex' triggered by the retrieval of previously acquired associations between stimuli and stopping. We present new results indicating that people can learn various associations, which influence performance in different ways. To account for previous findings and our new results, we present a novel architecture that integrates theories of associative learning, Pavlovian conditioning, and executive response inhibition. Finally, we discuss why this work is also relevant for the study of 'intentional inhibition'.

  8. Measuring bilingual children's receptive vocabularies.

    PubMed

    Umbel, V M; Pearson, B Z; Fernández, M C; Oller, D K

    1992-08-01

    Receptive vocabulary of Hispanic children in Miami was tested in both English and Spanish with complementary standardized tests, the Peabody Picture Vocabulary Test (PPVT-R) and the Test de Vocabulario en Imágenes Peabody (TVIP-H). 105 bilingual first graders, of middle to high socioeconomic status relative to national norms, were divided according to the language(s) spoken in their homes. Both groups, whether they spoke only Spanish in the home (OSH) or both English and Spanish in the home (ESH), performed near the mean of 100 in Spanish receptive vocabulary (TVIP-H means 97.0 and 96.5); in contrast, ESH group children scored more than 1 SD higher in English than OSH group children (PPVT-R means 88.0 and 69.7, respectively). It appears, therefore, that learning 2 languages at once does not harm receptive language development in the language of origin, while it does lay the groundwork for superior performance in the majority language. Furthermore, an analysis of translation equivalents, items shared by both tests, shows that a statistically significant portion of bilingual children's lexical knowledge does not overlap in their 2 languages and is therefore not reflected in single-language scores.

  9. Design and Reflexivity.

    ERIC Educational Resources Information Center

    van Toorn, Jan

    1994-01-01

    Argues that design, despite frequently well-intentioned ethical starting-points, has become generalized and rudimentary in its substantive and instrumental choices, and naive in its thinking about its own public role. Argues for a "mental ecology," for a multidimensional realistic reflexivity, which makes possible the recuperation of a…

  10. Reflexivity in Pigeons

    ERIC Educational Resources Information Center

    Sweeney, Mary M.; Urcuioli, Peter J.

    2010-01-01

    A recent theory of pigeons' equivalence-class formation (Urcuioli, 2008) predicts that reflexivity, an untrained ability to match a stimulus to itself, should be observed after training on two "mirror-image" symbolic successive matching tasks plus identity successive matching using some of the symbolic matching stimuli. One group of pigeons was…

  11. Primitive reflexes in Parkinson's disease.

    PubMed Central

    Vreeling, F W; Verhey, F R; Houx, P J; Jolles, J

    1993-01-01

    A standardised protocol for the examination of 15 primitive reflexes in which the amplitude and the persistence were scored separately, was applied to 25 patients with Parkinson's disease and an equal number of healthy matched control subjects. Most reflexes were found considerably more often in the patients than in the control subjects, especially the snout, the glabellar tap, and its variant, the nasopalpebral reflex. Only the mouth open finger spread reflex was present more often in the control subjects. For all reflexes except this last, the scores for amplitude and persistence of the reflexes for the control group never exceeded the scores for the patient group. Reflexes persisted more often in the patients than in the control subjects. Parkinsonism alone can explain a large number of primitive reflexes, irrespective of the severity or duration of the disease. In contrast, the number of reflexes was related more closely to cognitive scales. It is concluded that such reflexes may be helpful in diagnosing Parkinson's disease. In addition, a standardised protocol for eliciting and scoring is essential for the study of these reflexes in parkinsonism and other neuropsychiatric conditions. PMID:8270937

  12. Spinal reflexes in brain death.

    PubMed

    Beckmann, Yesim; Çiftçi, Yeliz; Incesu, Tülay Kurt; Seçil, Yaprak; Akhan, Galip

    2014-12-01

    Spontaneous and reflex movements have been described in brain death and these unusual movements might cause uncertainties in diagnosis. In this study we evaluated the presence of spinal reflexes in patients who fulfilled the criteria for brain death. Thirty-two (22 %) of 144 patients presented unexpected motor movements spontaneously or during examinations. These patients exhibited the following signs: undulating toe, increased deep tendon reflexes, plantar responses, Lazarus sign, flexion-withdrawal reflex, facial myokymia, neck-arm flexion, finger jerks and fasciculations. In comparison, there were no significant differences in age, sex, etiology of brain death and hemodynamic laboratory findings in patients with and without reflex motor movement. Spinal reflexes should be well recognized by physicians and it should be born in mind that brain death can be determined in the presence of spinal reflexes.

  13. Asystole During Onyx Embolization of a Pediatric Arteriovenous Malformation: A Severe Case of the Trigeminocardiac Reflex.

    PubMed

    Khatibi, Kasra; Choudhri, Omar; Connolly, Ian D; McTaggart, Ryan A; Do, Huy M

    2017-02-01

    Trigeminal-cardiac reflex (TCR) from the stimulation of sensory branches of trigeminal nerve can lead to hemodynamic instability. This phenomenon has been described during ophthalmologic, craniofacial, and skull base surgeries. TCR has been reported rarely with endovascular onyx embolization of dural arteriovenous fistulas. We report a case of TCR during endovascular Onyx embolization of an arteriovenous malformation (AVM). A 16-year-old boy presented with a large cerebellar AVM with arterial feeders from the external carotid artery and posterior cerebral artery branches. The middle meningeal artery was catheterized, through which dimethyl sulfoxide was injected, followed by Onyx, into the nidus and the feeders. Near the completion of embolization, patient became bradycardic and proceeded to asystole; he was resuscitated with chest compression, atropine, and vasopressors. We used PubMed to identify the reported cases of Onyx and other endovascular embolizations complicated by hemodynamic instability. We found 16 cases of endovascular onyx embolization complicated by clinically significant hemodynamic changes in the treatment of dural arteriovenous fistula, cavernous carotid fistula, and juvenile nasopharygeal angiofibroma but not with AVMs. In these cases, arterial supply to the nidus involved the sensory receptive field of trigeminal nerve. Hemodynamic changes have been reported during the injection of dimethyl sulfoxide before the introduction of Onyx, as well as Onyx injection and cast formation. TCR can lead to significant hemodynamic changes during endovascular Onyx embolization of vascular malformations (both pial AVM and dural arteriovenous fistulas) involving receptive field of trigeminal nerve. Therefore, the anesthesiologist should be made aware of treatment approach before intervention and appropriate precautions taken. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Recent advances in understanding endometrial receptivity: molecular basis and clinical applications.

    PubMed

    von Grothusen, Carolina; Lalitkumar, Sujata; Boggavarapu, Nageswara Rao; Gemzell-Danielsson, Kristina; Lalitkumar, Parameswaran G

    2014-08-01

    Advancement in the field of ART has lead to the possibility of achieving good quality embryos. However, the success rate in ART needs further improvement. This is largely dependent on identifying the receptive endometrium for the successful implantation of embryos as well as modulating the endometrium to the receptive stage. In the last half-a-decade, focus has been shifting toward identifying the receptive endometrium. Here, we summarize different tools explored to identify receptive endometrium from the literature, mainly focusing on the past decade, with the help of PubMed. The quest to identify endometrial receptivity markers has lead to the exploration of morphological features at micro and macro scale levels. A large number of studies at molecular levels have focused on genomic, proteomic and lipidomic targets. Recent development of endometrial receptivity array is a promising diagnostic instrument. However, a noninvasive possibility for the diagnosis of endometrial receptivity would be an ideal tool, which could be used in the clinic to improve the success rate of ART. Improved knowledge on endometrial receptivity will not only help to improve the diagnosis and treatment of infertility but will also give possibilities to develop new contraceptive methods targeting the endometrium.

  15. Mentalis muscle related reflexes.

    PubMed

    Gündüz, Ayşegül; Uyanık, Özlem; Ertürk, Özdem; Sohtaoğlu, Melis; Kızıltan, Meral Erdemir

    2016-05-01

    The mentalis muscle (MM) arises from the incisive fossa of the mandible, raises and protrudes the lower lip. Here, we aim to characterize responses obtained from MM by supraorbital and median electrical as well as auditory stimuli in a group of 16 healthy volunteers who did not have clinical palmomental reflex. Reflex activities were recorded from the MM and orbicularis oculi (O.oc) after supraorbital and median electrical as well as auditory stimuli. Response rates over MM were consistent after each stimulus, however, mean latencies of MM response were longer than O.oc responses by all stimulation modalities. Shapes and amplitudes of responses from O.oc and MM were similar. Based on our findings, we may say that MM motoneurons have connections with trigeminal, vestibulocochlear and lemniscal pathways similar to other facial muscles and electrophysiological recording of MM responses after electrical and auditory stimulation is possible in healthy subjects.

  16. Corporeal reflexivity and autism.

    PubMed

    Ochs, Elinor

    2015-06-01

    Ethnographic video recordings of high functioning children with autism or Aspergers Syndrome in everyday social encounters evidence their first person perspectives. High quality visual and audio data allow detailed analysis of children's bodies and talk as loci of reflexivity. Corporeal reflexivity involves displays of awareness of one's body as an experiencing subject and a physical object accessible to the gaze of others. Gaze, demeanor, actions, and sotto voce commentaries on unfolding situations indicate a range of moment-by-moment reflexive responses to social situations. Autism is associated with neurologically based motor problems (e.g. delayed action-goal coordination, clumsiness) and highly repetitive movements to self-soothe. These behaviors can provoke derision among classmates at school. Focusing on a 9-year-old girl's encounters with peers on the playground, this study documents precisely how autistic children can become enmeshed as unwitting objects of stigma and how they reflect upon their social rejection as it transpires. Children with autism spectrum disorders in laboratory settings manifest diminished understandings of social emotions such as embarrassment, as part of a more general impairment in social perspective-taking. Video ethnography, however, takes us further, into discovering autistic children's subjective sense of vulnerability to the gaze of classmates.

  17. Adductor T reflex abnormalities in patients with decreased patellar reflexes.

    PubMed

    Tataroglu, Cengiz; Deneri, Ersin; Ozkul, Ayca; Sair, Ahmet; Yaycioglu, Soner

    2009-08-01

    The adductor reflex (AR) is a tendon reflex that has various features that differ from other tendon reflexes. This reflex was tested in different disorders presenting with diminished patellar reflexes such as diabetic lumbosacral radiculoplexus neuropathy (DLRPN), L2-L4 radiculopathy, and distal symmetric diabetic neuropathy (diabetic PNP). The AR and crossed-AR (elicited by tapping the contralateral patellar tendon) were recorded using concentric needle electrodes. Additionally, the patellar T reflex (vm-TR) and vastus medialis H reflex (vm-HR) were recorded using surface electrodes. AR was recorded in only one out of eight patients with DLRPN, but it was recorded in 21 out of 22 patients with L2-L4 radiculopathy (95.5%). Of these reflexes, only AR showed prolonged latency in the L2-L4 radiculopathy group. The latencies of AR, vm-TR, and vm-HR were prolonged in patients with diabetic PNP. We conclude that AR can be useful in the differential diagnosis of some lower motor neuron disorders that present with patellar reflex disturbance. Muscle Nerve 40: 264-270, 2009.

  18. Laryngeal and respiratory protective reflexes.

    PubMed

    Altschuler, S M

    2001-12-03

    Swallowing is a complex motor behavior that relies on an interneuronal network of premotor neurons (PMNs) to organize the sequential activity of motor neurons that are active during the buccopharyngeal and esophageal phases. Swallowing PMNs are highly interconnected to multiple areas of the brain stem and the central nervous system and provide a potential anatomic substrate integration of swallowing activity with airway protective reflexes. Because these neurons have synaptic contact with both afferent inputs and motor neurons and exhibit a true central activity, they appear to constitute the swallowing central pattern generator. We studied the viscerotopic organization of the nucleus of the solitary tract (NTS), the nucleus ambiguus (NA), the dorsal motor nucleus (DMN), and the hypoglossal nucleus (XII) using cholera toxin horseradish peroxidase (CT-HRP), a sensitive antegrade and retrograde tracer that effectively labels afferent terminal fields within the NTS as well as swallowing motor neurons and their dendritic fields within the NA, DMN, and XII. We used CT-HRP to provide a comprehensive description of the dendritic architecture of NA motor neurons innervating swallowing muscles. We also conducted studies using pseudorabies virus (PRV), a swine alpha-herpesvirus, to map central neural circuits after injection in the peripheral or central nervous systems. One attenuated vaccine strain, Bartha PRV, has preferential affinity for sites of afferent synaptic contact on the cell body and dendrites and a reactive gliosis that effectively isolates the infected neurons and provides a barrier to the nonspecific spread to adjacent neurons. The findings provide a basis for the central integration of swallowing and respiratory protective reflexes.

  19. [Principle of least action, physiology of vision, and conditioned reflexes theory].

    PubMed

    Shelepin, Iu E; Krasil'nikov, N N

    2003-06-01

    The variation principles such as principle of least action by Maupertuis (1740) and Fermat principle (1660) are fundamental for physics. They permit to establish a property by which the actual state is differing from all possible states of the system. The variation approach permits to establish equation of motion and equilibrium of a material system on the basis of one common rule which reduces to the search of the function extremes, describes this property of the system. So for the optical systems, crucial is the time and not the length of the way. According to Fermat principles, the light "choosen" from all possible ways connects two dots in the way which needs the least time. Generality of the variation principles guarantees success of their use in brain function investigations. Between different attempts to apply the variation principles to psychology and linguistics, the Zipf principle of least effort must be distinguished. Zipf (1949) demonstrated that languages and some artificial codes satisfied the least principle. For the brain physiology, classical conditioned reflex theory is the ideal area of variation principles application. According to this approach, conditioning leads to finding the extreme during fixation of the temporal link. In vision, physiological investigations are difficult because the signal has many dimensions. For example, during perception of spatial properties of surrounding world, in vision is realized minimization (reduction) of spatial-frequency spectrum of the scene. The receptive fields provide optimal accumulation of the signal. In ontogenesis, signal--noise ratio becomes optimal as receptive fields minimized the internal noise spectrum. According to the theory of match filtration, in the visual system recognition is carryied out by minimal differences between the image description in the visual system and storage in the human memory template of that image. The variation principles help to discover the physical property of

  20. [Human physiology: images and practices of the reflex].

    PubMed

    Wübben, Yvonne

    2010-01-01

    The essay examines the function of visualizations and practices in the formation of the reflex concept from Thomas Willis to Marshall Hall. It focuses on the specific form of reflex knowledge that images and practices can contain. In addition, the essay argues that it is through visual representations and experimental practices that technical knowledge is transferred to the field of human reflex physiology. When using technical metaphors in human physiology authors often seem to feel obliged to draw distinctions between humans, machines and animals. On closer scrutiny, these distinctions sometimes fail to establish firm borders between the human and the technical.

  1. Stapedial reflex in Parkinson's disease.

    PubMed

    Murofushi, T; Yamane, M; Osanai, R

    1992-01-01

    In 27 patients with Parkinson's disease (PD), stapedial reflexes were measured using impedance audiometry and compared with those of 11 age-matched control subjects. The reflex threshold of PD patients was lower than that of control subjects. A prolongation of contraction time (C50) and relaxation time (D50) was revealed. Between patients with and without L-dopa, there was no significant difference for any reflex parameter. But, the D50 of patients without anticholinergic drugs was longer than that of patients with anticholinergic drugs. The authors could not find any relationship between the severity of PD and the reflex parameters. The authors assume that the prolongation of reflex parameters might be attributed to the hyperactivity of the indirect pathways of the stapedial reflex.

  2. Reflex sympathetic dystrophy in hemiplegia.

    PubMed

    Gokkaya, Nilufer Kutay Ordu; Aras, Meltem; Yesiltepe, Elcin; Koseoglu, Fusun

    2006-12-01

    There is a high incidence of reflex sympathetic dystrophy of the upper limbs in patients with hemiplegia, and its painful and functional consequences present a problem to specialists in physical medicine and rehabilitation. This study was designed to assess the role of several factors in the occurrence of reflex sympathetic dystrophy in patients with hemiplegia. Ninety-five consecutive stroke patients (63 male and 32 female, mean age 59+/-12 years) admitted to our hospital were evaluated. Of the study group, 29 patients (30.5%) were found to develop reflex sympathetic dystrophy. There were no significant differences between the hemiplegic patient groups with or without reflex sympathetic dystrophy regarding age, gender, etiology, side of involvement, disease duration and the presence of comorbidities. The recovery stages of hemiplegia, as shown by Brunnstrom functional classification, were significantly different between the two groups; patients in lower recovery stages tended to develop reflex sympathetic dystrophy more frequently (P<0.01). Additionally, the presence of flaccidity was also a significant factor in the development of reflex sympathetic dystrophy. Glenohumeral subluxation was present in 37 patients (38.9%) in our study group and the presence of this complication was related to the occurrence of reflex sympathetic dystrophy. The presence of glenohumeral subluxation was significantly higher in patients with reflex sympathetic dystrophy (21/29, 72.4%) when compared to the patients without reflex sympathetic dystrophy (16/66, 24.2%) (P<0.001). Also, hemiplegic patients with more severe shoulder subluxation were significantly more likely to develop reflex sympathetic dystrophy. These results suggest that lower recovery stages, reduced tonus and glenohumeral subluxation significantly contribute to the occurrence of reflex sympathetic dystrophy in the hemiplegic patient. We believe that preventive and treatment measures should consider these factors as they

  3. Buccopalpebral reflex in Parkinson disease and blink reflex study.

    PubMed

    Unal, Yasemin; Kutlu, Gulnihal; Erdal, Abidin; Inan, Levent E

    2013-07-01

    To define a new primitive reflex named the buccopalpebral reflex (BPR), and to investigate this reflex clinically and neurophysiologically in patients with Parkinson disease. This prospectively designed study included 17 patients, 9 BPR positive patients, and 8 BPR negative patients in Ankara Research and Training Hospital, Ankara, Turkey, and was carried out between January and December 2008. All patients had Parkinson disease without any medication. Using the blink reflex technique, 3 branches of the trigeminal nerve were stimulated. Additionally, the Mini Mental State Examination (MMSE), the Unified Parkinson`s Disease Rating Scale (UPDRS), the Hoehn and Yahr Score (HYS), the blink frequency, and the duration of Parkinson disease was also matched between the 2 groups. In patients with positive BPR, 5 had tremor and the remaining 4 had bradykinesia as a dominant symptom, while all other patients with negative BPR had only tremor. When blink reflex findings were compared between the 2 groups, R2 and contralateral R2 latencies that were taken by supraorbital stimulus were significantly shorter in the BPR positive patients. There were no statistically significant differences in terms of MMSE, UPDRS, HYS, and frequency of blinking, and duration of illness between the 2 groups. This reflex may be an indicator of sensitivity or decrease of threshold level such as Myerson`s sign, in which there is no inhibition in glabella reflex. The blink reflex findings support this hypothesis.

  4. Analysing responses to climate change through the lens of reflexivity.

    PubMed

    Davidson, Debra

    2012-12-01

    Sociologists are increasingly directing attention toward social responses to climate change. As is true of any new field of inquiry, theoretical frameworks guiding the research to date have room for improvement. One advance could be achieved through closer engagement with Reflexivity Theory, particularly the work of Margaret Archer, who asks just how individuals come to give attention to certain problems, and formulate responses to them. Individuals vary significantly in regard to their understanding of and concern for anthropogenic climate change, and these standpoints in turn influence commitment to mitigation and adaptation. The emergent social interactions among all such agents in turn influence the morphogenetic trajectories through which social structures will evolve, but the role of 'meta-reflexives' is particularly crucial. Identifying pathways of individual climate change reflexivity can make a valuable contribution to our understanding of the potential for and nature of collective responses. In this paper, I explore climate change reflexivity, with particular attention to climate change meta-reflexives, through a qualitative analysis of personal interviews with residents of two small communities in Alberta, Canada. Applying Reflexivity Theory to this context articulates dimensions of reflexive processing not elaborated in current theoretical treatments, including future outlook and comfort with uncertainty, among others.

  5. [Laryngeal and larynx-associated reflexes].

    PubMed

    Ptok, M; Kühn, D; Miller, S; Jungheim, M; Schroeter, S

    2016-06-01

    The laryngeal adductor reflex and the pharyngoglottal closure reflex protect the trachea and lower respiratory tract against the entrance of foreign material. The laryngeal expiration reflex and the cough reflex serve to propel foreign material, which has penetrated in the cranial direction. The inspiration reflex, the sniff reflex, and the swallowing reflex are further larynx-associated reflexes. In patients with dysphagia the laryngeal adductor reflex can be clinically tested with air pulses. The water swallow test serves to show the integrity of the cough reflex. The sniff reflex is useful to test the abduction function of the vocal folds. Future studies should address laryngeal reflexes more specifically, both for a better understanding of these life-supporting mechanisms and to improve diagnostic procedures in patients with impaired laryngeal function.

  6. Developmental adaptation of withdrawal reflexes to early alteration of peripheral innervation in the rat.

    PubMed

    Holmberg, H; Schouenborg, J

    1996-09-01

    1. In adult decerebrate spinal rats whose plantar nerves (PLN) had been transected at either postnatal day 1 (P1) or P21 the nociceptive withdrawal reflexes (NWR) of musculi extensor digitorum longus (EDL), peroneus longus (PER) and semitendinosus (ST) were characterized with respect to receptive field (RF) organization, magnitude and time course, using electromyography. Thermal (short CO2 laser pulses) and mechanical (calibrated pinch) stimulation were used. The innervation patterns in normal and lesioned adult rats were assessed by acute nerve lesions. 2. The spatial organization of the mean mechano- and thermonociceptive RFs of all the muscles studied was similar to normal in both P1- and P21-lesioned rats, although in some P21-lesioned rats atypical EDL RFs were encountered. 3. In P1-lesioned rats thermo-NWR of PER and EDL had normal magnitudes, while mechano-NWR were reduced. In P21-lesioned rats both thermo- and mechano-NWR of these muscles had reduced magnitudes. Except for thermo-NWR of ST in P1-lesioned rats, which were increased, NWR of ST had normal magnitudes in both P1- and P21-lesioned rats. The time course of thermonociceptive NWR of the muscles studied were near normal in both P1- and P21-lesioned rats. 4. Acute nerve lesions in adult P1-lesioned rats revealed an essentially abolished contribution to NWR from the PLN. Instead, the contribution to NWR from other hindpaw nerves, such as the superficial and deep peroneal nerves, was dramatically increased. By contrast, in P21-lesioned rats, the regenerated PLN contributed significantly to the NWR. 5. It is concluded that despite profound alterations of plantar hindpaw innervation induced by early PLN transection the cutaneous nociceptive input to NWR attained an essentially normal spatial organization. An experience-dependent mechanism is suggested to be instrumental in adapting the reflex connectivity to the peripheral innervation.

  7. Bioinspired magnetic reception and multimodal sensing.

    PubMed

    Taylor, Brian K

    2017-08-01

    Several animals use Earth's magnetic field in concert with other sensor modes to accomplish navigational tasks ranging from local homing to continental scale migration. However, despite extensive research, animal magnetic reception remains poorly understood. Similarly, the Earth's magnetic field offers a signal that engineered systems can leverage to navigate in environments where man-made positioning systems such as GPS are either unavailable or unreliable. This work uses a behavioral strategy inspired by the migratory behavior of sea turtles to locate a magnetic goal and respond to wind when it is present. Sensing is performed using a number of distributed sensors. Based on existing theoretical biology considerations, data processing is performed using combinations of circles and ellipses to exploit the distributed sensing paradigm. Agent-based simulation results indicate that this approach is capable of using two separate magnetic properties to locate a goal from a variety of initial conditions in both noiseless and noisy sensory environments. The system's ability to locate the goal appears robust to noise at the cost of overall path length.

  8. Patterning of somatosympathetic reflexes

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Yates, B. J.

    1999-01-01

    In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.

  9. Patterning of somatosympathetic reflexes

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Yates, B. J.

    1999-01-01

    In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.

  10. Teaching Reflexivity in Qualitative Interviewing

    ERIC Educational Resources Information Center

    Hsiung, Ping-Chun

    2008-01-01

    Reflexivity has gained paramount status in qualitative inquiry. It is central to debates on subjectivity, objectivity, and, ultimately, the scientific foundation of social science knowledge and research. Although much work on doing reflexivity by researchers and practitioners has been published, scholars have only recently begun to explore how one…

  11. Reflexive Planning for Later Life

    ERIC Educational Resources Information Center

    Denton, Margaret A.; Kemp, Candace L.; French, Susan; Gafni, Amiram; Joshi, Anju; Rosenthal, Carolyn J.; Davies, Sharon

    2004-01-01

    Informed by Giddens' (1991) concept of "reflexive life" planning and the notion of later life as a time of increasing social and financial risk, this research explores the idea of "reflexive planning for later life". We utilize a conceptual model that incorporates three types of planning for later life: public protection, self-insurance, and…

  12. [Reflex seizures, cinema and television].

    PubMed

    Olivares-Romero, Jesús

    2015-12-16

    In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot.

  13. Acoustic reflex and general anaesthesia.

    PubMed

    Farkas, Z

    1983-01-01

    Infant and small children are not always able to cooperate in impedance measurements. For this reason it was decided, -in special cases, -to perform acoustic reflex examination under general anaesthesia. The first report on stapedius reflex and general anaesthesia was published by Mink et al. in 1981. Under the effect of Tiobutabarbital, Propanidid and Diazepam there is no reflex response. Acoustic reflex can be elicited with Ketamin-hydrochlorid and Alphaxalone-alphadolone acetate narcosis. The reflex threshold remains unchanged and the amplitude of muscle contraction is somewhat increased. The method was used: 1. to assess the type and degree of hearing loss in children with cleft palate and/or lip prior to surgery. 2. to exclude neuromuscular disorders with indication of pharyngoplasties. 3. to quantify hearing level in children--mostly multiply handicapped--with retarded speech development. The results of Behavioral Observation and Impedance Audiometry are discussed and evaluated.

  14. Adrenoceptors and colocolonic inhibitory reflex.

    PubMed

    Hughes, S F; Scott, S M; Pilot, M A; Williams, N S

    1999-12-01

    The colocolonic inhibitory reflex is characterized by inhibition of proximal colonic motility induced by distal colonic distension. The aim of this study was to investigate the underlying neural mechanisms of this reflex, in vivo, using an isolated loop of canine colon. In five beagle dogs, motility was recorded from an exteriorized colonic loop via a serosal strain gauge connected to a digital data logger and chart recorder. Inflation of a balloon in the distal colon resulted in inhibition of motility in the isolated loop. Inhibition of motor activity persisted following injection of propranolol (100 microg/kg intravenously), a beta-adrenoceptor antagonist, but was abolished following administration of the alpha2-adrenoceptor antagonist yohimbine (200 microg/kg intravenously). This study confirms that the colocolonic inhibitory reflex is mediated via the extrinsic nerves to the colon. As the reflex was abolished by alpha2-, but not beta-adrenoceptor blockade, this indicates that the reflex pathway involves alpha2-adrenoceptors.

  15. Encouraging Reflexivity in Urban Geography Fieldwork: Study Abroad Experiences in Singapore and Malaysia

    ERIC Educational Resources Information Center

    Glass, Michael R.

    2014-01-01

    Fieldwork in urban geography courses can encourage reflexivity among students regarding the cities they encounter. This article outlines how student reflexivity was encouraged within a new international field research course in Singapore and Malaysia. Drawing on examples from students' field exercises written during an intensive and occasionally…

  16. Encouraging Reflexivity in Urban Geography Fieldwork: Study Abroad Experiences in Singapore and Malaysia

    ERIC Educational Resources Information Center

    Glass, Michael R.

    2014-01-01

    Fieldwork in urban geography courses can encourage reflexivity among students regarding the cities they encounter. This article outlines how student reflexivity was encouraged within a new international field research course in Singapore and Malaysia. Drawing on examples from students' field exercises written during an intensive and occasionally…

  17. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji

    2017-03-01

    Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.

  18. Leading-edge receptivity for blunt-nose bodies

    NASA Technical Reports Server (NTRS)

    Kerschen, Edward J.

    1991-01-01

    This research program investigates boundary-layer receptivity in the leading-edge region for bodies with blunt leading edges. Receptivity theory provides the link between the unsteady distrubance environment in the free stream and the initial amplitudes of the instability waves in the boundary layer. This is a critical problem which must be addressed in order to develop more accurate prediction methods for boundary-layer transition. The first phase of this project examines the effects of leading-edge bluntness and aerodynamic loading for low Mach number flows. In the second phase of the project, the investigation is extended to supersonic Mach numbers. Singular perturbation techniques are utilized to develop an asymptotic theory for high Reynolds numbers. In the first year, the asymptotic theory was developed for leading-edge receptivity in low Mach number flows. The case of a parabolic nose is considered. Substantial progress was made on the Navier-Sotkes computations. Analytical solutions for the steady and unsteady potential flow fields were incorporated into the code, greatly expanding the types of free-stream disturbances that can be considered while also significantly reducing the the computational requirements. The time-stepping algorithm was modified so that the potential flow perturbations induced by the unsteady pressure field are directly introduced throughout the computational domain, avoiding an artificial 'numerical diffusion' of these from the outer boundary. In addition, the start-up process was modified by introducing the transient Stokes wave solution into the downstream boundary conditions.

  19. Solar Power Satellite Microwave Transmission and Reception

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.

    1980-01-01

    Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.

  20. Satellite sound broadcasting system, portable reception

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser; Vaisnys, Arvydas

    1990-01-01

    Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.

  1. Acoustic reflex measurement.

    PubMed

    Schairer, Kim S; Feeney, M Patrick; Sanford, Chris A

    2013-07-01

    Middle ear muscle reflex (MEMR) measurements have been a part of the standard clinical immittance test battery for decades as a cross-check with the behavioral audiogram and as a way to separate cochlear from retrocochlear pathologies. MEMR responses are measured in the ear canal by using a probe stimulus (e.g., single frequency or broadband noise) to monitor admittance changes elicited by a reflex-activating stimulus. In the clinical MEMR procedures, one test yields changes in a single measurement (i.e., admittance) at a single pure tone (e.g., 226 or 1000 Hz). In contrast, for the wideband acoustic immittance (WAI) procedure,one test yields information about multiple measurements (e.g., admittance, power reflectance, absorbance) across a wide frequency range (e.g., 250 to 8000 Hz analysis bandwidth of the probe). One benefit of the WAI method is that the MEMR can be identified in a single test regardless of the frequency at which the maximum shift in the immittance measurement occurs; this is beneficial because maximal shifts in immittance vary as a function of age and other factors. Another benefit is that the wideband response analysis yields lower MEMR thresholds than with the clinical procedures. Lower MEMR thresholds would allow for MEMR decay tests in ears in which the activator levels could not be safely presented. Finally, the WAI procedures can be automated with objective identification of the MEMR, which would allow for use in newborn and other screening programs in which the tests are completed by nonaudiological personnel.

  2. Assessing receptivity in the endometrium: the need for a rapid, non-invasive test.

    PubMed

    Edgell, Tracey A; Rombauts, Luk J F; Salamonsen, Lois A

    2013-11-01

    Successful implantation of an embryo into the uterus requires synchrony between the blastocyst and the endometrium. Endometrial preparedness, or receptivity, occurs only for a very short time during the mid-secretory phase of the menstrual cycle in fertile women. Failure to achieve receptivity results in infertility and is a rate-limiting step for IVF success. Frozen embryo transfer in non-stimulation cycles is already improving live birth rates. However, an important tool that is missing in the armoury of reproductive specialists is a means to rapidly assess endometrial receptivity, either during initial assessment or immediately prior to embryo transfer. The development of a wealth of omics technologies now opens the way for identifying potential receptivity markers, although validation of these is still a major issue. This review assesses the current state of the field and the requirements to proceed to a valid clinical test.

  3. The Reflexive Suffix -V in Hualapai.

    ERIC Educational Resources Information Center

    Sohn, Joong-Sun

    1995-01-01

    Like many other languages, Hualapai employs the reflexive suffix for several different grammatical purposes. Unlike those languages, however, constructions with a reflexive marker in Hualapai are usually not ambiguous with respect to the expected meanings. This paper identifies four functions that the reflexive suffix may have: reflexive,…

  4. The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.

  5. The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.

  6. Proprioceptive reflexes in patients with reflex sympathetic dystrophy.

    PubMed

    Schouten, A C; Van de Beek, W J T; Van Hilten, J J; Van der Helm, F C T

    2003-07-01

    Reflex sympathetic dystrophy (RSD) is a syndrome that frequently follows an injury and is characterized by sensory, autonomic and motor features of the affected extremities. One of the more common motor features of RSD is tonic dystonia, which is caused by impairment of inhibitory interneuronal spinal circuits. In this study the circuits that modulate the gain of proprioceptive reflexes of the shoulder musculature are quantitatively assessed in 19 RSD patients, 9 of whom presented with dystonia. The proprioceptive reflexes are quantified by applying two types of force disturbances: (1) disturbances with a fixed low frequency and a variable bandwidth and (2) disturbances with a small bandwidth around a prescribed centre frequency. Compared to controls, patients have lower reflex gains for velocity feedback in response to the disturbances around a prescribed centre frequency. Additionally, patients with dystonia lack the ability to generate negative reflex gains for position feedback, for these same disturbances. Proprioceptive reflexes to the disturbances with a fixed low frequency and variable bandwidth present no difference between patients and controls. Although dystonia in the RSD patients was limited to the distal musculature, the results suggest involvement of interneuronal circuits that mediate postsynaptic inhibition of the motoneurons of the proximal musculature.

  7. Reflex Principles of Immunological Homeostasis

    PubMed Central

    Andersson, Ulf; Tracey, Kevin J.

    2015-01-01

    The reasoning that neural reflexes maintain homeostasis in other body organs, and that the immune system is innervated, prompted a search for neural circuits that regulate innate and adaptive immunity. This elucidated the inflammatory reflex, a prototypical reflex circuit that maintains immunological homeostasis. Molecular products of infection or injury activate sensory neurons traveling to the brainstem in the vagus nerve. The arrival of these incoming signals generates action potentials that travel from the brainstem to the spleen and other organs. This culminates in T cell release of acetylcholine, which interacts with α7 nicotinic acetylcholine receptors (α7 nAChR) on immunocompetent cells to inhibit cytokine release in macrophages. Herein is reviewed the neurophysiological basis of reflexes that provide stability to the immune system, the neural- and receptor-dependent mechanisms, and the potential opportunities for developing novel therapeutic devices and drugs that target neural pathways to treat inflammatory diseases. PMID:22224768

  8. Jaw stretch reflexes in children.

    PubMed

    Finan, Donald S; Smith, Anne

    2005-07-01

    The substantial morphological transformations that occur during human development present the nervous system with a considerable challenge in terms of motor control. Variability of skilled motor performance is a hallmark of a developing system. In adults, the jaw stretch reflex contributes to the functional stability of the jaw. We have investigated the response properties of the jaw stretch reflex in two groups of young children and a group of young adults. Response latencies increased with development, and all age groups produced stimulus-magnitude-dependent increases in reflex gain and resulting biting force. Reflex gain was largest for the older children (9-10 years), yet net increases in resulting biting force were comparable across age groups. These data and earlier experiments suggest that oral sensorimotor pathways mature throughout childhood in concert with the continued acquisition of complex motor skills.

  9. Vestibulo-spinal reflex mechanisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.

    1981-01-01

    The specific objectives of experiments designed to investigate postural reflex behavior during sustained weightlessness are discussed. The first is to investigate, during prolonged weightlessness with Hoffmann response (H-reflex) measurement procedures, vestibulo-spinal reflexes associated with vestibular (otolith) responses evoked during an applied linear acceleration. This objective includes not only an evaluation of otolith-induced changes in a major postural muscle but also an investigation with this technique of the adaptive process of the vestibular system and spinal reflex mechanisms to this unique environment. The second objective is to relate space motion sickness to the results of this investigation. Finally, a return to the vestibulo-spinal and postural reflexes to normal values following the flight will be examined. The flight experiment involves activation of nerve tissue (tibial N) with electrical shock and the recording of resulting muscle activity (soleus) with surface electrodes. Soleus/spinal H-reflex testing procedures will be used in conjuction with linear acceleration through the subject's X-axis.

  10. Learning reflexively from a health promotion professional development program in Canada.

    PubMed

    Tremblay, Marie-Claude; Richard, Lucie; Brousselle, Astrid; Beaudet, Nicole

    2014-09-01

    In recent decades, reflexivity has received much attention in the professional education and training literature, especially in the public health and health promotion fields. Despite general agreement on the importance of reflexivity, there appears to be no consensus on how to assess reflexivity or to conceptualize the different forms developed among professionals and participants of training programs. This paper presents an analysis of the reflexivity outcomes of the Health Promotion Laboratory, an innovative professional development program aimed at supporting practice changes among health professionals by fostering competency development and reflexivity. More specifically, this paper explores the difference between two levels of reflexivity (formative and critical) and highlights some implications of each for practice. Data were collected through qualitative interviews with participants from two intervention sites. Results showed that involvement in the Health Promotion Laboratory prompted many participants to modify their vision of their practice and professional role, indicating an impact on reflexivity. In many cases, new understandings seem to have played a formative function in enabling participants to improve their practice and their role as health promoters. The reflective process also served a critical function culminating in a social and moral understanding of the impacts on society of the professionals' practices and roles. This type of outcome is greatly desired in health promotion, given the social justice and equity concerns of this field of practice. By redefining the theoretical concept of reflexivity on two levels and discussing their impacts on practice, this study supports the usefulness of both levels of reflexivity.

  11. Reflexivity and the Politics of Knowledge: Researchers as "Brokers" and "Translators" of Educational Development

    ERIC Educational Resources Information Center

    Sriprakash, Arathi; Mukhopadhyay, Rahul

    2015-01-01

    This paper interrogates the ways in which "reflexivity" has proliferated as a normative methodological discourse in the field of international and comparative education. We argue that the dominant approach to reflexivity foregrounds the standpoints of researchers and their subjects in a way that does not attend to the situated,…

  12. Acoustic receptivity of compressible boundary layers: Receptivity by way of surface-temperature variations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The Goldstein-Ruban theory has been extended within the framework of Zavol'skii et al. to study the acoustic receptivity of compressible boundary layers. We consider the receptivity produced in a region of localized, small-amplitude variation in the surface temperature and compare it with the receptivity that is induced through a similar mechanism by a variation in the suction velocity at the surface. It is found that the orientation of the acoustic wave can have a significant impact on the receptivity process, with the maximum receptivity at a given sound-pressure level being produced by upstream oriented acoustic waves. At sufficiently low Mach numbers, the variation of receptivity with the acoustic-wave orientation can be predicted analytically and is the same for both surface suction and surface heating. However, as a result of the acoustic refraction across the mean boundary layer, the above dependence can become rather complex and, also, dependent on the type of surface nonuniformity. The results also suggest that the receptivity caused by temperature nonuniformities may turn out to be more significant than that produced by the mean-flow perturbations associated with strip suction.

  13. Poor Reception for Broadcast Graduates

    ERIC Educational Resources Information Center

    Carlisle, Robert D. B.

    1976-01-01

    Noting reports of 17,251 college juniors and seniors majoring in radio-television broadcasting and only 141,500 employees now working in the field, the author discusses the causes and implications including the value of the radio-TV degree and the cost of broadcast education. (JT)

  14. Sneeze reflex: facts and fiction.

    PubMed

    Songu, Murat; Cingi, Cemal

    2009-06-01

    Sneezing is a protective reflex, and is sometimes a sign of various medical conditions. Sneezing has been a remarkable sign throughout the history. In Asia and Europe, superstitions regarding sneezing extend through a wide range of races and countries, and it has an ominous significance. Although sneezing is a protective reflex response, little else is known about it. A sneeze (or sternutation) is expulsion of air from the lungs through the nose and mouth, most commonly caused by the irritation of the nasal mucosa. Sneezing can further be triggered through sudden exposure to bright light, a particularly full stomach and physical stimulants of the trigeminal nerve, as a result of central nervous system pathologies such as epilepsy, posterior inferior cerebellar artery syndrome or as a symptom of psychogenic pathologies. In this first comprehensive review of the sneeze reflex in the English literature, we aim to review the pathophysiology, etiology, diagnosis, treatment and complications of sneezing.

  15. Language, gay pornography, and audience reception.

    PubMed

    Leap, William L

    2011-01-01

    Erotic imagery is an important component of gay pornographic cinema, particularly, where work of audience reception is concerned. However, to assume the audience engagement with the films is limited solely to the erotic realm is to underestimate the workings of ideological power in the context and aftermath of reception. For example, the director of the film under discussion here (Men of Israel; Lucas, 2009b) intended to present an erotic celebration of the nation-state. Yet, most viewers ignore the particulars of context in their comments about audience reception, placing the "Israeli" narrative within a broader framework, using transnational rather than film-specific criteria to guide their "reading" of the Israeli-centered narrative. This article uses as its entry point the language that viewers employ when describing their reactions to Men of Israel on a gay video club's Web site; this article shows how the work of audience reception may draw attention to a film's erotic details while invoking social and political messages that completely reframe the film's erotic narrative.

  16. Integral sunshade for an optical reception antenna

    NASA Technical Reports Server (NTRS)

    Kerr, Edwin L.

    1991-01-01

    Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the sun. Direct sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.

  17. Comprehensive Hearing Impaired Reception Program; Spring, 1975.

    ERIC Educational Resources Information Center

    Oxman, Wendy G.

    This document presents a description and evaluation of the Comprehensive Hearing Impaired Reception Program (CHIRP). This program was designed to improve effective communication skills for hearing handicapped students whose native language was not English, and whose language deficiencies prevented them from effective participation in the learning…

  18. Receptive Multilingualism in the Swiss Army

    ERIC Educational Resources Information Center

    Berthele, Raphael; Wittlin, Gabriele

    2013-01-01

    In this paper a particular context where receptive multilingualism at work can be observed is discussed. The Swiss armed forces underwent a series of quite dramatic downsizing measures, which lead to a situation with increased amount of mixed groups and linguistically mixed situations regarding the first/native language of officers and the…

  19. Chamber of Commerce reception for Dr. Lucas

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Dr. William R. Lucas, Marshall's fourth Center Director (1974-1986), delivers a speech in front of a picture of the lunar landscape with Earth looming in the background while attending a Huntsville Chamber of Commerce reception honoring his achievements as Director of Marshall Space Flight Center (MSFC).

  20. Simulated Critical Differences for Speech Reception Thresholds

    ERIC Educational Resources Information Center

    Pedersen, Ellen Raben; Juhl, Peter Møller

    2017-01-01

    Purpose: Critical differences state by how much 2 test results have to differ in order to be significantly different. Critical differences for discrimination scores have been available for several decades, but they do not exist for speech reception thresholds (SRTs). This study presents and discusses how critical differences for SRTs can be…

  1. An integral sunshade for optical reception antennas

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1988-01-01

    Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the Sun. Direst sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the Sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.

  2. Receptive Multilingualism in the Swiss Army

    ERIC Educational Resources Information Center

    Berthele, Raphael; Wittlin, Gabriele

    2013-01-01

    In this paper a particular context where receptive multilingualism at work can be observed is discussed. The Swiss armed forces underwent a series of quite dramatic downsizing measures, which lead to a situation with increased amount of mixed groups and linguistically mixed situations regarding the first/native language of officers and the…

  3. Chamber of Commerce reception for Dr. Lucas

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Dr. William R. Lucas, Marshall's fourth Center Director (1974-1986), delivers a speech in front of a picture of the lunar landscape with Earth looming in the background while attending a Huntsville Chamber of Commerce reception honoring his achievements as Director of Marshall Space Flight Center (MSFC).

  4. Testing the Receptive Skills: Some Basic Considerations.

    ERIC Educational Resources Information Center

    Jones, Randall L.

    1984-01-01

    Reacts to Michael Canale's paper, "Considerations in the Testing of Reading and Listening Proficiency," concentrating on three areas: (1) the nature of the receptive skills and the requirements of a valid instrument to measure them, (2) the design features that are consistent with his test design principles, and (3) adaptive testing…

  5. Practical Considerations in Receptive Skills Testing.

    ERIC Educational Resources Information Center

    Liskin-Gasparro, Judith E.

    1984-01-01

    Discusses Michael Canale's paper, "Considerations in the Testing of Reading and Listening Proficiency," focusing on the third section, "Suggestions for improvements in receptive language testing." Considers such areas as: (1) level descriptions for academic use, (2) item and item types, and (3) validation. (SED)

  6. Evidence for restricted central convergence of cutaneous afferents on an excitatory reflex pathway to medial gastrocnemius motoneurons.

    PubMed

    LaBella, L A; McCrea, D A

    1990-08-01

    1. We previously reported that excitatory postsynaptic potentials (EPSPs) produced by low-threshold electrical stimulation of the caudal cutaneous sural nerve (CCS) occur preferentially and with the shortest central latencies in the medial gastrocnemius (MG) portion of the triceps surae motor nuclei. The present study employs the spatial facilitation technique to assess interneuronal convergence on the short-latency excitatory pathway from CCS to MG by several other ipsilateral hindlimb afferents [the lateral cutaneous sural (LCS), caudal cutaneous femoral (CCF), saphenous (SAPH), superficial peroneal (SP), posterior tibial (TIB), and posterior articular (Joint) nerves]. 2. Spatial facilitation of CCF EPSPs in MG motoneurons was demonstrated with conditioning stimulation of the LCS, CCF, SAPH, SP, and TIB nerves, but was most readily and consistently observed with CCF conditioning. Facilitation of CCS and CCF EPSPs was obtained in individual MG motoneurons with a wide range of condition-test intervals. 3. CCF EPSPs in MG motoneurons produced by twice threshold (2T) afferent stimulation had a mean latency of 4.8 ms and often appeared as slowly rising, asynchronous potentials. On the other hand, 2T CCS EPSPs had a mean latency of 2.8 ms and appeared as sharper rising, less variable depolarizations. The optimum condition-test interval for facilitation of CCS and CCF EPSPs was found to be 5.2 ms on average, with CCS stimulation delayed from that of CCF. The longer latency of CCF EPSPs and the finding that the minimum condition-test interval was on the order of 3.9 ms suggests that convergence occurs late in the excitatory CCF pathway to MG motoneurons. 4. Convergence between excitatory pathways to MG from CCF and CCS afferents is discussed with regard to the original observations of Hagbarth on the location of cutaneous receptive fields and excitation of ankle extensors. In addition, evidence for the segregation of these specialized reflex pathways from those involved

  7. Guiding Principles for a Reflexive Approach to Teaching Organisation Studies

    ERIC Educational Resources Information Center

    Duarte, Fernanda; Fitzgerald, Anneke

    2006-01-01

    In this paper, we discuss a reflexive teaching approach, which may make the field of Organisation Studies more permeable to alternative views and thus more responsive to the complexities of processes unfolding in organisations in the context of a rapidly changing world. We contend that reflection on lived experience complements perspectives that…

  8. Caught in Uncertain Futures, Now: A Reflexive Moment

    ERIC Educational Resources Information Center

    Reyes, Reynaldo, III

    2016-01-01

    This reflexive vignette reveals the emotional risks of ethnographic work by a Chicano researcher, educator, and advocate doing work in the Texas-Mexico Borderlands, caught at the intersection of vulnerable Latina/o youth and their possible futures. Data in this creative piece are derived from field notes of one classroom observation from an…

  9. Caught in Uncertain Futures, Now: A Reflexive Moment

    ERIC Educational Resources Information Center

    Reyes, Reynaldo, III

    2016-01-01

    This reflexive vignette reveals the emotional risks of ethnographic work by a Chicano researcher, educator, and advocate doing work in the Texas-Mexico Borderlands, caught at the intersection of vulnerable Latina/o youth and their possible futures. Data in this creative piece are derived from field notes of one classroom observation from an…

  10. Receptivity in parallel flows: An adjoint approach

    NASA Technical Reports Server (NTRS)

    Hill, D. Christopher

    1993-01-01

    Linear receptivity studies in parallel flows are aimed at understanding how external forcing couples to the natural unstable motions which a flow can support. The vibrating ribbon problem models the original Schubauer and Skramstad boundary layer experiment and represents the classic boundary layer receptivity problem. The process by which disturbances are initiated in convectively-unstable jets and shear layers has also received attention. Gaster was the first to handle the boundary layer analysis with the recognition that spatial modes, rather than temporal modes, were relevant when studying convectively-unstable flows that are driven by a time-harmonic source. The amplitude of the least stable spatial mode, far downstream of the source, is related to the source strength by a coupling coefficient. The determination of this coefficient is at the heart of this type of linear receptivity study. The first objective of the present study was to determine whether the various wave number derivative factors, appearing in the coupling coefficients for linear receptivity problems, could be reexpressed in a simpler form involving adjoint eigensolutions. Secondly, it was hoped that the general nature of this simplification could be shown; indeed, a rather elegant characterization of the receptivity properties of spatial instabilities does emerge. The analysis is quite distinct from the usual Fourier-inversion procedures, although a detailed knowledge of the spectrum of the Orr-Sommerfeld equation is still required. Since the cylinder wake analysis proved very useful in addressing control considerations, the final objective was to provide a foundation upon which boundary layer control theory may be developed.

  11. Spanish Reflexives: A Critique of Pedagogical Descriptions.

    ERIC Educational Resources Information Center

    Lozano, Anthony G.

    1997-01-01

    Discusses pedagogical descriptions in high school textbooks covering Spanish reflexive verb constructions. Points out that these textbooks rarely contain the full reflexive construction displayed with all the grammatical persons and complete English glosses. (17 references) (Author/CK)

  12. The history of examination of reflexes.

    PubMed

    Boes, Christopher J

    2014-12-01

    In the late 1800s, Wilhelm Erb, Joseph Babinski, William Gowers, and others helped develop the neurologic examination as we know it today. Erb was one of the first to emphasize a detailed and systematic neurologic exam and was co-discoverer of the muscle stretch reflex, Gowers began studying the knee jerk shortly after it was described, and Babinski focused on finding reliable signs that could differentiate organic from hysterical paralysis. These physicians and others emphasized the bedside examination of reflexes, which have been an important part of the neurologic examination ever since. This review will focus on the history of the examination of the following muscle stretch and superficial/cutaneous reflexes: knee jerk, jaw jerk, deep abdominal reflexes, superficial abdominal reflexes, plantar reflex/Babinski sign, and palmomental reflex. The history of reflex grading will also be discussed.

  13. Reflexivity: a methodological tool in the knowledge translation process?

    PubMed

    Alley, Sarah; Jackson, Suzanne F; Shakya, Yogendra B

    2015-05-01

    Knowledge translation is a dynamic and iterative process that includes the synthesis, dissemination, exchange, and application of knowledge. It is considered the bridge that closes the gap between research and practice. Yet it appears that in all areas of practice, a significant gap remains in translating research knowledge into practical application. Recently, researchers and practitioners in the field of health care have begun to recognize reflection and reflexive exercises as a fundamental component to the knowledge translation process. As a practical tool, reflexivity can go beyond simply looking at what practitioners are doing; when approached in a systematic manner, it has the potential to enable practitioners from a wide variety of backgrounds to identify, understand, and act in relation to the personal, professional, and political challenges they face in practice. This article focuses on how reflexive practice as a methodological tool can provide researchers and practitioners with new insights and increased self-awareness, as they are able to critically examine the nature of their work and acknowledge biases, which may affect the knowledge translation process. Through the use of structured journal entries, the nature of the relationship between reflexivity and knowledge translation was examined, specifically exploring if reflexivity can improve the knowledge translation process, leading to increased utilization and application of research findings into everyday practice.

  14. A hierarchy of temporal receptive windows in human cortex.

    PubMed

    Hasson, Uri; Yang, Eunice; Vallines, Ignacio; Heeger, David J; Rubin, Nava

    2008-03-05

    Real-world events unfold at different time scales and, therefore, cognitive and neuronal processes must likewise occur at different time scales. We present a novel procedure that identifies brain regions responsive to sensory information accumulated over different time scales. We measured functional magnetic resonance imaging activity while observers viewed silent films presented forward, backward, or piecewise-scrambled in time. Early visual areas (e.g., primary visual cortex and the motion-sensitive area MT+) exhibited high response reliability regardless of disruptions in temporal structure. In contrast, the reliability of responses in several higher brain areas, including the superior temporal sulcus (STS), precuneus, posterior lateral sulcus (LS), temporal parietal junction (TPJ), and frontal eye field (FEF), was affected by information accumulated over longer time scales. These regions showed highly reproducible responses for repeated forward, but not for backward or piecewise-scrambled presentations. Moreover, these regions exhibited marked differences in temporal characteristics, with LS, TPJ, and FEF responses depending on information accumulated over longer durations (approximately 36 s) than STS and precuneus (approximately 12 s). We conclude that, similar to the known cortical hierarchy of spatial receptive fields, there is a hierarchy of progressively longer temporal receptive windows in the human brain.

  15. A Hierarchy of Temporal Receptive Windows in Human Cortex

    PubMed Central

    Hasson, Uri; Yang, Eunice; Vallines, Ignacio; Heeger, David J.; Rubin, Nava

    2008-01-01

    Real-world events unfold at different time scales and, therefore, cognitive and neuronal processes must likewise occur at different time scales. We present a novel procedure that identifies brain regions responsive to sensory information accumulated over different time scales. We measured functional magnetic resonance imaging activity while observers viewed silent films presented forward, backward, or piecewise-scrambled in time. Early visual areas (e.g., primary visual cortex and the motion-sensitive area MT+) exhibited high response reliability regardless of disruptions in temporal structure. In contrast, the reliability of responses in several higher brain areas, including the superior temporal sulcus (STS), precuneus, posterior lateral sulcus (LS), temporal parietal junction (TPJ), and frontal eye field (FEF), was affected by information accumulated over longer time scales. These regions showed highly reproducible responses for repeated forward, but not for backward or piecewise-scrambled presentations. Moreover, these regions exhibited marked differences in temporal characteristics, with LS, TPJ, and FEF responses depending on information accumulated over longer durations (~36 s) than STS and precuneus (~12 s). We conclude that, similar to the known cortical hierarchy of spatial receptive fields, there is a hierarchy of progressively longer temporal receptive windows in the human brain. PMID:18322098

  16. 33 CFR 158.420 - Reception facilities: Capacity and exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Reception facilities: Capacity and exceptions. 158.420 Section 158.420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... GARBAGE Criteria for Adequacy of Reception Facilities: Garbage § 158.420 Reception facilities:...

  17. 33 CFR 158.420 - Reception facilities: Capacity and exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Reception facilities: Capacity and exceptions. 158.420 Section 158.420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... GARBAGE Criteria for Adequacy of Reception Facilities: Garbage § 158.420 Reception facilities:...

  18. 33 CFR 158.420 - Reception facilities: Capacity and exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Reception facilities: Capacity and exceptions. 158.420 Section 158.420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... GARBAGE Criteria for Adequacy of Reception Facilities: Garbage § 158.420 Reception facilities:...

  19. 33 CFR 158.420 - Reception facilities: Capacity and exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Reception facilities: Capacity and exceptions. 158.420 Section 158.420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... GARBAGE Criteria for Adequacy of Reception Facilities: Garbage § 158.420 Reception facilities:...

  20. 33 CFR 158.420 - Reception facilities: Capacity and exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Reception facilities: Capacity and exceptions. 158.420 Section 158.420 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... GARBAGE Criteria for Adequacy of Reception Facilities: Garbage § 158.420 Reception facilities:...

  1. Tonic vibration reflexes and background force level

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Dizio, Paul; Fisk, John

    1992-01-01

    On earth, the functional stretch reflex is an important component in the maintenance of posture and muscle tone. In parabolic flight experiments, it is evaluated whether the functional stretch reflex, as reflected in the tonic vibration reflex, adjusts appropriately for changes in background gravitoinertial force level. Virtually immediate alterations of appropriate sign occurred.

  2. Reflexive aerostructures: increased vehicle survivability

    NASA Astrophysics Data System (ADS)

    Margraf, Thomas W.; Hemmelgarn, Christopher D.; Barnell, Thomas J.; Franklin, Mark A.

    2007-04-01

    Aerospace systems stand to benefit significantly from the advancement of reflexive aerostructure technologies for increased vehicle survivability. Cornerstone Research Group Inc. (CRG) is developing lightweight, healable composite systems for use as primary load-bearing aircraft components. The reflexive system is comprised of piezoelectric structural health monitoring systems, localized thermal activation systems, and lightweight, healable composite structures. The reflexive system is designed to mimic the involuntary human response to damage. Upon impact, the structural health monitoring system will identify the location and magnitude of the damage, sending a signal to a discrete thermal activation control system to resistively heat the shape memory polymer (SMP) matrix composite above activation temperature, resulting in localized shape recovery and healing of the damaged areas. CRG has demonstrated SMP composites that can recover 90 percent of flexural yield stress and modulus after postfailure healing. During the development, CRG has overcome issues of discrete activation, structural health monitoring integration, and healable resin systems. This paper will address the challenges associated with development of a reflexive aerostructure, including integration of structural health monitoring, discrete healing, and healable shape memory resin systems.

  3. Charging for port reception facilities in North Sea ports: putting theory into practice.

    PubMed

    Carpenter, A; Macgill, S

    2001-04-01

    The aim of this paper is to evaluate the charging systems for the use of port reception facilities for waste oil, and to examine the potential impact of the charging elements of the new (late 2000) EU Directive on port reception facilities for ship-generated waste and cargo residues. Experience to date with alternative models for charging is considered. Conclusions are drawn about the effectiveness of the EU Directive as a means of controlling pollution in the North Sea and producing a 'level playing field' between ports.

  4. Rethinking clinical language mapping approaches: discordant receptive and expressive hemispheric language dominance in epilepsy surgery candidates.

    PubMed

    Gage, Nicole M; Eliashiv, Dawn S; Isenberg, Anna L; Fillmore, Paul T; Kurelowech, Lacey; Quint, Patti J; Chung, Jeffrey M; Otis, Shirley M

    2011-06-01

    Neuroimaging studies have shed light on cortical language organization, with findings implicating the left and right temporal lobes in speech processing converging to a left-dominant pattern. Findings highlight the fact that the state of theoretical language knowledge is ahead of current clinical language mapping methods, motivating a rethinking of these approaches. The authors used magnetoencephalography and multiple tasks in seven candidates for resective epilepsy surgery to investigate language organization. The authors scanned 12 control subjects to investigate the time course of bilateral receptive speech processes. Laterality indices were calculated for left and right hemisphere late fields ∼150 to 400 milliseconds. The authors report that (1) in healthy adults, speech processes activated superior temporal regions bilaterally converging to a left-dominant pattern, (2) in four of six patients, this was reversed, with bilateral processing converging to a right-dominant pattern, and (3) in three of four of these patients, receptive and expressive language processes were laterally discordant. Results provide evidence that receptive and expressive language may have divergent hemispheric dominance. Right-sided receptive language dominance in epilepsy patients emphasizes the need to assess both receptive and expressive language. Findings indicate that it is critical to use multiple tasks tapping separable aspects of language function to provide sensitive and specific estimates of language localization in surgical patients.

  5. Healthy viewing: the reception of medical narratives.

    PubMed

    Davin, Solange

    2003-09-01

    This paper draws on two reception studies. One focuses on an American medical drama which respondents perceived as entertainment but also as a reliable source of information from which they collected medical and social data by using emotional and ludic strategies. The second compares parallel illness narratives in a soap opera and a documentary. Soap operas were described by informants as good pedagogic tools because they attracted large audiences and promoted identification and repetition which enhance learning. On the other hand, they criticised the documentary for being incomplete and artificial. The conclusion argues that viewers are media-literate, astute and insightful. They produce sophisticated, subtle interpretations which cannot be predicted by content analyses of programmes alone. More reception research is therefore needed, particularly since television is increasingly omnipresent and provides a considerable portion of the public's medical knowledge.

  6. Hormonal control of sexual receptivity in cockroaches.

    PubMed

    Schal, C; Chiang, A S

    1995-09-29

    Many animals exhibit specific behaviors associated with sexual receptivity only when they are reproductively competent. In insects with gonadal maturation cycles, these behaviors usually coincide with ovarian maturation. In the cockroach Blattella germanica, juvenile hormone (JH), produced by the corpora allata (CA), regulates female reproductive physiology. Various experimental manipulations, including ablation of the CA, therapy with JH analogs, CA denervation, ovariectomy, and changing nutrient quality, coupled with time-lapse video recording, support the hypothesis that JH also controls female sexual receptivity. A re-examination of the role of the CA in the maturation of male sexual readiness shows that, while sexual behavior develops in the absence of JH in both B. germanica and Supella longipalpa, JH accelerates the expression of sexual readiness.

  7. A Methodology for Conus APOE Reception Planning.

    DTIC Science & Technology

    1982-09-01

    interplay between water supply and vegetation if the system definition is at the cellular level. APPLICATION TO RECEPTION PLANNING The first task facing...LENGTH DEVIATION LEIT - .-- -ITI TIE 1 28.2076 15.8294 lCJ 29.3621 2 AWAIT 49.2355 33.5638 3 AWAIT 0.0000 0.0000 4 AWAIT 0.0000 0.0000 1 0 0.0000 5 AWAIT

  8. Eugen Bleuler 150: Bleuler's reception of Freud.

    PubMed

    Dalzell, Thomas G

    2007-12-01

    On the 150th anniversary of Eugen Bleuler's birth, this article examines his reception of Sigmund Freud and his use of Freudian theory to understand the symptoms of schizophrenia. In addition, in contrast to earlier interpretations of Bleuler's relationship with Freud in terms of an eventual personal and theoretical incompatibility, the article demonstrates that, although Bleuler did distance himself from the psychoanalytic movement, he remained consistent in his views on Freud's theories.

  9. Motion analysis of normal patellar tendon reflex.

    PubMed

    Tham, Lai Kuan; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Lim, Kheng Seang

    2013-11-01

    Reflex assessment, an essential element in the investigation of the motor system, is currently assessed through qualitative description, which lacks of normal values in the healthy population. This study quantified the amplitude and latency of patellar tendon reflex in normal subjects using motion analysis to determine the factors affecting the reflex amplitude. 100 healthy volunteers were recruited for patellar tendon reflex assessments which were recorded using a motion analysis system. Different levels of input strength were exerted during the experiments. A linear relationship was found between reflex input and reflex amplitude (r = 0.50, P <0.001). The left knee was found to exhibit 26.3% higher reflex amplitude than the right (P <0.001). The Jendrassik manoeuvre significantly increased reflex amplitude by 34.3% (P = 0.001); the effect was especially prominent in subjects with weak reflex response. Reflex latency normality data were established, which showed a gradual reduction with increasing input strength. The quantitative normality data and findings showed that the present method has great potential to objectively quantify deep tendon reflexes. Analyse du mouvement du réflexe rotulien normal.

  10. Insights into human endometrial receptivity from transcriptomic and proteomic data.

    PubMed

    Haouzi, Delphine; Dechaud, Hervé; Assou, Said; De Vos, John; Hamamah, Samir

    2012-01-01

    The appreciation of endometrial receptivity is a crucial step in assisted reproductive technology as implantation failures are thought to result, in large part, from abnormal endometrial receptivity. Using emerging omics technologies, investigators have begun to define both molecular signatures and specific biomarkers of receptive endometrium. The aim of this review was to analyse the new perspectives brought to the appreciation of endometrial receptivity by transcriptomic and proteomic technologies, involving the analysis of gene- or protein-expression-profile shifts between the pre-receptive and receptive secretory stages and how they might lead to new strategies for endometrial receptivity assessments. The use of omics as molecular tools to determine the effects of stimulation protocols on endometrial gene expression and clinical outcomes has also been investigated.

  11. Receptive vocabulary analysis in Down syndrome.

    PubMed

    Loveall, Susan J; Channell, Marie Moore; Phillips, B Allyson; Abbeduto, Leonard; Conners, Frances A

    2016-08-01

    The present study is an in-depth examination of receptive vocabulary in individuals with Down syndrome (DS) in comparison to control groups of individuals of similar nonverbal ability with typical development (TD) and non-specific etiology intellectual disability (ID). Verb knowledge was of particular interest, as it is known to be a predictor of later syntactic development. Fifty participants with DS, aged 10-21 years, 29 participants with ID, 10-21 years, and 29 participants with TD, 4-9 years, completed measures of receptive vocabulary (PPVT-4), nonverbal ability (Leiter-R), and phonological memory (Nonword Repetition subtest of the CTOPP). Groups were compared on percentage correct of noun, verb and attribute items on the PPVT-4. Results revealed that on verb items, the participants with ID performed significantly better than both participants with DS and TD, even when overall receptive vocabulary ability and phonological memory were held constant. Groups with DS and TD showed the same pattern of lexical knowledge, performing better on nouns than both verbs and attributes. In contrast, the group with ID performed similarly on nouns and verbs, but worse on attributes.

  12. Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kegerise, Michael A.

    2010-01-01

    The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude.

  13. Characterization of the Transcriptional Complexity of the Receptive and Pre-receptive Endometria of Dairy Goats

    PubMed Central

    Zhang, Lei; An, Xiao-Peng; Liu, Xiao-Rui; Fu, Ming-Zhe; Han, Peng; Peng, Jia-Yin; Hou, Jing-Xing; Zhou, Zhan-Qin; Cao, Bin-Yun; Song, Yu-Xuan

    2015-01-01

    Endometrium receptivity is essential for successful embryo implantation in mammals. However, the lack of genetic information remains an obstacle to understanding the mechanisms underlying the development of a receptive endometrium from the pre-receptive phase in dairy goats. In this study, more than 4 billion high-quality reads were generated and de novo assembled into 102,441 unigenes; these unigenes were annotated using published databases. A total of 3,255 unigenes that were differentially expressed (DEGs) between the PE and RE were discovered in this study (P-values < 0.05). In addition, 76,729–77,102 putative SNPs and 12,837 SSRs were discovered in this study. Bioinformatics analysis of the DEGs revealed a number of biological processes and pathways that are potentially involved in the establishment of the RE, notably including the GO terms proteolysis, apoptosis, and cell adhesion and the KEGG pathways Cell cycle and extracellular matrix (ECM)-receptor interaction. We speculated that ADCY8, VCAN, SPOCK1, THBS1, and THBS2 may play important roles in the development of endometrial receptivity. The de novo assembly provided a good starting point and will serve as a valuable resource for further investigations into endometrium receptivity in dairy goats and future studies on the genomes of goats and other related mammals. PMID:26373443

  14. Vestibular reflexes of otolith origin

    NASA Technical Reports Server (NTRS)

    Wilson, Victor J.

    1988-01-01

    The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting.

  15. Toward reflexive climate adaptation research

    SciTech Connect

    Preston, Benjamin L.; Rickards, Lauren; Fünfgeld, Hartmut; Keenan, Rodney J.

    2015-06-22

    Climate adaptation research is expanding very quickly within an increasingly reflexive society where the relationship between academia and other social institutions is in a state of flux. Tensions exist between the two dominant research orientations of research about and research for adaptation. In particular, the research community is challenged to develop processes for successfully executing transdisciplinary research for adaptation when academic institutions and researchers are largely structured around traditional, disciplinary expertise and funding models. One tool for helping to manage this tension is a third, more reflexive, orientation toward adaptation research that is emerging in the literature. Finally, this new ‘research on adaptation research’ promises to help enhance understanding of the research enterprise itself and how it can become more adaptive.

  16. Toward reflexive climate adaptation research

    DOE PAGES

    Preston, Benjamin L.; Rickards, Lauren; Fünfgeld, Hartmut; ...

    2015-06-22

    Climate adaptation research is expanding very quickly within an increasingly reflexive society where the relationship between academia and other social institutions is in a state of flux. Tensions exist between the two dominant research orientations of research about and research for adaptation. In particular, the research community is challenged to develop processes for successfully executing transdisciplinary research for adaptation when academic institutions and researchers are largely structured around traditional, disciplinary expertise and funding models. One tool for helping to manage this tension is a third, more reflexive, orientation toward adaptation research that is emerging in the literature. Finally, this newmore » ‘research on adaptation research’ promises to help enhance understanding of the research enterprise itself and how it can become more adaptive.« less

  17. [Foot reflex zone massage].

    PubMed

    Kesselring, A

    1994-01-01

    Foot reflexology is defined as massage of zones on the feet which correspond to different parts of the body. A medline-search yielded no literature in the field of foot reflexology. Indications for and results of foot reflexology have been extrapolated from case-descriptions and two pilot studies with small samples. One study (Lafuente et al.) found foot reflexology to be as helpful to patients with headaches as medication (flunarizine), yet foot reflexology was fraught with less side-effects than medication. In a second study (Eichelberger et al.) foot reflexology was used postoperatively on gynecological patients. The intervention group showed a lesser need for medication to enhance bladder tonus than did the control group. The literature describes foot reflexology as enhancing urination, bowel movements and relaxation.

  18. Human stretch reflex pathways reexamined

    PubMed Central

    Yavuz, Ş. Utku; Mrachacz-Kersting, Natalie; Sebik, Oğuz; Berna Ünver, M.; Farina, Dario

    2013-01-01

    Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units. With the use of SEMG and PSTH, the tap-like stretch stimulus induced five separate reflex responses, on average. With the same single motor unit data, the PSF technique indicated that the tap stimulus induced only three reflex responses. Similar to the finding using the tap-like stretch stimuli, ramp-and-hold stimuli induced several peaks and troughs in the SEMG and PSTH. The PSF analyses displayed genuine increases in discharge rates underlying the peaks but not underlying the troughs. Half-sine stretch stimuli induced a long-lasting excitation followed by a long-lasting silent period in SEMG and PSTH. The increase in the discharge rate, however, lasted for the entire duration of the stimulus and continued during the silent period. The results are discussed in the light of the fact that the discharge rate of a motoneuron has a strong positive linear association with the effective synaptic current it receives and hence represents changes in the membrane potential more directly and accurately than the other indirect measures. This study suggests that the neuronal pathway of the human stretch reflex does not include inhibitory pathways. PMID:24225537

  19. Reflex origin of parkinsonian tremor.

    PubMed

    Burne, J A

    1987-08-01

    The 8-Hz wrist tremor seen in normal subjects results from an oscillation in the spinal stretch reflex arc but the resting 4-Hz tremor of Parkinson's disease is believed to result from synchronization of motor unit activity by periodic descending inputs driven by an oscillator which resides within the brain. Accelerometer and smoothed EMG (0.8 to 16.0-Hz pass) recordings of resting tremor were taken from the upper limbs of 10 volunteers with Parkinson's disease for several different limb positions and while the limb was fixed to prevent tremor movements. The smoothed EMG and accelerometer records produced a complex periodic waveform with prominent 4- and 8-Hz components. Spectral analysis of both records produced large peaks at those frequencies which were harmonically related. The appearance of the regular tremor waveform in accelerometer and smoothed EMG records was greatly altered by changes in limb posture in all patients. Fixing of the shoulder and elbow joints only, also altered the smoothed EMG waveform and reduced the tremor amplitude. Fixing of the entire limb removed all signs of synchronization of motor unit activity in raw and smoothed EMG records. Similarly, the prominent 4- and 8-Hz peaks, found in the smoothed EMG power spectra from trembling muscles, were eliminated if the limb was effectively prevented from trembling. These experiments showed that the synchronization of motor unit activity at Parkinson's tremor frequency is wholly dependent on the oscillation in limb position and thus proprioceptive reflex activity. It is suggested that the known properties of the 4-Hz resting tremor of Parkinson's disease can be attributed to a flip-flop oscillation involving the mutually inhibitory connections between the spinal stretch reflexes of antagonist muscles. The supraspinal contribution to the tremor may thus be confined to an "aperiodic" descending facilitation of spinal reflex pathways.

  20. Loudness and the acoustic reflex: normal-hearing listeners.

    PubMed

    Keith, R W

    1979-01-01

    The relationships among most comfortable listening level (MCL), loudness discomfort level, and the acoustic reflex to speech were studied on normal-hearing listeners using earphones and sound field test conditions. Recorded sentence materials were presented monaurally in quiet and, in the sound field, in the presence of 55 dB SPL cafeteria noise. The results indicate the MCL in the quiet sound field at approximately 70 dB SPL with the acoustic reflex occurring at 16 dB higher intensity. The earphone MCL was 7 dB lower than in the sound field, a finding that may reflect a real reverse in usual earphone/sound field results or simply calibration factors particular to the speakers and test room used in this study. The AR to speech seems to occur at approximately equal intensities between the MCL and LDL tested in quiet. The MCL is elevated by noise whereas the acoustic reflex remains at a constant level, indicating that no absolute relationship exists between loudness and the AR.

  1. Effects of caffeine on the trigeminal blink reflex.

    PubMed

    Schicatano, Edward J

    2005-04-01

    The acoustic startle and trigeminal blink reflexes share the same motor output. Since caffeine has been shown to augment the startle reflex, it was proposed that caffeine would also increase the trigeminal blink reflex. In 6 humans, the effects of caffeine (100 mg) on the trigeminal blink reflex were investigated. Reflex blinks were elicited by stimulation of the supraorbital branch of the trigeminal nerve. Following ingestion of caffeinated coffee, reflex blinks increased in amplitude and duration and occurred at a shorter latency than reflex blinks following ingestion of decaffeinated coffee. Since the blink reflex is a brainstem reflex, these results suggest that the psychomotor effects of caffeine facilitate brainstem processing.

  2. A method of reflexive balancing in a pragmatic, interdisciplinary and reflexive bioethics.

    PubMed

    Ives, Jonathan

    2014-07-01

    In recent years there has been a wealth of literature arguing the need for empirical and interdisciplinary approaches to bioethics, based on the premise that an empirically informed ethical analysis is more grounded, contextually sensitive and therefore more relevant to clinical practice than an 'abstract' philosophical analysis. Bioethics has (arguably) always been an interdisciplinary field, and the rise of 'empirical' (bio)ethics need not be seen as an attempt to give a new name to the longstanding practice of interdisciplinary collaboration, but can perhaps best be understood as a substantive attempt to engage with the nature of that interdisciplinarity and to articulate the relationship between the many different disciplines (some of them empirical) that contribute to the field. It can also be described as an endeavour to explain how different disciplinary approaches can be integrated to effectively answer normative questions in bioethics, and fundamental to that endeavour is the need to think about how a robust methodology can be articulated that successfully marries apparently divergent epistemological and metaethical perspectives with method. This paper proposes 'Reflexive Bioethics' (RB) as a methodology for interdisciplinary and empirical bioethics, which utilizes a method of 'Reflexive Balancing' (RBL). RBL has been developed in response to criticisms of various forms of reflective equilibrium, and is built upon a pragmatic characterization of Bioethics and a 'quasi-moral foundationalism', which allows RBL to avoid some of the difficulties associated with RE and yet retain the flexible egalitarianism that makes it intuitively appealing to many.

  3. Generalized versus partial reflex seizures: a review.

    PubMed

    Italiano, Domenico; Ferlazzo, Edoardo; Gasparini, Sara; Spina, Edoardo; Mondello, Stefania; Labate, Angelo; Gambardella, Antonio; Aguglia, Umberto

    2014-08-01

    In this review we assess our currently available knowledge about reflex seizures with special emphasis on the difference between "generalized" reflex seizures induced by visual stimuli, thinking, praxis and language tasks, and "focal" seizures induced by startle, eating, music, hot water, somatosensory stimuli and orgasm. We discuss in particular evidence from animal, clinical, neurophysiological and neuroimaging studies supporting the concept that "generalized" reflex seizures, usually occurring in the setting of IGE, should be considered as focal seizures with quick secondary generalization. We also review recent advances in genetic and therapeutic approach of reflex seizures. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Deep tendon reflexes in premature infants.

    PubMed

    Kuban, K C; Skouteli, H N; Urion, D K; Lawhon, G A

    1986-01-01

    Ten classic deep tendon reflexes (DTRs) were evaluated in 62 premature infants of greater than 27 weeks post-conceptional age. The pectoralis major was the most readily elicitable reflex in all infants (100%), regardless of maturity. Achilles, patellar, biceps, thigh adductors, and brachioradialis reflexes also were obtained in at least 98% of babies of greater than 33 weeks gestation. Among these reflexes, less mature infants (less than 33 weeks gestation) had decreased elicitation rates for patellar and biceps reflexes and overall had diminished reflex intensity when compared to older infants (33-36 weeks gestation). By order of decreasing rate, finger flexors, jaw, crossed adductors, and triceps reflexes were less frequently elicited in both groups. Equal DTRs were obtained often in healthy and previously ill infants of less than 33 weeks gestation. Head position had no apparent affect on the ability to elicit reflexes. Theophylline therapy tended to intensify the Achilles reflex and the quiet, wakeful state appeared to be the most optimal state for the elicitation of DTRs.

  5. [Clinical relevance of cardiopulmonary reflexes in anesthesiology].

    PubMed

    Guerri-Guttenberg, R A; Siaba-Serrate, F; Cacheiro, F J

    2013-10-01

    The baroreflex, chemoreflex, pulmonary reflexes, Bezold-Jarisch and Bainbridge reflexes and their interaction with local mechanisms, are a demonstration of the richness of cardiovascular responses that occur in human beings. As well as these, the anesthesiologist must contend with other variables that interact by attenuating or accentuating cardiopulmonary reflexes such as, anesthetic drugs, surgical manipulation, and patient positioning. In the present article we review these reflexes and their clinical relevance in anesthesiology. Copyright © 2012 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  6. Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.

    ERIC Educational Resources Information Center

    Myklebust, Barbara M.; Gottlieb, Gerald L.

    1993-01-01

    When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…

  7. Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.

    ERIC Educational Resources Information Center

    Myklebust, Barbara M.; Gottlieb, Gerald L.

    1993-01-01

    When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…

  8. Receptivity to Bariatric Surgery in Qualified Patients

    PubMed Central

    Fung, Michael; Wharton, Sean; Macpherson, Alison

    2016-01-01

    Objectives. Bariatric surgery has been shown to be an effective intervention for weight loss and diabetes management. Despite this, many patients qualified for bariatric surgery are not interested in undergoing the procedure. The objective of this study is to determine the factors influencing receptivity to bariatric surgery among those who qualify for the procedure. Methods. Patients attending a publicly funded weight management clinic who qualified for bariatric surgery were asked to complete an elective questionnaire between February 2013 and April 2014. Results. A total of 371 patients (72% female) completed the questionnaire. Only 87 of 371 (23%) participants were interested in bariatric surgery. Individuals interested in bariatric surgery had a higher BMI (48.0 versus 46.2 kg/m2, P = 0.03) and believed that they would lose more weight with surgery (51 versus 44 kg, P = 0.0069). Those who scored highly on past weight loss success and financial concerns were less likely to be interested in bariatric surgery, whereas those who scored highly on high receptivity to surgery and positive social support were more likely to be interested in bariatric surgery. Conclusion. Although participants overestimated the effect of bariatric surgery on weight loss, most were still not interested in bariatric surgery. PMID:27516900

  9. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  10. Structural cure for reflex syncope?

    PubMed

    Sulke, Neil; Eysenck, William; Badiani, Sveeta; Furniss, Stephen

    2016-01-20

    The ROX Coupler is a device that allows creation of a central arteriovenous anastomosis at the iliac level. The device has been shown to improve exercise capacity in patients with chronic obstructive pulmonary disease and is CE marked for the treatment of resistant and uncontrolled hypertension. Reflex syncope is a challenging clinical condition with limited proven therapeutic options. We describe the resolution of symptoms and tilt table response of a patient who underwent insertion of a ROX Coupler to treat hypertension, and also incidentally had pre-existing vasodepressor syncope.

  11. Parameters influencing plasma column potential in a reflex discharge

    NASA Astrophysics Data System (ADS)

    Liziakin, G. D.; Gavrikov, A. V.; Murzaev, Y. A.; Usmanov, R. A.; Smirnov, V. P.

    2016-12-01

    Distribution of electrostatic potential in direct current reflex discharge plasma has been studied experimentally. Measurements have been conducted by the single floating probe method. The influence of 0-0.2 T magnetic field, 1-200 mTorr pressure, 0-2 kV discharge voltage, and electrodes geometry on plasma column electrostatic potential was investigated. The possibility for the formation of a preset potential profile required for the realization of plasma separation of spent nuclear fuel was demonstrated.

  12. Wireless accelerometer reflex quantification system characterizing response and latency.

    PubMed

    LeMoyne, Robert; Coroian, Cristian; Mastroianni, Timothy

    2009-01-01

    The evaluation of the deep tendon reflex is a standard aspect of a neurological evaluation, which is frequently evoked through the patellar tendon reflex. Important features of the reflex are response and latency, providing insight to status for peripheral neuropathy and upper motor neuron syndrome. A wireless accelerometer reflex quantification system has been developed, tested, and evaluated. The reflex input is derived from a potential energy setting. Wireless accelerometers characterize the reflex hammer strike and reflex response acceleration waveforms, enabling the quantification of reflex response and latency. Spectral analysis of the reflex response acceleration waveform elucidates the frequency domain, opening the potential for new reflex classification metrics. The wireless accelerometer reflex quantification system yields accurate and consistent quantification of reflex response and latency.

  13. Multi-Reception Strategy with Improved SNR for Multichannel MR Imaging

    PubMed Central

    Wu, Bing; Li, Ye; Wang, Chunsheng; Vigneron, Daniel B.; Zhang, Xiaoliang

    2012-01-01

    A multi-reception strategy with extended GRAPPA is proposed in this work to improve MR imaging performance at ultra-high field MR systems with limited receiver channels. In this method, coil elements are separated to two or more groups under appropriate grouping criteria. Those groups are enabled in sequence for imaging first, and then parallel acquisition is performed to compensate for the redundant scan time caused by the multiple receptions. To efficiently reconstruct the data acquired from elements of each group, a specific extended GRAPPA was developed. This approach was evaluated by using a 16-element head array on a 7 Tesla whole-body MRI scanner with 8 receive channels. The in-vivo experiments demonstrate that with the same scan time, the 16-element array with twice receptions and acceleration rate of 2 can achieve significant SNR gain in the periphery area of the brain and keep nearly the same SNR in the center area over an eight-element array, which indicates the proposed multi-reception strategy and extended GRAPPA are feasible to improve image quality for MRI systems with limited receive channels. This study also suggests that it is advantageous for a MR system with N receiver channels to utilize a coil array with more than N elements if an appropriate acquisition strategy is applied. PMID:22879921

  14. Autonomic reflexes in preterm infants.

    PubMed

    Lagercrantz, H; Edwards, D; Henderson-Smart, D; Hertzberg, T; Jeffery, H

    1990-01-01

    Some autonomic nervous reflexes often tested in adult medicine have been studied in 21 preterm infants (25-37 gestational weeks). The aim was to develop such tests for preterm infants and see if there were any differences in babies with recurrent apnea and bradycardia and babies who had been exposed to sympathicolytic drugs before birth. To test sympathetic nervous activity the peripheral vascular resistance was measured before and during 45 degrees of head-up tilting. To test parasympathetic nervous activity the degree of bradycardia was measured in response to cold face test (application of an ice-cube on the fore-head) and laryngeal stimulation with saline. Finally the heart rate changes after a sudden noise (85 dB) were studied as an indicator of both sympathetic and vagal activity. The peripheral resistance was found to be relatively low in these preterm infants, particularly in some infants tested at the postnatal age of about two months. Heart rate and mean blood pressure did not change during tilting, while the peripheral resistance increased significantly mainly due to lowered limb blood flow. The median decrease of the heart rate during the cold face test was 20.0% and during laryngeal receptor stimulation 23.7%. The sudden noise usually caused a biphasic heart rate response. An autonomic nervous reflex score was calculated and found to be negative (parasympathetic) in infants with recurrent prolonged apnea and bradycardia and positive in infants with clinical signs of increased sympathetic nervous activity.

  15. The deep tendon and the abdominal reflexes.

    PubMed

    Dick, J P R

    2003-02-01

    The deep tendon reflexes (and the abdominal reflexes) are important physical signs which have a special place in neurological diagnosis, particularly in early disease when they alone may be abnormal. They act as "hard" signs in situations where clinical assessment is complicated by patient anxiety, and become more useful as clinical experience develops.

  16. Medial olivocochlear reflex in ankylosing spondylitis patients.

    PubMed

    Beyazal, M S; Özgür, A; Terzi, S; Çeliker, M; Dursun, E

    2016-12-01

    Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease. Via autoimmune mediators, AS can damage the auditory system similar to other systems. Otoacoustic emission studies in AS patients showed that the damage that causes hearing loss was in the outer hair cells. The medial olivocochlear (MOC) reflex is used to evaluate the MOC efferent system (MOES), which includes the outer hair cells. The aim of this study was to evaluate the presence of subclinical damage in the inner ear with the aid of the MOC reflex test in AS patients with no hearing complaints. Thirty-four patients with AS and a control group of 30 healthy volunteers with similar demographic characteristics were evaluated in the study. Otoacoustic emission responses, MOC reflex results, and frequency-specific and total suppression findings were compared between the groups. The relationship between clinical and laboratory findings for the AS patients, and the MOC reflex data were also investigated. Reduced MOC reflex response (p = 0.04) and suppression (p = 0.019) were detected in AS patients. When the clinical and laboratory findings for the AS patients and the MOC reflex test results were compared, a significant correlation was found only between the MOC reflex and the erythrocyte sedimentation rate. The results showed that AS can damage the inner ear, especially the MOES, and can reduce the MOC reflex response without clinical hearing loss.

  17. The grasp and other primitive reflexes

    PubMed Central

    Schott, J; Rossor, M

    2003-01-01

    Primitive reflexes are typically present in childhood, suppressed during normal development, and may reappear with diseases of the brain, particularly those affecting the frontal lobes. In this review we discuss some historical aspects surrounding these reflexes, how they might be elicited and interpreted, and their potential clinical utility in modern neurological practice. PMID:12700289

  18. Creating a Complex Schedule with "REFLEX."

    ERIC Educational Resources Information Center

    Kren, George M.; Christakes, George

    1991-01-01

    Discusses "REFLEX," a software package for scheduling. Explores the program's applications in preparing a departmental class schedule. Explains that "REFLEX" includes a filter function and some attributes of a spreadsheet but lacks the ability to interact with other databases. Concludes that the program can make scheduling…

  19. Reflexive Pedagogy in the Apprenticeship in Design

    ERIC Educational Resources Information Center

    Sonntag, Michel

    2006-01-01

    Design is at the heart of vocational training programmes. That is the reason why teaching design and training students to design are major concerns of engineering schools. Our participation in this training favours a particular approach: reflexive practice. The Reflexive pedagogy lays the emphasis on the metaphorical dimension of learning. It is…

  20. Are H-reflex and M-wave recruitment curve parameters related to aerobic capacity?

    PubMed

    Piscione, Julien; Grosset, Jean-François; Gamet, Didier; Pérot, Chantal

    2012-10-01

    Soleus Hoffmann reflex (H-reflex) amplitude is affected by a training period and type and level of training are also well known to modify aerobic capacities. Previously, paired changes in H-reflex and aerobic capacity have been evidenced after endurance training. The aim of this study was to investigate possible links between H- and M-recruitment curve parameters and aerobic capacity collected on a cohort of subjects (56 young men) that were not involved in regular physical training. Maximal H-reflex normalized with respect to maximal M-wave (H(max)/M(max)) was measured as well as other parameters of the H- or M-recruitment curves that provide information about the reflex or direct excitability of the motoneuron pool, such as thresholds of stimulus intensity to obtain H or M response (H(th) and M(th)), the ascending slope of H-reflex, or M-wave recruitment curves (H(slp) and M(slp)) and their ratio (H(slp)/M(slp)). Aerobic capacity, i.e., maximal oxygen consumption and maximal aerobic power (MAP) were, respectively, estimated from a running field test and from an incremental test on a cycle ergometer. Maximal oxygen consumption was only correlated with M(slp), an indicator of muscle fiber heterogeneity (p < 0.05), whereas MAP was not correlated with any of the tested parameters (p > 0.05). Although higher H-reflex are often described for subjects with a high aerobic capacity because of endurance training, at a basic level (i.e., without training period context) no correlation was observed between maximal H-reflex and aerobic capacity. Thus, none of the H-reflex or M-wave recruitment curve parameters, except M(slp), was related to the aerobic capacity of young, untrained male subjects.

  1. 33 CFR 158.320 - Reception facilities: Capacity, and exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Reception facilities: Capacity, and exceptions. 158.320 Section 158.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Residue § 158.320 Reception facilities: Capacity, and exceptions. (a) Except as allowed in paragraph...

  2. 33 CFR 158.320 - Reception facilities: Capacity, and exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Reception facilities: Capacity, and exceptions. 158.320 Section 158.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Residue § 158.320 Reception facilities: Capacity, and exceptions. (a) Except as allowed in paragraph...

  3. 33 CFR 158.320 - Reception facilities: Capacity, and exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Reception facilities: Capacity, and exceptions. 158.320 Section 158.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Residue § 158.320 Reception facilities: Capacity, and exceptions. (a) Except as allowed in paragraph...

  4. 33 CFR 158.320 - Reception facilities: Capacity, and exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Reception facilities: Capacity, and exceptions. 158.320 Section 158.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Residue § 158.320 Reception facilities: Capacity, and exceptions. (a) Except as allowed in paragraph...

  5. 33 CFR 158.320 - Reception facilities: Capacity, and exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Reception facilities: Capacity, and exceptions. 158.320 Section 158.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Residue § 158.320 Reception facilities: Capacity, and exceptions. (a) Except as allowed in paragraph...

  6. The Comparative Reception of Darwinism: A Brief History

    ERIC Educational Resources Information Center

    Glick, Thomas F.

    2010-01-01

    The subfield of Darwin studies devoted to comparative reception coalesced around 1971 with the planning of a conference on the subject, at the University of Texas at Austin held in April 1972. The original focus was western Europe, Russia and the United States. Subsequently a spate of studies on the Italian reception added to the Eurocentric…

  7. The Comparative Reception of Darwinism: A Brief History

    ERIC Educational Resources Information Center

    Glick, Thomas F.

    2010-01-01

    The subfield of Darwin studies devoted to comparative reception coalesced around 1971 with the planning of a conference on the subject, at the University of Texas at Austin held in April 1972. The original focus was western Europe, Russia and the United States. Subsequently a spate of studies on the Italian reception added to the Eurocentric…

  8. Developmental Stages in Receptive Grammar Acquisition: A Processability Theory Account

    ERIC Educational Resources Information Center

    Buyl, Aafke; Housen, Alex

    2015-01-01

    This study takes a new look at the topic of developmental stages in the second language (L2) acquisition of morphosyntax by analysing receptive learner data, a language mode that has hitherto received very little attention within this strand of research (for a recent and rare study, see Spinner, 2013). Looking at both the receptive and productive…

  9. A Study of the Tactual and Visual Reception of Fingerspelling.

    ERIC Educational Resources Information Center

    Reed, Charlotte M.; And Others

    1990-01-01

    The study examined the ability of five deaf-blind subjects to receive fingerspelled materials through the tactual sense, and of six deaf subjects to receive fingerspelling through the visual sense. Results found highly accurate tactual reception at normal rates and suggested that rates for visual reception are limited by the rate of manual…

  10. 33 CFR 158.163 - Reception facility operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Reception facility operations. 158.163 Section 158.163 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RECEPTION FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE General § 158.163...

  11. 33 CFR 158.167 - Reporting inadequate reception facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Reporting inadequate reception facilities. 158.167 Section 158.167 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RECEPTION FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE General...

  12. 33 CFR 158.167 - Reporting inadequate reception facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Reporting inadequate reception facilities. 158.167 Section 158.167 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RECEPTION FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE General...

  13. 33 CFR 158.163 - Reception facility operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Reception facility operations. 158.163 Section 158.163 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RECEPTION FACILITIES FOR OIL, NOXIOUS LIQUID SUBSTANCES, AND GARBAGE General § 158.163...

  14. [Arterial pressure dynamics in patients during prosthetic stomatological reception].

    PubMed

    Serov, P G

    2009-01-01

    During prosthetic stomatological reception with the help of portable arterial pressure monitor Kardiotechnika-04AD-01 there were examined patients with normal blood pressure and arterial hypertension. The data were received confirming dependence of arterial pressure lifting with personal anxiety level. Conclusion was drown that close patient's examination was necessary before prosthetic stomatological reception.

  15. Cross-National Policy Borrowing: Understanding Reception and Translation

    ERIC Educational Resources Information Center

    Steiner-Khamsi, Gita

    2014-01-01

    The article examines two key concepts in research on policy borrowing and lending that are often used to explain why and how educational reforms travel across national boundaries: reception and translation. The studies on reception analyse the political, economic, and cultural reasons that account for the attractiveness of a reform from elsewhere.…

  16. Developmental Stages in Receptive Grammar Acquisition: A Processability Theory Account

    ERIC Educational Resources Information Center

    Buyl, Aafke; Housen, Alex

    2015-01-01

    This study takes a new look at the topic of developmental stages in the second language (L2) acquisition of morphosyntax by analysing receptive learner data, a language mode that has hitherto received very little attention within this strand of research (for a recent and rare study, see Spinner, 2013). Looking at both the receptive and productive…

  17. Cross-National Policy Borrowing: Understanding Reception and Translation

    ERIC Educational Resources Information Center

    Steiner-Khamsi, Gita

    2014-01-01

    The article examines two key concepts in research on policy borrowing and lending that are often used to explain why and how educational reforms travel across national boundaries: reception and translation. The studies on reception analyse the political, economic, and cultural reasons that account for the attractiveness of a reform from elsewhere.…

  18. Teacher Empowerment and Receptivity in Curriculum Reform in China

    ERIC Educational Resources Information Center

    Lee, John Chi-Kin; Yin, Hong-Biao; Zhang, Zhong-Hua; Jin, Yu-Le

    2011-01-01

    This study explores the relationships between teacher empowerment, teacher receptivity toward, and perceived outcomes of, a system-wide curriculum change, particularly national curriculum reform in basic education in China. The results of a survey of 1,646 teachers from six provinces indicate that teachers were positive in their receptivity and…

  19. Reliability of the NINDS Myotatic Reflex Scale.

    PubMed

    Litvan, I; Mangone, C A; Werden, W; Bueri, J A; Estol, C J; Garcea, D O; Rey, R C; Sica, R E; Hallett, M; Bartko, J J

    1996-10-01

    The assessment of deep tendon reflexes is useful for localization and diagnosis of neurologic disorders, but only a few studies have evaluated their reliability. We assessed the reliability of four neurologists, instructed in two different countries, in using the National Institute of Neurological Disorders and Stroke (NINDS) Myotatic Reflex Scale. To evaluate the role of training in using the scale, the neurologists randomly and blindly evaluated a total of 80 patients, 40 before and 40 after a training session. Inter- and intraobserver reliability were measured with kappa statistics. Our results showed substantial to near-perfect intraobserver reliability, and moderate-to-substantial interobserver reliability of the NINDS Myotatic Reflex Scale. The reproducibility was better for reflexes in the lower than in the upper extremities. Neither educational background nor the training session influenced the reliability of our results. The NINDS Myotatic Reflex Scale has sufficient reliability to be adopted as a universal scale.

  20. [Educational pamphlets on health: a reception study].

    PubMed

    Nascimento, Évelyn Aparecida; Tarcia, Rita Maria Lino; Magalhães, Lidiane Pereira; Soares, Mariângela Abate de Lara; Suriano, Maria Lucia Fernandez; Domenico, Edvane Birelo Lopes De

    2015-06-01

    Identifying the socioeconomic and cultural profile of users/readers of educational pamphlets, characterizing the context of the reading material and people involved; describing the user/reader evaluation on language and style used, as well as content range or limitations, and its characterization as an educational material in assisting users for meeting homecare demands. A reception, cross-sectional, qualitative study. 27 respondents who had received five educational pamphlets were interviewed on Oncology signs and symptoms during primary care consultations. Study participants were adults, with average schooling of more than 10 years and low income. Pamphlets were assessed as appropriate for consistent language, quantity and quality of content, and especially in relation to the capacity of helping in the homecare decision making process. The importance of receiving pamphlets at the initial stage of the disease was verified. Users acceptance was positive and the study revealed aspects that should be reinforced in the creation of educational pamphlets.

  1. The reception of relativity in China.

    PubMed

    Hu, Danian

    2007-09-01

    Having introduced the theory of relativity from Japan, the Chinese quickly and enthusiastically embraced it during the May Fourth Movement, virtually without controversy. This unique passion for and openness to relativity, which helped advance the study of theoretical physics in China in the 1930s, was gradually replaced by imported Soviet criticism after 1949. During the Cultural Revolution, radical Chinese ideologues sponsored organized campaigns against Einstein and relativity, inflicting serious damage on Chinese science and scientific education. China's economic reforms in the late 1970s empowered scientists and presented them with the opportunity to rehabilitate Einstein and call for social democracy. Einstein has since become the symbol in China of the unity of science and democracy, the two eminent objectives of the May Fourth Movement that remain to be achieved in full. Using the reception of relativity as a case study, the essay also discusses issues involving the historical study of modern Chinese science.

  2. Bone conduction reception: head sensitivity mapping.

    PubMed

    McBride, Maranda; Letowski, Tomasz; Tran, Phuong

    2008-05-01

    This study sought to identify skull locations that are highly sensitive to bone conduction (BC) auditory signal reception and could be used in the design of military radio communication headsets. In Experiment 1, pure tone signals were transmitted via BC to 11 skull locations of 14 volunteers seated in a quiet environment. In Experiment 2, the same signals were transmitted via BC to nine skull locations of 12 volunteers seated in an environment with 60 decibels of white background noise. Hearing threshold levels for each signal per location were measured. In the quiet condition, the condyle had the lowest mean threshold for all signals followed by the jaw angle, mastoid and vertex. In the white noise condition, the condyle also had the lowest mean threshold followed by the mastoid, vertex and temple. Overall results of both experiments were very similar and implicated the condyle as the most effective location.

  3. Discerning lived spirituality: the reception of otherness.

    PubMed

    Walton, Martin Neal

    2013-06-01

    A previous article focused on an analysis of prominent conceptualizations of spirituality in health care. The encompassing character of those approaches was viewed as problematic because too little attention is paid to the distinctiveness and particularities of spiritual experience. This article argues that the criteria gleaned from the prior analysis provide an impetus for a constructive discernment proposal of lived spirituality. The experience of otherness is provides a central clue to an understanding of spirituality particularly by two key terms, receptivity and transformation, as central characterizations of lived spirituality. These terms are investigated as they embrace operational potential for chaplaincy care. The article concludes with a reflection on chaplaincy care as it relates to spiritual practice.

  4. Receptivity of Hypersonic Boundary Layer to Wall Disturbances

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Khokhlov, A. P.

    Theoretical analysis of hypersonic boundary-layer receptivity to wall disturbances is conducted using a combination of asymptotic and numerical methods. Excitation of the second mode by distributed and local forcing on a flat-plate surface is studied under adiabatic and cooled wall conditions. Analysis addresses receptivity to wall vibrations, periodic suction/blowing, and temperature disturbances. A strong excitation occurs in local regions where forcing is in resonance with normal waves. It is shown that the receptivity function tends to infinity as the resonance point tends to the branch point of the discrete spectrum that is typical for boundary layers on cool surfaces. Asymptotic analysis resolves this singularity and provides the receptivity coefficient in the branch-point vicinity. Numerical results indicate extremely high receptivity to vibrations and suction/blowing in the vicinity of the branch point located near the lower neutral branch of the Mack second mode.

  5. Receptivity to Roughness, Acoustic, and Vortical Disturbances in Supersonic Boundary Layers Over Swept Wings

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; King, Rudolph A.

    2011-01-01

    The receptivity and interaction of stationary and traveling crossflow instability of three-dimensional supersonic boundary layers over a swept biconvex wing with a blunt leading edge are numerically investigated for a freestream Mach number of 3. The steady and unsteady flow fields are obtained by solving the full Navier-Stokes equations. The receptivity of the boundary layer to surface roughness, freestream acoustic waves, and freestream vorticity waves are numerically investigated. The initial amplitudes of the stationary vortices generated by 1 micron roughness elements is about 2000 times larger than the initial amplitudes of the traveling disturbances generated by vortical disturbances. The interaction of stationary and traveling disturbances was investigated by solving the equations with both surface roughness and vortical disturbances. When the initial amplitudes of the stationary disturbances are large compared to the traveling disturbances, the stationary vortex dominates the perturbation field. When the amplitudes are comparable, the traveling vortex prevails and the stationary vortex is suppressed.

  6. Tonic blood pressure modulates the relationship between baroreceptor cardiac reflex sensitivity and cognitive performance.

    PubMed

    Del Paso, Gustavo A Reyes; González, M Isabel; Hernández, José Antonio; Duschek, Stefan; Gutiérrez, Nicolás

    2009-09-01

    This study explored the effects of tonic blood pressure on the association between baroreceptor cardiac reflex sensitivity and cognitive performance. Sixty female participants completed a mental arithmetic task. Baroreceptor reflex sensitivity was assessed using sequence analysis. An interaction was found, indicating that the relationship between baroreceptor reflex sensitivity and cognitive performance is modulated by blood pressure levels. Reflex sensitivity was inversely associated to performance indices in the subgroup of participants with systolic blood pressure above the mean, whereas the association was positive in participants with systolic values below the mean. These results are in accordance with the findings in the field of pain perception and suggest that tonic blood pressure modulates the inhibitory effects of baroreceptor stimulation on high central nervous functions.

  7. The tripartite origins of the tonic neck reflex: Gesell, Gerstmann, and Magnus.

    PubMed

    Shevell, Michael

    2009-03-03

    The standard neurologic examination of the newborn and infant includes the elicitation of the tonic neck reflex. Normally present, its persistence is suggestive of neurologic dysfunction and a prognostic marker highly suggestive of an adverse outcome. Working in different fields, with different approaches and largely independently, three leaders of early 20th century neurosciences (Rudolf Magnus, Josef Gerstmann, and Arnold Gesell) elaborated different aspects of this primitive reflex. Magnus provided the first description in an animal model utilizing a meticulously prepared decerebrate cat correctly identifying the reflex's reliance on proprioceptors in the neck and processing in the upper cervical segment. Gerstmann first described its occurrence in the setting of neurologic disease, providing a meticulous written description in an early description of the index case of what would later be eponymously designated Gerstmann-Straussler-Scheinker syndrome. Gesell initially described the reflex's fundamental occurrence in normal young infants, highlighting its adaptive role in early development and its persistence as a hallmark of neurologic pathology.

  8. Toward a critical ethical reflexivity: phenomenology and language in Maurice Merleau-Ponty.

    PubMed

    Murray, Stuart J; Holmes, Dave

    2013-07-01

    Working within the tradition of continental philosophy, this article argues in favour of a phenomenological understanding of language as a crucial component of bioethical inquiry. The authors challenge the 'commonsense' view of language, in which thinking appears as prior to speaking, and speech the straightforward vehicle of pre-existing thoughts. Drawing on Maurice Merleau-Ponty's (1908-1961) phenomenology of language, the authors claim that thinking takes place in and through the spoken word, in and through embodied language. This view resituates bioethics as a matter of bodies that speak. It also refigures the meaning of ethical self-reflexion, and in so doing offers an alternative view on reflexivity and critique. Referring to the Kantian critical tradition and its reception by Hannah Arendt and Michel Foucault, we advance a position we call 'critical ethical reflexivity'. We contend that Merleau-Ponty's phenomenology of language offers valuable insight into ethical reflexivity and subject formation. Moreover, his understanding of language may foster new qualitative empirical research in bioethics, lead to more nuanced methods for interpreting personal narratives, and promote critical self-reflexion as necessary for bioethical inquiry. © 2013 John Wiley & Sons Ltd.

  9. Communication in nuclear emergency preparedness: a closer look at information reception.

    PubMed

    Perko, Tanja; van Gorp, Baldwin; Turcanu, Catrinel; Thijssen, Peter; Carle, Benny

    2013-11-01

    Preparedness of the general population plays a key role in the effective implementation of protective actions in case of a nuclear emergency (e.g., evacuation or intake of iodine tablets). In this context, a good communication of emergency management actors with the public along the entire cycle of preparedness-response-recovery is of paramount importance. This article aims at providing a better understanding of the way people process communicated messages and the factors that may influence how they do this. In particular, it investigates information reception as part of the information processing in precrisis communication. As a case study, the precrisis communication context was chosen, as it has been tackled to a lesser extent in the literature. The empirical data used for this study originated from a large-scale opinion survey in Belgium. One topic in this survey addressed the information campaign for the distribution of iodine tablets, in the context of preparedness for nuclear emergencies. The findings of this study demonstrate that systematic predictors have a stronger influence on information reception, as compared to heuristic predictors. The latter are only to a minor extent involved in the reception of emergency preparedness information. The hypothesized pattern--that more specific knowledge about the field relates to a higher reception of information--was confirmed for precrisis communication. Contrary to expectations, results showed that people with a high perception of radiation risks were less attentive to information about protective actions. People with little confidence in authorities were also more likely to have a low reception of information.

  10. The Development of the Text Reception Threshold Test: A Visual Analogue of the Speech Reception Threshold Test

    ERIC Educational Resources Information Center

    Zekveld, Adriana A.; George, Erwin L. J.; Kramer, Sophia E.; Goverts, S. Theo; Houtgast, Tammo

    2007-01-01

    Purpose: In this study, the authors aimed to develop a visual analogue of the widely used Speech Reception Threshold (SRT; R. Plomp & A. M. Mimpen, 1979b) test. The Text Reception Threshold (TRT) test, in which visually presented sentences are masked by a bar pattern, enables the quantification of modality-aspecific variance in speech-in-noise…

  11. History of the cushing reflex.

    PubMed

    Fodstad, Harald; Kelly, Patrick J; Buchfelder, Michael

    2006-11-01

    Increasing systolic and pulse pressure with bradycardia and respiratory irregularity are signs of increased intracranial pressure, leading to cerebral herniation and fatal brainstem compression. This phenomenon, the vasopressor response, is generally known as the Cushing reflex based on Harvey Cushing's experimental work in Europe in 1901 and 1902. However, similar experiments had been carried out decades earlier by others, notably Paul Cramer, Ernst von Bergmann, Ernst von Leyden, Georg Althann, Friedrich Jolly, Friedrich Pagenstecher, Henri Duret, Bernard Naunyn, and Julius Schreiber. Cushing initially failed to give credit to the work of these predecessors. Nonetheless, he studied the brain's reaction to compression more carefully than previous researchers and offered an improved explanation of the pathophysiology of the phenomenon named after him.

  12. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  13. Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients

    PubMed Central

    Van Calenbergh, Frank; Swinnen, Stephan P.; Duysens, Jacques

    2014-01-01

    Modulation of cutaneous reflexes is important in the neural control of walking, yet knowledge about underlying neural pathways is still incomplete. Recent studies have suggested that the cerebellum is involved. Here we evaluated the possible roles of the cerebellum in cutaneous reflex modulation and in attenuation of self-induced reflexes. First we checked whether leg muscle activity during walking was similar in patients with focal cerebellar lesions and in healthy control subjects. We then recorded cutaneous reflex activity in leg muscles during walking. Additionally, we compared reflexes after standard (computer triggered) stimuli with reflexes after self-induced stimuli for both groups. Biceps femoris and gastrocnemius medialis muscle activity was increased in the patient group compared with the control subjects, suggesting a coactivation strategy to reduce instability of gait. Cutaneous reflex modulation was similar between healthy control subjects and cerebellar patients, but the latter appeared less able to attenuate reflexes to self-induced stimuli. This suggests that the cerebellum is not primarily involved in cutaneous reflex modulation but that it could act in attenuation of self-induced reflex responses. The latter role in locomotion would be consistent with the common view that the cerebellum predicts sensory consequences of movement. PMID:25392164

  14. Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients.

    PubMed

    Hoogkamer, Wouter; Van Calenbergh, Frank; Swinnen, Stephan P; Duysens, Jacques

    2015-02-01

    Modulation of cutaneous reflexes is important in the neural control of walking, yet knowledge about underlying neural pathways is still incomplete. Recent studies have suggested that the cerebellum is involved. Here we evaluated the possible roles of the cerebellum in cutaneous reflex modulation and in attenuation of self-induced reflexes. First we checked whether leg muscle activity during walking was similar in patients with focal cerebellar lesions and in healthy control subjects. We then recorded cutaneous reflex activity in leg muscles during walking. Additionally, we compared reflexes after standard (computer triggered) stimuli with reflexes after self-induced stimuli for both groups. Biceps femoris and gastrocnemius medialis muscle activity was increased in the patient group compared with the control subjects, suggesting a coactivation strategy to reduce instability of gait. Cutaneous reflex modulation was similar between healthy control subjects and cerebellar patients, but the latter appeared less able to attenuate reflexes to self-induced stimuli. This suggests that the cerebellum is not primarily involved in cutaneous reflex modulation but that it could act in attenuation of self-induced reflex responses. The latter role in locomotion would be consistent with the common view that the cerebellum predicts sensory consequences of movement. Copyright © 2015 the American Physiological Society.

  15. Receptive field characteristics under electrotactile stimulation of the fingertip.

    PubMed

    Warren, Jay P; Bobich, Lisa R; Santello, Marco; Sweeney, James D; Tillery, Stephen I Helms

    2008-08-01

    Skin on human fingertips has high concentrations of mechanoreceptors, which are used to provide fine resolution tactile representations of our environment. Here, we explore the ability to discriminate electrotactile stimulation at four sites on the fingertip. Electrical stimulation was delivered to arrays of electrodes centered on the index fingertip (volar aspect). Accuracy of discrimination was tested by examining electrode size, interelectrode spacing, and stimulation frequency as primary factors. Electrical stimulation was delivered at 2 mA with the pulse width modulated to be at (or above) perceptual threshold at 25 and 75 Hz and an average pulse width of 1.03 ms (+/- 0.70 ms standard deviation). Discrimination of the stimulated locations under this stimulation paradigm was significantly above chance level in all cases. Subjects' ability to discriminate stimulus location was not significantly influenced by electrode size or stimulation frequency when considered as separate factors. However, increased electrode spacing significantly increased subjects' ability to discriminate the location of the stimulated electrode. Further analysis revealed that errors were only significantly reduced along the medial-lateral direction with increasing interelectrode spacing. These results suggest that the electrotactile stimulus localization on the fingertip has some directional dependency, in addition to its dependency on interelectrode spacing. The neural mechanisms underlying this phenomenon are discussed in relation to electrical stimulus transduction characteristics of tactile mechanoreceptors.

  16. Analyzing multicomponent receptive fields from neural responses to natural stimuli

    PubMed Central

    Rowekamp, Ryan; Sharpee, Tatyana O

    2011-01-01

    The challenge of building increasingly better models of neural responses to natural stimuli is to accurately estimate the multiple stimulus features that may jointly affect the neural spike probability. The selectivity for combinations of features is thought to be crucial for achieving classical properties of neural responses such as contrast invariance. The joint search for these multiple stimulus features is difficult because estimating spike probability as a multidimensional function of stimulus projections onto candidate relevant dimensions is subject to the curse of dimensionality. An attractive alternative is to search for relevant dimensions sequentially, as in projection pursuit regression. Here we demonstrate using analytic arguments and simulations of model cells that different types of sequential search strategies exhibit systematic biases when used with natural stimuli. Simulations show that joint optimization is feasible for up to three dimensions with current algorithms. When applied to the responses of V1 neurons to natural scenes, models based on three jointly optimized dimensions had better predictive power in a majority of cases compared to dimensions optimized sequentially, with different sequential methods yielding comparable results. Thus, although the curse of dimensionality remains, at least several relevant dimensions can be estimated by joint information maximization. PMID:21780916

  17. Astronomical Data Reduction Workflows with Reflex

    NASA Astrophysics Data System (ADS)

    Ballester, P.; Bramich, D.; Forchi, V.; Freudling, W.; Garcia-Dabó, C. E.; klein Gebbinck, M.; Modigliani, A.; Moehler, S.; Romaniello, M.

    2014-05-01

    Reflex (http://www.eso.org/reflex) is an environment that provides an easy and flexible way to reduce VLT/VLTI science data using the ESO. Its top-level functionalities are: (1) Reflex allows to graphically specify the sequence in which the data reduction steps are executed, including conditional stops, loops and conditional branches, (2) Reflex makes it easy to inspect the intermediate and final data products and to repeat selected processing steps to optimize the data reduction, (3) the data organization necessary to reduce the data is built into the system and is fully automatic, (4) advanced users can plug-in their own Python or IDL modules and steps into the data reduction sequence, and (5) Reflex supports the development of data reduction workflows based on the ESO Common Pipeline Library. Reflex is based on the concept of a scientific workflow, whereby the data reduction cascade is rendered graphically and data seamlessly flow from one processing step to the next. It is distributed with a number of complete test datasets so that users can immediately start experimenting and familiarize themselves with the system (http://www.eso.org/pipelines). In this demo, we present the latest version of Reflex and its applications for astronomical data reduction processes.

  18. Brainstem reflexes in patients with familial dysautonomia.

    PubMed

    Gutiérrez, Joel V; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2015-03-01

    Several distinctive clinical features of patients with familial dysautonomia (FD) including dysarthria and dysphagia suggest a developmental defect in brainstem reflexes. Our aim was to characterize the neurophysiological profile of brainstem reflexes in these patients. We studied the function of sensory and motor trigeminal tracts in 28 patients with FD. All were homozygous for the common mutation in the IKAP gene. Each underwent a battery of electrophysiological tests including; blink reflexes, jaw jerk reflex, masseter silent periods and direct stimulation of the facial nerve. Responses were compared with 25 age-matched healthy controls. All patients had significantly prolonged latencies and decreased amplitudes of all examined brainstem reflexes. Similar abnormalities were seen in the early and late components. In contrast, direct stimulation of the facial nerve revealed relative preservation of motor responses. The brainstem reflex abnormalities in FD are best explained by impairment of the afferent and central pathways. A reduction in the number and/or excitability of trigeminal sensory axons is likely the main problem. These findings add further evidence to the concept that congenital mutations of the elongator-1 protein (or IKAP) affect the development of afferent neurons including those carrying information for the brainstem reflex pathways. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. The Savannah hypotheses: origin, reception and impact on paleoanthropology.

    PubMed

    Bender, Renato; Tobias, Phillip V; Bender, Nicole

    2012-01-01

    The reconstruction of the human past is a complex task characterized by a high level of interdisciplinarity. How do scientists from different fields reach consensus on crucial aspects of paleoanthropological research? The present paper explores this question through an historical analysis of the origin, development, and reception of the savannah hypotheses (SHs). We show that this model neglected to investigate crucial biological aspects which appeared to be irrelevant in scenarios depicting early hominins evolving in arid or semi-arid open plains. For instance, the exploitation of aquatic food resources and other aspects of hominin interaction with water were largely ignored in classical paleoanthropology. These topics became central to alternative ideas on human evolution known as aquatic hypotheses. Since the aquatic model is commonly regarded as highly controversial, its rejection led to a stigmatization of the whole spectrum of topics around water use in non-human hominoids and hominins. We argue that this bias represents a serious hindrance to a comprehensive reconstruction of the human past. Progress in this field depends on clear differentiation between hypotheses proposed to contextualize early hominin evolution in specific environmental settings and research topics which demand the investigation of all relevant facets of early hominins' interaction with complex landscapes.

  20. Distributed acoustic receptivity in laminar flow control configurations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    A model problem related to distributed receptivity to free-stream acoustic waves in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfield framework, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized disturbances on the airfoil surface. The results, thus, complement the earlier work on the receptivity produced by local variations in the surface suction and/or surface admittance. In particular, we show that the cumulative effect of the distributed receptivity can be substantially larger than that of a single, isolated suction strip or slot. Furthermore, even if the receptivity is spread out over very large distances, the most effective contributions come from a relatively short region in vicinity of the lower branch of the neutral stability curve. The length scale of this region is intermediate to that of the mean of these two length scales. Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier components from the wall-suction and admittance distributions, roughly corresponding to a detuning of less than ten percent with respect to the neutral instability wavenumber at the frequency under consideration. The results suggest that the drop-off in receptivity magnitudes away from the resonant wavenumber is nearly independent of the frequency parameter.

  1. The Reflexes of the Fundus Oculi

    PubMed Central

    Ballantyne, A. J.

    1940-01-01

    The fundus reflexes reveal, in a manner not yet completely understood, the texture and contour of the reflecting surfaces and the condition of the underlying tissues. In this way they may play an important part in the biomicroscopy of the eye. The physiological reflexes are seen at their best in the eyes of young subjects, in well-pigmented eyes, with undilated pupils and with emmetropic refraction. Their absence during the first two decades, or their presence after the forties, their occurrence in one eye only, their appearance, disappearance or change of character should suggest the possibility of some pathological state. The investigation and interpretation of the reflexes are notably assisted by comparing the appearances seen with long and short wave lights such as those of the sodium and mercury vapour lamps, in addition to the usual ophthalmoscopic lights. Most of the surface reflexes disappear in the light of the sodium lamp, sometimes revealing important changes in the deeper layers of the retina and choroid. The physiological reflexes, chiefly formed on the surface of the internal limiting membrane, take the forms of the familiar watered silk or patchy reflexes, the peri-macular halo, the fan reflex in the macular depression and the reflex from the foveal pit. The watered silk or patchy reflexes often show a delicate striation which follows the pattern of the nerve-fibre layer, or there may be a granular or criss-cross texture. Reflexes which entirely lack these indications of “texture” should be considered as possibly pathological. This applies to the “beaten metal” reflexes and to those formed on the so-called hyaloid membrane. The occurrence of physiological reflexes in linear form is doubtful, and the only admittedly physiological punctate reflexes are the so-called Gunn's dots. Surface reflexes which are broken up into small points or flakes are pathological, and are most frequently seen in the central area of the fundus in cases of pigmentary

  2. Receptivity to Tobacco Advertising and Susceptibility to Tobacco Products.

    PubMed

    Pierce, John P; Sargent, James D; White, Martha M; Borek, Nicolette; Portnoy, David B; Green, Victoria R; Kaufman, Annette R; Stanton, Cassandra A; Bansal-Travers, Maansi; Strong, David R; Pearson, Jennifer L; Coleman, Blair N; Leas, Eric; Noble, Madison L; Trinidad, Dennis R; Moran, Meghan B; Carusi, Charles; Hyland, Andrew; Messer, Karen

    2017-06-01

    Non-cigarette tobacco marketing is less regulated and may promote cigarette smoking among adolescents. We quantified receptivity to advertising for multiple tobacco products and hypothesized associations with susceptibility to cigarette smoking. Wave 1 of the nationally representative PATH (Population Assessment of Tobacco and Health) study interviewed 10 751 adolescents who had never used tobacco. A stratified random selection of 5 advertisements for each of cigarettes, e-cigarettes, smokeless products, and cigars were shown from 959 recent tobacco advertisements. Aided recall was classified as low receptivity, and image-liking or favorite ad as higher receptivity. The main dependent variable was susceptibility to cigarette smoking. Among US youth, 41% of 12 to 13 year olds and half of older adolescents were receptive to at least 1 tobacco advertisement. Across each age group, receptivity to advertising was highest for e-cigarettes (28%-33%) followed by cigarettes (22%-25%), smokeless tobacco (15%-21%), and cigars (8%-13%). E-cigarette ads shown on television had the highest recall. Among cigarette-susceptible adolescents, receptivity to e-cigarette advertising (39.7%; 95% confidence interval [CI]: 37.9%-41.6%) was higher than for cigarette advertising (31.7%; 95% CI: 29.9%-33.6%). Receptivity to advertising for each tobacco product was associated with increased susceptibility to cigarette smoking, with no significant difference across products (similar odds for both cigarette and e-cigarette advertising; adjusted odds ratio = 1.22; 95% CI: 1.09-1.37). A large proportion of US adolescent never tobacco users are receptive to tobacco advertising, with television advertising for e-cigarettes having the highest recall. Receptivity to advertising for each non-cigarette tobacco product was associated with susceptibility to smoke cigarettes. Copyright © 2017 by the American Academy of Pediatrics.

  3. Changes in the Achilles tendon reflexes following Skylab missions

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Nicogossian, A. E.; Hoffler, G. W.; Johnson, R. L.; Hordinsky, J. R.

    1977-01-01

    Postflight measurements of Achilles tendon reflex duration on Skylab crewmen indicate a state of disequilibrium between the flexor and extensor muscle groups with an initial decrease in reflex duration. As the muscles regain strength and mass there occurs an overcompensation reflected by increased reflex duration. Finally, when a normal neuromuscular state is reached the reflex duration returns to baseline value.

  4. Changes in the Achilles tendon reflexes following Skylab missions

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Nicogossian, A. E.; Hoffler, G. W.; Johnson, R. L.; Hordinsky, J. R.

    1977-01-01

    Postflight measurements of Achilles tendon reflex duration on Skylab crewmen indicate a state of disequilibrium between the flexor and extensor muscle groups with an initial decrease in reflex duration. As the muscles regain strength and mass there occurs an overcompensation reflected by increased reflex duration. Finally, when a normal neuromuscular state is reached the reflex duration returns to baseline value.

  5. A new service offered by rural environment to the city: stormwater reception.

    NASA Astrophysics Data System (ADS)

    Chiaradia, Enrico Antonio; Weber, Enrico; Masseroni, Daniele; Battista Bischetti, Gian; Gandolfi, Claudio

    2017-04-01

    Stormwaters are the main cause of urban floods in many urbanized areas. Historically, stormwater management practices have been focused on building infrastructures that achieve runoff attenuation through the storage of water volumes in large detention basins. However, this approach has proven to be insufficient to resolve the problem as well as it is difficult to implement in areas with a dense urban fabric. Nowadays, around the world, water managers are increasingly embracing "soft path" approaches, that aim to manage the excess of urban runoff through Green Infrastructures, where detention capacities are provided by the retention proprieties of soil and vegetation elements. Along the line of these new sustainable stormwater management practices, the aim of this study is to promote a further paradigm-shift with respect to the traditional practices i.e. to investigate the possibility to use the already existing green infrastructures of the peri-urban rural areas as reception element of the surplus of urban runoff. Many territories in Northern Italy, for example. are characterized by a high density of irrigation canals and agricultural fields that, in some cases, are isolated or pent-up inside urbanized areas. Both these elements may represent storage volumes for accumulating stormwater from urban areas. In this work, we implemented a holistic framework, based on Self Organized Map technique (SOM), with the objective to produce a spatial map of the stormwater reception level that can be provided by the rural environment. We elaborated physiographic characteristics of irrigation canals and agricultural fields through the SOM algorithm obtaining as output a series of cluster groups with the same level of receptivity. This procedure was applied on an area of 1933 km2 around the city of Milan and a map of 250x250m resolution was obtained with three different levels of stormwater reception capacity. About 50% of rural environment has a good level of reception and only 30

  6. "IN ALL ITS HIDEOUS AND APPALLING NAKEDNESS AND TRUTH": THE RECEPTION OF SOME ANATOMICAL COLLECTIONS IN GEORGIAN AND VICTORIAN ENGLAND.

    PubMed

    Talairach-Vielmas, Laurence

    2015-01-01

    This article explores the reception of some anatomical collections in Georgian and Victorian England. Both private medical museums and public anatomical museums reflected the central role played by anatomy in medical knowledge and education in the eighteenth and nineteenth centuries. However, because they were associated with death and sexuality, anatomical museums were both products of enlightenment science and potentially immoral loci likely to corrupt young and innocent women. But, as this article shows, the reasons behind the hostile receptions of some collections varied throughout the centuries, revealing in so doing the gradual professionalization of the medical field and growing monopoly of medical professionals over medical knowledge.

  7. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes aegypti.

    PubMed

    Vazeille, Marie; Rosen, Leon; Mousson, Laurence; Failloux, Anna-Bella

    2003-02-01

    Dengue hemorrhagic fever has been a major health problem in Asia since the 1950s. During this period, the former principal vector of dengue viruses in Asia, Aedes albopictus, was replaced by Aedes aegypti in most major cities of the area. Ae. aegypti is now considered the main vector of dengue viruses in Asia. Surprisingly, however, this mosquito has been described as having a relatively low oral receptivity for dengue viruses compared with Ae. albopictus. In the present study, we compared the relative oral receptivities of Ae. aegypti and Ae. albopictus collected in southeast Asia from both sympatric and allopatric breeding sites. In all instances, the oral receptivity of Ae. aegypti to the dengue type 2 virus used was significantly higher than that of Ae. albopictus. We also compared the relative oral receptivity of Ae. aegypti and Ae. albopictus for two other low-passage strains of dengue 2. In all instances, Ae. aegypti was significantly more receptive than Ae. albopictus. It should be noted, however, that the difference was found only for Ae. albopictus recently collected from the field (Ta Promh strain, Cambodia, 2001) and not for an Ae. albopictus strain that had been colonized for many years (Oahu strain, Hawaii, 1971). We also observed a significant increase in the infection rate of Ae. albopictus of the Ta Promh strain with increasing generations in the laboratory. These observations demonstrate the importance of considering the colonization history of mosquitoes when assessing their susceptibility to infection with dengue viruses and, perhaps, other arboviruses.

  8. Stretch reflex and Hoffmann reflex responses to osteopathic manipulative treatment in subjects with Achilles tendinitis.

    PubMed

    Howell, John N; Cabell, Karen S; Chila, Anthony G; Eland, David C

    2006-09-01

    Irvin M. Korr, PhD, hypothesized that sensitivity of the monosynaptic stretch reflex (ie, deep tendon reflex) plays a major role in the restriction-of-motion characteristic of somatic dysfunction, and that restoration of range of motion through osteopathic manipulative treatment (OMT) could be achieved by resetting of the stretch receptor gain. To test Korr's hypothesis in the context of Achilles tendinitis, examining whether OMT applied to patients with Achilles tendinitis reduces the strength of the stretch reflex. Subjects were recruited through public advertisements and referrals from healthcare professionals. There were no recruitment restrictions based on demographic factors. Amplitudes for stretch reflex and H-reflex (Hoffmann reflex) in the triceps surae muscles (the soleus together with the lateral and medial heads of the gastrocnemius) were measured in subjects with diagnosed Achilles tendonitis (n=16), both before and after OMT. These measurements were also made in asymptomatic control subjects (n=15) before and after sham manipulative treatment. As predicated on the concepts of the strain-counterstrain model developed by Lawrence H. Jones, DO, the use of OMT produced a 23.1% decrease in the amplitude of the stretch reflex of the soleus (P<.05) in subjects with Achilles tendinitis. Similarly significant responses were measured in the lateral and medial heads of the gastrocnemius in OMT subjects. The H-reflex was not significantly affected by OMT. In control subjects, neither reflex was significantly affected by sham manipulative treatment. By using a rating scale on questionnaires before treatment and daily for 7 days posttreatment, OMT subjects indicated significant clinical improvement in soreness, stiffness, and swelling. The reduction of stretch reflex amplitude with OMT, together with no change in H-reflex amplitude, is consistent with Korr's proprioceptive hypothesis for somatic dysfunction and patient treatment. Because subjects' soreness ratings

  9. The Relationship between Receptive and Expressive Subskills of Academic L2 Proficiency in Nonnative Speakers of English: A Multigroup Approach

    ERIC Educational Resources Information Center

    Pae, Hye K.; Greenberg, Daphne

    2014-01-01

    The purpose of this study was to examine the relationship between receptive and expressive language skills characterized by the performance of nonnative speakers (NNSs) of English in the academic context. Test scores of 585 adult NNSs were selected from Form 2 of the Pearson Test of English Academic's field-test database. A correlated…

  10. Numerical Studies of Boundary-Layer Receptivity

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1995-01-01

    Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.

  11. Receptive females mitigate costs of sexual conflict.

    PubMed

    Harano, T

    2015-02-01

    Males typically gain fitness from multiple mating, whereas females often lose fitness from numerous mating, potentially leading to sexual conflict over mating. This conflict is expected to favour the evolution of female resistance to mating. However, females may incur male harassment if they refuse to copulate; thus, greater female resistance may increase costs imposed by males. Here, I show that the evolution of resistance to mating raises fitness disadvantages of interacting with males when mating is harmful in female adzuki bean beetles, Callosobruchus chinensis. Females that were artificially selected for higher and lower remating propensity evolved to accept and resist remating, respectively. Compared with females that evolved to accept remating, females that evolved to resist it suffered higher fitness costs from continuous exposure to males. The costs of a single mating measured by the effect on longevity did not differ among selection line females. This study indicates that receptive rather than resistant females mitigate the fitness loss resulting from sexual conflict, suggesting that even though mating is harmful, females can evolve to accept additional mating.

  12. Direct numerical simulation and the theory of receptivity in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Tumin, Anatoli; Wang, Xiaowen; Zhong, Xiaolin

    2007-01-01

    Direct numerical simulation of receptivity in a boundary layer over a sharp wedge of half-angle 5.3degrees is carried out with two-dimensional perturbations introduced into the flow by periodic-in-time blowing-suction through a slot. The freestream Mach number is equal to 8. The perturbation flow field downstream from the slot is decomposed into normal modes with the help of the biorthogonal eigenfunction system. Filtered-out amplitudes of two discrete normal modes and of the fast acoustic modes are compared with the linear receptivity problem solution. The examples illustrate how the multimode decomposition technique may serve as a tool for gaining insight into computational results.

  13. Demonstrating the Stretch Reflex: A Mechanical Model.

    ERIC Educational Resources Information Center

    Batavia, Mitchell; McDonough, Andrew L.

    2000-01-01

    Explains the concept of stretch reflexes to students using a mechanical model. The model provides a dynamic multisensory experience using movement, light, and sound. Describes the construction design. (SAH)

  14. Relationship of Postural Reflexes to Learning Disabilities

    ERIC Educational Resources Information Center

    Rider, Barbara A.

    1972-01-01

    The fact that the children with learning disorders had significantly more abnormal reflexes than did the normal children lends empirical support to the theory of minimal neurological impairment as a factor in the etiology of learning disabilities. (Author)

  15. Relationship of Postural Reflexes to Learning Disabilities

    ERIC Educational Resources Information Center

    Rider, Barbara A.

    1972-01-01

    The fact that the children with learning disorders had significantly more abnormal reflexes than did the normal children lends empirical support to the theory of minimal neurological impairment as a factor in the etiology of learning disabilities. (Author)

  16. Demonstrating the Stretch Reflex: A Mechanical Model.

    ERIC Educational Resources Information Center

    Batavia, Mitchell; McDonough, Andrew L.

    2000-01-01

    Explains the concept of stretch reflexes to students using a mechanical model. The model provides a dynamic multisensory experience using movement, light, and sound. Describes the construction design. (SAH)

  17. The legacy of care as reflexive learning

    PubMed Central

    García, Marta Rodríguez; Moya, Jose Luis Medina

    2016-01-01

    Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through constant comparisons of the categories. Results: the results demonstrate that the tutors' use of reflexive strategies such as didactic questioning, didactic empathy and pedagogical silence contributes to encourage the students' reflection and significant learning. Conclusions: reflexive practice is key to tutors' training and students' learning. PMID:27305180

  18. Sacculo-ocular reflex connectivity in cats.

    PubMed

    Isu, N; Graf, W; Sato, H; Kushiro, K; Zakir, M; Imagawa, M; Uchino, Y

    2000-04-01

    The otolith system contributes to the vestibulo-ocular reflexes (VOR) when the head moves linearly in the horizontal plane or tilts relative to gravity. The saccules are thought to detect predominantly accelerations along the gravity vector. Otolith-induced vertical eye movements following vertical linear accelerations are attributed to the saccules. However, information on the neural circuits of the sacculo-ocular system is limited, and the effects of saccular inputs on extraocular motoneurons remain unclear. In the present study, synaptic responses to saccular-nerve stimulation were recorded intracellularly from identified motoneurons of all twelve extraocular muscles. Experiments were successfully performed in eleven cats. Individual motoneurons of the twelve extraocular muscles--the bilateral superior recti (SR), inferior recti (IR), superior obliques (SO), inferior obliques (IO), lateral recti (LR), and medial recti (MR) were identified antidromically following bipolar stimulation of their respective nerves. The saccular nerve was selectively stimulated by a pair of tungsten electrodes after removing the utricular nerve and the ampullary nerves of the semicircular canals. Stimulus intensities were determined from the stimulus-response curves of vestibular N1 field potentials in order to avoid current spread. Intracellular recordings were performed from 129 extraocular motoneurons. The majority of the neurons showed no response to saccular-nerve stimulation. In 17 (30%) of 56 extraocular motoneurons related to vertical eye movements (bilateral SR and IR), depolarizing and/or hyperpolarizing postsynaptic potentials (PSPs) were observed in response to saccular-nerve stimulation. The latencies of PSPs ranged from 2.3 to 8.9 ms, indicating that the extraocular motoneurons received neither monosynaptic nor disynaptic inputs from saccular afferents. The majority of the latencies of the depolarization, including depolarization-hyperpolarization, were in the range of 2

  19. On the Second Language Acquisition of Spanish Reflexive Passives and Reflexive Impersonals by French- and English-Speaking Adults

    ERIC Educational Resources Information Center

    Tremblay, Annie

    2006-01-01

    This study, a partial replication of Bruhn de Garavito (1999a; 1999b), investigates the second language (L2) acquisition of Spanish reflexive passives and reflexive impersonals by French- and English-speaking adults at an advanced level of proficiency. The L2 acquisition of Spanish reflexive passives and reflexive impersonals by native French and…

  20. Acute provoked reflex seizures induced by thinking.

    PubMed

    Nevler, Naomi; Gandelman-Marton, Revital

    2012-11-01

    Thinking epilepsy is a rare form of reflex epilepsy that can be induced by specific cognitive tasks, and occurs mainly in idiopathic generalized epilepsies. We report a case of complex partial seizures triggered by thinking in a young man with acute bacterial meningitis and a remote head injury. This case illustrates that thinking-induced reflex seizures can be partial and can be provoked by an acute brain insult.

  1. Neuromuscular consequences of reflexive covert orienting.

    PubMed

    Corneil, Brian D; Munoz, Douglas P; Chapman, Brendan B; Admans, Tania; Cushing, Sharon L

    2008-01-01

    Visual stimulus presentation activates the oculomotor network without requiring a gaze shift. Here, we demonstrate that primate neck muscles are recruited during such reflexive covert orienting in a manner that parallels activity recorded from the superior colliculus (SC). Our results indicate the presence of a brainstem circuit whereby reflexive covert orienting is prevented from shifting gaze, but recruits neck muscles, predicting that similarities between SC and neck muscle activity should extend to other cognitive processes that are known to influence SC activity.

  2. Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound

    NASA Astrophysics Data System (ADS)

    Ma, Yanbao; Zhong, Xiaolin

    2003-08-01

    In this paper, we continue to study the mechanisms of the receptivity of the supersonic boundary layer to free-stream disturbances by using both direct numerical simulation and linear stability theory. Specifically, the receptivity of a Mach 4.5 flow over a flat plate to free-stream fast acoustic waves is studied. The receptivity to free-stream slow acoustic waves, entropy waves and vorticity waves will be studied in the future. The oblique shock wave induced by the boundary-layer displacement plays an important role in the receptivity because the free-stream disturbance waves first pass through the shock before entering the boundary layer. A high-order shock-fitting scheme is used in the numerical simulations in order to account for the effects of interactions between free-stream disturbance waves and the oblique shock wave. The results show that the receptivity of the flat-plate boundary layer to free-stream fast acoustic waves leads to the excitation of both Mack modes and a family of stable modes, i.e. mode I, mode II, etc. It is found that the forcing fast acoustic waves do not interact directly with the unstable Mack modes. Instead, the stable mode I waves play an important role in the receptivity process because they interact with both the forcing acoustic waves and the unstable Mack-mode waves. Through the interactions, the stable mode I waves transfer wave energy from the forcing fast acoustic waves to the second Mack-mode waves. The effects of incident wave angles, forcing wave frequencies, and wall temperature perturbation conditions on the receptivity are studied. The results show that the receptivity mechanisms of the second mode are very different from those of modes I and II, which leads to very different receptivity properties of these discrete wave modes to free-stream fast acoustic waves with different incident wave angles, frequencies, and different wall boundary conditions. The maximum receptivities of the second mode, mode I and mode II to

  3. Reflex responses of masseter muscles to sound.

    PubMed

    Deriu, Franca; Giaconi, Elena; Rothwell, John C; Tolu, Eusebio

    2010-10-01

    Acoustic stimuli can evoke reflex EMG responses (acoustic jaw reflex) in the masseter muscle. Although these were previously ascribed to activation of cochlear receptors, high intensity sound can also activate vestibular receptors. Since anatomical and physiological studies, both in animals and humans, have shown that masseter muscles are a target for vestibular inputs we have recently reassessed the vestibular contribution to masseter reflexes. We found that high intensity sound evokes two bilateral and symmetrical short-latency responses in active unrectified masseter EMG of healthy subjects: a high threshold, early p11/n15 wave and a lower threshold, later p16/n21 wave. Both of these reflexes are inhibitory but differ in their threshold, latency and appearance in the rectified EMG average. Experiments in healthy subjects and in patients with selective lesions showed that vestibular receptors were responsible for the p11/n15 wave (vestibulo-masseteric reflex) whereas cochlear receptors were responsible for the p16/n21 wave (acoustic masseteric reflex). The possible functional significance of the double vestibular control over masseter muscles is discussed. Copyright 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  4. Reflexive convention: civil partnership, marriage and family.

    PubMed

    Heaphy, Brian

    2017-09-14

    Drawing on an analysis of qualitative interview data from a study of formalized same-sex relationships (civil partnerships) this paper examines the enduring significance of marriage and family as social institutions. In doing so, it intervenes in current debates in the sociology of family and personal life about how such institutions are undermined by reflexivity or bolstered by convention. Against the backdrop of dominating sociological frames for understanding the links between the changing nature of marriage and family and same-sex relationship recognition, the paper analyses the diverse and overlapping ways (including the simple, relational, strategic, ambivalent and critical ways) in which same-sex partners reflexively constructed and engaged with marriage and family conventions. My analysis suggests that instead of viewing reflexivity and convention as mutually undermining, as some sociologists of family and personal life do, it is insightful to explore how diverse forms of reflexivity and convention interact in everyday life to reconfigure the social institutions of marriage and family, but do not undermine them as such. I argue the case for recognizing the ways in which 'reflexive convention', or reflexive investment in convention, contributes to the continuing significance of marriage and family as social institutions. © London School of Economics and Political Science 2017.

  5. Torso flexion modulates stiffness and reflex response.

    PubMed

    Granata, K P; Rogers, E

    2007-08-01

    Neuromuscular factors that contribute to spinal stability include trunk stiffness from passive and active tissues as well as active feedback from reflex response in the paraspinal muscles. Trunk flexion postures are a recognized risk factor for occupational low-back pain and may influence these stabilizing control factors. Sixteen healthy adult subjects participated in an experiment to record trunk stiffness and paraspinal muscle reflex gain during voluntary isometric trunk extension exertions. The protocol was designed to achieve trunk flexion without concomitant influences of external gravitational moment, i.e., decouple the effects of trunk flexion posture from trunk moment. Systems identification analyses identified reflex gain by quantifying the relation between applied force disturbances and time-dependent EMG response in the lumbar paraspinal muscles. Trunk stiffness was characterized from a second order model describing the dynamic relation between the force disturbances versus the kinematic response of the torso. Trunk stiffness increased significantly with flexion angle and exertion level. This was attributed to passive tissue contributions to stiffness. Reflex gain declined significantly with trunk flexion angle but increased with exertion level. These trends were attributed to correlated changes in baseline EMG recruitment in the lumbar paraspinal muscles. Female subjects demonstrated greater reflex gain than males and the decline in reflex gain with flexion angle was greater in females than in males. Results reveal that torso flexion influences neuromuscular factors that control spinal stability and suggest that posture may contribute to the risk of instability injury.

  6. Effective Receptivity Prediction in Three--Dimensional Boundary Layers

    NASA Astrophysics Data System (ADS)

    Dobrinsky, Alex Y.; Collis, S. Scott

    2002-11-01

    While the Parabolized Stability Equations (PSE) have been used in the past to study stability and receptivity of boundary layers, it is unclear how effective they are in the highly nonparallel three-dimensional boundary-layers that occur near the leading edge of swept wings. In this talk, we compare results obtained using Direct Numerical Simulation (DNS) with predictions based on PSE for Hiemenz flow subject to wall boundary excitations. After establishing the validity of PSE for stability prediction, we evaluate the Adjoint Parabolized Stability Equations (APSE) for receptivity prediction in Hiemenz flow by comparing with both adjoint Navier--Stokes and DNS as well as results from prior investigations. Along the way, we highlight some important implementational issues of the APSE method necessary to obtain correct receptivity predictions and conclude with general recommendations of when and how PSE and APSE methods should be used to yield accurate receptivity results.

  7. 115. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, RECEPTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, RECEPTION AREA, DETAIL OF GRAINED RADIATOR CABINET - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  8. Interior view, anteroom of the postmaster general's reception hall; shown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, anteroom of the postmaster general's reception hall; shown here are two of the six aluminum statues of postal delivery men - New Post Office Building, Twelfth Street and Pennsylvania Avenue, Washington, District of Columbia, DC

  9. Views of the Apollo 11 Twentieth Anniversary Black Tie reception

    NASA Image and Video Library

    1989-07-25

    View from the Apollo 11 Twentieth Anniversary Black Tie reception at the downtown Houston Hyatt Regency Hotel. Scene show NASA/JSC Director Aaron Cohen talking with NASA Administrator Richard H. Truly and his wife, Cody.

  10. Views of the Apollo 11 Twentieth Anniversary Black Tie reception

    NASA Technical Reports Server (NTRS)

    1989-01-01

    View from the Apollo 11 Twentieth Anniversary Black Tie reception at the downtown Houston Hyatt Regency Hotel. Scene show NASA/JSC Director Aaron Cohen talking with NASA Administrator Richard H. Truly and his wife, Cody.

  11. 12. INTERIOR, SHOWING PART OF RECEPTION ROOM IN CENTER SECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR, SHOWING PART OF RECEPTION ROOM IN CENTER SECTION. VIEW TO SOUTHEAST. - Fort David A. Russell, Red Cross Building, Third Street between Randall Avenue & Tenth Cavalry Avenue, Cheyenne, Laramie County, WY

  12. 10. INTERIOR, SHOWING RECEPTION ROOM IN CENTER SECTION, WITH MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR, SHOWING RECEPTION ROOM IN CENTER SECTION, WITH MAIN ENTRANCE AT RIGHT. VIEW TO SOUTHWEST. - Fort David A. Russell, Red Cross Building, Third Street between Randall Avenue & Tenth Cavalry Avenue, Cheyenne, Laramie County, WY

  13. 45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Everett, Weinreb, photographer DETAIL, CEMENT TILE PATTERN FROM RECEPTION HALL LOOKING EAST ACROSS ARRIVAL LOBBY FLOOR - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  14. Views of the Apollo 11 Twentieth Anniversary Black Tie reception

    NASA Technical Reports Server (NTRS)

    1989-01-01

    View from the Apollo 11 Twentieth Anniversary Black Tie reception at the downtown Houston Hyatt Regency Hotel. Scene show NASA/JSC Director Aaron Cohen talking with NASA Administrator Richard H. Truly and his wife, Cody.

  15. 32. Mark A. Bookspan, photographer RECEPTION HALL AND ARRIVAL LOBBY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Mark A. Bookspan, photographer RECEPTION HALL AND ARRIVAL LOBBY, FROM SOUTHEAST CORNER OF ARRIVAL LOBBY - Los Angeles Union Passenger Terminal, Tracks & Shed, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  16. 117. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, RECEPTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, RECEPTION AREA, DETAIL OF BUFFALO DOORKNOB (FRONTAL VIEW) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  17. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  18. Receptive Vocabulary and Cognition of Elderly People in Institutional Care

    PubMed Central

    Ibrahimagic, Amela; Zunic, Lejla Junuzovic; Ibrahimagic, Omer C.; Smajlovic, Dzevdet; Rasidovic, Mirsada

    2017-01-01

    Introduction: Basic cognitive functions such as: alertness, working memory, long term memory and perception, as well as higher levels of cognitive functions like: speech and language, decision-making and executive functions are affected by aging processes. Relations between the receptive vocabulary and cognitive functioning, and the manifestation of differences between populations of elderly people based on the primary disease is in the focus of this study. Aim: To examine receptive vocabulary and cognition of elderly people with: verified stroke, dementia, verified stroke and dementia, and without the manifested brain disease. Material and Methods: The sample consisted of 120 participants older than 65 years, living in an institution. A total of 26 variables was analyzed and classified into three groups: case history/anamnestic, receptive vocabulary assessment, and cognitive assessments. The interview with social workers, nurses and caregivers, as well as medical files were used to determine the anamnestic data. A Montreal Cognitive Assessment Scale (MoCA) was used for the assessment of cognition. In order to estimate the receptive vocabulary, Peabody Picture Vocabulary Test was used. Results: Mean raw score of receptive vocabulary is 161.58 (+–21:58 points). The best results for cognitive assessment subjects achieved on subscales of orientation, naming, serial subtraction, and delayed recall. Discriminative analysis showed the significant difference in the development of receptive vocabulary and cognitive functioning in relation to the primary disease of elderly people. The biggest difference was between subjects without manifested brain disease (centroid = 1.900) and subjects with dementia (centroid = -1754). Conclusion: There is a significant difference between elderly with stroke; dementia; stroke and dementia, and elderly people without manifested disease of the brain in the domain of receptive vocabulary and cognitive functioning. Variables of serial

  19. Receptivity to alcohol marketing predicts initiation of alcohol use

    PubMed Central

    Henriksen, Lisa; Feighery, Ellen C.; Schleicher, Nina C.; Fortmann, Stephen P.

    2008-01-01

    Purpose This longitudinal study examined the influence of alcohol advertising and promotions on the initiation of alcohol use. A measure of receptivity to alcohol marketing was developed from research about tobacco marketing. Recall and recognition of alcohol brand names were also examined. Methods Data were obtained from in-class surveys of 6th, 7th, and 8th graders at baseline and 12-month follow-up. Participants who were classified as never drinkers at baseline (n=1,080) comprised the analysis sample. Logistic regression models examined the association of advertising receptivity at baseline with any alcohol use and current drinking at follow-up, adjusting for multiple risk factors, including peer alcohol use, school performance, risk taking, and demographics. Results At baseline, 29% of never drinkers either owned or wanted to use an alcohol branded promotional item (high receptivity), 12% students named the brand of their favorite alcohol ad (moderate receptivity) and 59% were not receptive to alcohol marketing. Approximately 29% of adolescents reported any alcohol use at follow-up; 13% reported drinking at least 1 or 2 days in the past month. Never drinkers who reported high receptivity to alcohol marketing at baseline were 77% more likely to initiate drinking by follow-up than those were not receptive. Smaller increases in the odds of alcohol use at follow-up were associated with better recall and recognition of alcohol brand names at baseline. Conclusions Alcohol advertising and promotions are associated with the uptake of drinking. Prevention programs may reduce adolescents’ receptivity to alcohol marketing by limiting their exposure to alcohol ads and promotions and by increasing their skepticism about the sponsors’ marketing tactics. PMID:18155027

  20. Receptivity to alcohol marketing predicts initiation of alcohol use.

    PubMed

    Henriksen, Lisa; Feighery, Ellen C; Schleicher, Nina C; Fortmann, Stephen P

    2008-01-01

    This longitudinal study examined the influence of alcohol advertising and promotions on the initiation of alcohol use. A measure of receptivity to alcohol marketing was developed from research about tobacco marketing. Recall and recognition of alcohol brand names were also examined. Data were obtained from in-class surveys of sixth, seventh, and eighth graders at baseline and 12-month follow-up. Participants who were classified as never drinkers at baseline (n = 1,080) comprised the analysis sample. Logistic regression models examined the association of advertising receptivity at baseline with any alcohol use and current drinking at follow-up, adjusting for multiple risk factors, including peer alcohol use, school performance, risk taking, and demographics. At baseline, 29% of never drinkers either owned or wanted to use an alcohol branded promotional item (high receptivity), 12% students named the brand of their favorite alcohol ad (moderate receptivity), and 59% were not receptive to alcohol marketing. Approximately 29% of adolescents reported any alcohol use at follow-up; 13% reported drinking at least 1 or 2 days in the past month. Never drinkers who reported high receptivity to alcohol marketing at baseline were 77% more likely to initiate drinking by follow-up than those were not receptive. Smaller increases in the odds of alcohol use at follow-up were associated with better recall and recognition of alcohol brand names at baseline. Alcohol advertising and promotions are associated with the uptake of drinking. Prevention programs may reduce adolescents' receptivity to alcohol marketing by limiting their exposure to alcohol ads and promotions and by increasing their skepticism about the sponsors' marketing tactics.

  1. Leading-edge receptivity for blunt-nose bodies

    NASA Technical Reports Server (NTRS)

    Hammerton, P. W.; Kerschen, E. J.

    1992-01-01

    Boundary-layer receptivity in the leading edge region for bodies with blunt leading edges is investigated in this research program. Receptivity theory provides the link between the unsteady disturbance environment in the freestream and the initial amplitudes of instability waves in the boundary layer. This is a critical problem which must be addressed in order to develop more accurate prediction methods for boundary-layer transition.

  2. Receptive Vocabulary and Cognition of Elderly People in Institutional Care.

    PubMed

    Ibrahimagic, Amela; Zunic, Lejla Junuzovic; Ibrahimagic, Omer C; Smajlovic, Dzevdet; Rasidovic, Mirsada

    2017-06-01

    Basic cognitive functions such as: alertness, working memory, long term memory and perception, as well as higher levels of cognitive functions like: speech and language, decision-making and executive functions are affected by aging processes. Relations between the receptive vocabulary and cognitive functioning, and the manifestation of differences between populations of elderly people based on the primary disease is in the focus of this study. To examine receptive vocabulary and cognition of elderly people with: verified stroke, dementia, verified stroke and dementia, and without the manifested brain disease. The sample consisted of 120 participants older than 65 years, living in an institution. A total of 26 variables was analyzed and classified into three groups: case history/anamnestic, receptive vocabulary assessment, and cognitive assessments. The interview with social workers, nurses and caregivers, as well as medical files were used to determine the anamnestic data. A Montreal Cognitive Assessment Scale (MoCA) was used for the assessment of cognition. In order to estimate the receptive vocabulary, Peabody Picture Vocabulary Test was used. Mean raw score of receptive vocabulary is 161.58 (+-21:58 points). The best results for cognitive assessment subjects achieved on subscales of orientation, naming, serial subtraction, and delayed recall. Discriminative analysis showed the significant difference in the development of receptive vocabulary and cognitive functioning in relation to the primary disease of elderly people. The biggest difference was between subjects without manifested brain disease (centroid = 1.900) and subjects with dementia (centroid = -1754). There is a significant difference between elderly with stroke; dementia; stroke and dementia, and elderly people without manifested disease of the brain in the domain of receptive vocabulary and cognitive functioning. Variables of serial subtraction, standardized test results of receptive vocabulary

  3. Receptivity and Transition of Supersonic Boundary Layers Over Swept Wings

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; King, Rudolph A.

    2010-01-01

    The receptivity, stability, and transition of three-dimensional supersonic boundary layers over (1) a swept cylinder, (2) a swept wing with a sharp leading edge, and (3) a swept wing with a blunt leading edge are numerically investigated for a free-stream Mach number of 3. These computations are compared to an earlier experimental and computational study performed by Archambaud et al.1 The steady flow fields with and without roughness elements are obtained by solving the full Navier-Stokes equations. The N-factors computed in this study at the transition onset locations reported in Ref. 1 for flow over the swept cylinder are approximately 16.5 for traveling crossflow disturbances and 9 for stationary disturbances. The N-factors for the traveling crossflow are high based on our past experiences. However, they are comparatively smaller than those reported by Archambaud et al., who found N-factor values in the range of 20 to 25 for traveling disturbances and 13 to 20 for stationary disturbances. Similarly, the N-factors computed in this study for the traveling and stationary disturbances for the flow over the sharp wing are approximately 7 and 2.5, respectively, and for the flow over the blunt wing are 6.5 and 4.8, respectively. Using the envelope method, Archambaud et al. obtained values of approximately 8.0 and 4.0 for the sharp wing case and 16.0 and 12.0 for the blunt wing case.

  4. Whole-body vibration-induced muscular reflex: Is it a stretch-induced reflex?

    PubMed Central

    Cakar, Halil Ibrahim; Cidem, Muharrem; Sebik, Oguz; Yilmaz, Gizem; Karamehmetoglu, Safak Sahir; Kara, Sadik; Karacan, Ilhan; Türker, Kemal Sıtkı

    2015-01-01

    [Purpose] Whole-body vibration (WBV) can induce reflex responses in muscles. A number of studies have reported that the physiological mechanisms underlying this type of reflex activity can be explained by reference to a stretch-induced reflex. Thus, the primary objective of this study was to test whether the WBV-induced muscular reflex (WBV-IMR) can be explained as a stretch-induced reflex. [Subjects and Methods] The present study assessed 20 healthy males using surface electrodes placed on their right soleus muscle. The latency of the tendon reflex (T-reflex) as a stretch-induced reflex was compared with the reflex latency of the WBV-IMR. In addition, simulations were performed at 25, 30, 35, 40, 45, and 50 Hz to determine the stretch frequency of the muscle during WBV. [Results] WBV-IMR latency (40.5 ± 0.8 ms; 95% confidence interval [CI]: 39.0–41.9 ms) was significantly longer than T-reflex latency (34.6 ± 0.5 ms; 95% CI: 33.6–35.5 ms) and the mean difference was 6.2 ms (95% CI of the difference: 4.7–7.7 ms). The simulations performed in the present study demonstrated that the frequency of the stretch signal would be twice the frequency of the vibration. [Conclusion] These findings do not support the notion that WBV-IMR can be explained by reference to a stretch-induced reflex. PMID:26310784

  5. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  6. Profiling the gene signature of endometrial receptivity: clinical results.

    PubMed

    Garrido-Gómez, Tamara; Ruiz-Alonso, María; Blesa, David; Diaz-Gimeno, Patricia; Vilella, Felipe; Simón, Carlos

    2013-03-15

    This article highlights the need for methods to objectively diagnose endometrial receptivity as a factor contributing to infertility in female patients. The correct identification of the appropriate window of implantation in a given patient, by using endometrial receptivity biomarkers, can help to prevent reproductive failure resulting from misplaced timing of the endometrial window of implantation (WOI). Although to date no single, clinically relevant morphologic, molecular, or histologic marker capable of indicating endometrial receptivity status has been identified, global transcriptomic analysis of human endometria performed in the last decade has given us insights into a genomic signature that is capable of identifying endometrial receptivity. As a consequence, a genomic tool named the Endometrial Receptivity Array (ERA), based on a customized microarray, was developed, and along with it a specially trained bioinformatic prediction computer algorithm was created to identify WOI timing in the endometrium. This tool has proven more accurate and consistent than histologic (Noyes) dating at identifying the personalized WOI day, thus leading to the new clinical concept of personalized ET on the optimum day of endometrial receptivity, identified individually case by case.

  7. Numerical Simulation of Receptivity for a Transition Experiment

    NASA Technical Reports Server (NTRS)

    Collis, S. Scott; Joslin, R. D. (Technical Monitor)

    2000-01-01

    The cost of fuel to overcome turbulence induced viscous drag on a commercial airplane constitutes a significant fraction of the operating cost of an airline. Achieving laminar flow and maintaining it over a large portion of the wing can significantly reduce the viscous drag, and hence the cost. Design of such laminar-flow-control wings and their practical operation requires the ability to accurately and reliably predict the transition from laminar to turbulent flow. The transition process begins with the conversion of environmental and surface disturbances into the instability waves of the flow by a process called receptivity. The goal of the current research project has been to improve the prediction of transition through a better understanding of the physics of receptivity. The initial objective of this work was to investigate the specific stability and receptivity characteristics of a particular experimental investigation of boundary layer receptivity at NASA Langley. Some simulation results using direct solutions of the linearized Navier-Stokes equations which modeled this experiment where presented in the 1999 APS DFD meeting. However, based on these initial investigations, it became clear that to cover the vast receptivity parameter space required for a practical transition prediction tool, more efficient methods would be required. Thus, the focus of this research was shifted from modeling this particular experiment to formulating and developing new techniques that could efficiently yet accurately predict receptivity for a wide range of disturbance conditions.

  8. Receptance method for active vibration control of a nonlinear system

    NASA Astrophysics Data System (ADS)

    Ghandchi Tehrani, Maryam; Wilmshurst, Laurence; Elliott, Stephen J.

    2013-09-01

    This paper presents the application of the receptance method to nonlinear systems for active vibration control. The method, previously established for linear systems, is extended to a class of single-degree-of-freedom nonlinear systems that can be characterised using describing functions. A significant advantage of the receptance method is that there is no requirement to know the system parameters such as mass, damping and stiffness terms, typically obtained using finite element methods. The method is particularly advantageous for nonlinear systems, since there is no requirement for nonlinear identification. A linear state feedback controller is applied to an example of a single-degree-of-freedom Duffing oscillator, to assign the peak resonance to a prescribed value using the established Sherman-Morrison receptance method. It is then demonstrated that an iterative form of the Sherman-Morrison receptance method is required for the accurate assignment of this peak resonance, in order to account for changes in the open-loop receptance. Both harmonic balance and Volterra series representations are investigated to approximate the receptance in the complex domain, and their advantages and disadvantages are discussed in a numerical example.

  9. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  10. Support for non-locking parallel reception of packets belonging to a single memory reception FIFO

    DOEpatents

    Chen, Dong [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Salapura, Valentina [Yorktown Heights, NY; Senger, Robert M [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugawara, Yutaka [Yorktown Heights, NY

    2011-01-27

    A method and apparatus for distributed parallel messaging in a parallel computing system. A plurality of DMA engine units are configured in a multiprocessor system to operate in parallel, one DMA engine unit for transferring a current packet received at a network reception queue to a memory location in a memory FIFO (rmFIFO) region of a memory. A control unit implements logic to determine whether any prior received packet destined for that rmFIFO is still in a process of being stored in the associated memory by another DMA engine unit of the plurality, and prevent the one DMA engine unit from indicating completion of storing the current received packet in the reception memory FIFO (rmFIFO) until all prior received packets destined for that rmFIFO are completely stored by the other DMA engine units. Thus, there is provided non-locking support so that multiple packets destined for a single rmFIFO are transferred and stored in parallel to predetermined locations in a memory.

  11. Variability in Hoffmann and tendon reflexes in healthy male subjects

    NASA Technical Reports Server (NTRS)

    Good, E.; Do, S.; Jaweed, M.

    1992-01-01

    There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.

  12. Soleus H-Reflex Operant Conditioning Changes The H-Reflex Recruitment Curve

    PubMed Central

    Thompson, Aiko K.; Chen, Xiang Yang; Wolpaw, Jonathan R.

    2012-01-01

    Introduction Operant conditioning can gradually change the human soleus H-reflex. The protocol conditions the reflex near M-wave threshold. This study examined its impact on the reflexes at other stimulus strengths. Methods H-reflex recruitment curves were obtained before and after a 24-session exposure to an up-conditioning (HRup) or down-conditioning (HRdown) protocol and were compared. Results In both HRup and HRdown subjects, conditioning affected the entire H-reflex recruitment curve. In 5 of 6 HRup and 3 of 6 HRdown subjects, conditioning elevated (HRup) or depressed (HRdown), respectively, the entire curve. In the other HRup subject or the other 3 HRdown subjects, the curve was shifted to the left or to the right, respectively. Discussion H-reflex conditioning does not simply change the H-reflex to a stimulus of particular strength; it also changes the H-reflexes to stimuli of different strengths. Thus, it is likely to affect many actions in which this pathway participates. PMID:23281107

  13. Evidence for sustained cortical involvement in peripheral stretch reflex during the full long latency reflex period.

    PubMed

    Perenboom, M J L; Van de Ruit, M; De Groot, J H; Schouten, A C; Meskers, C G M

    2015-01-01

    Adaptation of reflexes to environment and task at hand is a key mechanism in optimal motor control, possibly regulated by the cortex. In order to locate the corticospinal integration, i.e. spinal or supraspinal, and to study the critical temporal window of reflex adaptation, we combined transcranial magnetic stimulation (TMS) and upper extremity muscle stretch reflexes at high temporal precision. In twelve participants (age 49 ± 13 years, eight male), afferent signals were evoked by 40 ms ramp and subsequent hold stretches of the m. flexor carpi radialis (FCR). Motor conduction delays (TMS time of arrival at the muscle) and TMS-motor threshold were individually assessed. Subsequently TMS pulses at 96% of active motor threshold were applied with a resolution of 5-10 ms between 10 ms before and 120 ms after onset of series of FCR stretches. Controlled for the individually assessed motor conduction delay, subthreshold TMS was found to significantly augment EMG responses between 60 and 90 ms after stretch onset. This sensitive temporal window suggests a cortical integration consistent with a long latency reflex period rather than a spinal integration consistent with a short latency reflex period. The potential cortical role in reflex adaptation extends over the full long latency reflex period, suggesting adaptive mechanisms beyond reflex onset. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Soleus H-reflex operant conditioning changes the H-reflex recruitment curve.

    PubMed

    Thompson, Aiko K; Chen, Xiang Yang; Wolpaw, Jonathan R

    2013-04-01

    Operant conditioning can gradually change the human soleus H-reflex. The protocol conditions the reflex near M-wave threshold. In this study we examine its impact on the reflexes at other stimulus strengths. H-reflex recruitment curves were obtained before and after a 24-session exposure to an up-conditioning (HRup) or a down-conditioning (HRdown) protocol and were compared. In both HRup and HRdown subjects, conditioning affected the entire H-reflex recruitment curve. In 5 of 6 HRup and 3 of 6 HRdown subjects, conditioning elevated (HRup) or depressed (HRdown), respectively, the entire curve. In the other HRup subject or the other 3 HRdown subjects, the curve was shifted to the left or to the right, respectively. H-reflex conditioning does not simply change the H-reflex to a stimulus of particular strength; it also changes the H-reflexes to stimuli of different strengths. Thus, it is likely to affect many actions in which this pathway participates. Copyright © 2012 Wiley Periodicals, Inc.

  15. Audiogenic reflex seizures in cats

    PubMed Central

    Lowrie, Mark; Bessant, Claire; Harvey, Robert J; Sparkes, Andrew; Garosi, Laurent

    2015-01-01

    Objectives This study aimed to characterise feline audiogenic reflex seizures (FARS). Methods An online questionnaire was developed to capture information from owners with cats suffering from FARS. This was collated with the medical records from the primary veterinarian. Ninety-six cats were included. Results Myoclonic seizures were one of the cardinal signs of this syndrome (90/96), frequently occurring prior to generalised tonic–clonic seizures (GTCSs) in this population. Other features include a late onset (median 15 years) and absence seizures (6/96), with most seizures triggered by high-frequency sounds amid occasional spontaneous seizures (up to 20%). Half the population (48/96) had hearing impairment or were deaf. One-third of cats (35/96) had concurrent diseases, most likely reflecting the age distribution. Birmans were strongly represented (30/96). Levetiracetam gave good seizure control. The course of the epilepsy was non-progressive in the majority (68/96), with an improvement over time in some (23/96). Only 33/96 and 11/90 owners, respectively, felt the GTCSs and myoclonic seizures affected their cat’s quality of life (QoL). Despite this, many owners (50/96) reported a slow decline in their cat’s health, becoming less responsive (43/50), not jumping (41/50), becoming uncoordinated or weak in the pelvic limbs (24/50) and exhibiting dramatic weight loss (39/50). These signs were exclusively reported in cats experiencing seizures for >2 years, with 42/50 owners stating these signs affected their cat’s QoL. Conclusions and relevance In gathering data on audiogenic seizures in cats, we have identified a new epilepsy syndrome named FARS with a geriatric onset. Further studies are warranted to investigate potential genetic predispositions to this condition. PMID:25916687

  16. The reflex-diode HPM source on Aurora

    SciTech Connect

    Huttlin, G.A.; Bushell, M.S.; Conrad, D.B.; Davis, D.P.; Litz, M.S.; Ruth, B.G.; Agee, F.J. ); Ebersole, K.L.; Judy, D.C.; Lezcano, P.A.; Pereira, N.R.; Weidenheimer, D.M. )

    1990-06-01

    This paper describes the most recent in a series of experiments to develop the reflex diode as a source of microwaves on the Aurora relativistic electron-beam pulser. The authors have achieved an overall output for radial extraction of {approximately} 400 J in microwave bursts from {approximately} 100 to 150 ns at frequencies below 1 GHz. The diagnostics for radial extraction have included directional couplers, card calorimeters, and free-field sensors. The authors have varied the anode/cathode spacing, downstream microwave reflector, and a second anode foil, but, within the range of variations, no strong trends have been noted.

  17. Jaw, blink and corneal reflex latencies in multiple sclerosis.

    PubMed Central

    Sanders, E A; Ongerboer de Visser, B W; Barendswaard, E C; Arts, R J

    1985-01-01

    Jaw, blink and corneal reflexes, which all involve the trigeminal system, were recorded in 54 patients with multiple sclerosis; thirty-seven of these patients were classified as having definite multiple sclerosis and 17 as indefinite multiple sclerosis, according to Schumacher's criteria. The jaw reflex was abnormal less frequently than either of the other two reflexes, but in four cases it was the only abnormal reflex found. Testing a combination of two or three trigeminal reflexes did not yield a higher incidence of abnormalities than testing the blink or corneal reflex alone. Nine patients showed abnormal reflexes which were unexpected on the basis of clinical symptoms. The combined recordings demonstrate at least one abnormal reflex in 74% of the patients. The various types of reflex abnormalities reflect major damage to different parts of the trigeminal system and may therefore make an important contribution to the diagnosis of multiple sclerosis. PMID:4087004

  18. A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex.

    PubMed

    Lopez-Poveda, Enrique A; Eustaquio-Martín, Almudena; Stohl, Joshua S; Wolford, Robert D; Schatzer, Reinhold; Wilson, Blake S

    2016-01-01

    In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening

  19. A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex

    PubMed Central

    Eustaquio-Martín, Almudena; Stohl, Joshua S.; Wolford, Robert D.; Schatzer, Reinhold; Wilson, Blake S.

    2016-01-01

    Objectives: In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Design: Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and

  20. Volume production of negative ions in the reflex type ion source

    SciTech Connect

    Jimbo, K.

    1982-01-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA (42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less then 1%. An isotope effect of negative ion production is observed. When anomalous diffusion in the positive column was found by Lehnert and Hoh (1960), it was pointed out that the large particle loss produced by anomalous diffusion is compensated by the large particle production inside the plasma, i.e., the plasma tries to maintain itself. The self-sustaining property of the plasma is applied to the reflex-type negative ion source. Anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. The apparent encouragement of negative ion diffusion by the increase of density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. It is found from the quasilinear theory that the inwardly directed radial electric field destabilizes the plasma in the reflex-type ion source. The nonlinear theory based on Yoshikawa method (1962) is extended, and the anomalous diffusion coefficient in a weakly ionized plasma is obtained. The electrostatic sheath trap, which increases the confinement of negative ions in the reflex-type ion source, is also discussed.