Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.
Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka
2017-01-01
While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.
Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles
Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka
2017-01-01
While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg. PMID:28662201
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.
2009-01-01
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J
2009-10-21
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.
Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige
2005-05-01
The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.
Does spasticity contribute to walking dysfunction after stroke?
Ada, L.; Vattanasilp, W.; O'Dwyer, N.; Crosbie, J.
1998-01-01
OBJECTIVES—Clinically, it is assumed that spasticity of the calf muscles interferes with walking after stroke. The aim was to examine this assumption by evaluating the contribution of spasticity in the gastrocnemius muscle to walking dysfunction in an ambulant stroke population several months after stroke. METHODS—Fourteen stroke patients who were able to walk independently and 15 neurologically normal control subjects were recruited. Both resting and action stretch reflexes of the gastrocnemius muscle were investigated under conditions that simulated walking. Resting tonic stretch reflexes were measured to assess spasticity whereas action tonic stretch reflexes were measured to assess the possible contribution of spasticity to gait dysfunction. RESULTS—Two thirds of the stroke patients exhibited resting tonic stretch reflexes which indicate spasticity, whereas none of the control subjects did. However, the stroke patients exhibited action tonic stretch reflexes that were of similar magnitude to the control subjects, suggesting that their reflex activity during walking was not different from that of control subjects. Furthermore, there was no evidence that the action stretch reflex in the stroke patients contributed a higher resistance to stretch than the control subjects. CONCLUSIONS—Whereas most of the stroke patients exhibited spasticity when measured both clinically and physiologically, they did not exhibit an increase in resistance to dorsiflexion due to exaggerated action tonic stretch reflexes. It is concluded that it is unlikely that spasticity causes problems in walking after stroke in ambulant patients. Therefore, it seems inappropriate to routinely reduce or inhibit the reflex response to improve functional movement in stroke rehabilitation. Factors other than spasticity should be considered when analysing walking after stroke, so that appropriate treatment is provided to patients. PMID:9598679
Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.
ERIC Educational Resources Information Center
Myklebust, Barbara M.; Gottlieb, Gerald L.
1993-01-01
When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…
The behaviour of the long-latency stretch reflex in patients with Parkinson's disease
Rothwell, Jc; Obeso, Ja; Traub, Mm; Marsden, Cd
1983-01-01
The size of the long-latency stretch reflex was measured in a proximal (triceps) and distal (flexor pollicis longus) muscle in 47 patients with Parkinson's disease, and was compared with that seen in a group of 12 age-matched normal control subjects. The patients were classified clinically into four groups according to the degree of rigidity at the elbow or tremor. Stretch reflexes were evaluated while the subject was exerting a small force against a constant preload supplied by a torque motor, and the size of the reflex response was measured as fractional increase over basal levels of activity. When stretches were given at random intervals by increasing the force exerted by the motor by a factor of 2 or 3, there was a clear trend for the more severely affected patients to have larger long latency responses in the triceps muscle, although there was no change in the size of the short-latency, spinal component of the response. In contrast, there was no change in the size of the long-latency response of the flexor pollicis longus in any group of patients with Parkinson's disease. Despite any differences in reflex size, the inherent muscle stiffness of both muscles appeared to be normal in all groups of patients with Parkinson's disease, since the displacement trajectory of the limb following the force increase was the same as control values in the short (25 ms) period before reflex compensation could intervene. In 20 of the patients and in seven of the control subjects, servo-controlled, ramp positional disturbances were given to the thumb. Up to a velocity of 300°/s, the size of the long-latency stretch reflex was proportional to the log velocity of stretch. This technique revealed, in both moderately and severely rigid patients, increases in the reflex sensitivity of the flexor pollicis longus, which had not been clear using step torque stretches alone. However, whether using ramp or step displacements, long latency stretch reflex gain was not closely related to rigidity; reflex size was within the normal range in many patients with severe rigidity. Enhanced long latency stretch reflexes thus contribute to, but may not be solely responsible for, rigidity in Parkinson's disease. PMID:6842198
Cody, F W; Goodwin, C N; Richardson, H C
1987-01-01
1. The reflex electromyographic responses evoked in a wrist flexor muscle, flexor carpi radialis (f.c.r.), by forcible extension of the wrist ('stretch') and by vibration of the flexor tendon have been studied in normal subjects. Reflexes were elicited during the maintenance of a low level of voluntary flexor contraction (5% maximum). Stretch regularly produced a relatively prolonged (ca. 100 ms duration) increase in e.m.g. activity which was usually divisible into short-latency (ca. 25 ms, M1) and long-latency (ca. 50 ms, M2) peaks. Vibration produced a single, phasic peak, at short latency, with no sign of an accompanying long-latency wave comparable to the M2 stretch response. 2. Ischaemia was induced by inflation of a blood-pressure cuff around the upper arm and its effects upon the reflex patterns were studied. During ischaemia M1 stretch responses showed a more rapid and pronounced decline than did M2 responses and were abolished before voluntary power was appreciably affected. Vibration-evoked short-latency peaks changed in an essentially parallel manner to M1 stretch reflexes. During recovery from ischaemia M2 reflexes were restored before short-latency responses. 3. The patterns of reflex reductions in e.m.g. upon withdrawal of stimulation were also studied. Such troughs in activity, under non-ischaemic conditions, regularly commenced at short latency and were of relatively small amplitude. The records of several of the subjects, and particularly ones obtained during ischaemia, suggested that release of stretch (with concomitant stretch of antagonists) could elicit an additive, long-latency decline in e.m.g. The existence of any such separate, delayed component was never observed upon termination of vibration. 4. Measurements of changes in the latencies and durations of reflex components, accompanying the progression of ischaemia, indicated that depression of early reflex activity resulted in part from increases in the latencies of these initial peaks but predominantly reflected simultaneous and separate reductions in their amplitudes. 5. The generation of short-latency reflexes by stretch and vibration, both of which stimuli powerfully excite muscle spindle primary endings, and the marked susceptibility of these responses to ischaemia supports their being mediated by group Ia afferents. The contrasting behaviour of M2 stretch responses, both regarding their absence with vibration and their resistance to ischaemia, suggests that they depend crucially upon a separate group of reflex afferents.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3443959
Dutia, M B; Price, R F
1987-01-01
1. Interactions between the sagittal vestibulo-collic reflex (v.c.r.) and the cervico-collic stretch reflex (c.c.r.) have been studied in the neck extensor muscles biventer cervicis (b.c.) in the decerebrate cat. The v.c.r. was evoked by a 'standard' vestibular stimulus consisting of a sinusoidal nose-up, nose-down head movement of 6-8 deg amplitude at 1 Hz. The c.c.r. was evoked by sinusoidal stretching of the b.c. muscles at 1 Hz. The amplitude of muscle stretching, and its phase in relation to head movement, were systematically varied. 2. When muscle stretching was applied in phase with head movement (so that the muscles were stretched as the head moved in the nose-down direction), the gain of the combined (v.c.r. + c.c.r.) reflex in the b.c. muscles increased above that of the v.c.r. If the muscle stretching was applied out of phase with head movement (so that the muscles shortened as the head moved downward), the gain of the combined reflex was reduced to a value below that of the v.c.r. 3. The effects on the gain of the combined reflex varied in proportion to the amplitude of muscle stretching. The gain and phase of the combined reflex is modelled reasonably well by a linear vectorial addition between the v.c.r. and the c.c.r. over a wide range of amplitudes of muscle stretching. The linear summation model contains a proportionality constant K, which may represent a factor by which the two reflexes are 'calibrated' against each other. 4. If one of the b.c. muscles was held at a fixed length and the other stretched sinusoidally, the c.c.r. was evoked only in the stimulated muscle. Vestibular stimulation then summed with the c.c.r in the stimulated muscle, while on the contralateral side the reflex response was the same as that of the v.c.r. alone. It would appear therefore that the motoneurone pools of the b.c. muscles are organized as independent entities without mutually excitatory or inhibitory reflex linkages. This arrangement presumably allows flexibility in the supraspinal control of the b.c. muscles, which are often used either as synergists during sagittal head movement or as antagonists during horizontal or roll movements of the head. 5. The interaction between the v.c.r. and the c.c.r. results in an apparent 'servo-assistance' role for the muscle afferent feed-back from the b.c. muscles, amplifying or attenuating the reflex response of the muscles to a given head movement.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3498829
Chung, Sun G.; Ren, Yupeng; Liu, Lin; Roth, Elliot J.; Rymer, W. Zev
2013-01-01
This study characterizes tonic and phasic stretch reflex and stiffness and viscosity changes associated with spastic hemiparesis. Perturbations were applied to the ankle of 27 hemiparetic and 36 healthy subjects under relaxed or active contracting conditions. A nonlinear delay differential equation model characterized phasic and tonic stretch reflex gains, elastic stiffness, and viscous damping. Tendon reflex was characterized with reflex gain and threshold. Reflexively, tonic reflex gain was increased in spastic ankles at rest (P < 0.038) and was not regulated with muscle contraction, indicating impaired tonic stretch reflex. Phasic-reflex gain in spastic plantar flexors was higher and increased faster with plantar flexor contraction (P < 0.012) than controls (P < 0.023) and higher in dorsi-flexors at lower torques (P < 0.038), primarily because of its increase at rest (P = 0.045), indicating exaggerated phasic stretch reflex especially in more spastic plantar flexors, which showed higher phasic stretch reflex gain than dorsi-flexors (P < 0.032). Spasticity was associated with increased tendon reflex gain (P = 0.002) and decreased threshold (P < 0.001). Mechanically, stiffness in spastic ankles was higher than that in controls across plantar flexion/dorsi-flexion torque levels (P < 0.032), and the more spastic plantar flexors were stiffer than dorsi-flexors at comparable torques (P < 0.031). Increased stiffness in spastic ankles was mainly due to passive stiffness increase (P < 0.001), indicating increased connective tissues/shortened fascicles. Viscous damping in spastic ankles was increased across the plantar flexion torque levels and at lower dorsi-flexion torques, reflecting increased passive viscous damping (P = 0.033). The more spastic plantar flexors showed higher viscous damping than dorsi-flexors at comparable torque levels (P < 0.047). Simultaneous characterizations of reflex and nonreflex changes in spastic hemiparesis may help to evaluate and treat them more effectively. PMID:23636726
Stretch reflex excitability of the anti-gravity ankle extensor muscle in elderly humans.
Kawashima, N; Nakazawa, K; Yamamoto, S-I; Nozaki, D; Akai, M; Yano, H
2004-01-01
To examine whether the stretch reflex excitability of the soleus muscle changes with age, stretch reflexes at rest (REST) and during weak voluntary contractions (ACT) were elicited in 18 older and 14 younger subjects. The amplitude of the stretch reflex responses and gain, defined as the gradient of the regression line for the relation between stretch reflex responses against the angular velocity of the applied perturbation, were evaluated in each short-latency (M1) and two long-latency components (M2 and M3). It was found that in the older group, both the amplitude and gain of the M1 component did not change from the REST to the ACT conditions, whereas in the younger group both variables significantly increased from the REST to ACT conditions. The latency of the M1 component was significantly shorter under the REST condition (older vs. younger: 51.8 +/- 7.37 vs. 55.1 +/- 8.69 ms), while no group differences were found in those variables under the ACT condition, suggesting that the muscle-tendon complexes of SOL muscles of the older subjects were less elastic and had less slack, probably due to age-related histochemical alterations. Further, the Hoffman reflex (H-reflex), elicited during the REST condition in 10 older and 11 younger subjects showed no significant differences, suggesting that the soleus motoneuron response to the Ia input was comparable between the two subject groups. The histochemical alterations occurring with the ageing process might augment the short-latency stretch reflex in the SOL muscle without enhancement of motoneuronal excitability, and this effect might be masked when the muscle is voluntarily activated.
Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury
Onushko, Tanya; Hyngstrom, Allison
2013-01-01
Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI. PMID:23615544
Contributions of Altered Stretch Reflex Coordination to Arm Impairments Following Stroke
Ravichandran, Vengateswaran J.; Krutky, Matthew A.; Perreault, Eric J.
2010-01-01
Patterns of stereotyped muscle coactivation, clinically referred to as synergies, emerge following stroke and impair arm function. Although researchers have focused on cortical contributions, there is growing evidence that altered stretch reflex pathways may also contribute to impairment. However, most previous reflex studies have focused on passive, single-joint movements without regard to their coordination during volitional actions. The purpose of this study was to examine the effects of stroke on coordinated activity of stretch reflexes elicited in multiple arm muscles following multijoint perturbations. We hypothesized that cortical injury results in increased stretch reflexes of muscles characteristic of the abnormal flexor synergy during active arm conditions. To test this hypothesis, we used a robot to apply position perturbations to impaired arms of 10 stroke survivors and dominant arms of 8 healthy age-matched controls. Corresponding reflexes were assessed during volitional contractions simulating different levels of gravitational support, as well as during voluntary flexion and extension of the elbow and shoulder. Reflexes were quantified by average rectified surface electromyogram, recorded from eight muscles spanning the elbow and shoulder. Reflex coordination was quantified using an independent components analysis. We found stretch reflexes elicited in the stroke group were significantly less sensitive to changes in background muscle activation compared with those in the control group (P < 0.05). We also observed significantly increased reflex coupling between elbow flexor and shoulder abductor–extensor muscles in stroke subjects relative to that in control subjects. This increased coupling was present only during volitional tasks that required elbow flexion (P < 0.001), shoulder extension (P < 0.01), and gravity opposition (P < 0.01), but not during the “no load” condition. During volitional contractions, reflex amplitudes scaled with the level of impairment, as assessed by Fugl-Meyer scores (r2 = 0.63; P < 0.05). We conclude that altered reflex coordination is indicative of motor impairment level and may contribute to impaired arm function following stroke. PMID:20962072
No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.
Gibson, W; Campbell, A; Allison, G
2013-09-01
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.
Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L
2007-10-01
To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.
NASA Astrophysics Data System (ADS)
Flanagan, P. M.; Chutkow, J. G.; Riggs, M. T.; Cristiano, V. D.
1987-05-01
We describe the design of a reliable, user-friendly preprototype system for quantifying the tendon stretch reflexes in humans and large mammals. A hand-held, instrumented reflex gun, the impactor of which contains a single force sensor, interfaces with a computer. The resulting test system can deliver sequences of reproducible stimuli at graded intensities and adjustable durations to a muscle's tendon ("tendon taps"), measure the impacting force of each tap, and record the subsequent reflex muscle contraction from the same tendon -- all automatically. The parameters of the reflex muscle contraction include latency; mechanical threshold; and peak time, peak magnitude, and settling time. The results of clinical tests presented in this paper illustrate the system's potential usefulness in detecting neurologic dysfunction affecting the tendon stretch reflexes, in documenting the course of neurologic illnesses and their response to therapy, and in clinical and laboratory neurologic research.
Peroneus longus stretch reflex amplitude increases after ankle brace application
Cordova, M; Ingersoll, C
2003-01-01
Background: The use of external ankle support is widespread throughout sports medicine. However, the application of ankle bracing to a healthy ankle over a long period has been scrutinised because of possible neuromuscular adaptations resulting in diminished dynamic support offered by the peroneus longus. Objective: To investigate the immediate and chronic effects of ankle brace application on the amplitude of peroneus longus stretch reflex. Methods: Twenty physically active college students (mean (SD) age 23.6 (1.7) years, height 168.7 (8.4) cm, and mass 69.9 (12.0) kg) who had been free from lower extremity pathology for the 12 months preceding the study served as subjects. None had been involved in a strength training or conditioning programme in the six months preceding the study. A 3 x 3 x 2 (test condition x treatment condition x time) design with repeated measures on the first and third factor was used. The peroneus longus stretch reflex (% of maximum amplitude) during sudden foot inversion was evaluated under three ankle brace conditions (control, lace up, and semi-rigid) before and after eight weeks of ankle brace use. Results: A 3 x 3 x 2 repeated measures analysis of variance showed that peroneus longus stretch reflex amplitude increased immediately after application of a lace up brace (67.1 (4.4)) compared with the semi-rigid (57.9 (4.3)) and control (59.0 (5.2)) conditions (p<0.05). Peroneus longus stretch reflex also increased after eight weeks of use of the semi-rigid brace compared with the lace up and control conditions (p<0.05). Conclusions: Initial application of a lace up style ankle brace and chronic use of a semi-rigid brace facilitates the amplitude of the peroneus longus stretch reflex. It appears that initial and long term ankle brace use does not diminish the magnitude of this stretch reflex in the healthy ankle. PMID:12782553
Role of stretch reflex in voluntary movements. [of human foot
NASA Technical Reports Server (NTRS)
Gottlieb, G. L.; Agarwal, G. C.
1975-01-01
The stretch reflex is often described as a spinal servomechanism, a device for assisting in the regulation of muscle length. Observation of the EMG response to mechanical interruption of voluntary movements fails to demonstrate a significant role for spinal reflexes at 40 msec latency. Two functional responses with latencies of 120 msec and 200 msec, implying supraspinal mediation, are observed.
NASA Astrophysics Data System (ADS)
Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow
In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.
Robotic investigation on effect of stretch reflex and crossed inhibitory response on bipedal hopping
Rosendo, Andre; Ikemoto, Shuhei; Shimizu, Masahiro; Hosoda, Koh
2018-01-01
To maintain balance during dynamic locomotion, the effects of proprioceptive sensory feedback control (e.g. reflexive control) should not be ignored because of its simple sensation and fast reaction time. Scientists have identified the pathways of reflexes; however, it is difficult to investigate their effects during locomotion because locomotion is controlled by a complex neural system and current technology does not allow us to change the control pathways in living humans. To understand these effects, we construct a musculoskeletal bipedal robot, which has similar body structure and dynamics to those of a human. By conducting experiments on this robot, we investigate the effects of reflexes (stretch reflex and crossed inhibitory response) on posture during hopping, a simple and representative bouncing gait with complex dynamics. Through over 300 hopping trials, we confirm that both the stretch reflex and crossed response can contribute to reducing the lateral inclination during hopping. These reflexive pathways do not use any prior knowledge of the dynamic information of the body such as its inclination. Beyond improving the understanding of the human neural system, this study provides roboticists with biomimetic ideas for robot locomotion control. PMID:29593088
Grey, Michael J; Ladouceur, Michel; Andersen, Jacob B; Nielsen, Jens Bo; Sinkjær, Thomas
2001-01-01
The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h−1 with the left ankle attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (∼8 deg) dorsiflexion perturbations 200 ms after heel contact. Short and medium latency responses were observed with latencies of 55 ± 5 and 78 ± 6 ms, respectively. The short latency response was velocity sensitive (P < 0.001), while the medium latency response was not (P = 0.725). Nerve cooling increased the delay of the medium latency component to a greater extent than that of the short latency component (P < 0.005). Ischaemia strongly decreased the short latency component (P = 0.004), whereas the medium latency component was unchanged (P = 0.437). Two hours after the ingestion of tizanidine, an α2-adrenergic receptor agonist known to selectively depress the transmission in the group II afferent pathway, the medium latency reflex was strongly depressed (P = 0.007), whereas the short latency component was unchanged (P = 0.653). An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. Our results support the hypothesis that, during walking the medium latency component of the stretch reflex resulting from an unexpected perturbation is contributed to by group II muscle afferents. PMID:11483721
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
NASA Technical Reports Server (NTRS)
Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869
The origin of Woltman's sign of myxoedema.
Burkholder, David B; Klaas, James P; Kumar, Neeraj; Boes, Christopher J
2013-09-01
Woltman's sign of myxoedema, named after Henry Woltman in 1956, is the delayed relaxation phase of the muscle stretch reflex in patients with myxoedema. Although a change in these reflexes was mentioned as being clinically evident possibly as early as the 1870s, no formal description was published until 1924 when William Calvert Chaney objectively quantified the change. Woltman was involved in training Chaney, and it has been proposed that he guided Chaney's study of these reflexes. Despite the attachment of Woltman's name to the eponym, little evidence exists that directly links him to the first objective study of the muscle stretch reflex in myxoedema performed by Chaney. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tonic vibration reflex in spasticity, Parkinson's disease, and normal subjects
Burke, David; Andrews, Colin J.; Lance, James W.
1972-01-01
The tonic vibration reflex (TVR) has been studied in the quadriceps and triceps surae muscles of 34 spastic, 15 Parkinsonism, and 10 normal subjects. The TVR of spasticity develops rapidly, reaching a plateau level within 2-4 sec of the onset of vibration. The tonic contraction was often preceded by a phasic spike which appeared to be a vibration-induced equivalent of the tendon jerk. The initial phasic spike was usually followed by a silent period, and induced clonus in some patients. No correlation was found between the shape of the TVR and the site of the lesion in the central nervous system. The TVR of normal subjects and patients with Parkinsonism developed slowly, starting some seconds after the onset of vibration, and reaching a plateau level in 20-60 sec. A phasic spike was recorded occasionally in these subjects, but the subsequent tonic contraction followed the usual time course. Muscle stretch increased the quadriceps TVR of all subjects, including those with spasticity in whom the quadriceps stretch reflex decreased with increasing stretch. It is suggested that this difference between the tonic vibration reflex and the tonic stretch reflex arises from the selective activation of spindle primary endings by vibration, while both the primary and the secondary endings are responsive to muscle stretch. The TVR could be potentiated by reinforcement in some subjects. Potentiation outlasted the reinforcing manoeuvre, and was most apparent at short muscle lengths. As muscle stretch increased, thus producing a larger TVR, the degree of potentiation decreased. It is therefore suggested that the effects of reinforcement result at least partially from the activation of the fusimotor system. Since reinforcement potentiated the TVR of patients with spinal spasticity in whom a prominent clasp-knife phenomenon could be demonstrated, it is suggested that the effects of reinforcement are mediated by a descending pathway that traverses the anterior quadrant of the spinal cord. PMID:4261955
Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.
2011-01-01
Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed rest period, with a return to baseline 3 to 5 days after bed rest, depending on the duration of bed rest. In addition, a relationship between CV and loss of muscle strength in the lower leg was observed post bed rest for most subjects. Immediately post-bed rest, most subjects showed decreased performance on SOTs, with the greater decrements on sway-referenced support and head movement conditions. Post-bed rest decrements were less than typically observed following spaceflight. Decrements in postural control and the stretch reflex can be primarily attributed to the unloading mechanisms this ground-based analog provides. The stretch reflex is a concise test measurement that can be obtained during the head-down phase of bed rest, as it does not interfere with the bed rest paradigm. This makes it an ideal tool that can detect, early on, whether a countermeasure is successful in preserving muscle function.
Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide.
Davies, A; Dixon, M; Callanan, D; Huszczuk, A; Widdicombe, J G; Wise, J C
1978-07-01
Anaesthetized rabbits were given 200 ppm sulphur dioxide to breathe for 10 min. This abolished activity in 23 of 26 pulmonary stretch receptors, while leaving that of lung irritant receptors unimpaired. The Breuer-Hering reflex was abolished and breathing became deeper and slower. Inspiratory time (tI) was increased and expiratory time (tE) decreased. Subsequent vagotomy increased tidal volume (VT), tI and tE. In animals with stretch receptors blocked, injections of phenyl diguanide and histamine still increased breathing frequency and decreased VT, indicating that reflexes from lung irritant and J-receptors were intact. Inhalation of 8% CO2 caused a bigger increase in frequency and tidal volume in rabbits with stretch receptor block compared with controls or those after vagotomy. Induction of pneumothorax with stretch receptor block transiently prolonged tI and shortened tE; removal of the pneumothorax also transiently shortened tE and usually also decreased tI. The results suggest that lung irritant receptors reflexly shorten tE in all our experimental conditions, but have various effects on tI which may depend on the timing of the irritant receptor discharge and refractoriness of the inspiratory response.
Germanotta, Marco; Taborri, Juri; Rossi, Stefano; Frascarelli, Flaminia; Palermo, Eduardo; Cappa, Paolo; Castelli, Enrico; Petrarca, Maurizio
2017-01-01
Nowadays, objective measures are becoming prominent in spasticity assessment, to overcome limitations of clinical scales. Among others, Tonic Stretch Reflex Threshold (TSRT) showed promising results. Previous studies demonstrated the validity and reliability of TSRT in spasticity assessment at elbow and ankle joints in adults. Purposes of the present study were to assess: (i) the feasibility of measuring TSRT to evaluate spasticity at the ankle joint in children with Cerebral Palsy (CP), and (ii) the correlation between objective measures and clinical scores. A mechatronic device, the pediAnklebot, was used to impose 50 passive stretches to the ankle of 10 children with CP and 3 healthy children, to elicit muscles response at 5 different velocities. Surface electromyography, angles, and angular velocities were recorded to compute dynamic stretch reflex threshold; TSRT was computed with a linear regression through angles and angular velocities. TSRTs for the most affected side of children with CP resulted into the biomechanical range (95.7 ± 12.9° and 86.7 ± 17.4° for Medial and Lateral Gastrocnemius, and 75.9 ± 12.5° for Tibialis Anterior). In three patients, the stretch reflex was not elicited in the less affected side. TSRTs were outside the biomechanical range in healthy children. However, no correlation was found between clinical scores and TSRT values. Here, we demonstrated the capability of TSRT to discriminate between spastic and non-spastic muscles, while no significant outcomes were found for the dorsiflexor muscle.
Electromechanical analogs of human reflexes.
Littman, M G; Liker, M; Stubbeman, W; Russakow, J; McGee, C; Gelfand, J; Call, B J
1989-01-01
The conclusion to be drawn from our modeling is that the combined stretch and tendon reflexes alone can endow artificial muscle with a springlike feel as well as give it a baseline tone. In response to questions that motor physiologists often ask as to what variables the system controls, the answer here is clear: the stretch and tendon reflexes act together to maintain both a tension set-point and a length set-point, but in so doing they also give the system a springlike feel because of the existence of a servo error. The main goal of our studies is to understand the integration of reflexes, and thus far we have only begun to explore the two lowest-level spinal reflexes. We are in the process of expanding this work by developing a much more refined arm explicitly modeled after the human arm. This new arm is to be activated by a minimum of 10 muscles, each of which is reflexively driven, and it will allow us to explore the integration of higher-level reflex action such as automatic inhibition of antagonists and facilitation of synergists.
New insights into the pathophysiology of post-stroke spasticity.
Li, Sheng; Francisco, Gerard E
2015-01-01
Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal (RST) and vestibulospinal tracts (VSTs) has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the RST hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability cannot be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity.
New insights into the pathophysiology of post-stroke spasticity
Li, Sheng; Francisco, Gerard E.
2015-01-01
Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal (RST) and vestibulospinal tracts (VSTs) has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the RST hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability cannot be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity. PMID:25914638
Marigold, Daniel S; Eng, Janice J; Dawson, Andrew S; Inglis, J Timothy; Harris, Jocelyn E; Gylfadóttir, Sif
2005-03-01
To determine the effect of two different community-based group exercise programs on functional balance, mobility, postural reflexes, and falls in older adults with chronic stroke. A randomized, clinical trial. Community center. Sixty-one community-dwelling older adults with chronic stroke. Participants were randomly assigned to an agility (n=30) or stretching/weight-shifting (n=31) exercise group. Both groups exercised three times a week for 10 weeks. Participants were assessed before, immediately after, and 1 month after the intervention for Berg Balance, Timed Up and Go, step reaction time, Activities-specific Balance Confidence, and Nottingham Health Profile. Testing of standing postural reflexes and induced falls evoked by a translating platform was also performed. In addition, falls in the community were tracked for 1 year from the start of the interventions. Although exercise led to improvements in all clinical outcome measures for both groups, the agility group demonstrated greater improvement in step reaction time and paretic rectus femoris postural reflex onset latency than the stretching/weight-shifting group. In addition, the agility group experienced fewer induced falls on the platform. Group exercise programs that include agility or stretching/weight shifting exercises improve postural reflexes, functional balance, and mobility and may lead to a reduction of falls in older adults with stroke.
McGrath, G. J.; Matthews, P. B. C.
1973-01-01
1. Experiments have been performed to test the hypothesis that the group II fibres from the secondary endings of the muscle spindle provide an excitatory contribution to the tonic stretch reflex of the decerebrate cat. They have consisted of studying the effect of fusimotor paralysis by procaine, applied to the muscle nerve, on the reflex response to the combined stimuli of stretch (5-9 mm at 5 mm/sec) and of high-frequency vibration (100-150 Hz, 150 μm). 2. The reflex response to the combined stimuli was found to be paralysed in two distinct stages which paralleled those of the ordinary stretch reflex described earlier. The two phases of paralysis may be attributed to an early paralysis of the γ efferents followed by a later paralysis of the Ia afferents and α motor fibres. However, the Ia discharges elicited by the combined stimuli, unlike those elicited by simple stretch, should have remained unchanged on γ efferent paralysis since the Ia firing frequency may be presumed to have been clamped at the vibration frequency by the occurrence of one-to-one `driving'. The early reduction of the response to the combined stimuli may thus be attributed to the removal of a stretchevoked autogenetic excitatory input other than that long known to be provided by the Ia pathway. This supports the view that the spindle group II fibres have such an action, since their firing will be appropriately reduced on γ efferent paralysis by removal of their pre-existing fusimotor bias; there is no evidence for the existence of any other group of fibres with the right properties. 3. Recording of compound action potentials and of single units confirmed the great sensitivity of the γ efferents to procaine but showed that the group II fibres were nearly as resistant as the Ia fibres and α motor fibres. 4. The reliability of one-to-one driving of the Ia discharges by the vibration was tested in control experiments in which the reflex was elicited by an asymmetrical vibratory waveform with a rapid rising phase (1·5 or 1·9 msec at 140 Hz) and a slower falling phase. Recordings from single units showed that the use of this wave form greatly diminished any tendency to double driving (2 spikes/cycle of vibration) during the dynamic phase of stretch and never elicited it during the static phase of stretch when the reflex measurements were made. These `pulsed' vibrations elicited reflex contractions which were of the same general size and which were paralysed in the same two phases by procaine as those elicited by sinusoidal vibrations. This eliminates the possibility that the early phase of paralysis might have been due to conversion of the pattern of Ia firing from double to single driving on γ efferent paralysis. 5. Wedensky inhibition of the afferent fibres could not be held responsible for the early phase of paralysis. 6. The results are taken to strengthen the hypothesis that the spindle group II fibres contribute excitation rather than inhibition to the stretch reflex. The particular support derived from the present experiments is that all measurements of the size of the reflex at various times were made with the muscle at the same length so that the findings cannot be attributed to the tension-length properties of muscle. The detailed mechanism of the excitation, however, remains to be established and certain of the present findings suggest that it may not be a direct one. PMID:4271734
ERIC Educational Resources Information Center
Wolpaw, Jonathan R.; Chen, Xiang Yang
2006-01-01
Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining…
Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury
Bandaru, Samira P.; Liu, Shujun; Waxman, Stephen G.
2014-01-01
Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI. PMID:25505110
Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France
2012-01-01
Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200
Lack of Hypertonia in Thumb Muscles After Stroke
Kamper, Derek G.; Rymer, William Z.
2010-01-01
Despite the importance of the thumb to hand function, little is known about the origins of thumb impairment poststroke. Accordingly, the primary purpose of this study was to assess whether thumb flexors have heightened stretch reflexes (SRs) following stroke-induced hand impairment. The secondary purpose was to compare SR characteristics of thumb flexors in relation to those of finger flexors since it is unclear whether SR properties of both muscle groups are similarly affected poststroke. Stretch reflexes in thumb and finger flexors were assessed at rest on the paretic side in each of 12 individuals with chronic, severe, stroke-induced hand impairment and in the dominant thumb in each of eight control subjects also at rest. Muscle activity and passive joint flexion torques were measured during imposed slow (SS) and fast stretches (FS) of the flexors that span the metacarpophalangeal joints. Putative spasticity was then quantified in terms of the peak difference between FS and SS joint torques and electromyographic changes. For both the hemiparetic and control groups, the mean normalized peak torque differences (PTDs) measured in thumb flexors were statistically indistinguishable (P = 0.57). In both groups, flexor muscles were primarily unresponsive to rapid stretching. For 10 of 12 hemiparetic subjects, PTDs in thumb flexors were less than those in finger flexors (P = 0.03). Paretic finger flexor muscle reflex activity was consistently elicited during rapid stretching. These results may reflect an important difference between thumb and finger flexors relating to properties of the involved muscle afferents and spinal motoneurons. PMID:20668270
Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P
2010-07-26
To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.
Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.
Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. Conclusions: The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm. PMID:25210572
Development of an Intelligent Stretching Device for Ankle Joints With Contracture/Spasticity
2001-10-25
percentage corresponded to background dorsi-flexion muscle contraction and 0% was the relaxed state. Next, tendon reflexes were evaluated...the representative cases, joint stiffness was reduced markedly after stretching across the range of muscle contraction (Fig. 5), including both
Mu, Laiyong; Ritzmann, Roy E
2008-03-01
Tethered cockroaches turn from unilateral antennal contact using asymmetrical movements of mesothoracic (T2) legs (Mu and Ritzmann in J Comp Physiol A 191:1037-1054, 2005). During the turn, the leg on the inside of the turn (the inside T2 leg) has distinctly different motor patterns from those in straight walking. One possible neural mechanism for the transformation from walking to inside leg turning could be that the descending commands alter a few critical reflexes that start a cascade of physical changes in leg movement or posture, leading to further alterations. This hypothesis has two implications: first, the descending activities must be able to influence thoracic reflexes. Second, one should be able to initiate the turning motor pattern without descending signals by mimicking a point farther down in the reflex cascade. We addressed the first implication in this paper by experiments on chordotonal organ reflexes. The activity of depressor muscle (Ds) and slow extensor tibia muscle (SETi) was excited and inhibited by stretching and relaxing the femoral chordotonal organ. However, the Ds responses were altered after eliminating the descending activity, while the SETi responses remain similar. The inhibition to Ds activity by stretching the coxal chordotonal organ was also altered after eliminating the descending activity.
Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori
2014-01-01
Although the mixed orbicularis oculi muscle lacks the muscle spindles required to induce reflex contraction of its slow-twitch fibers, the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction. We hypothesize that strong stretching of these mechanoreceptors increases reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. We examined a 71-year-old man with right blepharospasm and bilateral aponeurosis-disinserted blepharoptosis to determine whether the patient's blepharospasm was worsened by increased trigeminal proprioceptive evocation via stretching of the mechanoreceptors in Müller's muscle owing to a 60° upward gaze and serrated eyelid closure, and whether local anesthesia of the mechanoreceptors via lidocaine administration to the upper fornix as well as surgical disinsertion of Müller's muscle from the tarsus and fixation of the disinserted aponeurosis to the tarsus decreased trigeminal proprioceptive evocation and improved patient's blepharospasm. Before pharmacological desensitization, 60° upward gaze and serrated eyelid closure exacerbated the patient's blepharospasm. In contrast, these maneuvers did not worsen his blepharospasm following lidocaine administration. One year after surgical desensitization, the blepharospasm had disappeared and a 60° upward gaze did not induce blepharospasm. Strong stretching of the mechanoreceptors in Müller's muscle appeared to increase reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. In addition to botulinum neurotoxin injections into the involuntarily contracted orbicularis oculi muscle and myectomy, surgical desensitization of the mechanoreceptors in Müller's muscle may represent an additional procedure to reduce blepharospasm.
Ban, Ryokuya; Ban, Midori
2014-01-01
Objective: Although the mixed orbicularis oculi muscle lacks the muscle spindles required to induce reflex contraction of its slow-twitch fibers, the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction. We hypothesize that strong stretching of these mechanoreceptors increases reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. Methods: We examined a 71-year-old man with right blepharospasm and bilateral aponeurosis-disinserted blepharoptosis to determine whether the patient's blepharospasm was worsened by increased trigeminal proprioceptive evocation via stretching of the mechanoreceptors in Müller's muscle owing to a 60° upward gaze and serrated eyelid closure, and whether local anesthesia of the mechanoreceptors via lidocaine administration to the upper fornix as well as surgical disinsertion of Müller's muscle from the tarsus and fixation of the disinserted aponeurosis to the tarsus decreased trigeminal proprioceptive evocation and improved patient's blepharospasm. Results: Before pharmacological desensitization, 60° upward gaze and serrated eyelid closure exacerbated the patient's blepharospasm. In contrast, these maneuvers did not worsen his blepharospasm following lidocaine administration. One year after surgical desensitization, the blepharospasm had disappeared and a 60° upward gaze did not induce blepharospasm. Conclusions: Strong stretching of the mechanoreceptors in Müller's muscle appeared to increase reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. In addition to botulinum neurotoxin injections into the involuntarily contracted orbicularis oculi muscle and myectomy, surgical desensitization of the mechanoreceptors in Müller's muscle may represent an additional procedure to reduce blepharospasm. PMID:25328566
The role of the antigravity musculature during quiet standing in man.
Soames, R W; Atha, J
1981-01-01
The view that postural regulation is achieved by controlling the destabilising effects of gravity through myotatic reflex activity was examined using surface electromyography. Forty seconds of recordings were made of myograms from eighteen muscles in each of a sample of nine young adults. It was observed that antigravity muscular activity in standing is generally low and often absent, and that the myograms from the muscles of the right and left sides of the body differed appreciably, the two sides rarely working together. Some sudden and united bursts of antigravity muscle activity could be observed. These might well have been stretch reflex induced, but they were transient and rare. It is concluded that the view that postural control in quiet standing is continuously mediated in a simple way by stretch reflex mechanisms is probably not valid, and that other mechanisms for controlling posture remain to be identified.
NASA Technical Reports Server (NTRS)
Cerisano, J. M.; Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Harm, D. L.
2010-01-01
INTRODUCTION: Spaceflight is acknowledged to have significant effects on the major postural muscles. However, it has been difficult to separate the effects of ascending somatosensory changes caused by the unloading of these muscles during flight from changes in sensorimotor function caused by a descending vestibulo-cerebellar response to microgravity. It is hypothesized that bed rest is an adequate model to investigate postural muscle unloading given that spaceflight and bed rest may produce similar results in both nerve axon and muscle tissue. METHODS: To investigate this hypothesis, stretch reflexes were measured on 18 subjects who spent 60 to 90 days in continuous 6 head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 deg at a peak velocity of approximately 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender and compared with spaceflight data. RESULTS: Although no gender differences were found, bed rest induced changes in reflex latency and CV similar to the ones observed during spaceflight. Also, a relationship between CV and loss of muscle strength in the lower leg was observed for most bed rest subjects. CONCLUSION: Even though bed rest (limb unloading) alone may not mimic all of the synaptic and muscle tissue loss that is observed as a result of spaceflight, it can serve as a working analog of flight for the evaluation of potential countermeasures that may be beneficial in mitigating unwanted changes in the major postural muscles that are observed post flight.
2010-01-01
Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton. PMID:20659331
Reduced servo-control of fatigued human finger extensor and flexor muscles.
Hagbarth, K E; Bongiovanni, L G; Nordin, M
1995-01-01
1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624
Cussons, P D; Matthews, P B; Muir, R B
1979-01-01
1. Irregularities in the development of tension during the tonic vibration reflex of the soleus muscle of the decerebrate cat have been analysed into their frequency components. The reflex was recorded isometrically and elicited by longitudinal vibration, normally at 150 Hz. The amplitude of vibration was set so as to elicit a maximal reflex response, suggesting 1:1 driving of the majority of the Ia afferents at the frequency of vibration. 2. The resulting power spectrum regularly showed a well marked tremor peak separated by a trough from any slow irregularities. The predominant frequency of this tremor varied from 4 to 11 Hz in different preparations, with a mean of 7.4 Hz; on average, frequencies within 1.7 Hz on either side contained over half the power of the predominant frequency. Altering the frequency of vibration did not alter the distribution of tremor frequencies. 3. The root mean square value of the tension irregularities, over the range 4-14 Hz, varied from 12 to 110 mN in different preparations (median value, 23 mN); this was superimposed on mean active reflex tensions varying from 2 to 10 N. 4. The 'tremor' due to a single motor unit was estimated from spectral analysis of tetanic contractions of the whole muscle and decreased with increasing frequency of activation. Comparison of the single unit values with the tremor seen during vibration in the same preparations showed that equivalent amounts of tremor to the latter could typically have been produced by the continued synchronous contraction of about five 'average' motor units firing at the predominant tremor frequency. 5. When a tonic stretch reflex was present its tremor frequencies did not differ consistently from those of the tonic vibration reflex. On average, the tremor was smaller for the stretch reflex than for the tonic vibration reflex; the difference was usually slight and might have been related to the stretch refex tension being smaller. 6. Evidence was obtained that the tremor was not due to any insecurity of 1:1 driving of the Ia afferents by the vibration. First, the tremor did not increase when the amplitude of vibration was decreased sufficiently to ensure that the degree of 1:1 driving must have been reduced. Secondly, the introduction of a comparable 'artificial tremor' by sinusoidally oscillating the muscle at low frequency did not produce the e.m.g. response that would have been expected if the applied 'tremor' had been modulating the firing of the Ia or any other group of afferents. 7. It is concluded that the observed tremor cannot be attributed to 'oscillation in the stretch reflex arc', though without prejudice to the role of this mechanism under other conditions and especially when the recording is not isometric. However, the genesis of the tremor has not been established and much of it might result simply from the chance synchronization of motor units that are firing below their tetanic fusion frequency. PMID:158643
Arm Dominance Affects Feedforward Strategy more than Feedback Sensitivity during a Postural Task
Walker, Elise H. E.; Perreault, Eric J.
2015-01-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors, and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture, and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23–51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development. PMID:25850407
Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task.
Walker, Elise H E; Perreault, Eric J
2015-07-01
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.
Latash, M L; Gutman, S R
1994-01-01
Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.
Li, Jun; Wen, Yong; Yue, Chao-Chi; Li, Ya-Ling
2013-08-01
To observe clinical effect, feasibility and security of preconditioning of thermopaste application at Shenque (CV 8) for relieving stretch reflex induced by procedure for prolapse and hemorrhoids (PPH). A total of 100 cases of mixed hemorrhoids (stage III and IV) patients were randomized into 1.0 h, 0.5 h, 0 h and control (no application) groups (n = 25 in each group) according to a random number table. Thermopaste was applied to Shenque (CV 8) 1.0 h and 0.5 h before PPH or conducted simultaneously with PPH. The mean arterial pressure, heart rate, blood oxygen saturation of patients before and after anastomose operation, and the incidence of adverse reactions within 24 hours after the procedure were monitored and recorded. The patient's pain degree was assessed by using visual analogue scale. After the preconditioning, of the 25 patients in the 0.5 h group (0.5 h G), 14 experienced marked improvement (in the stretch reflex during PPH), 10 had an improvement, and 1 was invalid, respectively. The markedly effective rate and the total effective rate were 56% and 96%, respectively. The therapeutic effects for inhibiting stretch reflect being from the better to the poorer were 0.5 h G > 1.0 h G > 0 h G >NG. The heart rate and blood pressure from more stable to lesser stable were 0.5 h G> 1.0 h G > 0 h G > NG. The patients' pain reaction during operation and their adverse effects of nausea, vomiting, abdominal distention and abdominal pain, etc. occurred during operation also presented the same tendency in the 4 groups. Thermopaste application to Shenque (CV 8) can effectively prevent and control visceral reflex in patients undergoing PPH, which effect is significantly better when conducted 0.5 hour before the operation.
Tsang, Kenneth; de Bruin, Hubert; Archambeault, Mark
2008-01-01
Although most muscle spindle investigations have used the cat model and invasive measurement techniques, several investigators have used microneurography to record from the Ia and II fibres in humans during tendon vibration. In these studies the muscle spindle primary endings are stimulated using transverse vibration of the tendon at reflex sub-threshold amplitudes. Others have used low amplitude vibration and the stretch evoked M-wave response to determine reflex properties during both agonist and antagonist voluntary contractions. In the past we have developed a PC based instrument that uses Labview and a linear servomotor to study tendon reflex properties by recording stretch evoked M-wave responses from single tendon taps or electrical stimuli to the afferent nerve. In this paper we describe a further development of this system to provide precise vibrations of the tendon up to 65 Hz with amplitudes up to 4 mm. The resultant M-wave train is extracted from background noise via phase coherent subtractive filtering. Test results from vibrating the human distal flexor carpi radialis tendon at 10 and 30 Hz, for relaxed, slight flexion and slight extension, are also presented.
Once more on the equilibrium-point hypothesis (lambda model) for motor control.
Feldman, A G
1986-03-01
The equilibrium control hypothesis (lambda model) is considered with special reference to the following concepts: (a) the length-force invariant characteristic (IC) of the muscle together with central and reflex systems subserving its activity; (b) the tonic stretch reflex threshold (lambda) as an independent measure of central commands descending to alpha and gamma motoneurons; (c) the equilibrium point, defined in terms of lambda, IC and static load characteristics, which is associated with the notion that posture and movement are controlled by a single mechanism; and (d) the muscle activation area (a reformulation of the "size principle")--the area of kinematic and command variables in which a rank-ordered recruitment of motor units takes place. The model is used for the interpretation of various motor phenomena, particularly electromyographic patterns. The stretch reflex in the lambda model has no mechanism to follow-up a certain muscle length prescribed by central commands. Rather, its task is to bring the system to an equilibrium, load-dependent position. Another currently popular version defines the equilibrium point concept in terms of alpha motoneuron activity alone (the alpha model). Although the model imitates (as does the lambda model) spring-like properties of motor performance, it nevertheless is inconsistent with a substantial data base on intact motor control. An analysis of alpha models, including their treatment of motor performance in deafferented animals, reveals that they suffer from grave shortcomings. It is concluded that parameterization of the stretch reflex is a basis for intact motor control. Muscle deafferentation impairs this graceful mechanism though it does not remove the possibility of movement.
Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.
2016-01-01
Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479
Infante, Jon; García, Antonio; Serrano-Cárdenas, Karla M; González-Aguado, Rocío; Gazulla, José; de Lucas, Enrique M; Berciano, José
2018-06-01
The aim of this study was to describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and preserved limb muscle stretch reflexes. All five patients were in the seventh decade of age, their gait imbalance having been initiated in the fifth decade. In four patients cough antedated gait imbalance between 15 and 29 years; cough was spasmodic and triggered by variable factors. Established clinical picture included severe hypopallesthesia predominating in the lower limbs with postural imbalance, and variable degree of cerebellar axial and appendicular ataxia, dysarthria and horizontal gaze-evoked nystagmus. Upper- and lower-limb tendon jerks were preserved, whereas jaw jerk was absent. Vestibular function testing showed bilateral impairment of the vestibulo-ocular reflex. Nerve conduction studies demonstrated normal motor conduction parameters and absence or severe attenuation of sensory nerve action potentials. Somatosensory evoked potentials were absent or severely attenuated. Biceps and femoral T-reflex recordings were normal, while masseter reflex was absent or attenuated. Sympathetic skin responses were normal. Cranial MRI showed vermian and hemispheric cerebellar atrophy predominating in lobules VI, VII and VIIa. We conclude that spasmodic cough may be an integral part of the clinical picture in CANVAS, antedating the appearance of imbalance in several decades and that sparing of muscle spindle afferents (Ia fibres) is probably the pathophysiological basis of normoreflexia.
Implementation of reflex loops in a biomechanical finite element model.
Salin, Dorian; Arnoux, Pierre-Jean; Kayvantash, Kambiz; Behr, Michel
2016-11-01
In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models.
Annaswamy, Thiru; Mallempati, Srinivas; Allison, Stephen C; Abraham, Lawrence D
2007-05-01
To examine the usefulness of a biomechanical measure, resistance torque (RT), in quantifying spasticity by comparing its use with a clinical scale, the modified Ashworth scale (MAS), and quantitative electrophysiological measures. This is a correlational study of spasticity measurements in 34 adults with traumatic brain injury and plantarflexor spasticity. Plantarflexor spasticity was measured in the seated position before and after cryotherapy using the MAS and also by strapping each subject's foot and ankle to an apparatus that provided a ramp and hold stretch. The quantitative measures were (1) reflex threshold angle (RTA) calculated through electromyographic signals and joint angle traces, (2) Hdorsiflexion (Hdf)/Hcontrol (Hctrl) amplitude ratio obtained through reciprocal inhibition of the soleus H-reflex, (3) Hvibration (Hvib)/Hctrl ratio obtained through vibratory inhibition of the soleus H-reflex, and (4) RT calculated as the time integral of the torque graph between the starting and ending pulses of the stretch. Correlation coefficients between RT and MAS scores in both pre-ice (0.41) and post-ice trials (0.42) were fair (P = 0.001). The correlation coefficients between RT scores and RTA scores in both the pre-ice (0.66) and post-ice trials (0.75) were moderate (P
The Effects of Two Different Stretching Programs on Balance Control and Motor Neuron Excitability
ERIC Educational Resources Information Center
Kaya, Fatih; Biçer, Bilal; Yüktasir, Bekir; Willems, Mark E. T.; Yildiz, Nebil
2018-01-01
We examined the effects of training (4d/wk for 6 wks) with static stretching (SS) or contract-relax proprioceptive neuromuscular facilitation (PNF) on static balance time and motor neuron excitability. Static balance time, H[subscript max]/M[subscript max] ratios and H-reflex recovery curves (HRRC) were measured in 28 healthy subjects (SS: n = 10,…
Servo action in the human thumb.
Marsden, C D; Merton, P A; Morton, H B
1976-01-01
1. The servo-like properties of muscle in healthy human subjects have been studied by interfering unexpectedly with flexion movements of the top joint of the thumb. This movement is carried out by the flexor pollicis longus muscle only. 2. The movements were standardized in rate by giving the subject a tracking task. They started off against a constant torque load offered by an electric motor. 3. In some movements the load remained constant, but in others, in mid-course, perturbations were introduced at random. Either the movement was halted, or released and allowed to accelerate by reducing the load, or reversed by suddenly increasing the current in the motor, so stretching the muscle. 4. Usually eight or sixteen responses to each kind of perturbation and a similar number of controls against a constant load were averaged. 5. Muscle activity was recorded as the electromyogram from surface electrodes over the belly of the long flexor in the lower forearm. Action potentials were usually full-wave rectified and integrated. 6. About 50 msec after a perturbation the muscle's activity alters in such a sense as to tend to compensate for the perturbation, i.e. it increases after a halt or a stretch and decreases after a release. The latency is similar in each case. 7. These responses are interpreted as manifestations of automatic servo action based on the stretch reflex. They are considered to be too early to be voluntary. 8. This interpretation was supported by measuring voluntary reaction times to perturbations under tracking conditions. They were found to be 90 msec or longer. 9. When the initial load was increased by a factor of 10, the servo responses were all scaled up likewise. Thus to a first approximation the gain of the servo is proportional to initial load. 10. It follows that in relaxed muscle the gain should be zero. This was confirmed by showing that stretching a relaxed muscle gives no reflex, or only a small one. 11. Gain appears to be determined by the level of muscle activation as determined by the effort made by the subject, rather than by the actual pressure exerted by the thumb. 12. Thus in fatigued muscle gain is boosted as the muscle has to be activated more strongly to keep up the same force output. The net effect is to compensate for fatigue and maintain the performance of the servo. 13. The Discussion centres on the implications of gain control in the servo. For a start, if the gain of the stretch reflex arc is zero in relaxed muscle, contractions cannot be initiated via the stretch reflex by simply causing the spindles to contract, as proposed on the original 'follow-up' servo theory. Images Fig. 1 PMID:133238
Cardiorespiratory interactions in neural circulatory control in humans.
Shamsuzzaman, A S; Somers, V K
2001-06-01
The reflex mechanisms and interactions described in this overview provide some explanation for the range of neural circulatory responses evident during changes in breathing. The effects described represent the integrated responses to activation of several reflex mechanisms, including peripheral and central chemoreflexes, arterial baroreflexes, pulmonary stretch receptors, and ventricular mechanoreceptors. These interactions occur on a dynamic basis and the transfer characteristics of any single interaction are, in all likelihood, also highly dynamic. Nevertheless, it is only by attempting to understand individual reflexes and their modulating influences that a more thorough understanding of the responses to complex phenomena such as hyperventilation, apnea, and obstructive sleep apnea can be better understood.
Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob
2016-01-01
Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. PMID:27628204
Passmore, Steven R; Bruno, Paul A
2012-09-07
The Jendrassik maneuver (JM) is a remote facilitation muscular contraction shown to affect amplitude and temporal components of the human stretch reflex. Conflicting theoretical models exist regarding the neurological mechanism related to its ability to reinforce reflex parameters. One mechanism involves the gamma motoneurons of the fusimotor system, which are subject to both physical and mental activity. A second mechanism describes reduced alpha motoneuron presynaptic inhibition, which is not subject to mental activity. In the current study, we determined if mental activity could be used to create a reflex facilitation comparable to a remote muscle contraction. Using a within-participants design, we investigated the relative effect of the JM and a successfully employed mental task (Stroop task) on the amplitude and temporal components of the patellar tendon reflex. We found that the addition of mental activity had no influence on the patellar tendon reflex parameters measured, while the JM provided facilitation (increased reflex amplitude, decreased total reflex time). The findings from this study support the view that the mechanism for the JM is a reduction in presynaptic inhibition of alpha motoneurons as it is influenced by physical and not mental activity.
Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.
1972-01-01
The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the investigation of the fusimotor system in intact man. Images PMID:4260958
Reticular reflex myoclonus: a physiological type of human post-hypoxic myoclonus.
Hallett, M; Chadwick, D; Adam, J; Marsden, C D
1977-01-01
A patient with post-hypoxic myoclonus, sensitive to therapy with 5-hydroxytryptophan and clonazepam, was subjected to detailed electrophysiological investigation. Brief generalised jerks followed the critical stimulus of muscle stretch. The electroencephalogram showed generalised spikes that were associated with, but not time locked to, the myoclonus. The cranial nerve nuclei were activated upward. Analysis of the findings suggests that the mechanism of the myoclonus is hyperactivity of a reflex mediated in the reticular formation of the medulla oblongata. PMID:301926
Rumsey, John W; Das, Mainak; Bhalkikar, Abhijeet; Stancescu, Maria; Hickman, James J
2010-11-01
The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning photolithography and a serum-free medium formulation a co-culture system was developed that facilitated functional interactions between intrafusal muscle fibers and sensory neurons. The presence of annulospiral wrappings (ASWs) and flower-spray endings (FSEs), both physiologically relevant morphologies in sensory neuron-intrafusal fiber interactions, were demonstrated and quantified using immunocytochemistry. Furthermore, two proposed components of the mammalian mechanosensory transduction system, BNaC1 and PICK1, were both identified at the ASWs and FSEs. To verify functionality of the mechanoreceptor elements the system was integrated with a MEMS cantilever device, and Ca(2+) currents were imaged along the length of an axon innervating an intrafusal fiber when stretched by cantilever deflection. This system provides a platform for examining the role of this mechanosensory complex in the pathology of myotonic and muscular dystrophies, peripheral neuropathy, and spasticity inducing diseases like Parkinson's. These studies will also assist in engineering fine motor control for prosthetic devices by improving our understanding of mechanosensitive feedback. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Preparatory co-activation of the ankle muscles may prevent ankle inversion injuries
DeMers, Matthew S.; Hicks, Jennifer L.; Delp, Scott L.
2018-01-01
Ankle inversion sprains are the most frequent acute musculoskeletal injuries occurring in physical activity. Interventions that retrain muscle coordination have helped rehabilitate injured ankles, but it is unclear which muscle coordination strategies, if any, can prevent ankle sprains. The purpose of this study was to determine whether coordinated activity of the ankle muscles could prevent excessive ankle inversion during a simulated landing on a 30-degree incline. We used a set of musculoskeletal simulations to evaluate the efficacy of two strategies for coordinating the ankle evertor and invertor muscles during simulated landing scenarios: planned co-activation and stretch reflex activation with physiologic latency (60-millisecond delay). A full-body musculoskeletal model of landing was used to generate simulations of a subject dropping onto an inclined surface with each coordination condition. Within each condition, the intensity of evertor and invertor co-activity or stretch reflexes were varied systematically. The simulations revealed that strong preparatory co-activation of the ankle evertors and invertors prior to ground contact prevented ankle inversion from exceeding injury thresholds by rapidly generating eversion moments after initial contact. Conversely, stretch reflexes were too slow to generate eversion moments before the simulations reached the threshold for inversion injury. These results suggest that training interventions to protect the ankle should focus on stiffening the ankle with muscle co-activation prior to landing. The musculoskeletal models, controllers, software, and simulation results are freely available online at http://simtk.org/home/ankle-sprains, enabling others to reproduce the results and explore new injury scenarios and interventions. PMID:28057351
Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.; Smith, Scott A.
2015-01-01
Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training. PMID:26163445
Matsuo, Kiyoshi; Ban, Ryokuya
2013-02-01
Proprioceptively innervated intramuscular connective tissues in Müller's muscle function as exterior mechanoreceptors to induce reflex contraction of the levator and occipitofrontalis muscles. In aponeurotic blepharoptosis, since the levator aponeurosis is disinserted from the tarsus, stretching of the mechanoreceptors in Müller's muscle is increased even on primary gaze to induce phasic and tonic reflexive contraction of the occipitofrontalis muscle. It was hypothesised that in certain patients with aponeurotic blepharoptosis, the presence of tonic reflexive contraction of the occipitofrontalis muscle due to the sensitised mechanoreceptors in Müller's muscle, can cause chronic tension-type headache (CTTH) associated with occipitofrontalis tenderness. To verify this hypothesis, this study evaluated (1) what differentiates patients with CTTH from patients without CTTH, (2) how pharmacological contraction of Müller's smooth muscle fibres as a method for desensitising the mechanoreceptors in Müller's muscle affects electromyographic activity of the frontalis muscle, and (3) how surgical aponeurotic reinsertion to desensitise the mechanoreceptors in Müller's muscle electromyographically or subjectively affects activities of the occipitofrontalis muscle or CTTH. It was found that patients had sustained CTTH when light eyelid closure did not markedly reduce eyebrow elevation. However, pharmacological contraction of Müller's smooth muscle fibres or surgery to desensitise the mechanoreceptor electromyographically reduced the tonic contraction of the occipitofrontalis muscle on primary gaze and subjectively relieved aponeurotic blepharoptosis-associated CTTH. Over-stretching of the mechanoreceptors in Müller's muscle on primary gaze may induce CTTH due to tonic reflexive contraction of the occipitofrontalis muscle. Therefore, surgical desensitisation of the mechanoreceptors in Müller's muscle appears to relieve CTTH.
Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo
2016-12-01
Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. Copyright © 2016 the American Physiological Society.
McPherson, Jacob G.; McPherson, Laura M.; Thompson, Christopher K.; Ellis, Michael D.; Heckman, Charles J.; Dewald, Julius P. A.
2018-01-01
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms. PMID:29686611
F response and H reflex analysis of physiological unity of gravity and antigravity muscles in man.
García, H A; Fisher, M A
1977-01-01
Observational differences between reflex (H reflex) and antidromic (F response) activation of segmental motoneurons by a peripheral electrical stimulus are described. In contrast to H reflexes, the percentage of F responses found after a series of stimuli is directly related to the pick-up field of the recording electrode consistent with this response being due to the variable activation of a small fraction of the available motoneuron pool. Despite the differing physiological mechanisms, both F responses and H reflexes can be used to demonstrate similar relative "central excitatory states" for antigravity muscles (i.e. extensors in the lower extremity and flexors in the upper extremity) and their antagonist gravity muscles. H reflexes were elicited not only in their usual location in certain antigravity muscles but also in unusual locations by length/tension changes in agonist and antagonist groups as well as by passive stretch. The data argue for the physiological unity of similarly acting gravity and antigravity muscles as well as supporting a meaningful role of group II afferents in normal segmental motoneuron pool excitability.
Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Ban, Ryokuya; Yano, Shiharu; Moriizumi, Tetsuji
2012-01-01
Background: We previously reported that the supratarsal Mueller's muscle is innervated by both sympathetic efferent fibers and trigeminal proprioceptive afferent fibers, which function as mechanoreceptors-inducing reflexive contractions of both the levator and frontalis muscles. Controversy still persists regarding the role of the mechanoreceptors in Mueller's muscle; therefore, we clinically and histologically investigated Mueller's muscle. Methods: We evaluated the role of phenylephrine administration into the upper fornix in contraction of Mueller's smooth muscle fibers and how intraoperative stretching of Mueller's muscle alters the degree of eyelid retraction in 20 patients with aponeurotic blepharoptosis. In addition, we stained Mueller's muscle in 7 cadavers with antibodies against α-smooth muscle actin, S100, tyrosine hydroxylase, c-kit, and connexin 43. Results: Maximal eyelid retraction occurred approximately 3.8 minutes after administration of phenylephrine and prolonged eyelid retraction for at least 20 minutes after administration. Intraoperative stretching of Mueller's muscle increased eyelid retraction due to its reflexive contraction. The tyrosine hydroxylase antibody sparsely stained postganglionic sympathetic nerve fibers, whereas the S100 and c-kit antibodies densely stained the interstitial cells of Cajal (ICCs) among Mueller's smooth muscle fibers. A connexin 43 antibody failed to stain Mueller's muscle. Conclusions: A contractile network of ICCs may mediate neurotransmission within Mueller's multiunit smooth muscle fibers that are sparsely innervated by postganglionic sympathetic fibers. Interstitial cells of Cajal may also serve as mechanoreceptors that reflexively contract Mueller's smooth muscle fibers, forming intimate associations with intramuscular trigeminal proprioceptive fibers to induce reflexive contraction of the levator and frontalis muscles. PMID:22359687
Matthews, P. B. C.
1966-01-01
1. Vibration was applied longitudinally to the fully innervated soleus muscle of the decerebrate cat by attaching its tendon to a vibrator. Vibration at frequencies of 50-500/sec with amplitudes of 10 μ upwards caused the muscle to contract reflexly for as long as the vibration was maintained. The response was recorded myographically by a myograph mounted upon the vibrator, and electromyographically by gross `belly-tendon' leads. The reflex contraction produced several hundred g wt. of tension and involved too many motor units for their discharges to be separable. The maintained reflex was abolished by making the preparation spinal or by anaesthetizing it with pentobarbitone, but it persisted after removing the cerebellum. 2. The minimum latency for the appearance of the reflex response at the beginning of a period of vibration was about 10 msec. The latency of cessation of the response at the end of vibration was similarly short. 3. On increasing the amplitude of vibration at any particular frequency in the range 100-300/sec the resulting reflex tension increased to an approximate plateau for amplitudes of vibration of 100-200 μ. Further increase in the amplitude decreased the size of the contraction, though there was no such reduction in records of the `integrated' electromyogram. 4. Such large amplitudes of vibration also reduced the tension, and shortened the duration, of a twitch contraction of the muscle elicited by stimulating its nerve. The strength of a tetanic contraction was much less affected by vibration than was that of the twitch contraction, and the muscle action potential elicited by stimulation of the nerve was unaffected. Thus, large-amplitude vibration influenced the contractile mechanism of the muscle (cf. Buchtal & Kaiser, 1951). 5. Increasing the frequency of vibration increased the value of the plateau tension reached on increasing the amplitude. The effect was, however, relatively small and the largest increase seen was 3 g wt. of contractile tension per c/s increase in vibration frequency. 6. The primary afferent ending of the muscle spindle is considered to be the receptor whose excitation leads to the reflex response to vibration. The vibration reflex thus appears to be the well-known stretch reflex, elicited by a rather unusual form of stretching. The size of the vibration reflex and its variation with frequency are discussed in relation to the servo theory of muscular contraction. PMID:5921840
Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K
2014-09-15
In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.
Marinelli, Lucio; Balestrino, Maurizio; Mori, Laura; Puce, Luca; Rosa, Gian Marco; Giorello, Laura; Currà, Antonio; Fattapposta, Francesco; Serrati, Carlo; Gandolfo, Carlo; Abbruzzese, Giovanni; Trompetto, Carlo
2017-09-07
Stroke is the most disabling neurological disorder and often causes spasticity. Transmucosal cannabinoids (tetrahydrocannabinol and cannabidiol (THC:CBD), Sativex) is currently available to treat spasticity-associated symptoms in patients with multiple sclerosis. Cannabinoids are being considered useful also in the treatment of pain, nausea and epilepsy, but may bear and increased risk for cardiovascular events. Spasticity is often assessed with subjective and clinical rating scales, which are unable to measure the increased excitability of the monosynaptic reflex, considered the hallmark of spasticity. The neurophysiological assessment of the stretch reflex provides a precise and objective method to measure spasticity. We propose a novel study to understand if Sativex could be useful in reducing spasticity in stroke survivors and investigating tolerability and safety by accurate cardiovascular monitoring. We will recruit 50 patients with spasticity following stroke to take THC:CBD in a double-blind placebo-controlled cross-over study. Spasticity will be assessed with a numeric rating scale for spasticity, the modified Ashworth scale and with the electromyographical recording of the stretch reflex. The cardiovascular risk will be assessed prior to inclusion. Blood pressure, heart rate, number of daily spasms, bladder function, sleep disruption and adverse events will be monitored throughout the study. A mixed-model analysis of variance will be used to compare the stretch reflex amplitude between the time points; semiquantitative measures will be compared using the Mann-Whitney test (THC:CBD vs placebo) and Wilcoxon test (baseline vs treatment). The study was registered on the EudraCT database with number 2016-001034-10 and approved by both the Italian Medicines Agency (Agenzia Italiana del Farmaco) and local Ethics Committee 'Comitato Etico Regionale della Liguria'. Data will be made anonymous and uploaded to a open access repository. Results will be disseminated by presentations at national and international conferences and by publication in journals of clinical neuroscience and neurology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan
2012-12-01
Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.
Prilutsky, Boris I.; Gregor, Robert J.; Abelew, Thomas A.; Nichols, T. Richard
2016-01-01
In this study, we sought to identify sensory circuitry responsible for motor deficits or compensatory adaptations after peripheral nerve cut and repair. Self-reinnervation of the ankle extensor muscles abolishes the stretch reflex and increases ankle yielding during downslope walking, but it remains unknown whether this finding generalizes to other muscle groups and whether muscles become completely deafferented. In decerebrate cats at least 19 wk after nerve cut and repair, we examined the influence of quadriceps (Q) muscles' self-reinnervation on autogenic length feedback, as well as intermuscular length and force feedback, among the primary extensor muscles in the cat hindlimb. Effects of gastrocnemius and soleus self-reinnervation on intermuscular circuitry were also evaluated. We found that autogenic length feedback was lost after Q self-reinnervation, indicating that loss of the stretch reflex appears to be a generalizable consequence of muscle self-reinnervation. However, intermuscular force and length feedback, evoked from self-reinnervated muscles, was preserved in most of the interactions evaluated with similar relative inhibitory or excitatory magnitudes. These data indicate that intermuscular spinal reflex circuitry has the ability to regain functional connectivity, but the restoration is not absolute. Explanations for the recovery of intermuscular feedback are discussed, based on identified mechanisms responsible for lost autogenic length feedback. Functional implications, due to permanent loss of autogenic length feedback and potential for compensatory adaptations from preserved intermuscular feedback, are discussed. PMID:27306676
Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke
2010-01-01
We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.
Selles, Ruud W; Li, Xiaoyan; Lin, Fang; Chung, Sun G; Roth, Elliot J; Zhang, Li-Qun
2005-12-01
To investigate the effect of repeated feedback-controlled and programmed "intelligent" stretching of the ankle plantar- and dorsiflexors to treat subjects with ankle spasticity and/or contracture in stroke. Noncontrolled trial. Institutional research center. Subjects with spasticity and/or contracture after stroke. Stretching of the plantar- and dorsiflexors of the ankle 3 times a week for 45 minutes during a 4-week period by using a feedback-controlled and programmed stretching device. Passive and active range of motion (ROM), muscle strength, joint stiffness, joint viscous damping, reflex excitability, comfortable walking speed, and subjective experiences of the subjects. Significant improvements were found in the passive ROM, maximum voluntary contraction, ankle stiffness, and comfortable walking speed. The visual analog scales indicated very positive subjective evaluation in terms of the comfort of stretching and the effect on their involved ankle. Repeated feedback-controlled or intelligent stretching had a positive influence on the joint properties of the ankle with spasticity and/or contracture after stroke. The stretching device may be an effective and safe alternative to manual passive motion treatment by a therapist and has potential to be used to repeatedly and regularly stretch the ankle of subjects with spasticity and/or contracture without daily involvement of clinicians or physical therapists.
Clark, F J; Matthews, P B; Muir, R B
1981-02-01
1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor.2. When the amplitude of vibration was 50 mum, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 mum vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut.3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 mum vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 mum vibration; at the same time the reflex tension increased.4. Additional, indirect evidence favouring widespread security of Ia driving by 50 mum vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action.5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general similarity to the tremor in the same preparation, but measurement of coherence demonstrated that the tremor and Ia firing were not well related. This was probably because individual Ia afferents were primarily influenced by local factors, and provides further evidence against the tremor of this preparation being attributable to the action of the stretch reflex.
Clark, F. J.; Matthews, P. B. C.; Muir, R. B.
1981-01-01
1. Micro-electrode recordings were made from single Ia afferents in the intact nerve to the soleus muscle in the decerebrate cat while the muscle was developing a tonic vibration reflex. This was done in order to test how effectively the afferents were excited by the vibration, and to see if any insecurity in driving might be related to tremor. 2. When the amplitude of vibration was 50 μm, and the tonic vibration reflex was reasonably well developed (> 1 N of active tension) all but one of forty-four Ia afferents were driven 1:1 by the vibration. Most were still driven by 30 μm vibration. The vibration, consisting of a train of discrete pulses at 150 Hz, was applied longitudinally in combination with a stretch of 1 mm to make the muscle taut. 3. If the reflex was poorly developed (active tension < 1 N) the driving was on average less secure. However, fourteen of eighteen afferents then studied were still driven 1:1 by 50 μm vibration. The lower level of excitation by vibration was thought to be due to a deficiency of spontaneous fusimotor activity, because stroking the cat's tail or other similar gentle manipulation led each of the three misbehaving afferents so tested to be driven securely by 50 μm vibration; at the same time the reflex tension increased. 4. Additional, indirect evidence favouring widespread security of Ia driving by 50 μm vibration in the presence of the reflex was obtained by modulating the amplitude of the 150 Hz vibration with a 7-10 Hz square wave and detecting any tension fluctuations at that frequency by spectral analysis. Small degrees of modulation (e.g. < 10%) produced little if any effect, although larger depths of modulation had a powerful action. 5. When the amplitude of vibration was reduced to permit insecure driving but still to elicit a reflex response, the fluctuations in Ia firing pattern were unlike those previously seen in the de-efferented muscle. Spectral analysis showed that these firing fluctuations bore a general similarity to the tremor in the same preparation, but measurement of coherence demonstrated that the tremor and Ia firing were not well related. This was probably because individual Ia afferents were primarily influenced by local factors, and provides further evidence against the tremor of this preparation being attributable to the action of the stretch reflex. PMID:7264987
Sreenivasa, Manish; Ayusawa, Ko; Nakamura, Yoshihiko
2016-05-01
This study develops a multi-level neuromuscular model consisting of topological pools of spiking motor, sensory and interneurons controlling a bi-muscular model of the human arm. The spiking output of motor neuron pools were used to drive muscle actions and skeletal movement via neuromuscular junctions. Feedback information from muscle spindles were relayed via monosynaptic excitatory and disynaptic inhibitory connections, to simulate spinal afferent pathways. Subject-specific model parameters were identified from human experiments by using inverse dynamics computations and optimization methods. The identified neuromuscular model was used to simulate the biceps stretch reflex and the results were compared to an independent dataset. The proposed model was able to track the recorded data and produce dynamically consistent neural spiking patterns, muscle forces and movement kinematics under varying conditions of external forces and co-contraction levels. This additional layer of detail in neuromuscular models has important relevance to the research communities of rehabilitation and clinical movement analysis by providing a mathematical approach to studying neuromuscular pathology.
de Oliveira Silva, Danilo; Magalhães, Fernando Henrique; Faria, Nathálie Clara; Ferrari, Deisi; Pazzinatto, Marcella Ferraz; Pappas, Evangelos; de Azevedo, Fábio Mícolis
2017-01-01
To determine the association between the amplitude of vastus medialis (VM) Hoffmann reflex (H-reflex) and pain level, self-reported physical function, and chronicity of pain in women with patellofemoral pain (PFP). Cross-sectional study. Laboratory of biomechanics and motor control. Women diagnosed with PFP (N=15) aged 18 to 35 years. Not applicable. Data on worst pain level during the previous month, self-reported physical function, and symptom duration (chronicity) were collected from the participants. Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve and peak-to-peak amplitudes of normalized maximal H-reflexes (maximal Hoffmann reflex/maximal motor wave ratios) of the VM were calculated. A Pearson product-moment correlation matrix (r) was used to explore the relations between the amplitude of VM H-reflex and worst pain during the previous month, self-reported function, and chronicity of pain. Strong negative correlations were found between the amplitude of VM H-reflex and worst pain in the previous month (r=-.71; P=.003) and chronicity (r=-.74; P=.001). A strong positive correlation was found between the amplitude of VM H-reflex and self-reported physical function (r=.62; P=.012). The strong and significant relations reported in this study suggest that women with PFP showing greater VM H-reflex excitability tend to have lower pain, better physical function, and more recent symptoms. Therefore, rehabilitation strategies designed to increase the excitability of the monosynaptic stretch reflex should be considered in the treatment of women with PFP if their effectiveness is demonstrated in future studies. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
STRETCH-DEPENDENT SENSITIZATION OF POST-JUNCTIONAL NEURAL EFFECTORS IN COLONIC MUSCLES
Won, Kyung-Jong; Sanders, Kenton M.; Ward, Sean M.
2012-01-01
Background The colon undergoes distension-induced changes in motor activity as luminal contents or feces increases wall pressure. Input from enteric motor neurons regulates motility. Here we examined stretch-dependent responses in circular muscle strips of murine colon. Methods Length-ramps (6–31μm s−1) were applied in the axis of the circular muscle layer in a controlled manner until 5 mN isometric force was reached. Key Results Length-ramps produced transient membrane potential hyperpolarizations and attenuation of action potential (AP) complexes. Responses were reproducible when ramps were applied every 30s. Stretch-dependent hyperpolarization was blocked by TTX, suggesting AP-dependent release of inhibitory neurotransmitter(s). Atropine did not potentiate stretch-induced hyperpolarizations, but increased compliance of the circular layer. L-NNA inhibited stretch-dependent hyperpolarization and decreased muscle compliance, suggesting release of NO mediates stretch-dependent inhibition. Control membrane potential was restored by the NO donor SNP. Stretch-dependent hyperpolarizations were blocked by L-methionine, an inhibitor of stretch-dependent K+ (SDK) channels in colonic muscles. Loss of ICC, elicited by Kit neutralizing antibody, also inhibited responses to stretch. In presence of L-NNA and apamin, stretch responses became excitatory and were characterized by membrane depolarization and increased AP firing. A neurokinin-1 receptor antagonist inhibited this stretch-dependent increase in excitability. Conclusions & Inferences Our data show that stretch-dependent responses in colonic muscles require tonic firing of enteric inhibitory neurons, but reflex activation of neurons does not appear to be necessary. NO causes activation of SDK channels, and stretch of muscles further activates these channels, explaining the inhibitory response to stretch in colonic muscle strips. PMID:23279087
Linking the Private and Public: Teacher Leadership and Teacher Education in the Reflexive Modernity
ERIC Educational Resources Information Center
Huang, Teng
2016-01-01
This study attempts to reveal the process of teacher leadership (TL) and its implications for teacher education. Two rounds of interviews, including focus group interviews with six chosen schools in Taiwan, were conducted to reveal the process. It was found that the development of TL is a stretching process from the key leader to core members,…
Reflexes in cat ankle muscles after landing from falls.
Prochazka, A; Schofield, P; Westerman, R A; Ziccone, S P
1977-01-01
1. Electrical activity and length of ankle muscles were recorded by telemetry during free fall and landing in cats. 2. After foot contact, there was a delay in onset of stretch of ankle extensors of between 8 and 11 ms. High-speed cinematography showed the delay to be associated with rapid initial dorsiflexion of the toes. 3. Electromyograms (e.m.g.) from lateral gastrocnemius increased in amplitude prior to landing. An early depression of lateral gastrocnemius e.m.g. commenced at 8 ms after foot contact, and was followed by a large peak of activity commencing some 8 ms after the first increase in lateral gastrocnemius length. 4. Local anaesthesia of the plantar cushion did not alter this pattern of response. 5. The early inhibition of lateral gastrocnemius was attributed to the action on lateral gastrocnemius motoneurones of non-cutaneous afferents responding to the initial toe dorsiflexion. Additional autogenetic inhibition may also have contributed. 6. The subsequent peak of e.m.g. was at a latenty consistent with a rapid stretch reflex, and occurred soon enough for the resulting active tension to contribute significantly to the extensor force during body deceleration. PMID:592210
van der Krogt, Hanneke; Klomp, Asbjørn; de Groot, Jurriaan H; de Vlugt, Erwin; van der Helm, Frans Ct; Meskers, Carel Gm; Arendzen, J Hans
2015-03-13
Understanding movement disorder after stroke and providing targeted treatment for post stroke patients requires valid and reliable identification of biomechanical (passive) and neural (active and reflexive) contributors. Aim of this study was to assess test-retest reliability of passive, active and reflexive parameters and to determine clinical responsiveness in a cohort of stroke patients with upper extremity impairments and healthy volunteers. Thirty-two community-residing chronic stroke patients with an impairment of an upper limb and fourteen healthy volunteers were assessed with a comprehensive neuromechanical assessment protocol consisting of active and passive tasks and different stretch reflex-eliciting measuring velocities, using a haptic manipulator and surface electromyography of wrist flexor and extensor muscles (Netherlands Trial Registry number NTR1424). Intraclass correlation coefficients (ICC) and Standard Error of Measurement were calculated to establish relative and absolute test-retest reliability of passive, active and reflexive parameters. Clinical responsiveness was tested with Kruskal Wallis test for differences between groups. ICC of passive parameters were fair to excellent (0.45 to 0.91). ICC of active parameters were excellent (0.88-0.99). ICC of reflexive parameters were fair to good (0.50-0.74). Only the reflexive loop time of the extensor muscles performed poor (ICC 0.18). Significant differences between chronic stroke patients and healthy volunteers were found in ten out of fourteen parameters. Passive, active and reflexive parameters can be assessed with high reliability in post-stroke patients. Parameters were responsive to clinical status. The next step is longitudinal measurement of passive, active and reflexive parameters to establish their predictive value for functional outcome after stroke.
Neuromorphic meets neuromechanics, part II: the role of fusimotor drive.
Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Joon Sohn, Won; Loeb, Gerald E; Sanger, Terence D; Valero-Cuevas, Francisco J
2017-04-01
We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function-and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.
Neuromorphic meets neuromechanics, part II: the role of fusimotor drive
NASA Astrophysics Data System (ADS)
Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Sohn, Won Joon; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.
2017-04-01
Objective. We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Main results. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function—and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.
Neuromorphic Meets Neuromechanics, Part II: The Role of Fusimotor Drive
Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Joon Sohn, Won; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.
2017-01-01
Objective We studied the fundamentals of muscle afferentation by building a neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bidirectional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Results We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function — and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons. PMID:28094764
Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats.
Boulay, Chadwick B; Chen, Xiang Yang; Wolpaw, Jonathan R
2015-04-01
Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. Copyright © 2015 the American Physiological Society.
Hundza, S R; de Ruiter, Geoff C; Klimstra, M; Zehr, E Paul
2012-12-01
Suppression of soleus H-reflex amplitude in stationary legs is seen during rhythmic arm cycling. We examined the influence of various arm-cycling parameters on this interlimb reflex modulation to determine the origin of the effect. We previously showed the suppression to be graded with the frequency of arm cycling but not largely influenced by changes in peripheral input associated with crank length. Here, we more explicitly explored the contribution of afferent feedback related to arm movement on the soleus H-reflex suppression. We explored the influence of load and rate of muscle stretch by manipulating crank-load and arm-muscle vibration during arm cycling. Furthermore, internally driven ("Active") and externally driven ("Passive") arm cycling was compared. Soleus H-reflexes were evoked with tibial nerve stimulation during stationary control and rhythmic arm-cycling conditions, including: 1) six different loads; 2) with and without vibration to arm muscles; and 3) Active and Passive conditions. No significant differences were seen in the level of suppression between the different crank loads or between conditions with and without arm-muscle vibration. Furthermore, in contrast to the clear effect seen during active cycling, passive arm cycling did not significantly suppress the soleus H-reflex amplitude. Current results, in conjunction with previous findings, suggest that the afferent feedback examined in these studies is not the primary source responsible for soleus H-reflex suppression. Instead, it appears that central motor commands (supraspinal or spinal in origin) associated with frequency of arm cycling are relatively more dominant sources.
HEREDIA, DANTE J.; DICKSON, EAMONN J.; BAYGUINOV, PETER O.; HENNIG, GRANT W.; SMITH, TERENCE K.
2009-01-01
Background & Aims The colonic migrating motor complex (CMMC) is a motor pattern that regulates the movement of fecal matter, through a rhythmic sequence of electrical activity and/or contractions, along the large bowel. CMMCs have largely been studied in empty preparations; we investigated whether local reflexes generated by a fecal pellet modify the CMMC to initiate propulsive activity. Methods Recordings of CMMCs were made from the isolated murine large bowel, with or without a fecal pellet. Transducers were placed along the colon to record muscle tension and propulsive force on the pellet and microelectrodes were used to record electrical activity from circular muscle cells anal and oral of a pellet and in colons without the mucosa. Results Spontaneous CMMCs propagated in both an oral or anal direction. When a pellet was inserted, CMMCs increased in frequency and propagated anally, exerting propulsive force on the pellet. The amplitude of slow waves increased during the CMMC. Localized mucosal stimulation/circumferential stretch evoked a CMMC, regardless of stimulus strength. The serotonin (5-hydroxytryptamine-3) antagonist ondansetron reduced the amplitude of the CMMC, the propulsive force on the pellet, and the response to mucosal stroking, but increased the apparent conduction velocity of the CMMC. Removing the mucosa abolished spontaneous CMMCs, which still could be evoked by electrical stimulation. Conclusions The fecal pellet activates local mucosal reflexes, which release serotonin (5-hydroxytryptamine) from enterochromaffin cells, and stretch reflexes that determine the site of origin and propagation of the CMMC, facilitating propulsion. PMID:19138686
NASA Astrophysics Data System (ADS)
Sohn, Won J.; Niu, Chuanxin M.; Sanger, Terence D.
2015-06-01
Objective. Childhood dystonia is a movement disorder that interferes with daily movements and can have a devastating effect on quality of life for children and their families. Although injury to basal ganglia is associated with dystonia, the neurophysiological mechanisms leading to the clinical manifestations of dystonia are not understood. Previous work suggested that long-latency stretch reflex (LLSR) is hyperactive in children with hypertonia due to secondary dystonia. We hypothesize that abnormal activity in motor cortices may cause an increase in the LLSR leading to hypertonia. Approach. We modeled two possibilities of hyperactive LLSR by either creating a tonic involuntary drive to cortex, or increasing the synaptic gain in cortical neurons. Both models are emulated using programmable very-large-scale-integrated-circuit hardware to test their sufficiency for producing dystonic symptoms. The emulation includes a joint with two Hill-type muscles, realistic muscle spindles, and 2,304 Izhikevich-type spiking neurons. The muscles are regulated by a monosynaptic spinal pathway with 32 ms delay and a long-latency pathway with 64 ms loop-delay representing transcortical/supra-spinal connections. Main results. When the limb is passively stretched, both models produce involuntary resistance with increased antagonist EMG responses similar to human data; also the muscle relaxation is delayed similar to human data. Both models predict reduced range of motion in voluntary movements. Significance. Although our model is a highly simplified and limited representation of reflex pathways, it shows that increased activity of the LLSR is by itself sufficient to cause many of the features of hypertonic dystonia.
Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D
2018-06-01
In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the other conditions. A supplementary experiment showed the effect could be demonstrated if the muscle was conditioned by contraction at short lengths but not if the relaxed muscle was held at short lengths, confirming the role of muscle contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Motor control theories and their applications.
Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor
2010-01-01
We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.
Chapple, W D
1997-09-01
Reflex activation of the ventral superficial muscles (VSM) in the abdomen of the hermit crab, Pagurus pollicarus, was studied using sinusoidal and stochastic longitudinal vibration of the muscle while recording the length and force of the muscle and the spike times of three exciter motoneurons. In the absence of vibration, the interspike interval histograms of the two larger motoneurons were bimodal; cutting sensory nerves containing most of the mechanoreceptor input removed the short interval peak in the histogram, indicating that the receptors are important in maintaining tonic firing. Vibration of the muscle evoked a reflex increase in motoneuron frequency that habituated after an initial peak but remained above control levels for the duration of stimulation. Motoneuron frequency increased with root mean square (rms) stimulus amplitude. Average stiffness during stimulation was about two times the stiffness of passive muscle. The reflex did not alter muscle dynamics. Estimated transfer functions were calculated from the fast Fourier transform of length and force signals. Coherence was >0.9 for the frequency range of 3-35 Hz. Stiffness magnitude gradually increased over this range in both reflex activated and passive muscle; phase was between 10 and 20 degrees. Reflex stiffness decreased with increasing stimulus amplitudes, but at larger amplitudes, this decrease was much less pronounced; in this range stiffness was regulated by the reflex. The sinusoidal frequency at which reflex bursts were elicited was approximately 6 Hz, consistent with previous measurements using ramp stretch. During reflex excitation, there was an increase in amplitude of the short interval peak in the interspike interval histogram; this was reduced when the majority of afferent pathways was removed. A phase histogram of motoneuron firing during sinusoidal vibration had a peak at approximately 110 ms, also suggesting that an important component of the reflex is via direct projections from the mechanoreceptors. These results are consistent with the hypothesis that a robust feedforward regulation of abdominal stiffness during continuous disturbances is achieved by mechanoreceptors signalling the absolute value of changing forces; habituation of the reflex, its high-threshold for low frequency disturbances and the activation kinetics of the muscle further modify reflex dynamics.
Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert
2016-11-01
On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles' pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (F max ), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, F max , RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, F max and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and F max were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation. Copyright © 2016 the American Physiological Society.
Effect of thumb anaesthesia on weight perception, muscle activity and the stretch reflex in man.
Marsden, C D; Rothwell, J C; Traub, M M
1979-01-01
1. We have confirmed the results of Gandevia & McCloskey (1977) on the effect of thumb anaesthesia on perception of weights lifted by the thumb. Weights lifted by flexion feel heavier and weights lifted by extension feel lighter. 2. The change in size of the long-latency stretch reflex in flexor pollicis longus or extensor pollicis longus after thumb anaesthesia cannot explain the effect on weight perception by removal or augmentation of the background servo assistance to muscular contraction. 3. During smooth thumb flexion, thumb anaesthesia increases e.m.g. activity in flexor pollicis longus and extensor pollicis longus for any given opposing torque. 4. During smooth thumb extension the opposite occurs: e.m.g. activity in both extensor and flexor pollicis longus decreases. 5. Clamping the thumb at the proximal phalanx to limit movement solely to the interphalangeal joint reduces or abolishes the effect of anaesthesia on both weight perception and e.m.g. activity during both flexion or extension tasks. 6. Gandevia & McCloskey's findings on the distorting effects of thumb anaesthesia on weight perception cannot be used to support the hypothesis of an efferent monitoring system of the sense of effort. Our results emphasize the close functional relationship between cutaneous and joint afferent information and motor control. PMID:512948
Shafik, Ahmed; Shafik, Ali A; El-Sibai, Olfat; Ahmed, Ismail
2003-08-01
Upon feeling the urge to urinate, the urinary bladder contracts, the urethral sphincters relax and urine flows through the urethra. These actions are mediated by the micturition reflex. We investigated the hypothesis that vesical contraction is maintained by positive feedback through continuous flow of urine through the urethra, and that the cessation of urine flow aborts detrusor contraction. Normal saline was infused into the urinary bladders of 17 healthy volunteers (age 35.2 years+/-4.2(SD); ten women and seven men) at a rate of 100 ml/min. On urge, which occurred at a mean volume of 408.6 ml+/-28.7 of saline, the subject micturated while the vesical and urethral pressures during voiding were being recorded; residual urine was measured. The test was repeated after anesthetizing the urethra with xylocaine gel or, on another occasion, after applying a bland gel. On micturition, the urine was evacuated as a continuous stream without straining; no residual fluid was collected. After urethral anesthetization, the fluid came out of the urethra in multiple intermittent spurts and only with excessive straining. There was a large amount of residual fluid (184.6 ml+/-28.4). The results of bland gel application showed no significant difference ( P>0.05) from those without gel. Detrusor contraction during micturition is suggested to be maintained by positive urethrovesical feedback elicited by the continued passage of urine through the urethra. This feedback seems to be effected through the urethrovesical reflex, which produces vesical contraction on stimulation of the urethral stretch receptors. Abortion of this reflex by urethral anesthetization resulted in failure of detrusor contraction and excessive straining was needed to achieve bladder evacuation in multiple spurts. The urethrovesical reflex is thus assumed to constitute a second micturition reflex responsible for the continuation of detrusor contraction and urination. The role of this reflex in the pathogenesis of micturition disorders needs to be studied.
NASA Technical Reports Server (NTRS)
Chen, B. M.; Grinnell, A. D.
1997-01-01
Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.
SPASTICITY—Its Nature and Treatment
Levine, Milton G.; Kabat, Herman
1954-01-01
There are a number of physiological means of relaxing spasticity, including active resistive exercise, cold hydrotherapy, heat, electrical stimulation of antagonistic muscles, passive stretch in diagonal movement patterns, and the Von Bechterew reflex. Although none of them will cure spasticity, temporary relaxation may permit a patient to achieve better functioning of an affected joint. The choice of procedure will depend on the nature of the lesion and the muscular distribution of the spasticity. PMID:13150200
Hoffmann-reflex is delayed during 6 degree head-down tilt with balanced traction
NASA Technical Reports Server (NTRS)
Haruna, Y.; Styf, J. R.; Kahan, N.; Hargens, A. R.
1999-01-01
BACKGROUND: Increased spinal height due to the lack of of axial compression on spinal structures in microgravity may stretch the spinal cord, cauda equina, nerve roots, and paraspinal tissues. HYPOTHESIS: Exposure to simulated microgravity causes dysfunction of nerve roots so that the synaptic portion of the Achilles tendon reflex is delayed. METHODS: Six healthy male subjects were randomly divided into two groups with three in each group. The subjects in the first group underwent horizontal bed rest (HBR) for three days. After a two week interval they underwent bed rest in a position of head-down tilt with balanced traction (HDT). So that each subject could serve as his own control, the second group was treated identically but in opposite order. Bilateral F waves and H-reflexes were measured daily (18:30-20:30) on all subjects placed in a prone position. RESULTS: By means of ANOVA, differences between HDT and HBR were observed only in M-latency and F-ratio, not in F-latency, central latency, and H-latency. Differences during the course of the bed rest were observed in M-latency and H-latency only. Tibial H latency was significantly lengthened in HDT group on day 2 and 3, although no significant difference between HDT and HBR was observed. CONCLUSION: The monosynaptic reflex assessed by H-reflex was delayed during 6 degree HDT with traction. The exact mechanism of this delay and whether the change was due to lengthening of the lower part of the vertebrae remain to be clarified.
The muscle spindle as a feedback element in muscle control
NASA Technical Reports Server (NTRS)
Andrews, L. T.; Iannone, A. M.; Ewing, D. J.
1973-01-01
The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.
Kaada, B
1994-05-01
A number of recent reports have indicated a higher risk of sudden infant death syndrome (SIDS) in the prone sleeping position, compared with the supine position. However, the biological mechanisms for this increased risk have not been established. For this report, two biological explanations are proposed, each of which may be influenced by altered sleeping position in such a way that they may create conditions for increased triggering of SIDS.
Pathophysiology of dysarthria in cerebral palsy.
Neilson, P D; O'Dwyer, N J
1981-01-01
Electromyograms were recorded with hooked-wire electrodes from sixteen lip, tongue and jaw muscles in six normal and seven cerebral palsied adult subjects during a variety of speech and non-speech tasks. The recorded patterns of muscle activity fail to support a number of theories concerning the pathophysiology of dysarthria in cerebral palsy. There was no indication of weakness in individual articulator muscles. There was no evidence of uncontrolled sustained background activity or of abnormal tonic stretch reflex responses in lip or tongue muscles. Primitive or pathological reflexes could not be elicited by orofacial stimulation. No imbalance between positive and negative oral responses was observed. The view that random involuntary movement disrupts essentially normal voluntary control in athetosis was not supported. Each cerebral palsied subject displayed an idiosyncratic pattern of abnormal muscle activity which was reproduced across repetitions of the same phrase, indicating a consistent defect in motor programming. PMID:7334387
Suri, Pradeep; Rainville, James; Katz, Jeffrey N.; Jouve, Cristin; Hartigan, Carol; Limke, Janet; Pena, Enrique; Li, Ling; Swaim, Bryan; Hunter, David J
2010-01-01
Study Design Cross-sectional study with prospective recruitment. Objective To determine the accuracy of the physical examination for the diagnosis of midlumbar nerve root impingement (L2, L3, or L4), low lumbar nerve root impingement (L5 or S1) and level-specific lumbar nerve root impingement on magnetic resonance imaging (MRI), using individual tests and combinations of tests. Summary of Background Data The sensitivity and specificity of the physical examination for the localization of nerve root impingement has not been previously studied. Methods Sensitivities, specificities and LRs were calculated for the ability of individual tests and test combinations to predict the presence or absence of nerve root impingement at midlumbar, low lumbar, and specific nerve root levels. Results LRs ≥5.0 indicate moderate to large changes from pre-test probability of nerve root impingement to post-test probability. For the diagnosis of midlumbar impingement, the femoral stretch test (FST), crossed femoral stretch test (CFST), medial ankle pinprick sensation, and patellar reflex testing demonstrated LRs ≥5.0 (LR ∞). LRs ≥5.0 were seen with the combinations of FST and either patellar reflex testing (LR 7.0; 95% CI 2.3–21), or the sit-to-stand test (LR ∞). For the diagnosis of low lumbar impingement, the Achilles reflex test demonstrated a LR ≥5.0 (LR 7.1; CI 0.96–53); test combinations did not increase LRs. For the diagnosis of level-specific impingement, LRs ≥5.0 were seen for anterior thigh sensation at L2 (LR 13; 95% CI 1.8–87); FST at L3 (LR 5.7 ; 95% CI 2.3–4.4); patellar reflex testing (LR 7.7; 95% CI 1.7–35), medial ankle sensation (LR ∞), or CFST (LR 13; 95% CI 1.8–87) at L4; and hip abductor strength at L5(LR 11; 95% CI 1.3–84). Test combinations increased LRs for level-specific root impingement at the L4 level only. Conclusions Individual physical examination tests may provide clinical information which substantially alters the likelihood that midlumbar impingement, low lumbar impingement, or level-specific impingement is present. Test combinations improve diagnostic accuracy for midlumbar impingement. PMID:20543768
Judge, L W; Burke, J R
2015-06-01
The purpose of the study was to describe changes in the excitability of the stretch reflex response (SRR) during different drop jumps as a function of training background and as an adaptation to a preseason sport-specific resistance training program. Twelve collegiate field event athletes (discus, hammer, javelin, shot put, and weight; 9 males and 3 females) and 12 college-aged control subjects performed the following three jumps: (1) countermovement jump (CMJ); (2) countermovement drop jump; and (3) bounce-drop jump (BDJ). Neuromechanical changes in the performance of drop jumps by athletes were measured during the sport-specific resistance training program. Pre-post testing of drop jump performance by control subjects was included for comparison. For each jump trial, ground reaction forces (GRF), electromyograms (EMG) and cinematographic data were collected. There were no training adaptations. However, jump heights were greater for the athletes than the controls among the different jumps with the jump heights for all subjects being less during the BDJ than CMJ and CDJ. In athletes only, there was a differential modulation of the SRR from the gastrocnemius muscle with different levels of background muscle activity for the CDJ and BDJ. There were changes in excitability of SRR from the gastrocnemius muscle as a function of training background. Interrelated neuromechanical mechanisms to include landing biomechanics, intrinsic musculotendinous tissue properties of the ankle, and centrally regulated motor commands may underlie the facilitation of the SRR from the gastrocnemius muscle in athletes as compared to controls.
Neural control of renal function.
Johns, Edward J; Kopp, Ulla C; DiBona, Gerald F
2011-04-01
The kidney is innervated with efferent sympathetic nerve fibers that directly contact the vasculature, the renal tubules, and the juxtaglomerular granular cells. Via specific adrenoceptors, increased efferent renal sympathetic nerve activity decreases renal blood flow and glomerular filtration rate, increases renal tubular sodium and water reabsorption, and increases renin release. Decreased efferent renal sympathetic nerve activity produces opposite functional responses. This integrated system contributes importantly to homeostatic regulation of sodium and water balance under physiological conditions and to pathological alterations in sodium and water balance in disease. The kidney contains afferent sensory nerve fibers that are located primarily in the renal pelvic wall where they sense stretch. Stretch activation of these afferent sensory nerve fibers elicits an inhibitory renorenal reflex response wherein the contralateral kidney exhibits a compensatory natriuresis and diuresis due to diminished efferent renal sympathetic nerve activity. The renorenal reflex coordinates the excretory function of the two kidneys so as to facilitate homeostatic regulation of sodium and water balance. There is a negative feedback loop in which efferent renal sympathetic nerve activity facilitates increases in afferent renal nerve activity that in turn inhibit efferent renal sympathetic nerve activity so as to avoid excess renal sodium retention. In states of renal disease or injury, there is activation of afferent sensory nerve fibers that are excitatory, leading to increased peripheral sympathetic nerve activity, vasoconstriction, and increased arterial pressure. Proof of principle studies in essential hypertensive patients demonstrate that renal denervation produces sustained decreases in arterial pressure. © 2011 American Physiological Society. Compr Physiol 1:699-729, 2011.
Abbruzzese, M; Minatel, C; Reni, L; Favale, E
2001-09-01
Changes in amplitude of the soleus H (S(H))-reflex and its neurographic correlates (P(1) and P(2) waves) after vibration of the soleus muscle have been evaluated as a function of mechanical stimulation frequency, duration of the conditioning train, and test stimulus intensity. Additional experiments aimed at assessing the nervous system mechanisms underlying the postvibration depression (PVD) have been performed. In particular, homonymous (S(HMR) or S(H)) versus heteronymous (S(HTR)) soleus response, evoked respectively by tibial nerve and femoral nerve electrical stimulation, the effectiveness of sub-H threshold tibial nerve conditioning volleys on the S(HTR), and the respective effects of a brief passive stretching of the quadriceps and soleus muscles on the recovery of both the S(HMR) and S(HTR) after vibration of the homologous muscle were investigated under suitable experimental conditions. It was found that PVD occurs in the absence of changes in amplitude of the P(1) wave and the S(HTR), is paralleled by a reduced effectiveness of tibial nerve-conditioning volleys on the S(HTR) and is shortened consistently by brief passive stretching of the homologous muscle. It follows that PVD may be the result of a long-lasting reduction of the transmitter release from Ia presynaptic terminals depending, at least in part, on a protracted postvibration Ia afferent discharge caused by spindles thixotropy. These findings may provide a better understanding of the pathophysiologic mechanisms underlying spasticity in humans.
Reflex effects following selective stimulation of J receptors in the cat.
Anand, A; Paintal, A S
1980-01-01
1. Experiments carried out on anaesthetized cats showed that increasing blood flow, through the lobes of a lung, by 133% (S.E. 33%) generated an average of 0.75 impulses/sec (S.E. 0.3) in ten almost silent J receptors. Equivalent activity was produced by injecting 12-18 micrograms phenyl diguanide/kg into the right atrium. Such activity caused marked reflex effects, i.e. apnoea, rapid shallow breathing and reduction in the knee jerk. 2. The reflex effects of J receptors were studied after blocking the activity from cardiac receptors by intrapericardial injections of xylocaine. This was necessary because left atrial injections of phenyl diguanide produced reflex respiratory effects and inhibition of the knee jerk. 3. Hypoxia, but not hypercapnia, attenuated the reflex effects of J receptors, apnoea being abolished if the Pa,O2 fell below 35 mmHg. This was a central effect as it occurred in spite of increased activity of J receptors following phenyl diguanide, and effects of hypoxia persisted after cutting both carotid nerves. 4. The only invariable reflex effect of J receptors was a reduction in the total number and the average frequency of phrenic impulses in each breath. The changes in inspiratory time (ti) and expiratory time (te) following apnoea were variable although most frequently both were reduced. In about half the observations the first effect before the apnoea was a reduction in ti, in the other half it was a reduction in te. It was concluded that an input from J receptors inhibits inspiratory and expiratory mechanisms directly. 5. In some cats apnoea and rapid shallow breathing produced by J receptors continued after interrupting their activity by vagotomy and this did not diminish the reduction in ti or te; in other cats it did. The reduction in te was at times quite independent of changes in ti, i.e. pulmonary stretch receptor activity. 6. It was concluded that J receptors must be stimulated during moderate exercise to levels that produce marked respiratory reflex effects and inhibition of muscles. PMID:6770080
Oscillation of the human ankle joint in response to applied sinusoidal torque on the foot
Agarwal, Gyan C.; Gottlieb, Gerald L.
1977-01-01
1. Low-frequency (3-30 Hz) oscillatory rotation of the ankle joint in plantarflexion—dorsiflexion was generated with a torque motor. Torque, rotation about the ankle and electromyograms (e.m.g.s) for the gastrocnemius—soleus and the anterior tibial muscles were recorded. 2. Fourier coefficients at each drive frequency were used to calculate the effective compliance (ratio of rotation and torque). The compliance has a sharp resonance when tonic, voluntary muscle activity is present. 3. The resonant frequency of compliance is between 3 and 8 Hz. The location of the resonant frequency and the magnitude of the compliance at resonance depend upon both the degree of tonic muscle activity and the amplitude of the driving torque. The resonant frequency increases with increasing tonic activity. 4. With tonic muscle activity, the compliance in the frequency range below resonance increases with increasing amplitudes of driving torque. 5. The e.m.g., when evoked by the rhythmic stretch, lags the start of stretching by between 50 and 70 msec. 6. When tonic muscle activity is present, the resonant frequency of the stretch reflex is between 5 and 6·5 Hz. 7. Following the start of driven oscillation at frequencies near resonance, slowly increasing amplitudes of angular rotation (to a limit) are observed. 8. Distortion (from the sinusoidal wave shape) of angular rotation is frequently observed with drive frequencies between 8 and 12 Hz during which there sometimes occur spontaneous recurrences of oscillation at the drive frequency. For the angular rotation, a significant portion of the power may be in subharmonic frequency components of the drive frequency when that frequency is between 8 and 12 Hz. 9. Self-sustaining oscillation (clonus) near the resonant frequency of the compliance is sometimes observed after the modulation signal to the motor is turned off. This is most often seen when the gastrocnemius—soleus muscles are fatigued. Clonus may be evoked by driven oscillation at any frequency. 10. The hypothesis that physiological tremor, which occurs between 8 and 12 Hz, is a consequence of stretch reflex servo properties seems to be at odds with the observations of resonance in the compliance and of self-generated clonus both occurring in the 5-8 Hz region. PMID:874886
Nerve lesioning with direct current
NASA Astrophysics Data System (ADS)
Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur
2011-02-01
Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.
NASA Astrophysics Data System (ADS)
Clites, Tyler R.; Carty, Matthew J.; Srinivasan, Shriya; Zorzos, Anthony N.; Herr, Hugh M.
2017-06-01
Objective. Proprioceptive mechanisms play a critical role in both reflexive and volitional lower extremity control. Significant strides have been made in the development of bionic limbs that are capable of bi-directional communication with the peripheral nervous system, but none of these systems have been capable of providing physiologically-relevant muscle-based proprioceptive feedback through natural neural pathways. In this study, we present the agonist-antagonist myoneural interface (AMI), a surgical approach with the capacity to provide graded kinesthetic feedback from a prosthesis through mechanical activation of native mechanoreceptors within residual agonist-antagonist muscle pairs. Approach. (1) Sonomicrometery and electroneurography measurement systems were validated using a servo-based muscle tensioning system. (2) A heuristic controller was implemented to modulate functional electrical stimulation of an agonist muscle, using sonomicrometric measurements of stretch from a mechanically-coupled antagonist muscle as feedback. (3) One AMI was surgically constructed in the hindlimb of each rat. (4) The gastrocnemius-soleus complex of the rat was cycled through a series of ramp-and-hold stretches in two different muscle architectures: native (physiologically-intact) and AMI (modified). Integrated electroneurography from the tibial nerve was compared across the two architectures. Main results. Correlation between stretch and afferent signal demonstrated that the AMI is capable of provoking graded afferent signals in response to ramp-and-hold stretches, in a manner similar to the native muscle architecture. The response magnitude in the AMI was reduced when compared to the native architecture, likely due to lower stretch amplitudes. The closed-loop control system showed robustness at high stretch magnitudes, with some oscillation at low stretch magnitudes. Significance. These results indicate that the AMI has the potential to communicate meaningful kinesthetic feedback from a prosthetic limb by replicating the agonist-antagonist relationships that are fundamental to physiological proprioception.
Long-latency reflexes account for limb biomechanics through several supraspinal pathways
Kurtzer, Isaac L.
2015-01-01
Accurate control of body posture is enforced by a multitude of corrective actions operating over a range of time scales. The earliest correction is the short-latency reflex (SLR) which occurs between 20–45 ms following a sudden displacement of the limb and is generated entirely by spinal circuits. In contrast, voluntary reactions are generated by a highly distributed network but at a significantly longer delay after stimulus onset (greater than 100 ms). Between these two epochs is the long-latency reflex (LLR) (around 50–100 ms) which acts more rapidly than voluntary reactions but shares some supraspinal pathways and functional capabilities. In particular, the LLR accounts for the arm’s biomechanical properties rather than only responding to local muscle stretch like the SLR. This paper will review how the LLR accounts for the arm’s biomechanical properties and the supraspinal pathways supporting this ability. Relevant experimental paradigms include clinical studies, non-invasive brain stimulation, neural recordings in monkeys, and human behavioral studies. The sum of this effort indicates that primary motor cortex and reticular formation (RF) contribute to the LLR either by generating or scaling its structured response appropriate for the arm’s biomechanics whereas the cerebellum scales the magnitude of the feedback response. Additional putative pathways are discussed as well as potential research lines. PMID:25688187
Evidence of isometric function of the flexor hallucis longus muscle in normal gait.
Kirane, Y M; Michelson, J D; Sharkey, N A
2008-01-01
Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.
Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.
Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T
2001-05-01
Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.
Stance control is not affected by paresis and reflex hyperexcitability: the case of spastic patients
Nardone, A; Galante, M; Lucas, B; Schieppati, M
2001-01-01
OBJECTIVES—Spastic patients were studied to understand whether stance unsteadiness is associated with changes in the control of voluntary force, muscle tone, or reflex excitability, rather than to abnormal posture connected to the motor deficit itself. METHODS—Twenty four normal subjects, 12 patients affected by amyotrophic lateral sclerosis (ALS), seven by spastic paraparesis, and 14 by hemiparesis were studied. All patients featured various degrees of spasticity and paresis but were free from clinically evident sensory deficits. Body sway during quiet upright stance was assessed through a stabilometric platform under both eyes open (EO) and eyes closed (EC) conditions. The sudden rotation of a supporting platform, in a toe up and toe down direction respectively, evoked short (SLR) and medium latency (MLR) reflex responses to stretch of the soleus or the tibialis anterior (TA) muscle. RESULTS—No relation was found between clinical findings (tone, muscle strength, tendon reflexes, plantar response, and duration of disease) and body sway. On average, all patient groups exhibited a forward shift of the centre of foot pressure (CFP) with respect to normal subjects; in addition, paraparetic and to a much larger extent hemiparetic patients showed a lateral shift of CFP. Body sway area was significantly increased only in the hemiparetic patients. No relation was found between position of the CFP and sway within any patient group. Soleus SLR was increased in all patients with respect to normal subjects. TA SLR was often seen in both patients with ALS and paraparetic patients, but only rarely in normal subjects and hemiparetic patients. However, no relation was found between amplitude of soleus or TA SLRs and stabilometric variables. The frequency and size of soleus MLR and TA MLR were decreased in all patients. These responses were decreased in size and not modulated by background EMG in the affected leg of hemiparetic patients, suggesting a disturbed control of spinal reflexes fed by spindle group II afferent fibres. CONCLUSIONS—It is proposed that body posture, paresis, or monosynaptic reflex hyperexcitability do not affect the control of equilibrium during quiet upright stance. In hemiparetic patients, the decreased amplitude of MLRs might be the main cause of the large postural instability. The results are congruent with the hypothesis of a role for group II afferent input in the reflex control of equilibrium. PMID:11309458
Aimola, Ettore; Valle, Maria Stella; Casabona, Antonino
2014-01-01
Muscle reflexes, evoked by opposing a sudden joint displacement, may be modulated by several factors associated with the features of the mechanical perturbation. We investigated the variations of muscle reflex response in relation to the predictability of load magnitude during a reactive grasping task. Subjects were instructed to flex the fingers 2–5 very quickly after a stretching was exerted by a handle pulled by loads of 750 or 1250 g. Two blocks of trials, one for each load (predictable condition), and one block of trials with a randomized distribution of the loads (unpredictable condition) were performed. Kinematic data were collected by an electrogoniometer attached to the middle phalanx of the digit III while the electromyography of the Flexor Digitorum Superficialis muscle was recorded by surface electrodes. For each trial we measured the kinematics of the finger angular rotation, the latency of muscle response and the level of muscle activation recorded below 50 ms (short-latency reflex), between 50 and 100 ms (long-latency reflex) and between 100 and 140 ms (initial portion of voluntary response) from the movement onset. We found that the latency of the muscle response lengthened from predictable (35.5±1.3 ms for 750 g and 35.5±2.5 ms for 1250 g) to unpredictable condition (43.6±1.3 ms for 750 g and 40.9±2.1 ms for 1250 g) and the level of muscle activation increased with load magnitude. The parallel increasing of muscle activation and load magnitude occurred within the window of the long-latency reflex during the predictable condition, and later, at the earliest portion of the voluntary response, in the unpredictable condition. Therefore, these results indicate that when the amount of an upcoming perturbation is known in advance, the muscle response improves, shortening the latency and modulating the muscle activity in relation to the mechanical demand. PMID:25271638
Pagliaro, P; Zamparo, P
1999-04-01
The aim of this study was the quantitative evaluation of the myotatic reflex in a group of 26 patients affected by stationary spastic paresis (6: hemiparesis; 5: paraparesis; 8: tetraparesis; 7: multiple sclerosis) before and after a treatment of hydro-kinesy therapy. The treatment was carried out in an indoor pool containing warm (32 degrees C) sea water and consisted of active and passive motion exercises, coordination exercises and immersion walking. The measured parameters were: (i) the peak input force (FpH) measured by means of an instrumented hammer with which the patellar tendon was hit; and (ii) the peak value of the corresponding reflex force of the quadriceps femoris (FpQ) measured by means of a load cell connected to the subject's ankle. The peak values of the reflex response (FpQ) were found to increase as a function of the intensity of the imposed stimulus and to reach a plateau between 15 and 30 N of FpH. A Student's t test applied to the paired values of FpQ (as measured at plateau conditions) on both the lower limbs, before and after therapy, showed no significant changes due to the treatment in the four groups of subjects. However, if all subjects were grouped regardless the type of illness: 1) the average reflex response of the affected limb (the one characterized before therapy by the higher FpQ values) was found to decrease following the treatment (75.1+/-26.7 N pre therapy and 69.1+/-29.3 N post therapy, p = 0.07, n = 26); and 2) the effect of the treatment was found to be significantly larger (p = 0.04, n = 26) on the affected limb (delta FpQ = 6.07+/-16.5 N) as respect with the contra lateral one (delta FpQ = -0.16+/-12.1 N).
Absence of equifinality of hand position in a double-step unloading task.
Norouzi-Gheidari, Nahid; Archambault, Philippe
2010-08-01
Equifinality, during arm reaching movements, relates to the capacity of the neuromuscular system to attain the same final position in the presence or absence of transient perturbations. There have been several controversies regarding equifinality in the literature. A brief elastic perturbation, applied during a fast arm movement or just before its initiation, typically does not affect final arm position. On the other hand, several experiments have shown that velocity-dependent perturbations, such as Coriolis force or negative damping, while transient in nature, have a significant effect on final arm position when compared to unperturbed movements. In this study, an unloading paradigm was used to study the role of reflexes with respect to equifinality. The effects on final arm position of suddenly decreasing a static load maintained by fourteen subjects were analyzed. Subjects maintained an initial load produced by a double-joint manipulandum moving in the horizontal plane. The load was suddenly decreased, either in one or in two successive steps with different time intervals, resulting in a rapid reflex-mediated change in arm position. Unloading led to short-latency changes in the activity of shoulder and elbow muscles and significant variations in tonic activity. It was found that the final hand position was shorter for double- versus single-step unloading if the time between two successive changes in load was greater than 100 ms. With a shorter time interval, the final hand positions were the same. This difference in final hand positions was inversely proportional to the hand velocity at the time of the second change in load. Further, agonist/antagonist co-activation increased in double-step unloading. Thus, the change in both the load and the movement velocity may influence the magnitude of the unloading reflex. This may be indicative of a dependence of stretch reflexes on velocity. Perturbation may cause a reflex-mediated increase in joint stiffness, which could explain why equifinality is not preserved after some perturbations, such as velocity-dependant external forces.
2013-01-01
Background To investigate the impact of a short-term multimodal rehabilitation program for patients with low back pain (LBP) on trunk muscle reflex responses and feedforward activation induced by postural perturbations. Methods Case series (uncontrolled longitudinal study). Thirty chronic patients with LBP (21 women and 19 men, mean age 42.6 ± 8.6 years, mean weight 73 ± 14 kg, mean height 174 ± 10 cm) were included. The intervention consisted in a 5-day program including therapeutic education sessions (360 min), supervised abdominal and back muscle strength exercises (240 min), general aerobic training (150 min), stretching (150 min), postural education (150 min) and aqua therapy (150 min). Feedforward activation level and reflex amplitude determined by surface electromyographic activity triggered by postural perturbations were recorded from abdominal and paraspinal muscles in unexpected and expected conditions. Subjects were tested before, just after and again one month after the rehabilitation program. Results No main intervention effect was found on feedforward activation levels and reflex amplitudes underlining the absence of changes in the way patients with LBP reacted across perturbation conditions. However, we observed a shift in the behavioral strategy between conditions, in fact feedforward activation (similar in both conditions before the program) decreased in the unexpected condition after the program, whereas reflex amplitudes became similar in both conditions. Conclusions The results suggest that a short-term rehabilitation program modifies trunk behavioral strategies during postural perturbations. These results can be useful to clinicians for explaining to patients how to adapt to daily life activities before and after rehabilitation. PMID:24063646
Proprioceptive reaction times and long-latency reflexes in humans.
Manning, C D; Tolhurst, S A; Bawa, P
2012-08-01
The stretch of upper limb muscles results in two electromyographic (EMG) peaks, M1 and M2. The amplitude of M2 peak can generally be modified by giving prior instruction to the subject on how to react to the applied perturbation. The unresolved question is whether the amplitude modulation results from change in the gain of the reflex pathway contributing to M2, or by superposition of reaction time (RT) activity. The following study attempted to resolve this question by examining the overlap between proprioceptive RT and M2 activities. Subject's right wrist flexors were stretched, and he/she was instructed either (1) not to intervene (passive task) or (2) to react as fast as possible by simultaneously flexing both wrists (active or compensate task). Under passive and active conditions, M1 and M2 were observed from EMG of right wrist flexors, and during the active condition, RT activities were additionally observed from both sides. The onset and offset of M2 (M1(onset), M2(offset)) were measured from the passive averages, while the RT was measured from the averaged EMG response of the left wrist flexors. For between-subject correlations, the data were divided into two sets: (1) subjects with RT shorter than M2(offset) (fast group) and (2) subjects with RT more than 10 ms longer than their M2(offset) (slow group). Modulation during M2 period was large for the fast group, and it was almost zero for the slow group. These results indicate that the superimposition of RT activity mainly contributes to the instruction-dependent modulation of M2 peak.
The Relationship Between Postural and Movement Stability.
Feldman, Anatol G
2016-01-01
Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.
Estrogen attenuates the cardiovascular and ventilatory responses to central command in cats.
Hayes, Shawn G; Moya Del Pino, Nicolas B; Kaufman, Marc P
2002-04-01
Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.
The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue.
Nicol, Caroline; Avela, Janne; Komi, Paavo V
2006-01-01
Neuromuscular fatigue has traditionally been examined using isolated forms of either isometric, concentric or eccentric actions. However, none of these actions are naturally occurring in human (or animal) ground locomotion. The basic muscle function is defined as the stretch-shortening cycle (SSC), where the preactivated muscle is first stretched (eccentric action) and then followed by the shortening (concentric) action. As the SSC taxes the skeletal muscles very strongly mechanically, its influence on the reflex activation becomes apparent and very different from the isolated forms of muscle actions mentioned above. The ground contact phases of running, jumping and hopping etc. are examples of the SSC for leg extensor muscles; similar phases can also be found for the upper-body activities. Consequently, it is normal and expected that the fatigue phenomena should be explored during SSC activities. The fatigue responses of repeated SSC actions are very versatile and complex because the fatigue does not depend only on the metabolic loading, which is reportedly different among muscle actions. The complexity of SSC fatigue is well reflected by the recovery patterns of many neuromechanical parameters. The basic pattern of SSC fatigue response (e.g. when using the complete exhaustion model of hopping or jumping) is the bimodality showing an immediate reduction in performance during exercise, quick recovery within 1-2 hours, followed by a secondary reduction, which may often show the lowest values on the second day post-exercise when the symptoms of muscle soreness/damage are also greatest. The full recovery may take 4-8 days depending on the parameter and on the severity of exercise. Each subject may have their own time-dependent bimodality curve. Based on the reviewed literature, it is recommended that the fatigue protocol is 'completely' exhaustive to reduce the important influence of inter-subject variability in the fatigue responses. The bimodality concept is especially apparent for stretch reflex responses, measured either in passive or active conditions. Interestingly, the reflex responses follow parallel changes with some of the pure mechanical parameters, such as yielding of the braking force during an initial ground contact of running or hopping. The mechanism of SSC fatigue and especially the bimodal response of performance deterioration and its recovery are often difficult to explain. The immediate post-exercise reduction in most of the measured parameters and their partial recovery 1-2 hours post-exercise can be explained primarily to be due to metabolic fatigue induced by exercise. The secondary reduction in these parameters takes place when the muscle soreness is highest. The literature gives several suggestions including the possible structural damage of not only the extrafusal muscle fibres, but also the intrafusal ones. Temporary changes in structural proteins and muscle-tendon interaction may be related to the fatigue-induced force reduction. Neural adjustments in the supraspinal level could naturally be operative, although many studies quoted in this article emphasise more the influences of exhaustive SSC fatigue on the fusimotor-muscle spindle system. It is, however, still puzzling why the functional recovery lasts several days after the disappearance of muscle soreness. Unfortunately, this and many other possible mechanisms need more thorough testing in animal models provided that the SSC actions can be truly performed as they appear in normal human locomotion.
Bonham, A C; Coles, S K; McCrimmon, D R
1993-05-01
1. The goal of the present study was to identify potential neurotransmitter candidates in the Breuer-Hering (BH) reflex pathway, specifically at synapses between the primary afferents and probable second-order neurones (pump cells) within the nucleus tractus solitarii (NTS). We hypothesized that if activation of specific receptors in the NTS is required for production of the BH reflex, then (1) injection of the receptor agonist(s) would mimic the reflex response (apnoea), (2) injection of appropriate antagonists would impair the apnoea produced by either lung inflation or agonist injection, and (3) second-order neurones in the pathway would be excited by either lung inflation or agonists while antagonists would prevent the response to either. 2. Studies were carried out either in spontaneously breathing or in paralysed, thoracotomized and ventilated rats in which either diaphragm EMG or phrenic nerve activity, expired CO2 concentration and arterial pressure were continuously monitored. The BH reflex was physiologically activated by inflating the lungs. 3. Pressure injections (0.03-15 pmol) of selective excitatory amino acid (EAA) receptor agonists, quisqualic acid (Quis) and N-methyl-D-aspartic acid (NMDA) into an area of the NTS shown previously to contain neurones required for production of the BH reflex produced dose-dependent apnoeas that mimicked the response to lung inflation. Injection of substance P (0.03-4 pmol) did not alter baseline respiratory pattern. 4. Injections of the EAA antagonists, kynurenic acid (Kyn; 0.6-240 pmol), 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) or 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the BH region of the NTS reversibly impaired the apnoea produced by lung inflation. All three antagonists reduced or abolished the apnoeas resulting from injection of Quis or NMDA, and slowed baseline respiratory frequency. In contrast, injections of the highly selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acids (AP5), in doses sufficient to block the apnoeic response to NMDA, neither altered the reflex apnoea evoked by lung inflation nor the baseline respiratory pattern. 5. Pump cells located within the BH region were excited by pressure injections of the broad spectrum EAA agonist, DL-homocysteic acid (DLH). Kyn reversibly blocked the excitation of pump cells in response to either lung inflation or DLH injection. 6. These findings suggest that EAAs mediate primary afferent excitation of second-order neurones in the Breuer-Hering reflex pathway, primarily through the activation of non-NMDA EAA receptor subtypes.
Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries
Alvarez, Francisco J.; Bullinger, Katie L.; Titus, Haley E.; Nardelli, Paul; Cope, Timothy C.
2010-01-01
After peripheral nerve injuries to a motor nerve the axons of motoneurons and proprioceptors are disconnected from the periphery and monosynaptic connections from group I afferents and motoneurons become diminished in the spinal cord. Following successful reinnervation in the periphery, motor strength, proprioceptive sensory encoding, and Ia afferent synaptic transmission on motoneurons partially recover. Muscle stretch reflexes, however, never recover and motor behaviors remain uncoordinated. In this review, we summarize recent findings that suggest that lingering motor dysfunction might be in part related to decreased connectivity of Ia afferents centrally. First, sensory afferent synapses retract from lamina IX causing a permanent relocation of the inputs to more distal locations and significant disconnection from motoneurons. Second, peripheral reconnection between proprioceptive afferents and muscle spindles is imperfect. As a result, a proportion of sensory afferents that retain central connections with motoneurons might not reconnect appropriately in the periphery. A hypothetical model is proposed in which the combined effect of peripheral and central reconnection deficits might explain the failure of muscle stretch to initiate or modulate firing of many homonymous motoneurons. PMID:20536938
Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke
2013-01-01
Background Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Method Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Results Primary outcome: Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). Secondary outcomes: A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p’s < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p’s < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Conclusions Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery. PMID:23336711
Patten, Carolynn; Condliffe, Elizabeth G; Dairaghi, Christine A; Lum, Peter S
2013-01-21
Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p's < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p's < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery.
Dilda, Valentina; Morris, Tiffany R; Yungher, Don A; MacDougall, Hamish G; Moore, Steven T
2014-01-01
Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7-8 weeks (70-80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months.
Jones, Christopher L; Kamper, Derek G
2018-01-01
Finger-thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger-thumb coupling during close-open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb ( p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing ( p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI ( p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm ( p < 0.001). A greater effect was seen during the opening phase ( p < 0.044). Thus, involuntary finger-thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies.
Jones, Christopher L.; Kamper, Derek G.
2018-01-01
Finger–thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger–thumb coupling during close–open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies. PMID:29545767
Ulrich, Beverly D.; Martin, Bernard
2015-01-01
In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional movements. This will tailor the neuromuscular connectivity to support adaptive motor behaviors. PMID:21140137
Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
NASA Astrophysics Data System (ADS)
Yao, Shanshan; Zhu, Yong
2014-01-01
Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels.Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Here we develop highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to ~1.2 MPa) and finger touch with high sensitivity, fast response time (~40 ms) and good pressure mapping function. The reported sensors utilize the capacitive sensing mechanism, where silver nanowires are used as electrodes (conductors) and Ecoflex is used as a dielectric. The silver nanowire electrodes are screen printed. Our sensors have been demonstrated for several wearable applications including monitoring thumb movement, sensing the strain of the knee joint in patellar reflex (knee-jerk) and other human motions such as walking, running and jumping from squatting, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05496a
An integral theory of female urinary incontinence. Experimental and clinical considerations.
Petros, P E; Ulmsten, U I
1990-01-01
In this Theory paper, the complex interplay of the specific structures involved in female urinary continence are analyzed. In addition the effects of age, hormones, and iatrogenically induced scar tissue on these structures, are discussed specifically with regard to understanding the proper basis for treatment of urinary incontinence. According to the Theory stress and urge symptoms may both derive, for different reasons from the same anatomical defect, a lax vagina. This laxity may be caused by defects within the vaginal wall itself, or its supporting structures i.e. ligaments, muscles, and their connective tissue insertions. The vagina has a dual function. It mediates (transmits) the various muscle movements involved in bladder neck opening and closure through three separate closure mechanisms. It also has a structural function, and prevents urgency by supporting the hypothesized stretch receptors at the proximal urethra and bladder neck. Altered collagen/elastin in the vaginal connective tissue and/or its ligamentous supports may cause laxity. This dissipates the muscle contraction, causing stress incontinence, and/or activation of an inappropriate micturition reflex, ("bladder instability") by stimulation of bladder base stretch receptors. The latter is manifested by symptoms of frequency, urgency, nocturia with or without urine loss.
Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury
Gómez-Soriano, Julio; Goiriena, Eider; Taylor, Julian
2010-01-01
For almost three decades intrathecal baclofen therapy has been the standard treatment for spinal cord injury spasticity when oral medication is ineffective or produces serious side effects. Although intrathecal baclofen therapy has a good clinical benefit-risk ratio for spinal spasticity, tolerance and the life-threatening withdrawal syndrome present serious problems for its management. Now, in an experimental model of spinal cord injury spasticity, AMPA receptor blockade with NGX424 (Tezampanel) has been shown to reduce stretch reflex activity alone and during tolerance to intrathecal baclofen therapy. These results stem from the observation that GluA1 receptors are overexpressed on reactive astrocytes following experimental ischaemic spinal cord injury. Although further validation is required, the appropriate choice of AMPA receptor antagonists for treatment of stretch hyperreflexia based on our recent understanding of reactive astrocyte neurobiology following spinal cord injury may lead to the development of a better adjunct clinical therapy for spasticity without the side effects of intrathecal baclofen therapy. LINKED ARTICLE This article is a commentary on Oshiro et al., pp. 976–985 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2010.00954.x PMID:20662840
Role Of Stretching Exercises In The Management Of Constipation In Spastic Cerebral Palsy.
Awan, Waqar Ahmed; Masood, Tahir
2016-01-01
Constipation is considered as one of the most common non-motor manifestations in cerebral palsy (CP). Along with other reasons, spasticity also contributes in developing constipation in CP, by decreasing mobility of trunk and lower extremities and abdominal viscera. Stretching exercises of upper extremities, trunk and lower extremities are routine management of spasticity in CP children. The objective of the study was to determine the role of stretching exercises in improving constipation symptoms in children with spastic cerebral palsy and to explore the association between spasticity and constipation among cerebral palsy children. Single-group Pretest-Posttest Design (Quasi Experimental Study Design). The study was conducted at Physiotherapy Department of National Institute of Rehabilitation Medicine (NIRM) Islamabad. Thirty spastic CP children - both male and female - with complaints of constipation were recruited through non-probability, convenience sampling. The mean age of the children was 7.55±1.33 years. Each child was assessed for defecation frequency (DF), constipation severity by constipation assessment scale (CAS) and level of spasticity by modified ash worth scale for spasticity (MASS) at baseline. Stretching exercises were performed for 30 seconds with five repetitions and at least once a day for six week, followed by positioning of patients in reflex inhibiting posture. Final data was collected using the same tools as done at the baseline. Paired samples t-test was used to analyse the rehabilitation-induced changes after 6 weeks. To determine association between spasticity and constipation Pearson product-moment correlation coefficient was used. The data was analysed through SPSS 20. Significant changes, compared to the baseline scores, were observed after 6 weeks of stretching exercises in MASS (2.53±0.62 Vs 1.53±0.77), DF (2.43±0.67 Vs 3.70±1.02) and CAS (7.23±1.50 Vs 5.43±1.73) with p≤0.05. The results also showed significant correlation between changes in levels of spasticity and severity of constipation (r = 0.37; p=0.04). Finally, significant correlation was present between improvement in spasticity and defecation frequency (r =-0.39; p=0.02). Stretching exercises administered for the management of spasticity in CP can significantly improve the symptoms of constipation in such children. The results of the study showed that constipation is strongly associated with level of spasticity in CP children.
The Potential Neural Mechanisms of Acute Indirect Vibration
2011-01-01
There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s) of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR), which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz) which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz). Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s) are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s) and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s) occur during and post-vibration. Key points There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception, but little attention has been given to the neural mechanism(s) of acute indirect vibration. Current findings suggest that acute vibration exposure may cause a neural response, but there is little consensus on identifying which neural mechanism(s) are specifically responsible. This is due to a number of studies using various vibration testing protocols (i.e.varying frequencies, amplitudes, durations, and methods of application). Spinal reflexes, muscle tuning and neuromuscular aspects and central motor command are all viable neuromechanical factors that may contribute at different stages to transiently increasing muscular performance. Additional research is encouraged to determine when (pre, during and post) the different neural mechanism(s) respond to direct and indirect vibration stimuli. PMID:24149291
Grassi, C; Deriu, F; Passatore, M
1993-09-01
1. In precollicular decerebrate rabbits we investigated the effect of sympathetic stimulation, at frequencies within the physiological range, on the tonic vibration reflex (TVR) elicited in jaw closing muscles by small amplitude vibrations applied to the mandible (15-50 microns, 150-180 Hz). The EMG activity was recorded bilaterally from masseter muscle and the force developed by the reflex was measured through an isometric transducer connected with the mandibular symphysis. 2. Unilateral stimulation of the peripheral stump of the cervical sympathetic by the TVR, and a marked decrease or disappearance of the ipsilateral EMG activity. No significant changes were detected in the EMG contralateral to the stimulated nerve. Bilateral CSN stimulation reduced by 60-90% the force reflexly produced by the jaw closing muscles and strongly decreased or suppressed EMG activity on both sides. This effect was often preceded by a transient TVR enhancement, very variable in amplitude and duration, which was concomitant with the modest increase in pulmonary ventilation induced by the sympathetic stimulation. 3. During bilateral CSN stimulation, an increase in the vibration amplitude by a factor of 1.5-2.5 was sufficient to restore the TVR reduced by sympathetic stimulation. 4. The depressant action exerted by sympathetic activation on the TVR is mediated by alpha-adrenergic receptors, since it was almost completely abolished by the I.V. administration of either phentolamine or prazosin, this last drug being a selective antagonist of alpha 1-adrenoceptors. The sympathetically induced decrease in the TVR was not mimicked by manoeuvres producing a large and sudden reduction or abolition of the blood flow to jaw muscles, such as unilateral or bilateral occlusion of the common carotid artery. 5. The effect of sympathetic stimulation was not significantly modified after denervation of the inferior dental arch and/or anaesthesia of the temporomandibular joint, i.e. after having reduced the afferent input from those receptors, potentially affected by CSN stimulation, which can elicit either a jaw opening reflex or a decrease in the activity of the jaw elevator muscle motoneurons. 6. These data suggest that, when the sympathetic nervous system is activated under physiological conditions, there is a marked depression of the stretch reflex which is independent of vasomotor changes and is probably due to a decrease in sensitivity of muscle spindle afferents.
Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya
2013-02-01
The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.
Postural Change Alters Autonomic Responses to Breath-Holding
Taneja, Indu; Medow, Marvin S.; Clarke, Debbie; Ocon, Anthony; Stewart, Julian M.
2011-01-01
We used breath-holding during inspiration as a model to study the effect of pulmonary stretch on sympathetic nerve activity. Twelve healthy subjects (7 females, 5 males; 19–27 yrs) were tested while they performed an inspiratory breath-hold, both supine and during a 60° head-up tilt (HUT 60). Heart rate (HR), mean arterial blood pressure (MAP), respiration, muscle sympathetic nerve activity (MSNA), oxygen saturation (SaO2) and end tidal carbon dioxide (ETCO2) were recorded. Cardiac output (CO) and total peripheral resistance (TPR) were calculated. While breath-holding, ETCO2 increased significantly from 41±2 to 60±2 Torr during supine (p<0.05) and 38±2 Torr to 58±2 during HUT60 (p<0.05); SaO2 decreased from 98±1.5% to 95±1.4% supine, and from 97±1.5% to 94±1.7% during HUT60 (p=NS). MSNA showed three distinctive phases - a quiescent phase due to pulmonary stretch associated with decreased MAP, HR, CO and TPR; a second phase of baroreflex-mediated elevated MSNA which was associated with recovery of MAP and HR only during HUT60; CO and peripheral resistance returned to baseline while supine and HUT60; a third phase of further increased MSNA activity related to hypercapnia and associated with increased TPR. Breath-holding results in initial reductions of MSNA, MAP and HR by the pulmonary stretch reflex followed by increased sympathetic activity related to the arterial baroreflex and chemoreflex. PMID:20012144
Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo
2014-01-01
Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness and facilitate heel strike in children with CP? Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied stretches below and above reflex threshold. Gait kinematics were recorded by 3-D video-analysis during treadmill walking. Foot pressure was measured by force-sensitive foot soles during treadmill and over-ground walking. Children with increased passive stiffness showed a significant reduction in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.
Biological Movement and Laws of Physics.
Latash, Mark L
2017-07-01
Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.
Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I
2018-03-01
Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
NASA Astrophysics Data System (ADS)
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2008-01-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426
Nonoperative Management of Cervical Radiculopathy.
Childress, Marc A; Becker, Blair A
2016-05-01
Cervical radiculopathy describes pain in one or both of the upper extremities, often in the setting of neck pain, secondary to compression or irritation of nerve roots in the cervical spine. It can be accompanied by motor, sensory, or reflex deficits and is most prevalent in persons 50 to 54 years of age. Cervical radiculopathy most often stems from degenerative disease in the cervical spine. The most common examination findings are painful neck movements and muscle spasm. Diminished deep tendon reflexes, particularly of the triceps, are the most common neurologic finding. The Spurling test, shoulder abduction test, and upper limb tension test can be used to confirm the diagnosis. Imaging is not required unless there is a history of trauma, persistent symptoms, or red flags for malignancy, myelopathy, or abscess. Electrodiagnostic testing is not needed if the diagnosis is clear, but has clinical utility when peripheral neuropathy of the upper extremity is a likely alternate diagnosis. Patients should be reassured that most cases will resolve regardless of the type of treatment. Nonoperative treatment includes physical therapy involving strengthening, stretching, and potentially traction, as well as nonsteroidal anti-inflammatory drugs, muscle relaxants, and massage. Epidural steroid injections may be helpful but have higher risks of serious complications. In patients with red flag symptoms or persistent symptoms after four to six weeks of treatment, magnetic resonance imaging can identify pathology amenable to epidural steroid injections or surgery.
Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko
2012-08-15
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.
Feedforward neural control of toe walking in humans.
Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo
2018-03-23
Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Damphousse, M; Jousse, M; Verollet, D; Guinet, A; Le Breton, F; Lacroix, P; Sheik Ismael, S; Amarenco, G
2012-04-01
Proctalgia fugax (PF) is a very common condition especially in women. Causes and pathophysiological mechanisms of PF are unknown. Recently, a pudendal neuropathy was clinically suspected in women with PF. The goal of our study was to demonstrate, or not, such abnormalities by means electrophysiological testing. Fifty-five patients with PF (45 female and 10 male, mean age 50.2 years) were evaluated. EMG testing with motor unit potential analysis of pelvic floor muscles (bulbocavernosus muscle and striated external anal sphincter), study of bulbocavernosus reflex and pudendal nerve terminal motor latencies (PNTML) were performed. EMG testing was altered in two males out of 10 (20%) and 29/45 females (64%). In women, denervation was found bilateral in 25/29 (86%). Sacral latency was delayed in eight out of 29 (bilateral in five cases, unilateral in three cases) and PNTML altered in 17 cases (13 bilateral alteration, four unilateral). A significant difference (P<0.002 Chi(2) test) was demonstrated between male and female concerning pelvic floor muscles denervation. Pelvic floor muscles denervation was a common feature in women suffering from PF, due to a stretch bilateral pudendal neuropathy. Distal lesions of the pudendal nerves, principally due to a stretch perineal neuropathy, can be imagined as a factor or co-factor of PF. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Nordstrom, M A; Mapletoft, E A; Miles, T S
1995-11-01
A solution is described for the acquisition on a personal computer of standard pulses derived from neuronal discharge, measurement of neuronal discharge times, real-time control of stimulus delivery based on specified inter-pulse interval conditions in the neuronal spike train, and on-line display and analysis of the experimental data. The hardware consisted of an Apple Macintosh IIci computer and a plug-in card (National Instruments NB-MIO16) that supports A/D, D/A, digital I/O and timer functions. The software was written in the object-oriented graphical programming language LabView. Essential elements of the source code of the LabView program are presented and explained. The use of the system is demonstrated in an experiment in which the reflex responses to muscle stretch are assessed for a single motor unit in the human masseter muscle.
... infants; Tonic neck reflex; Galant reflex; Truncal incurvation; Rooting reflex; Parachute reflex; Grasp reflex ... up if both hands are grasping your fingers. ROOTING REFLEX This reflex occurs when the baby's cheek ...
Vaivre-Douret, Laurence; Lalanne, Christophe; Golse, Bernard
2016-01-01
Background: Developmental Coordination Disorder (DCD) defines a heterogeneous class of children exhibiting marked impairment in motor coordination as a general group of deficits in fine and gross motricity (subtype mixed group) common to all research studies, and with a variety of other motor disorders that have been little investigated. No consensus about symptoms and etiology has been established. Methods: Data from 58 children aged 6 to 13 years with DCD were collected on DSM-IV criteria, similar to DSM-5 criteria. They had no other medical condition and inclusion criteria were strict (born full-term, no medication, no occupational/physical therapy). Multivariate statistical methods were used to evidence relevant interactions between discriminant features in a general DCD subtype group and to highlight specific co-morbidities. The study examined age-calibrated standardized scores from completed assessments of psychological, neuropsychological, and neuropsychomotor functions, and more specifically the presence of minor neurological dysfunctions (MND) including neurological soft signs (NSS), without evidence of focal neurological brain involvement. These were not considered in most previous studies. Results: Findings show the salient DCD markers for the mixed subtype (imitation of gestures, digital perception, digital praxia, manual dexterity, upper, and lower limb coordination), vs. surprising co-morbidities, with 33% of MND with mild spasticity from phasic stretch reflex (PSR), not associated with the above impairments but rather with sitting tone (p = 0.004) and dysdiadochokinesia (p = 0.011). PSR was not specific to a DCD subtype but was related to increased impairment of coordination between upper and lower limbs and manual dexterity. Our results highlight the major contribution of an extensive neuro-developmental assessment (mental and physical). Discussion: The present study provides important new evidence in favor of a complete physical neuropsychomotor assessment, including neuromuscular tone examination, using appropriate standardized neurodevelopmental tools (common tasks across ages with age-related normative data) in order to distinguish motor impairments gathered under the umbrella term of developmental coordination disorders (subcortical vs. cortical). Mild spasticity in the gastrocnemius muscles, such as phasic stretch reflex (PSR), suggests disturbances of the motor pathway, increasing impairment of gross and fine motricity. These findings contribute to understanding the nature of motor disorders in DCD by taking account of possible co-morbidities (corticospinal tract disturbances) to improve diagnosis and adapt treatment programmes in clinical practice. PMID:27148114
Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury.
Vincent, Jacob A; Nardelli, Paul; Gabriel, Hanna M; Deardorff, Adam S; Cope, Timothy C
2015-08-01
The health of primary sensory afferents supplying muscle has to be a first consideration in assessing deficits in proprioception and related motor functions. Here we discuss the role of a particular proprioceptor, the IA muscle spindle proprioceptor in causing movement disorders in response to either regeneration of a sectioned peripheral nerve or damage from neurotoxic chemotherapy. For each condition, there is a single preferred and widely repeated explanation for disability of movements associated with proprioceptive function. We present a mix of published and preliminary findings from our laboratory, largely from in vivo electrophysiological study of treated rats to demonstrate newly discovered IA afferent defects that seem likely to make important contributions to movement disorders. First, we argue that reconnection of regenerated IA afferents with inappropriate targets, although often repeated as the reason for lost stretch-reflex contraction, is not a complete explanation. We present evidence that despite successful recovery of stretch-evoked sensory signaling, peripherally regenerated IA afferents retract synapses made with motoneurons in the spinal cord. Second, we point to evidence that movement disability suffered by human subjects months after discontinuation of oxaliplatin (OX) chemotherapy for some is not accompanied by peripheral neuropathy, which is the acknowledged primary cause of disability. Our studies of OX-treated rats suggest a novel additional explanation in showing the loss of sustained repetitive firing of IA afferents during static muscle stretch. Newly extended investigation reproduces this effect in normal rats with drugs that block Na(+) channels apparently involved in encoding static IA afferent firing. Overall, these findings highlight multiplicity in IA afferent deficits that must be taken into account in understanding proprioceptive disability, and that present new avenues and possible advantages for developing effective treatment. Extending the study of IA afferent deficits yielded the additional benefit of elucidating normal processes in IA afferent mechanosensory function. © 2015 Anatomical Society.
EMG and mechanical changes during sprint starts at different front block obliquities.
Guissard, N; Duchateau, J; Hainaut, K
1992-11-01
The effect of decreased front block obliquity on start velocity was studied during sprint starts. The electromyographic (EMG) activity of the medial gastrocnemius (MG), the soleus (Sol), and the vastus medialis (VM) was recorded and analyzed at a 70 degrees, a 50 degrees, and a 30 degrees angle between the foot plate surface and the horizontal. Integrated EMGs (IEMG) were compared with muscle length changes in the MG and Sol in relation to foot and knee movements. The results indicate that decreasing front block obliquity significantly (P < 0.05) increases the start velocity without any change to the total duration of the pushing phase and the overall EMG activity. This improvement in sprint start performance is associated with the enhanced contribution of the MG during eccentric and concentric phases of calf muscles contraction. In the "set position" the initial length of MG and Sol is increased at 50 degrees and 30 degrees as compared with 70 degrees. The subsequent stretch-shortening cycle is improved and contributes more effectively to the speed of the muscle shortening. Moreover, lengthening these muscles during the eccentric phase stretches the muscle spindles, and the reflex activities that contribute to the observed increase in the MG IEMG, are present when the slope of the block is reduced. The results indicate that decreasing front block obliquity induces neural and mechanical modifications that contribute to increasing the sprint start velocity without any increase in the duration of the pushing phase.(ABSTRACT TRUNCATED AT 250 WORDS)
Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.
Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike
2006-10-01
The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.
``Smart'' baroreception along the aortic arch, with reference to essential hypertension
NASA Astrophysics Data System (ADS)
Kember, G. C.; Zamir, M.; Armour, J. A.
2004-11-01
Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.
Ban, Ryokuya; Matsuo, Kiyoshi; Ban, Midori; Yuzuriha, Shunsuke
2013-01-01
The mixed levator and frontalis muscles lack the interior muscle spindles normally required to induce involuntary contraction of their slow-twitch fibers. To involuntarily move the eyelid and eyebrow, voluntary contraction of the levator nonskeletal fast-twitch muscle fibers stretches the mechanoreceptors in Müller's muscle to evoke trigeminal proprioception, which then induces reflex contraction of the levator and frontalis skeletal slow-twitch muscle fibers. The trigeminal proprioceptive nerve has a long intraorbital course from the mechanoreceptors in Müller's muscle to the superior orbital fissure. Since external force to the globe may cause impairment of trigeminal proprioceptive evocation, we confirmed how unilateral blowout fracture due to a hydraulic mechanism affects ipsilateral eyebrow movement as compared with unilateral zygomatic fracture. In 16 unilateral blowout fracture patients, eyebrow heights were measured on noninjured and injured sides in primary and 60° upward gaze and statistically compared. Eyebrow heights were also measured in primary gaze in 24 unilateral zygomatic fracture patients and statistically compared. In the blowout fracture patients, eyebrow heights on the injured side were significantly smaller than on the noninjured side in both gaze. In the zygomatic fracture patients, eyebrow heights on the injured side were significantly larger than on the noninjured side in primary gaze. Since 60° upward gaze did not recover the eyebrow ptosis observed in primary gaze in blowout fracture patients, such ptosis indicated impairment of trigeminal proprioceptive evocation and the presence of a hydraulic mechanism that may require ophthalmic examination.
Ban, Ryokuya; Matsuo, Kiyoshi; Ban, Midori; Yuzuriha, Shunsuke
2013-01-01
Objective: The mixed levator and frontalis muscles lack the interior muscle spindles normally required to induce involuntary contraction of their slow-twitch fibers. To involuntarily move the eyelid and eyebrow, voluntary contraction of the levator nonskeletal fast-twitch muscle fibers stretches the mechanoreceptors in Müller's muscle to evoke trigeminal proprioception, which then induces reflex contraction of the levator and frontalis skeletal slow-twitch muscle fibers. The trigeminal proprioceptive nerve has a long intraorbital course from the mechanoreceptors in Müller's muscle to the superior orbital fissure. Since external force to the globe may cause impairment of trigeminal proprioceptive evocation, we confirmed how unilateral blowout fracture due to a hydraulic mechanism affects ipsilateral eyebrow movement as compared with unilateral zygomatic fracture. Methods: In 16 unilateral blowout fracture patients, eyebrow heights were measured on noninjured and injured sides in primary and 60° upward gaze and statistically compared. Eyebrow heights were also measured in primary gaze in 24 unilateral zygomatic fracture patients and statistically compared. Results: In the blowout fracture patients, eyebrow heights on the injured side were significantly smaller than on the noninjured side in both gaze. In the zygomatic fracture patients, eyebrow heights on the injured side were significantly larger than on the noninjured side in primary gaze. Conclusion: Since 60° upward gaze did not recover the eyebrow ptosis observed in primary gaze in blowout fracture patients, such ptosis indicated impairment of trigeminal proprioceptive evocation and the presence of a hydraulic mechanism that may require ophthalmic examination. PMID:23814636
Corleto, Jose A.; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R.; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin
2015-01-01
The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the pathophysiology of chronic spinal injury-induced spasticity. In addition a consistent anti-spastic effect measured after treatment with clinically effective anti-spastic agents indicate that this model can effectively be used in screening new anti-spasticity compounds or procedures aimed at modulating chronic spinal trauma-associated muscle spasticity. PMID:26713446
Engward, Hilary; Davis, Geraldine
2015-07-01
A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.
Effect of viscosity on droplet-droplet collisional interaction
NASA Astrophysics Data System (ADS)
Finotello, Giulia; Padding, Johan T.; Deen, Niels G.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.
2017-06-01
A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is essential for industrial processes such as spray drying. When droplets with dispersed solids are dried, the apparent viscosity of the dispersed phase increases by many orders of magnitude, which drastically changes the outcome of a droplet-droplet collision. However, the effect of viscosity on the droplet collision regime boundaries demarcating coalescence and reflexive and stretching separation is still not entirely understood and a general model for collision outcome boundaries is not available. In this work, the effect of viscosity on the droplet-droplet collision outcome is studied using direct numerical simulations employing the volume of fluid method. The role of viscous energy dissipation is analysed in collisions of droplets with different sizes and different physical properties. From the simulations results, a general phenomenological model depending on the capillary number (Ca, accounting for viscosity), the impact parameter (B), the Weber number (We), and the size ratio (Δ) is proposed.
Towards physics of neural processes and behavior
Latash, Mark L.
2016-01-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. PMID:27497717
Variability in Hoffmann and tendon reflexes in healthy male subjects
NASA Technical Reports Server (NTRS)
Good, E.; Do, S.; Jaweed, M.
1992-01-01
There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.
Canning, Brendan J; Mazzone, Stuart B; Meeker, Sonya N; Mori, Nanako; Reynolds, Sandra M; Undem, Bradley J
2004-01-01
We have identified the tracheal and laryngeal afferent nerves regulating cough in anaesthetized guinea-pigs. Cough was evoked by electrical or mechanical stimulation of the tracheal or laryngeal mucosa, or by citric acid applied topically to the trachea or larynx. By contrast, neither capsaicin nor bradykinin challenges to the trachea or larynx evoked cough. Bradykinin and histamine administered intravenously also failed to evoke cough. Electrophysiological studies revealed that the majority of capsaicin-sensitive afferent neurones (both Aδ- and C-fibres) innervating the rostral trachea and larynx have their cell bodies in the jugular ganglia and project to the airways via the superior laryngeal nerves. Capsaicin-insensitive afferent neurones with cell bodies in the nodose ganglia projected to the rostral trachea and larynx via the recurrent laryngeal nerves. Severing the recurrent nerves abolished coughing evoked from the trachea and larynx whereas severing the superior laryngeal nerves was without effect on coughing. The data indicate that the tracheal and laryngeal afferent neurones regulating cough are polymodal Aδ-fibres that arise from the nodose ganglia. These afferent neurones are activated by punctate mechanical stimulation and acid but are unresponsive to capsaicin, bradykinin, smooth muscle contraction, longitudinal or transverse stretching of the airways, or distension. Comparing these physiological properties with those of intrapulmonary mechanoreceptors indicates that the afferent neurones mediating cough are quite distinct from the well-defined rapidly and slowly adapting stretch receptors innervating the airways and lungs. We propose that these airway afferent neurones represent a distinct subtype and that their primary function is regulation of the cough reflex. PMID:15004208
National Rugby League athletes and tendon tap reflex assessment: a matched cohort clinical study.
Maurini, James; Ohmsen, Paul; Condon, Greg; Pope, Rodney; Hing, Wayne
2016-11-04
Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players' careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. Right and left reflexes were well correlated for each tendon (r S = 0.7-0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r S = -0.3-0.6) were observed between reflex responses and lengths of players' careers. Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population.
Tudury, Eduardo Alberto; de Figueiredo, Marcella Luiz; Fernandes, Thaiza Helena Tavares; Araújo, Bruno Martins; Bonelli, Marília de Albuquerque; Diogo, Camila Cardoso; Silva, Amanda Camilo; Santos, Cássia Regina Oliveira; Rocha, Nadyne Lorrayne Farias Cardoso
2017-02-01
Objectives This study aimed to test the extensor carpi radialis and cranial tibial reflexes in cats before and after anesthetic block of the brachial and lumbosacral plexus, respectively, to determine whether they depend on a myotatic reflex arc. Methods Fifty-five cats with a normal neurologic examination that were referred for elective gonadectomy were divided into group 1 (29 cats) for testing the extensor carpi radialis reflex, and group 2 (26 cats) for testing the cranial tibial reflex. In group 1, the extensor carpi radialis reflex was tested after anesthetic induction and 15 mins after brachial plexus block with lidocaine. In group 2, the cranial tibial, withdrawal and patellar reflexes were elicited in 52 hindlimbs and retested 15 mins after epidural anesthesia. Results In group 1, before the anesthetic block, 55.17% of the cats had a decreased and 44.83% had a normal extensor carpi radialis reflex. After the block, 68.96% showed a decreased and 27.59% a normal reflex. No cat had an increased or absent reflex before anesthetic block. In group 2, prior to the anesthetic block, 15.38% of the cats had a decreased cranial tibial reflex and 84.62% had a normal response, whereas after the block it was decreased in 26.92% and normal in 73.08% of the cats. None of the cats had an increased or absent reflex. Regarding the presence of both reflexes before and after anesthetic block, there was no significant difference at 1% ( P = 0.013). Conclusions and relevance The extensor carpi radialis and cranial tibial reflexes in cats are not strictly myotatic reflexes, as they are independent of the reflex arc, and may be idiomuscular responses. Therefore, they are not reliable for neurologic examination in this species.
[H reflex in patients with spastic quadriplegia].
Miyama, Sahoko; Arimoto, Kiyoshi; Kimiya, Satoshi
2009-01-01
Hoffmann reflex (H reflex) is an electrically elicited spinal monosynaptic reflex. H reflex was examined in 18 patients with spastic quadriplegia who had perinatal or postnatal problems. H reflex was elicitable in 11 patients for the abductor pollicis brevis (61.1%), 10 for the abductor digiti minimi (55.6%) and 16 for the abductor hallucis (88.9%). Because the abductor pollicis brevis and the abductor digiti minimi do not exhibit H reflex in normal subjects, it was suggested that the excitability of alpha motor neurons innervating these muscles was increased. H reflex was not detected for the extensor digitorum brevis in any patients, indicating the difference in the excitability among alpha motor neurons. In some patients, H reflex did not disappear under supramaximal stimuli. We conclude that the mechanism of evolution of H reflex in patients with spastic quadriplegia is different from that in normal subjects.
Vestibular activation of sympathetic nerve activity
NASA Technical Reports Server (NTRS)
Ray, C. A.; Carter, J. R.
2003-01-01
AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.
Interpretation of fusimotor activity in cat masseter nerve during reflex jaw movements.
Gottlieb, S; Taylor, A
1983-01-01
Simultaneous recordings were made from fusimotor axons in the central ends of filaments of the masseter nerve, and from masseter and temporalis spindle afferents in the mesencephalic nucleus of the fifth cranial nerve in lightly anaesthetized cats. Fusimotor and alpha-motor units in the masseter nerve were differentiated on the basis of their response to passive ramp and hold stretches applied to the jaw. Spindle afferents were identified as primary or secondary according to their dynamic index after administration of suxamethonium. The activity of a given fusimotor unit during reflex movements of the jaw followed one of two distinct patterns: so-called 'tonic' units showed a general increase in activity during a movement, without detailed relation to lengthening or shortening, while 'modulated' units displayed a striking modulation of their activity with shortening, and were usually silent during subsequent lengthening. Comparison of the simultaneously recorded fusimotor and spindle afferent activity suggests that modulated units may be representative of a population of static fusimotor neurones, and tonic units of a population of dynamic fusimotor neurones. In these lightly anaesthetized animals, both primary and secondary spindle afferents showed increased firing during muscle shortening as well as during lengthening. This increase during shortening is not usually seen in conscious animals and reasons are given for the view that it is due to greater depression of alpha-motor activity than of static fusimotor activity during anaesthesia. The results are discussed in relation to the theories of 'alpha-gamma co-activation' and of 'servo-assistance'; and it is suggested that static fusimotor neurones provide a 'temporal template' of the intended movement, while dynamic fusimotor neurones set the required dynamic sensitivity to deviations from the intended movement pattern. PMID:6229627
Mizuno, Masaki; Mitchell, Jere H; Crawford, Scott; Huang, Chou-Long; Maalouf, Naim; Hu, Ming-Chang; Moe, Orson W; Smith, Scott A; Vongpatanasin, Wanpen
2016-07-01
An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex. Copyright © 2016 the American Physiological Society.
Human Physiology in an Aquatic Environment.
Pendergast, David R; Moon, Richard E; Krasney, John J; Held, Heather E; Zamparo, Paola
2015-09-20
Water covers over 70% of the earth, has varying depths and temperatures and contains much of the earth's resources. Head-out water immersion (HOWI) or submersion at various depths (diving) in water of thermoneutral (TN) temperature elicits profound cardiorespiratory, endocrine, and renal responses. The translocation of blood into the thorax and elevation of plasma volume by autotransfusion of fluid from cells to the vascular compartment lead to increased cardiac stroke volume and output and there is a hyperperfusion of some tissues. Pulmonary artery and capillary hydrostatic pressures increase causing a decline in vital capacity with the potential for pulmonary edema. Atrial stretch and increased arterial pressure cause reflex autonomic responses which result in endocrine changes that return plasma volume and arterial pressure to preimmersion levels. Plasma volume is regulated via a reflex diuresis and natriuresis. Hydrostatic pressure also leads to elastic loading of the chest, increasing work of breathing, energy cost, and thus blood flow to respiratory muscles. Decreases in water temperature in HOWI do not affect the cardiac output compared to TN; however, they influence heart rate and the distribution of muscle and fat blood flow. The reduced muscle blood flow results in a reduced maximal oxygen consumption. The properties of water determine the mechanical load and the physiological responses during exercise in water (e.g. swimming and water based activities). Increased hydrostatic pressure caused by submersion does not affect stroke volume; however, progressive bradycardia decreases cardiac output. During submersion, compressed gas must be breathed which introduces the potential for oxygen toxicity, narcosis due to nitrogen, and tissue and vascular gas bubbles during decompression and after may cause pain in joints and the nervous system. Copyright © 2015 John Wiley & Sons, Inc.
ERIC Educational Resources Information Center
Tremblay, Annie
2006-01-01
This study, a partial replication of Bruhn de Garavito (1999a; 1999b), investigates the second language (L2) acquisition of Spanish reflexive passives and reflexive impersonals by French- and English-speaking adults at an advanced level of proficiency. The L2 acquisition of Spanish reflexive passives and reflexive impersonals by native French and…
LeMoyne, Robert; Mastroianni, Timothy
2014-01-01
The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.
H-reflex modulation in the human medial and lateral gastrocnemii during standing and walking
Makihara, Yukiko; Segal, Richard L.; Wolpaw, Jonathan R.; Thompson, Aiko K.
2011-01-01
Introduction The soleus H-reflex is dynamically modulated during walking. However, modulation of the gastrocnemii H-reflexes has not been studied systematically. Methods The medial and lateral gastrocnemii (MG and LG) and soleus H-reflexes were measured during standing and walking in humans. Results Maximum H-reflex amplitude was significantly smaller in MG (mean 1.1 mV) or LG (1.1 mV) than in soleus (3.3 mV). Despite these size differences, the reflex amplitudes of the three muscles were positively correlated. The MG and LG H-reflexes were phase- and task-dependently modulated in ways similar to the soleus H-reflex. Discussion Although there are anatomical and physiological differences between the soleus and gastrocnemii muscles, the reflexes of the three muscles are similarly modulated during walking and between standing and walking. The findings support the hypothesis that these reflexes are synergistically modulated during walking to facilitate ongoing movement. PMID:22190317
LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa
2013-01-01
The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.
Neurodevelopmental Reflex Testing in Neonatal Rat Pups.
Nguyen, Antoinette T; Armstrong, Edward A; Yager, Jerome Y
2017-04-24
Neurodevelopmental reflex testing is commonly used in clinical practice to assess the maturation of the nervous system. Neurodevelopmental reflexes are also referred to as primitive reflexes. They are sensitive and consistent with later outcomes. Abnormal reflexes are described as an absence, persistence, reappearance, or latency of reflexes, which are predictive indices of infants that are at high risk for neurodevelopmental disorders. Animal models of neurodevelopmental disabilities, such as cerebral palsy, often display aberrant developmental reflexes, as would be observed in human infants. The techniques described assess a variety of neurodevelopmental reflexes in neonatal rats. Neurodevelopmental reflex testing offers the investigator a testing method that is not otherwise available in such young animals. The methodology presented here aims to assist investigators in examining developmental milestones in neonatal rats as a method of detecting early-onset brain injury and/or determining the effectiveness of therapeutic interventions. The methodology presented here aims to provide a general guideline for investigators.
Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.
Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R
2016-01-01
The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control. Copyright © 2015 Elsevier B.V. All rights reserved.
Factors Affecting the Occurrence of Spinal Reflexes in Brain Dead Cases.
Hosseini, Mahsa Sadat; Ghorbani, Fariba; Ghobadi, Omid; Najafizadeh, Katayoun
2015-08-01
Brain death is defined as the permanent absence of all cortical and brain stem reflexes. A wide range of spontaneous or reflex movements that are considered medullary reflexes are observed in heart beating cases that appear brain dead, which may create uncertainty about the diagnosis of brain death and cause delays in deceased-donor organ donation process. We determined the frequency and type of medullary reflexes and factors affecting their occurrence in brain dead cases. During 1 year, 122 cases who fulfilled the criteria for brain death were admitted to the special intensive care unit for organ procurement of Masih Daneshvari Hospital. Presence of spinal reflexes was evaluated by trained coordinators and was recorded in a form in addition to other information including demographic characteristics, cause of brain death, time from detection of brain death, history of craniotomy, vital signs, serum electrolyte levels, and parameters of arterial blood gas determination. Most cases (63%) included in this study were male, and mean age was 33 ± 15 y. There was > 1 spinal reflex observed in 40 cases (33%). The most frequent reflex was plantar response (17%) following by myoclonus (10%), triple flexion reflex (9%), pronator extension reflex (8%), and undulating toe reflex (7%). Mean systolic blood pressure was significantly higher in cases who exhibited medullary reflexes than other cases (126 ± 19 mm Hg vs 116 ± 17 mm Hg; P = .007). Spinal reflexes occur frequently in brain dead cases, especially when they become hemodynamically stable after treatment in the organ procurement unit. Observing these movements by caregivers and family members has a negative effect on obtaining family consent and organ donation. Increasing awareness about spinal reflexes is necessary to avoid suspicion about the brain death diagnosis and delays in organ donation.
Persistence of deep-tendon reflexes during partial cataplexy.
Barateau, Lucie; Pizza, Fabio; Lopez, Régis; Antelmi, Elena; Plazzi, Giuseppe; Dauvilliers, Yves
2018-05-01
Deep-tendon reflexes are abolished during generalized cataplexy, but whether this is the case in partial cataplexy currently remains unknown. Partial cataplexy may mimic other neurologic/psychiatric phenomena, and knowledge of the reflexes status may provide information for differential diagnosis. We assessed whether deep-tendon reflexes are persistent during partial cataplexy. Five drug-free patients with typical diagnoses of narcolepsy and clear-cut partial cataplexy were diagnosed in Reference Narcolepsy Centers in France and Italy. Biceps and patellar reflexes were elicited by physicians in charge and video-documented during cataplexy. Reflexes were assessed several times for each patient in different conditions and for various localizations of cataplexy. The absence of tendon reflexes and complete loss of muscle tone during generalized cataplexy was confirmed, but the persistence of those reflexes during several partial cataplectic attacks at different ages, gender, localization of cataplexy (upper limbs, face) and reflexes (biceps, patellar) in drug-naive or withdrawal conditions was documented. The persistence of tendon reflexes during several partial cataplexy episodes contrasts with their absence during generalized cataplexy. This discovery has clinical implications: the persistence of tendon reflexes does not rule out cataplexy diagnosis for partial attacks, whereas their transient abolishment or persistence during generalized attacks indicates cataplexy or pseudocataplexy, respectively. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Taylor, Myra; Houghton, Stephen; Chapman, Elaine
2004-01-01
The present research studied the symptomatologic overlap of AD/HD behaviours and retention of four primitive reflexes (Moro, Tonic Labyrinthine Reflex [TLR], Asymmetrical Tonic Neck Reflex [ATNR], Symmetrical Tonic Neck Reflex [STNR]) in 109 boys aged 7-10 years. Of these, 54 were diagnosed with AD/HD, 34 manifested sub-syndromal coordination,…
Titus-Mitchell, Haley E.; Bullinger, Katie L.; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C.
2011-01-01
Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons. PMID:21832035
Dua, Kulwinder; Surapaneni, Sri Naveen; Kuribayashi, Shiko; Hafeezullah, Mohammed; Shaker, Reza
2011-06-01
Direct evidence to support the airway protective function of aerodigestive reflexes triggered by pharyngeal stimulation was previously demonstrated by abolishing these reflexes by topical pharyngeal anesthesia in normal subjects. Studies have also shown that these reflexes deteriorate in cigarette smokers. Aim of this study was to determine the influence of defective pharyngeal aerodigestive reflexes on airway protection in cigarette smokers. Pharyngoglottal Closure reflex; PGCR, Pharyngo-UES Contractile reflex; PUCR, and Reflexive Pharyngeal Swallow; RPS were studied in 15 healthy non-smokers (24.2±3.3 SD y, 7 males) and 15 healthy chronic smokers (27.3±8.1, 7 males). To elicit these reflexes and to evaluate aspiration, colored water was perfused into the hypopharynx at the rate of 1 mL/min. Maximum volume of water that can safely dwell in the hypopharynx before spilling into the larynx (Hypopharyngeal Safe Volume; HPSV) and the threshold volume to elicit PGCR, PUCR, and RPS were determined in smokers and results compared with non-smokers. At baseline, RPS was elicited in all non-smokers (100%) and in only 3 of 15 smokers (20%; P<.001). None of the non-smokers showed evidence of laryngeal spillage of water, whereas 12 of 15 smokers with absent RPS had laryngeal spillage. Pharyngeal anesthesia abolished RPS reflex in all non-smokers resulting in laryngeal spillage. The HPSV was 0.61±0.06 mL and 0.76±0.06 mL in non-smokers and smokers respectively (P=.1). Deteriorated reflexive pharyngeal swallow in chronic cigarette smokers predispose them to risks of aspiration and similarly, abolishing this reflex in non-smokers also results in laryngeal spillage. These observations directly demonstrate the airway protective function of RPS. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Reversible grasp reflexes in normal pressure hydrocephalus.
Thomas, Rhys H; Bennetto, Luke; Silva, Mark T
2009-05-01
We present two cases of normal pressure hydrocephalus in combination with grasp reflexes. In both cases the grasp reflexes disappeared following high volume cerebrospinal fluid removal. In one of the cases the grasp reflexes returned over a period of weeks but again resolved following definitive cerebrospinal fluid shunting surgery, and remained absent until final follow up at 9 months. We hypothesise that resolving grasp reflexes following high volume CSF removal has both diagnostic and prognostic value in normal pressure hydrocephalus, encouraging larger studies on the relevance of primitive reflexes in NPH.
Goodman, Shawn S; Keefe, Douglas H
2006-06-01
Otoacoustic emissions serve as a noninvasive probe of the medial olivocochlear (MOC) reflex. Stimulus frequency otoacoustic emissions (SFOAEs) elicited by a low-level probe tone may be the optimal type of emission for studying MOC effects because at low levels, the probe itself does not elicit the MOC reflex [Guinan et al. (2003) J. Assoc. Res. Otolaryngol. 4:521]. Based on anatomical considerations, the MOC reflex activated by ipsilateral acoustic stimulation (mediated by the crossed olivocochlear bundle) is predicted to be stronger than the reflex to contralateral stimulation. Broadband noise is an effective activator of the MOC reflex; however, it is also an effective activator of the middle-ear muscle (MEM) reflex, which can make results difficult to interpret. The MEM reflex may be activated at lower levels than measured clinically, and most previous human studies have not explicitly included measurements to rule out MEM reflex contamination. The current study addressed these issues using a higher-frequency SFOAE probe tone to test for cochlear changes mediated by the MOC reflex, while simultaneously monitoring the MEM reflex using a low-frequency probe tone. Broadband notched noise was presented ipsilaterally at various levels to elicit probe-tone shifts. Measurements are reported for 15 normal-hearing subjects. With the higher-frequency probe near 1.5 kHz, only 20% of subjects showed shifts consistent with an MOC reflex in the absence of an MEM-induced shift. With the higher-frequency probe near 3.5 kHz, up to 40% of subjects showed shifts in the absence of an MEM-induced shift. However, these responses had longer time courses than expected for MOC-induced shifts, and may have been dominated by other cochlear processes, rather than MOC reflex. These results suggest caution in the interpretation of effects observed using ipsilaterally presented acoustic activators intended to excite the MOC reflex.
Retention of primitive reflexes and delayed motor development in very low birth weight infants.
Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G
1984-06-01
Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.
Towards physics of neural processes and behavior.
Latash, Mark L
2016-10-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury
Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.
2016-01-01
Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521
The Dynamics of the Stapedial Acoustic Reflex.
NASA Astrophysics Data System (ADS)
Moss, Sherrin Mary
Available from UMI in association with The British Library. This thesis aims to separate the neural and muscular components of the stapedial acoustic reflex, both anatomically and physiologically. It aims to present an hypothesis to account for the differences between ipsilateral and contralateral reflex characteristics which have so far been unexplained, and achieve a greater understanding of the mechanisms underlying the reflex dynamics. A technique enabling faithful reproduction of the time course of the reflex is used throughout the experimental work. The technique measures tympanic membrane displacement as a result of reflex stapedius muscle contraction. The recorded response can be directly related to the mechanics of the middle ear and stapedius muscle contraction. Some development of the technique is undertaken by the author. A model of the reflex neural arc and stapedius muscle dynamics is evolved that is based upon a second order system. The model is unique in that it includes a latency in the ipsilateral negative feedback loop. Oscillations commonly observed on reflex responses are seen to be produced because of the inclusion of a latency in the feedback loop. The model demonstrates and explains the complex relationships between neural and muscle dynamic parameters observed in the experimental work. This more comprehensive understanding of the interaction between the stapedius dynamics and the neural arc of the reflex would not usually have been possible using human subjects, coupled with a non-invasive measurement technique. Evidence from the experimental work revealed the ipsilateral reflex to have, on average, a 5 dB lower threshold than the contralateral reflex. The oscillatory charcteristics, and the steady state response, of the contralateral reflex are also seen to be significantly different from those of the ipsilateral reflex. An hypothesis to account for the experimental observations is proposed. It is propounded that chemical neurotransmitters, and their effect upon the contralateral reflex arc from the site of the superior olivary complex to the motoneurones innervating the stapedius, account for the difference between the contralateral and ipsilateral reflex thresholds and dynamic characteristics. In the past two years the measurement technique used for the experimental work has developed from an audiological to a neurological diagnostic tool. This has enabled the results from the study to be applied in the field for valuable biomechanical and neurological explanations of the reflex response. (Abstract shortened by UMI.).
Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.
Danziger, Zachary C; Grill, Warren M
2017-08-15
The lower urinary tract is regulated by reflexes responsible for maintaining continence and producing efficient voiding. It is unclear how sensory information from the bladder and urethra engages differential, state-dependent reflexes to either maintain continence or promote voiding. Using a new in vivo experimental approach, we quantified how sensory information from the bladder and urethra are integrated to switch reflex responses to urethral sensory feedback from maintaining continence to producing voiding. The results demonstrate how sensory information regulates state-dependent reflexes in the lower urinary tract and contribute to our understanding of the pathophysiology of urinary retention and incontinence where sensory feedback may engage these reflexes inappropriately. Lower urinary tract reflexes are mediated by peripheral afferents from the bladder (primarily in the pelvic nerve) and the urethra (in the pudendal and pelvic nerves) to maintain continence or initiate micturition. If fluid enters the urethra at low bladder volumes, reflexes relax the bladder and evoke external urethral sphincter (EUS) contraction (guarding reflex) to maintain continence. Conversely, urethral flow at high bladder volumes, excites the bladder (micturition reflex) and relaxes the EUS (augmenting reflex). We conducted measurements in a urethane-anaesthetized in vivo rat preparation to characterize systematically the reflexes evoked by fluid flow through the urethra. We used a novel preparation to manipulate sensory feedback from the bladder and urethra independently by controlling bladder volume and urethral flow. We found a distinct bladder volume threshold (74% of bladder capacity) above which flow-evoked bladder contractions were 252% larger and evoked phasic EUS activation 2.6 times as often as responses below threshold, clearly demonstrating a discrete transition between continence (guarding) and micturition (augmenting) reflexes. Below this threshold urethral flow evoked tonic EUS activity, indicative of the guarding reflex, that was proportional to the urethral flow rate. These results demonstrate the complementary roles of sensory feedback from the bladder and urethra in regulating reflexes in the lower urinary tract that depend on the state of the bladder. Understanding the neural control of functional reflexes and how they are mediated by sensory information in the bladder and urethra will open new opportunities, especially in neuromodulation, to treat pathologies of the lower urinary tract. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Zheng, Chaojun; Zhu, Yu; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Wang, Lixun; Jin, Xiang; Weber, Robert; Jiang, Jianyuan; Anuvat, Kevin
2014-12-01
The H-reflex of the flexor carpi radialis (FCR H-reflex) has not been commonly used for the diagnosis of cervical radiculopathy when compared with the routinely tested soleus H-reflex. Although both S1 and S2 roots innervate the soleus, the H-reflex is selectively related to S1 nerve root function clinically. Flexor carpi radialis is also innervated by two nerve roots which are C6 and C7. Although they are among the most common roots involved in cervical radiculopathy, few studies reported if the attenuation of the FCR H-reflex is caused by lesions affecting C7 or C6 nerve roots, or both. We aimed to identify whether an abnormal FCR H-reflex was attributed to the C7 or C6 nerve root lesion, or both. The sensitivities of needle electromyography, FCR H-reflex, and provocative tests in unilateral C7 or C6 radiculopathy were also compared in this study. A concentric needle electrode recorded bilateral FCR H-reflexes in 41 normal subjects (control group), 51 patients with C7 radiculopathy, and 54 patients with C6 radiculopathy. Clinical, radiological, and surgical approaches identified the precise single cervical nerve root involved in all patient groups. The H-reflex and M-wave latencies were measured and compared bilaterally. Abnormal FCR H-reflex was defined as the absence of the H-reflex or a side-to-side difference over 1.5 milliseconds which was based on the normal side-to-side difference of the H-reflex latency of 16.9 milliseconds (SD = 1.7 milliseconds) from the control group. We also determined standard median and ulnar conduction and needle electromyography. The provocative tests included bilateral determination of the Shoulder Abduction and Spurling's tests in all radiculopathy group patients. Abnormal FCR H-reflexes were recorded in 45 (88.2%) of C7 radiculopathy group patients, and 2 (3.7%) of C6 radiculopathy group patients (P < 0.05). Needle electromyography was abnormal in 41 (80.4%) of C7 radiculopathy patients and 43 (79.6%) of C6 radiculopathy patients. Provocative tests were positive in 15 (29.4%) of C7 radiculopathy patients and 25 (46.3%) of C6 radiculopathy patients. Flexor carpi radialis H-Reflex provides a sensitive assessment of evaluating the C7 spinal reflex pathway. Clinically, a combination of the FCR H-reflex with needle electromyography may yield the highest level of diagnostic information for evaluating clinical cases of C7 radiculopathy.
A new hypothesis of cause of syncope: trigeminocardiac reflex during extraction of teeth.
Arakeri, Gururaj; Arali, Veena
2010-02-01
Transient Loss Of Consciousness (TLOC) or vasovagal syncope is well known phenomenon in dental/maxillofacial surgery. Despite considerable study of vasovagal syncope, its pathophysiology remains to be fully elucidated. After having encountered a case of trigeminocardiac reflex after extraction of maxillary first molar we observed and studied 400 extractions under local anesthesia to know the relation between trigeminocardiac reflex and syncope. We make hypothesis that trigeminocardiac reflex which is usually seen under general anesthesia when all sympathetic reflexes are blunted can also occur under local anesthesia during extractions of maxillary molars (dento-cardiac reflex) and mediate syncope.
The Reflexes of the Fundus Oculi
Ballantyne, A. J.
1940-01-01
The fundus reflexes reveal, in a manner not yet completely understood, the texture and contour of the reflecting surfaces and the condition of the underlying tissues. In this way they may play an important part in the biomicroscopy of the eye. The physiological reflexes are seen at their best in the eyes of young subjects, in well-pigmented eyes, with undilated pupils and with emmetropic refraction. Their absence during the first two decades, or their presence after the forties, their occurrence in one eye only, their appearance, disappearance or change of character should suggest the possibility of some pathological state. The investigation and interpretation of the reflexes are notably assisted by comparing the appearances seen with long and short wave lights such as those of the sodium and mercury vapour lamps, in addition to the usual ophthalmoscopic lights. Most of the surface reflexes disappear in the light of the sodium lamp, sometimes revealing important changes in the deeper layers of the retina and choroid. The physiological reflexes, chiefly formed on the surface of the internal limiting membrane, take the forms of the familiar watered silk or patchy reflexes, the peri-macular halo, the fan reflex in the macular depression and the reflex from the foveal pit. The watered silk or patchy reflexes often show a delicate striation which follows the pattern of the nerve-fibre layer, or there may be a granular or criss-cross texture. Reflexes which entirely lack these indications of “texture” should be considered as possibly pathological. This applies to the “beaten metal” reflexes and to those formed on the so-called hyaloid membrane. The occurrence of physiological reflexes in linear form is doubtful, and the only admittedly physiological punctate reflexes are the so-called Gunn's dots. Surface reflexes which are broken up into small points or flakes are pathological, and are most frequently seen in the central area of the fundus in cases of pigmentary degeneration of the retina or after the subsidence of severe retinitis or retino-choroiditis. A mirror reflex from the layer of pigmented epithelium or from the external limiting membrane is sometimes recognizable in normal eyes, especially in the brunette fundus. In such, it forms the background to a striking picture of the fine circumfoveal vessels. Pathological reflexes from the level of the pigmented epithelium or of the external limiting membrane are also observed, and these often present a granular, frosted or crystalline appearance. They may indicate a senile change, or result from trauma or from retino-choroidal degeneraion. Somewhat similar reflexes may sometimes be present as small frosted patches anterior to the retinal vessels. Linear sinuous, whether appearing in annular form, as straight needles, as broader single sinuous lines, as the tapering, branched double reflexes of Vogt, or in association with traction or pressure folds, in the retina, are probably always pathological. By the use of selected light of long and short wave lengths, it can be shown that intraretinal or true retinal folds may exist with or without the surface reflexes which indicate a corresponding folding of the internal limiting membrane. On the other hand, superficial linear reflexes of various types may occur without evidence of retinal folding. Annular reflexes usually accompany a rounded elevation of the retina due to tumour, hæmorrhage or exudate, but may indicate the presence of rounded depressions; traction folds occur where there is choroido-retinal scarring, or in association with macular hole or cystic degeneraion at the macula; pressure folds in cases of orbital cyst, abscess or neoplasm; and the other linear reflexes in association with papillo-retinal œdema, for example, in retrobulbar neuritis, in hypertensive neuro-retinitis, in contusio bulbi and in anterior uveitis. Punctate reflexes, other than Gunn's dots, are also pathological. They may occur as one variety of “fragmented” surface reflexes, or as evidence of the presence of some highly refractile substance, such as cholesterin or calcium carbonate, in a retinal exudate or other lesion. It is characteristic of the pathological reflexes that they come and go and change their character according to the progress of the pathological condition. The linear reflexes in particular may change from one from to another, and may be finally transformed into surface reflexes of physiological character. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:19992307
[Clinical techniques for use in neurological physical examinations. II. Motor and reflex functions].
Rodríguez-García, P L; Rodríguez-Pupo, L; Rodríguez-García, D
The aim of this study is to highlight the chief practical aspects of the techniques used in the neurological physical examination of the motor and reflex functions. We recommend clinicians to carry out a brief but consistent and effective exploration in a systematic, flexible and orderly manner to check for abnormalities in the motor and reflex functions of the nervous system. Should any anomalies be detected, then a more detailed and thorough neurological exploration must be performed selectively. We present a detailed review of the practical aspects of the main techniques used in the physical examination of these neurological categories. The motor function is explored using techniques that examine muscle tone, muscle strength, muscle fatigability, hypokinesia, tremor, coordination and gait. Lastly, in this category several manoeuvres that are useful in hysterical or mimicking paralyses are also dealt with. Reflexes to examination are usually divided into: 1. Myotatic reflexes; 2. Cutaneomucous reflexes; 3. Spinal cord or defence automatism reflexes; 4. Posture and attitude reflexes. We also add the study of primitive pathological reflexes, remote reflexes, synkinesias and signs of meningeal irritation. We present a detailed description of the main clinical techniques used in the neurological physical examination of motility and reflexes, as well as an approach that allows them to be performed on adult patients. In addition, we underline the importance of physically examining the nervous system in contemporary medicine and the need to continually perfect the way these techniques are performed in order to achieve an efficient clinical practice.
Decision Space Operations: Campaign Design Aimed at an Adversary’s Decision Making
2003-01-01
14 Figure 3: Reflexive control, Initial situation (physical reality ...20 Figure 4: Reflexive control, reality as X imagines it to be...20 Figure 5: Reflexive control, reality as Y imagines it to be .......................................................21 Figure 6: Reflexive
The trigeminocardiac reflex – a comparison with the diving reflex in humans
Lemaitre, Frederic; Schaller, Bernhard
2015-01-01
The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans. PMID:25995761
Wh-filler-gap dependency formation guides reflexive antecedent search
Frazier, Michael; Ackerman, Lauren; Baumann, Peter; Potter, David; Yoshida, Masaya
2015-01-01
Prior studies on online sentence processing have shown that the parser can resolve non-local dependencies rapidly and accurately. This study investigates the interaction between the processing of two such non-local dependencies: wh-filler-gap dependencies (WhFGD) and reflexive-antecedent dependencies. We show that reflexive-antecedent dependency resolution is sensitive to the presence of a WhFGD, and argue that the filler-gap dependency established by WhFGD resolution is selected online as the antecedent of a reflexive dependency. We investigate the processing of constructions like (1), where two NPs might be possible antecedents for the reflexive, namely which cowgirl and Mary. Even though Mary is linearly closer to the reflexive, the only grammatically licit antecedent for the reflexive is the more distant wh-NP, which cowgirl. (1). Which cowgirl did Mary expect to have injured herself due to negligence? Four eye-tracking text-reading experiments were conducted on examples like (1), differing in whether the embedded clause was non-finite (1 and 3) or finite (2 and 4), and in whether the tail of the wh-dependency intervened between the reflexive and its closest overt antecedent (1 and 2) or the wh-dependency was associated with a position earlier in the sentence (3 and 4). The results of Experiments 1 and 2 indicate the parser accesses the result of WhFGD formation during reflexive antecedent search. The resolution of a wh-dependency alters the representation that reflexive antecedent search operates over, allowing the grammatical but linearly distant antecedent to be accessed rapidly. In the absence of a long-distance WhFGD (Experiments 3 and 4), wh-NPs were not found to impact reading times of the reflexive, indicating that the parser's ability to select distant wh-NPs as reflexive antecedents crucially involves syntactic structure. PMID:26500579
Soleus and lateral gastrocnemius H-reflexes during standing with unstable footwear.
Friesenbichler, Bernd; Lepers, Romuald; Maffiuletti, Nicola A
2015-05-01
Unstable footwear has been shown to increase lower extremity muscle activity, but the reflex response to perturbations induced by this intervention is unknown. Twenty healthy subjects stood in stable and unstable footwear conditions (presented randomly) while H-reflex amplitude and background muscle activity were measured in the soleus and lateral gastrocnemius (LG) muscles. Wearing unstable footwear resulted in larger H-reflexes (normalized to the maximal M-wave) for the LG (+12%; P = 0.025), but not for the soleus (+4%; P > 0.05). Background activity of both muscles was significantly higher in the unstable condition. The H-reflex facilitation observed with unstable footwear was unexpected, as challenging postural conditions usually result in reflex depression. Increased muscle activity, decreased presynaptic inhibition, and/or more forward postural position may have (over-)compensated the expected reflex depression. Differences between LG and soleus H-reflex modulation may be due to diverging motor unit recruitment thresholds. © 2015 Wiley Periodicals, Inc.
Kojima, Yu; Fujii, Hisao; Katsui, Renta; Nakajima, Yoshiyuki; Takaki, Miyako
2006-10-01
The defecation reflex is composed of rectal distension-evoked rectal (R-R) reflex contractions and synchronous internal anal sphincter (R-IAS) reflex relaxations in guinea pigs. These R-R and R-IAS reflexes are controlled via extrinsic sacral excitatory nerve pathway (pelvic nerves), lumbar inhibitory nerve pathways (colonic nerves) and by intrinsic cholinergic excitatory and nitrergic inhibitory nerve pathways. The effect of mosapride (a prokinetic benzamide) on the intrinsic reflexes, mediated via enteric 5-HT(4) receptors, was evaluated by measuring the mechanical activity of the rectum and IAS in anesthetized guinea pigs using an intrinsic R-R and R-IAS reflex model resulting from chronic (two to nine days) lumbosacral denervation (PITH). In this model, the myenteric plexus remains undamaged and the distribution of myenteric and intramuscular interstitial cells of Cajal is unchanged. Although R-R and R-IAS reflex patterns markedly changed, the reflex indices (reflex pressure or force curve-time integral) of both the R-R contractions and the synchronous R-IAS relaxations were unchanged. The frequency of the spontaneous R and IAS motility was also unchanged. Mosapride (0.1-1.0 mg/kg) dose-dependently increased both intrinsic R-R (maximum: 1.82) and R-IAS reflex indices (maximum: 2.76) from that of the control (1.0) 6-9 days following chronic PITH. The dose-response curve was similar to that in the intact guinea pig, and had shifted to the left from that in the guinea pig after acute PITH. A specific 5-HT(4) receptor antagonist, GR 113808 (1.0 mg/kg), decreased both reflex indices by approximately 50% and antagonized the effect of mosapride 1.0 mg/kg. This was quite different from the result in the intact guinea pig where GR 113808 (1.0 mg/kg) did not affect either of the reflex indices. The present results indicate that mosapride enhanced the intrinsic R-R and R-IAS reflexes and functionally compensated for the deprivation of extrinsic innervation. The actions of mosapride were mediated through endogenously active, intrinsic 5-HT(4) receptors which may be post-synaptically located in the myenteric plexus of the anorectum.
van Osch, L; van Schooneveld, M; Bleekerwagemakers, E M
1990-12-01
The golden tapetal reflex in the ocular fundus is considered pathognomonic of the carrier state in some families with X-linked retinitis pigmentosa (XRP). Reports concerning affected males with this characteristic reflex are scarce. A six-year-old boy with XRP having a tapetal reflex is described. Recently the tapetal reflex has drawn attention in linkage studies. XRP is probably genetically heterogeneous and has at least two genetic forms. The finding of a tapetal reflex in one or more female carriers in a family with XRP may be helpful in differentiating between these two genetic forms.
Suppression of the oculocephalic reflex (doll's eyes phenomenon) in normal full-term babies.
Snir, Moshe; Hasanreisoglu, Murat; Hasanreisoglue, Murat; Goldenberg-Cohen, Nitza; Friling, Ronit; Katz, Kalman; Nachum, Yoav; Benjamini, Yoav; Herscovici, Zvi; Axer-Siegel, Ruth
2010-05-01
To determine the precise age of suppression of the oculocephalic reflex in infants and its relationship to specific clinical characteristics. The oculocephalic reflex was prospectively tested in 325 healthy full-term babies aged 1 to 32 weeks attending an orthopedic outpatient clinic. Two ophthalmologists raised the baby's head 30 degrees above horizontal and rapidly rotated it in the horizontal and vertical planes while watching the conjugate eye movement. Suppression of the reflex, by observer agreement, was analyzed in relation to gestational age, postpartum age, postconceptional age, birth weight, and current weight. The data were fitted to a logistic regression model to determine the probability of suppression of the reflex according to the clinical variables. The oculocephalic reflex was suppressed in 75% of babies by the age of 11.5 weeks and in more than 95% of babies aged 20 weeks. Although postpartum age had a greater influence than gestational age, both were significantly correlated with suppression of the reflex (p = 0.01 and p = 0.04, respectively; two-sided t-test). Postpartum age was the best single variable explaining absence of the reflex. On logistic regression with cross-validation, the model including postpartum age and current weight yielded the best results; both these factors were highly correlated with suppression of the reflex (r = 0.74). The oculocephalic reflex is suppressed in the vast majority of normal infants by age 11.5 weeks. The disappearance of the reflex occurs gradually and longitudinally and is part of the normal maturation of the visual system.
Aural Acoustic Stapedius-Muscle Reflex Threshold Procedures to Test Human Infants and Adults.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2017-02-01
Power-based procedures are described to measure acoustic stapedius-muscle reflex threshold and supra-threshold responses in human adult and infant ears at frequencies from 0.2 to 8 kHz. The stimulus set included five clicks in which four pulsed activators were placed between each pair of clicks, with each stimulus set separated from the next by 0.79 s to allow for reflex decay. Each click response was used to detect the presence of reflex effects across frequency that were elicited by a pulsed broadband-noise or tonal activator in the ipsilateral or contralateral test ear. Acoustic reflex shifts were quantified in terms of the difference in absorbed sound power between the initial baseline click and the later four clicks in each set. Acoustic reflex shifts were measured over a 40-dB range of pulsed activators, and the acoustic reflex threshold was objectively calculated using a maximum 10 likelihood procedure. To illustrate the principles underlying these new reflex tests, reflex shifts in absorbed sound power and absorbance are presented for data acquired in an adult ear with normal hearing and in two infant ears in the initial and follow-up newborn hearing screening exams, one with normal hearing and the other with a conductive hearing loss. The use of absorbed sound power was helpful in classifying an acoustic reflex shift as present or absent. The resulting reflex tests are in use in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function in infant and adult ears.
Affective Modulation of the Startle Eyeblink and Postauricular Reflexes in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Dichter, Gabriel S.; Benning, Stephen D.; Holtzclaw, Tia N.; Bodfish, James W.
2010-01-01
Eyeblink and postauricular reflexes to standardized affective images were examined in individuals without (n = 37) and with (n = 20) autism spectrum disorders (ASDs). Affective reflex modulation in control participants replicated previous findings. The ASD group, however, showed anomalous reflex modulation patterns, despite similar self-report…
The Use of an Alternative Extraoral Periapical Technique for Patients with Severe Gag Reflex
e Silva, Mauro Henrique Chagas; Santos, Mariane Floriano Lopes; de Lima, Carolina Oliveira; Campos, Celso Neiva
2016-01-01
Gag reflex is a physiologic mechanism that promotes contraction of the muscles of the tongue and pharyngeal walls. Different factors, including intraoral radiographic films and sensors, may trigger this reflex. Patients with severe gag reflex may not be able to tolerate the presence of intraoral radiographic films or sensors during root canal therapy (RCT). This factor may prevent an appropriate intraoral radiograph, which is important in RCT. Different approaches have been used to facilitate dental procedures in patients suffering from severe gag reflex. The use of an extraoral radiographic technique is an alternative method to obtain working length confirmation in patients with severe gag reflex. In this report of 2 cases, the use of an extraoral radiographic technique as an alternative approach during RCT in patients with severe gag reflex associated with phobic behavior and trismus was successfully demonstrated. PMID:27547474
The parallel programming of voluntary and reflexive saccades.
Walker, Robin; McSorley, Eugene
2006-06-01
A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.
[Effects of morphine on pupillary light reflex in monkeys].
Meng, Zhi-Qiang; Zhang, Yu-Hua; Chen, Nan-Hui; Miao, Ying-Da; Hu, Xin-Tian; Ma, Yuan-Ye
2010-06-01
The pupil size of both human and other animals can be affected by light. Many kinds of psychiatrical and psychological disorders, such as drug abuse, associate with abnormal properties of pupillary light reflex. Thus, the properties of pupillary light reflex could serve as an indicator for drug abuse detection. However, the effect of drug abuse on pupillary light reflex is till unclear. To assess the effects of addictive drugs on pupillary light reflex quantificationally, in the present study, we examined the effects of morphine on pupil diameter and pupillary light reflex in rhesus monkeys. By measuring the pupil diameter at different timing points before and after the administration of morphine, we found that morphine administration reduced the diameter of pupil and decreased the constriction rate. Our present results provide an experimental support for applying the properties of pupillary light reflex as a reference in addicts' detection.
Snout and Visual Rooting Reflexes in Infantile Autism. Brief Report.
ERIC Educational Resources Information Center
Minderaa, Ruud B.; And Others
1985-01-01
The authors conducted extensive neurological evaluations of 42 autistic individuals and were surprised to discover a consistently positive snout reflex in most of them. Difficulties with assessing the reflex are noted. The authors then reassessed the Ss for a series of primitive reflexes which are interpreted as signs of diffuse cortical brain…
On Reflection: Is Reflexivity Necessarily Beneficial in Intercultural Education?
ERIC Educational Resources Information Center
Blasco, Maribel
2012-01-01
This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending on the concepts of selfhood that prevail and how…
The Limits of Institutional Reflexivity in Bulgarian Universities
ERIC Educational Resources Information Center
Slantcheva, Snejana
2004-01-01
This article focuses on the notion of institutional reflexivity. Its theoretical framework is based on the views of a group of sociologists--Anthony Giddens, Ulrich Beck, Scott Lash--who developed the concept of reflexive modernization. The article applies the notion of institutional reflexivity to the field of higher education and reviews the…
Park, Kang Min; Kim, Sung Eun; Lee, Byung In
2016-01-01
The pathogenesis of card game-induced reflex epilepsy has not been determined so far. The aim of this study was to evaluate structural abnormalities using voxel-based morphometry (VBM) analysis, which may give some clue about the pathogenesis in card game-induced reflex epilepsy. The 3 subjects were diagnosed with card game-induced reflex epilepsy. Evaluation involved a structured interview to obtain clinical information and brain MRI. In VBM analysis, Statistical Parametric Mapping 8 running on the MATLAB platform was employed to analyze the structural differences between patients with card game-induced reflex epilepsy and age- and sex-matched control subjects. The results of VBM analysis revealed that patients with card game-induced reflex epilepsy had significantly increased gray matter volume in the right occipital and parietal lobe. However, there were no structures with decreased gray matter volume in patients with card game-induced reflex epilepsy compared with control subjects. In addition, we found that the patients with card game-induced reflex epilepsy had onset of seizures in adulthood rather than in adolescence, and all of the patients were men. The parieto-occipital lobes might be partially involved in the neuronal network responsible for card game-induced reflex epilepsy. © 2016 S. Karger AG, Basel.
Marín Gabriel, Miguel A; Olza Fernández, Ibone; Malalana Martínez, Ana M; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes
2015-05-01
Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. A cohort prospective study was conducted at a tertiary hospital. Mother-infant dyads who received intrapartum oxytocin (n=53) were compared with mother-infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent.
Phadke, Chetan P; Flynn, Sheryl M; Thompson, Floyd J; Behrman, Andrea L; Trimble, Mark H; Kukulka, Carl G
2009-07-01
To examine paired reflex depression changes post 20-minute bout each of 2 training environments: stationary bicycle ergometer training (bicycle training) and treadmill with body weight support and manual assistance (locomotor training). Pretest-posttest repeated-measures. Locomotor laboratory. Motor incomplete SCI (n=12; mean, 44+/-16y); noninjured subjects (n=11; mean, 30.8+/-8.3y). All subjects received each type of training on 2 separate days. Paired reflex depression at different interstimulus intervals (10 s, 1 s, 500 ms, 200 ms, and 100 ms) was measured before and after both types of training. (1) Depression was significantly less post-SCI compared with noninjured subjects at all interstimulus intervals and (2) post-SCI at 100-millisecond interstimulus interval: reflex depression significantly increased postbicycle training in all SCI subjects and in the chronic and spastic subgroups (P<.05). Phase-dependent regulation of reflex excitability, essential to normal locomotion, coordinated by pre- and postsynaptic inhibitory processes (convergent action of descending and segmental inputs onto spinal circuits) is impaired post-SCI. Paired reflex depression provides a quantitative assay of inhibitory processes contributing to phase-dependent changes in reflex excitability. Because bicycle training normalized reflex depression, we propose that bicycling may have a potential role in walking rehabilitation, and future studies should examine the long-term effects on subclinical measures of reflex activity and its relationship to functional outcomes.
Brandimore, Alexandra E.; Troche, Michelle S.; Huber, Jessica E.; Hegland, Karen W.
2015-01-01
Background: Cough is a defensive behavior that can be initiated in response to a stimulus in the airway (reflexively), or on command (voluntarily). There is evidence to suggest that physiological differences exist between reflex and voluntary cough; however, the output (mechanistic and airflow) differences between the cough types are not fully understood. Therefore, the aims of this study were to determine the lung volume, respiratory kinematic, and airflow differences between reflex and voluntary cough in healthy young adults. Methods: Twenty-five participants (14 female; 18–29 years) were recruited for this study. Participants were evaluated using respiratory inductance plethysmography calibrated with spirometry. Experimental procedures included: (1) respiratory calibration, (2) three voluntary sequential cough trials, and (3) three reflex cough trials induced with 200 μM capsaicin. Results: Lung volume initiation (LVI; p = 0.003) and lung volume excursion (LVE; p < 0.001) were significantly greater for voluntary cough compared to reflex cough. The rib cage and abdomen significantly influenced LVI for voluntary cough (p < 0.001); however, only the rib cage significantly impacted LVI for reflex cough (p < 0.001). LVI significantly influenced peak expiratory flow rate (PEFR) for voluntary cough (p = 0.029), but not reflex cough (p = 0.610). Discussion: Production of a reflex cough results in significant mechanistic and airflow differences compared to voluntary cough. These findings suggest that detection of a tussigenic stimulus modifies motor aspects of the reflex cough behavior. Further understanding of the differences between reflex and voluntary cough in older adults and in persons with dystussia (cough dysfunction) will be essential to facilitate the development of successful cough treatment paradigms. PMID:26500560
Neuroanatomical basis of Sandifer's syndrome: a new vagal reflex?
Cerimagic, Denis; Ivkic, Goran; Bilic, Ervina
2008-01-01
Sandifer's syndrome is a gastrointestinal disorder with neurological features. It is characterized by reflex torticollis following deglutition in patients with gastroesophageal reflux and/or hiatal hernia. The authors believe that neurological manifestations of the syndrome are the consequence of vagal reflex with the reflex center in nucleus tractus solitarii (NTS). Three models for the neuroanatomical basis of the hypothetic reflex arc are presented. In the first one the hypothetic reflex arc is based on the classic hypothesis of two components nervus accessorius (n.XI) - radix cranialis (RC) and radix spinalis (RS) The nervous impulses are transmitted by nervus vagus (n.X) general visceral afferent (GVA) fibers to NTS situated in medulla oblongata, then by interneuronal connections on nucleus ambiguus (NA) and nucleus dorsalis nervi vagi (NDX). Special visceral efferent fibers (SVE) impulses from NA are in part transferred to n.XI ramus externus (RE) (carrying the majority of general somatic efferent (GSE) fibers) via hypothetic anastomoses in the region of foramen jugulare. This leads to contraction of trapezius and sternocleidomastoideus muscles, and the occurrence of intermittent torticollis. In the second suggested neuroanatomical model the hypothetic reflex arc is organized in the absence of n.XI RC, the efferent part of the reflex arc continues as NA, which is motor nucleus of nervus glossopharyngeus (n.IX) and n.X in this case while distal roots of n.XI that appear at the level of the olivary nucleus lower edge represent n.X roots. In the third presented model the hypothetic reflex arc includes no jugular transfer and could be realized via interneuronal connections directly from NTS to the spinal motoneurons within nucleus radicis spinalis nervi accessorii (NRS n.XI) or from NA to NRS n.XI. The afferent segment of the postulated reflex arc in all three models is mediated via n.X. We conclude that Sandifer's syndrome is a clinical manifestation of another vagal reflex that could be termed a "vagocervical" or "esophagocervical" reflex, based on the neuroanatomical hypotheses elaborated in this paper.
"On Becoming a Critically Reflexive Practitioner" Redux: What Does It Mean to "Be" Reflexive?
ERIC Educational Resources Information Center
Cunliffe, Ann L.
2016-01-01
In this commentary, Cunliffe states that is convinced that reflexivity offers a way of foregrounding our moral and ethical responsibility for people and for the world around us. To "BE" reflexive was defined as embracing "subjective understandings of reality as a basis for thinking more critically about the impact of our…
Introducing Reflexivity to Evaluation Practice: An In-Depth Case Study
ERIC Educational Resources Information Center
van Draanen, Jenna
2017-01-01
There is currently a paucity of literature in the field of evaluation regarding the practice of reflection and reflexivity and a lack of available tools to guide this practice--yet using a reflexive model can enhance evaluation practice. This paper focuses on the methods and results of a reflexive inquiry that was conducted during a participatory…
Meinck, H M; Ricker, K; Conrad, B
1984-01-01
Neurophysiological investigations of a patient suffering from the stiff-man syndrome revealed that exteroceptive reflexes, in particular those elicited from the skin, were excessively enhanced. In contrast, no abnormalities were found within the monosynaptic reflex arc. Clomipramine injection severely aggravated the clinical symptoms whereas diazepam, clonidine, and tizanidine decreased both muscular stiffness and abnormal exteroceptive reflexes. The hypothesis is put forward that the stiff-man syndrome is a disorder of descending brain-stem systems which exert a net inhibitory control on axial and limb girdle muscle tone as well as on exteroceptive reflex transmission. Detection of abnormal exteroceptive reflex activity in conjunction with neuropharmacological testing might help in the diagnosis of this rare disease. PMID:6707674
[Reflex seizures, cinema and television].
Olivares-Romero, Jesús
2015-12-16
In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot.
Tendon reflex is suppressed during whole-body vibration.
Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı
2016-10-01
In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Olza Fernández, Ibone; Malalana Martínez, Ana M.; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes
2015-01-01
Abstract Aim: Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. Materials and Methods: A cohort prospective study was conducted at a tertiary hospital. Mother–infant dyads who received intrapartum oxytocin (n=53) were compared with mother–infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. Results: The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Conclusions: Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent. PMID:25785487
Grindstaff, Terry L; Pietrosimone, Brian G; Sauer, Lindsay D; Kerrigan, D Casey; Patrie, James T; Hertel, Jay; Ingersoll, Christopher D
2014-08-01
Manual therapies, directed to the knee and lumbopelvic region, have demonstrated the ability to improve neuromuscular quadriceps function in individuals with knee pathology. It remains unknown if manual therapies may alter impaired spinal reflex excitability, thus identifying a potential mechanism in which manual therapy may improve neuromuscular function following knee injury. To determine the effect of local and distant mobilisation/manipulation interventions on quadriceps spinal reflex excitability. Seventy-five individuals with a history of knee joint injury and current quadriceps inhibition volunteered for this study. Participants were randomised to one of five intervention groups: lumbopelvic manipulation (grade V), lumbopelvic manipulation positioning (no thrust), grade IV patellar mobilisation, grade I patellar mobilisation, and control (no treatment). Changes in spinal reflex excitability were quantified by assessing the Hoffmann reflex (H-reflex), presynaptic, and postsynaptic excitability. A hierarchical linear-mixed model for repeated measures was performed to compare changes in outcome variables between groups over time (pre, post 0, 30, 60, 90 min). There were no significant differences in H-reflex, presynaptic, or postsynaptic excitability between groups across time. Manual therapies directed to the knee or lumbopelvic region did not acutely change quadriceps spinal reflex excitability. Although manual therapies may improve impairments and functional outcomes the underlying mechanism does not appear to be related to changes in spinal reflex excitability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Emotional Dissonance and Burnout: The Moderating Role of Team Reflexivity and Re-Evaluation.
Andela, Marie; Truchot, Didier
2017-08-01
The aim of the present study was to better understand the relationship between emotional dissonance and burnout by exploring the buffering effects of re-evaluation and team reflexivity. The study was conducted with a sample of 445 nurses and healthcare assistants from a general hospital. Team reflexivity was evaluated with the validation of the French version of the team reflexivity scale (Facchin, Tschan, Gurtner, Cohen, & Dupuis, 2006). Burnout was measured with the MBI General Survey (Schaufeli, Leiter, Maslach, & Jackson, 1996). Emotional dissonance and re-evaluation were measured with the scale developed by Andela, Truchot, & Borteyrou (2015). With reference to Rimé's theoretical model (2009), we suggested that both dimensions of team reflexivity (task and social reflexivity) respond to both psychological necessities induced by dissonance (cognitive clarification and socio-affective necessities). Firstly, results indicated that emotional dissonance was related to burnout. Secondly, regression analysis confirmed the buffering role of re-evaluation and social reflexivity on the emotional exhaustion of emotional dissonance. Overall, results contribute to the literature by highlighting the moderating effect of re-evaluation and team reflexivity in analysing the relationship between emotional dissonance and burnout. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Reflex responses of lip muscles in young and older women.
Wohlert, A B
1996-06-01
The perioral reflex in response to innocuous mechanical stimulation of the lip vermilion was studied in 20 young and 20 older women. Responses to stimuli at the right and left sides of both the upper and lower lips were recorded. Results show significant specificity of response, especially for upper lip sites. Reflex response at the site of stimulation was greatest in amplitude and shortest in latency, followed by response at sites ipsilateral to the site of stimulation. Younger subjects showed greater localizing tendency than older subjects. Stimulation was significantly less likely to produce a reflex response in the older group. When reflex responses did occur, they were significantly lower in amplitude and longer in latency than the responses of the younger group. Nonetheless, reflex responses were common in both groups, with responses at the site of stimulation occurring 78% of the time in older women and 90% of the time in younger women. Every participant showed at least one reflex response to lip stimulation. Results suggest decreasing complexity of synaptic drive to the perioral system in old age but also show that reflexive response does not deteriorate completely, remaining an available element for motor control in normal older women.
Neuromorphic meets neuromechanics, part I: the methodology and implementation
NASA Astrophysics Data System (ADS)
Niu, Chuanxin M.; Jalaleddini, Kian; Sohn, Won Joon; Rocamora, John; Sanger, Terence D.; Valero-Cuevas, Francisco J.
2017-04-01
Objective: One goal of neuromorphic engineering is to create ‘realistic’ robotic systems that interact with the physical world by adopting neuromechanical principles from biology. Critical to this is the methodology to implement the spinal circuitry responsible for the behavior of afferented muscles. At its core, muscle afferentation is the closed-loop behavior arising from the interactions among populations of muscle spindle afferents, alpha and gamma motoneurons, and muscle fibers to enable useful behaviors. Approach. We used programmable very- large-scale-circuit (VLSI) hardware to implement simple models of spiking neurons, skeletal muscles, muscle spindle proprioceptors, alpha-motoneuron recruitment, gamma motoneuron control of spindle sensitivity, and the monosynaptic circuitry connecting them. This multi-scale system of populations of spiking neurons emulated the physiological properties of a pair of antagonistic afferented mammalian muscles (each simulated by 1024 alpha- and gamma-motoneurones) acting on a joint via long tendons. Main results. This integrated system was able to maintain a joint angle, and reproduced stretch reflex responses even when driving the nonlinear biomechanics of an actual cadaveric finger. Moreover, this system allowed us to explore numerous values and combinations of gamma-static and gamma-dynamic gains when driving a robotic finger, some of which replicated some human pathological conditions. Lastly, we explored the behavioral consequences of adopting three alternative models of isometric muscle force production. We found that the dynamic responses to rate-coded spike trains produce force ramps that can be very sensitive to tendon elasticity, especially at high force output. Significance. Our methodology produced, to our knowledge, the first example of an autonomous, multi-scale, neuromorphic, neuromechanical system capable of creating realistic reflex behavior in cadaveric fingers. This research platform allows us to explore the mechanisms behind healthy and pathological sensorimotor function in the physical world by building them from first principles, and it is a precursor to neuromorphic robotic systems.
Reflex limb dilatation following norepinephrine and angiotensin II in conscious dogs
NASA Technical Reports Server (NTRS)
Vatner, S. F.; Mcritchie, R. J.
1976-01-01
The extent to which norepinephrine (NE) and angiotensin II (AN) constrict the mesenteric, renal, and iliac beds in conscious dogs is evaluated with a view to elicit opposing reflex actions tempering the vasoconstriction in the limb of the animals tested. The afferent and efferent mechanisms mediating this reflex are analyzed. It is shown that intravenous NE and AN cause striking reflex iliac dilatation in the limb of the conscious dog. The afferent arc of this reflex involves both arterial baroreceptor and vagal path-ways, whereas the efferent mechanism involves an interaction of alpha-adrenergic and histaminergic receptors.
Dynamic stretching and golf swing performance.
Moran, K A; McGrath, T; Marshall, B M; Wallace, E S
2009-02-01
The aim of the present study was to examine the effect of dynamic stretching, static stretching and no stretching, as part of a general warm-up, on golf swing performance with a five-iron. Measures of performance were taken 0 min, 5 min, 15 min and 30 min after stretching. Dynamic stretching produced significantly greater club head speeds than both static stretching (Delta=1.9m.s (-1); p=0.000) and no stretching (Delta=1.7 m.s (-1); p=0.000), and greater ball speeds than both static stretching (Delta=3.5m.s (-1); p=0.003) and no stretching (Delta=3.3m.s (-1); p=0.001). Dynamic stretching produced significantly straighter swing-paths than both static stretching (Delta=-0.61 degrees , p=0.000) and no stretching (Delta=-0.72 degrees , p=0.01). Dynamic stretching also produced more central impact points than the static stretch (Delta=0.7 cm, p=0.001). For the club face angle, there was no effect of either stretch or time. For all of the variables measured, there was no significant difference between the static stretch and no stretch conditions. All of the results were unaffected by the time of measurement after stretching. The results indicate that dynamic stretching should be used as part of a general warm-up in golf.
Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
Elson, Matthew S; Berkowitz, Ari
2016-03-02
The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.
The Moro reaction: More than a reflex, a ritualized behavior of nonverbal communication.
Rousseau, Pierre V; Matton, Florence; Lecuyer, Renaud; Lahaye, Willy
2017-02-01
To propose a phylogenetic significance to the Moro reflex which remains unexplained since its publication in 1918 because both hands are free at the end of the gesture. Among the 75 videos of healthy term newborns we have filmed in a research project on antenatal education to parenthood, we describe a sequence that clearly showed the successive movements of the Moro reflex and we report the occurrence of this reflex in the videos that were recorded from Time 0 of birth defined as the moment that lies between the birth of the thorax and the pelvis of the infant. The selected sequence showed the following succession of the newborn's actions: quick extension-adduction of both arms, the orientation of the body, head and eyes towards a human person, and full extension-abduction of both arms with spreading of the fingers, crying and a distressed face. There were 13 Moro reflexes between 2 and 14s from Time 0 of birth. We found a significant association between the occurrence of the Moro reflex and the placement of the newborn at birth in supine position on the mother's abdomen (p=0.002). The quick extension-adduction of both arms which started the sequence may be considered as a startle reflex controlled by the neural fear system and the arm extension-adduction which followed as a Moro reflex. The characteristics of all Moro reflexes were those of ritualization: amplitude, duration, stereotype of the gestures. This evolutionary process turns a physiological behavior, grasping in this case, to a non-verbal communicative behavior whose meaning is a request to be picked up in the arms. The gestures associated with the Moro reflex: crying and orientation of the body, head, and eyes towards a human person, are gestures of intention to communicate which support our hypothesis. The neural mechanism of the Moro reaction probably involves both the fear and the separation-distress systems. This paper proposes for the first time a phylogenetic significance to the Moro reflex: a ritualized behavior of nonverbal communication. Professionals should avoid stimulating the newborns' fear system by unnecessarily triggering Moro reflexes. Antenatal education should teach parents to respond to the Moro reflexes of their newborn infant by picking her up in their arms with mother talk. Copyright © 2017 Elsevier Inc. All rights reserved.
Indicators used in livestock to assess unconsciousness after stunning: a review.
Verhoeven, M T W; Gerritzen, M A; Hellebrekers, L J; Kemp, B
2015-02-01
Assessing unconsciousness is important to safeguard animal welfare shortly after stunning at the slaughter plant. Indicators that can be visually evaluated are most often used when assessing unconsciousness, as they can be easily applied in slaughter plants. These indicators include reflexes originating from the brain stem (e.g. eye reflexes) or from the spinal cord (e.g. pedal reflex) and behavioural indicators such as loss of posture, vocalisations and rhythmic breathing. When physically stunning an animal, for example, captive bolt, most important indicators looked at are posture, righting reflex, rhythmic breathing and the corneal or palpebral reflex that should all be absent if the animal is unconscious. Spinal reflexes are difficult as a measure of unconsciousness with this type of stunning, as they may occur more vigorous. For stunning methods that do not physically destroy the brain, for example, electrical and gas stunning, most important indicators looked at are posture, righting reflex, natural blinking response, rhythmic breathing, vocalisations and focused eye movement that should all be absent if the animal is unconscious. Brain stem reflexes such as the cornea reflex are difficult as measures of unconsciousness in electrically stunned animals, as they may reflect residual brain stem activity and not necessarily consciousness. Under commercial conditions, none of the indicators mentioned above should be used as a single indicator to determine unconsciousness after stunning. Multiple indicators should be used to determine unconsciousness and sufficient time should be left for the animal to die following exsanguination before starting invasive dressing procedures such as scalding or skinning. The recording and subsequent assessment of brain activity, as presented in an electroencephalogram (EEG), is considered the most objective way to assess unconsciousness compared with reflexes and behavioural indicators, but is only applied in experimental set-ups. Studies performed in an experimental set-up have often looked at either the EEG or reflexes and behavioural indicators and there is a scarcity of studies that correlate these different readout parameters. It is recommended to study these correlations in more detail to investigate the validity of reflexes and behavioural indicators and to accurately determine the point in time at which the animal loses consciousness.
Knikou, Maria; Kay, Elizabeth; Schmit, Brian D.
2007-01-01
Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning–test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients. PMID:17543951
Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans.
Mackey, Ann S; Uttaro, Denise; McDonough, Maureen P; Krivis, Lisa I; Knikou, Maria
2016-01-01
Integration between descending and ascending inputs at supraspinal and spinal levels is a key characteristic of neural control of movement. In this study, we characterized convergence of the flexor reflex and corticospinal inputs on the tibialis anterior (TA) network in healthy human subjects. Specifically, we characterized the modulation profiles of the spinal TA flexor reflex following subthreshold and suprathreshold transcranial magnetic stimulation (TMS). We also characterized the modulation profiles of the TA motor evoked potentials (MEPs) following medial arch foot stimulation at sensory and above reflex threshold. TA flexor reflexes were evoked following stimulation of the medial arch of the foot with a 30 ms pulse train at innocuous intensities. TA MEPs were evoked following TMS of the leg motor cortex area. TMS at 0.7 and at 1.2 MEP resting threshold increased the TA flexor reflex when TMS was delivered 40-100 ms after foot stimulation, and decreased the TA flexor reflex when TMS was delivered 25-110 ms before foot stimulation. Foot stimulation at sensory and above flexor reflex threshold induced a similar time-dependent modulation in resting TA MEPs, that were facilitated when foot stimulation was delivered 40-100 ms before TMS. The flexor reflex and MEPs recorded from the medial hamstring muscle were modulated in a similar manner to that observed for the TA flexor reflex and MEP. Cutaneomuscular afferents from the distal foot can increase the output of the leg motor cortex area. Descending motor volleys that directly or indirectly depolarize flexor motoneurons increase the output of the spinal FRA interneuronal network. The parallel facilitation of flexor MEPs and flexor reflexes is likely cortical in origin. Afferent mediated facilitation of corticospinal excitability can be utilized to strengthen motor cortex output in neurological disorders. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cheema, P.K.; Raphael, S.; El-Maraghi, R.; Li, J.; McClure, R.; Zibdawi, L.; Chan, A.; Victor, J.C.; Dolley, A.; Dziarmaga, A.
2017-01-01
Background Testing for mutation of the EGFR (epidermal growth factor receptor) gene is a standard of care for patients with advanced nonsquamous non-small-cell lung cancer (nsclc). To improve timely access to EGFR results, a few centres implemented reflex testing, defined as a request for EGFR testing by the pathologist at the time of a nonsquamous nsclc diagnosis. We evaluated the impact of reflex testing on EGFR testing rates. Methods A retrospective observational review of the Web-based AstraZeneca Canada EGFR Database from 1 April 2010 to 31 March 2014 found centres within Ontario that had requested EGFR testing through the database and that had implemented reflex testing (with at least 2 years’ worth of data, including the pre- and post-implementation period). Results The 7 included centres had requested EGFR tests for 2214 patients. The proportion of pathologists requesting EGFR tests increased after implementation of reflex testing (53% vs. 4%); conversely, the proportion of medical oncologists requesting tests decreased (46% vs. 95%, p < 0.001). After implementation of reflex testing, the mean number of patients having EGFR testing per centre per month increased significantly [12.6 vs. 4.9 (range: 4.5–14.9), p < 0.001]. Before reflex testing, EGFR testing rates showed a significant monthly increase over time (1.37 more tests per month; 95% confidence interval: 1.19 to 1.55 tests; p < 0.001). That trend could not account for the observed increase with reflex testing, because an immediate increase in EGFR test requests was observed with the introduction of reflex testing (p = 0.003), and the overall trend was sustained throughout the post–reflex testing period (p < 0.001). Conclusions Reflex EGFR testing for patients with nonsquamous nsclc was successfully implemented at multiple centres and was associated with an increase in EGFR testing. PMID:28270720
Koyama, Soichiro; Tanabe, Shigeo; Takeda, Kazuya; Sakurai, Hiroaki; Kanada, Yoshikiyo
2016-03-01
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50 Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30 min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.
Neuromuscular function during drop jumps in young and elderly males.
Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne
2012-12-01
The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hasegawa, Ayako; Sato, Takuichi; Hoshikawa, Yasushi; Ishida, Naoko; Tanda, Naoko; Kawamura, Yoshiaki; Kondo, Takashi; Takahashi, Nobuhiro
2014-07-01
Postoperative pneumonia may occur when upper respiratory tract protective reflexes such as cough and/or swallowing reflexes are impaired; thus, silent aspiration of oral bacteria may be a causative factor in postoperative pneumonia. This study aimed to quantify and identify bacteria in intraoperative bronchial fluids and to evaluate the relationship between impairment of cough/swallowing reflexes and silent aspiration of oral bacteria in elderly patients. After obtaining informed consent, cough and swallowing reflexes were assessed using an ultrasonic nebulizer and a nasal catheter, respectively. Using a micro-sampling probe, intraoperative bronchial fluids were collected from nine subjects with pulmonary carcinoma and cultured anaerobically on blood agar plates. After 7 days, CFUs were counted and isolated bacteria were identified by 16S rRNA gene sequencing. Four subjects (aged 71.0 ± 8.4 years) had impaired swallowing reflexes with normal cough reflexes, whereas five subjects (73.6 ± 6.5 years) had normal cough and swallowing reflexes. The bacterial counts (mean CFU ± SD) tended to be higher in intraoperative bronchial fluids of subjects with impaired swallowing reflexes ([5.1 ± 7.7] × 10(5)) than in those of subjects with normal reflexes ([1.2 ± 1.9] × 10(5)); however, this difference was not statistically significant. Predominant isolates from intraoperative bronchial fluids were Streptococcus (41.8%), Veillonella (11.4%), Gemella (8.9%), Porphyromonas (7.6%), Olsenella (6.3%) and Eikenella (6.3%). These findings indicate that intraoperative bronchial fluids contain bacteria, probably derived from the oral microbiota, and suggest that silent aspiration of oral bacteria occurs in elderly patients irrespective of impairment of swallowing reflex. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.
Are H-reflex and M-wave recruitment curve parameters related to aerobic capacity?
Piscione, Julien; Grosset, Jean-François; Gamet, Didier; Pérot, Chantal
2012-10-01
Soleus Hoffmann reflex (H-reflex) amplitude is affected by a training period and type and level of training are also well known to modify aerobic capacities. Previously, paired changes in H-reflex and aerobic capacity have been evidenced after endurance training. The aim of this study was to investigate possible links between H- and M-recruitment curve parameters and aerobic capacity collected on a cohort of subjects (56 young men) that were not involved in regular physical training. Maximal H-reflex normalized with respect to maximal M-wave (H(max)/M(max)) was measured as well as other parameters of the H- or M-recruitment curves that provide information about the reflex or direct excitability of the motoneuron pool, such as thresholds of stimulus intensity to obtain H or M response (H(th) and M(th)), the ascending slope of H-reflex, or M-wave recruitment curves (H(slp) and M(slp)) and their ratio (H(slp)/M(slp)). Aerobic capacity, i.e., maximal oxygen consumption and maximal aerobic power (MAP) were, respectively, estimated from a running field test and from an incremental test on a cycle ergometer. Maximal oxygen consumption was only correlated with M(slp), an indicator of muscle fiber heterogeneity (p < 0.05), whereas MAP was not correlated with any of the tested parameters (p > 0.05). Although higher H-reflex are often described for subjects with a high aerobic capacity because of endurance training, at a basic level (i.e., without training period context) no correlation was observed between maximal H-reflex and aerobic capacity. Thus, none of the H-reflex or M-wave recruitment curve parameters, except M(slp), was related to the aerobic capacity of young, untrained male subjects.
Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury
Chen, Yi; Chen, Lu; Liu, Rongliang; Wang, Yu; Wolpaw, Jonathan R.
2013-01-01
When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex, locomotion improved. Steps became longer, and step-cycle asymmetry (i.e., limping) disappeared. In contrast, when down-conditioning decreased the H-reflex, locomotion did not worsen. Steps did not become shorter, and asymmetry did not increase. Electromyographic and kinematic analyses explained how H-reflex increase improved locomotion and why H-reflex decrease did not further impair it. Although the impact of up-conditioning or down-conditioning on the H-reflex pathway was still present during locomotion, only up-conditioning affected the soleus locomotor burst. Additionally, compensatory plasticity apparently prevented the weaker H-reflex pathway caused by down-conditioning from weakening the locomotor burst and further impairing locomotion. The results support the hypothesis that the state of the spinal cord is a “negotiated equilibrium” that serves all the behaviors that depend on it. When new learning changes the spinal cord, old behaviors undergo concurrent relearning that preserves or improves their key features. Thus, if an old behavior has been impaired by trauma or disease, spinal reflex conditioning, by changing a specific pathway and triggering a new negotiation, may enable recovery beyond that achieved simply by practicing the old behavior. Spinal reflex conditioning protocols might complement other neurorehabilitation methods and enhance recovery. PMID:24371288
Learning reflexively from a health promotion professional development program in Canada.
Tremblay, Marie-Claude; Richard, Lucie; Brousselle, Astrid; Beaudet, Nicole
2014-09-01
In recent decades, reflexivity has received much attention in the professional education and training literature, especially in the public health and health promotion fields. Despite general agreement on the importance of reflexivity, there appears to be no consensus on how to assess reflexivity or to conceptualize the different forms developed among professionals and participants of training programs. This paper presents an analysis of the reflexivity outcomes of the Health Promotion Laboratory, an innovative professional development program aimed at supporting practice changes among health professionals by fostering competency development and reflexivity. More specifically, this paper explores the difference between two levels of reflexivity (formative and critical) and highlights some implications of each for practice. Data were collected through qualitative interviews with participants from two intervention sites. Results showed that involvement in the Health Promotion Laboratory prompted many participants to modify their vision of their practice and professional role, indicating an impact on reflexivity. In many cases, new understandings seem to have played a formative function in enabling participants to improve their practice and their role as health promoters. The reflective process also served a critical function culminating in a social and moral understanding of the impacts on society of the professionals' practices and roles. This type of outcome is greatly desired in health promotion, given the social justice and equity concerns of this field of practice. By redefining the theoretical concept of reflexivity on two levels and discussing their impacts on practice, this study supports the usefulness of both levels of reflexivity. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Joyce, G. C.; Rack, Peter M. H.; Ross, H. F.
1974-01-01
1. The mechanical resistance of the human forearm has been measured during imposed sinusoidal flexion-extension movements of the elbow joint. 2. The force required to move the limb can be divided into components required to move the mass, and components required to overcome the resistance offered by elastic and frictional properties of the muscles and other soft tissues. 3. When during a vigorous flexing effort the limb was subjected to a small amplitude sinusoidal movement each extension was followed by a considerable reflex contraction of the flexor muscles. At low frequencies of movement this reflex provided an added resistance to extension, but at 8-12 Hz the delay in the reflex pathway was such that the reflex response to extension occurred after the extension phase of the movement was over and during the subsequent flexion movement. The reflex activity then assisted the movement whereas at other frequencies it impeded it. 4. The reflex response to movement increased as the subject exerted a greater flexing force. 5. Small movements generated a relatively larger reflex response than big ones. 6. Even with large amplitudes of movement when the reflex activity was relatively small, the limb resisted extension with a high level of stiffness; this was comparable with the short range stiffness of muscles in experimental animals. 7. The fact that at some frequencies the reflex response assisted the movement implies that with appropriate loading the limb could undergo a self-sustaining oscillation at those frequencies. PMID:4420490
Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.
Farrugia, David; Woodman, Dan
2015-12-01
Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.
On reflexivity and the conduct of the self in everyday life: reflections on Bourdieu and Archer.
Akram, Sadiya; Hogan, Anthony
2015-12-01
This article provides a critique of the concept of reflexivity in social theory today and argues against the tendency to define agency exclusively in terms of reflexivity. Margaret Archer, in particular, is highlighted as a key proponent of this thesis. Archer argues that late modernity is characterized by reflexivity but, in our view, this position neglects the impact of more enduring aspects of agency, such as the routinization of social life and the role of the taken-for-granted. These concepts were pivotal to Bourdieu and Giddens' theorization of everyday life and action and to Foucault's understanding of technologies of the self. We offer Bourdieu's habitus as a more nuanced approach to theorizing agency, and provide an alternative account of reflexivity. Whilst accepting that reflexivity is a core aspect of agency, we argue that it operates to a backdrop of the routinization of social life and operates from within and not outside of habitus. We highlight the role of the breach in reflexivity, suggesting that it opens up a critical window for agents to initiate change. The article suggests caution in over-ascribing reflexivity to agency, instead arguing that achieving reflexivity and change is a difficult and fraught process, which has emotional and moral consequences. The effect of this is that people often prefer the status quo, rather than to risk change and uncertainty. © London School of Economics and Political Science 2015.
Analysis of factors related to vagally mediated reflex bradycardia during gastrectomy.
Kim, Duk-Kyung; Ahn, Hyun Joo; Lee, Seung Won; Choi, Ji Won
2015-12-01
Because vagally mediated reflex bradycardia occurs frequently during gastrectomy and is potentially harmful, we compared the incidence of clinically significant reflex bradycardia between patients undergoing laparoscopic gastrectomy (LG) and open gastrectomy (OG) and examined whether the type of surgery (OG vs. LG) was an independent risk factor for clinically significant reflex bradycardia. This prospective observational study evaluated 358 adult patients (age 18-70 years) who were undergoing elective OG or LG for gastric cancer resection. Symptomatic reflex bradycardia was defined as a sudden decrease in heart rate to <50 beats per minute (bpm), or to 50-59 bpm with a systolic blood pressure <70 mmHg, associated with a specific surgical maneuver. If bradycardia or hypotension developed, atropine or ephedrine was administered, in accordance with a predefined treatment protocol. The overall incidence of symptomatic reflex bradycardia was 24.6% (88/358). Univariate analysis revealed the incidence of symptomatic reflex bradycardia in the LG group was significantly lower than that in the OG group [13.0% (13/100) vs. 29.1% (75/258), p = 0.002]. Multivariate logistic regression analysis revealed that the type of surgery (OG vs. LG), advanced age, preoperative bradycardia, type of muscle relaxant (vecuronium vs. rocuronium), no use of intravenous remifentanil, and low core temperature, were independent risk factors for symptomatic reflex bradycardia (odds ratio 3.184; 95% confidence interval 1.490-6.800; p = 0.003). The LG approach was associated with a reduced risk of clinically significant reflex bradycardia compared with the OG approach.
VizieR Online Data Catalog: RefleX : X-ray-tracing code (Paltani+, 2017)
NASA Astrophysics Data System (ADS)
Paltani, S.; Ricci, C.
2017-11-01
We provide here the RefleX executable, for both Linux and MacOSX, together with the User Manual and example script file and output file Running (for instance): reflex_linux will produce the file reflex.out Note that the results may differ slightly depending on the OS, because of slight differences in some implementations numerical computations. The difference are scientifically meaningless. (5 data files).
The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes
NASA Technical Reports Server (NTRS)
Ray, Chester A.; Monahan, Kevin D.
2002-01-01
1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.
Adaptation to sensory-motor reflex perturbations is blind to the source of errors.
Hudson, Todd E; Landy, Michael S
2012-01-06
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
Hoseini, Najmeh; Koceja, David M; Riley, Zachary A
2011-10-24
Spasticity in chronic hemiparetic stroke patients has primarily been treated pharmacologically. However, there is increasing evidence that physical rehabilitation can help manage hyper-excitability of reflexes (hyperreflexia), which is a primary contributor to spasticity. In the present study, one chronic hemiparetic stroke patient operantly conditioned the soleus H-reflex while training on a balance board for two weeks. The results showed a minimal decrease in the Hmax-Mmax ratio for both the affected and unaffected limb, indicating that the H-reflex was not significantly altered with training. Alternatively, paired-reflex depression (PRD), a measure of history-dependent changes in reflex excitability, could be conditioned. This was evident by the rightward shift and decreased slope of reflex excitability in the affected limb. The non-affected limb decreased as well, although the non-affected limb was very sensitive to PRD initially, whereas the affected limb was not. Based on these results, it was concluded that PRD is a better index of hyperreflexia, and this measurement could be more informative of synapse function than simple H-reflexes. This study presents a novel and non-pharmacological means of managing spasticity that warrants further investigation with the potential of being translated to the clinic. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Generalized versus partial reflex seizures: a review.
Italiano, Domenico; Ferlazzo, Edoardo; Gasparini, Sara; Spina, Edoardo; Mondello, Stefania; Labate, Angelo; Gambardella, Antonio; Aguglia, Umberto
2014-08-01
In this review we assess our currently available knowledge about reflex seizures with special emphasis on the difference between "generalized" reflex seizures induced by visual stimuli, thinking, praxis and language tasks, and "focal" seizures induced by startle, eating, music, hot water, somatosensory stimuli and orgasm. We discuss in particular evidence from animal, clinical, neurophysiological and neuroimaging studies supporting the concept that "generalized" reflex seizures, usually occurring in the setting of IGE, should be considered as focal seizures with quick secondary generalization. We also review recent advances in genetic and therapeutic approach of reflex seizures. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Latash, M L; Gottlieb, G L
1991-09-01
The model for isotonic movements introduced in the preceding article in this issue is used to account for isometric contractions. Isotonic movements and isometric contractions are analyzed as consequences of one motor program acting under different peripheral conditions. Differences in isotonic and isometric EMG patterns are analyzed theoretically. Computer simulation of the EMG patterns was performed both with and without the inclusion of possible effects of reciprocal inhibition. A series of experiments was performed to test the model. The subjects made fast isotonic movements that were unexpectedly blocked at the very beginning in some of the trials. The observed differences in the EMG patterns between blocked and unblocked trials corresponded to the model's predictions. The results suggest that these differences are due to the action of a tonic stretch reflex rather than to preprogrammed reactions. The experimental and simulation findings, and also the data from the literature, are discussed in the framework of the model and the dual-strategy hypothesis. They support the hypothesis that the motor control system uses one of a few standardized subprograms, specifying a small number of parameters to match a specific task.
Model of head-neck joint fast movements in the frontal plane.
Pedrocchi, A; Ferrigno, G
2004-06-01
The objective of this work is to develop a model representing the physiological systems driving fast head movements in frontal plane. All the contributions occurring mechanically in the head movement are considered: damping, stiffness, physiological limit of range of motion, gravitational field, and muscular torques due to voluntary activation as well as to stretch reflex depending on fusal afferences. Model parameters are partly derived from the literature, when possible, whereas undetermined block parameters are determined by optimising the model output, fitting to real kinematics data acquired by a motion capture system in specific experimental set-ups. The optimisation for parameter identification is performed by genetic algorithms. Results show that the model represents very well fast head movements in the whole range of inclination in the frontal plane. Such a model could be proposed as a tool for transforming kinematics data on head movements in 'neural equivalent data', especially for assessing head control disease and properly planning the rehabilitation process. In addition, the use of genetic algorithms seems to fit well the problem of parameter identification, allowing for the use of a very simple experimental set-up and granting model robustness.
Krueger, Eddy; Scheeren, Eduardo M; Nogueira-Neto, Guilherme N; Button, Vera Lúcia da S N; Nohama, Percy
2012-01-01
Several pathologies can cause muscle spasticity. Modified Ashworth scale (MAS) can rank spasticity, however its results depend on the physician subjective evaluation. This study aims to show a new approach to spasticity assessment by means of MMG analysis of hamstrings antagonist muscle group (quadriceps muscle). Four subjects participated in the study, divided into two groups regarding MAS (MAS0 and MAS1). MMG sensors were positioned over the muscle belly of rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) muscles. The range of movement was acquired with an electrogoniometer placed laterally to the knee. The system was based on a LabVIEW acquisition program and the MMG sensors were built with triaxial accelerometers. The subjects were submitted to stretching reflexes and the integral of the MMG (MMG(INT)) signal was calculated to analysis. The results showed that the MMG(INT) was greater to MAS1 than to MAS0 [muscle RF (p = 0.004), VL (p = 0.001) and VM (p = 0.007)]. The results showed that MMG was viable to detect a muscular tonus increase in antagonist muscular group (quadriceps femoris) of spinal cord injured volunteers.
Fifty Years of Physics of Living Systems.
Latash, Mark L
2016-01-01
The equilibrium-point hypothesis and its more recent version, the referent configuration hypothesis, represent the physical approach to the neural control of action. This hypothesis can be naturally combined with the idea of hierarchical control of movements and of synergic organization of the abundant systems involved in all actions. Any action starts with defining trajectories of a few referent coordinates for a handful of salient task-specific variables. Further, referent coordinates at hierarchically lower levels emerge down to thresholds of the tonic stretch reflex for the participating muscles. Stability of performance with respect to salient variables is reflected in the structure of inter-trial variance and phenomena of motor equivalence. Three lines of recent research within this framework are reviewed. First, synergic adjustments of the referent coordinate and apparent stiffness have been demonstrated during finger force production supporting the main idea of control with referent coordinates. Second, the notion of unintentional voluntary movements has been introduced reflecting unintentional drifts in referent coordinates. Two types of unintentional movements have been observed with different characteristic times. Third, this framework has been applied to studies of impaired movements in neurological patients. Overall, the physical approach searching for laws of nature underlying biological movement has been highly stimulating and productive.
Chen, Yung-Sheng; Zhou, Shi; Cartwright, Colleen
2014-04-01
This study investigated the effects of ankle joint position and submaximal contraction intensity on soleus (SOL) H-reflex modulation. Twenty young (25.1 ± 4.8 years) and 20 older adults (74.2 ± 5.1 years) performed plantar flexions during 10%, 30% and 50% maximal voluntary contractions (MVC) and at ankle positions of neutral (0°), plantar flexion (20°) and dorsiflexion (-20°) in a sitting position. The SOL H-reflex gain in older adults was relatively lower than that in young adults during 10%, 30% and 50% MVC. The SOL H-reflex gain was significantly affected by the intensity of plantar flexion in the respective ankle joint position in both age groups. The latency of H-reflex was prolonged in older adults and was ankle joint dependent in young adults. Young adults demonstrated a shorter duration of the H-reflex response than that of older adults. The results indicated that there were age-related changes in the SOL H-reflex during the ankle plantar flexors activities.
Saxena, Udit; Allan, Chris; Allen, Prudence
2017-06-01
Previous studies have suggested elevated reflex thresholds in children with auditory processing disorders (APDs). However, some aspects of the child's ear such as ear canal volume and static compliance of the middle ear could possibly affect the measurements of reflex thresholds and thus impact its interpretation. Sound levels used to elicit reflexes in a child's ear may be higher than predicted by calibration in a standard 2-cc coupler, and lower static compliance could make visualization of very small changes in impedance at threshold difficult. For this purpose, it is important to evaluate threshold data with consideration of differences between children and adults. A set of studies were conducted. The first compared reflex thresholds obtained using standard clinical procedures in children with suspected APD to that of typically developing children and adults to test the replicability of previous studies. The second study examined the impact of ear canal volume on estimates of reflex thresholds by applying real-ear corrections. Lastly, the relationship between static compliance and reflex threshold estimates was explored. The research is a set of case-control studies with a repeated measures design. The first study included data from 20 normal-hearing adults, 28 typically developing children, and 66 children suspected of having an APD. The second study included 28 normal-hearing adults and 30 typically developing children. In the first study, crossed and uncrossed reflex thresholds were measured in 5-dB step size. Reflex thresholds were analyzed using repeated measures analysis of variance (RM-ANOVA). In the second study, uncrossed reflex thresholds, real-ear correction, ear canal volume, and static compliance were measured. Reflex thresholds were measured using a 1-dB step size. The effect of real-ear correction and static compliance on reflex threshold was examined using RM-ANOVA and Pearson correlation coefficient, respectively. Study 1 replicated previous studies showing elevated reflex thresholds in many children with suspected APD when compared to data from adults using standard clinical procedures, especially in the crossed condition. The thresholds measured in children with suspected APD tended to be higher than those measured in the typically developing children. There were no significant differences between the typically developing children and adults. However, when real-ear calibrated stimulus levels were used, it was found that children's thresholds were elicited at higher levels than in the adults. A significant relationship between reflex thresholds and static compliance was found in the adult data, showing a trend for higher thresholds in ears with lower static compliance, but no such relationship was found in the data from the children. This study suggests that reflex measures in children should be adjusted for real-ear-to-coupler differences before interpretation. The data in children with suspected APD support previous studies suggesting abnormalities in reflex thresholds. The lack of correlation between threshold and static compliance estimates in children as was observed in the adults may suggest a nonmechanical explanation for age and clinically related effects. American Academy of Audiology
What is a reflex? A guide for understanding disorders of consciousness.
Fischer, David B; Truog, Robert D
2015-08-11
Uncertainty in diagnosing disorders of consciousness, and specifically in determining whether consciousness has been lost or retained, poses challenging scientific and ethical questions. Recent neuroimaging-based tests for consciousness have cast doubt on the reliability of behavioral criteria in assessing states of consciousness and generate new questions about the assumptions used in formulating coherent diagnostic criteria. The reflex, a foundational diagnostic tool, offers unique insight into these disorders; behaviors produced by unconscious patients are thought to be purely reflexive, whereas those produced by conscious patients can be volitional. Further investigation, however, reveals that reflexes cannot be reliably distinguished from conscious behaviors on the basis of any generalizable empirical characteristics. Ambiguity between reflexive and conscious behaviors undermines the capacity of the reflex to distinguish between disorders of consciousness and has implications for how these disorders should be conceptualized in future diagnostic criteria. © 2015 American Academy of Neurology.
When planning results in loss of control: intention-based reflexivity and working-memory
Meiran, Nachshon; Cole, Michael W.; Braver, Todd S.
2012-01-01
In this review, the authors discuss the seemingly paradoxical loss of control associated with states of high readiness to execute a plan, termed “intention-based reflexivity.” The review suggests that the neuro-cognitive systems involved in the preparation of novel plans are different than those involved in preparation of practiced plans (i.e., those that have been executed beforehand). When the plans are practiced, intention-based reflexivity depends on the prior availability of response codes in long-term memory (LTM). When the plans are novel, reflexivity is observed when the plan is pending and the goal has not yet been achieved. Intention-based reflexivity also depends on the availability of working-memory (WM) limited resources and the motivation to prepare. Reflexivity is probably related to the fact that, unlike reactive control (once a plan is prepared), proactive control tends to be relatively rigid. PMID:22586382
Immediate effects of different types of stretching exercises on badminton jump smash.
Jang, Hwi S; Kim, Daeho; Park, Jihong
2018-01-01
Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, P<0.01, ES=0.98; dynamic stretching: 30.1%, P<0.01, ES=1.49; resistance dynamic stretching: 17.7%, P=0.03, ES=0.98) and velocities of jump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.
Khosrawi, Saeid; Fallah, Salman
2013-03-01
The H-reflex is a useful electrophysiological procedure for evaluating the status of the peripheral nervous system, especially at the proximal segment of the peripheral nerve. The purpose of this study is to investigate the relation between triceps surae H-reflex and M- response latencies and thigh length in normal population, in order to determine if there is any regression equation between them. After screening 75 volunteers by considering inclusion and exclusion criteria, 72 of them were selected to enroll into our study (34 men and 38 women with the mean age of 36.04 ± 7.7 years). In all of the subjects H-reflex and M-response latencies were recorded by standard electrophysiological techniques and thigh length was measured. Finally, our data was analyzed for its relations with respect to ages in both sexes by appropriate statistical and mathematical methods. Mean ± SD for H-reflex latency was 27.94 ± 1.6 ms. We found a significant correlation between H-reflex latency and M-latency (r = 0.28), no significant correlation was found between H-reflex latency and thigh length (r = -0.051). Finally based on our findings we introduce a new formula in this paper. We found a significant correlation among of M-response latency and other variables (H-reflex latency and thigh length). Despite this it was eliminated from our formula. The relationship between H-reflex latency and age was significant. Further studies are required to delineate the clinical usage and interpretation of the formula, which we found in this study.
Comparison of voluntary and reflex cough effectiveness in Parkinson’s disease
Hegland, Karen Wheeler; Troche, Michelle S.; Brandimore, Alexandra E.; Davenport, Paul W.; Okun, Michael S.
2016-01-01
Introduction Multiple airway protective mechanisms are impacted with Parkinson’s disease (PD), including swallowing and cough. Cough serves to eject material from the lower airways, and can be produced voluntarily (on command) and reflexively in response to aspirate material or other airway irritants. Voluntary cough effectiveness is reduced in PD however it is not known whether reflex cough is affected as well. The goal of this study was to compare the effectiveness between voluntary and reflex cough in patients with idiopathic PD. Methods Twenty patients with idiopathic PD participated. Cough airflow data were recorded via facemask in line with a pneumotachograph. A side delivery port connected the nebulizer for delivery of capsaicin, which was used to induce cough. Three voluntary coughs and three reflex coughs were analyzed from each participant. A two-way repeated measures analysis of variance was used to compare voluntary versus reflex cough airflow parameters. Results Significant differences were found for peak expiratory flow rate (PEFR) and cough expired volume (CEV) between voluntary and reflex cough. Specifically, both PEFR and CEV were reduced for reflex as compared to voluntary cough. Conclusion Cough PEFR and CEV are indicative of cough effectiveness in terms of the ability to remove material from the lower airways. Differences between these two cough types likely reflect differences in the coordination of the respiratory and laryngeal subsystems. Clinicians should be aware that evaluation of cough function using voluntary cough tasks overestimates the PEFR and CEV that would be achieved during reflex cough in patients with PD. PMID:25246315
[Comparative study on the reflex responses of carotid and aortic baroreceptors in the rabbit].
Li, Z; Ho, S Y
1989-08-01
In 81 anesthetized rabbits, the baroreflex control of heart rate (HR), hind-limb vascular resistance (HVR) and renal sympathetic nerve activity (RSNA) was observed during arterial baroreceptor loading and unloading by intravenously injecting phenylephrine (PE) and nitroprusside (NP). The results were as follows: (1) An increase of arterial pressure with PE caused reduction in HR, HVR and RSNA, while a decrease of arterial pressure with NP evoked opposite responses. These reflex responses were reproducible. (2) By either carotid baroreceptor denervation (CBRX) or aortic baroreceptor denervation (ABRX), the reflex changes of HR induced by injecting PE and NP were impaired (P less than 0.01), while the reflex responses in HVP remained unchanged. Despite of the enhanced basal RSNA following ABRX or CBRX, the magnitude of reflex inhibition in RSNA during injecting NP was similar to that before denervation, whereas that of the reflex excitation in RSNA during injecting NP was reduced (P less than 0.05). (3) After complete sino-aortic denervation (SAD), the change of arterial pressure following PE or NP injection was enhanced, but the reflex changes in HR, HVR and RSNA were significantly diminished (P less than 0.001). (4) Vagotomy abolished the residual reflex changes observed after SAD. The results indicate that the aortic and carotid baroreceptors may regulate HR in a simple additive manner, while the aortic baroreceptor seems to be more important. Furthermore, both the aortic and carotid baroreceptors may play important roles for the reflex control of HVR and RSNA, and operate mutually by the way of inhibitory summation.
The Dynamics of Successive Induction in Larval Zebrafish
Charles Sherrington identified the properties of the synapse by purely behavioral means the study of reflexes -more than 100 years ago. They were subsequently confirmed neurophysiologically. Studying reflex interaction, he also showed that activating one reflex often facilitates...
2013-01-01
Background Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Methods Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Results Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information. The results also indicate that the relationship between the reflex area and the projection to the primary somatosensory cortex has a lateral pattern that differs from that of the actual somatotopical representation of the body. Conclusion These findings suggest that a robust relationship exists between neural processing of somatosensory percepts for reflexological stimulation and the tactile sensation of a specific reflex area. PMID:23711332
Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders
2017-01-01
In this article children's musical improvisation is investigated through the "reflexive interaction" paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a "reflexive" output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6-7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children's abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children's ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education.
The Middle Ear Muscle Reflex in Rat: Developing a Biomarker of Auditory Nerve Degeneration.
Chertoff, Mark E; Martz, Ashley; Sakumura, Joey T; Kamerer, Aryn M; Diaz, Francisco
The long-term goal of this research is to determine whether the middle ear muscle reflex can be used to predict the number of healthy auditory nerve fibers in hearing-impaired ears. In this study, we develop a high-impedance source and an animal model of the middle ear muscle reflex and explore the influence of signal frequency and level on parameters of the reflex to determine an optimal signal to examine auditory nerve fiber survival. A high-impedance source was developed using a hearing aid receiver attached to a 0.06 diameter 10.5-cm length tube. The impedance probe consisted of a microphone probe placed near the tip of a tube coupled to a sound source. The probe was calibrated by inserting it into a syringe of known volumes and impedances. The reflex in the anesthetized rat was measured with elicitor stimuli ranging from 3 to 16 kHz presented at levels ranging from 35 to 100 dB SPL to one ear while the reflex was measured in the opposite ear containing the probe and probe stimulus. The amplitude of the reflex increased with elicitor level and was largest at 3 kHz. The lowest threshold was approximately 54 dB SPL for the 3-kHz stimulus. The rate of decay of the reflex was greatest at 16 kHz followed by 10 and 3 kHz. The rate of decay did not change significantly with elicitor signal level for 3 and 16 kHz, but decreased as the level of the 10-kHz elicitor increased. A negative feedback model accounts for the reflex decay by having the strength of feedback dependent on auditory nerve input. The rise time of the reflex varied with frequency and changed with level for the 10- and 16-kHz signals but not significantly for the 3-kHz signal. The latency of the reflex increased with a decrease in elicitor level, and the change in latency with level was largest for the 10-kHz stimulus. Because the amplitude of the reflex in rat was largest with an elicitor signal at 3 kHz, had the lowest threshold, and yielded the least amount of decay, this may be the ideal frequency to estimate auditory nerve survival in hearing-impaired ears.
Portraying Reflexivity in Health Services Research.
Rae, John; Green, Bill
2016-09-01
A model is proposed for supporting reflexivity in qualitative health research, informed by arguments from Bourdieu and Finlay. Bourdieu refers to mastering the subjective relation to the object at three levels-the overall social space, the field of specialists, and the scholastic universe. The model overlays Bourdieu's levels of objectivation with Finlay's three stages of research (pre-research, data collection, and data analysis). The intersections of these two ways of considering reflexivity, displayed as cells of a matrix, pose questions and offer prompts to productively challenge health researchers' reflexivity. Portraiture is used to show how these challenges and prompts can facilitate such reflexivity, as illustrated in a research project. © The Author(s) 2016.
Sanghera, Balihar
2016-01-01
This article examines how individuals are reflexive beings who interpret the world in relation to things that matter to them, and how charitable acts are evaluated and embedded in their lives with different degrees of meaning and importance. Rather than framing the discussion of charitable practices in terms of an altruism/egoism binary or imputing motivations and values to social structures, the article explains how reflexivity is an important and neglected dimension of social practices, and how it interacts with sympathy, sentiments and discourses to shape giving. The study also shows that there are different modes of reflexivity, which have varied effects on charity and volunteering. PMID:28232772
Underwater Noise and the Conservation of Divers’ Hearing: A Review. Volume 1
1989-10-01
reflex attenuation, since the tensor tympani is unaffected and since Bell ’ palsy may affect the VIIIth (auditory) nerve as well as the VIlth (facial...studied acoustic reflexes in patients with acute facial nerve paralysis (Bell’s palsy ). These patients had absent stapedius reflexes on the side of the...voluntary middle ear muscle activation. 24 Bell’s palsy cases; attenuation estimated by shift in reflex amplitude- intensity functions (contralateral), re
Assessment of H reflex sensitivity with M wave alternation consequent to fatiguing contractions.
Hwang, Ing-Shiou; Huang, Cheng-Ya; Wu, Pei-Shan; Chen, Yi-Ching; Wang, Chun-Hou
2008-09-01
The objective of this study was to examine the changes in H reflex sensitivity after neuromuscular fatigue associated with fluctuations of the M wave. In the maximal and submaximal voluntary contraction (MVC and SMVC) paradigms, subjects performed voluntary plantarflexion at 100% MVC and 40% MVC respectively until the limit of torque maintenance was reached. In the submaximal electrical stimulation (SMES) paradigm, the tricep surae was exhausted with sustained electrical stimulation of 40% of the maximal tolerable intensity at a 40-Hz stimulus rate. The H reflexes and maximal M waves (M(max)) of the soleus were recorded before and after the three fatigue paradigms, and the H reflex was standardized with M(max) to minimize possible bias due to fatigue-induced M wave fluctuation. The results showed a significant increase in the standardized H reflex due to the SMES paradigm in spite of M(max) potentiation. The SMVC paradigm led to a reduction in size of the standardized H reflex without modification of M(max), whereas the standardized H reflex was not mediated by the MVC paradigm, which contributed to a noticeable M(max) potentiation. The present study underscored the fact that the H reflex sensitivity and M wave amplitude were not necessarily suppressed consequent to neuromuscular fatigue, but varied with the activation history of a muscle for size-dependent efficacy of the Ia transmission pathways and postactivation potentiation.
Tan, U
1994-03-01
Relations of grasp-reflex strengths to serum free-thyroid hormone levels were studied in human neonates. In right-dominant (RH) males and females without familial sinistrality (-FS), grasp-reflex strengths from right (R) and left (L) inversely correlated with serum triiodothyronine (T3). In RH, +FS males, grasp-reflex strengths from R and L hands directly correlated with T3 (no correlations in RH, +FS females). There was no significant correlation between grasp reflex and T3 in non-right-handed (NRH), -FS neonates. In NRH +FS neonates, there was a significant negative linear correlation between grasp reflex from left and T3 only in NRH, +FS males. The following correlations were found between grasp reflex and thyroxine (T4): direct relation in RH, +FS males and females; inverse relation in NRH, -FS females only for the right hand; inverse correlations in NRH, +FS females. The R-L grasp reflex directly correlated with T3 in RH, -FS males, and inversely correlated with T3 in RH, -FS females (no significant correlations in others). These results indicated that thyroid hormones may influence cerebral maturation and lateralization differentially according to genetically predetermined cerebral organization. The generalizations of the hormonal effects on, at least, cerebral functioning would be wrong, if the genetically predetermined main features of the brain are neglected.
The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers
Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.
2015-01-01
Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889
Emotion, reflexivity and social change in the era of extreme fossil fuels.
Davidson, Debra J
2018-05-09
Reflexivity is an important sociological lens through which to examine the means by which people engage in actions that contribute to social reproduction or social elaboration. Reflexivity theorists have largely overlooked the central place of emotions in reflexive processing, however, thus missing opportunities to enhance our understanding of reflexivity by capitalizing on recent scholarship on emotions emanating from other fields of inquiry. This paper explores the role of emotion in reflexivity, with a qualitative analysis of social responses to hydraulic fracturing in Alberta, Canada, utilizing narrative analysis of long-form interviews with rural landowners who have experienced direct impacts from hydraulic fracturing, and have attempted to voice their concerns in the public sphere. Based on interviews with a selection of two interview participants, the paper highlights the means by which emotions shape reflexivity in consequential ways, beginning with personal and highly individualized emotional responses to contingent situations, which then factor into the social interactions engaged in the pursuit of personal projects. The shared emotional context that emerges then plays a substantial role in shaping outcomes and their implications for social stasis or change. This study exemplifies the extent to which reflexive processing in response to breaches in the social order can be emotionally tumultuous affairs, constituting a significant personal toll that many may be unwilling to pay. © London School of Economics and Political Science 2018.
Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans.
Oza, Preeti D; Dudley-Javoroski, Shauna; Shields, Richard K
2017-01-01
Depression of the Hoffman reflex (H-reflex) is used to examine spinal control mechanisms during exercise, fatigue, and vibration and in response to training. H-reflex depression protocols frequently use trains of stimuli; this is time-consuming and prevents instantaneous assessment of motor neuronal excitability. The purpose of this study was to determine if paired-pulse H-reflex depression is reproducible and whether paired-pulse stimulation adequately estimates the depression induced by the more traditional ten-pulse train. H-reflexes were elicited via ten-pulse trains at 0.1, 0.2, 1, 2, and 5 Hz in ten neurologically intact individuals on two separate days. We measured the depression elicited by the second pulse (H2) and the mean depression elicited by pulses 2-10 (Hmean). H2 was consistent at all frequencies on both days ( r 2 = 0.97, p < 0.05, and ICC (3,1) = 0.81). H2 did not differ from Hmean ( p > 0.05). The results indicate that paired-pulse H-reflex depression has high between-day reliability and yields depression estimates that are comparable to those obtained via ten-pulse trains. Paired-pulse H-reflex depression may be especially useful for studies that require rapid assessment of motor neuronal excitability, such as during exercise, fatigue, and vibration, or to establish recovery curves following inhibition.
Parks, Vanessa N.; Peng, Juan; Dzodzomenyo, Samuel; Fernandez, Soledad; Shaker, Reza; Splaingard, Mark
2012-01-01
Electrocortical arousal (ECA) as an effect of visceral provocation or of its temporal relationships with aerodigestive reflexes in premature neonates is not known. We tested the hypothesis that esophageal provocation results in both esophageal reflex responses and ECAs during sleep and that ECAs are dependent on the frequency characteristics of esophageal neuromotor responses. We defined the spatiotemporal relationship of ECAs in relation to 1) spontaneous pharyngoesophageal swallow sequences and gastroesophageal reflux (GER) events and 2) sensory-motor characteristics of esophageal reflexes. Sixteen healthy premature neonates born at 27.9 ± 3.4 wk were tested at 36.8 ± 1.9 wk postmenstrual age. Ninety-five midesophageal and 31 sham stimuli were given in sleep during concurrent manometry and videopolysomnography. With stimulus onset as reference point, we scored the response latency, frequency occurrence and duration of arousals, peristaltic reflex, and upper esophageal sphincter contractile reflex (UESCR). Changes in polysomnography-respiratory patterns and esophageal sensory-motor parameters were scored by blinded observers. Significantly (for each characteristic listed, P < 0.05), swallow sequences were associated with arousals and sleep state changes, and arousals were associated with incomplete peristalsis, response delays to lower esophageal sphincter relaxation, and prolonged esophageal clearance. GER events (73.5%) provoked arousals, and arousals were associated with response delays to peristaltic reflexes or clearance, sleep state modification, and prolonged respiratory arousal. Midesophageal stimuli (54%) provoked arousals and were associated with increased frequency, prolonged latency, prolonged response duration of peristaltic reflexes and UESCR, and increased frequency of sleep state changes and respiratory arousals. In human neonates, ECAs are provoked upon esophageal stimulation; the sensory-motor characteristics of esophageal reflexes are distinct when accompanied by arousals. Aerodigestive homeostasis is defended by multiple tiers of aerodigestive safety mechanisms, and when esophageal reflexes are delayed, cortical hypervigilance (ECAs) occurs. PMID:21852361
Age-related differences in trunk muscle reflexive behaviors.
Shojaei, Iman; Nussbaum, Maury A; Bazrgari, Babak
2016-10-03
Reports of larger passive and similar intrinsic trunk stiffness in older vs. younger populations suggest a diminishing demand for reflexive contributions of trunk muscles to spinal stability with aging. It remains unclear, though, whether such diminishing demands result in deterioration of trunk muscle reflexive behaviors. A cross-sectional study was completed to assess age-related differences in the latency and likelihood of trunk muscle reflexive responses to sudden perturbations. Sixty healthy individuals, aged 20-70 years, were recruited to form five equal-sized and gender-balanced age groups. Using a displacement-control, sudden perturbation paradigm, the latency and likelihood of trunk muscle reflexive responses to sudden perturbations were estimated, and the influences of age, gender, and level of effort (20% versus 30% of maximum voluntary exertion-MVE) were evaluated. There were no consistent age-related differences found in any of the measures of trunk muscle reflexive behavior. However, the latency of muscle response to perturbation was generally higher among older individuals, and this difference was significant in the condition involving 30% MVE effort. With an increase in level of effort (from 20% to 30% of MVE), there was a ~7% increase in the latency of trunk muscle responses to anteriorly-directed perturbations as well as ~ 15% (21%) decrease (increase) in response likelihood during anteriorly (posteriorly) directed perturbations. Furthermore, the reflexive response likelihood of trunk muscles was 28% (58%) larger (smaller) in female vs. male participants during anteriorly (posteriorly) directed perturbations. Our results did not, in general, support the hypothesis of an age-related decay in reflexive trunk muscle behaviors. Larger reflexive responses were associated with lower trunk intrinsic stiffness among females and during a lower level of effort, suggesting a secondary role for reflexive responses in spinal stability. Such secondary compensatory responses appear, however, to be consistent over a wide age range. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reflexive convention: civil partnership, marriage and family.
Heaphy, Brian
2017-09-14
Drawing on an analysis of qualitative interview data from a study of formalized same-sex relationships (civil partnerships) this paper examines the enduring significance of marriage and family as social institutions. In doing so, it intervenes in current debates in the sociology of family and personal life about how such institutions are undermined by reflexivity or bolstered by convention. Against the backdrop of dominating sociological frames for understanding the links between the changing nature of marriage and family and same-sex relationship recognition, the paper analyses the diverse and overlapping ways (including the simple, relational, strategic, ambivalent and critical ways) in which same-sex partners reflexively constructed and engaged with marriage and family conventions. My analysis suggests that instead of viewing reflexivity and convention as mutually undermining, as some sociologists of family and personal life do, it is insightful to explore how diverse forms of reflexivity and convention interact in everyday life to reconfigure the social institutions of marriage and family, but do not undermine them as such. I argue the case for recognizing the ways in which 'reflexive convention', or reflexive investment in convention, contributes to the continuing significance of marriage and family as social institutions. © London School of Economics and Political Science 2017.
Shah, Sachin P; Waxman, Sergio
2013-01-01
The Bezold-Jarisch reflex, a well-described phenomenon, occurs upon the stimulation of intracardiac mechanoreceptors and is mediated by vagal afferent nerve fibers. Several factors can sensitize the cardiovascular system to develop this reflex, including acute myocardial ischemia, natriuretic peptides, and, rarely, nitroglycerin administration in the setting of acute myocardial infarction. The development of the Bezold-Jarisch reflex in the presence of severe coronary artery stenosis, specifically left main coronary artery stenosis, has not been described. We report 2 cases of patients who underwent elective coronary angiography and were given intra-arterial nitroglycerin during radial sheath insertion to reduce radial artery spasm. In both patients, bradycardia and hypotension developed along with diaphoresis, consistent with the Bezold-Jarisch reflex. Coronary angiography revealed critical (>90%) left main coronary artery stenosis in both patients. Critical left main coronary artery stenosis might sensitize mechanoreceptors or vagal afferents to the development of the Bezold-Jarisch reflex after intra-arterial nitroglycerin use; however, the mechanism of this possible relationship is unclear. In addition to discussing our patients' cases, we review the medical literature relevant to the Bezold-Jarisch reflex.
Delwaide, P J; Figiel, C; Richelle, C
1977-06-01
The influence of passive changes in upper limb position on the excitability of three myotatic arc reflexes (soleus, quadriceps, and biceps femoris) of the lower limb has been explored on 42 volunteers. The results indicate that the excitability of the three myotatic arcs can be influenced at a distance by postural modifications of the upper limb. When the ipsilateral upper limb is forwards or the contralateral backwards, a facilitation of both soleus and quadriceps tendon reflexes is observed while the biceps femoris reflexes are reduced. This pattern of facilitation and inhibition is reversed when the ipsilateral upper limb is backwards or the contralateral forwards. The facilitations as well as inhibitions of proximal myotatic arc reflexes are quantitatively more marked than that of the soleus reflex. Facilitation and inhibition are not linearly related to the angle of the arm with the trunk. Effects begin at a considerable angle, become maximal at 45 degrees, and progressively disappear for greater values. It is suggested that the distinct pattern of facilitation and inhibition which is exerted in reciprocal fashion on extensor and flexor motor nuclei might depend on the long propriospinal neurones connecting cervical and lumbar enlargements.
Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats
Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi
2009-01-01
In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539
Schwarz, Gilbert M; Hirtler, Lena
2017-05-01
The technique of triggering the cremasteric reflex and its respective signaling pathway is not described uniformly throughout the literature. As this reflex is a useful sign in diagnosing testicular torsion, orchitis, varicocele, and undescended testis, it seems desirable to identify and define the correct mechanism. Our aim was to investigate how the cremasteric reflex and its signaling pathway are described in the current literature and how the variability of the innervation of the inguinal region could affect the frequency of this reflex. Thirty-five original articles and 18 current textbooks were included after searching PubMed (MEDLINE) and Scopus for the terms "cremaster muscle," "cremasteric reflex," and "genitofemoral nerve" and after applying all exclusion criteria. This systematic review was performed according to the PRISMA Statement Rules. Eliciting the cremasteric reflex was defined either as "rubbing of the upper inner thigh" or "rubbing of the skin under the inguinal ligament." Four different afferent pathways among studies and three different pathways among textbooks were described and the frequency of an intact reflex ranged between 42.7 and 92.5% in newborns and between 61.7 and 100% in boys between 24 months and 12 years. Owing to the huge differences among the studies investigated and the lack of convincing results, it is not possible to define the correct way to elicit the cremasteric reflex. Four hypotheses about the afferent pathway are proposed on the basis of the literature. Further studies should be performed, concentrating on the afferent pathway(s) with respect to the individual innervation of the inguinal region. Clin. Anat. 30:498-507, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sárkány, P; Tassonyi, E; Nemes, R; Timkó, A; Pongrácz, A; Fülesdi, Béla
2011-12-01
Neuromuscular monitoring prior to emergence from anaesthesia has been shown to be necessary to achieve adequate airway protection in order to decrease postoperative pulmonary complications. In the present study we hypothesized that stapedius reflex measurement allows the detection of residual neuromuscular blockade using the stapedius muscle following the administration of rocuronium. Parallel stapedius and acceleromyographic measurements were performed on 20 patients undergoing cholecystectomy. Acceleromyographic measurements were continuously performed during the course of anaesthesia, whereas the stapedius reflex was measured on different occasions: (1) after premedication but before anaesthesia induction, (2) after induction, but before administration of muscle relaxant, (3) after administration of muscle relaxant, (4) during the course of surgical anaesthesia at regular intervals, and (5) continuously performed during emergence from anaesthesia, until the stapedius reflex threshold returned to normal. The intensity of the sound energy at which the stapedius reflex is detectable was similar: 89.5 ± 9.9 dB(mean ± SD) after premedication and after anaesthetic induction. However, after administration of rocuronium, when the twitch height decreased to 5%, the stapedius reflex disappeared, indicating a total block of the stapedius muscle.During the recovery phase (twitch>10%) significantly higher sound energies compared to baseline values were necessary to evoke the reflex, indicating residual inhibition of the stapedius muscle. At the point where stapedius reflex threshold returned to normal the twitch height averaged about 50% showing low sensitivity of the tympanometry in detecting residual neuromuscular blockade. The neuromuscular effect of rocuronium on the stapedius muscle can be detected using stapedius reflex measurements. Due to its methodological limitation and low sensitivity, the method cannot be recommended for the monitoring of residual neuromuscular blockade.
Reflex regulation during sustained and intermittent submaximal contractions in humans
Duchateau, Jacques; Balestra, Costantino; Carpentier, Alain; Hainaut, Karl
2002-01-01
To investigate whether the intensity and duration of a sustained contraction influences reflex regulation, we compared sustained fatiguing contractions at 25 % and 50 % of maximal voluntary contraction (MVC) force in the human abductor pollicis brevis (APB) muscle. Because the activation of motoneurones during fatigue may be reflexively controlled by the metabolic status of the muscle, we also compared reflex activities during sustained and intermittent (6 s contraction, 4 s rest) contractions at 25 % MVC for an identical duration. The short-latency Hoffmann(H) reflex and the long-latency reflex (LLR) were recorded during voluntary contractions, before, during and after the fatigue tests, with each response normalised to the compound muscle action potential (M-wave). The results showed that fatigue during sustained contractions was inversely related to the intensity, and hence the duration, of the effort. The MVC force and associated surface electromyogram (EMG) declined by 26.2 % and 35.2 %, respectively, after the sustained contraction at 50 % MVC, and by 34.2 % and 44.2 % after the sustained contraction at 25 % MVC. Although the average EMG increased progressively with time during the two sustained fatiguing contractions, the amplitudes of the H and LLR reflexes decreased significantly. Combined with previous data (Duchateau & Hainaut, 1993), the results show that the effect on the H reflex is independent of the intensity of the sustained contraction, whereas the decline in the LLR is closely related to the duration of the contraction. Because there were no changes in the intermittent test at 25 % MVC, the results indicate that the net excitatory spinal and supraspinal reflex-mediated input to the motoneurone pool is reduced. This decline in excitation to the motoneurones, however, can be temporarily compensated by an enhancement of the central drive. PMID:12068054
Johnson, P J; Bornstein, J C; Burcher, E
1998-01-01
The role of NK1 and NK3 receptors in synaptic transmission between myenteric neurons during motility reflexes in the guinea-pig ileum was investigated by recording intracellularly the reflex responses of the circular muscle to distension or compression of the mucosal villi. Experiments were performed in a three-chambered organ bath that enabled drugs to be selectively applied to different sites along the reflex pathways.When applied in the recording chamber, an NK1 receptor antagonist, SR140333 (100 nM), reduced by 40–50% the amplitudes of inhibitory junction potentials (i.j.ps) evoked in the circular muscle by activation of descending reflex pathways. This effect was abolished when synaptic transmission in the stimulus region was blocked with physiological saline containing 0.1 mM Ca2+ plus 10 mM Mg2+, leaving only the component of the descending reflex pathway conducted via long anally directed collaterals of intrinsic sensory neurons.SR140333 (100 nM) had no effect on descending reflex i.j.ps when applied to the stimulus region. Ascending reflexes were also unaffected by SR140333 in the stimulus region or between the stimulus and recording sites.Septide (10 nM), an NK1 receptor agonist, enhanced descending reflexes by 30–60% when in the recording chamber. [Sar9,Met(O2)11]substance P had no effect at 10 nM, but potentiated distension-evoked reflexes at 100 nM.A selective NK3 receptor antagonist, SR142801 (100 nM), when applied to the stimulus region, reduced the amplitude of descending reflex responses to compression by 40%, but had no effect on responses to distension. SR142801 (100 nM) had no effect when applied to other regions of the descending reflex pathways.SR142801 (100 nM) only inhibited ascending reflexes when applied at the recording site. However, after nicotinic transmission in the stimulus region was blocked, SR142801 (100 nM) at this site reduced responses to compression.Contractions of the circular muscle of isolated rings of ileum evoked by low concentrations of septide, but not [Sar9,Met(O2)11]substance P, were potentiated by tetrodotoxin (300 nM).Contractile responses evoked by an NK3 receptor agonist, senktide, were non-competitively inhibited by SR142801. After excitatory neuromuscular transmission was blocked, senktide produced inhibitory responses that were also antagonised by SR142801, but to a lesser extent and in an apparently competitive manner.These results indicate that tachykinins acting via NK1 receptors partly mediate transmission to inhibitory motor neurons. NK3 receptors play a role in transmission from intrinsic sensory neurons and from ascending interneurons to excitatory motor neurons during motility reflexes. PMID:9723948
The legacy of care as reflexive learning
García, Marta Rodríguez; Moya, Jose Luis Medina
2016-01-01
Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through constant comparisons of the categories. Results: the results demonstrate that the tutors' use of reflexive strategies such as didactic questioning, didactic empathy and pedagogical silence contributes to encourage the students' reflection and significant learning. Conclusions: reflexive practice is key to tutors' training and students' learning. PMID:27305180
Reconsidering reflexivity: introducing the case for intellectual entrepreneurship.
Cutcliffe, John R
2003-01-01
In this article, the author reconsiders reflexivity and attempts to examine some unresolved issues by drawing particular attention to the relationship between reflexivity and certain related phenomena/processes: the researcher's a priori knowledge, values, beliefs; empathy within qualitative research; the presence and influence of the researcher's tacit knowledge, and May's "magic" in method. Given the limitations of some reflexive activity identified in this article, the author introduces the case for greater intellectual entrepreneurship within the context of qualitative research. He suggests that excessive emphasis on reflexive activity might inhibit intellectual entrepreneurship. Wherein intellectual entrepreneurship implies a conscious and deliberate attempt on the part of academics to explore the world of ideas boldly; to take more risks in theory development and to move away from being timid researchers.
How Can Hypnodontics Manage Severe Gag Reflex for Root Canal Therapy? A Case Report
Ramazani, Mohsen; zarenejad, Nafiseh; Parirokh, Masoud; Zahedpasha, Samir
2016-01-01
In endodontics, severe involuntary gagging can have a severe impact on treatment procedure. There are many ways to ease the gag reflex, one of which is hypnosis. A 34-year-old male was referred for root canal treatment of a molar tooth. He had not received any dental treatments for the past nine years due to fear of severe gag reflex. Three hypnotic sessions based upon eye fixation, progressive muscle relaxation and guided imagery techniques were spent for psychosomatic management. The gag reflex was controlled and reduced to a normal level, and the required dental treatments including root canal therapy and restoration were performed successfully. This report shows that hypnosis can control gag reflex for dental treatments. PMID:27141226
Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin
2017-01-01
The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles. Key points The effects of dynamic stretching of the antagonist muscles on strength performance are unknown. We showed that both static and dynamic stretching of the antagonist muscle does not influence strength and EMG activities in the agonist muscles. Further research should focus on the effects of antagonist stretching using other techniques like PNF or ballistic stretching and/or different volumes of stretching. PMID:28344445
THE EFFECT OF PENETRATING RADIATION ON THE REFLEXES FROM INTESTINAL RECEPTORS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzharakyan, T.K.; Fakhrutdinov, G.F.
1958-03-01
The reflexes from the chemo-, baro-, and thermoceptors of the small intestine were studied in acute and chronic experiments on dogs after the general action of penetrating radiation (400 r). Regular changes were revealed in the reflexes. They consisted of an increase of the vegetative components (vascular- motor, cardiac, and respiratory) and other components (movement of the head and the body) of the reflex reaction in response to the action of the stimulants of the threshold value, as well as in considerable increase of the consequent period. The changes in the reflexes appear on the 6th to 10th day aftermore » the actwon of penetrating radiation and increase with development of this disease. The intensity of these changes depend on the gravity of the radiation sickness. In the authors' opinion the changes in the reflexes are due to disturbance of the functional condition of the subcortical ganglia of the central nervous system. (tr-auth)« less
Collier, Aileen; Wyer, Mary
2016-06-01
Patient safety research has to date offered few opportunities for patients and families to be actively involved in the research process. This article describes our collaboration with patients and families in two separate studies, involving end-of-life care and infection control in acute care. We used the collaborative methodology of video-reflexive ethnography, which has been primarily used with clinicians, to involve patients and families as active participants and collaborators in our research. The purpose of this article is to share our experiences and findings that iterative researcher reflexivity in the field was critical to the progress and success of each study. We present and analyze the complexities of reflexivity-in-the-field through a framework of multilayered reflexivity. We share our lessons here for other researchers seeking to actively involve patients and families in patient safety research using collaborative visual methods. © The Author(s) 2015.
Nishikawa, Yuichi; Aizawa, Junya; Kanemura, Naohiko; Takahashi, Tetsuya; Hosomi, Naohisa; Maruyama, Hirofumi; Kimura, Hiroaki; Matsumoto, Masayasu; Takayanagi, Kiyomi
2015-10-01
[Purpose] This study compared the efficacy of passive and active stretching techniques on hamstring flexibility. [Subjects] Fifty-four healthy young subjects were randomly assigned to one of three groups (2 treatment groups and 1 control group). [Methods] Subjects in the passive stretching group had their knees extended by an examiner while lying supine 90° of hip flexion. In the same position, subjects in the active stretching group extended their knees. The groups performed 3 sets of the assigned stretch, with each stretch held for 10 seconds at the point where tightness in the hamstring muscles was felt. Subjects in the control group did not perform stretching. Before and immediately after stretching, hamstring flexibility was assessed by a blinded assessor, using the active knee-extension test. [Results] After stretching, there was a significant improvement in the hamstring flexibilities of the active and passive stretching groups compared with the control group. Furthermore, the passive stretching group showed significantly greater improvement in hamstring flexibility than the active stretching group. [Conclusion] Improvement in hamstring flexibility measured by the active knee-extension test was achieved by both stretching techniques; however, passive stretching was more effective than active stretching at achieving an immediate increase in hamstring flexibility.
Caorsi, Valentina Zaffaroni; Colombo, Patrick; Abadie, Michelle; Brack, Ismael Verrastro; Dasoler, Bibiana Terra; Borges-Martins, Márcio
2018-01-01
Aposematic signals as well as body behaviours may be important anti-predator defences. Species of the genus Melanophryniscus are characterised by having toxic lipophilic alkaloids in the skin and for presenting a red ventral colouration, which can be observed when they perform the behaviour called the unken reflex. Both the reflex behaviour and the colouration pattern are described as defence mechanisms. However, there are currently no studies testing their effectiveness against predators. This study aimed to test experimentally if both ventral conspicuous colouration and the unken reflex in Melanophryniscus cambaraensis function as aposematic signals against visually oriented predators (birds). We simulated the species studied using three different clay toad models as follows: (a) in a normal position with green coloured bodies, (b) in the unken reflex position with green coloured body and extremities and (c) in the unken reflex position with a green body and red extremities. Models were distributed on a known M. cambaraensis breeding site and in the adjacent forest. More than half of the attacks on the models were from birds; however, there was no preference for any model type. Thus, just the presence of the red colour associated with the motionless unken reflex position does not seem to prevent attacks from potential predators. It is possible that the effective aposematic signal in Melanophryniscus is achieved through the unken reflex movement together with the subsequent exhibition of the warning colouration and the secretion of toxins. PMID:29596437
Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-08-01
To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.
Guzmán-López, Jessica; Selvi, Aikaterini; Solà-Valls, Núria; Casanova-Molla, Jordi; Valls-Solé, Josep
2015-12-01
Modulation of spinal reflexes depends largely on the integrity of the corticospinal tract. A useful method to document the influence of descending tracts on reflexes is to examine the effects of transcranial magnetic stimulation (TMS) on the soleus H reflex elicited by posterior tibial nerve electrical stimuli (PTS). In 12 healthy volunteers, we investigated how postural or voluntary muscle contraction modified such descending modulation. We first characterized the effects of TMS at 95 % of motor threshold for leg responses on the H reflex elicited by a preceding PTS at inter-stimuli intervals (ISIs) between 0 and 120 ms at rest and, then, during voluntary plantar flexion (pf), dorsal flexion (df), and standing still (ss). During pf, there was an increase in the facilitation of the H reflex at ISIs 0-20 ms. During df, there were no effects of TMS on the H reflex. During ss, there was inhibition at ISIs 40-60 ms. Our observations suggest that muscle contraction prevails over the baseline effects of TMS on the soleus H reflex. While contraction of the antagonist (df) suppressed most of the effects, contraction of the agonist had different effects depending on the type of activity (pf or ss). The characterization of the interaction between descending corticospinal volleys and segmental peripheral inputs provides useful information on motor control for physiological research and further understanding of the effects of spinal cord lesions.
Konrad, Andreas; Budini, Francesco; Tilp, Markus
2017-08-01
Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.
The Dynamics of Successive Induction in Larval Zebrafish
ERIC Educational Resources Information Center
Staddon, J. E. R.; MacPhail, R. C.; Padilla, S.
2010-01-01
Charles Sherrington identified the properties of the synapse by purely behavioral means--the study of reflexes--more than 100 years ago. They were subsequently confirmed neurophysiologically. Studying reflex interaction, he also showed that activating one reflex often facilitates another, antagonistic one: "successive induction," which has since…
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
Opplert, Jules; Babault, Nicolas
2018-02-01
Stretching has long been used in many physical activities to increase range of motion (ROM) around a joint. Stretching also has other acute effects on the neuromuscular system. For instance, significant reductions in maximal voluntary strength, muscle power or evoked contractile properties have been recorded immediately after a single bout of static stretching, raising interest in other stretching modalities. Thus, the effects of dynamic stretching on subsequent muscular performance have been questioned. This review aimed to investigate performance and physiological alterations following dynamic stretching. There is a substantial amount of evidence pointing out the positive effects on ROM and subsequent performance (force, power, sprint and jump). The larger ROM would be mainly attributable to reduced stiffness of the muscle-tendon unit, while the improved muscular performance to temperature and potentiation-related mechanisms caused by the voluntary contraction associated with dynamic stretching. Therefore, if the goal of a warm-up is to increase joint ROM and to enhance muscle force and/or power, dynamic stretching seems to be a suitable alternative to static stretching. Nevertheless, numerous studies reporting no alteration or even performance impairment have highlighted possible mitigating factors (such as stretch duration, amplitude or velocity). Accordingly, ballistic stretching, a form of dynamic stretching with greater velocities, would be less beneficial than controlled dynamic stretching. Notwithstanding, the literature shows that inconsistent description of stretch procedures has been an important deterrent to reaching a clear consensus. In this review, we highlight the need for future studies reporting homogeneous, clearly described stretching protocols, and propose a clarified stretching terminology and methodology.
The acute effect of different stretching methods on sprint performance in taekwondo practitioners.
Alemdaroğlu, Utku; Köklü, Yusuf; Koz, Mitat
2017-09-01
The purpose of this study was to compare the acute effects of different stretching types on sprint performance in taekwondo practitioners. Twelve male taekwondo practitioners performed stretching exercises using different types (ballistic, proprioceptive neuromuscular facilitation [PNF], static stretching) in a random order at three-day intervals; there was also a control condition involving no stretching exercises. The subjects performed 2 maximal 20-m sprints (with 10-m split times also recorded) with a recovery period of 1 minute immediately post stretching and at 5, 10, 15 and 20 minutes after stretching. They also performed these sprints before doing the stretching exercises. The study results showed that sprint times significantly increased after static stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post= 3.38±0.2 s), PNF stretching (10-m pre =1.84±0.07 s, 10-m post =1.89±0.08 s; 20-m pre =3.33±0.19 s, 20-m post =3.38±0.20 s) and ballistic stretching (pre =1.84±0.08 s, post =1.86±0.07 s; 20-m pre =3.33±0.20 s, 20-m post =3.35±0.21 s) (P<0.05). In the static stretching condition, 10-m and 20-m sprint performance had fully returned to normal at 15 minutes after stretching. In the PNF stretching condition, 20-m sprint performance returned to normal levels at 15 minutes after stretching, while 10-m performance took 20 minutes to recover fully. In the ballistic stretching method, both 10-m and 20-m sprint performances had fully recovered at 5 minutes after stretching. It is therefore concluded that the acute effects of static, PNF and ballistic stretching may negatively affect sprint performance, although sprint performance is less affected after ballistic stretching than after the other stretching types. Therefore, it is not advisable to perform PNF or static stretching immediately before sprint performance.
Acute Effects of Three Different Stretching Protocols on the Wingate Test Performance
Franco, Bruno L.; Signorelli, Gabriel R.; Trajano, Gabriel S.; Costa, Pablo B.; de Oliveira, Carlos G.
2012-01-01
The purpose of this study was to examine the acute effects of different stretching exercises on the performance of the traditional Wingate test (WT). Fifteen male participants performed five WT; one for familiarization (FT), and the remaining four after no stretching (NS), static stretching (SS), dynamic stretching (DS), and proprioceptive neuromuscular facilitation (PNF). Stretches were targeted for the hamstrings, quadriceps, and calf muscles. Peak power (PP), mean power (MP), and the time to reach PP (TP) were calculated. The MP was significantly lower when comparing the DS (7.7 ± 0.9 W/kg) to the PNF (7.3 ± 0.9 W/kg) condition (p < 0.05). For PP, significant differences were observed between more comparisons, with PNF stretching providing the lowest result. A consistent increase of TP was observed after all stretching exercises when compared to NS. The results suggest the type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power. Key points The mean power was significantly lower when comparing dynamic stretching.to proprioceptive neuromuscular facilitation. For peak power, significant differences were observed between more comparisons, with proprioceptive neuromuscular facilitation stretching providing the lowest result. A consistent increase of time to reach the peak was observed after all stretching exercises when compared to non-stretching. The type of stretching, or no stretching, should be considered by those who seek higher performance and practice sports that use maximal anaerobic power. PMID:24149116
Age Related Decline in Postural Control Mechanisms.
ERIC Educational Resources Information Center
Stelmach, George E.; And Others
1989-01-01
Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…
Informed Reflexivity: Enacting Epistemic Virtue
ERIC Educational Resources Information Center
Weinstock, Michael; Kienhues, Dorothe; Feucht, Florian C.; Ryan, Mary
2017-01-01
To discuss reflexive practice in relation to epistemic cognition, we posit informed reflexivity as an epistemic virtue that is informed by its particular context and purposes of knowing and action and promotes use of reliable processes to achieve epistemic aims. It involves reasoning about social relationships in which a person is embedded when…
Erecting Closets and Outing Ourselves: Uncomfortable Reflexivity and Community-Based Research
ERIC Educational Resources Information Center
Reed, Sarah J.; Miller, Robin Lin; Nnawulezi, Nkiru; Valenti, Maria T.
2012-01-01
Feminist scholars and community psychologists have argued that reflexivity is a necessary component to conducting socially conscious research. Reflexivity, however, is rarely evident in community psychology. In this article, we share the uncomfortable realities that surfaced during a community-based research project in which we adapted and…
A Movement Account of Long-Distance Reflexives
ERIC Educational Resources Information Center
McKeown, Rebecca Katherine
2013-01-01
This thesis examines reflexive pronouns, such as Icelandic "sig" (Cf. Thrainsson 2007), which may be bound from outside of an infinitive clause (which I call MD "medium distance" binding) in addition to being bound locally. I propose that such reflexives are linked to their antecedents via sisterhood followed by movement: the…
The Reflexive Imperative among High-Achieving Adolescents: A Flemish Case Study
ERIC Educational Resources Information Center
Van Lancker, Inge
2016-01-01
The socio-cultural conditions of late modernity induce a "reflexive imperative" amongst young people, which also results in metapragmatic and metalinguistic behaviour, as has been demonstrated by linguistic ethnographers (LE). However, recent LE studies on reflexivity in Western European settings have mainly focused on how groups of…
Collaborative Research in Contexts of Inequality: The Role of Social Reflexivity
ERIC Educational Resources Information Center
Leibowitz, Brenda; Bozalek, Vivienne; Farmer, Jean; Garraway, James; Herman, Nicoline; Jawitz, Jeff; McMillan, Wendy; Mistri, Gita; Ndebele, Clever; Nkonki, Vuyisile; Quinn, Lynn; van Schalkwyk, Susan; Vorster, Jo-Anne; Winberg, Chris
2017-01-01
This article reports on the role and value of social reflexivity in collaborative research in contexts of extreme inequality. Social reflexivity mediates the enablements and constraints generated by the internal and external contextual conditions impinging on the research collaboration. It fosters the ability of participants in a collaborative…
A modular telerobotic task execution system
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Tso, Kam S.; Hayati, Samad; Lee, Thomas S.
1990-01-01
A telerobot task execution system is proposed to provide a general parametrizable task execution capability. The system includes communication with the calling system, e.g., a task planning system, and single- and dual-arm sensor-based task execution with monitoring and reflexing. A specific task is described by specifying the parameters to various available task execution modules including trajectory generation, compliance control, teleoperation, monitoring, and sensor fusion. Reflex action is achieved by finding the corresponding reflex action in a reflex table when an execution event has been detected with a monitor.
Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in the cat
NASA Technical Reports Server (NTRS)
Doba, N.; Reis, D. J.
1974-01-01
The contribution of the fastigial nucleus and the vestibular nerves (eighth cranial nerves) to the orthostatic reflexes in anesthetized, paralyzed cats was studied. Bilateral lesions of the rostral fastigial nucleus resulted in impairment of the reflex changes in blood pressure, femoral arterial flow, and resistance evoked by head-up tilting to 30 deg or 60 deg. The rostral fastigial nucleus, which might be triggered by the vestibular apparatus, appears to participate in concert with the baroreceptors in the initiation and possibly the maintenance of the orthostatic reflexes.
[Facial diplegia with atypical paresthesia. A variant of Guillain-Barré syndrome].
Dal Verme, Agustín; Acosta, Paula; Margan, Mercedes; Pagnini, Cecilia; Dellepiane, Eugenia; Peralta, Christian
2015-01-01
Guillain-Barré syndrome is an acute demyelinating disease which presents in a classic form with muscular weakness and the lack of reflexes. There are multiple variations and atypical forms of the disease, being facial diplegia with paresthesia one of them. Also, the absence of reflexes in this syndrome is typical but not constant, since 10% of patients present reflexes. We describe a case of atypical presentation with bilateral facial palsy, paresthesia, brisk reflexes and weakness in the lower limbs in a 33 year old woman.
[Red reflex: prevention way to blindness in childhood].
de Aguiar, Adriana Sousa Carvalho; Cardoso, Maria Vera Lúcia Moreira Leitão; Lúcio, Ingrid Martins Leite
2007-01-01
This study had as objective to investigate the result and the colour gradation of red reflex test in newborns (NB). It is a exploratory, quantitative study and the sample was 180 NB from maternity ward in Fortaleza-CE. From this, 156 showed result "no altered" and 24 "suspect". About the aspect of red reflex, 144 NB showed the same coloration in the two eyes, in 35 of this, the colour was red, in 33, orange reddish, in 46 orange colour, in 24 light yellow, in 6 yellow with whitish stains central. Of the suspect cases, the reflex was light yellow with whitish stains with lines. The nurse trained to accomplish the red reflex test can have important role at Neonatal Unit with actions about the prevention of ocular alterations in the childhood.
Del Paso, Gustavo A Reyes; González, M Isabel; Hernández, José Antonio; Duschek, Stefan; Gutiérrez, Nicolás
2009-09-01
This study explored the effects of tonic blood pressure on the association between baroreceptor cardiac reflex sensitivity and cognitive performance. Sixty female participants completed a mental arithmetic task. Baroreceptor reflex sensitivity was assessed using sequence analysis. An interaction was found, indicating that the relationship between baroreceptor reflex sensitivity and cognitive performance is modulated by blood pressure levels. Reflex sensitivity was inversely associated to performance indices in the subgroup of participants with systolic blood pressure above the mean, whereas the association was positive in participants with systolic values below the mean. These results are in accordance with the findings in the field of pain perception and suggest that tonic blood pressure modulates the inhibitory effects of baroreceptor stimulation on high central nervous functions.
Reshetnikov, Aleksei P; Kasatkin, Anton A; Urakov, Aleksandr L; Baimurzin, Dmitrii Y
2017-01-01
Pharmacological sedation is one of the effective ways of prevention of gag reflex development in patients experiencing anxiety and fright before dental treatment. We are reporting a case where we could successfully eliminate exaggerated gag reflex (intravenous [IV] Gagging Severity Index) in a dental patient using IV sedation with dexmedetomidine. IV administration of dexmedetomidine provided elimination of gag reflex at a depth of sedation for the patient with the Richmond Agitation-Sedation Scale score of -2 and -1. The patient received dexmedetomidine 1.0 μg/kg for 10 min and then a continuous infusion of dexmedetomidine 0.4 μg/kg/h. The use of dexmedetomidine for sedation may be an alternative to other pharmacological agents in patients with dental anxiety accompanied by exaggerated gag reflex.
Time course of the soleus M response and H reflex after lidocaine tibial nerve block in the rat.
Buffenoir, Kévin; Decq, Philippe; Pérot, Chantal
2013-01-01
In spastic subjects, lidocaine is often used to induce a block predictive of the result provided by subsequent surgery. Lidocaine has been demonstrated to inhibit the Hoffmann (H) reflex to a greater extent than the direct motor (M) response induced by electrical stimulation, but the timecourse of these responses has not been investigated. An animal (rat) model of the effects of lidocaine on M and H responses was therefore developed to assess this time course. M and H responses were recorded in 18 adult rats before and after application of lidocaine to the sciatic nerve. Two to five minutes after lidocaine injection, M responses were markedly reduced (mean reduction of 44%) and H reflexes were completely abolished. Changes were observed more rapidly for the H reflex. The effects of lidocaine then persisted for 100 minutes. The effect of lidocaine was therefore more prolonged on the H reflex than on the M response. This study confirms that lidocaine blocks not only alpha motoneurons but also Ia afferent fibres responsible for the H reflex. The authors describe, for the first time, the detailed time course of the effect of lidocaine on direct or reflex activation of motoneurons in the rat.
The Relationship between MOC Reflex and Masked Threshold
Garinis, Angela; Werner, Lynne; Abdala, Carolina
2011-01-01
Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for a 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of 300-ms masker bursts at 600-ms intervals. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency interval from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes. PMID:21878379
The role of nervus intermedius in side specific nasal responses.
Nichani, J R; Malik, V; Woolford, T J; Ramsden, R T; Homer, J J
2010-03-02
Nervus intermedius (NI) dysfunction is common in patients who have had vestibular schwannoma (VS) surgery. Such patients have a unilateral parasympathetic-denervated nasal cavity. A number of side-specific nasal reflexes have been demonstrated in normal individuals, including hand cold-water immersion. It is not understood whether these reflexes have parasympathetic or sympathic efferent pathways. We aimed to evaluate the side specific nasal reflex to cold-water immersion in post-operative VS patients with NI dysfunction, in order to determine the nature of the efferent pathway of these reflexes. Side specific responses to cold-water immersion were tested by acoustic rhinometry in 10 normal individuals and 18 patients with NI dysfunction (proven by Schirmer s test) after VS surgery. A consistent pattern of ipsilateral congestion and contralateral decongestion after the cold-water immersion was seen in normal individuals (p smaller than 0.001). We found no consistent response in VS patients both ipsilateral and contralateral to the side of NI dysfunction. We confirm the consistent side-specific nasal reflexes to cold-water hand immersion in normal individuals. This is disturbed in patients with NI dysfunction. We have also shown unexpectantly that the contralateral side-specific reflex is disturbed in these patients. These data suggest that the reflex is parasympathetic and crosses the midline.
Effects of pirfenidone on increased cough reflex sensitivity in guinea pigs.
Okazaki, Akihito; Ohkura, Noriyuki; Fujimura, Masaki; Katayama, Nobuyuki; Kasahara, Kazuo
2013-10-01
Pirfenidone, an antifibrotic drug with anti-inflammatory and antioxidant effects, delays fibrosis in idiopathic pulmonary fibrosis (IPF). Patients with IPF have a greater cough reflex sensitivity to inhaled capsaicin than healthy people, and cough is an independent predictor of IPF disease progression; however, the effects of pirfenidone on cough reflex sensitivity are unknown. After challenge with an aerosolized antigen in actively sensitized guinea pigs, pirfenidone was administered intraperitoneally, and the cough reflex sensitivity was measured at 48 h after the challenge. Bronchoalveolar lavage (BAL) was performed, and the tracheal tissue was collected. Pirfenidone suppressed the capsaicin-induced increase in cough reflex sensitivity in a dose-dependent manner. Additionally, increased levels of prostaglandin E2, substance P, and leukotriene B4, but not histamine, in the BAL fluid were dose dependently suppressed by pirfenidone. The decrease in neutral endopeptidase activity in the tracheal tissue was also alleviated by pirfenidone treatment. The total number of cells and components in the BAL fluid was not influenced. These results suggest that pirfenidone ameliorates isolated cough based on increased cough reflex sensitivity associated with allergic airway diseases, and potentially relieve chronic cough in IPF patients who often have increased cough reflex sensitivity. Prospective studies on cough-relieving effects of pirfenidone in patients with IPF are therefore warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.
Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.
Thompson, Aiko K; Wolpaw, Jonathan R
2015-04-01
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders. © The Author(s) 2014.
Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders
2017-01-01
In this article children’s musical improvisation is investigated through the “reflexive interaction” paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a “reflexive” output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6–7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children’s abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children’s ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education. PMID:28184205
Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
Bennett, D J; Sanelli, L; Cooke, C L; Harvey, P J; Gorassini, M A
2004-05-01
Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by descending control. This pEPSP is released from inhibition immediately after injury but does not produce a long-lasting reflex because of a lack of motoneuron excitability. With chronic injury the motoneuron excitability is increased markedly, and the pEPSP then triggers sustained motoneuron discharges associated with long-lasting reflexes and muscle spasms.
Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin
2017-03-01
The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles.
Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro
2017-12-18
Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.
Stretch-induced contraction in pulmonary arteries.
Kulik, T J; Evans, J N; Gamble, W J
1988-12-01
Stretch stimulates contraction of systemic blood vessels, but the response has not been described in pulmonary vessels. To determine whether pulmonary arteries contract when stretched, isolated cylindrical segments of pulmonary arteries were suspended between two parallel wires, stretched, and the active force was generated in response to stretch measured. Eighty-nine percent of segments from small (in situ diameter less than 1,000 microns) feline pulmonary arteries contracted when stretched, and in 65% of these the magnitude of stretch was related to the magnitude of contraction. Large (in situ diameter greater than or equal to 1,000 microns) feline pulmonary arteries did not contract with stretch. Multiple, rapidly repeated stretches resulted in a diminution of active force development. Stretch-induced contraction required external Ca2+ and was abolished by diltiazem (10 microns), but it was not affected by phenoxybenzamine, phentolamine, diethylcarbamazine, or mechanical removal of endothelium. Indomethacin blunted but did not abolish stretch-induced contraction, an effect that may have been nonspecific. This study suggests that stretch can act, probably directly, on smooth muscle in small feline pulmonary arteries to elicit contraction and that it may be a determinant of pulmonary vascular tone. In addition, feline pulmonary arteries are suitable for the in vitro study of stretch-induced contraction.
Cessation of cyclic stretch induces atrophy of C2C12 myotubes.
Soltow, Quinlyn A; Zeanah, Elizabeth H; Lira, Vitor A; Criswell, David S
2013-05-03
Cyclic stretch of differentiated myotubes mimics the loading pattern of mature skeletal muscle. We tested a cell culture model of disuse atrophy by the cessation of repetitive bouts of cyclic stretch in differentiated C2C12 myotubes. Myotubes were subjected to cyclic strain (12%, 0.7 Hz, 1 h/d) on collagen-I-coated Bioflex plates using a computer-controlled vacuum stretch apparatus (Flexcell Int.) for 2 (2dSTR) or 5 (5dSTR) consecutive days. Control cultures were maintained in the Bioflex plates without cyclic stretch for 2d or 5d. Additionally, some cultures were stretched for 2 d followed by cessation of stretch for 3d (2dSTR3dCES). Cyclic stretching (5dSTR) increased myotube diameter and overall myotube area by ~2-fold (P<0.05) compared to non-stretched controls, while cessation of stretch (2dSTR3dCES) resulted in ~80% smaller myotubes than 5dSTR cells, and 40-50% smaller than non-stretched controls (P<0.05). Further, the calpain-dependent cleavage products of αII-spectrin (150 kDa) and talin increased (3.5-fold and 2.2-fold, respectively; P<0.05) in 2dSTR3dCES myotubes, compared to non-stretched controls. The 1h cyclic stretching protocol acutely increased the phosphorylation of Akt (+4.5-fold; P<0.05) and its downstream targets, FOXO3a (+4.2-fold; P<0.05) and GSK-3β (+1.8-fold; P<0.05), which returned to baseline by 48 h after cessation of stretch. Additionally, nitric oxide production increased during stretch and co-treatment with the NOS inhibitor, l-NAME, inhibited the effects of stretch and cessation of stretch. We conclude that cessation of cyclic stretching causes myotube atrophy by activating calpains and decreasing activation of Akt. Stretch-induced myotube growth, as well as activation of atrophy signaling with cessation of stretch, are dependent on NOS activity. Copyright © 2013 Elsevier Inc. All rights reserved.
Opioid modulation of reflex versus operant responses following stress in the rat.
King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P
2007-06-15
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
OPERANT CONDITIONING OF A SPINAL REFLEX CAN IMPROVE LOCOMOTION AFTER SPINAL CORD INJURY IN HUMANS
Thompson, Aiko K.; Pomerantz, Ferne; Wolpaw, Jonathan R.
2013-01-01
Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured (Unconditioned (UC) subjects), and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step-cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual’s particular deficits, and might thereby complement other rehabilitation methods. PMID:23392666
[Developing team reflexivity as a learning and working tool for medical teams].
Riskin, Arieh; Bamberger, Peter
2014-01-01
Team reflexivity is a collective activity in which team members review their previous work, and develop ideas on how to modify their work behavior in order to achieve better future results. It is an important learning tool and a key factor in explaining the varying effectiveness of teams. Team reflexivity encompasses both self-awareness and agency, and includes three main activities: reflection, planning, and adaptation. The model of briefing-debriefing cycles promotes team reflexivity. Its key elements include: Pre-action briefing--setting objectives, roles, and strategies the mission, as well as proposing adaptations based on what was previously learnt from similar procedures; Post-action debriefing--reflecting on the procedure performed and reviewing the extent to which objectives were met, and what can be learnt for future tasks. Given the widespread attention to team-based work systems and organizational learning, efforts should be made toward ntroducing team reflexivity in health administration systems. Implementation could be difficult because most teams in hospitals are short-lived action teams formed for a particular event, with limited time and opportunity to consciously reflect upon their actions. But it is precisely in these contexts that reflexive processes have the most to offer instead of the natural impulsive collective logics. Team reflexivity suggests a potential solution to the major problems of iatorgenesis--avoidable medical errors, as it forces all team members to participate in a reflexive process together. Briefing-debriefing technology was studied mainly in surgical teams and was shown to enhance team-based learning and to improve quality-related outcomes and safety.
Cionni, Robert J.; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-01-01
Purpose To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. Methods This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Results Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. Conclusions The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. Translational Relevance This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery. PMID:26290778
Contribution of the maculo-ocular reflex to gaze stability in the rabbit.
Pettorossi, V E; Errico, P; Santarelli, R M
1991-01-01
The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)
Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min
2018-06-01
We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Avian reflex and electroencephalogram responses in different states of consciousness.
Sandercock, Dale A; Auckburally, Adam; Flaherty, Derek; Sandilands, Victoria; McKeegan, Dorothy E F
2014-06-22
Defining states of clinical consciousness in animals is important in veterinary anaesthesia and in studies of euthanasia and welfare assessment at slaughter. The aim of this study was to validate readily observable reflex responses in relation to different conscious states, as confirmed by EEG analysis, in two species of birds under laboratory conditions (35-week-old layer hens (n=12) and 11-week-old turkeys (n=10)). We evaluated clinical reflexes and characterised electroencephalograph (EEG) activity (as a measure of brain function) using spectral analyses in four different clinical states of consciousness: conscious (fully awake), semi-conscious (sedated), unconscious-optimal (general anaesthesia), unconscious-sub optimal (deep hypnotic state), as well as assessment immediately following euthanasia. Jaw or neck muscle tone was the most reliable reflex measure distinguishing between conscious and unconscious states. Pupillary reflex was consistently observed until respiratory arrest. Nictitating membrane reflex persisted for a short time (<1 min) after respiratory arrest and brain death (isoelectric EEG). The results confirm that the nictitating membrane reflex is a conservative measure of death in poultry. Using spectral analyses of the EEG waveforms it was possible to readily distinguish between the different states of clinical consciousness. In all cases, when birds progressed from a conscious to unconscious state; total spectral power (PTOT) significantly increased, whereas median (F50) and spectral edge (F95) frequencies significantly decreased. This study demonstrates that EEG analysis can differentiate between clinical states (and loss of brain function at death) in birds and provides a unique integration of reflex responses and EEG activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Oxygen-conserving reflexes of the brain: the current molecular knowledge.
Schaller, B; Cornelius, J F; Sandu, N; Ottaviani, G; Perez-Pinzon, M A
2009-04-01
The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called 'oxygen-conserving reflexes'. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO(2)) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO(2) or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain.
Marshall, Paul W M; Cashman, Anthony; Cheema, Birinder S
2011-11-01
To measure hamstring extensibility, stiffness, stretch tolerance, and strength following a 4-week passive stretching program. Randomized controlled trial. Twenty-two healthy participants were randomly assigned to either a 4-week stretching program consisting of 4 hamstring and hip stretches performed 5 times per week, or a non-stretching control group. Hamstring extensibility and stiffness were measured before and after training using the instrumented straight leg raise test (iSLR). Stretch tolerance was measured as the pain intensity (visual analog scale; VAS) elicited during the maximal stretch. Hamstring strength was measured using isokinetic dynamometry at 30 and 120° s(-1). Hamstring extensibility increased by 20.9% in the intervention group following 4 weeks of training (p<0.001; d=0.86). Passive stiffness was reduced by 31% in the intervention group (p<0.05; d=-0.89). Stretch tolerance VAS scores were not different between groups at either time point, and no changes were observed following training. There were no changes in hamstring concentric strength measured at 30 and 120° s(-1). Passive stretching increases hamstring extensibility and decreases passive stiffness, with no change in stretch tolerance defined by pain intensity during the stretch. Compared to previous research, the volume of stretching was higher in this study. The volume of prescribed stretching is important for eliciting the strong clinical effect observed in this study. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890
The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review
2011-01-01
Background Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome measures, blinded assessors and long-term follow up are needed to assess the efficacy of stretching. PMID:21703003
Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.
ERIC Educational Resources Information Center
Glass, Michael R.
2014-01-01
Fieldwork in urban geography courses can encourage reflexivity among students regarding the cities they encounter. This article outlines how student reflexivity was encouraged within a new international field research course in Singapore and Malaysia. Drawing on examples from students' field exercises written during an intensive and occasionally…
Iris Pigmentation and Fractionated Reaction and Reflex Time.
ERIC Educational Resources Information Center
Hale, Bruce D.; And Others
Behavioral measures, fractionated reaction and reflex times by means of electromyography, were used to determine if the eye color differences are found in the central or peripheral regions of the nervous system. The purpose of this research was to determine the truth of the hypothesis that dark-eyed individuals have faster reflex and reaction time…
Approaches to Reflexivity: Navigating Educational and Career Pathways
ERIC Educational Resources Information Center
Dyke, Martin; Johnston, Brenda; Fuller, Alison
2012-01-01
This paper provides a critical appraisal of approaches to reflexivity in sociology. It uses data from social network research to argue that Archer's approach to reflexivity provides a valuable lens with which to understand how people navigate their education and career pathways. The paper is also critical of Archer's methodology and typology of…
"Madam, Are You One of Them?" "Reflexivities of Discomfort" in Researching an "Illicit" Subject
ERIC Educational Resources Information Center
Namatende-Sakwa, Lydia
2018-01-01
Informed largely by Affect theory (2004), this paper takes up "reflexivities of discomfort" to reflexively engage with my affective struggles as a Christian, heterosexual, mother, educator, undertaking a study on homosexuality, which is a thorny issue in Uganda. It a methodological prologue, reflecting my thoughts and struggles before I…
Favouring Reflexivity in Technology-Enhanced Learning Systems: Towards Smart Uses of Traces
ERIC Educational Resources Information Center
George, Sébastien; Michel, Christine; Ollagnier-Beldame, Magali
2016-01-01
During learning activities, reflexive processes allow learners to realise what they have done, understand why, decide on new actions and gain motivation. They help learners to regulate their actions by themselves, that is, to develop metacognitive regulation skills. Computer environments can support reflexive processes to support human learning,…
Changes in Soleus H-Reflex Modulation after Treadmill Training in Children with Cerebral Palsy
ERIC Educational Resources Information Center
Hodapp, Maike; Vry, Julia; Mall, Volker; Faist, Michael
2009-01-01
In healthy children, short latency leg muscle reflexes are profoundly modulated throughout the step cycle in a functionally meaningful way and contribute to the electromyographic (EMG) pattern observed during gait. With maturation of the corticospinal tract, the reflex amplitudes are depressed via supraspinal inhibitory mechanisms. In the soleus…
Effect of cervicolabyrinthine impulsation on the spinal reflex apparatus
NASA Technical Reports Server (NTRS)
Yarotskiy, A. I.
1980-01-01
In view of the fact that the convergence effect of vestibular impulsation may both stimulate and inhibit intra and intersystemic coordination of physiological processes, an attempt was made to define the physiological effect on the spinal reflex apparatus of the convergence of cervicolabyrinthine impulsation on a model of the unconditioned motor reflex as a mechanism of the common final pathway conditioning the formation and realization of a focused beneficial result of human motor activities. More than 100 persons subjected to rolling effect and angular acceleration during complexly coordinated muscular loading were divided according to typical variants of the functional structure of the patella reflex in an experiment requiring 30 rapid counterclockwise head revolutions at 2/sec with synchronous recording of a 20 item series of patella reflex acts. A knee jerk coefficient was used in calculations. In 85 percent of the cases 2 patellar reflexograms show typical braking and release of knee reflex and 1 shows an extreme local variant. The diagnostic and prognostic value of these tests is suggested for determining adaptive possibilities of functional systems in respect to acceleration and proprioceptive stimuli.
Contraction induced h reflexes in the diagnosis of cervical radiculopathy.
Bodofsky, Elliot B; Campellone, Joseph V; Cohen, Stephen J; Caten, Holly N; Schindelheim, Adam M
2015-06-01
To determine whether Contraction Induced H Reflexes (CIHR) can accurately detect cervical radiculopathy. Comparison of CIHR results with Needle Electromyography at academic outpatient Electromyography/Nerve Conduction laboratories. Participants were all patients over 18 with a needle electromyography diagnosis of cervical radiculopathy. Patients were tested for CIHR in at least two upper extremity muscles in electromyographically proven myotomes bilaterally. Patients were requested to perform a moderate contraction while stimulus was applied proximally (elbow or Erb's point). Outcome measures included H Reflex onset latency and side-to-side latency differences. These were compared against previously established normal values. Overall, 10 of 15 patients who met criteria for cervical radiculopathy showed CIHR abnormalities (sensitivity = 67%; 95% confidence interval, 43-91). Counting each side and level separately, CIHR identified 16/27 radiculopathies (sensitivity = 59.2%; 95% confidence interval, 40.6-77.8). Contraction Induced H Reflexes identified 1 possible radiculopathy not seen on electromyography (specificity = 98%; 95% confidence interval, 95-100). Contraction induced H Reflexes have a sensitivity and specificity for cervical radiculopathy similar to the resting Gastroc-Soleus H Reflex.
Unusual Presentation of Spasm of Near Reflex Mimicking Large-Angle Acute Acquired Comitant Esotropia
Shanker, Varshini; Nigam, Vishal
2015-01-01
Abstract We report the case of an 11-year-old boy who presented with sudden esotropia, binocular diplopia, and blurred vision. The patient was neurologically normal. He had a large, constant, comitant, alternating esotropia associated with minimal accommodative spasm. Ocular motility and pupillary reactions were normal. He was diagnosed to have spasm of the near reflex presenting as acute onset of esotropia. The esotropia was persistent despite treatment and eventually resolved with prolonged cycloplegic therapy. This unusual case illustrates that spasm of the near reflex can have unique and variable presentations. Spasm of the near reflex needs to be considered in the differential diagnosis of every case of acute, acquired, comitant esotropia. This is the first case of spasm of the near reflex where persistent esotropia is reported in the absence of any neurological disorder. PMID:27928354
Modulation of spinal reflexes by sexual films of increasing intensity.
Both, Stephanie; Boxtel, Geert; Stekelenburg, Jeroen; Everaerd, Walter; Laan, Ellen
2005-11-01
Sexual arousal can be viewed as an emotional state generating sex-specific autonomic and general somatic motor system responses that prepare for sexual action. In the present study modulation of spinal tendious (T) reflexes by sexual films of varying intensity was investigated. T reflexes were expected to increase as a function of increased film intensity. Through use of a between-subjects design, participants were exposed to three erotic films of low, moderate, and high intensity or to three films of moderate intensity. Self-report and genital data confirmed the induction of increasing versus stable levels of sexual arousal. Exposure to the films of increasing intensity resulted in increasing T reflexes. The results indicate that T reflex modulation is sensitive to varying levels of sexual arousal and may be of use in research on behavioral mechanisms underlying appetitive motivation.
Acoustic Reflex Testing in Neonatal Hearing Screening and Subsequent Audiological Evaluation.
Jacob-Corteletti, Lilian Cássia Bórnia; Araújo, Eliene Silva; Duarte, Josilene Luciene; Zucki, Fernanda; Alvarenga, Kátia de Freitas
2018-06-18
The aims of the study were to examine the acoustic reflex screening and threshold in healthy neonates and those at risk of hearing loss and to determine the effect of birth weight and gestational age on acoustic stapedial reflex (ASR). We assessed 18 healthy neonates (Group I) and 16 with at least 1 risk factor for hearing loss (Group II); all of them passed the transient evoked otoacoustic emission test that assessed neonatal hearing. The test battery included an acoustic reflex screening with activators of 0.5, 1, 2, and 4 kHz and broadband noise and an acoustic reflex threshold test with all of them, except for the broadband noise activator. In the evaluated neonates, the main risk factors were the gestational age at birth and a low birth weight; hence, these were further analyzed. The lower the gestational age at birth and birth weight, the less likely that an acoustic reflex would be elicited by pure-tone activators. This effect was significant at the frequencies of 0.5, 1, and 2 kHz for gestational age at birth and at the frequencies of 1 and 2 kHz for birth weight. When the broadband noise stimulus was used, a response was elicited in all neonates in both groups. When the pure-tone stimulus was used, the Group II showed the highest acoustic reflex thresholds and the highest percentage of cases with an absent ASR. The ASR threshold varied from 50 to 100 dB HL in both groups. Group II presented higher mean ASR thresholds than Group I, this difference being significant at frequencies of 1, 2, and 4 kHz. Birth weight and gestational age at birth were related to the elicitation of the acoustic reflex. Neonates with these risk factors for hearing impairment were less likely to exhibit the acoustic reflex and had higher thresholds.
Role of the flocculus of the cerebellum in motor learning of the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Highstein, S. M.
1998-01-01
Structure-function studies at the systems level are an effective method for understanding the relationship of the central nervous system to behavior. Motor learning or adaptation of the vestibulo-ocular reflex is a clear example wherein this approach has been productive. During a vestibulo-ocular reflex the brain converts a head velocity signal, transduced through the vestibular semicircular canals, into an eye movement command delivered to the extraocular muscles. If the viewed target remains on the fovea of the retina, the reflex is compensatory, and its gain, eye velocity/head velocity, is one. When the image of the viewed object slips across the retina, visual acuity decreases, and the gain of the reflex, which is no longer one, is plastically adapted or adjusted until retinal stability is restored. The anatomic substrate for this plasticity thus involves brain structures in which visual-vestibular interaction can potentially occur, as well as vestibular and visual sensory and oculomotor motor structures. Further, it has been known for many years that removal of the flocculus of the cerebellum permanently precludes further vestibulo-ocular reflex adaptation, demonstrating the involvement of the cerebellum in this behavior. Maekawa and Simpson (J Neurophysiol 1973;36: 649-66) discovered that one visual input to the flocculus involved the accessory optic system and the inferior olive. Ensuing work has demonstrated that the visual signals used to adapt the vestibulo-ocular reflex are transmitted by this accessory optic system to the flocculus and subsequently to brain stem structures involved in vestibulo-ocular reflex plasticity. Presently the inclusive list of anatomic sites involved in vestibulo-ocular reflex circuitry and its adaptive plasticity is small. Our laboratory continues to believe that this behavior should be caused by interactions within this small class of neurons. By studying each class of identified neuron and its interactions with others within the list, we hope to ultimately understand the mechanisms used by the brain in the expression of this behavior.
Mechanical Characteristics of Reflex Durign Upright Posture in Paralyzed Subjects
NASA Astrophysics Data System (ADS)
Kim, Yongchul; Youm, Youngil; Lee, Bumsuk; Kim, Youngho; Choi, Hyeonki
The characteristics of flexor reflexes have been investigated in the previous studies with human subjects who were seated or supine position. However, researchers did not describe how the spinal circuits are used in different hip angles for paralyzed subjects, such as the standing position with walker or cane. In upright posture the compatibility between a flexor reflex of leg and body balance is a special problem for lower limb injured subjects. Therefore, the purpose of this study was to investigate the effects of hip angle change on the flexor reflex evoked in standing paralyzed subjects supported by walker. In this study, six spinal cord injured and four stroke subjects were recruited through the inpatient physical therapy clinics of Korea national rehabilitation hospital. A single axis electronic goniometer was mounted on the lateral side of the hip joint of the impaired limb to record movements in the sagittal plane at this joint. The electronic goniometer was connected to a data acquisition system, through amplifiers to a computer. Since subject' posture influenced characteristics of the flexion reflex response, the subjects were supported in an upright posture by the help of parallelogram walder. Two series of tests were performed on each leg. The first series of the tests investigated the influence of hip angle during stationary standing posture on flexion reflex response. The hip angle was adjusted by the foot plate. The second examined the effect of the voluntary action of subject on swing motion during the gait. The electrically induced flexion reflex simultaneously produced the flexion of the hip, knee and dorsiflexion of the ankle enabling the swing phase of walking. Form the experimental results we observed that the reflex response of hip joint was largerwith the hip in the extended position than in the flexed position during standing posture. Under voluntary movement on flexion reflex during gaint, the peak hip angle induced by stimulation was increased in spinal cord injury and stroke patients by subject' voluntary movement.
A randomized controlled comparison of stretching procedures for posterior shoulder tightness.
McClure, Philip; Balaicuis, Jenna; Heiland, David; Broersma, Mary Ellen; Thorndike, Cheryl K; Wood, April
2007-03-01
Randomized controlled trial, To compare changes in shoulder internal rotation range of motion (ROM), for 2 stretching exercises, the "cross-body stretch" and the "sleeper stretch," in individuals with posterior shoulder tightness. Recently, some authors have expressed the belief that the sleeper stretch is better than the cross-body stretch to address glenohumeral posterior tightness because the scapula is stabilized. Fifty-four asymptomatic subjects (20 males, 34 females) participated in the study. The control group (n=24) consisted of subjects with a between-shoulder difference in internal rotation ROM of less than 10 degrees, whereas those subjects with more than a 10 degrees difference were randomly assigned to 1 of 2 intervention groups, the sleeper stretch group (n=15) or the cross-body stretch group (n=15). Shoulder internal rotation ROM, with the arm abducted to 90 degrees and scapula motion prevented, was measured before and after a 4-week intervention period. Subjects in the control group were asked not to engage in any new stretching activities, while subjects in the 2 stretching groups were asked to perform stretching exercises on the more limited side only, once daily for 5 repetitions, holding each stretch for 30 seconds. The improvements in internal rotation ROM for the subjects in the cross-body stretch group (mean +/- SD, 20.0 degrees +/- 12.9 degrees) were significantly greater than for the subjects in the control group (5.9 degrees +/- 9.4 degrees, P = .009). The gains in the sleeper stretch group (12.4 degrees +/- 10.4 degrees) were not significant compared to those of the control group (P = .586) and those of the cross-body stretch group (P = .148). The cross-body stretch in individuals with limited shoulder internal rotation ROM appears to be more effective than no stretching in controls without internal rotation asymmetry to improve shoulder internal rotation ROM. While the improvement in internal rotation from the cross-body stretch was greater than for the sleeper stretch and of a magnitude that could be clinically significant, the small sample size likely precluded statistical significance between groups.
Magou, George C; Pfister, Bryan J; Berlin, Joshua R
2015-10-22
The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures. Copyright © 2015. Published by Elsevier B.V.
Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Naohiko; Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp; Furuya, Kishio
Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellularmore » Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.« less
Prophylactic stretching does not reduce cramp susceptibility.
Miller, Kevin C; Harsen, James D; Long, Blaine C
2018-03-01
Some clinicians advocate stretching to prevent muscle cramps. It is unknown whether static or proprioceptive neuromuscular facilitation (PNF) stretching increases cramp threshold frequency (TF c ), a quantitative measure of cramp susceptibility. Fifteen individuals completed this randomized, counterbalanced, cross-over study. We measured passive hallux range of motion (ROM) and then performed 3 minutes of either static stretching, PNF stretching (hold-relax-with agonist contraction), or no stretching. ROM was reassessed and TF c was measured. PNF stretching increased hallux extension (pre-PNF 81 ± 11°, post-PNF 90 ± 10°; P < 0.05) but not hallux flexion (pre-PNF 40 ± 7°, post-PNF 40 ± 7°; P > 0.05). Static stretching increased hallux extension (pre-static 80 ± 11°, post-static 88 ± 9°; P < 0.05) but not hallux flexion (pre-static 38 ± 9°, post-static 39 ± 8°; P > 0.05). No ROM changes occurred with no stretching (P > 0.05). TF c was unaffected by stretching (no stretching 18 ± 7 Hz, PNF 16 ± 4 Hz, static 16 ± 5 Hz; P = 0.37). Static and PNF stretching increased hallux extension, but neither increased TF c . Acute stretching may not prevent muscle cramping. Muscle Nerve 57: 473-477, 2018. © 2017 Wiley Periodicals, Inc.
A Go-type opsin mediates the shadow reflex in the annelid Platynereis dumerilii.
Ayers, Thomas; Tsukamoto, Hisao; Gühmann, Martin; Veedin Rajan, Vinoth Babu; Tessmar-Raible, Kristin
2018-04-18
The presence of photoreceptive molecules outside the eye is widespread among animals, yet their functions in the periphery are less well understood. Marine organisms, such as annelid worms, exhibit a 'shadow reflex', a defensive withdrawal behaviour triggered by a decrease in illumination. Herein, we examine the cellular and molecular underpinnings of this response, identifying a role for a photoreceptor molecule of the G o -opsin class in the shadow response of the marine bristle worm Platynereis dumerilii. We found Pdu-Go-opsin1 expression in single specialised cells located in adult Platynereis head and trunk appendages, known as cirri. Using gene knock-out technology and ablation approaches, we show that the presence of Go-opsin1 and the cirri is necessary for the shadow reflex. Consistently, quantification of the shadow reflex reveals a chromatic dependence upon light of approximately 500 nm in wavelength, matching the photoexcitation characteristics of the Platynereis Go-opsin1. However, the loss of Go-opsin1 does not abolish the shadow reflex completely, suggesting the existence of a compensatory mechanism, possibly acting through a ciliary-type opsin, Pdu-c-opsin2, with a Lambda max of approximately 490 nm. We show that a Go-opsin is necessary for the shadow reflex in a marine annelid, describing a functional example for a peripherally expressed photoreceptor, and suggesting that, in different species, distinct opsins contribute to varying degrees to the shadow reflex.
Value of the pinnal-pedal reflex in the diagnosis of canine scabies.
Mueller, R S; Bettenay, S V; Shipstone, M
2001-05-19
The potential value of the pinnal-pedal scratch reflex as an aid to diagnosing canine scabies was assessed in 588 dogs with skin disease. The reflex was assessed by vigorously rubbing the tip of one earflap on to the base of the ear for five seconds, and it was considered positive if the ipsilateral hind leg made a scratching movement. A diagnosis of scabies was based on the dog's history, a physical examination and either positive skin scrapings or the complete resolution of pruritus and dermatitis after treatment with ivermectin or milbemycin, with no relapse for at least 12 months. Scabies was diagnosed in 55 of the dogs, allergic skin disease in 463, and 70 had other miscellaneous skin diseases. There was a positive pinnal-pedal scratch reflex in 45 (82 per cent) of the 55 dogs with scabies. Forty (73 per cent) of the dogs with scabies had pinnal dermatitis, and 36 (90 per cent) of these had a positive pinnal-pedal scratch reflex. There was a positive pinnal-pedal scratch reflex in 33 (6.2 per cent) of the other 533 dogs. On the basis of these results, the specificity of testing for scabies by the pinnal-pedal scratch reflex was 93.8 per cent, and the sensitivity was 81.8 per cent The test's positive predictive value was 0.57 and its negative predictive value was 0.98.
Knee joint effusion following ipsilateral hip surgery.
Christodoulou, A G; Givissis, P; Antonarakos, P D; Petsatodis, G E; Hatzokos, I; Pournaras, J D
2010-12-01
To correlate patellar reflex inhibition with sympathetic knee joint effusion. 65 women and 40 men aged 45 to 75 (mean, 65) years underwent hip surgery. The surgery entailed dynamic hip screw fixation using the lateral approach with reflection of the vastus lateralis for pertrochantric fractures (n = 49), and hip hemiarthroplasty or total hip replacement using the Watson-Jones approach (n = 38) or hip hemiarthroplasty using the posterior approach (n = 18) for subcapital femoral fractures (n = 28) or osteoarthritis (n = 28). Knee joint effusion, patellar reflex, and thigh circumference were assessed in both legs before and after surgery (at day 0.5, 2, 7, 14, 30, and 45). Time-sequence plots were used for chronological analysis, and correlation between patellar reflex inhibition and knee joint effusion was tested. In the time-sequence plot, the peak frequency of patellar reflex inhibition (on day 0.5) preceded that of the knee joint effusion and the thigh circumference increase (on day 2). Patellar reflex inhibition correlated positively with the knee joint effusion (r = 0.843, p = 0.035). These 2 factors correlated significantly for all 3 surgical approaches (p < 0.0005). All 3 approaches were associated with patellar reflex inhibition on day 0.5 (p = 0.033) and knee joint effusion on day 2 (p = 0.051). Surgical trauma of the thigh may cause patellar reflex inhibition and subsequently knee joint effusion.
Conte, Antonella; Bettolo, Chiara Marini; Onesti, Emanuela; Frasca, Vittorio; Iacovelli, Elisa; Gilio, Francesca; Giacomelli, Elena; Gabriele, Maria; Aragona, Massimiliano; Tomassini, Valentina; Pantano, Patrizia; Pozzilli, Carlo; Inghilleri, Maurizio
2009-05-01
Although clinical studies show that cannabinoids improve central pain in patients with multiple sclerosis (MS) neurophysiological studies are lacking to investigate whether they also suppress these patients' electrophysiological responses to noxious stimulation. The flexion reflex (FR) in humans is a widely used technique for assessing the pain threshold and for studying spinal and supraspinal pain pathways and the neurotransmitter system involved in pain control. In a randomized, double-blind, placebo-controlled, cross-over study we investigated cannabinoid-induced changes in RIII reflex variables (threshold, latency and area) in a group of 18 patients with secondary progressive MS. To investigate whether cannabinoids act indirectly on the nociceptive reflex by modulating lower motoneuron excitability we also evaluated the H-reflex size after tibial nerve stimulation and calculated the H wave/M wave (H/M) ratio. Of the 18 patients recruited and randomized 17 completed the study. After patients used a commercial delta-9-tetrahydrocannabinol (THC) and cannabidiol mixture as an oromucosal spray the RIII reflex threshold increased and RIII reflex area decreased. The visual analogue scale score for pain also decreased, though not significantly. Conversely, the H/M ratio measured before patients received cannabinoids remained unchanged after therapy. In conclusion, the cannabinoid-induced changes in the RIII reflex threshold and area in patients with MS provide objective neurophysiological evidence that cannabinoids modulate the nociceptive system in patients with MS.
Duclay, Julien; Robbe, Alice; Pousson, Michel; Martin, Alain
2009-10-01
At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.
Kyröläinen, H; Komi, P V
1994-01-01
Neural, mechanical and muscle factors influence muscle force production. This study was therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P < 0.01-0.001) with higher rates for force production (P < 0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.
Subspace methods for identification of human ankle joint stiffness.
Zhao, Y; Westwick, D T; Kearney, R E
2011-11-01
Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.
Next generation control system for reflexive aerostructures
NASA Astrophysics Data System (ADS)
Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie
2010-04-01
Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.
Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex
Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.
2010-01-01
The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664
Eye movement abnormalities in essential tremor
Plinta, Klaudia; Krzak-Kubica, Agnieszka; Zajdel, Katarzyna; Falkiewicz, Marcel; Dylak, Jacek; Ober, Jan; Szczudlik, Andrzej; Rudzińska, Monika
2016-01-01
Abstract Essential tremor (ET) is the most prevalent movement disorder, characterized mainly by an action tremor of the arms. Only a few studies published as yet have assessed oculomotor abnormalities in ET and their results are unequivocal. The aim of this study was to assess the oculomotor abnormalities in ET patients compared with the control group and to find the relationship between oculomotor abnormalities and clinical features of ET patients. We studied 50 ET patients and 42 matched by age and gender healthy controls. Saccadometer Advanced (Ober Consulting, Poland) was used to investigate reflexive, pace-induced and cued saccades and conventional electrooculography for evaluation of smooth pursuit and fixation. The severity of the tremor was assessed by the Clinical Rating Scale for Tremor. Significant differences between ET patients and controls were found for the incidence of reflexive saccades dysmetria and deficit of smooth pursuit. Reflexive saccades dysmetria was more frequent in patients in the second and third phase of ET compared to the first phase. The reflexive saccades latency increase was correlated with severity of the tremor. In conclusion, oculomotor abnormalities were significantly more common in ET patients than in healthy subjects. The most common oculomotor disturbances in ET were reflexive saccades dysmetria and slowing of smooth pursuit. The frequency of reflexive saccades dysmetria increased with progression of ET. The reflexive saccades latency increase was related to the severity of tremor. PMID:28149393
Loughran, Martin; Glasgow, Philip; Bleakley, Chris; McVeigh, Joseph
2017-05-01
To determine the effect of three different static-dynamic stretching protocols on sprint and jump performance in Gaelic footballers. Double-blind, controlled, crossover trial. Sports Institute research environment. Seventeen male elite level Gaelic footballers, aged 18-30 years, completed three stretching protocols. Athletic performance was measured by countermovement jump height and power, and timed 10 m, 20 m, and 40 m sprints. Static stretching reduced sprint speed by 1.1% over 40 m and 1.0% over 20 m. Static stretching also reduced countermovement jump height by 10.6% and jump power by 6.4%. When static stretching was followed by dynamic stretching, sprint speed improved by 1.0% over 20 m and 0.7% over 40 m (p < 0.05). The static - dynamic stretching protocol also improved countermovement jump height by 8.7% (p < 0.01) and power by 6.7% (p < 0.01). Static stretching reduces sprint speed and jump performance. Static stretching should be followed by dynamic stretching during warm-up to nullify any performance deficits caused by static stretching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.
Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul
2012-08-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs
Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun
2012-01-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794
Stelzer, Julian E.; Larsson, Lars; Fitzsimons, Daniel P.; Moss, Richard L.
2006-01-01
Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22°C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5–2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force–generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during excitation–contraction coupling. PMID:16446502
Bourdieu's Reflexive Sociology and "Spaces of Points of View": Whose Reflexivity, Which Perspective?
ERIC Educational Resources Information Center
Kenway, Jane; McLeod, Julie
2004-01-01
This paper considers Bourdieu's concepts of perspectivism and reflexivity, looking particularly at how he develops arguments about these in his recent work, The Weight of the World (1999) and Pascalian Meditations (2000b). We explicate Bourdieu's distinctive purposes and deployment of these terms and approaches, and discuss how this compares with…
Processing Reflexives in a Second Language: The Timing of Structural and Discourse-Level Constraints
ERIC Educational Resources Information Center
Felser, Claudia; Cunnings, Ian
2012-01-01
We report the results from two eye-movement monitoring experiments examining the processing of reflexive pronouns by proficient German-speaking learners of second language (L2) English. Our results show that the nonnative speakers initially tried to link English argument reflexives to a discourse-prominent but structurally inaccessible antecedent,…
Reflexive Management Learning: An Integrative Review and a Conceptual Typology
ERIC Educational Resources Information Center
Cotter, Richard J.; Cullen, John G.
2012-01-01
The scale and reach of the recent global financial has created a fresh wave of interest in exploring more sustainable forms of management. A central thrust behind this trend in the practice of management development and education has been the accentuation of reflexivity. There are many variations in how reflexivity is understood, and this article…
Reflexive Language and Ethnic Minority Activism in Hong Kong: A Trajectory-Based Analysis
ERIC Educational Resources Information Center
Pérez-Milans, Miguel; Soto, Carlos
2016-01-01
This article engages with Archer's call to further research on reflexivity and social change under conditions of late modernity (2007, 2010, 2012) from the perspective of existing work on reflexive discourse in the language disciplines (Silverstein 1976, Lucy 1993). Drawing from a linguistic ethnography of the networked trajectories of a group of…
ERIC Educational Resources Information Center
Taylor, Carol A.
2011-01-01
This article discusses findings from a UK Higher Education Academy project, which used digital video to promote doctoral students' reflexivity. The project aimed to facilitate doctoral students' research skills through the making of videonarratives; create spaces for reflexivity on the relations between research, narrative and identity; and…
ERIC Educational Resources Information Center
Sriprakash, Arathi; Mukhopadhyay, Rahul
2015-01-01
This paper interrogates the ways in which "reflexivity" has proliferated as a normative methodological discourse in the field of international and comparative education. We argue that the dominant approach to reflexivity foregrounds the standpoints of researchers and their subjects in a way that does not attend to the situated,…
Bourdieu and Science Studies: Toward a Reflexive Sociology
ERIC Educational Resources Information Center
Hess, David J.
2011-01-01
Two of Bourdieu's fundamental contributions to science studies--the reflexive analysis of the social and human sciences and the concept of an intellectual field--are used to frame a reflexive study of the history and social studies of science and technology as an intellectual field in the United States. The universe of large, Ph.D.-granting…
A Comparison of Statistical Models for Calculating Reliability of the Hoffmann Reflex
ERIC Educational Resources Information Center
Christie, A.; Kamen, G.; Boucher, Jean P.; Inglis, J. Greig; Gabriel, David A.
2010-01-01
The Hoffmann reflex is obtained through surface electromyographic recordings, and it is one of the most common neurophysiological techniques in exercise science. Measurement and evaluation of the peak-to-peak amplitude of the Hoffmann reflex has been guided by the observation that it is a variable response that requires multiple trials to obtain a…
PNF and Other Flexibility Techniques.
ERIC Educational Resources Information Center
Cornelius, William L.
Effective flexibility procedures are one of the essential tools by which excellence can be attained. Although stretching exercises provide obvious benefits, negative outcomes can result unless effective stretching procedures are incoroporated. Characteristics of effective stretching include warmup before stretching, stretch before and after…
Chang, Daniel H; Waring, George O
2014-11-01
To describe the inconsistencies in definition, application, and usage of the ocular reference axes (optical axis, visual axis, line of sight, pupillary axis, and topographic axis) and angles (angle kappa, lambda, and alpha) and to propose a precise, reproducible, clinically defined reference marker and axis for centration of refractive treatments and devices. Perspective. Literature review of papers dealing with ocular reference axes, angles, and centration. The inconsistent definitions and usage of the current ocular axes, as derived from eye models, limit their clinical utility. With a clear understanding of Purkinje images and a defined alignment of the observer, light source/fixation target, and subject eye, the subject-fixated coaxially sighted corneal light reflex can be a clinically useful reference marker. The axis formed by connecting the subject-fixated coaxially sighted corneal light reflex and the fixation point, the subject-fixated coaxially sighted corneal light reflex axis, is independent of pupillary dilation and phakic status of the eye. The relationship of the subject-fixated coaxially sighted corneal light reflex axis to a refined definition of the visual axis without reference to nodal points, the foveal-fixation axis, is discussed. The displacement between the subject-fixated coaxially sighted corneal light reflex and pupil center is described not by an angle, but by a chord, here termed chord mu. The application of the subject-fixated coaxially sighted corneal light reflex to the surgical centration of refractive treatments and devices is discussed. As a clinically defined reference marker, the subject-fixated coaxially sighted corneal light reflex avoids the shortcomings of current ocular axes for clinical application and may contribute to better consensus in the literature and improved patient outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Knikou, Maria; Chaudhuri, Debjani; Kay, Elizabeth; Schmit, Brian D.
2006-01-01
The aim of this study was to establish the contribution of hip-mediated sensory feedback to spinal interneuronal circuits during dynamic conditions in people with incomplete spinal cord injury (SCI). Specifically, we investigated the effects of synergistic and antagonistic group I afferents on the soleus H-reflex during imposed sinusoidal hip movements. The soleus H-reflex was conditioned by stimulating the common peroneal nerve (CPN) at short (2, 3, and 4 ms) and long (80, 100, and 120 ms) conditioning test (C-T) intervals to assess the reciprocal and pre-synaptic inhibition of the soleus H-reflex, respectively. The soleus H-reflex was also conditioned by medial gastrocnemius (MG) nerve stimulation at C-T intervals ranging from 4 to 7 ms to assess changes in autogenic Ib inhibition during hip movement. Sinusoidal hip movements were imposed to the right hip joint at 0.2 Hz by the Biodex system while subjects were supine. The effects of sinusoidal hip movement on five leg muscles along with hip, knee, and ankle joint torques were also established during sensorimotor conditioning of the reflex. Phase-dependent modulation of antagonistic and synergistic muscle afferents was present during hip movement, with the reciprocal, pre-synaptic, and Ib inhibition to be significantly reduced during hip extension and reinforced during hip flexion. Reflexive muscle and joint torque responses – induced by the hip movement – were entrained to specific phases of hip movement. This study provides evidence that hip-mediated input acts as a controlling signal of pre- and post-alpha motoneuronal control of the soleus H-reflex. The expression of these spinal interneuronal circuits during imposed sinusoidal hip movements is discussed with respect to motor recovery in humans after SCI. PMID:16782072
Hill, Kristian J; Robinson, Kendall P; Cuchna, Jennifer W; Hoch, Matthew C
2017-11-01
Clinical Scenario: Increasing hamstring flexibility through clinical stretching interventions may be an effective means to prevent hamstring injuries. However the most effective method to increase hamstring flexibility has yet to be determined. For a healthy individual, are proprioceptive neuromuscular facilitation (PNF) stretching programs more effective in immediately improving hamstring flexibility when compared with static stretching programs? Summary of Key Findings: A thorough literature search returned 195 possible studies; 5 studies met the inclusion criteria and were included. Current evidence supports the use of PNF stretching or static stretching programs for increasing hamstring flexibility. However, neither program demonstrated superior effectiveness when examining immediate increases in hamstring flexibility. Clinical Bottom Line: There were consistent findings from multiple low-quality studies that indicate there is no difference in the immediate improvements in hamstring flexibility when comparing PNF stretching programs to static stretching programs in physically active adults. Strength of Recommendation: Grade B evidence exists that PNF and static stretching programs equally increase hamstring flexibility immediately following the stretching program.
Reflexive Research Ethics in Fetal Tissue Xenotransplantation Research
Panikkar, Bindu; Smith, Natasha; Brown, Phil
2013-01-01
For biomedical research in which the only involvement of the human subject is the provision of tissue or organ samples, a blanket consent, i.e. consent to use the tissue for anything researchers wish to do, is considered by many to be adequate for legal and IRB requirements. Alternatively, a detailed informed consent provides patients or study participants with more thorough information about the research topic. We document here the beliefs and opinions of the research staff on informed consent and the discussion-based reflexive research ethics process that we employed in our fetal tissue xenotransplantion research on the impact of environmental exposures on fetal development. Reflexive research ethics entails the continued adjustment of research practice according to relational and reflexive understandings of what might be beneficent or harmful. Such reflexivity is not solely an individual endeavor, but rather a collective relationship between all actors in the research process. PMID:23074992
Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...
2015-11-05
Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~10 18mmore » –3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less
Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice; Magnuson, David
2017-06-15
Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.
Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice
2017-01-01
Abstract Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague–Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery. PMID:28288544
Cyclic stretch-induced stress fiber dynamics - Dependence on strain rate, Rho-kinase and MLCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chin-Fu; Haase, Candice; Deguchi, Shinji
2010-10-22
Research highlights: {yields} Cyclic stretch induces stress fiber disassembly, reassembly and fusion perpendicular to the direction of stretch. {yields} Stress fiber disassembly and reorientation were not induced at low stretch frequency. {yields} Stretch caused actin fiber formation parallel to stretch in distinct locations in cells treated with Rho-kinase and MLCK inhibitors. -- Abstract: Stress fiber realignment is an important adaptive response to cyclic stretch for nonmuscle cells, but the mechanism by which such reorganization occurs is not known. By analyzing stress fiber dynamics using live cell microscopy, we revealed that stress fiber reorientation perpendicular to the direction of cyclic uniaxialmore » stretching at 1 Hz did not involve disassembly of the stress fiber distal ends located at focal adhesion sites. Instead, these distal ends were often used to assemble new stress fibers oriented progressively further away from the direction of stretch. Stress fiber disassembly and reorientation were not induced when the frequency of stretch was decreased to 0.01 Hz, however. Treatment with the Rho-kinase inhibitor (Y27632) reduced stress fibers to thin fibers located in the cell periphery which bundled together to form thick fibers oriented parallel to the direction of stretching at 1 Hz. In contrast, these thin fibers remained diffuse in cells subjected to stretch at 0.01 Hz. Cyclic stretch at 1 Hz also induced actin fiber formation parallel to the direction of stretch in cells treated with the myosin light chain kinase (MLCK) inhibitor ML-7, but these fibers were located centrally rather than peripherally. These results shed new light on the mechanism by which stress fibers reorient in response to cyclic stretch in different regions of the actin cytoskeleton.« less
Baek, Sora; Lee, Kyu Jin; Kim, Keewon; Han, Seung-Ho; Lee, U-Young; Lee, Kun-Jai; Chung, Sun Gun
2016-10-01
The coracohumeral ligament (CHL) is a thick capsular structure and markedly thickened when affected by adhesive capsulitis. Therapeutic stretching is the most commonly applied treatment for adhesive capsulitis, but optimal stretching postures for maximal therapeutic effects on the CHL have not been fully investigated. To investigate the most effective stretching direction for the CHL by measuring the stretching intensity in 5 different directions and to determine whether the stretching intervention resulted in loosening of the ligament by comparing the changes of CHL tightness before and after stretching. Biomechanical cadaver study. Academic institution cadaver laboratory. Nine fresh frozen cadaveric shoulders. A high-pressure balloon catheter inserted under the CHL and intraballoon pressure was measured, to evaluate CHL tightness without ligament damage as well as to augment and monitor stretching intensity. To find the optimal stretching direction, the glenohumeral joint was stretched from the neutral position into 5 directions sequentially under pressure-monitoring: flexion, extension [EX], external rotation [ER], EX+ER, and EX+ER+adduction [AD] directions. CHL tightness was determined by a surrogate parameter, the additional pressure created by the overlying CHL. The pressure increase (ΔP str ) by a specific directional stretch was considered as the stretching intensity. ΔP str by the 5 directions were mean (standard deviation) values of 0.03 ± 0.07 atm, 0.87 ± 1.31 atm, 1.13 ± 1.36 atm, 1.49 ± 1.32 atm, and 2.10 ± 1.70 atm, respectively, revealing the highest ΔP str by the EX+ER+AD stretch (P < .05). The balloon pressure by the overlying CHL was decreased from 0.45 ± 0.35 atm to 0.18 ± 0.14 atm (P = .012) before and after the stretching manipulation. EX+ER+AD of the glenohumeral joint resulted in the greatest increase in balloon pressure, implying that it could be the most effective stretching direction. A series of stretching manipulations assisted with an underlying pressure balloon were capable of decreasing CHL tightness. With further development and modification, high-pressure balloon-assisted stretching can be a potential therapeutic option to release tight CHL, including the advantage of augmenting and monitoring stretching intensity. II. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim
2014-01-01
[Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance. PMID:24648633
Finger impedance evaluation by means of hand exoskeleton.
Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio
2011-12-01
Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.
Retrospective study of a TTR FAP cohort to modify NIS+7 for therapeutic trials.
Suanprasert, N; Berk, J L; Benson, M D; Dyck, P J B; Klein, C J; Gollob, J A; Bettencourt, B R; Karsten, V; Dyck, P J
2014-09-15
Protein stabilization and oligonucleotide therapies are being tested in transthyretin amyloid polyneuropathy (TTR FAP) trials. From retrospective analysis of 97 untreated TTR FAP patients, we test the adequacy of Neuropathy Impairment Score+7 tests (NIS+7) and modifications to comprehensively score impairments for use in such therapeutic trials. Our data confirms that TTR FAP usually is a sensorimotor polyneuropathy with autonomic features which usually is symmetric, length dependent, lower limb predominant and progressive. NIS+7 adequately assesses weakness and muscle stretch reflexes without ceiling effects but not sensation loss, autonomic dysfunction or nerve conduction abnormalities. Three modifications of NIS+7 are suggested: 1) use of Smart Somatotopic Quantitative Sensation Testing (S ST QSTing); 2) choice of new autonomic assessments, e.g., sudomotor testing of distributed anatomical sites; and 3) use of only compound muscle action potential amplitudes (of ulnar, peroneal and tibial nerves) and sensory nerve action potentials of ulnar and sural nerve - than the previously recommended attributes suggested for the sensitive detection of diabetic sensorimotor polyneuropathy. These modifications of NIS+7 if used in therapeutic trials should improve characterization and quantification of sensation and autonomic impairment in TTR FAP and provide better nerve conduction tests. Copyright © 2014 Elsevier B.V. All rights reserved.
Benign acute childhood myositis.
Rajajee, Sarala; Ezhilarasi, S; Rajarajan, K
2005-05-01
To describe the clinical and laboratory features of benign acute childhood myositis. 40 children of BACM were seen during October 2001 to February 2002, 22 (52%) were male with mean age of 5.3 years. Duration of illness was 3.97 days. Preceding symptoms included fever, leg pain, vomiting and inability to walk. A provisional diagnosis of viral myositis was made in 26 (66%). Guillian Barre Syndrome was the most common referral diagnosis. 11 (27.5%) children had leucopenia with lymphocytic response and 16 (40%) had thrombocytopenia. CRP was negative in 32 (80%). CPK was markedly elevated (more than 1000 IU/l) in 18 (45%) and more than 500 IU/l in 11 (27.5%) remaining between 200 to 500 IU/l. Associated features were hepatitis (elevated SGOT & SGPT) in 28 (70%) and shock in 5 (12.5%). Serological test were indicative of dengue virus (Elisa PAN BIO) in 20 (50%) of which 8 (25%) were primary dengue and 12 (30%) were secondary dengue. The outcome of therapy mainly supportive were excellent. Benign acute myositis occurs often in association with viral infection. In the present study, Dengue virus was positive in 20 (50%) children. Benign acute myositis can be differentiated from more serious causes of walking difficulty by presence of calf and thigh muscle tenderness on stretching, normal power and deep tendon reflex and elevated CPK.
The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion.
Thomas, Ewan; Bianco, Antonino; Paoli, Antonio; Palma, Antonio
2018-04-01
Different stretching strategies and protocols are widely used to improve flexibility or maintain health, acting on the muscle tendon-unit, in order to improve the range of motion (ROM) of the joints. This review aims to evaluate the current body of literature in order to understand the relation between stretching typology and ROM, and secondly to evaluate if a relation exists between stretching volume (either as a single training session, weekly training and weekly frequency) and ROM, after long-term stretching. Twenty-three articles were considered eligible and included in the quantitative synthesis. All stretching typologies showed ROM improvements over a long-term period, however the static protocols showed significant gains (p<0.05) when compared to the ballistic or PNF protocols. Time spent stretching per week seems fundamental to elicit range of movement improvements when stretches are applied for at least or more than 5 min, whereas the time spent stretching within a single session does not seem to have significant effects for ROM gains. Weekly frequency is positively associated to ROM. Evaluated data indicates that performing stretching at least 5 days a week for at least 5 min per week using static stretching may be beneficial to promote ROM improvements. © Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
Medova, Lucie
2009-01-01
In this work, I offer a unified analysis of all the constructions that involve a reflexive clitic SE in Slavic and Romance languages. Next to canonical constructions, in which the reflexive clitic semantically identifies the two arguments of a transitive verb, cf. "John" SE "wash" means "John washes himself," there are constructions in which it is…
ERIC Educational Resources Information Center
Anderson, Kate T.
2017-01-01
This article presents a reflexive and critical discourse analysis of classroom events that grew out of a cross-cultural partnership with a secondary school teacher in Singapore. I aim to illuminate how differences between researcher and teacher assumptions about what participation in classroom activities should look like came into high relief when…
Second Language Acquisition of Reflexive Verbs in Russian by L1 Speakers of English
ERIC Educational Resources Information Center
Alexieva, Petia Dimitrova
2012-01-01
This dissertation examines the process of acquisition of semantic classes of reflexive verbs (RVs) in Russian by L2 learners with a native language English. The purpose of this study is to bridge the gap between current linguistic knowledge and the pedagogical literature existing in English on reflexives in Russian. RVs are taught partially and…
ERIC Educational Resources Information Center
Bastrup-Birk, Henriette; Wildemeersch, Danny
2011-01-01
Social learning theory in the context of multi-actor engagement tends to relate reflexivity primarily to critical questioning of theories-in-use. We argue that viewing suspensive dialogue and imaginative envisioning as additional stages of reflexivity will serve at least three purposes: prevent over-emphasis on instrumental rationality focusing on…
[The role of the somatosensory cortex in the development of reflex analgesia].
Kukushkin, M L; Reshetniak, V K; Durinian, R A
1986-06-01
The effects of reflex stimulation on the changes of nociception thresholds in animals before and after ablation of the somatosensory cortex were studied in behavioural experiments on adult cats. Electroacupuncture stimulation (EAP) was shown to increase nociception thresholds at all levels of the conventional scale. The ablation of both the first (S1) and the second (S2) somatosensory cortex led to EAP inefficiency at the side opposite to the ablation. Partial lesion of the lateral and suprasylvian gyri, used as control, did not affect the efficiency of reflex analgesia. It is concluded that somatosensory areas of the cortex, especially 2, are involved in reflex analgesia.
Irmen, Friederike; Wehner, Tim; Lemieux, Louis
2015-02-01
Recent changes in the understanding and classification of reflex seizures have fuelled a debate on triggering mechanisms of seizures and their conceptual organization. Previous studies and patient reports have listed extrinsic and intrinsic triggers, albeit their multifactorial and dynamic nature is poorly understood. This paper aims to review literature on extrinsic and intrinsic seizure triggers and to discuss common mechanisms among them. Among self-reported seizure triggers, emotional stress is most frequently named. Reflex seizures are typically associated with extrinsic sensory triggers; however, intrinsic cognitive or proprioceptive triggers have also been assessed. The identification of a trigger underlying a seizure may be more difficult if it is intrinsic and complex, and if triggering mechanisms are multifactorial. Therefore, since observability of triggers varies and triggers are also found in non-reflex seizures, the present concept of reflex seizures may be questioned. We suggest the possibility of a conceptual continuum between reflex and spontaneous seizures rather than a dichotomy and discuss evidence to the notion that to some extent most seizures might be triggered. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Extinction of the soleus H reflex induced by conditioning stimulus given after test stimulus.
Hiraoka, Koichi
2002-02-01
To quantify the extinction of the soleus H reflex induced by a conditioning stimulus above the motor threshold to the post-tibial nerve applied 10-12 ms after a test stimulus (S2 method). Ten healthy subjects participated. The sizes of extinction induced by a test stimulus above the motor threshold (conventional method) and by the S2 method were measured. The size of the conditioned H reflex decreased as the intensity of the S2 conditioning stimulus increased. The decrease was less than that induced by the conventional method. The difference between the two methods correlated highly with the amount of orthodromically activated recurrent inhibition. When the S2 conditioning stimulus evoked an M wave that was roughly half of the maximum M wave, the decrease in the size of the conditioned H reflex depended on the size of the unconditioned H reflex. The S2 method allows us to observe extinction without changing the intensity of the test stimulus. The amount of the extinction depends partially on the size of the unconditioned H reflex. The difference in the sizes of extinction between the S2 and conventional methods should relate to recurrent inhibition.
Garrette, Rachel; Jones, Alisha L; Wilson, Martha W
2018-05-15
The purpose of this study is to investigate whether acoustic reflex threshold testing before administration of distortion product otoacoustic emissions can affect the results of the distortion product otoacoustic emissions testing using an automated protocol. Fifteen young adults with normal hearing ranging in age from 19 to 25 years participated in the study. All participants had clear external ear canals and normal Jerger Type A tympanograms and had passed a hearing screening. Testing was performed using the Interacoustics Titan acoustic reflex threshold and distortion product otoacoustic emissions protocol. Participants underwent baseline distortion product otoacoustic emissions. A paired-samples t test was conducted for both the right and left ears to assess within-group differences between baseline distortion product otoacoustic emissions and repeated distortion product otoacoustic emissions measures. No significant differences were found in distortion product otoacoustic emission measures following administration of acoustic reflexes. The use of a protocol when using an automated system that includes both acoustic reflexes and distortion product otoacoustic emissions is important. Overall, presentation of acoustic reflexes prior to measuring distortion product otoacoustic emission did not affect distortion product otoacoustic emission results; therefore, test sequence can be modified as needed.
Orthodontic treatment-induced temporal alteration of jaw-opening reflex excitability.
Sasaki, Au; Hasegawa, Naoya; Adachi, Kazunori; Sakagami, Hiroshi; Suda, Naoto
2017-10-01
The impairment of orofacial motor function during orthodontic treatment needs to be addressed, because most orthodontic patients experience pain and motor excitability would be affected by pain. In the present study, the temporal alteration of the jaw-opening reflex excitability was investigated to determine if orthodontic treatment affects orofacial motor function. The excitability of jaw-opening reflex evoked by electrical stimulation on the gingiva and recorded bilaterally in the anterior digastric muscles was evaluated at 1 (D1), 3 (D3), and 7 days (D7) after orthodontic force application to the teeth of right side; morphological features (e.g., osteoclast genesis and tooth movement) were also evaluated. To clarify the underlying mechanism of orthodontic treatment-induced alteration of orofacial motor excitability, analgesics were administrated for 1 day. At D1 and D3, orthodontic treatment significantly decreased the threshold for inducing the jaw-opening reflex but significantly increased the threshold at D7. Other parameters of the jaw-opening reflex were also evaluated (e.g., latency, duration and area under the curve of anterior digastric muscles activity), and only the latency of the D1 group was significantly different from that of the other groups. Temporal alteration of the jaw-opening reflex excitability was significantly correlated with changes in morphological features. Aspirin (300 mg·kg -1 ·day -1 ) significantly increased the threshold for inducing the jaw-opening reflex, whereas a lower dose (75-150 mg·kg -1 ·day -1 ) of aspirin or acetaminophen (300 mg·kg -1 ·day -1 ) failed to alter the jaw-opening reflex excitability. These results suggest that an increase of the jaw-opening reflex excitability can be induced acutely by orthodontic treatment, possibly through the cyclooxygenase activation. NEW & NOTEWORTHY It is well known that motor function is affected by pain, but the effect of orthodontic treatment-related pain on the trigeminal motor excitability has not been fully understood. We found that, during orthodontic treatment, trigeminal motor excitability is acutely increased and then decreased in a week. Because alteration of trigeminal motor function can be evaluated quantitatively by jaw-opening reflex excitability, the present animal model may be useful to search for alternative approaches to attenuate orthodontic pain. Copyright © 2017 the American Physiological Society.
A novel reflex cough testing device.
Fujiwara, Kazunori; Kawamoto, Katsuyuki; Shimizu, Yoko; Fukuhara, Takahiro; Koyama, Satoshi; Kataoka, Hideyuki; Kitano, Hiroya; Takeuchi, Hiromi
2017-01-18
The reflex cough test is useful for detecting silent aspiration, a risk factor for aspiration pneumonia. However, assessing the risk of aspiration pneumonia requires measuring not only the cough reflex but also cough strength. Currently, no reflex cough testing device is available that can directly measure reflex cough strength. We therefore developed a new testing device that can easily and simultaneously measure cough strength and the time until the cough reflex, and verified whether screening with this new instrument is feasible for evaluating the risk of aspiration pneumonia. This device consists of a special pipe with a double lumen, a nebulizer, and an electronic spirometer. We used a solution of prescription-grade L-tartaric acid to initiate the cough reflex. The solution was inhaled through a mouthpiece as a microaerosol produced by an ultrasonic nebulizer. The peak cough flow (PCF) of the induced cough was measured with the spirometer. The 70 patients who participated in this study comprised 49 patients without a history of pneumonia (group A), 21 patients with a history of pneumonia (group B), and 10 healthy volunteers (control group). With the novel device, PCF and time until cough reflex could be measured without adverse effects. The PCF values were 118.3 ± 64.0 L/min, 47.7 ± 38.5 L/min, and 254.9 ± 83.8 L/min in group A, group B, and the control group, respectively. The PCF of group B was significantly lower than that of group A and the control group (p < 0.0001), while that of group B was significantly lower than that of the control group (p < 0.0001). The time until the cough reflex was 4.2 ± 5.9 s, 7.0 ± 7.0 s, and 1 s in group A, group B, and the control group, respectively. This duration was significantly longer for groups A and B than for the control group (A: p < 0.001, B: p < 0.001), but there was no significant difference between groups A and B (p = 0.0907). Our newly developed device can easily and simultaneously measure the time until the cough reflex and the strength of involuntary coughs for assessment of patients at risk of aspiration pneumonia.
Sharma, Shilpee Bhatia; Janakiram, Trichy Narayanan; Baxi, Hina; Chinnasamy, Balamurugan
2017-07-01
Juvenile nasopharyngeal angiofibroma is a locally aggressive benign tumour which has propensity to erode the skull base. The tumour spreads along the pathways of least resistance and is in close proximity to the extracranial part of trigeminal nerve. Advancements in expanded approaches for endoscopic excision of tumours in infratemporal fossa and pterygopalatine fossa increase the vulnerability for the trigeminocardiac reflex. The manipulation of nerve and its branches during tumour dissection can lead to sensory stimulation and thus inciting the reflex. The aim of our study is to report the occurrence of trigeminocardiac reflex in endoscopic excision of juvenile nasopharyngeal angiofibroma. To describe the occurence of trigeminocardiac reflex during endoscopic endonasal excision of juvenile nasopharyngeal angiofibroma. We studied the occurrence of TCR in 15 patients (out of 242 primary cases and 52 revision cases) operated for endoscopic endonasal excision of JNA. The drop in mean arterial blood pressure and heart rate were observed and measured. To the best of our knowledge of English literature, this is the first case series reporting TCR as complication in endoscopic excision of JNA. occurence of this reflex has been mentioned in various occular, maxillofacial surgeries but its occurence during endoscopic excision of JNA has never been reported before. Manifestation of trigeminocardiac reflex during surgery can alter the course of the surgery and is a potential threat to life. It is essential for the anesthetist and surgeons to be familiar with the presentations, preventive measures and management protocols.
Peters, Ryan M.; McKeown, Monica D.; Carpenter, Mark G.
2016-01-01
Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults. PMID:27489366
Volitional control of reflex cough
Bolser, Donald C.; Davenport, Paul W.
2012-01-01
Multiple studies suggest a role for the cerebral cortex in the generation of reflex cough in awake humans. Reflex cough is preceded by detection of an urge to cough; strokes specifically within the cerebral cortex can affect parameters of reflex cough, and reflex cough can be voluntarily suppressed. However, it is not known to what extent healthy, awake humans can volitionally modulate the cough reflex, aside from suppression. The aims of this study were to determine whether conscious humans can volitionally modify their reflexive cough and, if so, to determine what parameters of the cough waveform and corresponding muscle activity can be modified. Twenty adults (18–40 yr, 4 men) volunteered for study participation and gave verbal and written informed consent. Participants were seated and outfitted with a facemask and pneumotacograph, and two surface EMG electrodes were positioned over expiratory muscles. Capsaicin (200 μM) was delivered via dosimeter and one-way (inspiratory) valve attached to a side port between the facemask and pneumotachograph. Cough airflow and surface EMG activity were recorded across tasks including 1) baseline, 2) small cough (cough smaller or softer than normal), 3) long cough (cough longer or louder than normal), and 4) not cough (alternative behavior). All participants coughed in response to 200 μM capsaicin and were able to modify the cough. Variables exhibiting changes include those related to the peak airflow during the expiratory phase. Results demonstrate that it is possible to volitionally modify cough motor output characteristics. PMID:22492938
James, Peter J; Nyby, John G; Saviolakis, George A
2006-09-01
In virtually every mammalian species examined, some males exhibit reflexive testosterone release upon encountering a novel female (or female-related stimulus). At the same time, not every individual male (or every published study) provides evidence for reflexive testosterone release. Four experiments using house mice (Mus musculus) examined the hypothesis that both the male's genotype and his degree of sexual arousal (as indexed by ultrasonic mating calls) are related to such variability. In Experiment 1, CF-1 males exhibited reflexive testosterone elevations 30 min after encountering female urine. CK males, on the other hand, did not exhibit testosterone elevations 20, 30, 50, 60, or 80 min after encountering female urine (Experiments 1 and 2) suggesting this strain incapable of reflexive release. In Experiment 3, we measured both mating calls and reflexive testosterone release in response to female urine in CF-1 and CK males. Most males of both strains called vigorously to female urine but not to water. But, only CF-1 males exhibited significant testosterone elevations to female urine. In Experiment 4, DBA/2J males called vigorously to females followed by testosterone elevations 30 min later. The first 3 experiments support the hypothesis that male genotype is an important variable underlying mammalian reflexive testosterone release. Statistically significant correlations between mating calls in the first minute after stimulus exposure and testosterone elevations 30 min later (Experiments 3 and 4) support the hypothesis that, in capable males, reflexive testosterone release is related to the male's initial sexual arousal.
Renden, Peter G; Savelsbergh, Geert J P; Oudejans, Raôul R D
2017-05-01
We investigated the effects of reflex-based self-defence training on police performance in simulated high-pressure arrest situations. Police officers received this training as well as a regular police arrest and self-defence skills training (control training) in a crossover design. Officers' performance was tested on several variables in six reality-based scenarios before and after each training intervention. Results showed improved performance after the reflex-based training, while there was no such effect of the regular police training. Improved performance could be attributed to better communication, situational awareness (scanning area, alertness), assertiveness, resolution, proportionality, control and converting primary responses into tactical movements. As officers trained complete violent situations (and not just physical skills), they learned to use their actions before physical contact for de-escalation but also for anticipation on possible attacks. Furthermore, they learned to respond against attacks with skills based on their primary reflexes. The results of this study seem to suggest that reflex-based self-defence training better prepares officers for performing in high-pressure arrest situations than the current form of police arrest and self-defence skills training. Practitioner Summary: Police officers' performance in high-pressure arrest situations improved after a reflex-based self-defence training, while there was no such effect of a regular police training. As officers learned to anticipate on possible attacks and to respond with skills based on their primary reflexes, they were better able to perform effectively.
Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.
Llewellyn, M; Yang, J F; Prochazka, A
1990-01-01
Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.
Compensatory increase of the cervico-ocular reflex with age in healthy humans
Kelders, W P A; Kleinrensink, G J; van der Geest, J N; Feenstra, L; de Zeeuw, C I; Frens, M A
2003-01-01
The cervico-ocular reflex (COR) is an ocular stabilization reflex that is elicited by rotation of the neck. It works in conjunction with the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) in order to prevent visual slip over the retina due to self-motion. The gains of the VOR and OKR are known to decrease with age. We have investigated whether the COR, a reflexive eye movement elicited by rotation of the neck, shows a compensatory increase and whether a synergy exists between the COR and the other ocular stabilization reflexes. In the present study 35 healthy subjects of varying age (20–86 years) were rotated in the dark in a trunk-to-head manner (the head fixed in spaced with the body passively rotated under it) at peak velocities between 2.1 and 12.6 deg s−1 as a COR stimulus. Another 15 were subjected to COR, VOR and OKR stimuli at frequencies between 0.04 and 0.1 Hz. Three subjects participated in both tests. The position of the eyes was recorded with an infrared recording technique. We found that the COR-gain increases with increasing age and that there is a significant covariation between the gains of the VOR and COR, meaning that when VOR increases, COR decreases and vice versa. A nearly constant phase lag between the COR and the VOR of about 25 deg existed at all stimulus frequencies. PMID:12949226
Haker, H; Misslisch, H; Ott, M; Frens, M A; Henn, V; Hess, K; Sándor, P S
2003-07-01
We investigated gaze-stabilizing reflexes in the chameleon using the three-dimensional search-coil technique. Animals were rotated sinusoidally around an earth-vertical axis under head-fixed and head-free conditions, in the dark and in the light. Gain, phase and the influence of eye position on vestibulo-ocular reflex rotation axes were studied. During head-restrained stimulation in the dark, vestibulo-ocular reflex gaze gains were low (0.1-0.3) and phase lead decreased with increasing frequencies (from 100 degrees at 0.04 Hz to < 30 degrees at 1 Hz). Gaze gains were larger during stimulation in the light (0.1-0.8) with a smaller phase lead (< 30 degrees) and were close to unity during the head-free conditions (around 0.6 in the dark, around 0.8 in the light) with small phase leads. These results confirm earlier findings that chameleons have a low vestibulo-ocular reflex gain during head-fixed conditions and stimulation in the dark and higher gains during head-free stimulation in the light. Vestibulo-ocular reflex eye rotation axes were roughly aligned with the head's rotation axis and did not systematically tilt when the animals were looking eccentrically, up- or downward (as predicted by Listing's Law). Therefore, vestibulo-ocular reflex responses in the chameleon follow a strategy, which optimally stabilizes the entire retinal images, a result previously found in non-human primates.
Jadcherla, Sudarshan Rao; Hoffmann, Raymond G.; Shaker, Reza
2014-01-01
Objectives To investigate the effect of esophageal mechanosensitive and chemosensitive stimulation on the magnitude and recruitment of peristaltic reflexes and upper esophageal sphincter (UES)-contractile reflex in premature infants. Study design Esophageal manometry and provocation testing were performed in the same 18 neonates at 33 and 36 weeks postmenstrual age (PMA). Mechanoreceptor and chemoreceptor stimulation were performed using graded volumes of air, water, and apple juice (pH 3.7), respectively. The frequency and magnitude of the resulting esophago-deglutition response (EDR) or secondary peristalsis (SP), and esophago-UES-contractile reflex (EUCR) were quantified. Results Threshold volumes to evoke EDR, SP, or EUCR were similar. The recruitment and magnitude of SP and EUCR increased with volume increments of air and water in either study (P < .05). However, apple juice infusions resulted in increased recruitment of EDR in the 33 weeks group (P < .05), and SP in the 36 weeks group (P < .05). The magnitude of EUCR was also volume responsive (all media, P < .05), and significant differences between media were noted (P < .05). At maximal stimulation (1 mL, all media), sensory-motor characteristics of peristaltic and EUCR reflexes were different (P < .05) between media and groups. Conclusions Mechano- and chemosensitive stimuli evoke volume-dependent specific peristaltic and UES reflexes at 33 and 36 weeks PMA. The recruitment and magnitude of these reflexes are dependent on the physicochemical properties of the stimuli in healthy premature infants. PMID:16860132
de Oliveira Silva, Danilo; Magalhães, Fernando Henrique; Faria, Nathálie Clara; Pazzinatto, Marcella Ferraz; Ferrari, Deisi; Pappas, Evangelos; de Azevedo, Fábio Mícolis
2016-07-01
To investigate whether vastus medialis (VM) Hoffmann reflexes (H-reflexes) differ on the basis of the presence or absence of patellofemoral pain (PFP) and to assess the capability of VM H-reflex measurements in accurately discriminating between women with and without PFP. Cross-sectional study. Laboratory of biomechanics and motor control. Women (N=30) aged 18 to 35 years were recruited, consisting of 2 groups: women with PFP (n=15) and asymptomatic controls (n=15). Not applicable. Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve, and peak-to-peak amplitudes of maximal Hoffmann reflex (Hmax) and maximal motor wave (Mmax) ratios were calculated. Independent samples t tests were performed to identify differences between groups, and a receiver operating characteristic curve was constructed to assess the discriminatory capability of VM H-reflex measurements. VM Hmax/Mmax ratios were significantly lower in participants with PFP than in pain-free participants (P=.007). In addition, the VM Hmax/Mmax ratios presented large and balanced discriminatory capability values (sensitivity, 73%; specificity, 67%). This study is the first to show that VM H-reflexes are lower in women with PFP than in asymptomatic controls. Therefore, increasing the excitation of the spinal cord in PFP participants may be essential to maintaining the gains acquired during the rehabilitation programs. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Barry, J C; Backes, A
1998-04-01
The alternating prism and cover test is the conventional test for the measurement of the angle of strabismus. The error induced by the prismatic effect of glasses is typically about 27-30%/10 D. Alternatively, the angle of strabismus can be measured with methods based on Purkinje reflex positions. This study examines the differences between three such options, taking into account the influence of glasses. The studied system comprised the eyes with or without glasses, a fixation object and a device for recording the eye position: in the case of the alternate prism and cover test, a prism bar was required; in the case of a Purkinje reflex based device, light sources for generation of reflexes and a camera for the documentation of the reflex positions were used. Measurements performed on model eyes and computer ray traces were used to analyze and compare the options. When a single corneal reflex is used, the misalignment of the corneal axis can be measured; the error in this measurement due to the prismatic effect of glasses was 7.6%/10 D, the smallest found in this study. The individual Hirschberg ratio can be determined by monocular measurements in three gaze directions. The angle of strabismus can be measured with Purkinje reflex based methods if the fundamental differences between these methods and the alternate prism and cover test, and if the influence of glasses and other sources of error are accounted for.
Morros, C; Cedo, F
1994-01-01
To assess the results obtained in treatment of sympathetic reflex dystrophy by sympathetic endovenous blockades with reserpine in working patients. We reviewed 170 diagnoses of sympathetic reflex dystrophy in 165 patients. One hundred seven were located in the foot, 13 were in the knee and 50 were in the hand. All were treated once a week for 3 weeks with local sympathetic endovenous blocks with reserpine (1 mg in the upper extremity and 1.5 mg in the lower extremity). We analyzed the location, etiology, course, X-rays, gammagrams, psychological state, other treatments, associated conditions, number of blocks received and side effects. The results were classified as excellent, good, fair and nil. We particularly reviewed sympathetic reflex dystrophy associated to Colles' fractures. Five hundred forty endovenous sympathetic blocks with reserpine were performed. Results obtained were excellent in 57 (34%) patients, good in 77 (45%), fair in 29 (17%) and nil in 7 (4%). Sympathetic reflex dystrophy leads to loss of 215 +/- 91 working days. In patients with Colles' fracture without sympathetic reflex dystrophy the loss is 96 +/- 31 days, although this period lengthens to 115 +/- 15 days if the two conditions are associated in stage I and to loss of 193 +/- 71 days if the association is in stage II. Results of treating sympathetic reflex dystrophy with sympathetic endovenous blocks with reserpine are satisfactory, particularly when diagnosis and treatment are early, clearly demonstrating the usefulness of this technique in workplace medicine.
Reflex epileptic mechanisms in humans: Lessons about natural ictogenesis.
Wolf, Peter
2017-06-01
The definition of reflex epileptic seizures is that specific seizure types can be triggered by certain sensory or cognitive stimuli. Simple triggers are sensory (most often visual, more rarely tactile or proprioceptive; simple audiogenic triggers in humans are practically nonexistent) and act within seconds, whereas complex triggers like praxis, reading and talking, and music are mostly cognitive and work within minutes. The constant relation between a qualitatively, often even quantitatively, well-defined stimulus and a specific epileptic response provides unique possibilities to investigate seizure generation in natural human epilepsies. For several reflex epileptic mechanisms (REMs), this has been done. Reflex epileptic mechanisms have been reported less often in focal lesional epilepsies than in idiopathic "generalized" epilepsies (IGEs) which are primarily genetically determined. The key syndrome of IGE is juvenile myoclonic epilepsy (JME), where more than half of the patients present reflex epileptic traits (photosensitivity, eye closure sensitivity, praxis induction, and language-induced orofacial reflex myocloni). Findings with multimodal investigations of cerebral function concur to indicate that ictogenic mechanisms in IGEs largely (ab)use preexisting functional anatomic networks (CNS subsystems) normally serving highly complex physiological functions (e.g., deliberate complex actions and linguistic communication) which supports the concept of system epilepsy. Whereas REMs in IGEs, thus, are primarily function-related, in focal epilepsies, they are primarily localization-related. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.
Mutoh, T; Kanamaru, A; Tsubone, H; Nishimura, R; Sasaki, N
2000-03-01
To characterize and determine the sensory innervation of respiratory reflexes elicited by nasal administration of halothane to dogs. 10 healthy Beagles. Dogs underwent permanent tracheostomy and, 2 to 3 weeks later, were anesthetized with thiopental and alpha-chloralose administered IV. The nasal passages were functionally isolated so that halothane could be administered to the nasal passages while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of halothane at concentrations of 1.25, 1.75, and 2.5 times the minimum alveolar concentration (MAC), and 5% (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of 5% halothane were also recorded following transection of the infraorbital nerve, transection of the caudal nasal nerve, and nasal administration of lidocaine. Nasal administration of halothane induced an inhibition of breathing characterized by a dose-dependent increase in expiratory time and a resultant decrease in expired volume per unit time. Effects were noticeable immediately after the onset of halothane administration and lasted until its cessation. Reflex responses to halothane administration were attenuated by transection of the caudal nasal nerve and by nasal administration of lidocaine, but transection of the infraorbital nerve had no effect. Nasal administration of halothane at concentrations generally used for mask induction of anesthesia induces reflex inhibition of breathing. Afferent fibers in the caudal nasal nerve appear to play an important role in the reflex inhibition of breathing induced by halothane administration.
ERIC Educational Resources Information Center
Crupi, Jeffrey
2004-01-01
Daily stretching has many benefits for one's body. It can relieve stress and tension, it increases flexibility and it can help prevent injuries. There are many stretching exercises that a teacher can do with his or her students to help promote daily stretching routines. In this article, the author presents several stretching exercises and some…
Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].
ERIC Educational Resources Information Center
2002
This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…
CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION
2012-01-01
Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684
STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE
Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.
2016-01-01
Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184
Interset stretching does not influence the kinematic profile of consecutive bench-press sets.
García-López, David; Izquierdo, Mikel; Rodríguez, Sergio; González-Calvo, Gustavo; Sainz, Nuria; Abadía, Olaia; Herrero, Azael J
2010-05-01
This study was undertaken to examine the role of interset stretching on the time course of acceleration portion AP and mean velocity profile during the concentric phase of 2 bench-press sets with a submaximal load (60% of the 1 repetition maximum). Twenty-five college students carried out, in 3 different days, 2 consecutive bench-press sets leading to failure, performing between sets static stretching, ballistic stretching, or no stretching. Acceleration portion and lifting velocity patterns of the concentric phase were not altered during the second set, regardless of the stretching treatment performed. However, when velocity was expressed in absolute terms, static stretching reduced significantly (p <0.05) the average lifting velocity during the second set compared to the first one. Therefore, if maintenance of a high absolute velocity over consecutive sets is important for training-related adaptations, static stretching should be avoided or replaced by ballistic stretching.
NASA Astrophysics Data System (ADS)
Kumar, Ajeet; Ahmad, Dilshad; Patra, Karali
2018-02-01
A dielectric elastomer is capable of large deformation under three basic modes of deformation: equi-biaxial, pure shear and uniaxial. Pre-stretching of dielectric elastomer improves the actuation strain appreciably. Experimental results shows that pre-stretching using equal biaxial mode can result to higher actuation strain compared to other two modes of stretching, i.e., uniaxial and pure shear. However, analysis of the experimental results shows that the actuation strain is independent of the modes of pre-stretching rather it is dependent upon the thickness stretch. For same thickness stretch at a particular voltage, the actuation strain is almost similar for all pre-stretching modes. Power trend lines are obtained to predict the actuation strain at any thickness stretch for a particular voltage. The present analysis opens the door to easily design the actuators, sensors and energy harvesting devices.
Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth
Lien, Kuo-Cheng; Mooney, Brian; DeLancey, John O. L.; Ashton-Miller, James A.
2005-01-01
OBJECTIVE: To develop a three-dimensional computer model to predict levator ani muscle stretch during vaginal birth. METHODS: Serial magnetic resonance images from a healthy nulliparous 34-year-old woman, published anatomic data, and engineering graphics software were used to construct a structural model of the levator ani muscles along with related passive tissues. The model was used to quantify pelvic floor muscle stretch induced during the second stage of labor as a model fetal head progressively engaged and then stretched the iliococcygeus, pubococcygeus, and puborectalis muscles. RESULTS: The largest tissue strain reached a stretch ratio (tissue length under stretch/original tissue length) of 3.26 in medial pubococcygeus muscle, the shortest, most medial and ventral levator ani muscle. Regions of the ileococcygeus, pubococcygeus, and puborectalis muscles reached maximal stretch ratios of 2.73, 2.50, and 2.28, respectively. Tissue stretch ratios were proportional to fetal head size: For example, increasing fetal head diameter by 9% increased medial pubococcygeus stretch by the same amount. CONCLUSION: The medial pubococcygeus muscles undergo the largest stretch of any levator ani muscles during vaginal birth. They are therefore at the greatest risk for stretch-related injury. PMID:14704241
Vazini Taher, Amir; Parnow, Abdolhossein
2017-05-01
Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.
Weise, Louis D.; Panfilov, Alexander V.
2013-01-01
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning. PMID:23527160
Weise, Louis D; Panfilov, Alexander V
2013-01-01
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.
Paxton, Jennifer Z.; Hagerty, Paul; Andrick, Jonathan J.
2012-01-01
Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology. PMID:21902469
ERIC Educational Resources Information Center
Philips, Gary T.; Sherff, Carolyn M.; Menges, Steven A.; Carew, Thomas J.
2011-01-01
The defensive withdrawal reflexes of "Aplysia californica" have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have…
ERIC Educational Resources Information Center
Warin, Jo
2011-01-01
This article draws on the articulation of a value for reflexivity that has accumulated within qualitative methods debates in the past decade. It demonstrates how reflexivity is interwoven with the concept of ethical mindfulness. The argument has developed from a consideration of the ethical dilemmas that were a salient aspect of an ongoing…
Bodily, Mandy; McMullen, Kathleen M; Russo, Anthony J; Kittur, Nupur D; Hoppe-Bauer, Joan; Warren, David K
2013-08-01
Discontinuation of reflex testing of stool submitted for Clostridium difficile testing for vancomycin-resistant enterococci (VRE) led to an increase in the number of patients with healthcare-associated VRE bacteremia and bacteriuria (0.21 vs 0.36 cases per 1,000 patient-days; P<.01). Cost-benefit analysis showed reflex screening and isolation of VRE reduced hospital costs.
Reflex Responses to Ligament Loading: Implications for Knee Joint Stability
2001-10-25
white noise approach", Prentice-Hall".:, 1978. [15] B. Grenfield and B. Wyke, "Reflex innervation of the temporo - mandibular joint .". Nature. 211(52...selective, depending on the magnitude of the angular perturbation. Keywords - Reflex, Periarticular tissue afferents, Joint stability I...INTRODUCTION Traditionally, joint stability has been considered to be purely mechanical in origin, with little or no consideration of neuromuscular
Reflex responses of paraspinal muscles to tapping
Dimitrijevic, M R; Gregoric, M R; Sherwood, A M; Spencer, W A
1980-01-01
Erector spinae reflex studies in healthy subjects revealed two responses: a 12·0±1·6 ms latency, oligosynaptic response, and a 30 to 50 ms latency response with polysynaptic reflex characteristics. There was a silent period after the first and second responses. The effect of limb position, trunk, neck, postural changes, Jendrassik manoeuvre and vibration on both responses were also evaluated. PMID:7217957
Reflexes from pulmonary arterial baroreceptors in dogs: interaction with carotid sinus baroreceptors
Moore, Jonathan P; Hainsworth, Roger; Drinkhill, Mark J
2011-01-01
Abstract In contrast to the reflex vasodilatation occurring in response to stimulation of baroreceptors in the aortic arch, carotid sinuses and coronary arteries, stimulation of receptors in the wall of pulmonary arteries results in reflex systemic vasoconstriction. It is rare for interventions to activate only one reflexogenic region, therefore we investigated how these two types of reflexes interact. In anaesthetized dogs connected to cardiopulmonary bypass, reflexogenic areas of the carotid sinuses, aortic arch and coronary arteries and the pulmonary artery were subjected to independently controlled pressures. Systemic perfusion pressure (SPP) measured in the descending aorta (constant flow) provided an index of systemic vascular resistance. In other experiments, sympathetic efferent neural activity was recorded in fibres dissected from the renal nerve (RSNA). Physiological increases in pulmonary arterial pressure (PAP) induced significant increases in SPP (+39.1 ± 10.4 mmHg) and RSNA (+17.6 ± 2.2 impulses s−1) whereas increases in carotid sinus pressure (CSP) induced significant decreases in SPP (−42.6 ± 10.8 mmHg) and RSNA (−42.8 ± 18.2 impulses s−1) (P < 0.05 for each comparison; paired t test). To examine possible interactions, PAP was changed at different levels of CSP in both studies. With CSP controlled at 124 ± 2 mmHg, the threshold, ‘set point’ and saturation pressures of the PAP–SPP relationship were higher than those with CSP at 60 ± 1 mmHg; this rightward shift was associated with a significant decrease in the reflex gain. Similarly, increasing CSP produced a rightward shift of the PAP–RSNA relationship, although the effect on reflex gain was inconsistent. Furthermore, the responses to changes in CSP were influenced by setting PAP at different levels; increasing the level of PAP from 5 ± 1 to 33 ± 3 mmHg significantly increased the set point and threshold pressures of the CSP–SPP relationship; the reflex gain was not affected. These results indicate the existence of interaction between pulmonary arterial and carotid sinus baroreceptor reflexes; physiological and pathological states that alter the stimulus to one may alter the reflex responses from the other. PMID:21690195
The relevance of stretch intensity and position—a systematic review
Apostolopoulos, Nikos; Metsios, George S.; Flouris, Andreas D.; Koutedakis, Yiannis; Wyon, Matthew A.
2015-01-01
Stretching exercises to increase the range of motion (ROM) of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair, and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS), and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups: athletes (24), clinical (29), elderly (12), and general population (87). The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance. PMID:26347668
Sekir, U; Arabaci, R; Akova, B; Kadagan, S M
2010-04-01
The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.
Park, Kyue-Nam; Kwon, Oh-Yun; Weon, Jong-Hyuck; Choung, Sung-Dae; Kim, Si-Hyun
2014-01-01
The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key PointsLocal cryotherapy (LC) decreased the uncomfortable stretch sensation, and increased the pressure pain threshold (PPT) of infraspinatus and posterior deltoid muscles in subjects with posterior shoulder tightness.Decreased stretch sensation by LC without passive stretching could improve the passive and active ROM of internal rotation and horizontal adduction in subjects with posterior shoulder tightness, similar to cross-body stretch.LC can be an alternative method to increase extensibility when individuals with posterior shoulder tightness have high stretch sensitivity and low PPT in the infraspinatus and posterior deltoid muscles.
Park, Kyue-nam; Kwon, Oh-yun; Weon, Jong-hyuck; Choung, Sung-dae; Kim, Si-hyun
2014-01-01
The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key Points Local cryotherapy (LC) decreased the uncomfortable stretch sensation, and increased the pressure pain threshold (PPT) of infraspinatus and posterior deltoid muscles in subjects with posterior shoulder tightness. Decreased stretch sensation by LC without passive stretching could improve the passive and active ROM of internal rotation and horizontal adduction in subjects with posterior shoulder tightness, similar to cross-body stretch. LC can be an alternative method to increase extensibility when individuals with posterior shoulder tightness have high stretch sensitivity and low PPT in the infraspinatus and posterior deltoid muscles. PMID:24570610
Stretch marks can appear when there is rapid stretching of the skin. The marks appear as parallel ... often disappear after the cause of the skin stretching is gone. Avoiding rapid weight gain helps reduce ...
Le Guen, Morgan; Naline, Emmanuel; Grassin-Delyle, Stanislas; Devillier, Philippe; Faisy, Christophe
2015-01-01
Background Mechanical ventilation may induce harmful effects in the airways of critically ill patients. Nevertheless, the effects of cyclic stretching caused by repetitive inflation-deflation of the bronchial compartment have not been well characterized in humans. The objective of the present study was to assess the effectiveness of a load-imposing device for the cyclic stretching of human bronchi. Methods Intact bronchial segments were removed from 128 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchi were stretched repetitively and cyclically with a motorized transducer. The peak force imposed on the bronchi was set to 80% of each individual maximum contraction in response to acetylcholine and the minimal force corresponded to the initial basal tone before stretching. A 1-min cycle (stretching for 15 sec, relaxing for 15 sec and resting for 30 sec) was applied over a time period ranging from 5 to 60 min. The device's performance level was assessed and the properties of the stretched bronchi were compared with those of paired, non-stretched bronchi. Results Despite the intrinsic capacities of the device, the targets of the tension adjustments remained variable for minimal tension (156–178%) while the peak force set point was unchanged (87–115%). In the stretched bronchi, a time-dependent rise in basal tone (P <.05 vs. non-stretched) was apparent after as little as 5 min of cyclic stretching. The stretch-induced rise in basal tone continued to increase (P <.01) after the stretching had ended. Only 60 min of cyclic stretching was associated with a significant (P <.05) increase in responsiveness to acetylcholine, relative to non-stretched bronchi. Conclusions Low-frequency, low-force, cyclic loading of human bronchi is associated with elevated basal tone and acetylcholine responsiveness. The present experimental model is likely to be a useful tool for future investigations of the bronchial response to repetitive stress during mechanical ventilation. PMID:26011598
Bogdanis, Gregory C; Donti, Olyvia; Tsolakis, Charilaos; Smilios, Ilias; Bishop, David J
2017-02-23
This study examined changes in countermovement jump (CMJ) height after an intermittent or a continuous static stretching protocol of equal total duration. Sixteen male, elite-level gymnasts performed 90 s of intermittent (3 x 30 s with 30 s rest) or continuous stretching (90 s) of the quadriceps muscle. A single-leg stretching and jumping design was used, with the contra-lateral limb serving as a control. The same individuals performed both conditions with alternate legs in a randomized, counterbalanced order. One leg CMJ height was measured for the stretched and the control leg after warm-up, immediately after stretching, and at regular intervals for 10 min after stretching. Range of motion (ROM) of the hip and knee joints was measured before, after, and 10 min post-stretching. Compared to the control leg, intermittent stretching increased CMJ height by 8.1±2.0%, 4 min into recovery (+2.2±2.0 cm, 95%CI: 1.0-3.4 cm, p=0.001), while continuous stretching decreased CMJ height by 17.5±3.3% immediately after (-2.9±1.7 cm, 95%CI: -2.0 to -3.7 cm, p=0.001) and by 12.0±2.7% one min after stretching (-2.2±2.1 cm, 95%CI: -1.2 to -3.2 cm, p=0.001). The increases in hip (2.9 and 3.6, p=0.001. d=2.4) and knee joint ROM (5.1 and 6.1, p=0.001. d=0.85) after the intermittent and continuous stretching protocols were not different. The opposite effects of intermittent vs. continuous stretching on subsequent CMJ performance suggests that stretching mode is an important variable when examining the acute effects of static stretching on performance in flexibility-trained athletes.
Lamellar Thickness and Stretching Temperature Dependency of Cavitation in Semicrystalline Polymers
Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng
2014-01-01
Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely “no cavitation” for the quenched sample with the thinnest lamellae where only shear yielding occurred, “cavitation with reorientation” for the samples stretched at lower temperatures and samples with thicker lamellae, and “cavitation without reorientation” for samples with thinner lamellae stretched at higher temperatures. The mode “cavitation with reorientation” occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of “cavitation without reorientation” appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher temperatures. The observed behavior of microscopic structural evolution in PB-1 stretched at different temperatures explains above mentioned changes in macroscopic strain-whitening phenomenon with increasing in stretching temperature and stress-strain curves. PMID:24820772
Morrin, Niamh; Redding, Emma
2013-01-01
The aim of this study was to examine the acute effects of static stretching (SS), dynamic stretching (DS), and a combined (static and dynamic) stretch protocol on vertical jump (VJ) height, balance, and range of motion (ROM) in dancers. A no-stretch (NS) intervention acted as the control condition. It was hypothesized that the DS and combination stretch protocols would have more positive effects on performance indicators than SS and NS, and SS would have negative effects as compared to the NS condition. Ten trained female dancers (27 ± 5 years of age) were tested on four occasions. Each session began with initial measurements of hamstring ROM on the dominant leg. The participants subsequently carried out a cardiovascular (CV) warm-up, which was followed by one of the four randomly selected stretch conditions. Immediately after the stretch intervention the participants were tested on VJ performance, hamstring ROM, and balance. The data showed that DS (p < 0.05) and the combination stretch (p < .05) produced significantly greater VJ height scores as compared to SS, and the combination stretch demonstrated significantly enhanced balance performance as compared to SS (p < 0.05). With regard to ROM, a one-way ANOVA indicated that SS and the combination stretch displayed significantly greater changes in ROM than DS (p < 0.05). From comparison of the stretch protocols used in the current study, it can be concluded that SS does not appear to be detrimental to a dancer's performance, and DS has some benefits but not in all three key area's tested, namely lower body power (VJ height), balance, and range of motion. However, combination stretching showed significantly enhanced balance and vertical jump height scores and significantly improved pre-stretch and post-stretch ROM values. It is therefore suggested that a combined warm-up protocol consisting of SS and DS should be promoted as an effective warm-up for dancers.
Manipulation of sensory input can improve stretching outcomes.
Capobianco, Robyn A; Almuklass, Awad M; Enoka, Roger M
2018-02-01
The primary purpose of our study was to assess the influence of modulating sensory input with either transcutaneous electrical nerve stimulation (TENS) or self-massage with therapy balls on the maximal range of motion (ROM) about the ankle joint when stretching the calf muscles. We also investigated the influence of these two conditions on the force capacity and force control of plantar flexor muscles. Twenty healthy adults (25 ± 3 yr) performed three sessions of ankle plantar flexor stretching (three stretches of 30 s each): stretching alone (SS), stretching with concurrent TENS (TENS), and stretching after self-massage using therapy balls (SM). TENS was applied for 60 s prior to and during each stretch, and SM was performed for 60 s prior to each of the three stretches. Maximal voluntary contraction (MVC) torque and force steadiness at 20% MVC were recorded before and at 15 min after the final stretch. Ankle dorsiflexion ROM was assessed before, after, and at 5, 10, and 15 min after the last stretch. The increase in ROM was greater after SM (24%) than after SS (13%) and TENS (9%; p < .001). Maximal discomfort level (0-10 VAS) during stretching was similar for all conditions. MVC torque increased after SM only (p < .001, Cohen's D = 1.5): SM, 16%; SS, -1%; TENS, -3%. Force steadiness did not change. The sensory fibres that contribute to stretch tolerance were engaged by self-massage but not by TENS, resulting in greater increases in flexibility and MVC torque after self-massage.
Chen, Yun; Pasapera, Ana M.; Koretsky, Alan P.; Waterman, Clare M.
2013-01-01
Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch. PMID:23754369
Ocular screening tests of elementary school children
NASA Technical Reports Server (NTRS)
Richardson, J.
1983-01-01
This report presents an analysis of 507 abnormal retinal reflex images taken of Huntsville kindergarten and first grade students. The retinal reflex images were obtained by using an MSFC-developed Generated Retinal Reflex Image System (GRRIS) photorefractor. The system uses a 35 mm camera with a telephoto lens with an electronic flash attachment. Slide images of the eyes were examined for abnormalities. Of a total of 1835 students screened for ocular abnormalities, 507 were found to have abnormal retinal reflexes. The types of ocular abnormalities detected were hyperopia, myopia, astigmatism, esotropia, exotropia, strabismus, and lens obstuctions. The report shows that the use of the photorefractor screening system is an effective low-cost means of screening school children for abnormalities.
Device for rapid quantification of human carotid baroreceptor-cardiac reflex responses
NASA Technical Reports Server (NTRS)
Sprenkle, J. M.; Eckberg, D. L.; Goble, R. L.; Schelhorn, J. J.; Halliday, H. C.
1986-01-01
A new device has been designed, constructed, and evaluated to characterize the human carotid baroreceptor-cardiac reflex response relation rapidly. This system was designed for study of reflex responses of astronauts before, during, and after space travel. The system comprises a new tightly sealing silicon rubber neck chamber, a stepping motor-driven electrodeposited nickel bellows pressure system, capable of delivering sequential R-wave-triggered neck chamber pressure changes between +40 and -65 mmHg, and a microprocessor-based electronics system for control of pressure steps and analysis and display of responses. This new system provokes classic sigmoid baroreceptor-cardiac reflex responses with threshold, linear, and saturation ranges in most human volunteers during one held expiration.
Introversion and individual differences in middle ear acoustic reflex function.
Bar-Haim, Yair
2002-10-01
A growing body of psychophysiological evidence points to the possibility that individual differences in early auditory processing may contribute to social withdrawal and introverted tendencies. The present study assessed the response characteristics of the acoustic reflex arc of introverted-withdrawn and extraverted-sociable individuals. Introverts displayed a greater incidence of abnormal middle ear acoustic reflexes and lower acoustic reflex amplitudes than extraverts. These findings were strongest for stimuli presented at a frequency of 2000 Hz. Results are discussed in light of the controversy concerning the anatomic loci (peripheral vs. central neuronal activity) of the individual differences between introverts and extraverts in early auditory processing. Copyright 2002 Elsevier Science B.V.
Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji
2016-04-01
[Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.
Frequency and peak stretch magnitude affect alveolar epithelial permeability.
Cohen, T S; Cavanaugh, K J; Margulies, S S
2008-10-01
The present study measured stretch-induced changes in transepithelial permeability to uncharged tracers (1.5-5.5 A) using cultured monolayers of alveolar epithelial type-I like cells. Cultured alveolar epithelial cells were subjected to uniform cyclic (0, 0.25 and 1.0 Hz) biaxial stretch from 0% to 12, 25 or 37% change in surface area (DeltaSA) for 1 h. Significant changes in permeability of cell monolayers were observed when stretched from 0% to 37% DeltaSA at all frequencies, and from 0% to 25% DeltaSA only at high frequency (1 Hz), but not at all when stretched from 0% to 12% DeltaSA compared with unstretched controls. At stretch oscillation amplitudes of 25 and 37% DeltaSA, imposed at 1 Hz, tracer permeability increased compared with that at 0.25 Hz. Cells subjected to a single stretch cycle at 37% DeltaSA (0.25 Hz), to simulate a deep sigh, were not distinguishable from unstretched controls. Reducing stretch oscillation amplitude while maintaining a peak stretch of 37% DeltaSA (0.25 Hz) via the application of a simulated post-end-expiratory pressure did not protect barrier properties. In conclusion, peak stretch magnitude and stretch frequency were the primary determining factors for epithelial barrier dysfunction, as opposed to oscillation amplitude.
Stretching Safely and Effectively
... shown that stretching immediately before an event weakens hamstring strength. Instead of static stretching, try performing a " ... If you play soccer, for instance, stretch your hamstrings as you're more vulnerable to hamstring strains. ...
Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M
2018-05-15
In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Unilateral Plantar Flexors Static-Stretching Effects on Ipsilateral and Contralateral Jump Measures
da Silva, Josinaldo Jarbas; Behm, David George; Gomes, Willy Andrade; Silva, Fernando Henrique Domingues de Oliveira; Soares, Enrico Gori; Serpa, Érica Paes; Vilela Junior, Guanis de Barros; Lopes, Charles Ricardo; Marchetti, Paulo Henrique
2015-01-01
The aim of this study was to evaluate the acute effects of unilateral ankle plantar flexors static-stretching (SS) on the passive range of movement (ROM) of the stretched limb, surface electromyography (sEMG) and single-leg bounce drop jump (SBDJ) performance measures of the ipsilateral stretched and contralateral non-stretched lower limbs. Seventeen young men (24 ± 5 years) performed SBDJ before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) unilateral ankle plantar flexor SS (6 sets of 45s/15s, 70-90% point of discomfort). SBDJ performance measures included jump height, impulse, time to reach peak force, contact time as well as the sEMG integral (IEMG) and pre-activation (IEMGpre-activation) of the gastrocnemius lateralis. Ankle dorsiflexion passive ROM increased in the stretched limb after the SS (pre-test: 21 ± 4° and post-test: 26.5 ± 5°, p < 0.001). Post-stretching decreases were observed with peak force (p = 0.029), IEMG (P<0.001), and IEMGpre-activation (p = 0.015) in the stretched limb; as well as impulse (p = 0.03), and jump height (p = 0.032) in the non-stretched limb. In conclusion, SS effectively increased passive ankle ROM of the stretched limb, and transiently (less than 10 minutes) decreased muscle peak force and pre-activation. The decrease of jump height and impulse for the non-stretched limb suggests a SS-induced central nervous system inhibitory effect. Key points When considering whether or not to SS prior to athletic activities, one must consider the potential positive effects of increased ankle dorsiflexion motion with the potential deleterious effects of power and muscle activity during a simple jumping task or as part of the rehabilitation process. Since decreased jump performance measures can persist for 10 minutes in the stretched leg, the timing of SS prior to performance must be taken into consideration. Athletes, fitness enthusiasts and therapists should also keep in mind that SS one limb has generalized effects upon contralateral limbs as well. PMID:25983580
Code of Federal Regulations, 2014 CFR
2014-10-01
...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...
Code of Federal Regulations, 2012 CFR
2012-10-01
...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...
Code of Federal Regulations, 2013 CFR
2013-10-01
...-inch (8.3 cm) square stretch mesh (as measured between the centers of opposite knots when stretched taut) or 33/4-inch (9.5 cm) diamond stretch mesh for trawls and 27/8-inch (7.3 cm) stretch mesh for..., in the EEZ when using a mesh size less than 3 1/4-inch (8.3 cm) square stretch mesh (as measured...
The frequency of buccopalpebral reflex in Parkinson disease.
Eser, Hülya; Ünal, Yasemin; Kutlu, Gülnihal; Öcal, Ruhsen; İnan, Levent Ertuğrul
2016-11-17
This study aimed to define the frequency of a primitive reflex, the buccopalpebral reflex (BPR), and its association with the clinical situation in patients with Parkinson disease. Between May 2010 and May 2011, 222 patients, 115 with Parkinson disease and 107 patients without any sign of neurodegenerative disease, were included in the study. All included patients were examined for BPR and snout reflex and were also evaluated with the Mini Mental State Examination. All patients with Parkinson disease were classified with the Unified Parkinson's Disease Rating Scale (UPDRS) and the Hoehn and Yahr Score to determine their clinical severity. Sixteen patients with Parkinson disease (13.9%) had a BPR (+) and 4 patients in the control group (3.7%) (P < 0.001). The UPDRS score, UPDRS daily life activities score, and UPDRS motor system score were all higher in the group with BPR (+). All patients with a BPR also had a positive snout reflex. BPR is more frequent in patients with Parkinson disease than in patients without a neurodegenerative disease.
Kathe, Claudia; Hutson, Thomas Haynes; McMahon, Stephen Brendan; Moon, Lawrence David Falcon
2016-10-19
Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity. Neurotrophin-3 normalized the short latency Hoffmann reflex to a treated hand muscle as well as low threshold polysynaptic spinal reflexes involving afferents from other treated muscles. Neurotrophin-3 also enhanced locomotor recovery. Furthermore, the balance of inhibitory and excitatory boutons in the spinal cord and the level of an ion co-transporter in motor neuron membranes required for normal reflexes were normalized. Our findings pave the way for Neurotrophin-3 as a therapy that treats the underlying causes of spasticity and not only its symptoms.
Does diurnal variation in cough reflex testing exist in healthy young adults?
Perry, Sarah; Huckabee, Maggie-Lee
2017-05-01
The aim of this study was to investigate whether diurnal variation in cough reflex sensitivity exists in healthy young adults when a tidal-breathing method is used. Fifty-three participants (19-37 years) underwent cough reflex testing on two occasions: once in the morning (between 9 am - midday) and once in the afternoon (between 2-5 pm). The order of testing was counter-balanced. Within each assessment, participants inhaled successively higher citric acid concentrations via a facemask, with saline solution randomly interspersed to control for a placebo response. The lowest concentration that elicited a reflexive cough response was recorded. Morning cough thresholds (mean=0.6mol/L) were not different from afternoon cough thresholds (mean=0.6mol/L), p=0.16, T=101, r=-0.14. We found no evidence of diurnal variability in cough reflex testing. There was, however, an order effect irrespective of time of day, confirming that healthy participants are able to volitionally modulate their cough response. Copyright © 2017 Elsevier B.V. All rights reserved.
[Early diagnosis and prognosis evaluation of Bell palsy with blink reflex ].
Xie, Dan-dan; Li, Xiao-song; Liu, Yuan-yuan
2014-11-01
To determine the value of blink reflex in early diagnosis and prognosis evaluation of Bell palsy. Blink reflex and facial nerve conduction were examined in 58 patients with Bell palsy within one week after symptom onset. The patients without response of R1 , R2 and R2 ' waves were classified as complete efferent retardarce (Group A, 30 cases), and those with response of R1 , R2 and R2 ' waves were classified as incomplete efferent anomalies (Group B, 28 cases). The clinical outcomes after three months of systemic therapy were evaluated using the House-Blackmann (H-B) scale. Efferent anomalies of blink reflex occurred in ail of the 58 patients. Abnormal results of facial nerve conduction appeared in 23 (39. 7%) patients. The three months therapy was effective in 93% patients in Group B and 70% patients in Group A (P<0. 05). Blink reflex can play a significant role in early diagnosis and prognosis evaluation of Bell palsy.
Frahm, Ken S; Jensen, Michael B; Farina, Dario; Andersen, Ole K
2012-08-01
The human nociceptive withdrawal reflex is typically assessed using surface electromyography (sEMG). Based on sEMG, the reflex receptive field (RRF) can be mapped. However, EMG crosstalk can cause erroneous results in the RRF determination. Single differential (SD) vs. double differential (DD) surface EMG were evaluated. Different electrode areas and inter-electrode-distances (IED) were evaluated. The reflexes were elicited by electrical stimulation of the sole of the foot. EMG was obtained from both tibialis anterior (TA) and soleus (SOL) using both surface and intramuscular EMG (iEMG). The amount of crosstalk was significantly higher in SD recordings than in DD recordings (P < 0.05). Crosstalk increased when electrode measuring area increased (P < 0.05) and when IED increased (P < 0.05). Reflex detection sensitivity decreases with increasing measuring area and increasing IED. These results stress that for determination of RRF and similar tasks, DD recordings should be applied. Copyright © 2012 Wiley Periodicals, Inc.
Is temporal summation of pain and spinal nociception altered during normal aging?
Marouf, Rafik; Piché, Mathieu; Rainville, Pierre
2015-01-01
Abstract This study examines the effect of normal aging on temporal summation (TS) of pain and the nociceptive flexion reflex (RIII). Two groups of healthy volunteers, young and elderly, received transcutaneous electrical stimulation applied to the right sural nerve to assess pain and the nociceptive flexion reflex (RIII-reflex). Stimulus intensity was adjusted individually to 120% of RIII-reflex threshold, and shocks were delivered as a single stimulus or as a series of 5 stimuli to assess TS at 5 different frequencies (0.17, 0.33, 0.66, 1, and 2 Hz). This study shows that robust TS of pain and RIII-reflex is observable in individuals aged between 18 and 75 years and indicates that these effects are comparable between young and older individuals. These results contrast with some previous findings and imply that at least some pain regulatory processes, including TS, may not be affected by normal aging, although this may vary depending on the method. PMID:26058038
Krishnan, Ramaswamy; Canović, Elizabeth Peruski; Iordan, Andreea L.; Rajendran, Kavitha; Manomohan, Greeshma; Pirentis, Athanassios P.; Smith, Michael L.; Butler, James P.; Fredberg, Jeffrey J.
2012-01-01
Mechanical stretch plays an important role in regulating shape and orientation of the vascular endothelial cell. This morphological response to stretch is basic to angiogenesis, neovascularization, and vascular homeostasis, but mechanism remains unclear. To elucidate mechanisms, we used cell mapping rheometry to measure traction forces in primary human umbilical vein endothelial cells subjected to periodic uniaxial stretches. Onset of periodic stretch of 10% strain amplitude caused a fluidization response typified by attenuation of traction forces almost to zero. As periodic stretch continued, the prompt fluidization response was followed by a slow resolidification response typified by recovery of the traction forces, but now aligned along the axis perpendicular to the imposed stretch. Reorientation of the cell body lagged reorientation of the traction forces, however. Together, these observations demonstrate that cellular reorientation in response to periodic stretch is preceded by traction attenuation by means of cytoskeletal fluidization and subsequent traction recovery transverse to the stretch direction by means of cytoskeletal resolidification. PMID:22700796
Effect of Acceleration Frequency on Spatial Orientation Mechanisms
2010-09-30
by aircraft, ground vehicle, and ship motion. Method. With controlled laboratory off-vertical axis rotation (OVAR), gaze reflexes respond to low...finding that vestibular gaze reflexes become altered at the same frequency where OVAR becomes most sickening will have important implications for...the collected data, a revised crossover rate of 0.42 Hz was extrapolated as the most probable spin frequency for inducing gaze reflex changes with the
Reflexivity in the Interstices: A Tale of Reflexivity at Work in, during, and behind the Scenes
ERIC Educational Resources Information Center
Wickens, Corrine M.; Cohen, James A.; Walther, Carol S.
2017-01-01
This article is a story of how the authors came to make sense of the significance of those words in relation to gender, race/ethnicity, and citizenship in writing a manuscript about L[subscript 1]L[subscript 2] acquisition. It is a tale about how Reflexivity wove itself into the conversations, into the writing, into the in-between spaces, the…
Studies of the vestibulo-ocular reflex on STS 4, 5 and 6
NASA Technical Reports Server (NTRS)
Thornton, William E.; Pool, Sam L.; Moore, Thomas P.; Uri, John J.
1988-01-01
The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results.
Angell-James, Jennifer E.; Daly, M. de Burgh
1973-01-01
1. The effects on respiration and pulse interval of stimulation of the carotid body chemoreceptors before, during and after stimulation of receptors in the nose have been studied in the anaesthetized dog. 2. Stimulation of a carotid body by infusion of cyanide into the ipsi-lateral common carotid artery causes hyperpnoea and either an increase, decrease or no change in pulse interval. 3. Excitation of receptors in the nasal mucosa leads to reflex apnoea or a reduction in breathing, and an increase in pulse interval. 4. When the carotid bodies are excited by the same dose of cyanide during stimulation of the nasal mucosa, the chemoreceptor-respiratory response is abolished or reduced in size compared with the control effect. On the other hand, the chemoreceptor-cardio-inhibitory response is considerably enhanced. 5. The potentiated cardio-inhibitory response of combined chemoreceptor and nasal stimulation could not be accounted for by the change in pulmonary ventilation, arterial PO2 or PCO2, or mean arterial blood pressure. 6. These results indicate that excitation of the nasal reflex inhibits the chemoreceptor-respiratory reflex response but facilitates the chemoreceptor-cardio-inhibitory reflex response. The possible sites of these interactions between the nasal and chemoreceptor reflexes are discussed. PMID:4689961
Reflex seizures in Rett syndrome.
Roche Martínez, Ana; Alonso Colmenero, M Itziar; Gomes Pereira, Andreia; Sanmartí Vilaplana, Francesc X; Armstrong Morón, Judith; Pineda Marfa, Mercé
2011-12-01
Reflex seizures are a rare phenomenon among epileptic patients, in which an epileptic discharge is triggered by various kinds of stimuli (visual, auditory, tactile or gustatory). Epilepsy is common in Rett syndrome patients (up to 70%), but to the authors' knowledge, no pressure or eating-triggered seizures have yet been reported in Rett children. We describe three epileptic Rett patients with reflex seizures, triggered by food intake or proprioception. One patient with congenital Rett Sd. developed infantile epileptic spasms at around seven months and two patients with classic Rett Sd. presented with generalised tonic-clonic seizures at around five years. Reflex seizures appeared when the patients were teenagers. The congenital-Rett patient presented eating-triggered seizures at the beginning of almost every meal, demonstrated by EEG recording. Both classic Rett patients showed self-provoked pressure -triggered attacks, influenced by stress or excitement. Non-triggered seizures were controlled with carbamazepine or valproate, but reflex seizures did not respond to antiepileptic drugs. Risperidone partially improved self-provoked seizures. When reflex seizures are suspected, reproducing the trigger during EEG recording is fundamental; however, self-provoked seizures depend largely on the patient's will. Optimal therapy (though not always possible) consists of avoiding the trigger. Stress modifiers such as risperidone may help control self-provoked seizures.
Martin, B J; Roll, J P; Gauthier, G M
1984-01-01
Sensorimotor system performance is known to be altered by vibration applied locally to tendons and muscles or to the whole body. The present study is an attempt to determine the influence of vibration amplitude, acceleration, and frequency on the excitability of the motoneurons as evaluated by the amplitude of electrically induced spinal reflex response in man. The results show that a vibration applied to the legs of a seated subject (S) decreased the reflex response. The effect is directly related to the vibration intensity. The reflex amplitude is minimal in the 10-30 Hz range. At constant acceleration, the depressive effect decreased beyond 20-30 Hz while, at constant displacement amplitude, the reflex inhibition was almost constant throughout the frequency range of 20-60 Hz. These observations suggest that the diminution of the reflex response is mainly related to the amplitude of the vibration, regardless of the frequency. The results are interpreted in light of current knowledge of the effect of locally applied vibration on muscle tendons. The marked inhibition observed in the 10-30 Hz range, even with moderate intensity, suggests that particular attention should be devoted to avoid vibration in that frequency range in vehicles in order to prevent alteration of the performance of sensorimotor systems.
Nociceptive flexion reflexes during analgesic neurostimulation in man.
García-Larrea, L; Sindou, M; Mauguière, F
1989-11-01
Nociceptive flexion reflexes of the lower limbs (RIII responses) have been studied in 21 patients undergoing either epidural (DCS, n = 16) or transcutaneous (TENS, n = 5) analgesic neurostimulation (AN) for chronic intractable pain. Flexion reflex RIII was depressed or suppressed by AN in 11 patients (52.4%), while no modification was observed in 9 cases and a paradoxical increase during AN was evidenced in 1 case. In all but 2 patients, RIII changes were rapidly reversible after AN interruption. RIII depression was significantly associated with subjective pain relief, as assessed by conventional self-rating; moreover, in 2 patients it was possible to ameliorate the pain-suppressing effects of AN by selecting those stimulation parameters (intensity and frequency) that maximally depressed nociceptive reflex RIII. We recorded 2 cases of RIII attenuation after contralateral neurostimulation. AN appeared to affect nociceptive reflexes rather selectively, with no or very little effect on other cutaneous, non-nociceptive responses. Recording of RIII reflexes is relatively simple to implement as a routine paraclinical procedure. It facilitates the objective assessment of AN efficacy and may help to choose the most appropriate parameters of neurostimulation. In addition, RIII behavior in patients could be relevant to the understanding of some of the mechanisms involved in AN-induced pain relief.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gvozdikova, Z.M.
1962-01-01
Local irradiation tests were carried out on the spinal cord and the shin of rabbits for the purpose of obtaining more information on the direct and reflex action of radiation on the hypothalamic region. Of the 25 animals, 5 were used for control and each of the 2 groups of 10 animals was used for irradiating either the spinal cord or the shin. The hypothalamus was excited by means of electrodes. The amplitude of the current of the flexor action, their frequency, and the latent period of the bending reflex were determined. Hard x rays were directed on the lumbarmore » vertebrae and soft radiation was applied on the lower third portion of the leg, using a dose of 1000 r. It was found that in the case a strong depression of the spinal centers, irritation of the hypothalamus stimulates the reflex activity. Increase of the excitability of the subtubercular region seemed to be one of the reasons of the depression of spinal reflexes. Change of the state of hypothalamus, noticed after irradiation of the shin of the animals, points toward the reflex-type nature of this disturbance. (TTT)« less
Sugaya, Kimio; Nishijima, Saori; Miyazato, Minoru; Oda, Masami; Ogawa, Yoshihide
2006-10-01
The influence of the nucleus reticularis pontis oralis (PoO) on the pontine micturition center (PMC) and pontine urine storage center (PUSC) was examined in decerebrate cats by electrical and chemical stimulations of the PMC, PUSC or PoO. Microinjection of carbachol into the rostral and dorsolateral part of the PoO rapidly inhibited reflex micturition and external urethral sphincter (EUS) activity. After confirming the inhibition of reflex micturition and EUS activity by microinjection of carbachol into the PoO, intravenous injection of atropine sulfate or its microinjection into the PoO recovered both reflex micturition and EUS activity. Microinjection of carbachol into the PMC evoked micturition and then inhibited reflex micturition, but intravenous injection of atropine or its microinjection into the PoO recovered reflex micturition. After confi rming the inhibition of reflex micturition and EUS activity by microinjection of carbachol into the PoO, electrical stimulation of the PUSC enhanced EUS activity, but electrical stimulation of the PMC failed to evoke micturition. However, electrical stimulation of the PMC evoked micturition after microinjection of atropine into the PoO. These results suggest that the PoO strongly inhibits the PMC and less strongly inhibits the PUSC. Therefore, the PoO seems to be the pontine micturition inhibitory area.
Rubin, F; Simon, F; Verillaud, B; Herman, P; Kania, R; Hautefort, C
2018-06-01
There have been very few studies of the Video Head Impulse Test (VHIT) in patients with Menière's Disease (MD). Some reported 100% normal VHIT results, others not. These discrepancies may be due to differences in severity. The present study compared VHIT and caloric reflex test results in advanced unilateral definite MD. A prospective study included 37 consecutive patients, with a mean age of 56±12 years. Mean hearing loss was 59±18dB HL; 12 patients were subject to Tumarkin's otolithic crises. Abnormal caloric reflex was defined as ≥20% deficit, and abnormal VHIT as presence of saccades or <0.64 gain in vertical semicircular canals and <0.78 in horizontal canals. All patients had normal VHIT results, and 3 had normal caloric reflex; mean caloric reflex deficit was 45%. The present study is the only one to use the August 2015 updated definition of MD. The results showed that, outside of episodes of crisis, VHIT was normal during advanced unilateral definite MD, in contrast to abnormal caloric reflex. This feature could help distinguish MD from other inner ear diseases, and it would be interesting to try to confirm this hypothesis by studying MD patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Retrieval and Encoding Interference: Cross-Linguistic Evidence from Anaphor Processing
Laurinavichyute, Anna; Jäger, Lena A.; Akinina, Yulia; Roß, Jennifer; Dragoy, Olga
2017-01-01
The main goal of this paper was to disentangle encoding and retrieval interference effects in anaphor processing and thus to evaluate the hypothesis predicting that structurally inaccessible nouns (distractors) are not considered to be potential anaphor antecedents during language processing (Nicol and Swinney, 1989). Three self-paced reading experiments were conducted: one in German, comparing gender-unmarked reflexives and gender-marked pronouns, and two in Russian, comparing gender-marked and -unmarked reflexives. In the German experiment, no interference effects were found. In the first experiment in Russian, an unexpected reading times pattern emerged: in the condition where the distractor matched the gender of the reflexive's antecedent, reading of the gender-unmarked, but not the gender-marked reflexives was slowed down. The same reading times pattern was replicated in a second experiment in Russian where the order of the reflexive and the main verb was inverted. We conclude that the results of the two experiments in Russian are inconsistent with the retrieval interference account, but can be explained by encoding interference and additional semantic processing efforts associated with the processing of gender-marked reflexives. In sum, we found no evidence that would allow us to reject the syntax as an early filer account (Nicol and Swinney, 1989). PMID:28649216
The effects of team reflexivity on psychological well-being in manufacturing teams.
Chen, Jingqiu; Bamberger, Peter A; Song, Yifan; Vashdi, Dana R
2018-04-01
While the impact of team reflexivity (a.k.a. after-event-reviews, team debriefs) on team performance has been widely examined, we know little about its implications on other team outcomes such as member well-being. Drawing from prior team reflexivity research, we propose that reflexivity-related team processes reduce demands, and enhance control and support. Given the centrality of these factors to work-based strain, we posit that team reflexivity, by affecting these factors, may have beneficial implications on 3 core dimensions of employee burnout, namely exhaustion, cynicism, and inefficacy (reduced personal accomplishment). Using a sample of 469 unskilled manufacturing workers employed in 73 production teams in a Southern Chinese factory, we implemented a time lagged, quasi-field experiment, with half of the teams trained in and executing an end-of-shift team debriefing, and the other half assigned to a control condition and undergoing periodic postshift team-building exercises. Our findings largely supported our hypotheses, demonstrating that relative to team members assigned to the control condition, those assigned to the reflexivity condition experienced a significant improvement in all 3 burnout dimensions over time. These effects were mediated by control and support (but not demands) and amplified as a function of team longevity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Electromyographic reflexes evoked in human flexor carpi radialis by tendon vibration.
Cody, F W; Goodwin, C N; Richardson, H C
1990-10-01
The rectified, electromyographic (EMG) reflexes evoked in the voluntarily contracting flexor carpi radialis (FCR) muscle by vibration of its tendon were studied in healthy human subjects. Responses comprised a prominent, transient, short-latency (SL, 20-25 ms) increase in EMG, attributed to Ia mono- and/or oligo-synaptic action, followed by a series of less pronounced troughs and peaks of activity. Evidence of continuing Ia mono- or oligo-synaptic action was indicated by (i) the presence of small subpeaks, at vibration frequency, superimposed upon the excitatory components and (ii) the occurrence of a separate reduction in EMG, of consistent latency (ca. 30 ms), after cessation of stimulation. Progressively shortening the train of vibration from 29 cycles (at 145 Hz) to a single cycle significantly reduced net, excitatory reflex activity. Gradually increasing the level (10-50% maximum) of pre-existing voluntary contraction on top of which reflexes were elicited, by moderately prolonged (29 cycles) trains of vibration, resulted in small increases, in absolute terms, in SL peaks and in later, excitatory EMG activity. Excitatory reflexes, when normalised for pre-stimulus EMG, however, declined in an approximately hyperbolic manner with increasing background activity over this range. Thus, effective "automatic gain compensation" does not operate for vibration reflexes in FCR.
The ubiquitous reflex and its critics in post-revolutionary Russia.
Sirotkina, Irina
2009-03-01
In the last century, the reflex was more than a scientific concept: it was a cultural idiom that could be used to various aims--political, scholarly, and artistic. In Russia in the 1920s, the reflex became a ubiquitous notion and a current word, part of the revolutionary discourse and, finally, a password to modernity. Two major factors contributed to it: physiological theories of the reflex, widespread in Russia at the early twentieth-century, and the materialist philosophy backed after the Revolution by the Communist party. Everybody who wished to be modern and materialist, in conformity with the official communist views, had to refer to reflexes. Yet, even in this period, the concept was not unproblematic and was criticized by some scientists, philosophers, artists and even Party members. In the paper, I describe both the array of uses of the term and the criticism it received in political, scientific and artistic discourses. It is not uncommon that, taking their origins in culture and common language, scientific concepts later return there in the form of metaphors. Similarly, the reflex was made into a rigorous scientific concept in the nineteenth century but, in the next century, it circulated as a cultural idiom penetrating various areas of political, artistic and academic life.
Donti, Οlyvia; Papia, Konstantina; Toubekis, Argyris; Donti, Anastasia; Sands, William A; Bogdanis, Gregory C
2018-07-01
This study compared the acute and long-term effects of intermittent and continuous static stretching training on straight leg raise range of motion (ROM). Seventy-seven preadolescent female gymnasts were divided into a stretching (n = 57), and a control group (n = 20). The stretching group performed static stretching of the hip extensors of both legs, three times per week for 15 weeks. One leg performed intermittent (3 × 30 s with 30 s rest) while the other leg performed continuous stretching (90 s). ROM pre- and post-stretching was measured at baseline, on weeks 3, 6, 9, 12, 15 and after 2 weeks of detraining. ROM was increased during both intermittent and continuous stretching training, but remained unchanged in the control group. Intermittent stretching conferred a larger improvement in ROM compared to both continuous stretching and control from week 3, until the end of training, and following detraining (p = 0.045 to 0.001 and d = 0.80 to 1.41). During detraining, ROM after the intermittent protocol decreased (p = 0.001), while it was maintained after the continuous protocol (p = 0.36). Acute increases in ROM following the intermittent stretching were also larger than in the continuous (p = 0.038). Intermittent stretching was more effective than continuous, for both long-term and acute ROM enhancement in preadolescent female athletes.
Zhao, Lei; Sang, Chen; Yang, Chun; Zhuang, Fengyuan
2011-09-02
It has been documented that mitosis orientation (MO) is guided by stress fibers (SFs), which are perpendicular to exogenous cyclic uniaxial stretch. However, the effect of mechanical forces on MO and the mechanism of stretch-induced SFs reorientation are not well elucidated to date. In the present study, we used murine 3T3 fibroblasts as a model, to investigate the effects of uniaxial stretch on SFO and MO utilizing custom-made stretch device. We found that cyclic uniaxial stretch induced both SFs and mitosis directions orienting perpendicularly to the stretch direction. The F-actin and myosin II blockages, which resulted in disoriented SFs and mitosis directions under uniaxial stretch, suggested a high correlation between SFO and MO. Y27632 (10 μM), ML7 (50 μM, or 75 μM), and blebbistatin (50 μM, or 75 μM) treatments resulted in SFO parallel to the principle stretch direction. Upon stimulating and inhibiting the phosphorylation of myosin light chain (p-MLC), we observed a monotonic proportion of SFO to the level of p-MLC. These results suggested that the level of cell contraction is crucial to the response of SFs, either perpendicular or parallel, to the external stretch. Showing the possible role of cell contractility in tuning SFO under external stretch, our experimental data are valuable to understand the predominant factor controlling SFO response to exogenous uniaxial stretch, and thus helpful for improving mechanical models. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lilaonitkul, Watjana
2012-01-01
The medial-olivocochlear (MOC) acoustic reflex is thought to provide frequency-specific feedback that adjusts the gain of cochlear amplification, but little is known about how frequency specific the reflex actually is. We measured human MOC tuning through changes in stimulus frequency otoacoustic emissions (SFOAEs) from 40-dB-SPL tones at probe frequencies (fps) near 0.5, 1.0, and 4.0 kHz. MOC activity was elicited by 60-dB-SPL ipsilateral, contralateral, or bilateral tones or half-octave noise bands, with elicitor frequency (fe) varied in half-octave steps. Tone and noise elicitors produced similar results. At all probe frequencies, SFOAE changes were produced by a wide range of elicitor frequencies with elicitor frequencies near 0.7–2.0 kHz being particularly effective. MOC-induced changes in SFOAE magnitude and SFOAE phase were surprisingly different functions of fe: magnitude inhibition largest for fe close to fp, phase change largest for fe remote from fp. The metric ΔSFOAE, which combines both magnitude and phase changes, provided the best match to reported (cat) MOC neural inhibition. Ipsilateral and contralateral MOC reflexes often showed dramatic differences in plots of MOC effect vs. elicitor frequency, indicating that the contralateral reflex does not give an accurate picture of ipsilateral-reflex properties. These differences in MOC effects appear to imply that ipsilateral and contralateral reflexes have different actions in the cochlea. The implication of these results for MOC function, cochlear mechanics, and the production of SFOAEs are discussed. PMID:22190630
Kim, Jin-Kyoung; Park, Jung-Min; Lee, Cheol-Hee
2012-01-01
Background Although supplemental fentanyl has been widely used to blunt the hemodynamic responses to laryngoscopic intubation, its residual vagotonic effect may increase the risk of reflex bradycardia. We compared the incidence and severity of significant reflex bradycardia after a bolus injection of equivalent doses of fentanyl and remifentanil (control drug). Methods In this prospective, randomized, double-blind study, 220 adult patients undergoing major abdominal surgery were randomly assigned to receive fentanyl (1.5 µg/kg) or remifentanil (1.5 µg/kg). No anticholinergic prophylaxis was administered. Symptomatic reflex bradycardia was defined as a sudden decrease in heart rate to < 50 beats per minute (bpm) or to 50-59 bpm associated with a systolic arterial pressure < 70 mmHg in connection with surgical maneuvers. If bradycardia or hypotension developed, atropine or ephedrine was administered following a predefined treatment protocol. Results In total, 188 subjects (remifentanil, 95; fentanyl, 93) were included. The proportion of subjects with symptomatic reflex bradycardia in the fentanyl group was similar to that in the remifentanil group (30.1% vs. 28.4%, respectively). Atropine and/or ephedrine were needed similarly in both groups. The differences between the group of 55 patients who presented with symptomatic reflex bradycardia were not statistically significant with respect to the lowest heart rate, anesthetic depth-related data (bispectral index and end-tidal sevoflurane concentration), or the proportion of causative surgical maneuvers. Conclusions Fentanyl (1.5 µg/kg) administered intravenously during anesthetic induction is unlikely to increase the incidence and severity of significant reflex bradycardia in patients undergoing major abdominal surgery. PMID:23198032
FEFsem neuronal response during combined volitional and reflexive pursuit.
Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J
2017-05-01
Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations-whether the addition or subtraction of retinal input-may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals.
FEFsem neuronal response during combined volitional and reflexive pursuit
Bakst, Leah; Fleuriet, Jérome; Mustari, Michael J.
2017-01-01
Although much is known about volitional and reflexive smooth eye movements individually, much less is known about how they are coordinated. It is hypothesized that separate cortico-ponto-cerebellar loops subserve these different types of smooth eye movements. Specifically, the MT-MST-DLPN pathway is thought to be critical for ocular following eye movements, whereas the FEF-NRTP pathway is understood to be vital for volitional smooth pursuit. However, the role that these loops play in combined volitional and reflexive behavior is unknown. We used a large, textured background moving in conjunction with a small target spot to investigate the eye movements evoked by a combined volitional and reflexive pursuit task. We also assessed the activity of neurons in the smooth eye movement subregion of the frontal eye field (FEFsem). We hypothesized that the pursuit system would show less contribution from the volitional pathway in this task, owing to the increased involvement of the reflexive pathway. In accordance with this hypothesis, a majority of FEFsem neurons (63%) were less active during pursuit maintenance in a combined volitional and reflexive pursuit task than during purely volitional pursuit. Interestingly and surprisingly, the neuronal response to the addition of the large-field motion was highly correlated with the neuronal response to a target blink. This suggests that FEFsem neuronal responses to these different perturbations—whether the addition or subtraction of retinal input—may be related. We conjecture that these findings are due to changing weights of both the volitional and reflexive pathways, as well as retinal and extraretinal signals. PMID:28538993
Oxygen-conserving reflexes of the brain: the current molecular knowledge
Schaller, B; Cornelius, J F; Sandu, N; Ottaviani, G; Perez-Pinzon, M A
2009-01-01
Abstract The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called ‘oxygen-conserving reflexes’. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO2) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain. PMID:19438971
Antinociceptive reflex alteration in acute posttraumatic headache following whiplash injury.
Keidel, M; Rieschke, P; Stude, P; Eisentraut, R; van Schayck, R; Diener, H
2001-06-01
Brainstem-mediated antinociceptive inhibitory reflexes of the temporalis muscle were investigated in 82 patients (47 F, 35 M, mean age 28.3 years, SD 9.4) with acute posttraumatic headache (PH) following whiplash injury but without neurological deficits, bone injury of the cervical spine or a combined direct head trauma on average 5 days after the acceleration trauma. Latencies and durations of the early and late exteroceptive suppression (ES1 and ES2) and the interposed EMG burst (IE) of the EMG of the voluntarily contracted right temporalis muscle evoked by ipsilateral stimulation of the second and third branches of the trigeminal nerve were analyzed and compared to a cohort of 82 normal subjects (43 F, 39 M, mean age 27.7 years, SD 7.1). Highly significant reflex alterations were found in patients with PH with a shortening of ES2 duration with delayed onset and premature ending as the primary parameter of this study, a moderate prolongation of ES1 and IE duration and a delayed onset of IE. The latency of ES1 was not significantly changed. These findings indicate that acute PH in whiplash injury is accompanied by abnormal antinociceptive brainstem reflexes. We conclude that the abnormality of the trigeminal inhibitory temporalis reflex is based on a transient dysfunction of the brainstem-mediated reflex circuit mainly of the late polysynaptic pathways. The reflex abnormalities are considered as a neurophysiological correlate of the posttraumatic (cervico)-cephalic pain syndrome. They point to an altered central pain control in acute PH due to whiplash injury.
Distension of central great vein decreases sympathetic outflow in humans
Cui, Jian; Gao, Zhaohui; Blaha, Cheryl; Herr, Michael D.; Mast, Jessica
2013-01-01
Classic canine studies suggest that central great vein distension evokes an autonomic reflex tachycardia (Bainbridge reflex). It is unclear whether central venous distension in humans is a necessary and sufficient stimulus to evoke a reflex increase in heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA). Prior work from our laboratory suggests that limb venous distension evokes a reflex increase in BP and MSNA in humans. We hypothesized that in humans, compared with the limb venous distension, inferior vena cava (IVC) distension would evoke a less prominent increase in HR and MSNA. IVC distension (monitored with ultrasonography) was induced by two methods: 1) head-down tilt (HDT, N = 13); and 2) lower-body positive pressure (LBPP, N = 10). Two minutes of HDT induced IVC distension (Δ2.6 ± 0.2 mm, P < 0.001, ∼27% in cross-sectional area), slightly increased mean BP (Δ2.3 ± 0.7 mmHg, P = 0.005), decreased MSNA (Δ5.2 ± 0.8 bursts/min, P < 0.001, N = 10), and did not alter HR (P = 0.37). LBPP induced similar IVC distension, increased BP (Δ2.0 ± 0.7 mmHg, P < 0.01), and did not alter HR (P = 0.34). Thus central venous distension leads to a rapid increase in BP and a subsequent fall in MSNA. Central venous distension does not evoke either bradycardia or tachycardia in humans. The absence of a baroreflex-mediated bradycardia suggests that the Bainbridge reflex is engaged. Clearly, this reflex differs from the powerful sympathoexcitation peripheral venous distension reflex described in humans. PMID:23729210
Distension of central great vein decreases sympathetic outflow in humans.
Cui, Jian; Gao, Zhaohui; Blaha, Cheryl; Herr, Michael D; Mast, Jessica; Sinoway, Lawrence I
2013-08-01
Classic canine studies suggest that central great vein distension evokes an autonomic reflex tachycardia (Bainbridge reflex). It is unclear whether central venous distension in humans is a necessary and sufficient stimulus to evoke a reflex increase in heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA). Prior work from our laboratory suggests that limb venous distension evokes a reflex increase in BP and MSNA in humans. We hypothesized that in humans, compared with the limb venous distension, inferior vena cava (IVC) distension would evoke a less prominent increase in HR and MSNA. IVC distension (monitored with ultrasonography) was induced by two methods: 1) head-down tilt (HDT, N = 13); and 2) lower-body positive pressure (LBPP, N = 10). Two minutes of HDT induced IVC distension (Δ2.6 ± 0.2 mm, P < 0.001, ~27% in cross-sectional area), slightly increased mean BP (Δ2.3 ± 0.7 mmHg, P = 0.005), decreased MSNA (Δ5.2 ± 0.8 bursts/min, P < 0.001, N = 10), and did not alter HR (P = 0.37). LBPP induced similar IVC distension, increased BP (Δ2.0 ± 0.7 mmHg, P < 0.01), and did not alter HR (P = 0.34). Thus central venous distension leads to a rapid increase in BP and a subsequent fall in MSNA. Central venous distension does not evoke either bradycardia or tachycardia in humans. The absence of a baroreflex-mediated bradycardia suggests that the Bainbridge reflex is engaged. Clearly, this reflex differs from the powerful sympathoexcitation peripheral venous distension reflex described in humans.
ESO Reflex: a graphical workflow engine for data reduction
NASA Astrophysics Data System (ADS)
Hook, Richard; Ullgrén, Marko; Romaniello, Martino; Maisala, Sami; Oittinen, Tero; Solin, Otto; Savolainen, Ville; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Ballester, Pascal; Gabasch, Armin; Izzo, Carlo
ESO Reflex is a prototype software tool that provides a novel approach to astronomical data reduction by integrating a modern graphical workflow system (Taverna) with existing legacy data reduction algorithms. Most of the raw data produced by instruments at the ESO Very Large Telescope (VLT) in Chile are reduced using recipes. These are compiled C applications following an ESO standard and utilising routines provided by the Common Pipeline Library (CPL). Currently these are run in batch mode as part of the data flow system to generate the input to the ESO/VLT quality control process and are also exported for use offline. ESO Reflex can invoke CPL-based recipes in a flexible way through a general purpose graphical interface. ESO Reflex is based on the Taverna system that was originally developed within the UK life-sciences community. Workflows have been created so far for three VLT/VLTI instruments, and the GUI allows the user to make changes to these or create workflows of their own. Python scripts or IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. Taverna is intended for use with web services and experiments using ESO Reflex to access Virtual Observatory web services have been successfully performed. ESO Reflex is the main product developed by Sampo, a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal was to look into the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Sampo concluded early in 2008. This contribution will describe ESO Reflex and show several examples of its use both locally and using Virtual Observatory remote web services. ESO Reflex is expected to be released to the community in early 2009.
The role of the superior laryngeal nerve in esophageal reflexes
Medda, B. K.; Jadcherla, S.; Shaker, R.
2012-01-01
The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not a motor nerve for any of these reflexes, the role of the SLN in control of these reflexes is sensory in nature only. PMID:22403790
Olfactory-corporeal reflex: description of a new reflex and its role in the erectile process.
Shafik, A
1997-01-01
The dog approaches the bitch and smells the vulva. The relationship which seems to exist between a special smell in the bitch and sexual arousal in the male dog was investigated. 12 male dogs and 25 bitches were studied. The bitches were divided into five equal groups, each representing 1 of the 5 phases of the estrous cycle. A vaginal swab that soaked in the bitches' vaginal secretions was divided into two pieces: one was sent for estradiol and progesterone determination, and the other was smelt by the male dog. The responses of the intracorporeal pressure (IP) and the electromyographic activity of the bulbo- and ischiocavernosus (BC, IC) muscles of the male dog to the smelling of bitch's vaginal odor were assessed. The pressure response was also determined 10 min and 1 h after either the nasal mucosa or the corporeal tissue was anesthetized. Elevated IP was recorded in 12 of 12, 10 of 12 and 8 of 12 dogs smelling vaginal swabs of bitches in metestrus (p < 0.001), estrus (p < 0.001), and diestrus (p < 0.01), respectively. No pressure response occurred when the vaginal swab was smelt while the nasal mucosa or the corporeal tissue was anesthetized. The BC and IC muscles exhibited no response to smelling of the vaginal swab of bitches in any phase of the estrous cycle. The results were reproducible. The study showed that the IP increased with smelling of vaginal secretions containing high progesterone levels, whereas estradiol-17 beta did not effect IP elevations. The higher the progesterone level, the greater the IP. The increased IP is not due to BC and IC muscle contraction. It is postulated that a reflex relationship exists between IP elevation and olfactory stimulation. This reflex response was reproducible and was not evoked when the two arms of the reflex were anesthetized. We call this reflex 'olfactory-corporeal reflex'. This reflex seems to prime the male dog for sexual intercourse.
Wang, Huixue; Gao, Yingji; Ji, Lixin; Bai, Wanshan
2018-05-01
The clinical value of soleus muscle H-reflex monitoring in general anesthesia percutaneous interlaminar approach was investigated. A total of 80 cases with unilateral L5-S1 disc herniation between January 2015 and October 2016 were randomly divided into control group (without soleus muscle H-reflex monitoring, n=40) and observation group (with soleus muscle H-reflex monitoring, n=40). Results showed that the operation time of the observation group was shorter than that of the control group (P<0.05), and the blood loss during the operation was less than that of the control group (P<0.05). The length of postoperative hospital stay was shorter than that of the control group (P<0.05). At 24 h after operation, the amplitude of H-reflex in diseased side soleus muscle was significantly lower than that in healthy side (P<0.05). The preoperative, postoperative and 24 h postoperatively, the latency of H-reflex in diseased side soleus muscle was shorter than that of healthy side (P<0.05). The latency and amplitude of H-reflex latency in soleus muscle were significantly lower (P<0.05), and the height of intervertebral space in observation group was significantly higher than that in control group (P<0.05). The total percentage of postsurgical sensory dysfunction, dyskinesia, post-root canal stenosis, disc herniation and cerebrospinal fluid leakage was lower than that of the control group (P<0.05). Japanese Orthopaedic Association score of the observation group was significantly higher at 1 month, and 1 year after operation lower than the control group (P<0.05). Taken together, soleus muscle H-reflex monitoring can effectively reduce the damage to the nerve roots under percutaneous endoscopic intervertebral endoscopic surgery under general anesthesia, improve the accuracy of surgery, reduce the complications, shorten the operation time and reduce the surgical bleeding, which is more beneficial to patients smooth recovery.
Dellepiane, M; Medicina, MC; Barettini, L; Mura, AC
2006-01-01
Summary Optokinetic afternystagmus follows optokinetic nystagmus as an expression of the central velocity storage integrator discharge and its fast phase is beating in the same direction as the previous optokinetic nystagmus. We investigated the correlation between vestibulo-ocular reflex and optokinetic afternystagmus in normal subjects and in patients with bilateral vestibular disorders. The aim of this study was to determine the possible role of optokinetic afternystagmus as a diagnostic test for identifying functional vestibular disorders. The subjects were examined by electronystagmography and vestibulo-ocular reflex, optokinetic nystagmus stare type as well as optokinetic afternystagmus were recorded. They were restrained in a rotatory drum chair, both the chair and the drum could be rotated, independently or coupled. For vestibulo-ocular reflex analysis, we studied post-rotatory-nystagmus from a velocity of 90°s. Optokinetic nystagmus was recorded at a drum velocity of 30°s and the registration continued in total darkness, after the illumination was switched off, to study optokinetic afternystagmus. We considered vestibulo-ocular reflex and optokinetic nystagmus gain, vestibulo-ocular reflex and optokinetic afternystagmus constant of time (tc) defined as the time necessary for the slow phase eye velocity to be reduced to 37% of its initial value. Results demonstrated that vestibulo-ocular reflex gain and ct showed a significant difference only in patients with reduced vestibular reflexia, while optokinetic nystagmus gain was greater only in patients with increased reflexia; optokinetic afternystagmus ct was different from the control group only in patients with hyporeflexia. In conclusion, our results suggest that vestibulo-ocular reflex and optokinetic afternystagmus ct are clinically more useful than the gain alone in testing vestibular disorders with hyporeflexia. On the other hand, we propose a new mathematical and statistical approach to study the temporal evolution of more parameters of the nystagmus. PMID:18383753
Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force.
Alizadeh Ebadi, Leyla; Çetin, Ebru
2018-03-13
The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles' isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.
Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force
Çetin, Ebru
2018-01-01
The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi
Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65more » increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.« less
Acute effect of stretching one leg on regional arterial stiffness in young men.
Yamato, Yosuke; Hasegawa, Natsuki; Fujie, Shumpei; Ogoh, Shigehiko; Iemitsu, Motoyuki
2017-06-01
Our previous study demonstrated that a single bout of stretching exercises acutely reduced arterial stiffness. We hypothesized that this acute vascular response is due to regional mechanical stimulation of the peripheral arteries. To test this hypothesis, we examined the effect of a single bout of passive one leg stretching on arterial stiffness, comparing the stretched and the non-stretched leg in the same subject. Twenty-five healthy young men (20.9 ± 0.3 years, 172.5 ± 1.4 cm, 64.1 ± 1.2 kg) volunteered for the study. Subjects underwent a passive calf stretching on one leg (six repetitions of 30-s static stretch with a 10-s recovery). Pulse wave velocity (PWV, an index of arterial stiffness), blood pressure (BP), and heart rate (HR) were measured before and immediately, 15, and 30 min after the stretching. Femoral-ankle PWV (faPWV) in the stretched leg was significantly decreased from baseline (835.0 ± 15.9 cm/s) to immediately (802.9 ± 16.8 cm/s, P < 0.01) and 15 min (810.5 ± 16.0 cm/s, P < 0.01) after the stretching, despite no changes in systolic and diastolic BP, or HR. However, faPWV in the non-stretched leg was not significantly altered at any time. Brachial-ankle PWV (baPWV) also showed similar responses with faPWV, but this response was not significant. Additionally, the passive stretching did not alter carotid-femoral PWV (cfPWV). These results suggest that mechanical stimulation to peripheral arteries as induced by static passive stretch may modulate arterial wall properties directly, rather than resulting in a systemic effect.
Yıldırım, M S; Ozyurek, S; Tosun, Oç; Uzer, S; Gelecek, N
2016-03-01
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m(-2)) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial-final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial-final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.
The effects of passive stretching plus vibration on strength and activation of the plantar flexors.
Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Mosier, Eric M
2016-09-01
This study examined the effects of passive stretching only (PS+CON) and passive stretching with the addition of continuous vibration (VIB) during post-passive stretching tests (PS+VIB) on peak torque (PT), percent voluntary inactivation (%VI), single stimulus twitch torque (TTSINGLE), and doublet stimuli twitch torque (TTDOUBLET) of the plantar flexors at a short (20° plantar flexion (PF)) and long muscle length (15° dorsiflexion (DF)). Fourteen healthy men (age = 22 ± 3 years) performed isometric maximal voluntary contractions at PF and DF, and passive range of motion (PROM) assessments before and after 8 × 30-s passive stretches without (PS+CON) or with VIB (PS+VIB) administered continuously throughout post-passive stretching tests. The passive properties of the muscle tendon unit were assessed pre- and post-passive stretching via PROM, passive torque (PASSTQ), and musculotendinous stiffness (MTS) measurements. PT, TTSINGLE, and TTDOUBLET decreased, whereas, %VI increased following passive stretching at PF and DF (P < 0.05) with no significant differences between PS+CON and PS+VIB. PASSTQ and MTS decreased while PROM increased post-passive stretching during both trials (P < 0.05). The stretching-induced force/torque deficit and increases in %VI were evident following passive stretching at short and long muscle lengths. Although not statistically significant, effect size calculations suggested large and moderate differences in the absolute changes in PT (Cohen's d = 1.14) and %VI (Cohen's d = 0.54) from pre- to post-passive stretching between treatments, with PS+VIB having greater decreases of PT and higher %VI than PS+CON. The decrement in PT following passive stretching may be primarily neural in origin.
Ozyurek, S; Tosun, OÇ; Uzer, S; Gelecek, N
2016-01-01
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m-2) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial–final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial–final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness. PMID:26929476