Sample records for refraction measuring system

  1. Counter-propagating optical trapping system for size and refractive index measurement of microparticles.

    PubMed

    Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C

    2006-01-15

    We propose and demonstrate a novel approach to measure the size and refractive index of microparticles based on two beam optical trapping, where forward scattered light is detected to give information about the particle. The counter-propagating optical trap measurement (COTM) system exploits the capability of optical traps to measure pico-Newton forces for microparticles' refractive index and size characterization. Different from the current best technique for microparticles' refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap technique works with any transparent fluid and enables single particle analysis without the use of biological markers. A ray-optics model is used to explore the physical operation of the COTM system, predict system performance and aid system design. Experiments demonstrate the accuracy of refractive index measurement of Deltan=0.013 and size measurement of 3% of diameter with 2% standard deviation. Present performance is instrumentation limited, and a potential improvement by more than two orders of magnitude can be expected in the future. With further development in parallelism and miniaturization, the system offers advantages for cell manipulation and bioanalysis compatible with lab-on-a-chip systems.

  2. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  3. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  4. Miniature interferometer for refractive index measurement in microfluidic chip

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli

    2012-12-01

    The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.

  5. Refractive index measurement based on confocal method

    NASA Astrophysics Data System (ADS)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang

    2017-10-01

    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  6. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  7. Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system.

    PubMed

    Helseth, Lars Egil

    2012-02-13

    The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.

  8. In situ measurement method for film thickness using transparency resin sheet with low refractive index under wet condition on chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Oniki, Takahiro; Khajornrungruang, Panart; Suzuki, Keisuke

    2017-07-01

    We suggest that a transparency resin sheet with low refractive index can be applied to the measurement of a silicon dioxide (SiO2) film on a silicon wafer under wet condition for a film thickness measurement system on chemical mechanical polishing (CMP). By adjusting the refractive indices of the resin sheet and water, stable measurements of the SiO2 film can be expected, irrespective of slurry film thickness fluctuation because it has robustness against the slurry film. This result indicates that the transparency resin sheet with low refractive index is a useful for monitoring system of CMP.

  9. Influence of changes in an eye's optical system on refraction

    NASA Astrophysics Data System (ADS)

    Bartkowska, Janina

    1998-10-01

    The optical system of eye is composed of cornea, lens, anterior chamber, and vitreous body. In the standard schematic eye there are 6 refracting surfaces. The changes of the curvature radii, of the distances between them, of the refractive indices influence the ametropia, refractive power of the eye and retinal image size. The influence of these changes can be appreciated by ray tracing or by an analytical method. There are presented simplified formulae for the differentials of ametropia and refractive power of the eye with respect to the surfaces curvatures, refracting power of cornea and lens, refractive indices. The relations are valid too for bigger changes if ametropia is measured in the cornea vertex. The formulae for the differentials with respect to distances, lens translation, eye axis length are valid if ametropia is measured in the object focus of the eye.

  10. Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems.

    PubMed

    An, Ni; Zhuang, Bilin; Li, Minglun; Lu, Yuyuan; Wang, Zhen-Gang

    2015-08-20

    We propose a simple theoretical formula for describing the refractive indices in binary liquid mixtures containing salt ions. Our theory is based on the Clausius-Mossotti equation; it gives the refractive index of the mixture in terms of the refractive indices of the pure liquids and the polarizability of the ionic species, by properly accounting for the volume change upon mixing. The theoretical predictions are tested by extensive experimental measurements of the refractive indices for water-acetonitrile-salt systems for several liquid compositions, different salt species, and a range of salt concentrations. Excellent agreement is obtained in all cases, especially at low salt concentrations, with no fitting parameters. A simplified expression of the refractive index for low salt concentration is also given, which can be the theoretical basis for determination of salt concentration using refractive index measurements.

  11. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    NASA Technical Reports Server (NTRS)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  12. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  13. Femtosecond Z-scan measurements of the nonlinear refractive index of fused silica

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shi, Zhendong; Ma, Hua; Ren, Huan; Yuan, Quan; Ma, Yurong; Feng, Xiaoxuan; Chen, Bo; Yang, Yi

    2018-01-01

    Z-scan technology is a popular experimental technique for determining the nonlinear refractive index of the material. However, it encounters a great difficulty in measuring the weak nonlinear material like fused silica which is about two orders of magnitude below the nonlinear refractive index of most of the materials studied with the nanosecond and picosecond Z-scan methods. In this case, the change of refractive index introduced by accumulation of thermal effects cannot be neglected. In order to have a reliable measurement of the nonlinear refractive index, a metrology bench based on the femtosecond Z-scan technology is developed. The intensity modulation component and the differential measurement system are applied to guarantee the accuracy of the measuring system. Based on the femtosecond Z-scan theory, the femtosecond laser Z-scan technique is performed on fused silica, and the nonlinear refractive index of Fused silica is determined to be 9.2039×10-14esu for 800nm, 37fs pulse duration at I0=50GW/cm2 with a good repeatability of 6.7%.

  14. Measurement system of the refractive power of spherical and sphero-cylindrical lenses with the magnification ellipse fitting method.

    PubMed

    Ko, Wooseok; Kim, Soohyun

    2009-11-01

    This paper proposes a new measurement system for measuring the refractive power of spherical and sphero-cylindrical lenses with a six-point light source, which is composed of a light emitting diode and a six-hole pattern aperture, and magnification ellipse fitting method. The position of the six light sources is changed into a circular or elliptical form subjected to the lens refractive power and meridian rotation angle. The magnification ellipse fitting method calculates the lens refractive power based on the ellipse equation with magnifications that are the ratios between initial diagonal lengths and measured diagonal lengths of the conjugated light sources changed by the target lens. The refractive powers of the spherical and sphero-cylindrical lenses certified in the Korea Research Institute of Standard and Science were measured to verify the measurement performance. The proposed method is estimated to have a repeatability of +/-0.01 D and an error value below 1%.

  15. Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Leviton, Doug; Frey, Brad

    2013-01-01

    First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.

  16. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  17. Optical Coherence Tomography Accurately Measures Corneal Power Change From Laser Refractive Surgery

    PubMed Central

    McNabb, Ryan P.; Farsiu, Sina; Stinnett, Sandra S.; Izatt, Joseph A.; Kuo, Anthony N.

    2014-01-01

    Purpose To determine the ability of motion corrected optical coherence tomography (OCT) to measure the corneal refractive power change due to laser in situ keratomileusis (LASIK). Design Evaluation of a diagnostic test or technology in a cohort. Subjects 70 eyes from 37 subjects undergoing LASIK were measured preoperatively. 39 eyes from 22 subjects were measured postoperatively and completed the study. Methods Consecutive patients undergoing LASIK at the Duke Eye Center who consented to participate were imaged with Placido-ring topography, Scheimpflug photography and OCT on the day of their surgery. Patients were then reimaged with the same imaging systems at the post-operative month 3 visit. Change in pre- to post-operative corneal refractive power as measured by each of the imaging modalities was compared to the pre- to post-operative change in manifest refraction using t-test with generalized estimating equations. Main Outcome Measures Corneal refractive power change due to LASIK as measured by Placido-ring topography, Scheimpflug Photography, and OCT compared to the manifest refraction change vertexed to the corneal plane. The change in manifest refraction should correspond to the change in the corneal refractive power from LASIK and was considered the reference measurement. Results In 22 returning post-LASIK individuals (39 eyes), we found no significant difference between the clinically measured pre to post LASIK change in manifest refraction and both Scheimpflug photography (p = 0.714) and OCT (p = 0.216). In contrast, keratometry values from Placido-ring topography were found to be significantly different from the measured refractive change (p < 0.001). Additionally, of the three imaging modalities, OCT recorded the smallest mean absolute difference from the reference measurement with the least amount of variability. Conclusion Motion corrected OCT more accurately measures the change in corneal refractive power due to laser refractive surgery than currently available clinical devices. By offering accurate corneal refractive power measurements in normal and surgically modified subjects, OCT offers a compelling alternative to current clinical devices for determining corneal refractive power. PMID:25487424

  18. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  19. Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope.

    PubMed

    Liu, Zhongyao; Dong, Xiaoman; Chen, Qianghua; Yin, Chunyong; Xu, Yuxian; Zheng, Yingjun

    2004-03-01

    A novel transmitted-light differential interference contrast (DIC) system is used for nondestructive measurement of the refractive-index profile (RIP) of an optical fiber. By means of this system the phase of a measured light beam can be modulated with an analyzer, and the phase distribution of a fiber is obtained by calculation of the various interference patterns. The measurement theory and structure and some typical applications of this system are demonstrated. The results of measuring RIPs in graded-index fiber are presented. Both the experimental results and theoretical analysis show that the system takes the advantage of high index resolution and of sufficient measurement accuracy for measuring the refractive index of the optical fiber. The system has strong ability to overcome environmental disturbance because of its common-path design. Moreover, one can use the system to measure the RIP along the fiber axis and acquire an image of the three-dimensional RIP of the fiber.

  20. Nonbulk motion system for simultaneously measuring the refractive index and thickness of a sample using tunable optics and spatial signal processing-based Gaussian beam imaging.

    PubMed

    Reza, Syed Azer; Qasim, Muhammad

    2016-01-10

    This paper presents a novel approach to simultaneously measuring the thickness and refractive index of a sample. The design uses an electronically controlled tunable lens (ECTL) and a microelectromechanical-system-based digital micromirror device (DMD). The method achieves the desired results by using the DMD to characterize the spatial profile of a Gaussian laser beam at different focal length settings of the ECTL. The ECTL achieves tunable lensing through minimal motion of liquid inside a transparent casing, whereas the DMD contains an array of movable micromirrors, which make it a reflective spatial light modulator. As the proposed system uses an ECTL, a DMD, and other fixed optical components, it measures the thickness and refractive index without requiring any motion of bulk components such as translational and rotational stages. A motion-free system improves measurement repeatability and reliability. Moreover, the measurement of sample thickness and refractive index can be completely automated because the ECTL and DMD are controlled through digital signals. We develop and discuss the theory in detail to explain the measurement methodology of the proposed system and present results from experiments performed to verify the working principle of the method. Refractive index measurement accuracies of 0.22% and 0.2% were achieved for two BK-7 glass samples used, and the thicknesses of the two samples were measured with a 0.1 mm accuracy for each sample, corresponding to a 0.39% and 0.78% measurement error, respectively, for the aforementioned samples.

  1. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  2. Refractive index variance of cells and tissues measured by quantitative phase imaging.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Popescu, Gabriel

    2017-01-23

    The refractive index distribution of cells and tissues governs their interaction with light and can report on morphological modifications associated with disease. Through intensity-based measurements, refractive index information can be extracted only via scattering models that approximate light propagation. As a result, current knowledge of refractive index distributions across various tissues and cell types remains limited. Here we use quantitative phase imaging and the statistical dispersion relation (SDR) to extract information about the refractive index variance in a variety of specimens. Due to the phase-resolved measurement in three-dimensions, our approach yields refractive index results without prior knowledge about the tissue thickness. With the recent progress in quantitative phase imaging systems, we anticipate that using SDR will become routine in assessing tissue optical properties.

  3. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  4. Surface plasmon resonance optical cavity enhanced refractive index sensing.

    PubMed

    Giorgini, A; Avino, S; Malara, P; Gagliardi, G; Casalino, M; Coppola, G; Iodice, M; Adam, P; Chadt, K; Homola, J; De Natale, P

    2013-06-01

    We report on a method for surface plasmon resonance (SPR) refractive index sensing based on direct time-domain measurements. An optical resonator is built around an SPR sensor, and its photon lifetime is measured as a function of loss induced by refractive index variations. The method does not rely on any spectroscopic analysis or direct intensity measurement. Time-domain measurements are practically immune to light intensity fluctuations and thus lead to high resolution. A proof of concept experiment is carried out in which a sensor response to liquid samples of different refractive indices is measured. A refractive index resolution of the current system, extrapolated from the reproducibility of cavity-decay time determinations over 133 s, is found to be about 10(-5) RIU. The possibility of long-term averaging suggests that measurements with a resolution better than 10(-7) RIU/√Hz are within reach.

  5. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging.

    PubMed

    Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu

    2017-05-31

    Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.

  6. A Simple Theory to Predict Small Changes in Volume and Refractivity During Mixing of a Two-Component Liquid System.

    ERIC Educational Resources Information Center

    Aminabhavi, Tejraj M.

    1983-01-01

    Discusses a set of relations (addressing changes in volume and refractivity) for use in the study of binary systems. Suggests including such an experiment in undergraduate physical chemistry courses (measuring density/refractive index of pure compounds and their mixtures) to predict even small changes occurring during mixing process. (Author/JN)

  7. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle.

    PubMed

    Sobral, H; Peña-Gomar, M

    2015-10-01

    A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated.

  8. Modeling and Experimental Study of Fracture-Based Wellbore Strengthening

    NASA Astrophysics Data System (ADS)

    Zhong, Ruizhi

    Measuring physical dimensions has always been one of the challenges for optical metrology. Specifically, the thickness is often a prerequisite piece of information for other optical properties when characterizing components and materials. For example, when measuring the index of refraction of materials using interferometric methods, the direct measurement is optical path length difference. To acquire index of refraction with high accuracy, the thickness must be predetermined with correspondingly high accuracy as well. In this dissertation, a prototype low-coherence interferometer system is developed through several design iterations to measure the absolute thickness map of a plane-parallel samples in a nondestructive manner. The prototype system is built with all off-the-shelf components in a configuration that combines a Twyman-Green interferometer and a Sagnac interferometer. The repeatability and accuracy of the measured thickness are characterized to be less than one micrometer. Based on the information acquired from the development of the prototype system, a permanent low-coherence interferometer system is designed and built to achieve a higher accuracy in thickness measurements, on the level of a hundred nanometers. A comprehensive uncertainty model is established for the thickness measurement using the low-coherence interferometer system. Additionally, this system is also capable of measuring the topography of both surfaces of the sample, as well as the wedge of the sample. This low-coherence dimensional metrology uses only the reflection signals from the sample surfaces. Thus, the measured physical dimensions are independent of the index of refraction, transparency, transmission, or homogeneity of the sample. In addition, a laser Sagnac interferometer is designed and built by repurposing the test arm of the low-coherence interferometer. The laser Sagnac interferometer provides a non-contact bulk index of refraction metrology for solid materials. The uncertainty model for the index of refraction measurement is detailed with analytical solutions. The laser Sagnac interferometer requires relatively simple sample preparation and fast turn-around time, which is suitable for applications in optical material research.

  9. Cryogenic refractive index of Heraeus homosil glass

    NASA Astrophysics Data System (ADS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-08-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.

  10. Cryogenic Refractive Index of Heraeus Homosil Glass

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.343.16 m and temperature range of 120335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  11. Cryogenic Refractive Index of Heraeus Homosil Glass

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34-3.16 microns and temperature range of 120-335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d(lamda)) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  12. Non-cycloplegic spherical equivalent refraction in adults: comparison of the double-pass system, retinoscopy, subjective refraction and a table-mounted autorefractor.

    PubMed

    Vilaseca, Meritxell; Arjona, Montserrat; Pujol, Jaume; Peris, Elvira; Martínez, Vanessa

    2013-01-01

    To evaluate the accuracy of spherical equivalent (SE) estimates of a double-pass system and to compare it with retinoscopy, subjective refraction and a table-mounted autorefractor. Non-cycloplegic refraction was performed on 125 eyes of 65 healthy adults (age 23.5±3.0 years) from October 2010 to January 2011 using retinoscopy, subjective refraction, autorefraction (Auto kerato-refractometer TOPCON KR-8100, Japan) and a double-pass system (Optical Quality Analysis System, OQAS, Visiometrics S.L., Spain). Nine consecutive measurements with the double-pass system were performed on a subgroup of 22 eyes to assess repeatability. To evaluate the trueness of the OQAS instrument, the SE laboratory bias between the double-pass system and the other techniques was calculated. The SE mean coefficient of repeatability obtained was 0.22D. Significant correlations could be established between the OQAS and the SE obtained with retinoscopy (r=0.956, P<0.001), subjective refraction (r=0.955, P<0.001) and autorefraction (r=0.957, P<0.001). The differences in SE between the double-pass system and the other techniques were significant (P<0.001), but lacked clinical relevance except for retinoscopy; Retinoscopy gave more hyperopic values than the double-pass system -0.51±0.50D as well as the subjective refraction -0.23±0.50D; More myopic values were achieved by means of autorefraction 0.24±0.49D. The double-pass system provides accurate and reliable estimates of the SE that can be used for clinical studies. This technique can determine the correct focus position to assess the ocular optical quality. However, it has a relatively small measuring range in comparison with autorefractors (-8.00 to +5.00D), and requires prior information on the refractive state of the patient.

  13. Non-cycloplegic spherical equivalent refraction in adults: comparison of the double-pass system, retinoscopy, subjective refraction and a table-mounted autorefractor

    PubMed Central

    Vilaseca, Meritxell; Arjona, Montserrat; Pujol, Jaume; Peris, Elvira; Martínez, Vanessa

    2013-01-01

    AIM To evaluate the accuracy of spherical equivalent (SE) estimates of a double-pass system and to compare it with retinoscopy, subjective refraction and a table-mounted autorefractor. METHODS Non-cycloplegic refraction was performed on 125 eyes of 65 healthy adults (age 23.5±3.0 years) from October 2010 to January 2011 using retinoscopy, subjective refraction, autorefraction (Auto kerato-refractometer TOPCON KR-8100, Japan) and a double-pass system (Optical Quality Analysis System, OQAS, Visiometrics S.L., Spain). Nine consecutive measurements with the double-pass system were performed on a subgroup of 22 eyes to assess repeatability. To evaluate the trueness of the OQAS instrument, the SE laboratory bias between the double-pass system and the other techniques was calculated. RESULTS The SE mean coefficient of repeatability obtained was 0.22D. Significant correlations could be established between the OQAS and the SE obtained with retinoscopy (r=0.956, P<0.001), subjective refraction (r=0.955, P<0.001) and autorefraction (r=0.957, P<0.001). The differences in SE between the double-pass system and the other techniques were significant (P<0.001), but lacked clinical relevance except for retinoscopy; Retinoscopy gave more hyperopic values than the double-pass system -0.51±0.50D as well as the subjective refraction -0.23±0.50D; More myopic values were achieved by means of autorefraction 0.24±0.49D. CONCLUSION The double-pass system provides accurate and reliable estimates of the SE that can be used for clinical studies. This technique can determine the correct focus position to assess the ocular optical quality. However, it has a relatively small measuring range in comparison with autorefractors (-8.00 to +5.00D), and requires prior information on the refractive state of the patient. PMID:24195036

  14. Analysis of ionospheric refraction error corrections for GRARR systems

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.; Parker, H. C.; Berbert, J. H.

    1971-01-01

    A determination is presented of the ionospheric refraction correction requirements for the Goddard range and range rate (GRARR) S-band, modified S-band, very high frequency (VHF), and modified VHF systems. The relation ships within these four systems are analyzed to show that the refraction corrections are the same for all four systems and to clarify the group and phase nature of these corrections. The analysis is simplified by recognizing that the range rate is equivalent to a carrier phase range change measurement. The equation for the range errors are given.

  15. Velocimetry with refractive index matching for complex flow configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

    1987-01-01

    The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

  16. Displacement measurement with over-determined interferometer

    NASA Astrophysics Data System (ADS)

    Lazar, Josef; Holá, Miroslava; Hrabina, Jan; Buchta, Zdeněk.; Číp, Ondřej; Oulehla, Jindřich

    2012-01-01

    We present a concept combining traditional displacement incremental interferometry with a tracking refractometer following the fluctuations of the refractive index of air. This concept is represented by an interferometric system of three Michelson-type interferometers where two are arranged in a counter-measuring configuration and the third one is set to measure the changes of the fixed length, here the measuring range of the overall displacement. In this configuration the two counter-measuring interferometers have identical beam paths with proportional parts of the overall one. The fixed interferometer with its geometrical length of the measuring beam linked to a mechanical reference made of a high thermal-stability material (Zerodur) operates as a tracking refractometer monitoring the atmospheric refractive index directly in the beam path of the displacement measuring interferometers. This principle has been demonstrated experimentally through a set of measurements in a temperature controlled environment under slowly changing refractive index of air in comparison with its indirect measurement through Edlen formula. With locking of the laser optical frequency to fixed value of the overall optical length the concept can operate as an interferometric system with compensation of the fluctuations of the refractive index of air.

  17. Use of Ensemble Numerical Weather Prediction Data for Inversely Determining Atmospheric Refractivity in Surface Ducting Conditions

    NASA Astrophysics Data System (ADS)

    Greenway, D. P.; Hackett, E.

    2017-12-01

    Under certain atmospheric refractivity conditions, propagated electromagnetic waves (EM) can become trapped between the surface and the bottom of the atmosphere's mixed layer, which is referred to as surface duct propagation. Being able to predict the presence of these surface ducts can reap many benefits to users and developers of sensing technologies and communication systems because they significantly influence the performance of these systems. However, the ability to directly measure or model a surface ducting layer is challenging due to the high spatial resolution and large spatial coverage needed to make accurate refractivity estimates for EM propagation; thus, inverse methods have become an increasingly popular way of determining atmospheric refractivity. This study uses data from the Coupled Ocean/Atmosphere Mesoscale Prediction System developed by the Naval Research Laboratory and instrumented helicopter (helo) measurements taken during the Wallops Island Field Experiment to evaluate the use of ensemble forecasts in refractivity inversions. Helo measurements and ensemble forecasts are optimized to a parametric refractivity model, and three experiments are performed to evaluate whether incorporation of ensemble forecast data aids in more timely and accurate inverse solutions using genetic algorithms. The results suggest that using optimized ensemble members as an initial population for the genetic algorithms generally enhances the accuracy and speed of the inverse solution; however, use of the ensemble data to restrict parameter search space yields mixed results. Inaccurate results are related to parameterization of the ensemble members' refractivity profile and the subsequent extraction of the parameter ranges to limit the search space.

  18. Measurement of refractive index of photopolymer for holographic gratings

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko

    2007-02-01

    We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.

  19. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H.; Hatae, T.; Hamano, T.

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system ismore » also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.« less

  20. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    PubMed

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  1. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    NASA Astrophysics Data System (ADS)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  2. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.

    PubMed

    Borja, David; Manns, Fabrice; Ho, Arthur; Ziebarth, Noel M; Acosta, Ana Carolina; Arrieta-Quintera, Esdras; Augusteyn, Robert C; Parel, Jean-Marie

    2010-04-01

    Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.

  3. In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography.

    PubMed

    de Freitas, Carolina; Ruggeri, Marco; Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie

    2013-01-15

    We present a method for measuring the average group refractive index of the human crystalline lens in vivo using an optical coherence tomography (OCT) system which, allows full-length biometry of the eye. A series of OCT images of the eye including the anterior segment and retina were recorded during accommodation. Optical lengths of the anterior chamber, lens, and vitreous were measured dynamically along the central axis on the OCT images. The group refractive index of the crystalline lens along the central axis was determined using linear regression analysis of the intraocular optical length measurements. Measurements were acquired on three subjects of age 21, 24, and 35 years. The average group refractive index for the three subjects was, respectively, n=1.41, 1.43, and 1.39 at 835 nm.

  4. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Weintraub, Jacob B; Wax, Adam

    2017-12-01

    The refractive index (RI) of biological materials is a fundamental parameter for the optical characterization of living systems. Numerous light scattering technologies are grounded in a quantitative knowledge of the refractive index at cellular and subcellular scales. Recent work in quantitative phase microscopy (QPM) has called into question the widely held assumption that the index of the cell nucleus is greater than that of the cytoplasm, a result which disagrees with much of the current literature. In this work, we critically examine the measurement of the nuclear and whole-cell refractive index using QPM, validating that nuclear refractive index is lower than that of cytoplasm in four diverse cell lines and their corresponding isolated nuclei. We further examine Mie scattering and phase-wrapping as potential sources of error in these measurements, finding they have minimal impact. Finally, we use simulation to examine the effects of incorrect RI assumptions on nuclear morphology measurements using angle-resolved scattering information. Despite an erroneous assumption of the nuclear refractive index, accurate measurement of nuclear morphology was maintained, suggesting that light scattering modalities remain effective. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. On the refractive index of sodium iodide solutions for index matching in PIV

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Katz, Joseph

    2014-04-01

    Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.

  6. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  7. Atmospheric refraction errors in laser ranging systems

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.

    1976-01-01

    The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.

  8. Absolute Measurement of the Refractive Index of Water by a Mode-Locked Laser at 518 nm.

    PubMed

    Meng, Zhaopeng; Zhai, Xiaoyu; Wei, Jianguo; Wang, Zhiyang; Wu, Hanzhong

    2018-04-09

    In this paper, we demonstrate a method using a frequency comb, which can precisely measure the refractive index of water. We have developed a simple system, in which a Michelson interferometer is placed into a quartz-glass container with a low expansion coefficient, and for which compensation of the thermal expansion of the water container is not required. By scanning a mirror on a moving stage, a pair of cross-correlation patterns can be generated. We can obtain the length information via these cross-correlation patterns, with or without water in the container. The refractive index of water can be measured by the resulting lengths. Long-term experimental results show that our method can measure the refractive index of water with a high degree of accuracy-measurement uncertainty at 10 -5 level has been achieved, compared with the values calculated by the empirical formula.

  9. Absolute Measurement of the Refractive Index of Water by a Mode-Locked Laser at 518 nm

    PubMed Central

    Meng, Zhaopeng; Zhai, Xiaoyu; Wei, Jianguo; Wang, Zhiyang; Wu, Hanzhong

    2018-01-01

    In this paper, we demonstrate a method using a frequency comb, which can precisely measure the refractive index of water. We have developed a simple system, in which a Michelson interferometer is placed into a quartz-glass container with a low expansion coefficient, and for which compensation of the thermal expansion of the water container is not required. By scanning a mirror on a moving stage, a pair of cross-correlation patterns can be generated. We can obtain the length information via these cross-correlation patterns, with or without water in the container. The refractive index of water can be measured by the resulting lengths. Long-term experimental results show that our method can measure the refractive index of water with a high degree of accuracy—measurement uncertainty at 10−5 level has been achieved, compared with the values calculated by the empirical formula. PMID:29642518

  10. Automatic diagnostic system for measuring ocular refractive errors

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; Chiaradia, Caio; de Sousa, Sidney J. F.; de Castro, Jarbas C.

    1996-05-01

    Ocular refractive errors (myopia, hyperopia and astigmatism) are automatic and objectively determined by projecting a light target onto the retina using an infra-red (850 nm) diode laser. The light vergence which emerges from the eye (light scattered from the retina) is evaluated in order to determine the corresponding ametropia. The system basically consists of projecting a target (ring) onto the retina and analyzing the scattered light with a CCD camera. The light scattered by the eye is divided into six portions (3 meridians) by using a mask and a set of six prisms. The distance between the two images provided by each of the meridians, leads to the refractive error of the referred meridian. Hence, it is possible to determine the refractive error at three different meridians, which gives the exact solution for the eye's refractive error (spherical and cylindrical components and the axis of the astigmatism). The computational basis used for the image analysis is a heuristic search, which provides satisfactory calculation times for our purposes. The peculiar shape of the target, a ring, provides a wider range of measurement and also saves parts of the retina from unnecessary laser irradiation. Measurements were done in artificial and in vivo eyes (using cicloplegics) and the results were in good agreement with the retinoscopic measurements.

  11. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels.

    PubMed

    Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud

    2005-06-01

    We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).

  12. Holographic Refraction and the Measurement of Spherical Ametropia.

    PubMed

    Nguyen, Nicholas Hoai Nam

    2016-10-01

    To evaluate the performance of a holographic logMAR chart for the subjective spherical refraction of the human eye. Bland-Altman analysis was used to assess the level of agreement between subjective spherical refraction using the holographic logMAR chart and conventional autorefraction and subjective spherical refraction. The 95% limits of agreement (LoA) were calculated between holographic refraction and the two standard methods (subjective and autorefraction). Holographic refraction has a lower mean spherical refraction when compared to conventional refraction (LoA 0.11 ± 0.65 D) and when compared to autorefraction (LoA 0.36 ± 0.77 D). After correcting for systemic bias, this is comparable between autorefraction and conventional subjective refraction (LoA 0.45 ± 0.79 D). After correcting for differences in vergence distance and chromatic aberration between holographic and conventional refraction, approximately 65% (group 1) of measurements between holography and conventional subjective refraction were similar (MD = 0.13 D, SD = 0.00 D). The remaining 35% (group 2) had a mean difference of 0.45 D (SD = 0.12 D) between the two subjective methods. Descriptive statistics showed group 2's mean age (21 years, SD = 13 years) was considerably lower than group 1's mean age (41 years, SD = 17), suggesting accommodation may have a role in the greater mean difference of group 2. Overall, holographic refraction has good agreement with conventional refraction and is a viable alternative for spherical subjective refraction. A larger bias between holographic and conventional refraction was found in younger subjects than older subjects, suggesting an association between accommodation and myopic over-correction during holographic refraction.

  13. Change in refractive index of muscle tissue during laser-induced interstitial thermotherapy.

    PubMed

    Chen, Na; Chen, Meimei; Liu, Shupeng; Guo, Qiang; Chen, Zhenyi; Wang, Tingyun

    2014-01-01

    This paper presents a long-period fiber-grating (LPG) based Michelson interferometric refractometry to monitor the change in refractive index of porcine muscle during laser-induced interstitial thermotherapy (LITT). As the wavelength of RI interferometer alters with the change in refractive index around the probe, the LPG based refractometry is combined with LITT system to measure the change in refractive index of porcine muscle when irradiated by laser. The experimental results show the denaturation of tissue alters the refractive index significantly and the LPG sensor can be applied to monitor the tissue state during the LITT.

  14. Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, Nathan; Anheier, Norman C.; Qiao, Hong

    2011-05-01

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5–10.6 μm range. The instrumental error was found to be ±0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  15. Measurement of the refractive index dispersion of As{sub 2}Se{sub 3} bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, N.; Petit, L.; Musgraves, J. D.

    2011-05-15

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 {mu}m range. The instrumental error was found to be {+-}0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  16. An investigation into dispersion upon switching between solvents within a microfluidic system using a chemically resistant integrated optical refractive index sensor.

    PubMed

    Parker, Richard M; Gates, James C; Wales, Dominic J; Smith, Peter G R; Grossel, Martin C

    2013-02-07

    A planar Bragg grating device has been developed that is capable of detecting changes in the refractive index of a wide range of fluids including solvents, acids and bases. The integration of this high precision refractive index sensor within a chemically resistant microfluidic flow system has enabled the investigation of diverse fluid interactions. By cycling between different solvents, both miscible and immiscible, within the microfluidic system it is shown that the previous solvent determines the nature of the refractive index profile across the transition in composition. This solvent dispersion effect is investigated with particular attention to the methanol-water transition, where transients in refractive index are observed that are an order of magnitude larger in amplitude than the difference between the bulk fluids. The potential complications of such phenomenon are discussed together with an example of a device that exploits this effect for the unambiguous composition measurement of a binary solvent system.

  17. Non-destructive geometric and refractive index characterization of single and multi-element lenses using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Tao, Yuankai K.

    2018-02-01

    Design of optical imaging systems requires careful balancing of lens aberrations to optimize the point-spread function (PSF) and minimize field distortions. Aberrations and distortions are a result of both lens geometry and glass material. While most lens manufacturers provide optical models to facilitate system-level simulation, these models are often not reflective of true system performance because of manufacturing tolerances. Optical design can be further confounded when achromatic or proprietary lenses are employed. Achromats are ubiquitous in systems that utilize broadband sources due to their superior performance in balancing chromatic aberrations. Similarly, proprietary lenses may be custom-designed for optimal performance, but lens models are generally not available. Optical coherence tomography (OCT) provides non-contact, depth-resolved imaging with high axial resolution and sensitivity. OCT has been previously used to measure the refractive index of unknown materials. In a homogenous sample, the group refractive index is obtained as the ratio between the measured optical and geometric thicknesses of the sample. In heterogenous samples, a method called focus-tracking (FT) quantifies the effect of focal shift introduced by the sample. This enables simultaneous measurement of the thickness and refractive index of intermediate sample layers. Here, we extend the mathematical framework of FT to spherical surfaces, and describe a method based on OCT and FT for full characterization of lens geometry and refractive index. Finally, we validate our characterization method on commercially available singlet and doublet lenses.

  18. The Refractive Error of Professional Baseball Players.

    PubMed

    Laby, Daniel M; Kirschen, David G

    2017-05-01

    High levels of visual acuity are required to hit a baseball effectively. Research has shown that any decrease in vision is likely caused by low-order optical aberrations. This study is designed to validate the SVOne autorefractor, and describe the amount and type, of low-order optical aberrations present in a large cohort of professional baseball players. A retrospective chart review on the 608 Major League Baseball players evaluated during the 2016 Spring Training Season was performed. Results for a subset of players who had both manifest refraction as well as autorefraction were calculated. Subsequently, after determining the accuracy of the autorefraction system in this population, refractive results for the entire population were determined. There was a borderline statistically significant difference in mean spherical refractive error (M) between the manifest refraction and the SVOne auto refraction (-0.273D in the manifest refraction method vs. -0.503D in the SVOne method, P = .06) in the subset of athletes who underwent both tests. Additionally, there was no difference in the J0 or J45 cylindrical component vectors for each method. For the entire eligible population, the SVOne autorefraction system found a mean spherical refractive error (M) of -0.228D, a J0 value of -0.013D, and a J45 value of -0.040D. These data suggest that the SVOne autorefraction system is generally able to measure the refractive error in the baseball population. The system was slightly biased, often reporting more myopia in myopic subjects. Thus, careful evaluation of the refractive status of these athletes coupled with careful subjective refractive correction for those with less than average vision for baseball is strongly suggested.

  19. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    PubMed

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  20. New analytical technique for carbon dioxide absorption solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive indexmore » models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.« less

  1. Index of refraction measurements and window corrections for PMMA under shock compression

    NASA Astrophysics Data System (ADS)

    Chapman, David James; Eakins, Daniel E.; Williamson, David Martin; Proud, William

    2012-03-01

    Symmetric plate impact experiments were performed to investigate the change in the refractive index of Polymethylmethacrylate (PMMA) under shock loading. Flyer and target geometries allowed the measurement of shock velocity, particle velocity, and refractive index in the shocked state, using a Het-V system (1550 nm). The change in refractive index of PMMA as a function of density is generally considered to be well described by the Gladstone-Dale relationship, meaning that the "apparent" velocity measured by a laser velocity interferometer is the "true" velocity, and hence there is no window correction. The results presented here demonstrate that the behaviour of PMMA deviates from an ideal Gladstone-Dale description, requiring a small velocity correction of order 1% at peak stresses up to 1.9 GPa. These results are consistent with literature values measured using a wavelength of 632.8 nm by [1].

  2. Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing.

    PubMed

    Purr, F; Bassu, M; Lowe, R D; Thürmann, B; Dietzel, A; Burg, T P

    2017-12-05

    Measuring small changes in refractive index can provide both sensitive and contactless information on molecule concentration or process conditions for a wide range of applications. However, refractive index measurements are easily perturbed by non-specific background signals, such as temperature changes or non-specific binding. Here, we present an optofluidic device for measuring refractive index with direct background subtraction within a single measurement. The device is comprised of two interdigitated arrays of nanofluidic channels designed to form an optical grating. Optical path differences between the two sets of channels can be measured directly via an intensity ratio within the diffraction pattern that forms when the grating is illuminated by a collimated laser beam. Our results show that no calibration or biasing is required if the unit cell of the grating is designed with an appropriate built-in asymmetry. In proof-of-concept experiments we attained a noise level equivalent to ∼10 -5 refractive index units (30 Hz sampling rate, 4 min measurement interval). Furthermore, we show that the accumulation of biomolecules on the surface of the nanochannels can be measured in real-time. Because of its simplicity and robustness, we expect that this inherently differential measurement concept will find many applications in ultra-low volume analytical systems, biosensors, and portable devices.

  3. Spherical subjective refraction with a novel 3D virtual reality based system.

    PubMed

    Pujol, Jaume; Ondategui-Parra, Juan Carlos; Badiella, Llorenç; Otero, Carles; Vilaseca, Meritxell; Aldaba, Mikel

    To conduct a clinical validation of a virtual reality-based experimental system that is able to assess the spherical subjective refraction simplifying the methodology of ocular refraction. For the agreement assessment, spherical refraction measurements were obtained from 104 eyes of 52 subjects using three different methods: subjectively with the experimental prototype (Subj.E) and the classical subjective refraction (Subj.C); and objectively with the WAM-5500 autorefractor (WAM). To evaluate precision (intra- and inter-observer variability) of each refractive tool independently, 26 eyes were measured in four occasions. With regard to agreement, the mean difference (±SD) for the spherical equivalent (M) between the new experimental subjective method (Subj.E) and the classical subjective refraction (Subj.C) was -0.034D (±0.454D). The corresponding 95% Limits of Agreement (LoA) were (-0.856D, 0.924D). In relation to precision, intra-observer mean difference for the M component was 0.034±0.195D for the Subj.C, 0.015±0.177D for the WAM and 0.072±0.197D for the Subj.E. Inter-observer variability showed worse precision values, although still clinically valid (below 0.25D) in all instruments. The spherical equivalent obtained with the new experimental system was precise and in good agreement with the classical subjective routine. The algorithm implemented in this new system and its optical configuration has been shown to be a first valid step for spherical error correction in a semiautomated way. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  4. Modeling the influence of LASIK surgery on optical properties of the human eye

    NASA Astrophysics Data System (ADS)

    Szul-Pietrzak, Elżbieta; Hachoł, Andrzej; Cieślak, Krzysztof; Drożdż, Ryszard; Podbielska, Halina

    2011-11-01

    The aim was to model the influence of LASIK surgery on the optical parameters of the human eye and to ascertain which factors besides the central corneal radius of curvature and central thickness play the major role in postsurgical refractive change. Ten patients were included in the study. Pre- and postsurgical measurements included standard refraction, anterior corneal curvature and pachymetry. The optical model used in the analysis was based on the Le Grand and El Hage schematic eye, modified by the measured individual parameters of corneal geometry. A substantial difference between eye refractive error measured after LASIK and estimated from the eye model was observed. In three patients, full correction of the refractive error was achieved. However, analysis of the visual quality in terms of spot diagrams and optical transfer functions of the eye optical system revealed some differences in these measurements. This suggests that other factors besides corneal geometry may play a major role in postsurgical refraction. In this paper we investigated whether the biomechanical properties of the eyeball and changes in intraocular pressure could account for the observed discrepancies.

  5. Somewhere in the Rainbow

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Aerometrics, Inc.'s Rainbow Refractometer was developed through an SBIR (Small Business Innovative Research) contract with Lewis Research Center. The system is a non- intrusive instrument for measuring droplet inside of refraction. It can also derive the temperature and chemical composition of refractive droplets. The technology can be integrated with the Phase Doppler Particle Analyzer systems (featured in Spinoff 1994) or used independently.

  6. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Kemp, G. E.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Moody, J. D.; Michel, P.

    2017-01-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85 %- 87 % extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  7. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System.

    PubMed

    Turnbull, D; Goyon, C; Kemp, G E; Pollock, B B; Mariscal, D; Divol, L; Ross, J S; Patankar, S; Moody, J D; Michel, P

    2017-01-06

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  8. Measurement and design of refractive corrections using ultrafast laser-induced intra-tissue refractive index shaping in live cats

    NASA Astrophysics Data System (ADS)

    Brooks, Daniel R.; Wozniak, Kaitlin T.; Knox, Wayne; Ellis, Jonathan D.; Huxlin, Krystel R.

    2018-02-01

    Intra-Tissue Refractive Index Shaping (IRIS) uses a 405 nm femtosecond laser focused into the stromal region of the cornea to induce a local refractive index change through multiphoton absorption. This refractive index change can be tailored through scanning of the focal region and variations in laser power to create refractive structures, such as gradient index lenses for visual refractive correction. Previously, IRIS was used to create 2.5 mm wide, square, -1 D cylindrical refractive structures in living cats. In the present work, we first wrote 400 μm wide bars of refractive index change at varying powers in enucleated cat globes using a custom flexure-based scanning system. The cornea and surrounding sclera were then removed and mounted into a wet cell. The induced optical phase change was measured with a Mach- Zehnder Interferometer (MZI), and appeared as fringe displacement, whose magnitude was proportional to the refractive index change. The interferograms produced by the MZI were analyzed with a Fourier Transform based algorithm in order to extract the phase change. This provided a phase change versus laser power calibration, which was then used to design the scanning and laser power distribution required to create -1.5 D cylindrical Fresnel lenses in cat cornea covering an area 6 mm in diameter. This prescription was inscribed into the corneas of one eye each of two living cats, under surgical anesthesia. It was then verified in vivo by contrasting wavefront aberration measurements collected pre- IRIS with those obtained over six months post-IRIS using a Shack-Hartmann wavefront sensor.

  9. Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy.

    PubMed

    Cotterell, Michael I; Mason, Bernard J; Preston, Thomas C; Orr-Ewing, Andrew J; Reid, Jonathan P

    2015-06-28

    A new experiment is presented for the measurement of single aerosol particle extinction efficiencies, Qext, combining cavity ring-down spectroscopy (CRDS, λ = 405 nm) with a Bessel beam trap (λ = 532 nm) in tandem with phase function (PF) measurements. This approach allows direct measurements of the changing optical cross sections of individual aerosol particles over indefinite time-frames facilitating some of the most comprehensive measurements of the optical properties of aerosol particles so far made. Using volatile 1,2,6-hexanetriol droplets, Qext is measured over a continuous radius range with the measured Qext envelope well described by fitted cavity standing wave (CSW) Mie simulations. These fits allow the refractive index at 405 nm to be determined. Measurements are also presented of Qext variation with RH for two hygroscopic aqueous inorganic systems ((NH4)2SO4 and NaNO3). For the PF and the CSW Mie simulations, the refractive index, nλ, is parameterised in terms of the particle radius. The radius and refractive index at 532 nm are determined from PFs, while the refractive index at 405 nm is determined by comparison of the measured Qext to CSW Mie simulations. The refractive indices determined at the shorter wavelength are larger than at the longer wavelength consistent with the expected dispersion behaviour. The measured values at 405 nm are compared to estimates from volume mixing and molar refraction mixing rules, with the latter giving superior agreement. In addition, the first single-particle Qext measurements for accumulation mode aerosol are presented for droplets with radii as small as ∼300 nm.

  10. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  11. Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing.

    PubMed

    Tan, Chun Hua; Huang, Zhen Jian; Huang, Xu Guang

    2010-06-01

    We describe a simple and rapid method for determining the critical micelle concentration (CMC) of surfactants from fiber-optic measurements of refractive index. The refractive index of an aqueous surfactant solution was monitored as the surfactant concentration was increased using an automated dispensing system. On reaching the surfactant's CMC value, an abrupt change was observed in the rate of increase of the refractive index with increasing concentration. The measurement system provides rapid semiautomatic data collection and analysis, increasing the precision, sensitivity, and range of applicability of the technique while substantially decreasing the amount of manual intervention required. Measurements of CMC for sodium dodecyl sulfate (8.10mM), cetyltrimethylammonium chloride (1.58mM), and Triton X-100 (0.21mM) were in excellent agreement with values previously reported in the literature. The method is applicable to cationic, anionic, and nonionic surfactants, and it offers a facile, in situ, and sensitive means of detecting micelle formation over a broad range of CMC values larger than 10(-1)mM. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  13. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi; Tarvainen, T.; Department of Computer Science, University College London, Gower Street, London WC1E 6BT

    2015-02-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena onmore » the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.« less

  14. Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuma; Tsuruda, Kazuisao; Diebold, Sebastian; Hisatake, Shintaro; Fujita, Masayuki; Nagatsuma, Tadao

    2017-09-01

    In this paper, we report on a terahertz (THz) sensing system. Compared to previously reported systems, it has increased system sensitivity and reduced size. Both are achieved by using a photonic crystal (PC) cavity as a resonator and compact resonant tunneling diodes (RTDs) as signal source and as detector. The measured quality factor of the PC cavity is higher than 10,000, and its resonant frequency is 318 GHz. To demonstrate the operation of the refractive index sensing system, dielectric tapes of various thicknesses are attached to the PC cavity and the change in the resonator's refractive index is measured. The figure of merit of refractive index sensing using the developed system is one order higher than that of previous studies, which used metallic metamaterial resonators. The frequency of the RTD-based source can be swept from 316 to 321 GHz by varying the RTD direct current voltage. This effect is used to realize a compact frequency tunable signal source. Measurements using a commercial signal source and detector are carried out to verify the accuracy of the data obtained using RTDs as a signal source and as a detector.

  15. Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli

    2018-02-01

    Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.

  16. Simultaneous refraction measurement and OCT axial biometry of the eye during accommodation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    De Freitas, Carolina; Hernandez, Victor M.; Ruggeri, Marco; Durkee, Heather A.; Williams, Siobhan; Gregori, Giovanni; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2016-03-01

    The purpose of this project is to design and evaluate a system that will enable objective assessment of the optical accommodative response in real-time while acquiring axial biometric information. The system combines three sub-systems which were integrated and mounted on a joystick x-y-z adjustable modified slit-lamp base to facilitate alignment and data acquisition: (1) a Shack-Hartmann wavefront sensor for dynamic refraction measurement, provided software calculates sphere, cylinder and axis values, (2) an extended-depth Optical Coherence Tomography (OCT) system using an optical switch records high-resolution cross-sectional images across the length of the eye, from which, dynamic axial biometry (corneal thickness, anterior chamber depth, crystalline lens thickness and vitreous depth) can be extracted, and (3) a modified dual-channel accommodation stimulus unit based on the Badal optometer for providing a step change in accommodative stimulus. The prototypal system is capable of taking simultaneous measurements of both the optical and the mechanical response of lens accommodation. These measurements can provide insight into correlating changes in lens shape with changes in lens power and ocular refraction and ultimately provide a more comprehensive understanding of accommodation, presbyopia and an objective assessment of presbyopia correction techniques.

  17. Postural stability in the elderly during sensory perturbations and dual tasking: the influence of refractive blur.

    PubMed

    Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B

    2003-07-01

    To determine the influence of refractive blur on postural stability during somatosensory and vestibular system perturbation and dual tasking. Fifteen healthy, elderly subjects (mean age, 71 +/- 5 years), who had no history of falls and had normal vision, were recruited. Postural stability during standing was assessed using a force platform, and was determined as the root mean square (RMS) of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions collected over a 30-second period. Data were collected under normal standing conditions and with somatosensory and vestibular system perturbations. Measurements were repeated with an additional physical and/or cognitive task. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with eyes closed. The data were analyzed with a population-averaged linear model. The greatest increases in postural instability were due to disruptions of the somatosensory and vestibular systems. Increasing refractive blur caused increasing postural instability, and its effect was greater when the input from the other sensory systems was disrupted. Performing an additional cognitive and physical task increased A-P RMS COP further. All these detrimental effects on postural stability were cumulative. The findings highlight the multifactorial nature of postural stability and indicate why the elderly, many of whom have poor vision and musculoskeletal and central nervous system degeneration, are at greater risk of falling. The findings also highlight that standing instability in both normal and perturbed conditions was significantly increased with refractive blur. Correcting visual impairment caused by uncorrected refractive error could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.

  18. Combined laser-ray tracing and OCT system for biometry of the crystalline lens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Maceo Heilman, Bianca M.; Yao, Yue; Chang, Yu-Cherng; Gonzalez, Alex; Rowaan, Cornelis; Mohamed, Ashik; Williams, Siobhan; Durkee, Heather A.; Silgado, Juan; Bernal, Andres; Arrieta-Quintero, Esdras; Ho, Arthur; Parel, Jean-Marie A.; Manns, Fabrice

    2017-02-01

    Age-related changes in the crystalline lens shape and refractive index gradient produce changes in dioptric power and high-order aberrations that influence the optics of the whole eye and contribute to a decrease in overall visual quality. Despite their key role, the changes in lens shape and refractive index gradient with age and accommodation and their effects on high-order aberrations are still not well understood. The goal of this project was to develop a combined laser ray tracing (LRT) and optical coherence tomography (OCT) system to measure high-order aberrations, shape and refractive index gradient in non-human primate and human lenses. A miniature motorized lens stretching system was built to enable imaging and aberrometry of the lens during simulated accommodation. A positioning system was also built to enable on- and off-axis OCT imaging and aberrometry for characterization of the peripheral defocus of the lens. We demonstrated the capability of the LRT-OCT system to produce OCT images and aberration measurements of crystalline lens with age and accommodation in vitro. In future work, the information acquired with the LRT-OCT system will be used to develop an accurate age-dependent lens model to predict the role of the lens in the development of refractive error and aberrations of the whole eye.

  19. Meterological correction of optical beam refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, V.P.; Melamud, A.E.; Mironov, V.L.

    1986-02-01

    At the present time laser reference systems (LRS's) are widely used in agrotechnology and in geodesy. The demands for accuracy in LRS's constantly increase, so that a study of error sources and means of considering and correcting them is of practical importance. A theoretical algorithm is presented for correction of the regular component of atmospheric refraction for various types of hydrostatic stability of the atmospheric layer adjacent to the earth. The algorithm obtained is compared to regression equations obtained by processing an experimental data base. It is shown that within admissible accuracy limits the refraction correction algorithm obtained permits constructionmore » of correction tables and design of optical systems with programmable correction for atmospheric refraction on the basis of rapid meteorological measurements.« less

  20. Simultaneous measurement of refractive index and temperature based on intensity demodulation using matching grating method.

    PubMed

    Qi, Liang; Zhao, Chun-Liu; Kang, Juan; Jin, Yongxing; Wang, Jianfeng; Ye, Manping; Jin, Shangzhong

    2013-07-01

    A solution refractive index (SRI) and temperature simultaneous measurement sensor with intensity-demodulation system based on matching grating method were demonstrated. Long period grating written in a photonic crystal fiber (LPG-PCF), provides temperature stable and wavelength dependent optical intensity transmission. The reflective peaks of two fiber Bragg gratings (FBGs), one of which is etched then sensitive to both SRI and temperature, another (FBG2) is only sensitive to temperature, were located in the same linear range of the LPG-PCF's transmission spectrum. An identical FBG with FBG2 was chosen as a matching FBG. When environments (SRI and temperature) change, the wavelength shifts of the FBGs are translated effectively to the reflection intensity changes. By monitoring output lights of unmatching and matching paths, the SRI and temperature were deduced by a signal processing unit. Experimental results show that the simultaneous refractive index and temperature measurement system work well. The proposed sensor system is compact and suitable for in situ applications at lower cost.

  1. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  2. Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems.

    PubMed

    Alleyne, Colin J; Kirk, Andrew G; Chien, Wei-Yin; Charette, Paul G

    2008-11-24

    An eigenvector analysis based algorithm is presented for estimating refractive index changes from 2-D reflectance/dispersion images obtained with spectro-angular surface plasmon resonance systems. High resolution over a large dynamic range can be achieved simultaneously. The method performs well in simulations with noisy data maintaining an error of less than 10(-8) refractive index units with up to six bits of noise on 16 bit quantized image data. Experimental measurements show that the method results in a much higher signal to noise ratio than the standard 1-D weighted centroid dip finding algorithm.

  3. A variational regularization of Abel transform for GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon

    2018-04-01

    In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity deserting the first guess. In the lowest few kilometers that AI produces large negative refractivity bias, VR reduces the refractivity bias substantially with the aid of the background, which in this study is the operational forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is concluded based on the results presented in this study that VR offers a definite advantage over AI in the quality of refractivity.

  4. Refraction-based X-ray Computed Tomography for Biomedical Purpose Using Dark Field Imaging Method

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    We have proposed a tomographic x-ray imaging system using DFI (dark field imaging) optics along with a data-processing method to extract information on refraction from the measured intensities, and a reconstruction algorithm to reconstruct a refractive-index field from the projections generated from the extracted refraction information. The DFI imaging system consists of a tandem optical system of Bragg- and Laue-case crystals, a positioning device system for a sample, and two CCD (charge coupled device) cameras. Then, we developed a software code to simulate the data-acquisition, data-processing, and reconstruction methods to investigate the feasibility of the proposed methods. Finally, in order to demonstrate its efficacy, we imaged a sample with DCIS (ductal carcinoma in situ) excised from a breast cancer patient using a system constructed at the vertical wiggler beamline BL-14C in KEK-PF. Its CT images depicted a variety of fine histological structures, such as milk ducts, duct walls, secretions, adipose and fibrous tissue. They correlate well with histological sections.

  5. Temperature-Dependent Refractive Index Measurements of Caf2, Suprasil 3001, and S-FTM16 for the Euclid Near Infrared Spectrometer and Photometer

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d?), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.

  6. Refractivity of Molten Nitrates and Chlorides: Binary Mixtures Containing Cesium Ions

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yohji; Karawacki, Ernest

    1981-05-01

    By using an interferometric technique, the refractive index of some molten salt mixtures containing Cs+ ions was measured with high accuracy: (Li-Cs)NO3, (Na-Cs)NO3, (Ag-Cs)NO3, (Li-Cs)Cl, and also pure RbCl. The isotherms of molar refractivity show a small negative deviation from additivity in the (Li-Cs)NO3 and (Li-Cs)Cl systems and a positive deviation in the (Ag-Cs)NO3 mixture. A tentative attempt was made to relate the excess molar refractivities with the absorption bands of the ions.

  7. Analyzing refractive index changes and differential bending in microcantilever arrays.

    PubMed

    Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph

    2008-08-01

    A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.

  8. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes

    PubMed Central

    Mao, Xinjie; Banta, James T.; Ke, Bilian; Jiang, Hong; He, Jichang; Liu, Che; Wang, Jianhua

    2016-01-01

    Purpose To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. Methods Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated. Results Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951. Conclusions The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye. PMID:27010674

  9. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes.

    PubMed

    Mao, Xinjie; Banta, James T; Ke, Bilian; Jiang, Hong; He, Jichang; Liu, Che; Wang, Jianhua

    2016-01-01

    To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated. Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951. The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye.

  10. Characterization of fluids and fluid-fluid interaction by fiber optic refractive index sensor measurements

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Weiner, M.; Liebscher, A.; Spangenberg, E.

    2009-04-01

    A fiber optic refractive index sensor is tested for continuous monitoring of fluid-fluid and fluid-gas interactions within the frame of laboratory investigations of CO2 storage, monitoring and safety technology research (COSMOS project, "Geotechnologien" program). The sensor bases on a Fabry-Perot white light interferometer technique, where the refractive index (RI) of the solution under investigation is measured by variation of the liquid-filled Fabry-Perot optical cavity length. Such sensor system is typically used for measuring and controlling oil composition and also fluid quality. The aim of this study is to test the application of the fiber optic refractive index sensor for monitoring the CO2 dissolution in formation fluids (brine, oil, gas) of CO2 storage sites. Monitoring and knowledge of quantity and especially rate of CO2 dissolution in the formation fluid is important for any assessment of long-term risks of CO2 storage sites. It is also a prerequisite for any precise reservoir modelling. As a first step we performed laboratory experiments in standard autoclaves on a variety of different fluids and fluid mixtures (technical alcohols, pure water, CO2, synthetic brines, natural formation brine from the Ketzin test site). The RI measurements are partly combined with default electrical conductivity and sonic velocity measurements. The fiber optic refractive index sensor system allows for RI measurements within the range 1.0000 to 1.7000 RI with a resolution of approximately 0.0001 RI. For simple binary fluid mixtures first results indicate linear relationships between refractive indices and fluid composition. Within the pressure range investigated (up to 60 bar) the data suggest only minor changes of RI with pressure. Further, planned experiments will focus on the determination of i) the temperature dependency of RI, ii) the combined effects of pressure and temperature on RI, and finally iii) the kinetics of CO2 dissolution in realistic formation fluids.

  11. Measuring the Refractive Index of a Laser-Plasma Optical System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Kemp, G. E.; Moody, J. D.; Michel, P. A.

    2016-10-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by an independent probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive-index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for cross-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85% to 87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Cryogenic Temperature-dependent Refractive Index Measurements of N-BK7, BaLKN3, and SF15 for NOTES PDI

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas F.; Madison, Timothy J.

    2007-01-01

    In order to enable high quality lens designs using N-BK7, BaLKN3, and SF15 at cryogenic temperatures, we have measured the absolute refractive index of prisms of these three materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For N-BK7, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 50 to 300 K at wavelengths from 0.45 to 2.7 micrometers; for BaLKN3 we cover temperatures ranging from 40 to 300 K and wavelengths from 0.4 to 2.6 micrometers; for SF15 we cover temperatures ranging from 50 to 300 K and wavelengths from 0.45 to 2.6 micrometers. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. While we generally find good agreement (plus or minus 2 x 10(exp -4) for N-BK7, less than 1 x 10(exp -4) for the other materials) at room temperature between our measured values and those provided by the vendor, there is some variation between the datasheets provided with the prisms we measured and the catalog values published by the vendor. This underlines the importance of measuring the absolute refractive index of the material when precise knowledge of the refractive index is required.

  13. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  14. Use of visible-laser-diode fiber optic sensors in the beverage industry and environmental controls

    NASA Astrophysics Data System (ADS)

    Pham, Van Hoi; Chu, Dinh T.; Bui, Huy; Tran, Viet L.

    1997-01-01

    The fiber-optic refractometer using visible laser diodes with wavelengths of 650 divided by 670 nm for the liquid refractive-index measurement is presented. The refractive- index measures by fiber-optic sensors of the connected configuration for different liquids with refractive indices from 1.33 to 1.5 have given the accuracy of 5.10-3. The fiber-optic refractometer was performanced for the distinguish of the salt or sugar content in the mixtures with range of 10-3 and 5.10-4, respectively. These refractometers are already to use for the sugar control systems of beverage industry and salt-water environment.

  15. Evaluation of the measurement of refractive error by the PowerRefractor: a remote, continuous and binocular measurement system of oculomotor function

    PubMed Central

    Hunt, O A; Wolffsohn, J S; Gilmartin, B

    2003-01-01

    Background/aim: The technique of photoretinoscopy is unique in being able to measure the dynamics of the oculomotor system (ocular accommodation, vergence, and pupil size) remotely (working distance typically 1 metre) and objectively in both eyes simultaneously. The aim of this study was to evaluate clinically the measurement of refractive error by a recent commercial photoretinoscopic device, the PowerRefractor (PlusOptiX, Germany). Method: The validity and repeatability of the PowerRefractor was compared to: subjective (non-cycloplegic) refraction on 100 adult subjects (mean age 23.8 (SD 5.7) years) and objective autorefraction (Shin-Nippon SRW-5000, Japan) on 150 subjects (20.1 (4.2) years). Repeatability was assessed by examining the differences between autorefractor readings taken from each eye and by re-measuring the objective prescription of 100 eyes at a subsequent session. Results: On average the PowerRefractor prescription was not significantly different from the subjective refraction, although quite variable (difference +0.05 (0.63) D, p = 0.41) and more negative than the SRW-5000 prescription (by −0.20 (0.72) D, p<0.001). There was no significant bias in the accuracy of the instrument with regard to the type or magnitude of refractive error. The PowerRefractor was found to be repeatable over the prescription range of −8.75D to +4.00D (mean spherical equivalent) examined. Conclusion: The PowerRefractor is a useful objective screening instrument and because of its remote and rapid measurement of both eyes simultaneously is able to assess the oculomotor response in a variety of unrestricted viewing conditions and patient types. PMID:14660462

  16. Evaluation of the measurement of refractive error by the PowerRefractor: a remote, continuous and binocular measurement system of oculomotor function.

    PubMed

    Hunt, O A; Wolffsohn, J S; Gilmartin, B

    2003-12-01

    The technique of photoretinoscopy is unique in being able to measure the dynamics of the oculomotor system (ocular accommodation, vergence, and pupil size) remotely (working distance typically 1 metre) and objectively in both eyes simultaneously. The aim of this study was to evaluate clinically the measurement of refractive error by a recent commercial photoretinoscopic device, the PowerRefractor (PlusOptiX, Germany). The validity and repeatability of the PowerRefractor was compared to: subjective (non-cycloplegic) refraction on 100 adult subjects (mean age 23.8 (SD 5.7) years) and objective autorefraction (Shin-Nippon SRW-5000, Japan) on 150 subjects (20.1 (4.2) years). Repeatability was assessed by examining the differences between autorefractor readings taken from each eye and by re-measuring the objective prescription of 100 eyes at a subsequent session. On average the PowerRefractor prescription was not significantly different from the subjective refraction, although quite variable (difference +0.05 (0.63) D, p=0.41) and more negative than the SRW-5000 prescription (by -0.20 (0.72) D, p<0.001). There was no significant bias in the accuracy of the instrument with regard to the type or magnitude of refractive error. The PowerRefractor was found to be repeatable over the prescription range of -8.75D to +4.00D (mean spherical equivalent) examined. The PowerRefractor is a useful objective screening instrument and because of its remote and rapid measurement of both eyes simultaneously is able to assess the oculomotor response in a variety of unrestricted viewing conditions and patient types.

  17. Cryogenic Temperature-Dependent Refractive Index Measurements of CaF2 and Infrasil 301

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, TImothy J.

    2007-01-01

    In order to enable high quality lens design using calcium fluoride (CaF2) and Heraeus Infrasil 30 (Infrasil) at cryogenic temperatures, we have measured the absolute refractive index of prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For CaF2, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 25 to 300 K at wavelengths from 0.4 to 5.6 micrometers; for Infrasil we cover temperatures ranging from 35 to 300K and wavelengths from 0.4 to 3.6 micrometers. We investigate the interspecimen variability between measurements of two unrelated samples of CaF2, and we also compare our results for Infrasil to previous measurements fo Corning 7980 fused silica. Finally, we provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures and compare those results to other data found in the literature.

  18. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.

    PubMed

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-10-11

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.

  19. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    PubMed Central

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  20. Evaluation of image quality metrics for the prediction of subjective best focus.

    PubMed

    Kilintari, Marina; Pallikaris, Aristophanis; Tsiklis, Nikolaos; Ginis, Harilaos S

    2010-03-01

    Seven existing and three new image quality metrics were evaluated in terms of their effectiveness in predicting subjective cycloplegic refraction. Monochromatic wavefront aberrations (WA) were measured in 70 eyes using a Shack-Hartmann based device (Complete Ophthalmic Analysis System; Wavefront Sciences). Subjective cycloplegic spherocylindrical correction was obtained using a standard manifest refraction procedure. The dioptric amount required to optimize each metric was calculated and compared with the subjective refraction result. Metrics included monochromatic and polychromatic variants, as well as variants taking into consideration the Stiles and Crawford effect (SCE). WA measurements were performed using infrared light and converted to visible before all calculations. The mean difference between subjective cycloplegic and WA-derived spherical refraction ranged from 0.17 to 0.36 diopters (D), while paraxial curvature resulted in a difference of 0.68 D. Monochromatic metrics exhibited smaller mean differences between subjective cycloplegic and objective refraction. Consideration of the SCE reduced the standard deviation (SD) of the difference between subjective and objective refraction. All metrics exhibited similar performance in terms of accuracy and precision. We hypothesize that errors pertaining to the conversion between infrared and visible wavelengths rather than calculation method may be the limiting factor in determining objective best focus from near infrared WA measurements.

  1. Concentration dependences of the density, viscosity, and refraction index of Cu(NO3)2 · 3H2O solutions in DMSO at 298 K

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, A. K.

    2013-03-01

    Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.

  2. Predicted and measured boundary layer refraction for advanced turboprop propeller noise

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Krejsa, Eugene A.

    1990-01-01

    Currently, boundary layer refraction presents a limitation to the measurement of forward arc propeller noise measured on an acoustic plate in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The use of a validated boundary layer refraction model to adjust the data could remove this limitation. An existing boundary layer refraction model is used to predict the refraction for cases where boundary layer refraction was measured. In general, the model exhibits the same qualitative behavior as the measured refraction. However, the prediction method does not show quantitative agreement with the data. In general, it overpredicts the amount of refraction for the far forward angles at axial Mach number of 0.85 and 0.80 and underpredicts the refraction at axial Mach numbers of 0.75 and 0.70. A more complete propeller source description is suggested as a way to improve the prediction method.

  3. Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao

    2018-01-01

    Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.

  4. Refractive Index Compensation in Over-Determined Interferometric Systems

    PubMed Central

    Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

    2012-01-01

    We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup. PMID:23202037

  5. Refractive index compensation in over-determined interferometric systems.

    PubMed

    Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

    2012-10-19

    We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

  6. Interferometric measurement of refractive index modification in a single mode microfiber

    NASA Astrophysics Data System (ADS)

    Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.

    2017-02-01

    Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.

  7. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging. Calibrating the resonator measurements by checking the refractivity of dry gases which are known to better than 0.1% provides a method of controlling the systematic errors to 0.1%. The primary source of error in absorptivity and refractivity measurements is thus the ability to measure the concentration of water vapor in the resonator path. Over the whole thermodynamic range of interest the accuracy of water vapor measurement is 1.5%. However, over the range responsible for most of the radio delay (i.e. conditions in the bottom two kilometers of the atmosphere) the accuracy of water vapor measurements ranges from 0.5% to 1.0%. Therefore the precision of the resonator measurements could be held to 0.3% and the overall absolute accuracy of resonator-based absorption and refractivity measurements will range from 0.6% to 1.

  8. Fundamental characteristics of a dual-colour fibre optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Suzuki, Hitoshi; Sugimoto, Mitsunori; Matsui, Yoshikazu; Kondoh, Jun

    2006-06-01

    In this paper, we present the fundamental characteristics of a novel dual-colour optical fibre surface plasmon resonance (SPR) sensor for a portable low-cost sensing system. The principle of the proposed SPR sensor is based on the differential reflectance method. Light from two light-emitting diodes (LEDs), which are flashing alternately with different wavelengths, is fed to a sensor via two optical couplers. The reflected light is detected by a photodiode. Changes of reflectance at two wavelengths are proportional to the refractive index change of the medium of interest. Taking the difference in reflectance at two wavelengths improves the sensitivity almost twofold. Measuring ethanol solutions with different refractive indices reveals that the sensor has a linear response to the refractive index change from 1.333 to 1.3616. By measuring the stability in the time response we estimate that the limit of detection (LOD) of the refractive index is 5.2 × 10-4.

  9. Temperature-dependent refractive index measurements of L-BBH2 glass for the Subaru CHARIS integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-09-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 μm. We report absolute refractive index (n), dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  10. Temperature-Dependent Refractive Index Measurements of L-BBH2 Glass for the Subaru CHARIS Integral Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 micron. We report absolute refractive index (n), dispersion (dn/d(lambda), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  11. Volumetric Properties, Viscosities, and Refractive Indices of the Binary Systems 1-Butanol + PEG 200, + PEG 400, and + TEGDME

    NASA Astrophysics Data System (ADS)

    Živković, N.; Šerbanović, S.; Kijevčanin, M.; Živković, E.

    2013-06-01

    Densities, viscosities, and refractive indices of three binary systems consisting of 1-butanol with polyethylene glycols of different molecular weights (PEG 200 and PEG 400) or tetraethylene glycol dimethyl ether (TEGDME) were measured at ten temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, and 333.15) K and atmospheric pressure. Densities of the selected binary mixtures were measured with an Anton Paar DMA 5000 digital vibrating U-tube densimeter, refractive indices were measured with an automatic Anton Paar RXA-156 refractometer, while for viscosity measurements, a digital Stabinger SVM 3000/G2 viscometer was used. From these data, excess molar volumes were calculated and fitted to the Redlich-Kister equation. The obtained results have been analyzed in terms of specific molecular interactions and mixing behavior between mixture components, as well as the influence of temperature on them. Viscosity data were also correlated by Grunberg-Nissan, Eyring-UNIQUAC, three-body McAlister, and Eyring-NRTL models.

  12. Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.

    2017-12-01

    An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.

  13. Refractive index of He in the region 920-1910 A

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Tondello, G.

    1974-01-01

    The refractive index of He has been determined in the region 920-1910 A by measurements of wavelength shifts in a 3-m spectrograph alternately filled with He and evacuated. Differential pumping systems were used to allow operation of the light source at conveniently low pressures. Several plates were measured and analyzed in order to reduce statistical errors. The results at 919 A agree with the theory within 1%, i.e., less than the experimental error.

  14. Ionospheric Refraction Corrections in the GTDS for Satellite-To-Satellite Tracking Data

    NASA Technical Reports Server (NTRS)

    Nesterczuk, G.; Kozelsky, J. K.

    1976-01-01

    In satellite-to-satellite tracking (SST) geographic as well as diurnal ionospheric effects must be contended with, for the line of sight between satellites can cross a day-night interface or lie within the equatorial ionosphere. These various effects were examined and a method of computing ionospheric refraction corrections to range and range rate measurements with sufficient accuracy were devised to be used in orbit determinations. The Bent Ionospheric Model is used for SST refraction corrections. Making use of this model a method of computing corrections through large ionospheric gradients was devised and implemented into the Goddard Trajectory Determination System. The various considerations taken in designing and implementing this SST refraction correction algorithm are reported.

  15. Image processing and analysis using neural networks for optometry area

    NASA Astrophysics Data System (ADS)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-11-01

    In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.

  16. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  17. Photoacoustic measurement of refractive index of dye solutions and myoglobin for biosensing applications

    PubMed Central

    Goldschmidt, Benjamin S.; Mehta, Smit; Mosley, Jeff; Walter, Chris; Whiteside, Paul J. D.; Hunt, Heather K.; Viator, John A.

    2013-01-01

    Current methods of determining the refractive index of chemicals and materials, such as ellipsometry and reflectometry, are limited by their inability to analyze highly absorbing or highly transparent materials, as well as the required prior knowledge of the sample thickness and estimated refractive index. Here, we present a method of determining the refractive index of solutions using the photoacoustic effect. We show that a photoacoustic refractometer can analyze highly absorbing dye samples to within 0.006 refractive index units of a handheld optical refractometer. Further, we use myoglobin, an early non-invasive biomarker for malignant hyperthermia, as a proof of concept that this technique is applicable for use as a medical diagnostic. Comparison of the speed, cost, simplicity, and accuracy of the techniques shows that this photoacoustic method is well-suited for optically complex systems. PMID:24298407

  18. Properties of material in the submillimeter wave region (instrumentation and measurement of index of refraction)

    NASA Technical Reports Server (NTRS)

    Lally, J.; Meister, R.

    1983-01-01

    The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.

  19. Fabrication of refractive index distributions in polymer using a photochemical reaction

    NASA Astrophysics Data System (ADS)

    Kada, Takeshi; Obara, Atsushi; Watanabe, Toshiyuki; Miyata, Seizo; Liang, Chuan Xin; Machida, Hideaki; Kiso, Koichi

    2000-01-01

    We demonstrate that a photochemical reaction can create various distributions of refractive index in polymer. When the polymer containing a photochemically active material is irradiated by UV light, the photochemical reaction which breaks the π-conjugated system in the material and decreases its linear polarizability can reduce refractive index of the polymer. We prepared a PMMA film added DMAPN ((4-N,N-dimethylaminophenyl)-N'-phenylnitrone) with a rate of 23 wt % by use of spin coating. Electronic structural change of DMAPN and refractive indices of the film before and after UV irradiation were evaluated by UV absorption spectra and m-line method, respectively. The UV irradiation decreased λmax at 380 nm in the absorption spectra, which is attributed to nitrone, and the refractive indices exponentially with irradiation time. The change of refractive indices reached 0.028. The refractive index profile upon depth of the film was investigated by measuring refractive indices of stacked DMAPN/PMMA films. When UV with a power of 10.7 mW/cm2 irradiated upon three stacked DMAPN/PMMA films for 35 s, variation of the refractive index change showed a quadratic profile. The refractive index profile with various irradiation time can be accounted with the combination of the chemical kinetics with the steady state approximation and Lambert-Beer's law. Thus, the photochemical reaction can be used to control the refractive index distribution in polymer.

  20. The refractive index of human hemoglobin in the visible range.

    PubMed

    Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A

    2011-07-07

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  1. Purkinje image eyetracking: A market survey

    NASA Technical Reports Server (NTRS)

    Christy, L. F.

    1979-01-01

    The Purkinje image eyetracking system was analyzed to determine the marketability of the system. The eyetracking system is a synthesis of two separate instruments, the optometer that measures the refractive power of the eye and the dual Purkinje image eyetracker that measures the direction of the visual axis.

  2. Study on accommodation by autorefraction and dynamic refraction in children.

    PubMed

    Krishnacharya, Prabhakar Srinivasapur

    2014-01-01

    Childhood accommodation interferes with accurate diagnosis of the latent refractive errors. Dynamic retinoscopy offers accurate measurements of accommodative response, while an autorefractometer can predict the accommodative system activation in children. A correlation of the accommodative effort with the dynamic refraction has been investigated in emmetropic children, before and after cycloplegia. A prospective clinical study of accommodative effort in 149 emmetropic children, in the age group 3-16 years, has been conducted using TOPCON AR RM-8000B autorefractor. Dynamic refraction was performed by monocular estimation method before and after cycloplegia, using the retinoscope mirror light as target. Retinoscopic reflex produced 'with the motion' was corrected with positive spherical lenses, and that 'against the motion' was corrected with negative spherical lenses, to achieve neutralization. Mean accommodative effort measured for 149 children included in the study was -0.63±0.69D and dynamic refraction was -0.07±0.44D before cycloplegia, while the mean was+0.52D after cycloplegia, irrespective of the method used. Autorefractor measured -0.17D of accommodative effort per unit change in dynamic refraction before cycloplegia and +0.90D after cycloplegia. The performance of TOPCON AR RM-8000B autorefractor was comparable to dynamic retinoscopy. Presence of many children, and in turn, large number of accommodative response data in 11-13 and 14-15 years group is probably linked to prolonged reading/writing. The accuracy and the agreement of the actual accommodative measurements revealed after cycloplegia. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. Study on accommodation by autorefraction and dynamic refraction in children

    PubMed Central

    Krishnacharya, Prabhakar Srinivasapur

    2014-01-01

    Purpose Childhood accommodation interferes with accurate diagnosis of the latent refractive errors. Dynamic retinoscopy offers accurate measurements of accommodative response, while an autorefractometer can predict the accommodative system activation in children. A correlation of the accommodative effort with the dynamic refraction has been investigated in emmetropic children, before and after cycloplegia. Methods A prospective clinical study of accommodative effort in 149 emmetropic children, in the age group 3–16 years, has been conducted using TOPCON AR RM-8000B autorefractor. Dynamic refraction was performed by monocular estimation method before and after cycloplegia, using the retinoscope mirror light as target. Retinoscopic reflex produced ‘with the motion’ was corrected with positive spherical lenses, and that ‘against the motion’ was corrected with negative spherical lenses, to achieve neutralization. Results Mean accommodative effort measured for 149 children included in the study was −0.63 ± 0.69 D and dynamic refraction was −0.07 ± 0.44 D before cycloplegia, while the mean was + 0.52 D after cycloplegia, irrespective of the method used. Autorefractor measured −0.17 D of accommodative effort per unit change in dynamic refraction before cycloplegia and +0.90 D after cycloplegia. Conclusions The performance of TOPCON AR RM-8000B autorefractor was comparable to dynamic retinoscopy. Presence of many children, and in turn, large number of accommodative response data in 11–13 and 14–15 years group is probably linked to prolonged reading/writing. The accuracy and the agreement of the actual accommodative measurements revealed after cycloplegia. PMID:25130066

  4. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  5. Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Doug

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras with seven optical elements each that include various types of Ohara glass substrates. The successful implementation both panchromatic and thermal lens assembly designs for these cameras requires a fairly accurate (up to 1E-6) knowledge of the temperature and wavelength dependence of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 um and temperature range of 110-310 K for the following Ohara glasses: S-LAH55, S-LAH55V, SLAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for the title substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d lambda) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14, will be presented.

  6. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?

    PubMed Central

    Hastings, Gareth D.; Marsack, Jason D.; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A.

    2017-01-01

    Purpose To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Methods Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. Results For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ±SD was −0.06 ±0.04 with both refractions; dilated was −0.05 ±0.04 with the objective, and −0.05 ±0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. Conclusions A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred over subjective refraction. Subjective refraction was preferred by habitually undercorrected hyperopic eyes. PMID:28370389

  7. Influence of the apex angle of a hollow prism made from an ordinary commercial glass plate as a simple refractometer to the accuracy of the refractive index measurement of the edible oil

    NASA Astrophysics Data System (ADS)

    Idris, N.; Maswati; Yusibani, E.

    2018-05-01

    The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.

  8. Refractive-index measurement and inverse correction using optical coherence tomography.

    PubMed

    Stritzel, Jenny; Rahlves, Maik; Roth, Bernhard

    2015-12-01

    We describe a novel technique for determination of the refractive index of hard biological tissue as well as nonopaque technical samples based on optical coherence tomography (OCT). Our method relies on an inverse refractive-index correction (I-RIC), which matches a measured feature geometry distorted due to refractive-index boundaries to its real geometry. For known feature geometry, the refractive index can be determined with high precision from the best match between the distorted and corrected images. We provide experimental data for refractive-index measurements on a polymethylmethacrylate (PMMA) and on an ex vivo porcine cranial-bone, which are compared to reference measurements and previously published data. Our method is potentially capable of in vivo measurements on rigid biological tissue such as bone as, for example, is required to improve guidance in robot-aided surgical interventions and also for retrieving complex refractive-index profiles of compound materials.

  9. Autonomous satellite navigation using starlight refraction angle measurements

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng

    2013-05-01

    An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.

  10. [Comparison of refraction with or without cycloplegia using Retinomax® or Plusoptix® devices].

    PubMed

    Bui Quoc, E; Guilmin Crepon, S; Tinguely, S; Lavallee, G; Busquet, G; Angot, M; Vera, L

    2017-03-01

    To evaluate the refraction in children measured with Plusoptix ® without cycloplegia vs. Retinomax ® apparatus with cycloplegia. Measure of refraction with Plusoptix ® in children>1year old referred for systematic vision screening, then measurement after cycloplegia with cyclopentolate by the Retinomax ® device. Thirty-three children were included, i.e. 66eyes. Mean age was 40.7months (minimum 12; maximum 114). The Spearman correlation coefficient for the spherical equivalent was 0.52 (Plusoptix ® vs. Retinomax ® comparison; P<0.0001=moderate correlation). The Spearman correlation coefficient was 0.73 for astigmatism (Plusoptix ® vs. Retinomax ® comparison; P<0.0001=strong correlation). The Plusoptix ® sensitivity for measurement of refraction was 57%, 43% and 43% respectively for spherical equivalent, sphere and astigmatism. The correlation of astigmatism values is strong, whereas the correlation of sphere values is moderate. Plusoptix ® seems to be unable to measure the exact refraction, because there is too large a dispersion of refraction measurements with Plusoptix ® , compared to the exact refraction measured with the Retinomax ® . Moreover, the sensitivity of Plusoptix ® is low. Cycloplegic refraction remains indispensable in children. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  12. [Reproducibility of subjective refraction measurement].

    PubMed

    Grein, H-J; Schmidt, O; Ritsche, A

    2014-11-01

    Reproducibility of subjective refraction measurement is limited by various factors. The main factors affecting reproducibility include the characteristics of the measurement method and of the subject and the examiner. This article presents the results of a study on this topic, focusing on the reproducibility of subjective refraction measurement in healthy eyes. The results of previous studies are not all presented in the same way by the respective authors and cannot be fully standardized without consulting the original scientific data. To the extent that they are comparable, the results of our study largely correspond largely with those of previous investigations: During repeated subjective refraction measurement, 95% of the deviation from the mean value was approximately ±0.2 D to ±0.65 D for the spherical equivalent and cylindrical power. The reproducibility of subjective refraction measurement in healthy eyes is limited, even under ideal conditions. Correct assessment of refraction results is only feasible after identifying individual variability. Several measurements are required. Refraction cannot be measured without a tolerance range. The English full-text version of this article is available at SpringerLink (under supplemental).

  13. Patient-reported Outcomes for Assessment of Quality of Life in Refractive Error: A Systematic Review.

    PubMed

    Kandel, Himal; Khadka, Jyoti; Goggin, Michael; Pesudovs, Konrad

    2017-12-01

    This review has identified the best existing patient-reported outcome (PRO) instruments in refractive error. The article highlights the limitations of the existing instruments and discusses the way forward. A systematic review was conducted to identify the types of PROs used in refractive error, to determine the quality of the existing PRO instruments in terms of their psychometric properties, and to determine the limitations in the content of the existing PRO instruments. Articles describing a PRO instrument measuring 1 or more domains of quality of life in people with refractive error were identified by electronic searches on the MEDLINE, PubMed, Scopus, Web of Science, and Cochrane databases. The information on content development, psychometric properties, validity, reliability, and responsiveness of those PRO instruments was extracted from the selected articles. The analysis was done based on a comprehensive set of assessment criteria. One hundred forty-eight articles describing 47 PRO instruments in refractive error were included in the review. Most of the articles (99 [66.9%]) used refractive error-specific PRO instruments. The PRO instruments comprised 19 refractive, 12 vision but nonrefractive, and 16 generic PRO instruments. Only 17 PRO instruments were validated in refractive error populations; six of them were developed using Rasch analysis. None of the PRO instruments has items across all domains of quality of life. The Quality of Life Impact of Refractive Correction, the Quality of Vision, and the Contact Lens Impact on Quality of Life have comparatively better quality with some limitations, compared with the other PRO instruments. This review describes the PRO instruments and informs the choice of an appropriate measure in refractive error. We identified need of a comprehensive and scientifically robust refractive error-specific PRO instrument. Item banking and computer-adaptive testing system can be the way to provide such an instrument.

  14. Quantification of scaling exponents and dynamical complexity of microwave refractivity in a tropical climate

    NASA Astrophysics Data System (ADS)

    Fuwape, Ibiyinka A.; Ogunjo, Samuel T.

    2016-12-01

    Radio refractivity index is used to quantify the effect of atmospheric parameters in communication systems. Scaling and dynamical complexities of radio refractivity across different climatic zones of Nigeria have been studied. Scaling property of the radio refractivity across Nigeria was estimated from the Hurst Exponent obtained using two different scaling methods namely: The Rescaled Range (R/S) and the detrended fluctuation analysis(DFA). The delay vector variance (DVV), Largest Lyapunov Exponent (λ1) and Correlation Dimension (D2) methods were used to investigate nonlinearity and the results confirm the presence of deterministic nonlinear profile in the radio refractivity time series. The recurrence quantification analysis (RQA) was used to quantify the degree of chaoticity in the radio refractivity across the different climatic zones. RQA was found to be a good measure for identifying unique fingerprint and signature of chaotic time series data. Microwave radio refractivity was found to be persistent and chaotic in all the study locations. The dynamics of radio refractivity increases in complexity and chaoticity from the Coastal region towards the Sahelian climate. The design, development and deployment of robust and reliable microwave communication link in the region will be greatly affected by the chaotic nature of radio refractivity in the region.

  15. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  16. Structural and optical properties of Bi2O3-B2O3-CdO-Na2O glass system for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder

    2018-05-01

    Quaternary system of the composition (0.15+x) Bi2O3-(0.55-x) B2O3-0.15CdO-0.15Na2O (where x=0, 0.1, 0.3 and 0.5 mole fraction) has been synthesized using melt-quenching technique. Gamma ray shielding properties are measured in terms of mass attenuation coefficient and half value layer at photon energies 662, 1173 and 1332 keV. These parameters are compared with standard nuclear radiation shielding `barite and ferrite' concretes. The results reflect better radiation shielding properties as compared to barite and ferrite concretes. Effective atomic number is calculated at photon energies 662 and 1173 keV. Density, molar volume and XRD studies are analyzed to know physical and structural properties of the glass system. Optical band gap, refractive index and molar refraction are calculated from UV-Visible measurements. Decrease in optical band gap and increase in molar refraction have been observed indicating the increase of non-bridging oxygens in the structure.

  17. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

    DOE PAGES

    Turnbull, D.; Goyon, C.; Kemp, G. E.; ...

    2017-01-05

    Here, we report the first complete set of measurements of a laser-plasma optical system’s refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstrationmore » of a laser-plasma polarizer with 85$-$87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.« less

  18. The Predictive Power of Electronic Polarizability for Tailoring the Refractivity of High Index Glasses Optical Basicity Versus the Single Oscillator Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.

    Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less

  19. Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice

    PubMed Central

    Tkatchenko, Tatiana V.; Tkatchenko, Andrei V.

    2010-01-01

    Mice have increasingly been used as a model for studies of myopia. The key to successful use of mice for myopia research is the ability to obtain accurate measurements of refractive status of their eyes. In order to obtain accurate measurements of refractive errors in mice, the refraction needs to be performed along the optical axis of the eye. This represents a particular challenge, because mice are very difficult to immobilize. Recently, ketamine-xylazine anesthesia has been used to immobilize mice before measuring refractive errors, in combination with tropicamide ophthalmic solution to induce mydriasis. Although these drugs have increasingly been used while refracting mice, their effects on the refractive state of the mouse eye have not yet been investigated. Therefore, we have analyzed the effects of tropicamide eye drops and ketamine-xylazine anesthesia on refraction in P40 C57BL/6J mice. We have also explored two alternative methods to immobilize mice, i.e. the use of a restraining platform and pentobarbital anesthesia. We found that tropicamide caused a very small, but statistically significant, hyperopic shift in refraction. Pentobarbital did not have any substantial effect on refractive status, whereas ketamine-xylazine caused a large and highly significant hyperopic shift in refraction. We also found that the use of a restraining platform represents good alternative for immobilization of mice prior to refraction. Thus, our data suggest that ketamine-xylazine anesthesia should be avoided in studies of refractive development in mice and underscore the importance of providing appropriate experimental conditions when measuring refractive errors in mice. PMID:20813132

  20. Comparison of the VISX wavescan and OPD-scan III with the subjective refraction.

    PubMed

    Zhu, R; Long, K-L; Wu, X-M; Li, Q-D

    2016-07-01

    To compare the refractive errors measured by the VISX WaveScan, OPD-Scan III and the subjective refraction. The optometry accuracy of computer operated aberrometer used before refractive surgery has been debatable. Hence, a clear study on the role of such automated equipment in optometry is the need of the hour as compared to subjective refraction. Seventy-six patients (152 eyes) were recruited from January 2013 to December 2013. All patients were measured with subjective refraction by the phoropter (NIDEK, RT-5100), objective refraction by the WaveScan (AMO Company, USA), OPD-Scan III (Nidek Technologies, Japan). The sphere, cylinder, axis of the three methods were compared and analyzed. The diopter of sphere power measured by WaveScan was lower than that of the subjective refraction and the difference was 0.13 ± 0. 30D (t = 3. 753, p <0. 001). While the diopter of cylinder power was higher and the difference was 0.13 ±0.43D (t = 3. 664, p <0. 001). There was no significance for sphere, cylinder and spherical equivalent between OPD-Scan III and subjective refraction (p >0. 05). The value of the difference between WaveScan and subjective refraction was 5.87°±6.19°on average, while the difference between OPD-Scan III and subjective refraction was 3.82°±3.95°on average. The differences between the two were statistically significant (t =2. 817, p =0. 006). The results of sphere and cylinder measured by WaveScan and subjective refraction were different. As the latest integrated equipment, the Nidek OPD-Scan III gives a more accurate measurement of objective refraction when compared with subjective refraction. The latest Nidek OPD-Scan III may prove to be an useful tool for preoperative optometry deviation based on objective refraction.

  1. Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons

    PubMed Central

    Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang

    2016-01-01

    We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement. PMID:27439964

  2. Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons.

    PubMed

    Pan, Meiyan; Liang, Zhaoxing; Wang, Yu; Chen, Yihang

    2016-07-21

    We propose a novel mechanism to construct a tunable and ultracompact refractive index sensor by using the Fano resonance in metal-graphene hybrid nanostructure. Plasmon modes in graphene nanoribbons and waveguide resonance modes in the slits of metal strip array coexist in this system. Strong interference between the two different modes occurs when they are spectrally overlapped, resulting in a Fano-type asymmetrically spectral lineshape which can be used for detecting the variations of ambient refractive index. The proposed sensor has a relatively high figure of merit (FOM) over 20 and its sensing performance shows a good tolerance to roughness. In addition to the wide range measurement enabled by the electrical tuning of graphene plasmon modes, such ultracompact system also provides an angle-independent operation and therefore, it can efficiently work for the detection of gas, liquid, or solids. Such optical nanostructure may also be applied to diverse fields such as temperature/pressure metering, medical detection, and mechanical precision measurement.

  3. Questionnaires for Measuring Refractive Surgery Outcomes.

    PubMed

    Kandel, Himal; Khadka, Jyoti; Lundström, Mats; Goggin, Michael; Pesudovs, Konrad

    2017-06-01

    To identify the questionnaires used to assess refractive surgery outcomes, assess the available questionnaires in regard to their psychometric properties, validity, and reliability, and evaluate the performance of the available questionnaires in measuring refractive surgery outcomes. An extensive literature search was done on PubMed, MEDLINE, Scopus, CINAHL, Cochrane, and Web of Science databases to identify articles that described or used at least one questionnaire to assess refractive surgery outcomes. The information on content quality, validity, reliability, responsiveness, and psychometric properties was extracted and analyzed based on an extensive set of quality criteria. Eighty-one articles describing 27 questionnaires (12 refractive error-specific, including 4 refractive surgery-specific, 7 vision-but-non-refractive, and 8 generic) were included in the review. Most articles (56, 69.1%) described refractive error-specific questionnaires. The Quality of Life Impact of Refractive Correction (QIRC), the Quality of Vision (QoV), and the Near Activity Visual Questionnaire (NAVQ) were originally constructed using Rasch analysis; others were developed using the Classical Test Theory. The National Eye Institute Refractive Quality of Life questionnaire was the most frequently used questionnaire, but it does not provide a valid measurement. The QoV, QIRC, and NAVQ are the three best existing questionnaires to assess visual symptoms, quality of life, and activity limitations, respectively. This review identified three superior quality questionnaires for measuring different aspects of quality of life in refractive surgery. Clinicians and researchers should choose a questionnaire based on the concept being measured with superior psychometric properties. [J Refract Surg. 2017;33(6):416-424.]. Copyright 2017, SLACK Incorporated.

  4. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?

    PubMed

    Hastings, Gareth D; Marsack, Jason D; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A

    2017-05-01

    To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ± S.D. was -0.06 ± 0.04 with both refractions; dilated was -0.05 ± 0.04 with the objective, and -0.05 ± 0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred over subjective refraction. Subjective refraction was preferred by habitually undercorrected hyperopic eyes. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  5. Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder, whose principal goal is to detect small planets with bright host starts in the solar neighborhood. The TESS payload consists of four identical cameras and a Data Handling Unit (DHU) fitted with CCD detectors and associated electronics. Each camera consist of a lens assembly with seven optical elements that include various types of Ohara glass substrates. The successful implementation of a panchromatic and a thermal lens assembly design for these cameras requires a fairly accurate (up to 0.000001 (1e-6)) knowledge of the temperature- and wavelength-dependent of the refractive index in the wavelength and temperature range of operation. Hence, this paper is devoted to report on measurements of the refractive index over the wavelength range of 0.42-1.15 micrometers and temperature range of 110-300 K for the following Ohara glasses: S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14. The measurements were performed utilizing the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at NASA's Goddard Space Flight Center. A dense coverage of the absolute refractive index for all these substrates in the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. A comparison of the measured indices with literature values, specifically the temperature-dependent refractive indices of S-PHM52 and S-TIH14 reported by Yamamuro et al. [Yamamuro et al., Opt. Eng. 45(8), 083401 (2006)], will be presented.

  6. Refractive errors in patients with newly diagnosed diabetes mellitus.

    PubMed

    Yarbağ, Abdülhekim; Yazar, Hayrullah; Akdoğan, Mehmet; Pekgör, Ahmet; Kaleli, Suleyman

    2015-01-01

    Diabetes mellitus is a complex metabolic disorder that involves the small blood vessels, often causing widespread damage to tissues, including the eyes' optic refractive error. In patients with newly diagnosed diabetes mellitus who have unstable blood glucose levels, refraction may be incorrect. We aimed to investigate refraction in patients who were recently diagnosed with diabetes and treated at our centre. This prospective study was performed from February 2013 to January 2014. Patients were diagnosed with diabetes mellitus using laboratory biochemical tests and clinical examination. Venous fasting plasma glucose (fpg) levels were measured along with refractive errors. Two measurements were taken: initially and after four weeks. The last difference between the initial and end refractive measurements were evaluated. Our patients were 100 males and 30 females who had been newly diagnosed with type II DM. The refractive and fpg levels were measured twice in all patients. The average values of the initial measurements were as follows: fpg level, 415 mg/dl; average refractive value, +2.5 D (Dioptres). The average end of period measurements were fpg, 203 mg/dl; average refractive value, +0.75 D. There is a statistically significant difference between after four weeks measurements with initially measurements of fasting plasma glucose (fpg) levels (p<0.05) and there is a statistically significant relationship between changes in fpg changes with glasses ID (p<0.05) and the disappearance of blurred vision (to be greater than 50% success rate) were statistically significant (p<0.05). Also, were detected upon all these results the absence of any age and sex effects (p>0.05). Refractive error is affected in patients with newly diagnosed diabetes mellitus; therefore, plasma glucose levels should be considered in the selection of glasses.

  7. Phase and Physicochemical Properties Diagrams of Quaternary System Li2B4O7 + Na2B4O7 + Mg2B6O11 + H2O

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Du, Xue-min; Jing, Yan; Guo, Ya-fei; Deng, Tian-long

    2017-12-01

    The phase and physicochemical properties diagrams of the quaternary system (Li2B4O7 + Na2B4O7 + Mg2B6O11) at 288.15 K and 0.1 MPa were constructed using the solubilities, densities, and refractive indices measured. In the phase diagrams of the system there are one invariant point, three univariant isothermic dissolution curves, and three crystallization regions corresponding to Li2B4O7 · 3H2O, Na2B4O7 · 10H2O, and Mg2B6O11 · 15H2O, respectively. The solution density, refractive index of the quaternary system changes regularly with the increasing of Li2B4O7 concentration. The calculated values of density and refractive index using empirical equations of the quaternary system are in good agreement with the experimental values.

  8. Methods and devices for measuring orbital angular momentum states of electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMorran, Benjamin J.; Harvey, Tyler R.

    A device for measuring electron orbital angular momentum states in an electron microscope includes the following components aligned sequentially in the following order along an electron beam axis: a phase unwrapper (U) that is a first electrostatic refractive optical element comprising an electrode and a conductive plate, where the electrode is aligned perpendicular to the conductive plate; a first electron lens system (L1); a phase corrector (C) that is a second electrostatic refractive optical element comprising an array of electrodes with alternating electrostatic bias; and a second electron lens system (L2). The phase unwrapper may be a needle electrode ormore » knife edge electrode.« less

  9. Effects of Head-Mounted Display on the Oculomotor System and Refractive Error in Normal Adolescents.

    PubMed

    Ha, Suk-Gyu; Na, Kun-Hoo; Kweon, Il-Joo; Suh, Young-Woo; Kim, Seung-Hyun

    2016-07-01

    To investigate the clinical effects of head-mounted display on the refractive error and oculomotor system in normal adolescents. Sixty volunteers (age: 13 to 18 years) watched a three-dimensional movie and virtual reality application of head-mounted display for 30 minutes. The refractive error (diopters [D]), angle of deviation (prism diopters [PD]) at distance (6 m) and near (33 cm), near point of accommodation, and stereoacuity were measured before, immediately after, and 10 minutes after watching the head-mounted display. The refractive error was presented as spherical equivalent (SE). Refractive error was measured repeatedly after every 10 minutes when a myopic shift greater than 0.15 D was observed after watching the head-mounted display. The mean age of the participants was 14.7 ± 1.3 years and the mean SE before watching head-mounted display was -3.1 ± 2.6 D. One participant in the virtual reality application group was excluded due to motion sickness and nausea. After 30 minutes of watching the head-mounted display, the SE, near point of accommodation, and stereoacuity in both eyes did not change significantly (all P > .05). Immediately after watching the head-mounted display, esophoric shift was observed (0.6 ± 1.5 to 0.2 ± 1.5 PD), although it was not significant (P = .06). Transient myopic shifts of 17.2% to 30% were observed immediately after watching the head-mounted display in both groups, but recovered fully within 40 minutes after watching the head-mounted display. There were no significant clinical effects of watching head-mounted display for 30 minutes on the normal adolescent eye. Transient changes in refractive error and binocular alignment were noted, but were not significant. [J Pediatr Ophthalmol Strabismus. 2016;53(4):238-245.]. Copyright 2016, SLACK Incorporated.

  10. Phase and group refractive indices of air calculation by fitting of phase difference measured using a combination of laser and low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Pikálek, Tomáš; Šarbort, Martin; Číp, Ondřej; Pham, Minh Tuan; Lešundák, Adam; Pravdová, Lenka; Buchta, Zdeněk.

    2017-06-01

    The air refractive index is an important parameter in interferometric length measurements, since it substantially affects the measurement accuracy. We present a refractive index of air measurement method based on monitoring the phase difference between the ambient air and vacuum inside a permanently evacuated double-spaced cell. The cell is placed in one arm of the Michelson interferometer equipped with two light sources—red LED and HeNe laser, while the low-coherence and laser interference signals are measured separately. Both phase and group refractive indices of air can be calculated from the measured signals. The method was experimentally verified by comparing the obtained refractive index values with two different techniques.

  11. [Prevalence of refractive errors in 7 and 8 year-old children in the province of Western Pomerania].

    PubMed

    Muszyńska-Lachota, Izabela; Czepita, Damian; uczyńska, Violetta; Wysiecki, Przemysław

    2005-01-01

    To determine the prevalence of refractive errors in 7 and 8 year-old schoolchildren in the province of Western Pomerania. 140 pupils of elementary schools were examined. Measurements of visual acuity and retinoscopy after cycloplegia were carried out. Prevalence of hyperopia, myopia, and astigmatism was 76.1%, 3.3% and 5.1%, respectively. No statistically significant differences between 7 and 8 year-old children were found. 1. There is a relatively high prevalence of refractive errors, with hyperopia prevailing, among 7 and 8 year-old schoolchildren. 2. Myopia in young children is a cause for concern an further studies. 3. High prevalence of refractive errors in children calls for systematic examination and focused interviewing by medical professionals of the school health care system.

  12. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    NASA Astrophysics Data System (ADS)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  13. Nonlinear refraction and two-photon absorption in dense 2Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramesh, Gadige; Varma, K. B. R.

    2012-06-05

    High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25{+-}0.05 at {lambda}=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique at {lambda}=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n{sub 2}=12.1x10{sup -14} cm{sup 2}/W and nonlinear absorption coefficient was {beta}=15.2 cm/GW. The n{sub 2} and {beta} values of the BBO glasses were large compared to the other reported highmore » index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.« less

  14. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  15. Measuring Variable Refractive Indices Using Digital Photos

    ERIC Educational Resources Information Center

    Lombardi, S.; Monroy, G.; Testa, I.; Sassi, E.

    2010-01-01

    A new procedure for performing quantitative measurements in teaching optics is presented. Application of the procedure to accurately measure the rate of change of the variable refractive index of a water-denatured alcohol mixture is described. The procedure can also be usefully exploited for measuring the constant refractive index of distilled…

  16. On the Immersion Liquid Evaporation Method Based on the Dynamic Sweep of Magnitude of the Refractive Index of a Binary Liquid Mixture: A Case Study on Determining Mineral Particle Light Dispersion.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2017-07-01

    This is a feasibility study of a modified immersion liquid technique for determining the refractive index of micro-sized particles. The practical challenge of the traditional liquid immersion method is to find or produce a suitable host liquid whose refractive index equals that of a solid particle. Usually, the immersion liquid method uses a set of immersion liquids with different refractive indices or continuously mixes two liquids with different refractive indices, e.g., using a pumping system. Here, the phenomenon of liquid evaporation has been utilized in defining the time-dependent refractive index variation of the host liquid. From the spectral transmittance data measured during the evaporation process, the refractive index of a solid particle in the host liquid can be determined as a function of the wavelength. The method was tested using calcium fluoride (CaF 2 ) particles with an immersion liquid mixed from diethyl ether and diffusion pump fluid. The dispersion data obtained were consistent with the literature values thus indicating the proper functioning of the proposed procedure.

  17. Ultraviolet refractometry using field-based light scattering spectroscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  18. Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor

    NASA Astrophysics Data System (ADS)

    Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi

    2018-02-01

    Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.

  19. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  20. Determination of refractive index, size, and concentration of nonabsorbing colloidal nanoparticles from measurements of the complex effective refractive index.

    PubMed

    Márquez-Islas, Roberto; Sánchez-Pérez, Celia; García-Valenzuela, Augusto

    2014-02-01

    We describe a method for obtaining the refractive index (RI), size, and concentration of nonabsorbing nanoparticles in suspension from relatively simple optical measurements. The method requires measuring the complex effective RI of two dilute suspensions of the particles in liquids of different refractive indices. We describe the theoretical basis of the proposed method and provide experimental results validating the procedure.

  1. Angle-resolved spectral Fabry-Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

    NASA Astrophysics Data System (ADS)

    Dong, J. T.; Ji, F.; Xia, H. J.; Liu, Z. J.; Zhang, T. D.; Yang, L.

    2018-01-01

    An angle-resolved spectral Fabry-Pérot interferometer is reported for fast and accurate measurement of the refractive index dispersion of optical materials with parallel plate shape. The light sheet from the wavelength tunable laser is incident on the parallel plate with converging angles. The transmitted interference light for each angle is dispersed and captured by a 2D sensor, in which the rows and the columns are used to simultaneously record the intensities as a function of wavelength and incident angle, respectively. The interferogram, named angle-resolved spectral intensity distribution, is analyzed by fitting the phase information instead of finding the fringe peak locations that present periodic ambiguity. The refractive index dispersion and the physical thickness can be then retrieved from a single-shot interferogram within 18 s. Experimental results of an optical substrate standard indicate that the accuracy of the refractive index dispersion is less than 2.5  ×  10-5 and the relative uncertainty of the thickness is 6  ×  10-5 mm (3σ) due to the high stability and the single-shot measurement of the proposed system.

  2. Interferometric Methods of Measuring Refractive Indices and Double-Refraction of Fibres.

    ERIC Educational Resources Information Center

    Hamza, A. A.; El-Kader, H. I. Abd

    1986-01-01

    Presents two methods used to measure the refractive indices and double-refraction of fibers. Experiments are described, with one involving the use of Pluta microscope in the double-beam interference technique, the other employing the multiple-beam technique. Immersion liquids are discussed that can be used in the experiments. (TW)

  3. Determination of the spectral values of the real part of the relative refractive index of human blood erythrocytes from the measured directional scattering coefficients

    NASA Astrophysics Data System (ADS)

    Kugeiko, M. M.; Lisenko, S. A.

    2008-07-01

    An easily automated method for determining the real part of the refractive index of human blood erythrocytes in the range 0.3 1.2 μm is proposed. The method is operationally and metrologically reliable and is based on the measurement of the coefficients of light scattering from forward and backward hemisphere by two pairs of angles and on the use of multiple regression equations. An engineering solution for constructing a measurement system according to this method is proposed, which makes it possible to maximally reduce the calibration errors and effects of destabilizing factors.

  4. Photonic jet reconstruction for particle refractive index measurement by digital in-line holography.

    PubMed

    Sentis, Matthias P L; Onofri, Fabrice R A; Lamadie, Fabrice

    2017-01-23

    A new and computationally efficient approach is proposed for determining the refractive index of spherical and transparent particles, in addition to their size and 3D position, using digital in-line holography. The method is based on the localization of the maximum intensity position of the photonic jet with respect to the particle center retrieved from the back propagation of recorded holograms. Rigorous electromagnetic calculations and experimental results demonstrate that for liquid-liquid systems and droplets with a radius > 30µm, a refractive index measurement with a resolution inferior to 4 × 10-3 is achievable, revealing a significant potential for the use of this method to investigate multiphase flows. The resolution for solid or liquid particles in gas is expected to be lower but sufficient for the recognition of particle material.

  5. Homodyne chiral polarimetry for measuring thermo-optic refractive index variations.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2015-10-10

    Novel reflection-type homodyne chiral polarimetry is proposed for measuring the refractive index variations of a transparent plate under thermal impact. The experimental results show it is a simple and useful method for providing accurate measurements of refractive index variations. The measurement can reach a resolution of 7×10-5.

  6. Simultaneous measurements of radar reflectivity and refractive index spectra in clear air convection.

    NASA Technical Reports Server (NTRS)

    Konrad, T. G.; Robison, F. L.

    1972-01-01

    Simultaneous measurements of radar reflectivity and radio refractive index at several altitudes in clear air convection have been made. The experimental data were compared with the theoretical relationship which relates the reflectivity to the refractivity spectrum. The agreement between the measurements and the theory is excellent and shows that the radar returns in clear air are the result of, and can be quantitatively described as being from, fine-scale refractivity fluctuations due to turbulent mixing. Further, the data give strong support to the -5/3 spectral decay of the refractivity spectrum in the inertial subrange.

  7. Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip

    NASA Astrophysics Data System (ADS)

    Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando

    2018-05-01

    A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.

  8. The visual and functional impacts of astigmatism and its clinical management.

    PubMed

    Read, Scott A; Vincent, Stephen J; Collins, Michael J

    2014-05-01

    To provide a comprehensive overview of research examining the impact of astigmatism on clinical and functional measures of vision, the short and longer term adaptations to astigmatism that occur in the visual system, and the currently available clinical options for the management of patients with astigmatism. The presence of astigmatism can lead to substantial reductions in visual performance in a variety of clinical vision measures and functional visual tasks. Recent evidence demonstrates that astigmatic blur results in short-term adaptations in the visual system that appear to reduce the perceived impact of astigmatism on vision. In the longer term, uncorrected astigmatism in childhood can also significantly impact on visual development, resulting in amblyopia. Astigmatism is also associated with the development of spherical refractive errors. Although the clinical correction of small magnitudes of astigmatism is relatively straightforward, the precise, reliable correction of astigmatism (particularly high astigmatism) can be challenging. A wide variety of refractive corrections are now available for the patient with astigmatism, including spectacle, contact lens and surgical options. Astigmatism is one of the most common refractive errors managed in clinical ophthalmic practice. The significant visual and functional impacts of astigmatism emphasise the importance of its reliable clinical management. With continued improvements in ocular measurement techniques and developments in a range of different refractive correction technologies, the future promises the potential for more precise and comprehensive correction options for astigmatic patients. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  9. Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors

    NASA Astrophysics Data System (ADS)

    Elster, Jennifer L.; Jones, Mark E.; Evans, Mishell K.; Lenahan, Shannon M.; Boyce, Christopher A.; Velander, William H.; VanTassell, Roger

    2000-05-01

    A novel system incorporating optical fiber extrinsic Fabry- Perot interferometric (EFPI)-based sensors for rapid detection of biological targets is presented. With the appropriate configuration, the EFPI senor is able to measure key environmental parameters by monitoring the interferometric fringes resulting from an optical path differences of reflected signals. The optical fiber EFPI sensor has been demonstrated for strain, pressure, and temperature measurements and can be readily modified for refractive index measurements by allowing solutions to flow into an open cavity. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings containing ligands within this cavity, specific binding of target molecules can be accomplished. As target molecules bind to the coating, there is an increased density within the film, causing a measurable refractive index change that correlates to the concentration of detected target molecules. This sensor platform offers enhanced sensing capabilities for clinical diagnostics, pharmaceutical screening, environmental monitoring, food pathogen detection, biological warfare agent detection, and industrial bioprocessing. Promising applications also exist for process monitoring within the food/beverage, petroleum, and chemical industry.

  10. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research.

    PubMed

    Oh, Jaechul; Weaver, J L; Karasik, M; Chan, L Y

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (∼1 ns FWHM) with the intensity of 1.1 × 10(15) W/cm(2). The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 10(21) cm(-3) with the density scale length of 120 μm along the plasma symmetry axis. The resulting n(e) and T(e) profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  11. Measurement of average density and relative volumes in a dispersed two-phase fluid

    DOEpatents

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  12. Refractive index measurements in absorbing media with white light spectral interferometry.

    PubMed

    Arosa, Yago; Lago, Elena López; de la Fuente, Raúl

    2018-03-19

    White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.

  13. Improvements to GPS Airborne Radio Occultation in the Lower Troposphere Through Implementation of the Phase Matching Method

    NASA Astrophysics Data System (ADS)

    Wang, K.-N.; Garrison, J. L.; Haase, J. S.; Murphy, B. J.

    2017-10-01

    Airborne radio occultation (ARO) is a remote sensing technique for atmospheric sounding using Global Positioning System signals received by an airborne instrument. The atmospheric refractivity profile, which depends on pressure, temperature, and water vapor, can be retrieved by measuring the signal delay due to the refractive medium through which the signal traverses. The ARO system was developed to make repeated observations within an individual meteorological event such as a tropical storm, regardless of the presence of clouds and precipitation, and complements existing observation techniques such as dropsondes and satellite remote sensing. RO systems can suffer multipath ray propagation in the lower troposphere if there are strong refractivity gradients, for example, due to a highly variable moisture distribution or a sharp boundary layer, interfering with continuous carrier phase tracking as well as complicating retrievals. The phase matching method has now been adapted for ARO and is shown to reduce negative biases in the refractivity retrieval by providing robust retrievals of bending angle in the presence of multipath. The retrieval results are presented for a flight campaign in September 2010 for Hurricane Karl in the Caribbean Sea. The accuracy is assessed through comparison with the European Centre for Medium Range Weather Forecasts Interim Reanalysis. The fractional difference in refractivity can be maintained at a standard deviation of 2% from flight level down to a height of 2 km. The phase matching method decreases the negative refractivity bias by as much as 4% over the classical geometrical optics retrieval method.

  14. Uncertainty budgets for liquid waveguide CDOM absorption measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Utschig, Christian; McKee, David

    2017-08-01

    Long path length liquid waveguide capillary cell (LWCC) systems using simple spectrometers to determine the spectral absorption by colored dissolved organic matter (CDOM) have previously been shown to have better measurement sensitivity compared to high-end spectrophotometers using 10 cm cuvettes. Information on the magnitude of measurement uncertainties for LWCC systems, however, has remained scarce. Cross-comparison of three different LWCC systems with three different path lengths (50, 100, and 250 cm) and two different cladding materials enabled quantification of measurement precision and accuracy, revealing strong wavelength dependency in both parameters. Stable pumping of the sample through the capillary cell was found to improve measurement precision over measurements made with the sample kept stationary. Results from the 50 and 100 cm LWCC systems, with higher refractive index cladding, showed systematic artifacts including small but unphysical negative offsets and high-frequency spectral perturbations due to limited performance of the salinity correction. In comparison, the newer 250 cm LWCC with lower refractive index cladding returned small positive offsets that may be physically correct. After null correction of measurements at 700 nm, overall agreement of CDOM absorption data at 440 nm was found to be within 5% root mean square percentage error.

  15. Measurement of the index of refraction of μm crystals by a confocal laser microscope--potential application for the refractive index mapping of μm scale.

    PubMed

    Kimura, Keisaku; Sato, Seiichi

    2014-05-01

    A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.

  16. Nondestructive measurement of the refractive index distribution of a glass molded lens by two-wavelength wavefronts.

    PubMed

    Sugimoto, Tomohiro

    2016-10-01

    This paper presents a nondestructive and non-exact-index-matching method for measuring the refractive index distribution of a glass molded lens with high refractivity. The method measures two-wavelength wavefronts of a test lens immersed in a liquid with a refractive index dispersion different from that of the test lens and calculates the refractive index distribution by eliminating the refractive index distribution error caused by the shape error of the test lens. The estimated uncertainties of the refractive index distributions of test lenses with nd≈1.77 and nd≈1.85 were 1.9×10-5  RMS and 2.4×10-5  RMS, respectively. I validated the proposed method by evaluating the agreement between the estimated uncertainties and experimental values.

  17. Evaluation of Refractivity Profiles from CHAMP and SAC-C GPS Radio Occultation

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Ao, Chi On; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond

    2002-01-01

    The GeoForschungsZentrum's Challenging Minisatellite Payload for Geophysical Research and Application (CHAMP, Germany-US) and the Comision Nacional de Actividades Especiales' Satelite de Aplicaciones Cientificas-C (SAC-C, Argentina-US) missions are the first missions to carry a second-generation Blackjack Global Positioning System (GPS) receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS Meteorology experiment (GPS/MET). Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation and Numerical Weather Prediction (NWP). In order to evaluate the refractivity data derived by the Jet Propulsion Laboratory (JPL) from raw radio occultation measurements, we use Data Assimilation Office (DAO) 6-hour forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We show statistics of the differences as well as histograms of the differences.

  18. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object.

    PubMed

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-05-10

    To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.

  19. Index of Refraction Measurements Using a Laser Distance Meter

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  20. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  1. Refraction error correction for deformation measurement by digital image correlation at elevated temperature

    NASA Astrophysics Data System (ADS)

    Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji

    2017-03-01

    An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.

  2. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    PubMed

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  3. Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach-Zehnder interferometer.

    PubMed

    Hong, Chin-Yih; Chieh, Jen-Jie; Yang, Shieh-Yueh; Yang, Hong-Chang; Horng, Herng-Er

    2009-10-10

    We use a heterodyne Mach-Zehnder interferometer to simultaneously and simply measure the complex refractive index by only normal incidence on the specimen, instead of using a complicated measurement procedure or instrument that only measures the real or imaginary part of the complex refractive index. To study the tiny variation of the complex refractive index, the small complex refractive-index variation of a rare-concentration magnetic-fluid thin film, due to a weak field of less than 200 Oe, was processed by this interferometer. We also present the wavelength trend of the complex refractive index of magnetic fluids to verify the appearance of the slight change in a small wavelength range.

  4. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    PubMed

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  5. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    NASA Astrophysics Data System (ADS)

    Hurter, F.; Maier, O.

    2013-11-01

    We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a) zenith path delays that are a byproduct of the GPS (global positioning system) processing, (b) ground meteorological measurements, (c) wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d) radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is -16% and quartiles are 5% to 40% for the lower troposphere. We further added 189 radio occultations that met our requirements. They mostly improved the accuracy in the upper troposphere. Maximum median offsets have decreased from 120% relative error to 44% at 8 km height. Dew point temperature profiles after the conversion with radiometer temperatures compare to radiosonde profiles as to: absolute dew point temperature errors in the lower troposphere have a maximum median offset of -2 K and maximum quartiles of 4.5 K. For relative humidity, we get a maximum mean offset of 7.3%, with standard deviations of 12-20%. The methodology presented allows us to reconstruct humidity profiles at any location where temperature profiles, but no atmospheric humidity measurements other than from GPS are available. Additional data sets of wet refractivity are shown to be easily integrated into the framework and strongly aid the reconstruction. Since the used data sets are all operational and available in near-realtime, we envisage the methodology of this paper to be a tool for nowcasting of clouds and rain and to understand processes in the boundary layer and at its top.

  6. Measuring the Index of Refraction.

    ERIC Educational Resources Information Center

    Phelps, F. M., III; Jacobson, B. S.

    1980-01-01

    Presents two methods for measuring the index of refraction of glass or lucite. These two methods, used in the freshman laboratory, are based on the fact that a ray of light inside a block will be refracted parallel to the surface. (HM)

  7. Denaturation process of laccase in various media by refractive index measurements.

    PubMed

    Saoudi, O; Ghaouar, N; Ben Salah, S; Othman, T

    2017-09-01

    In this work, we are interested in the denaturation process of a laccase from Tramates versicolor via the determination of the refractive index, the refractive index increment and the specific volume in various media. The measurements were carried out using an Abbe refractometer. We have shown that the refractive index increment values obtained from the slope of the variation of the refractive index vs. Concentration are outside the range refractive index increments of proteins. To correct the results, we have followed the theoretical predictions based on the knowledge of the protein refractive index from its amino acids composition. The denaturation process was studied by calculating the specific volume variation where its determination was related to the Gladstone-Dale and the Lorentz-Lorentz models.

  8. Influence of refractive condition on retinal vasculature complexity in younger subjects.

    PubMed

    Azemin, Mohd Zulfaezal Che; Daud, Norsyazwani Mohamad; Ab Hamid, Fadilah; Zahari, Ilyanoon; Sapuan, Abdul Halim

    2014-01-01

    The aim of this study was to compare the retinal vasculature complexity between emmetropia, and myopia in younger subjects. A total of 82 patients (24.12 ± 1.25 years) with two types of refractive conditions, myopia and emmetropia were enrolled in this study. Refraction data were converted to spherical equivalent refraction. These retinal images (right eyes) were obtained from NAVIS Lite Image Filing System and the vasculature complexity was measured by fractal dimension (D f ), quantified using a computer software following a standardized protocol. There was a significant difference (P < 0.05) in the value of D f between emmetropic (1.5666 ± 0.0160) and myopic (1.5588 ± 0.0142) groups. A positive correlation (rho = 0.260, P < 0.05) between the D f and the spherical equivalent refraction was detected in this study. Using a linear model, it was estimated that 6.7% of the variation in D f could be explained by spherical equivalent refraction. This study provides valuable findings about the effect of moderate to high myopia on the fractal dimension of the retinal vasculature network. These results show that myopic refraction in younger subjects was associated with a decrease in D f , suggesting a loss of retinal vessel density with moderate to high myopia.

  9. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    PubMed

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  10. Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hong; Lipschultz, Kristen A.; Anheier, Norman C.

    2012-04-01

    A state-of-the-art mid-infrared prism coupler was used to study the refractive index properties of forward-looking-infrared (FLIR) grade zinc sulfide samples prepared with unique planar grain orientations and locations with respect to the CVD growth axis. This study was motivated by prior photoluminescence and x-ray diffraction measurements that suggested refractive index may vary according to grain orientation. Measurements were conducted to provide optical dispersion and thermal index (dn/dT) data at discrete laser wavelengths between 0.633 and 10.591 {mu}m at two temperature set points (30 C and 90 C). Refractive index measurements between samples exhibited an average standard deviation comparable to themore » uncertainty of the prism coupler measurement (0.0004 refractive index units), suggesting that the variation in refractive index as a function of planar grain orientation and CVD deposition time is negligible, and should have no impact on subsequent optical designs. Measured dispersion data at mid-infrared wavelengths was found to agree well with prior published measurements.« less

  11. Refraction effects of atmosphere on geodetic measurements to celestial bodies

    NASA Technical Reports Server (NTRS)

    Joshi, C. S.

    1973-01-01

    The problem is considered of obtaining accurate values of refraction corrections for geodetic measurements of celestial bodies. The basic principles of optics governing the phenomenon of refraction are defined, and differential equations are derived for the refraction corrections. The corrections fall into two main categories: (1) refraction effects due to change in the direction of propagation, and (2) refraction effects mainly due to change in the velocity of propagation. The various assumptions made by earlier investigators are reviewed along with the basic principles of improved models designed by investigators of the twentieth century. The accuracy problem for various quantities is discussed, and the conclusions and recommendations are summarized.

  12. Imaging based refractometer for hyperspectral refractive index detection

    DOEpatents

    Baba, Justin S.; Boudreaux, Philip R.

    2015-11-24

    Refractometers for simultaneously measuring refractive index of a sample over a range of wavelengths of light include dispersive and focusing optical systems. An optical beam including the range of wavelengths is spectrally spread along a first axis and focused along a second axis so as to be incident to an interface between the sample and a prism at a range of angles of incidence including a critical angle for at least one wavelength. An imaging detector is situated to receive the spectrally spread and focused light from the interface and form an image corresponding to angle of incidence as a function of wavelength. One or more critical angles are identified and corresponding refractive indices are determined.

  13. Molecular interactions and structures in ethylene glycol-ethanol and ethylene glycol-water solutions at 303 K on densities, viscosities, and refractive indices data

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Ghatbandhe, A. S.

    2014-01-01

    Molecular interactions and structural fittings in binary ethylene glycol + ethanol (EGE, x EG = 0.4111-0.0418) and ethylene glycol + water (EGW, x EG = 0.1771-0.0133) mixtures were studied through the measurement of densities (ρ), viscosities (η), and refractive indices ( n D ) at 303.15 K. Excess viscosities (η E ), molar volumes ( V m ), excess molar volumes ( V {/m E }), and molar retractions ( R M ) of the both binary systems were computed from measured properties. The measured and computed properties have been used to understand the molecular interactions in unlike solvents and structural fittings in these binary mixtures.

  14. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy.

    PubMed

    Binding, Jonas; Ben Arous, Juliette; Léger, Jean-François; Gigan, Sylvain; Boccara, Claude; Bourdieu, Laurent

    2011-03-14

    Two-photon laser scanning microscopy (2PLSM) is an important tool for in vivo tissue imaging with sub-cellular resolution, but the penetration depth of current systems is potentially limited by sample-induced optical aberrations. To quantify these, we measured the refractive index n' in the somatosensory cortex of 7 rats in vivo using defocus optimization in full-field optical coherence tomography (ff-OCT). We found n' to be independent of imaging depth or rat age. From these measurements, we calculated that two-photon imaging beyond 200 µm into the cortex is limited by spherical aberration, indicating that adaptive optics will improve imaging depth.

  15. The effect of instrument alignment on peripheral refraction measurements by automated optometer.

    PubMed

    Ehsaei, Asieh; Chisholm, Catharine M; Mallen, Edward A H; Pacey, Ian E

    2011-07-01

    Interest in peripheral refraction measurement has grown in recent years in response to the insight it may provide into myopia development. In light of the likely increase in the clinical use of open-field autorefractors for peripheral refraction measurements, the question of instrument alignment and its impact on the accuracy of refraction measurements is raised. The aim of this study was to investigate the accuracy and precision when an open-field device was moved away from alignment with the corneal reflex towards the pupil margins, and to determine the optimum alignment position for peripheral refraction measurements. Autorefractions were performed on the right eyes of 10 healthy participants using the Shin-Nippon NVision-K 5001 autorefractor. At least five measurements were taken with the subject fixating a distance target in the primary position of gaze, and then four peripheral fixation targets located along the horizontal meridian (10° and 20° eccentricities in the nasal and temporal retina). Measurements were taken at seven alignment positions across the pupil for each fixation angle. Refraction was recorded as the spherical and cylindrical power. The central objective refraction achieved under cycloplegia based on the autorefraction result for the whole sample, ranged between -5.62 D and +1.85 D for the value of sphere, with a maximum astigmatism of -1.00 D. Acceptable alignment position range varied with fixation angle but was -1.0 to +1.0 mm in width across the pupil. Peripheral refraction measurements centred on the entrance pupil were as reliable as those centred on the corneal reflex. Our data suggest that for peripheral refraction measurements, there is a range of acceptable positions and operators can be confident of the validity of results obtained if aligned half way between the pupil centre and corneal reflex. The alignment becomes more critical at greater eccentricities. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.

  16. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  17. Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing

    NASA Astrophysics Data System (ADS)

    Vyhnalek, Brian E.

    2017-02-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter C 2 n is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify C 2 n profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  18. Path Profiles of Cn2 Derived from Radiometer Temperature Measurements and Geometrical Ray Tracing

    NASA Technical Reports Server (NTRS)

    Vyhnalek, Brian E.

    2017-01-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter Cn2 is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify Cn2 profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time-varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  19. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    NASA Astrophysics Data System (ADS)

    Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David

    2013-09-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.

  20. Raman spectra and optical trapping of highly refractive and nontransparent particles

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Li, Yong-qing

    2002-08-01

    We measured the Raman spectra of single optically trapped highly refractive and nontransparent microscopic particles suspended in a liquid using an inverted confocal laser-tweezers-Raman-spectroscopy system. A low-power diode-laser beam of TEM00 mode was used both for optical trapping and Raman excitation of refractive, absorptive, and reflective metal particles. To form a stable trap for a nontransparent particle, the beam focus was located near the top of the particle and the particle was pushed against a glass plate by the axial repulsive force. Raman spectra from single micron-sized crystals with high index of refraction including silicon, germanium, and KNbO3, and from absorptive particles of black and color paints were recorded. Surface-enhanced Raman scattering of R6G and phenylalanine molecules absorbed on the surface of a trapped cluster of silver particles was also demonstrated.

  1. Observations of Anomalous Refraction with Co-housed Telescopes

    NASA Astrophysics Data System (ADS)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  2. Refractive index measurement for biomaterial samples by total internal reflection.

    PubMed

    Jin, Y L; Chen, J Y; Xu, L; Wang, P N

    2006-10-21

    The refractive index of biological tissue is a fundamental parameter in applications of optical diagnosis and laser treatments. In the present work, the refractive indices and thermo-optic coefficients of some basic biomaterials, such as blood plasma, haemoglobin solution and lipid membrane, were studied by the method of total internal reflection at the wavelengths of 532 and 632.8 nm that are the most frequently used laser wavelengths in the biomedical field. The effects of the sample concentration and the temperature on refractive index were measured, and empirical relationships were summarized, accompanied by a theoretical explanation based on molecular polarization theory. The results provide some fundamental data for the refractive indices of these biomaterials under variant conditions, and also demonstrate that the total internal reflection method is a feasible and reliable way to measure the refractive indices of biological samples.

  3. Refractometry studies of the optical properties of polymer films and the development of polymer coated refractive index sensors

    NASA Astrophysics Data System (ADS)

    Saunders, John Edward

    Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of Δn = 1-7 x10-4 and Δd < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.

  4. [Analysis of refractive status after cataract surgery in age-related cataract patients with shallow anterior chamber].

    PubMed

    Yang, Fei; Hou, Xianru; Wu, Huijuan; Bao, Yongzhen

    2014-02-01

    To evaluate the characteristics of postoperative refractive status in age-related cataract patients with shallow anterior chamber and the correlation between pre-operative anterior chamber depth and postoperative refractive status. Prospective case-control study. Sixty-eight cases (90 eyes) with age-related cataract were recruited from October 2010 to January 2012 in People's Hospital Peking University including 28 cases (34 eyes) in control group and 40 cases (56 eyes) in shallow anterior chamber group according to anterior chamber depth (ACD) measured by Pentacam system. Axial length and keratometer were measured by IOL Master and intraocular lens power was calculated using SRK/T formula. Postoperative refraction, ACD and comprehensive eye examination were performed at 1 month and 3 months after cataract surgery. Using SPSS13.0 software to establish a database, the two groups were compared with independent samples t-test and correlation analysis were performed with binary logical regression. The postoperative refractive deviation at 1 month were (-0.39 ± 0.62) D in control group and (+0.73 ± 0.26) D in shallow anterior chamber group respectively which present statistical significance between the two groups (P = 0.00, t = 3.67); the postoperative refractive deviation in 3 month was (-0.37 ± 0.62) D in control group and (+0.79 ± 0.28) D in shallow anterior chamber group operatively which present statistical significance between the two groups (P = 0.00, t = 3.33). In shallow anterior chamber group, with the shallower of ACD, the greater of refractive deviation (P = 0.00, r1 month = -0.57, r3 months = -0.61). Hyperopic shift existed in age-related cataract patients with shallow anterior chamber and the shallower of ACD was, the greater of hyperopic shift happened.

  5. Postural stability changes in the elderly with cataract simulation and refractive blur.

    PubMed

    Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B

    2003-11-01

    To determine the influence of cataractous and refractive blur on postural stability and limb-load asymmetry (LLA) and to establish how postural stability changes with the spatial frequency and contrast of the visual stimulus. Thirteen elderly subjects (mean age, 70.76 +/- 4.14 [SD] years) with no history of falls and normal vision were recruited. Postural stability was determined as the root mean square [RMS] of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions and LLA was determined as the ratio of the average body weight placed on the more-loaded limb to the less-loaded limb, recorded during a 30-second period. Data were collected under normal standing conditions and with somatosensory system input disrupted. Measurements were repeated with four visual targets with high (8 cyc/deg) or low (2 cyc/deg) spatial frequency and high (Weber contrast, approximately 95%) or low (Weber contrast, approximately 25%) contrast. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with cataract simulation. The data were analyzed in a population-averaged linear model. The cataract simulation caused significant increases in postural instability equivalent to that caused by 8-D blur conditions, and its effect was greater when the input from the somatosensory system was disrupted. High spatial frequency targets increased postural instability. Refractive blur, cataract simulation, or eye closure had no effect on LLA. Findings indicate that cataractous and refractive blur increase postural instability, and show why the elderly, many of whom have poor vision along with musculoskeletal and central nervous system degeneration, are at greater risk of falling. Findings also highlight that changes in contrast sensitivity rather than resolution changes are responsible for increasing postural instability. Providing low spatial frequency information in certain environments may be useful in maintaining postural stability. Correcting visual impairment caused by uncorrected refractive error and cataracts could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.

  6. Population-based assessment of sensitivity and specificity of a pinhole for detection of significant refractive errors in the community.

    PubMed

    Marmamula, Srinivas; Keeffe, Jill E; Narsaiah, Saggam; Khanna, Rohit C; Rao, Gullapalli N

    2014-11-01

    Measurements of refractive errors through subjective or automated refraction are not always possible in rapid assessment studies and community vision screening programs; however, measurements of vision with habitual correction and with a pinhole can easily be made. Although improvements in vision with a pinhole are assumed to mean that a refractive error is present, no studies have investigated the magnitude of improvement in vision with pinhole that is predictive of refractive error. The aim was to measure the sensitivity and specificity of 'vision improvement with pinhole' in predicting the presence of refractive error in a community setting. Vision and vision with pinhole were measured using a logMAR chart for 488 of 582 individuals aged 15 to 50 years. Refractive errors were measured using non-cycloplegic autorefraction and subjective refraction. The presence of refractive error was defined using spherical equivalent refraction (SER) at two levels: SER greater than ± 0.50 D sphere (DS) and SER greater than ±1.00 DS. Three definitions for significant improvement in vision with a pinhole were used: 1. Presenting vision less than 6/12 and improving to 6/12 or better, 2. Improvement in vision of more than one logMAR line and 3. Improvement in vision of more than two logMAR lines. For refractive error defined as spherical equivalent refraction greater than ± 0.50 DS, the sensitivities and specificities for the pinhole test predicting the presence of refractive error were 83.9 per cent (95% CI: 74.5 to 90.9) and 98.8 per cent (95% CI: 97.1 to 99.6), respectively for definition 1. Definition 2 had a sensitivity 89.7 per cent (95% CI: 81.3 to 95.2) and specificity 88.0 per cent (95% CI: 4.4 to 91.0). Definition 3 had a sensitivity of 75.9 per cent (95% CI: 65.5 to 84.4) and specificity of 97.8 per cent (95% CI: 95.8 to 99.0). Similar results were found with spherical equivalent refraction greater than ±1.00 DS, when tested against the three pinhole-based definitions. Refractive error definitions based on improvement in vision with the pinhole shows good sensitivity and specificity at predicting the presence of significant refractive errors. These definitions can be used in rapid assessment surveys and community-based vision screenings. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  7. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  8. Measurement of Refractive Index Using a Michelson Interferometer.

    ERIC Educational Resources Information Center

    Fendley, J. J.

    1982-01-01

    Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

  9. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  10. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  11. Computerized Scheimpflug densitometry as a measure of corneal optical density after excimer laser refractive surgery in myopic eyes.

    PubMed

    Cennamo, Gilda; Forte, Raimondo; Aufiero, Bernardino; La Rana, Agostino

    2011-08-01

    To evaluate changes in anterior corneal optical density and the refractive index after photorefractive keratectomy (PRK) using a rotating Scheimpflug system. Department of Ophthalmology, University Federico II, Naples, Italy. Comparative case series. Anterior corneal optical density was evaluated with a rotating Scheimpflug system at baseline and 3 months and 12 months after PRK in eyes with a refractive error between -6.00 diopters (D) and -12.00 D (study group). A control group of unoperated eyes with the same refraction range was used to calculate corneal optical density and the Gladstone-Dale constant in unoperated eyes using the Gladstone-Dale formula. In the study group, changes in the anterior corneal optical density were evaluated over time and variations in the anterior corneal refractive index were obtained using the Gladstone-Dale constant. The study group comprised 37 eyes and the control group, 200 eyes. In the study group, the mean anterior corneal optical density and refractive index, respectively, were 27.71 ± 4.39 and 1.360 ± 0.05 at baseline, 37.812 ± 12.31 and 1.491 ± 0.16 after 3 months (P<.001 compared with baseline), and 26.29 ± 4.93 and 1.341 ± 0.06 after 12 months (P=.03 compared with baseline). The mean corneal optical density in the control group was 27.71 ± 4.31 (SD), and the resultant Gladstone-Dale constant was 0.013. An early increase and a subsequent reduction in anterior corneal optical density and the refractive index were present in myopic eyes during 1 year after PRK. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Nonintrusive measurement of the liquid refractive index by using properties of the cuvette wall.

    PubMed

    Xu, Ming; Ren, Junpeng; Miao, Runcai; Zhang, Zongquan

    2016-10-01

    We present a method of nonintrusive measurement of the refractive index of a liquid in a glass cuvette, which uses some optical properties of the cuvette wall and the principle of total internal reflection. By coating a transmission-scattering paint layer on the outer surface of the cuvette, we transform an incident laser beam into a transmitted scattered light. When the transmitted scattered light reaches the interface between the container wall and the liquid inside, the light beams satisfying the condition of total internal reflection are reflected to the coating layer, automatically forming a circular dark pattern that is related to the refractive index of the liquid. Based on an analytic relation between the diameter of the circular dark pattern and the refractive index of the liquid, we devised a method of in situ nonintrusive refractive index measurement. We tested the effect of several parameters on the measuring accuracy and found that the optimal thickness of the transmission-scattering layer is in the range of 50-70 μm, and the aperture of the diaphragm should be in the range of 0.7-1.0 mm. We measured the refractive indices of ethanol, Coca Cola, and red wine, and achieved an accuracy of ±3×10-4  RIU (refractive index unit).

  13. Material Structure of a Graded Refractive Index Lens in Decapod Squid

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Heiney, Paul; Sweeney, Alison

    2013-03-01

    Underwater vision with a camera-type eye that is simultaneously acute and sensitive requires a spherical lens with a graded distribution of refractive index. Squids have this type of lens, and our previous work has shown that its optical properties are likely achieved with radially variable densities of a single protein with multiple isoforms. Here we measure the spatial organization of this novel protein material in concentric layers of the lens and use these data to suggest possible mechanisms of self-assembly of the proteins into a graded refractive index structure. First, we performed small angle x-ray scattering (SAXS) to study how the protein is spatially organized. Then, molecular dynamic simulation allowed us to correlate structure to the possible dynamics of the system in different regions of the lens. The combination of simulation and SAXS data in this system revealed the likely protein-protein interactions, resulting material structure and its relationship to the observed and variable optical properties of this graded index system. We believe insights into the material properties of the squid lens system will inform the invention of self-assembling graded index devices.

  14. Determination of effective complex refractive index of a turbid liquid with surface plasmon resonance phase detection.

    PubMed

    Yingying, Zhang; Jiancheng, Lai; Cheng, Yin; Zhenhua, Li

    2009-03-01

    The dependence of the surface plasmon resonance (SPR) phase difference curve on the complex refractive index of a sample in Kretschmann configuration is discussed comprehensively, based on which a new method is proposed to measure the complex refractive index of turbid liquid. A corresponding experiment setup was constructed to measure the SPR phase difference curve, and the complex refractive index of turbid liquid was determined. By using the setup, the complex refractive indices of Intralipid solutions with concentrations of 5%, 10%, 15%, and 20% are obtained to be 1.3377+0.0005 i, 1.3427+0.0028 i, 1.3476+0.0034 i, and 1.3496+0.0038 i, respectively. Furthermore, the error analysis indicates that the root-mean-square errors of both the real and the imaginary parts of the measured complex refractive index are less than 5x10(-5).

  15. Method of determining effects of heat-induced irregular refractive index on an optical system.

    PubMed

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  16. PREVALENCE OF UNCORRECTED REFRACTIVE ERRORS IN ADULTS AGED 30 YEARS AND ABOVE IN A RURAL POPULATION IN PAKISTAN.

    PubMed

    Abdullah, Ayesha S; Jadoon, Milhammad Zahid; Akram, Mohammad; Awan, Zahid Hussain; Azam, Mohammad; Safdar, Mohammad; Nigar, Mohammad

    2015-01-01

    Uncorrected refractive errors are a leading cause of visual disability globally. This population-based study was done to estimate the prevalence of uncorrected refractive errors in adults aged 30 years and above of village Pawakah, Khyber Pakhtunkhwa (KPK), Pakistan. It was a cross-sectional survey in which 1000 individuals were included randomly. All the individuals were screened for uncorrected refractive errors and those whose visual acuity (VA) was found to be less than 6/6 were refracted. In whom refraction was found to be unsatisfactory (i.e., a best corrected visual acuity of <6/6) further examination was done to establish the cause for the subnormal vision. A total of 917 subjects participated in the survey (response rate 92%). The prevalence of uncorrected refractive errors was found to be 23.97% among males and 20% among females. The prevalence of visually disabling refractive errors was 6.89% in males and 5.71% in females. The prevalence was seen to increase with age, with maximum prevalence in 51-60 years age group. Hypermetropia (10.14%) was found to be the commonest refractive error followed by Myopia (6.00%) and Astigmatism (5.6%). The prevalence of Presbyopia was 57.5% (60.45% in males and 55.23% in females). Poor affordability was the commonest barrier to the use of spectacles, followed by unawareness. Cataract was the commonest reason for impaired vision after refractive correction. The prevalence of blindness was 1.96% (1.53% in males and 2.28% in females) in this community with cataract as the commonest cause. Despite being the most easily avoidable cause of subnormal vision uncorrected refractive errors still account for a major proportion of the burden of decreased vision in this area. Effective measures for the screening and affordable correction of uncorrected refractive errors need to be incorpora'ted into the health care delivery system.

  17. Cell refractive index for cell biology and disease diagnosis: past, present and future.

    PubMed

    Liu, P Y; Chin, L K; Ser, W; Chen, H F; Hsieh, C-M; Lee, C-H; Sung, K-B; Ayi, T C; Yap, P H; Liedberg, B; Wang, K; Bourouina, T; Leprince-Wang, Y

    2016-02-21

    Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.

  18. Error analysis and corrections to pupil diameter measurements with Langley Research Center's oculometer

    NASA Technical Reports Server (NTRS)

    Fulton, C. L.; Harris, R. L., Jr.

    1980-01-01

    Factors that can affect oculometer measurements of pupil diameter are: horizontal (azimuth) and vertical (elevation) viewing angle of the pilot; refraction of the eye and cornea; changes in distance of eye to camera; illumination intensity of light on the eye; and counting sensitivity of scan lines used to measure diameter, and output voltage. To estimate the accuracy of the measurements, an artificial eye was designed and a series of runs performed with the oculometer system. When refraction effects are included, results show that pupil diameter is a parabolic function of the azimuth angle similar to the cosine function predicted by theory: this error can be accounted for by using a correction equation, reducing the error from 6% to 1.5% of the actual diameter. Elevation angle and illumination effects were found to be negligible. The effects of counting sensitivity and output voltage can be calculated directly from system documentation. The overall accuracy of the unmodified system is about 6%. After correcting for the azimuth angle errors, the overall accuracy is approximately 2%.

  19. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  20. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.

    PubMed

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-09-11

    To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (-0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (-0.124 μm/D). When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation.

  1. Physicochemical properties and ion-solvent interactions in aqueous sodium, ammonium, and lead acetate solution

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Mendkudle, M. S.

    2014-09-01

    Densities (ρ), viscosities (η) and refractive indices ( n D) of aqueous sodium acetate (SA), ammonium acetate (AA), and lead acetate (LA) solutions have been measured for different concentrations of salts at 302.15 K. Apparent molar volumes (φv) for studied solutions were calculated from density data, and fitted to Masson's relation and partial molar volume (φ{v/o}) was determined. Viscosity data were fitted to Jones-Dole equation and viscosity A- and B-coefficients were determined. Refractive index and density data were fitted to Lorentz and Lorenz equation and specific refraction ( R D) were calculated. Behavior of various physicochemical properties indicated presence of strong ion-solvent interactions in present systems and the acetate salts structure maker in water.

  2. Responses of the Ocular Anterior Segment and Refraction to 0.5% Tropicamide in Chinese School-Aged Children of Myopia, Emmetropia, and Hyperopia.

    PubMed

    Yuan, Ying; Zhang, Zhengwei; Zhu, Jianfeng; He, Xiangui; Du, Ergang; Jiang, Kelimu; Zheng, Wenjing; Ke, Bilian

    2015-01-01

    Purpose. To investigate the changes of anterior segment after cycloplegia and estimate the association of such changes with the changes of refraction in Chinese school-aged children of myopia, emmetropia, and hyperopia. Methods. 309 children were recruited and eligible subjects were assigned to three groups: hyperopia, emmetropia, or myopia. Cycloplegia was achieved with five cycles of 0.5% tropicamide. The Pentacam system was used to measure the parameters of interest before and after cycloplegia. Results. In the myopic group, the lenses were thinner and the lens position was significantly more posterior than that of the emmetropic and hyperopic groups in the cycloplegic status. The correlations between refraction and lens thickness (age adjusted; r = 0.26, P < 0.01), and lens position (age adjusted; r = -0.31, P < 0.01) were found. After cycloplegia, ACD and ACV significantly increased, while ACA significantly decreased. Changes in refraction, ACD, ACV, and ACA were significantly different among the three groups (P < 0.05, all). Changes of refraction were correlated with changes of ACD (r = 0.41, P < 0.01). Conclusions. Myopia presented thinner lenses and smaller changes of anterior segment and refraction after cycloplegia when compared to emmetropia and hyperopia. Changes of anterior chamber depth were correlated with refraction changes. This may contribute to a better understanding of the relationship between anterior segment and myopia.

  3. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on themore » order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.« less

  4. Improved retroreflection method for measuring the refractive index of liquids.

    PubMed

    Shao, Duo; Tian, Linghao; Chen, Jingfei; Chen, Xianfeng

    2010-06-01

    We propose a new method for measuring the refractive index of liquids with high precision; the method is based on use of the optical fiber end face. As an example, we investigated the refractive index of sugar solution under varying conditions tens of times. The results show that this method has the advantage of higher stability and repeatability. The concentration and the temperature-dependent refractive index of the sugar solution is also experimentally studied.

  5. Nonscanning Moiré deflectometry for measurement of nonlinear refractive index and absorption coefficient of liquids.

    PubMed

    Farahani, Shahrzad Shahrabi; Madanipour, Khosro; Koohian, Ata

    2017-05-01

    In this work, a nonscanning measurement technique is presented for determining the nonlinear refractive index and absorption coefficient of liquid media based on Moiré deflectometry. In the proposed method two lasers are used: a low power, wide beam as probe and a high power with specific wavelength as a pump. Interaction of the pump laser beam with the nonlinear sample changes the refractive index, which leads to change in convergence/divergence of the collimated incident probe laser beam. The induced deflection is monitored by Moiré deflectometry. If the pump laser has a Gaussian intensity profile, the refractive index profile of the sample is Gaussian, too. Measuring the deflection angle of the probe beam by Moiré fringes deflection, and by using the inverse Abel transform integral, the refractive index profile and nonlinear refractive index can be determined. This method is fast, easy, and insensitive to environmental noise and allows real-time measurement. Also, the refractive index profile of the interacted medium with pump laser can be achieved by this technique. As a liquid sample, a DCJ dye in water solution was studied. The value of nonlinear refractive index, n2, and absorption coefficient, α, were obtained -2.54×10-4  cm2 w-1 and 1.368  cm-1, respectively.

  6. Estimation of the refractive index of rigid contact lenses on the basis of back vertex power measurements.

    PubMed

    Pearson, Richard

    2011-03-01

    To assess the possibility of estimating the refractive index of rigid contact lenses on the basis of measurements of their back vertex power (BVP) in air and when immersed in liquid. First, a spreadsheet model was used to quantify the magnitude of errors arising from simulated inaccuracies in the variables required to calculate refractive index. Then, refractive index was calculated from in-air and in-liquid measurements of BVP of 21 lenses that had been made in three negative BVPs from materials with seven different nominal refractive index values. The power measurements were made by two operators on two occasions. Intraobserver reliability showed a mean difference of 0.0033±0.0061 (t = 0.544, P = 0.59), interobserver reliability showed a mean difference of 0.0043±0.0061 (t = 0.707, P = 0.48), and the mean difference between the nominal and calculated refractive index values was -0.0010±0.0111 (t = -0.093, P = 0.93). The spreadsheet prediction that low-powered lenses might be subject to greater errors in the calculated values of refractive index was substantiated by the experimental results. This method shows good intra and interobserver reliabilities and can be used easily in a clinical setting to provide an estimate of the refractive index of rigid contact lenses having a BVP of 3 D or more.

  7. Change in peripheral refraction and curvature of field of the human eye with accommodation

    NASA Astrophysics Data System (ADS)

    Ho, Arthur; Zimmermann, Frederik; Whatham, Andrew; Martinez, Aldo; Delgado, Stephanie; Lazon de la Jara, Percy; Sankaridurg, Padmaja

    2009-02-01

    Recent research showed that the peripheral refractive state is a sufficient stimulus for myopia progression. This finding led to the suggestion that devices that control peripheral refraction may be efficacious in controlling myopia progression. This study aims to understand whether the optical effect of such devices may be affected by near focus. In particular, we seek to understand the influence of accommodation on peripheral refraction and curvature of field of the eye. Refraction was measured in twenty young subjects using an autorefractor at 0° (i.e. along visual axis), and 20°, 30° and 40° field angles both nasal and temporal to the visual axis. All measurements were conducted at 2.5 m, 40 cm and 30 cm viewing distances. Refractive errors were corrected using a soft contact lens during all measurements. As field angle increased, refraction became less hyperopic. Peripheral refraction also became less hyperopic at nearer viewing distances (i.e. with increasing accommodation). Astigmatism (J180) increased with field angle as well as with accommodation. Adopting a third-order aberration theory approach, the position of the Petzval surface relative to the retinal surface was estimated by considering the relative peripheral refractive error (RPRE) and J180 terms of peripheral refraction. Results for the estimated dioptric position of the Petzval surface relative to the retina showed substantial asymmetry. While temporal field tended to agree with theoretical predictions, nasal response departed dramatically from the model eye predictions. With increasing accommodation, peripheral refraction becomes less hyperopic while the Petzval surface showed asymmetry in its change in position. The change in the optical components (i.e. cornea and/or lens as opposed to retinal shape or position) is implicated as at least one of the contributors of this shift in peripheral refraction during accommodation.

  8. Profile of refractive errors in cerebral palsy: impact of severity of motor impairment (GMFCS) and CP subtype on refractive outcome.

    PubMed

    Saunders, Kathryn J; Little, Julie-Anne; McClelland, Julie F; Jackson, A Jonathan

    2010-06-01

    To describe refractive status in children and young adults with cerebral palsy (CP) and relate refractive error to standardized measures of type and severity of CP impairment and to ocular dimensions. A population-based sample of 118 participants aged 4 to 23 years with CP (mean 11.64 +/- 4.06) and an age-appropriate control group (n = 128; age, 4-16 years; mean, 9.33 +/- 3.52) were recruited. Motor impairment was described with the Gross Motor Function Classification Scale (GMFCS), and subtype was allocated with the Surveillance of Cerebral Palsy in Europe (SCPE). Measures of refractive error were obtained from all participants and ocular biometry from a subgroup with CP. A significantly higher prevalence and magnitude of refractive error was found in the CP group compared to the control group. Axial length and spherical refractive error were strongly related. This relation did not improve with inclusion of corneal data. There was no relation between the presence or magnitude of spherical refractive errors in CP and the level of motor impairment, intellectual impairment, or the presence of communication difficulties. Higher spherical refractive errors were significantly associated with the nonspastic CP subtype. The presence and magnitude of astigmatism were greater when intellectual impairment was more severe, and astigmatic errors were explained by corneal dimensions. Conclusions. High refractive errors are common in CP, pointing to impairment of the emmetropization process. Biometric data support this In contrast to other functional vision measures, spherical refractive error is unrelated to CP severity, but those with nonspastic CP tend to demonstrate the most extreme errors in refraction.

  9. Refractive index sensor based on combination of tilted fiber Bragg grating and waist-enlarged fusion bitaper

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohang; Zheng, Jie; Yang, Jingyi; Li, Yi; Dong, Xinyong

    2015-12-01

    Refractive index measurement by using the combination of a tilted fiber Bragg grating (TFBG) and a waist-enlarged fusion bitaper (WEFBT) is proposed and demonstrated. The both devices can couple light between core and cladding modes with coupling coefficients depending on ambient refractive index. It is found that the proposed refractive index sensor offers two measurement ranges respectively from 1.333 to 1.428 and from 1.383 to 1.453 when different sensing segment is used, in addition to advantages of reflection operation mode and intensity-modulated measurement.

  10. Trial Frame Refraction versus Autorefraction among New Patients in a Low-Vision Clinic

    PubMed Central

    DeCarlo, Dawn K.; McGwin, Gerald; Searcey, Karen; Gao, Liyan; Snow, Marsha; Waterbor, John; Owsley, Cynthia

    2013-01-01

    Purpose. To determine the relationship between refractive error as measured by autorefraction and that measured by trial frame refraction among a sample of adults with vision impairment seen in a university-based low-vision clinic and to determine if autorefraction might be a suitable replacement for trial frame refraction. Methods. A retrospective chart review of all new patients 19 years or older seen over an 18-month period was conducted and the following data collected: age, sex, primary ocular diagnosis, entering distance visual acuity, habitual correction, trial frame refraction, autorefraction, and distance visual acuity measured after trial frame refraction. Trial frame refraction and autorefraction were compared using paired t-tests, intraclass correlations, and Bland-Altman plots. Results. Final analyses included 440 patients for whom both trial frame refraction and autorefraction data were available for the better eye. Participants were mostly female (59%) with a mean age of 68 years (SD = 20). Age-related macular degeneration was the most common etiology for vision impairment (44%). Values for autorefraction and trial frame refraction were statistically different, but highly correlated for the spherical equivalent power (r = 0.92), the cylinder power (r = 0.80) and overall blurring strength (0.89). Although the values of the cross-cylinders J0 and J45 were similar, they were poorly correlated (0.08 and 0.15, respectively). The range of differences in spherical equivalent power was large (−8.6 to 4.9). Conclusions. Autorefraction is highly correlated with trial frame refraction. Differences are sometimes substantial, making autorefraction an unsuitable substitute for trial frame refraction. PMID:23188726

  11. Trial frame refraction versus autorefraction among new patients in a low-vision clinic.

    PubMed

    DeCarlo, Dawn K; McGwin, Gerald; Searcey, Karen; Gao, Liyan; Snow, Marsha; Waterbor, John; Owsley, Cynthia

    2013-01-02

    To determine the relationship between refractive error as measured by autorefraction and that measured by trial frame refraction among a sample of adults with vision impairment seen in a university-based low-vision clinic and to determine if autorefraction might be a suitable replacement for trial frame refraction. A retrospective chart review of all new patients 19 years or older seen over an 18-month period was conducted and the following data collected: age, sex, primary ocular diagnosis, entering distance visual acuity, habitual correction, trial frame refraction, autorefraction, and distance visual acuity measured after trial frame refraction. Trial frame refraction and autorefraction were compared using paired t-tests, intraclass correlations, and Bland-Altman plots. Final analyses included 440 patients for whom both trial frame refraction and autorefraction data were available for the better eye. Participants were mostly female (59%) with a mean age of 68 years (SD = 20). Age-related macular degeneration was the most common etiology for vision impairment (44%). Values for autorefraction and trial frame refraction were statistically different, but highly correlated for the spherical equivalent power (r = 0.92), the cylinder power (r = 0.80) and overall blurring strength (0.89). Although the values of the cross-cylinders J(0) and J(45) were similar, they were poorly correlated (0.08 and 0.15, respectively). The range of differences in spherical equivalent power was large (-8.6 to 4.9). Autorefraction is highly correlated with trial frame refraction. Differences are sometimes substantial, making autorefraction an unsuitable substitute for trial frame refraction.

  12. New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region.

    PubMed

    Ohno, Seigo; Miyamoto, Katsuhiko; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5-26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was approximately 2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.

  13. The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1976-01-01

    In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.

  14. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    NASA Astrophysics Data System (ADS)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  15. Assessment of refractive index of pigments by Gaussian fitting of light backscattering data in context of the liquid immersion method.

    PubMed

    Niskanen, Ilpo; Peiponen, Kai-Erik; Räty, Jukka

    2010-05-01

    Using a multifunction spectrophotometer, the refractive index of a pigment can be estimated by measuring the backscattering of light from the pigment in immersion liquids having slightly different refractive indices. A simple theoretical Gaussian function model related to the optical path distribution is introduced that makes it possible to describe quantitatively the backscattering signal from transparent pigments using a set of only a few immersion liquids. With the aid of the data fitting by a Gaussian function, the measurement time of the refractive index of the pigment can be reduced. The backscattering measurement technique is suggested to be useful in industrial measurement environments of pigments.

  16. Baseline peripheral refractive error and changes in axial refraction during one year in a young adult population.

    PubMed

    Hartwig, Andreas; Charman, William Neil; Radhakrishnan, Hema

    2016-01-01

    To determine whether the initial characteristics of individual patterns of peripheral refraction relate to subsequent changes in refraction over a one-year period. 54 myopic and emmetropic subjects (mean age: 24.9±5.1 years; median 24 years) with normal vision were recruited and underwent conventional non-cycloplegic subjective refraction. Peripheral refraction was also measured at 5° intervals over the central 60° of horizontal visual field, together with axial length. After one year, measurements of subjective refraction and axial length were repeated on the 43 subjects who were still available for examination. In agreement with earlier studies, higher myopes tended to show greater relative peripheral hyperopia. There was, however, considerable inter-subject variation in the pattern of relative peripheral refractive error (RPRE) at any level of axial refraction. Across the group, mean one-year changes in axial refraction and axial length did not differ significantly from zero. There was no correlation between changes in these parameters for individual subjects and any characteristic of their RPRE. No evidence was found to support the hypothesis that the pattern of RPRE is predictive of subsequent refractive change in this age group. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  17. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  18. Interferometric studies of the refractive indices of some fluorine compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Jim Gorden; Rogers, Max T.; Speirs, John L.

    1954-08-01

    It is the object of this investigation to construct an interferometer of the Rayleigh type and adapt it for two purposes; first, the measurement of the refractive indices of gases by an absolute method and, and second, the measurement of the refractive indices of very dilute solutions by the difference method.

  19. Photorefractive Nonlinear Optics

    DTIC Science & Technology

    1991-01-15

    conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...interaction by considering the refractive index grating as a linear superposition of the gratings from each of the frequency components of the

  20. Phase sensitive diffraction sensor for high sensitivity refractive index measurement

    NASA Astrophysics Data System (ADS)

    Kumawat, Nityanand; Varma, Manoj; Kumar, Sunil

    2018-02-01

    In this study a diffraction based sensor has been developed for bio molecular sensing applications and performing assays in real time. A diffraction grating fabricated on a glass substrate produced diffraction patterns both in transmission and reflection when illuminated by a laser diode. We used zeroth order I(0,0) as reference and first order I(0,1) as signal channel and conducted ratiometric measurements that reduced noise by more than 50 times. The ratiometric approach resulted in a very simple instrumentation with very high sensitivity. In the past, we have shown refractive index measurements both for bulk and surface adsorption using the diffractive self-referencing approach. In the current work we extend the same concept to higher diffraction orders. We have considered order I(0,1) and I(1,1) and performed ratiometric measurements I(0,1)/I(1,1) to eliminate the common mode fluctuations. Since orders I(0,1) and I(1,1) behaved opposite to each other, the resulting ratio signal amplitude increased more than twice compared to our previous results. As a proof of concept we used different salt concentrations in DI water. Increased signal amplitude and improved fluid injection system resulted in more than 4 times improvement in detection limit, giving limit of detection 1.3×10-7 refractive index unit (RIU) compared to our previous results. The improved refractive index sensitivity will help significantly for high sensitivity label free bio sensing application in a very cost-effective and simple experimental set-up.

  1. Low cost fiber optic sensing of sugar solution

    NASA Astrophysics Data System (ADS)

    Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao

    2015-03-01

    The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.

  2. Pressure-dependent refractive indices of gases by THz time-domain spectroscopy.

    PubMed

    Sang, Bark Hyeon; Jeon, Tea-In

    2016-12-12

    Noncontact terahertz time-domain spectroscopy was employed to measure pressure-dependent refractive indices of gases such as helium (He), argon (Ar), krypton (Kr), oxygen (O2), nitrogen (N2), methane (CH4), and carbon dioxide (CO2). The refractive indices of these gases scaled linearly with pressure, for pressures in the 55-3,750 torr range. At the highest pressure, the refractive indices ((n-1) x 106) of He and CO2 were 170 and 2,390, respectively. The refractive index of CO2 was 14.1-fold higher than that of He, owing to the stronger polarizability of CO2. Although the studied gases differed in terms of their molecular structure, their refractive indices were strongly determined by polarizability. The measured refractive indices agreed well with the theoretical calculations.

  3. Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids.

    PubMed

    Calixto, Sergio; Bruce, Neil C; Rosete-Aguilar, Martha

    2016-01-11

    We describe a simple and versatile optical sensing device for measuring refractive index of liquids. The sensor consists of a sinusoidal relief grating in a glass cell. Device calibration is done by pouring in the cell different liquids of known refractive indices. Each time a liquid is poured first order intensity is measured. The fabrication process and testing of the prototype device is described. An application in the measurement of temperature is also presented.

  4. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.

  5. The eye lens: age-related trends and individual variations in refractive index and shape parameters

    PubMed Central

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-01-01

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  6. Experimental verification and simulation of negative index of refraction using Snell's law.

    PubMed

    Parazzoli, C G; Greegor, R B; Li, K; Koltenbah, B E C; Tanielian, M

    2003-03-14

    We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the real part of the index of refraction to be -1.05. The measurements and simulations of the electromagnetic field profiles were performed at distances of 14lambda and 28lambda from the sample; the fields were also computed at 100lambda.

  7. Rigorous theoretical framework for particle sizing in turbid colloids using light refraction.

    PubMed

    García-Valenzuela, Augusto; Barrera, Rubén G; Gutierrez-Reyes, Edahí

    2008-11-24

    Using a non-local effective-medium approach, we analyze the refraction of light in a colloidal medium. We discuss the theoretical grounds and all the necessary precautions to design and perform experiments to measure the effective refractive index in dilute colloids. As an application, we show that it is possible to retrieve the size of small dielectric particles in a colloid by measuring the complex effective refractive index and the volume fraction occupied by the particles.

  8. Determination of refractive indices of opaque rough surfaces

    NASA Astrophysics Data System (ADS)

    Destouches, Nathalie; Deumié, Carole; Giovannini, Hugues; Amra, Claude

    2004-02-01

    The refractive indices of optical materials are usually determined from spectrophotometric andellipsometric measurements of specular beams. When the roughness of the interfaces increases, the energy in the specularly reflected and transmitted beams decreases and scattering becomes predominant. For strong roughness (compared to the incident wavelength) a surface does not exhibit specular reflection or transmission, making difficult the determination of the refractive index. We describe two techniques, based on scattering measurements, that one can use to determine the refractive indices of opaque inhomogeneous media.

  9. Research of autonomous celestial navigation based on new measurement model of stellar refraction

    NASA Astrophysics Data System (ADS)

    Yu, Cong; Tian, Hong; Zhang, Hui; Xu, Bo

    2014-09-01

    Autonomous celestial navigation based on stellar refraction has attracted widespread attention for its high accuracy and full autonomy.In this navigation method, establishment of accurate stellar refraction measurement model is the fundament and key issue to achieve high accuracy navigation. However, the existing measurement models are limited due to the uncertainty of atmospheric parameters. Temperature, pressure and other factors which affect the stellar refraction within the height of earth's stratosphere are researched, and the varying model of atmosphere with altitude is derived on the basis of standard atmospheric data. Furthermore, a novel measurement model of stellar refraction in a continuous range of altitudes from 20 km to 50 km is produced by modifying the fixed altitude (25 km) measurement model, and equation of state with the orbit perturbations is established, then a simulation is performed using the improved Extended Kalman Filter. The results show that the new model improves the navigation accuracy, which has a certain practical application value.

  10. Electronic polarizability of light crude oil from optical and dielectric studies

    NASA Astrophysics Data System (ADS)

    George, A. K.; Singh, R. N.

    2017-07-01

    In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.

  11. Test systems for measuring ocular parameters and visual function in mice.

    PubMed

    Schaeffel, Frank

    2008-05-01

    New techniques are described to measure refractive state, pupil responses, corneal curvature, ocular dimensions and spatial vision in mice. These variables are important for studies on myopia development in mice, but they are also valuable for phenotyping mouse mutants and for pharmacological studies.

  12. Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements.

    PubMed

    Herman, Benjamin R; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2008-04-01

    We investigate the assessment of uncertainty in the inference of aerosol size distributions from backscatter and extinction measurements that can be obtained from a modern elastic/Raman lidar system with a Nd:YAG laser transmitter. To calculate the uncertainty, an analytic formula for the correlated probability density function (PDF) describing the error for an optical coefficient ratio is derived based on a normally distributed fractional error in the optical coefficients. Assuming a monomodal lognormal particle size distribution of spherical, homogeneous particles with a known index of refraction, we compare the assessment of uncertainty using a more conventional forward Monte Carlo method with that obtained from a Bayesian posterior PDF assuming a uniform prior PDF and show that substantial differences between the two methods exist. In addition, we use the posterior PDF formalism, which was extended to include an unknown refractive index, to find credible sets for a variety of optical measurement scenarios. We find the uncertainty is greatly reduced with the addition of suitable extinction measurements in contrast to the inclusion of extra backscatter coefficients, which we show to have a minimal effect and strengthens similar observations based on numerical regularization methods.

  13. Measurement of refractive indices of tunicates' tunics: light reflection of the transparent integuments in an ascidian Rhopalaea sp. and a salp Thetys vagina.

    PubMed

    Kakiuchida, Hiroshi; Sakai, Daisuke; Nishikawa, Jun; Hirose, Euichi

    2017-01-01

    Tunic is a cellulosic, integumentary matrix found in tunicates (Subphylum Tunicata or Urochordata). The tunics of some ascidian species and pelagic tunicates, such as salps, are nearly transparent, which is useful in predator avoidance. Transparent materials can be detected visually using light reflected from their surfaces, with the different refractive indices between two media, i.e., tunic and seawater, being the measure of reflectance. A larger difference in refractive indices thus provides a larger measure of reflectance. We measured the refractive indices of the transparent tunic of Thetys vagina (salp: Thaliacea) and Rhopalae a sp. (ascidian: Ascidiacea) using an Abbe refractometer and an ellipsometer to estimate the light reflection at the tunic surface and evaluate the anti-reflection effect of the nipple array structure on the tunic surface of T. vagina . At D-line light (λ = 589 nm), the refractive indices of the tunics were 0.002-0.004 greater than seawater in the measurements by Abbe refractometer, and 0.02-0.03 greater than seawater in the measurements by ellipsometer. The refractive indices of tunics were slightly higher than that of seawater. According to the simulation of light reflection based on rigorous coupled wave analysis (RCWA), light at a large angle of incidence will be completely reflected from a surface when its refractive indices are smaller than seawater. Therefore, the refractive index of integument is important for enabling transparent organisms to remain invisible in the water column. In order to minimize reflectance, the refractive index should be similar to, but never smaller than, that of the surrounding seawater. The simulation also indicated that the presence or absence of a nipple array does not cause significant difference in reflectance on the surface. The nipple array on the tunic of the diurnal salp may have another function, such as bubble repellence, other than anti-reflection.

  14. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time a complete set of vertically resolved aerosol size distribution and refractive index data, yielding the vertical distribution of aerosol optical properties required for the determination of aersol-induced radiative flux changes

  15. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; hide

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time, a complete set of vertically resolved aerosol size distribution and refractive index data. yielding the vertical distribution of aerosol optical properties required for the determination of aerosol-induced radiative flux changes.

  16. Peripheral refraction in normal infant rhesus monkeys

    PubMed Central

    Hung, Li-Fang; Ramamirtham, Ramkumar; Huang, Juan; Qiao-Grider, Ying; Smith, Earl L.

    2008-01-01

    Purpose To characterize peripheral refractions in infant monkeys. Methods Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15, 30, and 45 degrees. Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. Results In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical-equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians and the refractions became more symmetrical along both the horizontal and vertical meridians; small degrees of relative myopia were evident in all fields. Conclusions As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe. PMID:18487366

  17. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2001-01-01

    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  18. Comparison of corneal power, astigmatism, and wavefront aberration measurements obtained by a point-source color light-emitting diode-based topographer, a Placido-disk topographer, and a combined Placido and dual Scheimpflug device.

    PubMed

    Ventura, Bruna V; Wang, Li; Ali, Shazia F; Koch, Douglas D; Weikert, Mitchell P

    2015-08-01

    To evaluate and compare the performance of a point-source color light-emitting diode (LED)-based topographer (color-LED) in measuring anterior corneal power and aberrations with that of a Placido-disk topographer and a combined Placido and dual Scheimpflug device. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas USA. Retrospective observational case series. Normal eyes and post-refractive-surgery eyes were consecutively measured using color-LED, Placido, and dual-Scheimpflug devices. The main outcome measures were anterior corneal power, astigmatism, and higher-order aberrations (HOAs) (6.0 mm pupil), which were compared using the t test. There were no statistically significant differences in corneal power measurements in normal and post-refractive surgery eyes and in astigmatism magnitude in post-refractive surgery eyes between the color-LED device and Placido or dual Scheimpflug devices (all P > .05). In normal eyes, there were no statistically significant differences in 3rd-order coma and 4th-order spherical aberration between the color-LED and Placido devices and in HOA root mean square, 3rd-order coma, 3rd-order trefoil, 4th-order spherical aberration, and 4th-order secondary astigmatism between the color-LED and dual Scheimpflug devices (all P > .05). In post-refractive surgery eyes, the color-LED device agreed with the Placido and dual-Scheimpflug devices regarding 3rd-order coma and 4th-order spherical aberration (all P > .05). In normal and post-refractive surgery eyes, all 3 devices were comparable with respect to corneal power. The agreement in corneal aberrations varied. Drs. Wang, Koch, and Weikert are consultants to Ziemer Ophthalmic Systems AG. Dr. Koch is a consultant to Abbott Medical Optics, Inc., Alcon Surgical, Inc., and i-Optics Corp. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Using a laser source to measure the refractive index of glass beads and Debye theory analysis.

    PubMed

    Li, Shui-Yan; Qin, Shuang; Li, Da-Hai; Wang, Qiong-Hua

    2015-11-20

    Using a monochromatic laser beam to illuminate a homogeneous glass bead, some rainbows will appear around it. This paper concentrates on the study of the scattering intensity distribution and the method of measuring the refractive index for glass beads based on the Debye theory. It is found that the first rainbow due to the scattering superposition of backward light of the low-refractive-index glass beads can be explained approximately with the diffraction, the external reflection plus the one internal reflection, while the second rainbow of high-refractive-index glass beads is due to the contribution from the diffraction, the external reflection, the direct transmission, and the two internal reflections. The scattering intensity distribution is affected by the refractive index, the radius of the glass bead, and the incident beam width. The effects of the refractive index and the glass bead size on the first and second minimum deviation angle position are analyzed in this paper. The results of the measurements agree very well with the specifications.

  20. Survey of Radar Refraction Error Corrections

    DTIC Science & Technology

    2016-11-01

    ELECTRONIC TRAJECTORY MEASUREMENTS GROUP RCC 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS DISTRIBUTION A: Approved for...DOCUMENT 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS November 2016 Prepared by Electronic...This page intentionally left blank. Survey of Radar Refraction Error Corrections, RCC 266-16 iii Table of Contents Preface

  1. Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation.

    PubMed

    Tabernero, Juan; Schaeffel, Frank

    2009-10-01

    A new device was designed to provide fast measurements (4 s) of the peripheral refraction (90 degrees central horizontal field). Almost-continuous traces are obtained with high angular resolution (0.4 degrees) while the subject is fixating a central stimulus. Three-dimensional profiles can also be measured. The peripheral refractions in 10 emmetropic subjects were studied as a function of accommodation (200 cm, 50 cm, and 25 cm viewing distances). Peripheral refraction profiles were largely preserved during accommodation but were different in each individual. Apparently, the accommodating lens changes its focal length evenly over the central 90 degrees of the visual field.

  2. Global scale variability of the mineral dust longwave refractive index from laboratory chamber experiments: re‒evaluation of its direct radiative effect

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Boucher, O.; Doussin, J. F.

    2017-12-01

    New measurements of the longwave complex refractive index (LW CRI) of mineral dust and its global variability were obtained in situ in the 4.2 m3CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Aerosols generated by mechanical shaking from nineteen natural soils with contrasted mineralogical composition were suspended in the chamber, where their LW extinction spectra (2-16 μm), size distribution, and mineralogical composition were measured. The CRI of the dust aerosol was obtained by optical calculations based upon the measured extinction spectrum and size distribution. Laboratory results indicate that the LW refractive index of dust strongly varies with the source region of emission in link with the changes of its mineralogy. In the 2-16 μm spectral range, the imaginary refractive index (k) is between 0.001 and 0.92, and the real part (n) in the range 0.84-1.94. The strength of the dust absorption at 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. A linear relationship between the magnitude of k at 7, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found, which suggests that predictive rules could be established to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition. Our observations also suggest that the LW CRI of dust does not change as a result of the loss of coarse particles by gravitational settling, so that a constant value can be assumed close to sources and following transport. This unprecedented dataset of refractive indices was used as input into the LMDZORINCA model coupled with the RRTM radiative transfer module in order to re‒evaluate the direct dust LW radiative effect. This represents a first attempt to use regional‒dependent values of the LW refractive indices rather than generic values in models. Results from the simulations indicate that with these new refractive indices the LW direct effect of dust is significantly smaller compared to most of the already published results.

  3. [Intraoperative Measurement of Refraction with a Hand-Held Autorefractometer].

    PubMed

    Gesser, C; Küper, T; Richard, G; Hassenstein, A

    2015-07-01

    The aim of this study was to evaluate an intraoperative measurement of objective refraction with a hand-held retinomax instrument. At the end of cataract surgery objective refraction in a lying position was measured with a retinomax instrument. On the first postoperative day the same measurement was performed with a retinomax and a standard autorefractometer. To evaluate the differences between measurements, the spherical equivalent (SE) and Jackson's cross cylinder at 0° (J0) and 45° (J45) was used. 103 eyes were included. 95 of them had normal cataract surgery. Differences between retinomax at the operative day and the standard autorefractometer were 0.68 ± 2.58 D in SE, 0.05 ± 1.4D in J0 and 0.05 ± 1.4D in J45. There were no statistically significant differences between the groups. Intraoperative measurement of the refraction with a retinomax can predict the postoperative refraction. Nevertheless, in a few patients great differences may occur. Georg Thieme Verlag KG Stuttgart · New York.

  4. The relationship between refractive and biometric changes during Edinger–Westphal stimulated accommodation in rhesus monkeys

    PubMed Central

    Vilupuru, Abhiram S.; Glasser, Adrian

    2010-01-01

    Experiments were undertaken to understand the relationship between dynamic accommodative refractive and biometric (lens thickness (LT), anterior chamber depth (ACD) and anterior segment length (ASL=ACD+LT)) changes during Edinger–Westphal stimulated accommodation in rhesus monkeys. Experiments were conducted on three rhesus monkeys (aged 11·5, 4·75 and 4·75 years) which had undergone prior, bilateral, complete iridectomies and implantation of a stimulating electrode in the Edinger–Westphal (EW) nucleus. Accommodative refractive responses were first measured dynamically with video-based infrared photorefraction and then ocular biometric responses were measured dynamically with continuous ultrasound biometry (CUB) during EW stimulation. The same stimulus amplitudes were used for the refractive and biometric measurements to allow them to be compared. Main sequence relationships (ratio of peak velocity to amplitude) were calculated. Dynamic accommodative refractive changes are linearly correlated with the biometric changes and accommodative biometric changes in ACD, ASL and LT show systematic linear correlations with increasing accommodative amplitudes. The relationships are relatively similar for the eyes of the different monkeys. Dynamic analysis showed that main sequence relationships for both biometry and refraction are linear. Although accommodative refractive changes in the eye occur primarily due to changes in lens surface curvature, the refractive changes are well correlated with A-scan measured accommodative biometric changes. Accommodative changes in ACD, LT and ASL are all well correlated over the full extent of the accommodative response. PMID:15721617

  5. Influence of Shape and Gradient Refractive Index in the Accommodative Changes of Spherical Aberration in Nonhuman Primate Crystalline Lenses

    PubMed Central

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-01-01

    Purpose. To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Methods. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. Results. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (−0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (−0.124 μm/D). Conclusions. When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation. PMID:23927893

  6. Autorefraction Versus Manifest Refraction in Patients With Keratoconus.

    PubMed

    Soeters, Nienke; Muijzer, Marc B; Molenaar, Jurrian; Godefrooij, Daniel A; Wisse, Robert P L

    2018-01-01

    To compare visual performance using autorefraction and manifest refraction assessments in patients with keratoconus and investigate whether autorefraction measurements lead to suboptimal visual performance. Corrected distance visual acuity (CDVA) was measured in 90 eyes of 61 patients with keratoconus with both autorefraction and manifest refraction, in a random order. Maximum keratometry (Kmax), cone location, and wavefront aberration were determined with Scheimpflug tomography. The difference between the autorefraction and manifest refraction outcomes was converted to vectors and a multivariable analysis was performed to identify potential underlying causes of this difference. A significantly better CDVA was achieved with manifest refraction (0.06 vs 0.29 logMAR [20/23 vs 20/38 Snellen], P < .001). After vector analysis, a mean difference of 4.83 diopters was found between autorefraction and manifest refraction. Increased Kmax was strongly and significantly associated with better visual performance of manifest refraction compared to autorefraction (B = 0.496, P = .002). This study showed that a superior CDVA is achieved with manifest refraction compared to autorefraction in patients with keratoconus. Furthermore, the difference between the two refraction methods increases as the cornea steepens. According to this study, autorefraction is unreliable in patients with keratoconus and should be avoided. [J Refract Surg. 2018;34(1):30-34.]. Copyright 2018, SLACK Incorporated.

  7. Regional variation in the refractive-index of the bovine and human cornea.

    PubMed

    Vasudevan, Balamurali; Simpson, Trefford L; Sivak, Jacob G

    2008-10-01

    Given the refractive importance of the human cornea, surprisingly little attention has been directed to the study of local variation in corneal refractive-index. This in vitro and in vivo study measures the refractive-index of different portions of the bovine and human cornea. Fifty fresh bovine corneas (obtained from an abattoir) and 10 human subjects were used for the study. The refractive-index of the central, nasal, and temporal corneal epithelium was measured with a bench-top Abbe refractometer in the case of bovine corneas and with a hand-held refractometer with humans. The mean (+/-standard deviation) refractive-indices of the central, nasal, and temporal bovine corneal epithelium were 1.3760 (+/-0.003), 1.3757 (+/-0.002), and 1.3746 (+/-0.002), respectively. Refractive-indices of the anterior and posterior bovine corneal stroma were 1.3731 (+/-0.002) and 1.3708 (+/-0.004), respectively. The mean (+/-standard deviation) refractive-index in the central, nasal, and temporal periphery of the human cornea epithelium were 1.3970 (+/-0.001), 1.3946 (+/-0.001), and 1.3940 (+/-0.001), respectively. There are small local differences in the refractive-index of the bovine and human corneal epithelium and the refractive-index of the epithelium is higher than that of the anterior and posterior stroma of the bovine cornea.

  8. Excimer Laser Surgery: Biometrical Iris Eye Recognition with Cyclorotational Control Eye Tracker System.

    PubMed

    Pajic, Bojan; Cvejic, Zeljka; Mijatovic, Zoran; Indjin, Dragan; Mueller, Joerg

    2017-05-25

    A prospective comparative study assessing the importance of the intra-operative dynamic rotational tracking-especially in the treatment of astigmatisms in corneal refractive Excimer laser correction-concerning clinical outcomes is presented. The cyclotorsion from upright to supine position was measured using iris image comparison. The Group 1 of patients was additionally treated with cyclorotational control and Group 2 only with X-Y control. Significant differences were observed between the groups regarding the mean postoperative cylinder refraction ( p < 0.05). The mean cyclotorsion can be calculated to 3.75° with a standard deviation of 3.1°. The total range of torsion was from -14.9° to +12.6°. Re-treatment rate was 2.2% in Group 1 and 8.2% in Group 2, which is highly significant ( p < 0.01). The investigation confirms that the dynamic rotational tracking system used for LASIK results in highly predictable refraction quality with significantly less postoperative re-treatments.

  9. Excimer Laser Surgery: Biometrical Iris Eye Recognition with Cyclorotational Control Eye Tracker System

    PubMed Central

    Pajic, Bojan; Cvejic, Zeljka; Mijatovic, Zoran; Indjin, Dragan; Mueller, Joerg

    2017-01-01

    A prospective comparative study assessing the importance of the intra-operative dynamic rotational tracking—especially in the treatment of astigmatisms in corneal refractive Excimer laser correction—concerning clinical outcomes is presented. The cyclotorsion from upright to supine position was measured using iris image comparison. The Group 1 of patients was additionally treated with cyclorotational control and Group 2 only with X-Y control. Significant differences were observed between the groups regarding the mean postoperative cylinder refraction (p < 0.05). The mean cyclotorsion can be calculated to 3.75° with a standard deviation of 3.1°. The total range of torsion was from −14.9° to +12.6°. Re-treatment rate was 2.2% in Group 1 and 8.2% in Group 2, which is highly significant (p < 0.01). The investigation confirms that the dynamic rotational tracking system used for LASIK results in highly predictable refraction quality with significantly less postoperative re-treatments. PMID:28587100

  10. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles.

    PubMed

    Mason, B J; Cotterell, M I; Preston, T C; Orr-Ewing, A J; Reid, J P

    2015-06-04

    We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

  11. Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.

    PubMed

    Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung

    2008-01-01

    Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.

  12. Sensitivity of airborne radio occultation to tropospheric properties over ocean and land

    NASA Astrophysics Data System (ADS)

    Xie, Feiqin; Adhikari, Loknath; Haase, Jennifer S.; Murphy, Brian; Wang, Kuo-Nung; Garrison, James L.

    2018-02-01

    Airborne radio occultation (ARO) measurements collected during a ferry flight at the end of the PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign from the Virgin Islands to Colorado are analyzed. The large contrast in atmospheric conditions along the flight path from the warm and moist Caribbean Sea to the much drier and cooler continental conditions provides a unique opportunity to address the sensitivity of ARO measurements to the tropospheric temperature and moisture changes. This long flight at nearly constant altitude (˜ 13 km) provided an optimal configuration for simultaneous high-quality ARO measurements from two high-gain side-looking antennas, as well as one relatively lower gain zenith (top) antenna. The omnidirectional top antenna has the advantage of tracking robustly more occulting satellites in all direction as compared to the limited-azimuth tracking of the side-looking antennas. Two well-adapted radio-holographic bending angle retrieval methods, full-spectrum inversion (FSI) and phase matching (PM), were compared with the standard geometric-optics (GO) retrieval method. Comparison of the ARO retrievals from the top antenna with the near-coincident ECMWF reanalysis-interim (ERA-I) profiles shows only a small root-mean-square (RMS) refractivity difference of ˜ 0.3 % in the drier upper troposphere from ˜ 5 to ˜ 11.5 km over both land and ocean. Both the FSI and PM methods improve the ARO retrievals in the moist lower troposphere and reduce the negative bias found in the GO retrieval due to atmospheric multipath. In the lowest layer of the troposphere, the ARO refractivity derived using FSI shows a negative bias of about -2 %. The increase of the refractivity bias occurs below 5 km over the ocean and below 3.5 km over land, corresponding to the approximate altitude of large vertical moisture gradients above the ocean and land surface, respectively. In comparisons to radiosondes, the FSI ARO soundings capture well the height of layers with sharp refractivity gradients but display a negative refractivity bias inside the boundary layer. The unique opportunity to make simultaneous independent recordings of occultation events from multiple antennas establishes that high-precision ARO measurements can be achieved corresponding to an RMS difference better than 0.2 % in refractivity (or ˜ 0.4 K). The surprisingly good quality of recordings from a very simple zenith antenna increases the feasibility of developing an operational tropospheric sounding system onboard commercial aircraft in the future, which could provide a large number of data for direct assimilation in numerical weather prediction models.

  13. Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines

    NASA Technical Reports Server (NTRS)

    Wei, T. H.; Hagan, D. J.; Sence, M. J.; Van Stryland, E. W.; Perry, J. W.; Coulter, D. R.

    1992-01-01

    Direct measurements are reported of the excited singlet-state absorption cross section and the associated nonlinear refractive cross section using picosecond pulses at 532 nm in solutions of phthalocyanine and naphthalocyanine dyes. By monitoring the transmittance and far-field spatial beam distortion for different pulsewidths in the picosecond regime, it is shown that both the nonlinear absorption and refraction are fluence (energy-per-unit-area) rather than irradiance dependent. Thus, excited-state absorption is the dominant nonlinear absorption process, and the observed nonlinear refraction is also due to real population excitation.

  14. Experimental determination of refractive index of condensed reflectin in squid iridocytes.

    PubMed

    Ghoshal, Amitabh; DeMartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2014-06-06

    Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs.

  15. Experimental determination of refractive index of condensed reflectin in squid iridocytes

    PubMed Central

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2014-01-01

    Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs. PMID:24694894

  16. Note: Index of refraction measurement using the Fresnel equations.

    PubMed

    McClymer, J P

    2014-08-01

    The real part of the refractive index is measured from 1.30 to above 3.00 without the use of index matching fluids. This approach expands upon the Brewster angle technique as both S and P polarized lights are used and the full Fresnel equations fitted to the data to extract the index of refraction using nonlinear curve fitting.

  17. Computing differential refraction at all heliolatitudes and zenithal distances: a historical perspective

    NASA Astrophysics Data System (ADS)

    Sigismondi, C.; Boscardin, S.

    2014-10-01

    Ptolemy (about 150 AC) modeled atmospheric refraction influencing Al Farghani (831), Alhazen (1020), Sacrobosco (1256) and Witelo (1278): the Sun was supposed bigger at horizon like a coin appears under water in a curved bottle. The correct work of Ibn Sahl (984) remained forgotten. Tycho measured the refraction on the 1572 supernova at various altitudes. Harriot, Kepler, Snell and Descartes found independently the refraction law after 1600. A modern formulation of vertical (0.5" zenithal to 35' at horizon) and horizontal (0.5" at all altitudes) differential refraction of solar diameter appears in Du Séjour (1786). Laplace's formula (1805) computes the vertical deformation of the solar disk, while the horizontal reduction of 0.5" is proportional to the chord's length. Dicke (1967) measured the solar oblateness to determine dynamical constraints to alternative theories of General Relativity. The Astrolabe of Rio de Janeiro measured in 1998-2009 the solar diameter at all heliolatitudes, by timing solar transits across fixed altitude circles: an equatorial excess larger than RHESSI (2008) and SDS (1992-2011) data remains after refraction's corrections. Meridian transits series measured at Rome Campidoglio (1877-1937) and Greenwich (1850-1940) behave as Rio data: the scatters between annual averages were larger than statistical dispersions of each value (Gething, 1955). Anomalous refractions measured with Rio Heliometer (2013) are low frequency seeing (0.01 Hz) acting to scales of the solar diameter (32'): they affect transits measurements with random perturbations hundreds times larger than the expected values calculated from the timing accuracy. These perturbations enlarge the differences between averages values binned either in time or heliolatitude: they are larger than statistical dispersions, suggesting a wider binning. The ``adiabatic" approach of Rio Heliometer with high frequency measurements ``freezes" the slow seeing image motion component.

  18. Eye Shape Using Partial Coherence Interferometry, Autorefraction and SD OCT

    PubMed Central

    Clark, Christopher A.; Elsner, Ann E.; Konynenbelt, Benjamin J.

    2015-01-01

    Purpose Peripheral refraction and retinal shape may influence refractive development. Peripheral refraction has been shown to have a high degree of variability and can take considerable time to perform. SD OCT and peripheral axial length measures may be more reliable, assuming that the retinal position is more important than the peripheral optics of the lens/cornea. Methods 79 subjects right eyes were imaged for this study (age range: 22 to 34 yr, refractive error: −10 to +5.00.) Thirty deg SD OCT (Spectralis, Heidleberg) images were collected in a radial pattern along with peripheral refraction with an autorefractor (Shin-Nippon Auto-refractor) and peripheral axial length measurements with partial coherence interferometry (PCI) (IOLmaster, Zeiss). Statistics were performed using repeat measures ANOVA in SPSS (IBM), Bland-Altman analyses, and regression. All measures were converted to diopters to allow direct comparison. Results SD OCT showed a retinal shape with an increased curvature for myopes compared to emmetropes/hyperopes. This retinal shape change became significant around 5 deg. The SD OCT analysis for retinal shape provides a resolution of 0.026 dipopters, which is about ten times more accurate than using autorefraction or clinical refractive techniques. Bland-Altman analyses suggest that retinal shape measured by SD OCT and the PCI method were more consistent with one another than either was with AR. Conclusions With more accurate measures of retinal shape using SD OCT, consistent differences between emmetrope/hyperopes and myopes were found nearer to the fovea than previously reported. Retinal shape may be influenced by central refractive error, and not merely peripheral optics. Partial coherence interferometry and SD OCT appear to be more accurate than autorefraction, which may be influenced other factors such as fixation and accommodation. Autorefraction does measure the optics directly, which may be a strength of that method. PMID:25437906

  19. Relative peripheral refraction in children: twelve-month changes in eyes with different ametropias.

    PubMed

    Lee, Tsui-Tsui; Cho, Pauline

    2013-05-01

    To determine the peripheral refraction of children with different types of ametropias and to evaluate the relationship between central refractive changes, baseline relative peripheral refraction (RPR) and changes in RPR over a 12-month monitoring period. Cycloplegic central and peripheral refraction were performed biannually on the right eyes of children aged 6-9 for 12 months, using an open-view autorefractor. Peripheral refraction were measured along 10°, 20° and 30° from central fixation in both nasal and temporal fields. Refractive data were transposed into M, J0 and J45 vectors for analyses. RPR was determined by subtracting the central measurement from each peripheral measurement. Hyperopic eyes showed relative peripheral myopia while myopic eyes had relative hyperopia across the central 60° horizontal field at baseline. Emmetropic eyes had relative myopia within but showed relative hyperopia beyond the central 30° field. However, there was no significant correlation between central refractive changes and baseline RPR or between changes in central refraction and RPR over twelve months in any refractive groups. Correlations between changes in PR and central myopic shift were found mainly in the nasal field in different groups. In the subgroup analysis on the initially emmetropic and the initially myopic groups, the subgroups with faster myopic progression did not have significantly different RPR from the subgroups with slower progression. The RPR pattern of the initially emmetropic and the initially myopic groups became more asymmetric at the end of the study period with a larger increase in relative hyperopia in the temporal field. RPR patterns were different among hyperopic, emmetropic and myopic eyes. However, baseline RPR and changes in RPR cannot predict changes in central refraction over time. Our results did not provide evidence to support the hypothesis of RPR as a causative factor for myopic central refractive changes in children. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  20. Intertester agreement in refractive error measurements.

    PubMed

    Huang, Jiayan; Maguire, Maureen G; Ciner, Elise; Kulp, Marjean T; Quinn, Graham E; Orel-Bixler, Deborah; Cyert, Lynn A; Moore, Bruce; Ying, Gui-Shuang

    2013-10-01

    To determine the intertester agreement of refractive error measurements between lay and nurse screeners using the Retinomax Autorefractor and the SureSight Vision Screener. Trained lay and nurse screeners measured refractive error in 1452 preschoolers (3 to 5 years old) using the Retinomax and the SureSight in a random order for screeners and instruments. Intertester agreement between lay and nurse screeners was assessed for sphere, cylinder, and spherical equivalent (SE) using the mean difference and the 95% limits of agreement. The mean intertester difference (lay minus nurse) was compared between groups defined based on the child's age, cycloplegic refractive error, and the reading's confidence number using analysis of variance. The limits of agreement were compared between groups using the Brown-Forsythe test. Intereye correlation was accounted for in all analyses. The mean intertester differences (95% limits of agreement) were -0.04 (-1.63, 1.54) diopter (D) sphere, 0.00 (-0.52, 0.51) D cylinder, and -0.04 (1.65, 1.56) D SE for the Retinomax and 0.05 (-1.48, 1.58) D sphere, 0.01 (-0.58, 0.60) D cylinder, and 0.06 (-1.45, 1.57) D SE for the SureSight. For either instrument, the mean intertester differences in sphere and SE did not differ by the child's age, cycloplegic refractive error, or the reading's confidence number. However, for both instruments, the limits of agreement were wider when eyes had significant refractive error or the reading's confidence number was below the manufacturer's recommended value. Among Head Start preschool children, trained lay and nurse screeners agree well in measuring refractive error using the Retinomax or the SureSight. Both instruments had similar intertester agreement in refractive error measurements independent of the child's age. Significant refractive error and a reading with low confidence number were associated with worse intertester agreement.

  1. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less

  2. A review of tropospheric refraction effects on Earth-to-satellite systems

    NASA Technical Reports Server (NTRS)

    Althsuler, E. E.

    1983-01-01

    Abnormal refractivity gradients may cause radio waves to be trapped within tropospheric layers, thus producing regions through which the waves do not pass called radio holes. For some locations and for many applications, refractive corrections based on the surface refractivity are adequate for elevation angles above a few degrees. However, new systems which operate at elevation angles near the horizon often require improved accuracies. Techniques for obtaining these improved corrections are reviewed.

  3. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    PubMed

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  4. Direct index of refraction measurements at extreme-ultraviolet and soft-x-ray wavelengths.

    PubMed

    Rosfjord, Kristine; Chang, Chang; Miyakawa, Ryan; Barth, Holly; Attwood, David

    2006-03-10

    Coherent radiation from undulator beamlines has been used to directly measure the real and imaginary parts of the index of refraction of several materials at both extreme-ultraviolet and soft-x-ray wavelengths. Using the XOR interferometer, we measure the refractive indices of silicon and ruthenium, essential materials for extreme-ultraviolet lithography. Both materials are tested at wavelength (13.4 nm) and across silicon's L2 (99.8 eV) and L3 (99.2 eV) absorption edges. We further extend this direct phase measurement method into the soft-x-ray region, where measurements of chromium and vanadium are performed around their L3 absorption edges at 574.1 and 512.1 eV, respectively. These are the first direct measurements, to our knowledge, of the real part of the index of refraction made in the soft-x-ray region.

  5. Relationship between postoperative refractive outcomes and cataract density: multiple regression analysis.

    PubMed

    Ueda, Tetsuo; Ikeda, Hitoe; Ota, Takeo; Matsuura, Toyoaki; Hara, Yoshiaki

    2010-05-01

    To evaluate the relationship between cataract density and the deviation from the predicted refraction. Department of Ophthalmology, Nara Medical University, Kashihara, Japan. Axial length (AL) was measured in eyes with mainly nuclear cataract using partial coherence interferometry (IOLMaster). The postoperative AL was measured in pseudophakic mode. The AL difference was calculated by subtracting the postoperative AL from the preoperative AL. Cataract density was measured with the pupil dilated using anterior segment Scheimpflug imaging (EAS-1000). The predicted postoperative refraction was calculated using the SRK/T formula. The subjective refraction 3 months postoperatively was also measured. The mean absolute prediction error (MAE) (mean of absolute difference between predicted postoperative refraction and spherical equivalent of postoperative subjective refraction) was calculated. The relationship between the MAE and cataract density, age, preoperative visual acuity, anterior chamber depth, corneal radius of curvature, and AL difference was evaluated using multiple regression analysis. In the 96 eyes evaluated, the MAE was correlated with cataract density (r = 0.37, P = .001) and the AL difference (r = 0.34, P = .003) but not with the other parameters. The AL difference was correlated with cataract density (r = 0.53, P<.0001). The postoperative refractive outcome was affected by cataract density. This should be taken into consideration in eyes with a higher density cataract. (c) 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. Peripheral Refraction Validity of the Shin-Nippon SRW5000 Autorefractor.

    PubMed

    Osuagwu, Uchechukwu Levi; Suheimat, Marwan; Wolffsohn, James S; Atchison, David A

    2016-10-01

    To investigate the operation of the Shin-Nippon/Grand Seiko autorefractor and whether higher-order aberrations affect its peripheral refraction measurements. Information on instrument design, together with parameters and equations used to obtain refraction, was obtained from a patent. A model eye simulating the operating principles was tested with an optical design program. Effects of induced defocus and astigmatism on the retinal image were used to calibrate the model eye to match the patent equations. Coma and trefoil were added to assess their effects on the image. Peripheral refraction of a physical model eye was measured along four visual field meridians with the Shin-Nippon/Grand Seiko autorefractor SRW-5000 and a Hartmann-Shack aberrometer, and simulated autorefractor peripheral refraction was derived using the Zernike coefficients from the aberrometer. In simulation, the autorefractor's square image was changed in size by defocus, into rectangles or parallelograms by astigmatism, and into irregular shapes by coma and trefoil. In the presence of 1.0 D oblique astigmatism, errors in refraction were proportional to the higher-order aberrations, with up to 0.8 D sphere and 1.5 D cylinder for ±0.6 μm of coma or trefoil coefficients with a 5-mm-diameter pupil. For the physical model eye, refraction with the aberrometer was similar in all visual field meridians, but refraction with the autorefractor changed more quickly along one oblique meridian and less quickly along the other oblique meridian than along the horizontal and vertical meridians. Simulations predicted that higher-order aberrations would affect refraction in oblique meridians, and this was supported by the experimental measurements with the physical model eye. The autorefractor's peripheral refraction measurements are valid for horizontal and vertical field meridians, but not for oblique field meridians. Similar instruments must be validated before being adopted outside their design scope.

  7. Vision in semi-aquatic snakes: Intraocular morphology, accommodation, and eye: Body allometry

    NASA Astrophysics Data System (ADS)

    Plylar, Helen Bond

    Vision in vertebrates generally relies on the refractive power of the cornea and crystalline lens to facilitate vision. Light from the environment enters the eye and is refracted by the cornea and lens onto the retina for production of an image. When an animal with a system designed for air submerges underwater, the refractive power of the cornea is lost. Semi-aquatic animals (e.g., water snakes, turtles, aquatic mammals) must overcome this loss of corneal refractive power through visual accommodation. Accommodation relies on change of the position or shape of the lens to change the focal length of the optical system. Intraocular muscles and fibers facilitate lenticular displacement and deformation. Snakes, in general, are largely unstudied in terms of visual acuity and intraocular morphology. I used light microscopy and scanning electron microscopy to examine differences in eye anatomy between five sympatric colubrid snake species (Nerodia cyclopion, N. fasciata, N. rhombifer, Pantherophis obsoletus, and Thamnophis proximus) from Southeast Louisiana. I discovered previously undescribed structures associated with the lens in semi-aquatic species. Photorefractive methods were used to assess refractive error. While all species overcame the expected hyperopia imposed by submergence, there was interspecific variation in refractive error. To assess scaling of eye size with body size, I measure of eye size, head size, and body size in Nerodia cyclopion and N. fasciata from the SLU Vertebrate Museum. In both species, body size increases at a significantly faster rate than head size and eye size (negative allometry). Small snakes have large eyes relative to body size, and large snakes have relatively small eyes. There were interspecific differences in scaling of eye size with body size, where N. fasciata had larger eye diameter, but N. cyclopion had longer eyes (axial length).

  8. Index of Refraction Measurements and Window Corrections for PMMA under Shock Compression

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Williamson, David; Proud, William

    2011-06-01

    Symmetric plate impact experiments were performed to investigate the change in the refractive index of PMMA under shock loading. Flyer and target geometries allowed the measurement of shock velocity, particle velocity, and refractive index in the shocked state, using the simultaneous application of VISAR (532 nm) and Het-V (1550 nm). The change in refractive index of PMMA as a function of density is generally considered to be well described by the Gladstone-Dale relationship, meaning that the ``apparent'' velocity measured by a laser velocity interferometer is the ``true'' velocity, and hence there is no window correction. The results presented characterise the accuracy of this assumption at peak stresses up to 2 GPa.

  9. Measurement of the refractive index of hemoglobin solutions for a continuous spectral region

    PubMed Central

    Wang, Jin; Deng, Zhichao; Wang, Xiaowan; Ye, Qing; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2015-01-01

    Determination of the refractive index of hemoglobin solutions over a wide wavelength range remains challenging. A famous detour approach is the Kramers-Kronig (KK) analysis which can resolve the real part of complex refractive index from the imaginary part. However, KK analysis is limited by the contradiction between the requirement of semi-infinite frequency range and limited measured range. In this paper, based on the Multi-curve fitting method (MFM), continuous refractive index dispersion (CRID) of oxygenated and deoxygenated hemoglobin solutions are measured using a homemade symmetrical arm-linked apparatus in the continuous wavelength range with spectral resolution of about 0.259nm. A novel method to obtain the CRID is proposed. PMID:26203379

  10. Refractive Index of Sodium Iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jellison Jr, Gerald Earle; Boatner, Lynn A; Ramey, Joanne Oxendine

    2012-01-01

    The refractive index of sodium iodide, an important scintillator material that is widely used for radiation detection, is based on a single measurement made by Spangenberg at one wavelength using the index-matching liquid immersion method (Z. Kristallogr., 57, 494-534 (1923)). In the present paper, we present new results for the refractive index of sodium iodide as measured by the minimum deviation technique at six wavelengths between 436 nm (n=1.839 0.002) and 633 nm (n=1.786 0.002). These 6 measurements can be fit to a Sellmeier model, resulting in a 2 of 1.02, indicating a good fit to the data. In addition,more » we report on ellipsometry measurements, which suggest that the near-surface region of the air sensitive NaI crystal seriously degrades, even in a moisture-free environment, resulting in a significantly lower value of the refractive index near the surface. First-principles theoretical calculations of the NaI refractive index that agree with the measured values within 0.025-0.045 are also presented and discussed.« less

  11. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  12. Optofluidic two-dimensional grating volume refractive index sensor.

    PubMed

    Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

    2016-09-10

    We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.

  13. [Measurement and analysis on complex refraction indices of pear pollen in infrared band].

    PubMed

    Li, Le; Hu, Yi-hua; Gu, You-lin; Chen, Wei; Zhao, Yi-zheng; Chen, Shan-jing

    2015-01-01

    Pollen is an important part of bioaerosols, and its complex refractive index is a crucial parameter for study on optical characteristics and detection, identification of bioaerosols. The reflection spectra of pear pollen within the 2. 5 - 15µm waveband were measured by squash method. Based on the measured data, the complex refractive index of pear pollen within the wave-band of 2. 5 to 15 µm was calculated by using Kramers-Kroning (K-K) relation, and calculation deviation about incident angle and different reflectivities at high and low frequencies.were analyzed. The results indicate that 18 degrees angle of incidence and different reflectivities at high and low frequencies have little effect on the results, and it is practicable to calculate the complex refractive index of pollen based on its reflection spectral data. The data of complex refractive index of pollen have some reference value for optical characteristics of pollen, detection and identification of bioaerosols.

  14. Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae

    NASA Astrophysics Data System (ADS)

    Schödel, René; Walkov, Alexander; Voigt, Michael; Bartl, Guido

    2018-06-01

    The refractive index of air is a major limiting factor in length measurements by interferometry, which are mostly performed under atmospheric conditions. Therefore, especially in the last century, measurement and description of the air refractive index was a key point in order to achieve accuracy in the realisation of the length by interferometry. Nevertheless, interferometric length measurements performed in vacuum are much more accurate since the wavelength of the light is not affected by the air refractive index. However, compared with thermal conditions in air, in high vacuum heat conduction is missing. In such a situation, dependent on the radiative thermal equilibrium, a temperature distribution can be very inhomogeneous. Using a so-called contact gas instead of high vacuum is a very effective way to enable heat conduction on nearly the same level as under atmospheric pressure conditions whereby keeping the effect of the air refractive index on a small level. As physics predicts, and as we have demonstrated previously, helium seems like the optimal contact gas because of its large heat conduction and its refractive index that can be calculated from precisely known parameters. On the other hand, helium gas situated in a vacuum chamber could easily be contaminated, e.g. by air leakage from outside. Above the boiling point of oxygen (‑183 °C) it is therefore beneficial to use dry air as a contact gas. In such an approach, the air refractive index could be calculated based on measured quantities for pressure and temperature. However, existing formulas for the air refractive index are not valid in the low-pressure regime. Although it seems reasonable that the refractivity (n  ‑  1) of dry air simply downscales with the pressure, to our knowledge there is no experimental evidence for the applicability of any empirical formula. This evidence is given in the present paper which reports on highly accurate measurements of the air refractive index for the wavelengths 532 nm, 633 nm and 780 nm in the low-pressure regime from 0 Pa to 1300 Pa. In our approach, using a vacuum cell, n  ‑  1 is obtained from the comparison of optical path lengths in vacuum and air along the same path by imaging interferometry. These measured values are compared with the ones obtained from Bönsch’s formula. An agreement of  ±10‑9 is found in the low-pressure regime. Accordingly, this formula could be applied for the accurate determination of the refractive index of dry air even at low pressures, provided that the pressure is measured with high accuracy.

  15. Mixed effects modelling for glass category estimation from glass refractive indices.

    PubMed

    Lucy, David; Zadora, Grzegorz

    2011-10-10

    520 Glass fragments were taken from 105 glass items. Each item was either a container, a window, or glass from an automobile. Each of these three classes of use are defined as glass categories. Refractive indexes were measured both before, and after a programme of re-annealing. Because the refractive index of each fragment could not in itself be observed before and after re-annealing, a model based approach was used to estimate the change in refractive index for each glass category. It was found that less complex estimation methods would be equivalent to the full model, and were subsequently used. The change in refractive index was then used to calculate a measure of the evidential value for each item belonging to each glass category. The distributions of refractive index change were considered for each glass category, and it was found that, possibly due to small samples, members of the normal family would not adequately model the refractive index changes within two of the use types considered here. Two alternative approaches to modelling the change in refractive index were used, one employed more established kernel density estimates, the other a newer approach called log-concave estimation. Either method when applied to the change in refractive index was found to give good estimates of glass category, however, on all performance metrics kernel density estimates were found to be slightly better than log-concave estimates, although the estimates from log-concave estimation prossessed properties which had some qualitative appeal not encapsulated in the selected measures of performance. These results and implications of these two methods of estimating probability densities for glass refractive indexes are discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Evaluation of Visual Acuity Measurements after Autorefraction versus Manual Refraction in Eyes with and without Diabetic Macular Edema

    PubMed Central

    Sun, Jennifer K.; Qin, Haijing; Aiello, Lloyd Paul; Melia, Michele; Beck, Roy W.; Andreoli, Christopher M.; Edwards, Paul A.; Glassman, Adam R.; Pavlica, Michael R.

    2012-01-01

    Objective To compare visual acuity (VA) scores after autorefraction versus research protocol manual refraction in eyes of patients with diabetes and a wide range of VA. Methods Electronic Early Treatment Diabetic Retinopathy Study (E-ETDRS) VA Test© letter score (EVA) was measured after autorefraction (AR-EVA) and after Diabetic Retinopathy Clinical Research Network (DRCR.net) protocol manual refraction (MR-EVA). Testing order was randomized, study participants and VA examiners were masked to refraction source, and a second EVA utilizing an identical manual refraction (MR-EVAsupl) was performed to determine test-retest variability. Results In 878 eyes of 456 study participants, median MR-EVA was 74 (Snellen equivalent approximately 20/32). Spherical equivalent was often similar for manual and autorefraction (median difference: 0.00, 5th and 95th percentiles −1.75 to +1.13 Diopters). However, on average, MR-EVA results were slightly better than AR-EVA results across the entire VA range. Furthermore, variability between AR-EVA and MR-EVA was substantially greater than the test-retest variability of MR-EVA (P<0.001). Variability of differences was highly dependent on autorefractor model. Conclusions Across a wide range of VA at multiple sites using a variety of autorefractors, VA measurements tend to be worse with autorefraction than manual refraction. Differences between individual autorefractor models were identified. However, even among autorefractor models comparing most favorably to manual refraction, VA variability between autorefraction and manual refraction is higher than the test-retest variability of manual refraction. The results suggest that with current instruments, autorefraction is not an acceptable substitute for manual refraction for most clinical trials with primary outcomes dependent on best-corrected VA. PMID:22159173

  17. Refractive errors in 3-6 year-old Chinese children: a very low prevalence of myopia?

    PubMed

    Lan, Weizhong; Zhao, Feng; Lin, Lixia; Li, Zhen; Zeng, Junwen; Yang, Zhikuan; Morgan, Ian G

    2013-01-01

    To examine the prevalence of refractive errors in children aged 3-6 years in China. Children were recruited for a trial of a home-based amblyopia screening kit in Guangzhou preschools, during which cycloplegic refractions were measured in both eyes of 2480 children. Cycloplegic refraction (from 3 to 4 drops of 1% cyclopentolate to ensure abolition of the light reflex) was measured by both autorefraction and retinoscopy. Refractive errors were defined as followed: myopia (at least -0.50 D in the worse eye), hyperopia (at least +2.00 D in the worse eye) and astigmatism (at least 1.50 D in the worse eye). Different definitions, as specified in the text, were also used to facilitate comparison with other studies. The mean spherical equivalent refractive error was at least +1.22 D for all ages and both genders. The prevalence of myopia for any definition at any age was at most 2.5%, and lower in most cases. In contrast, the prevalence of hyperopia was generally over 20%, and declined slightly with age. The prevalence of astigmatism was between 6% and 11%. There was very little change in refractive error with age over this age range. Previous reports of less hyperopic mean spherical equivalent refractive error, and more myopia and less hyperopia in children of this age may be due to problems with achieving adequate cycloplegia in children with dark irises. Using up to 4 drops of 1% cyclopentolate may be necessary to accurately measure refractive error in paediatric studies of such children. Our results suggest that children from all ethnic groups may follow a similar pattern of early refractive development, with little myopia and a hyperopic mean spherical equivalent over +1.00 D up to the age of 5-6 years in most conditions.

  18. Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction.

    PubMed

    Tabernero, Juan; Vazquez, Daniel; Seidemann, Anne; Uttenweiler, Dietmar; Schaeffel, Frank

    2009-08-01

    The recent observation that central refractive development might be controlled by the refractive errors in the periphery, also in primates, revived the interest in the peripheral optics of the eye. We optimized an eccentric photorefractor to measure the peripheral refractive error in the vertical pupil meridian over the horizontal visual field (from -45 degrees to 45 degrees ), with and without myopic spectacle correction. Furthermore, a newly designed radial refractive gradient lens (RRG lens) that induces increasing myopia in all radial directions from the center was tested. We found that for the geometry of our measurement setup conventional spectacles induced significant relative hyperopia in the periphery, although its magnitude varied greatly among different spectacle designs and subjects. In contrast, the newly designed RRG lens induced relative peripheral myopia. These results are of interest to analyze the effect that different optical corrections might have on the emmetropization process.

  19. Validation of refraction and anterior segment parameters by a new multi-diagnostic platform (VX120).

    PubMed

    Gordon-Shaag, Ariela; Piñero, David P; Kahloun, Cyril; Markov, David; Parnes, Tzadok; Gantz, Liat; Shneor, Einat

    2018-03-08

    The VX120 (Visionix Luneau, France) is a novel multi-diagnostic platform that combines Hartmann-Shack based autorefraction, Placido-disk based corneal-topography and anterior segment measurements made with a stationary-Scheimpflug camera. We investigate the agreement between different parameters measured by the VX120 with accepted or gold-standard techniques to test if they are interchangeable, as well as to evaluate the repeatability and reproducibility. The right-eyes of healthy subjects were included in the study. Autorefraction of the VX120 was compared to subjective refraction. Agreement of anterior segment parameters was compared to the Sirius (CSO, Italy) including autokeratometry, central corneal thickness (CCT), iridiocorneal angle (IA). Inter and intra-test repeatability of the above parameters was assessed. Results were analyzed using Bland and Altman analyses. A total of 164 eyes were evaluated. The mean difference between VX120 autorefraction and subjective refraction for sphere, spherical equivalent (SE), and cylinder was 0.01±0.43D, 0.14±0.47D, and -0.26±0.30D, respectively and high correlation was found to all parameter (r>0.75) except for J 45 (r=0.61). The mean difference between VX120 and the Sirius system for CCT, IA, and keratometry (k1 and k2) was -3.51±8.64μm, 7.6±4.2°, 0.003±0.06mm and 0.004±0.04mm, respectively and high correlation was found to all parameter (r>0.97) except for IA (r=0.67). Intrasession repeatability of VX120 refraction, CCT, IA and keratometry yielded low within-subject standard deviations. Inter-session repeatability showed no statistically significant difference for most of the parameters measured. The VX120 provides consistent refraction and most anterior segment measurements in normal healthy eyes, with high levels of intra and inter-session repeatability. Copyright © 2018. Published by Elsevier España, S.L.U.

  20. From the speed of sound to the speed of light: Ultrasonic Cherenkov refractometry

    NASA Astrophysics Data System (ADS)

    Hallewell, G. D.

    2017-12-01

    Despite its success in the SLD CRID at the SLAC Linear Collider, ultrasonic measurement of Cherenkov radiator refractive index has been less fully exploited in more recent Cherenkov detectors employing gaseous radiators. This is surprising, since it is ideally suited to monitoring hydrostatic variations in refractive index as well as its evolution during the replacement of a light radiator passivation gas (e.g. N2, CO2) with a heavier fluorocarbon (e.g. C4F10[CF4]; mol. wt. 188[88]). The technique exploits the dependence of sound velocity on the molar concentrations of the two components at known temperature and pressure. The SLD barrel CRID used an 87%C5F12/13%N2 blend, mixed before injection into the radiator vessel: blend control based on ultrasonic mixture analysis maintained the β=1 Cherenkov ring angle to a long term variation better than ±0.3%, with refractivity monitored ultrasonically at multiple points within the radiator vessel. Recent advances using microcontroller-based electronics have led to ultrasonic instruments capable of simultaneously measuring gas flow and binary mixture composition in the fluorocarbon evaporative cooling systems of the ATLAS Inner Detector. Sound transit times are measured with multi-MHz transit time clocks in opposite directions in flowing gas for simultaneous measurement of flow rate and sound velocity. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database. Such instruments could be incorporated into new and upgraded gas Cherenkov detectors for radiator gas mixture (and corresponding refractive index) measurement to a precision better than 10-3. They have other applications in binary gas analysis - including in Xenon-based anaesthesia. These possibilities are discussed.

  1. Influence of electrically induced refraction and absorption on the measurement of spin current by pockels effect in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Houquan; She, Weilong, E-mail: shewl@mail.sysu.edu.cn

    2015-03-14

    The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.

  2. Measurement of refractive index of hemoglobin in the visible/NIR spectral range

    NASA Astrophysics Data System (ADS)

    Lazareva, Ekaterina N.; Tuchin, Valery V.

    2018-03-01

    This study is focused on the measurements of the refractive index of hemoglobin solutions in the visible/near-infrared (NIR) spectral range at room temperature for characteristic laser wavelengths: 480, 486, 546, 589, 644, 656, 680, 930, 1100, 1300, and 1550 nm. Measurements were performed using the multiwavelength Abbe refractometer. Aqua hemoglobin solutions of different concentrations obtained from human whole blood were investigated. The specific increment of refractive index on hemoglobin concentration and the Sellmeier coefficients were calculated.

  3. Evaluating refraction and visual acuity with the Nidek autorefractometer AR-360A in a randomized population-based screening study.

    PubMed

    Stoor, Katri; Karvonen, Elina; Liinamaa, Johanna; Saarela, Ville

    2017-11-30

    The evaluation of visual acuity (VA) and refraction in the Northern Finland Birth Cohort Eye study was performed using the Nidek AR-360A autorefractometer. The accuracy of the method for this population-based screening study was assessed. Measurements of the refractive error were obtained from the right eyes of 1238 subjects (mean age 47), first objectively with the AR-360A and then subjectively by an optometrist. Agreement with the subjective refraction was calculated for sphere, cylinder, mean spherical equivalent (MSE), cylindrical vectors J 45 and J 0 and presbyopic correction (add). Visual acuity (VA) was measured using an ETDRS chart and the autorefractometer. The refractive error measured with the AR-360A was higher than the subjective refraction performed by the optometrist for sphere (0.007 D ± 0.24 D p = 0.30) and also for cylinder (-0.16 D ± 0.20 D p < 0.0005). The bias between the measurements of MSE, J 45 and J 0 was low: -0.07 D ± 0.22 D (p = 0.002), 0.01 D ± 0.43 D (p = 0.25) and -0.01 D ± 0.42 D (p = 0.43), respectively. The amount of add measured by the autorefractometer was higher than the subjective 0.35 D ± 0.29 D (p < 0.0005). There was a statistically significant correlation between VA (p < 0.0005) and the difference between the subjective and objective refraction. In 99.2% of the measurements, visual values were within one decimal line of each other. The Nidek AR-360A autorefractometer is an accurate tool for determining the refraction and VA in a clinical screening trial. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. IREPS (Integrated Refractive Effects Prediction System) 3.0. (User’s Manual).

    DTIC Science & Technology

    1987-09-01

    heating from exhaust vents or solar-heated surfaces. These measurements are best performed with a psychrometer on the most windward side of the ship...Celsius and is best measured with a hand-held psychrometer at any location above 6 meters (20 feet). Care should be taken to minimize any ship-induced

  5. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses.

    PubMed

    Zhang, Shuqing; Zhou, Luyang; Xue, Changxi; Wang, Lei

    2017-09-10

    Compound eyes offer a promising field of miniaturized imaging systems. In one application of a compound eye, superposition of compound eye systems forms a composite image by superposing the images produced by different channels. The geometric configuration of superposition compound eye systems is achieved by three micro-lens arrays with different pitches and focal lengths. High resolution is indispensable for the practicability of superposition compound eye systems. In this paper, hybrid diffractive-refractive lenses are introduced into the design of a compound eye system for this purpose. With the help of ZEMAX, two superposition compound eye systems with and without hybrid diffractive-refractive lenses were separately designed. Then, we demonstrate the effectiveness of using a hybrid diffractive-refractive lens to improve the image quality.

  6. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution.

    PubMed

    B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern

    2018-04-13

    Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.

  7. Holographic analysis of photopolymers

    NASA Astrophysics Data System (ADS)

    Sullivan, Amy C.; Alim, Marvin D.; Glugla, David J.; McLeod, Robert R.

    2017-05-01

    Two-beam holographic exposure and subsequent monitoring of the time-dependent first-order Bragg diffraction is a common method for investigating the refractive index response of holographic photopolymers for a range of input writing conditions. The experimental set up is straightforward, and Kogelnik's well-known coupled wave theory (CWT)[1] can be used to separate measurements of the change in index of refraction (Δn) and the thickness of transmission and reflection holograms. However, CWT assumes that the hologram is written and read out with a plane wave and that the hologram is uniform in both the transverse and depth dimensions, assumptions that are rarely valid in practical holographic testing. The effect of deviations from these assumptions on the measured thickness and Δn become more pronounced for over-modulated exposures. As commercial and research polymers reach refractive index modulations on the order of 10-2, even relatively thin (< 20 μm thick) transmission volume holograms become overmodulated. Peak Δn measurements for material analysis must be carefully evaluated in this regime. We present a study of the effects of the finite Gaussian write and read beams on the CWT analysis of photopolymer materials and discuss what intuition this can give us about the effect other non-uniformities, such as mechanical stresses and significant absorption of the write beam, will have on the analysis of the maximum attainable refractive index in a material system. We use this analysis to study a model high Δn two-stage photopolymer holographic material using both transmission and reflection holograms.

  8. Effect of single vision soft contact lenses on peripheral refraction.

    PubMed

    Kang, Pauline; Fan, Yvonne; Oh, Kelly; Trac, Kevin; Zhang, Frank; Swarbrick, Helen

    2012-07-01

    To investigate changes in peripheral refraction with under-, full, and over-correction of central refraction with commercially available single vision soft contact lenses (SCLs) in young myopic adults. Thirty-four myopic adult subjects were fitted with Proclear Sphere SCLs to under-correct (+0.75 DS), fully correct, and over-correct (-0.75 DS) their manifest central refractive error. Central and peripheral refraction were measured with no lens wear and subsequently with different levels of SCL central refractive error correction. The uncorrected refractive error was myopic at all locations along the horizontal meridian. Peripheral refraction was relatively hyperopic compared to center at 30 and 35° in the temporal visual field (VF) in low myopes and at 30 and 35° in the temporal VF and 10, 30, and 35° in the nasal VF in moderate myopes. All levels of SCL correction caused a hyperopic shift in refraction at all locations in the horizontal VF. The smallest hyperopic shift was demonstrated with under-correction followed by full correction and then by over-correction of central refractive error. An increase in relative peripheral hyperopia was measured with full correction SCLs compared with no correction in both low and moderate myopes. However, no difference in relative peripheral refraction profiles were found between under-, full, and over-correction. Under-, full, and over-correction of central refractive error with single vision SCLs caused a hyperopic shift in both central and peripheral refraction at all positions in the horizontal meridian. All levels of SCL correction caused the peripheral retina, which initially experienced absolute myopic defocus at baseline with no correction, to experience absolute hyperopic defocus. This peripheral hyperopia may be a possible cause of myopia progression reported with different types and levels of myopia correction.

  9. Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle.

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Gréhan, Gérard

    2013-01-01

    This paper presents the possibility of measuring the three-dimensional (3D) relative locations and diameters of a set of spherical particles and discusses the behavior of the light recorded around the rainbow angle, an essential step toward refractive index measurements. When a set of particles is illuminated by a pulsed incident wave, the particles act as spherical light wave sources. When the pulse duration is short enough to fix the particle location (typically about 10 ns), interference fringes between these different spherical waves can be recorded. The Fourier transform of the fringes divides the complex fringe systems into a series of spots, with each spot characterizing the interference between a pair of particles. The analyses of these spots (in position and shape) potentially allow the measurement of particle characteristics (3D relative position, particle diameter, and particle refractive index value).

  10. Gradient shadow pattern reveals refractive index of liquid

    PubMed Central

    Kim, Wonkyoung; Kim, Dong Sung

    2016-01-01

    We propose a simple method that uses a gradient shadow pattern (GSP) to measure the refractive index nL of liquids. A light source generates a “dark-bright-dark” GSP when it is projected through through the back of a transparent, rectangular block with a cylindrical chamber that is filled with a liquid sample. We found that there is a linear relationship between nL and the proportion of the bright region in a GSP, which provides the basic principle of the proposed method. A wide range 1.33 ≤ nL ≤ 1.46 of liquids was measured in the single measurement setup with error <0.01. The proposed method is simple but robust to illuminating conditions, and does not require for any expensive or precise optical components, so we expect that it will be useful in many portable measurement systems that use nL to estimate attributes of liquid samples. PMID:27302603

  11. Gradient shadow pattern reveals refractive index of liquid.

    PubMed

    Kim, Wonkyoung; Kim, Dong Sung

    2016-06-15

    We propose a simple method that uses a gradient shadow pattern (GSP) to measure the refractive index nL of liquids. A light source generates a "dark-bright-dark" GSP when it is projected through through the back of a transparent, rectangular block with a cylindrical chamber that is filled with a liquid sample. We found that there is a linear relationship between nL and the proportion of the bright region in a GSP, which provides the basic principle of the proposed method. A wide range 1.33 ≤ nL ≤ 1.46 of liquids was measured in the single measurement setup with error <0.01. The proposed method is simple but robust to illuminating conditions, and does not require for any expensive or precise optical components, so we expect that it will be useful in many portable measurement systems that use nL to estimate attributes of liquid samples.

  12. Unbiased Estimation of Refractive State of Aberrated Eyes

    PubMed Central

    Martin, Jesson; Vasudevan, Balamurali; Himebaugh, Nikole; Bradley, Arthur; Thibos, Larry

    2011-01-01

    To identify unbiased methods for estimating the target vergence required to maximize visual acuity based on wavefront aberration measurements. Experiments were designed to minimize the impact of confounding factors that have hampered previous research. Objective wavefront refractions and subjective acuity refractions were obtained for the same monochromatic wavelength. Accommodation and pupil fluctuations were eliminated by cycloplegia. Unbiased subjective refractions that maximize visual acuity for high contrast letters were performed with a computer controlled forced choice staircase procedure, using 0.125 diopter steps of defocus. All experiments were performed for two pupil diameters (3mm and 6mm). As reported in the literature, subjective refractive error does not change appreciably when the pupil dilates. For 3 mm pupils most metrics yielded objective refractions that were about 0.1D more hyperopic than subjective acuity refractions. When pupil diameter increased to 6 mm, this bias changed in the myopic direction and the variability between metrics also increased. These inaccuracies were small compared to the precision of the measurements, which implies that most metrics provided unbiased estimates of refractive state for medium and large pupils. A variety of image quality metrics may be used to determine ocular refractive state for monochromatic (635nm) light, thereby achieving accurate results without the need for empirical correction factors. PMID:21777601

  13. Interferometric atmospheric refractive-index environmental monitor

    NASA Astrophysics Data System (ADS)

    Ludman, Jacques E.; Ludman, Jacques J.; Callahan, Heidi; Robinson, John; Davis, Seth; Caulfield, H. John; Watt, David; Sampson, John L.; Hunt, Arlon

    1995-06-01

    Long, open-path, outdoor interferometric measurement of the index of refraction as a function of wavelength (spectral refractivity) requires a number of innovations. These include active compensation for vibration and turbulence. The use of electronic compensation produces an electronic signal that is ideal for extracting data. This allows the appropriate interpretation of those data and the systematic and fast scanning of the spectrum by the use of bandwidths that are intermediate between lasers (narrow bandwidth) and white light (broad bandwidth). An Environmental Interferometer that incorporates these features should be extremely valuable in both pollutant detection and pollutant identification. Spectral refractivity measurements complement the information available

  14. Stellar refraction - A tool to monitor the height of the tropopause from space

    NASA Technical Reports Server (NTRS)

    Schuerman, D. W.; Giovane, F.; Greenberg, J. M.

    1975-01-01

    Calculations of stellar refraction for a setting or rising star as viewed from a spacecraft show that the tropopause is a discernible feature in a plot of refraction vs time. The height of the tropopause is easily obtained from such a plot. Since the refraction suffered by the starlight appears to be measurable with some precision from orbital altitudes, this technique is suggested as a method for remotely monitoring the height of the tropopause. Although limited to nighttime measurements, the method is independent of supporting data or model fitting and easily lends itself to on-line data reduction.

  15. Suppression of Air Refractive Index Variations in High-Resolution Interferometry

    PubMed Central

    Lazar, Josef; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

    2011-01-01

    The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10−8 has been achieved. PMID:22164036

  16. Relationship between lenticular power and refractive error in children with hyperopia.

    PubMed

    Tomomatsu, Takeshi; Kono, Shinjiro; Arimura, Shogo; Tomomatsu, Yoko; Matsumura, Takehiro; Takihara, Yuji; Inatani, Masaru; Takamura, Yoshihiro

    2013-01-01

    To evaluate the contribution of axial length, and lenticular and corneal power to the spherical equivalent refractive error in children with hyperopia between 3 and 13 years of age, using noncontact optical biometry. There were 62 children between 3 and 13 years of age with hyperopia (+2 diopters [D] or more) who underwent automated refraction measurement with cycloplegia, to measure spherical equivalent refractive error and corneal power. Axial length was measured using an optic biometer that does not require contact with the cornea. The refractive power of the lens was calculated using the Sanders-Retzlaff-Kraff formula. Single regression analysis was used to evaluate the correlation among the optical parameters. There was a significant positive correlation between age and axial length (P = 0.0014); however, the degree of hyperopia did not decrease with aging (P = 0.59). There was a significant negative correlation between age and the refractive power of the lens (P = 0.0001) but not that of the cornea (P = 0.43). A significant negative correlation was observed between the degree of hyperopia and lenticular power (P < 0.0001). Although this study is small scale and cross sectional, the analysis, using noncontact biometry, showed that lenticular power was negatively correlated with refractive error and age, indicating that lower lens power may contribute to the degree of hyperopia.

  17. Digital Hilbert transformation for separation measurement of thicknesses and refractive indices of layered objects by use of a wavelength-scanning heterodyne interference confocal microscope.

    PubMed

    Watanabe, Yuuki; Yamaguchi, Ichirou

    2002-08-01

    A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 microm without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-microm thick with refractive indices between 1 and 1.5.

  18. Digital Hilbert transformation for separation measurement of thicknesses and refractive indices of layered objects by use of a wavelength-scanning heterodyne interference confocal microscope

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Yamaguchi, Ichirou

    2002-08-01

    A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 mum without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-mum thick with refractive indices between 1 and 1.5.

  19. Acoustic computer tomographic pyrometry for two-dimensional measurement of gases taking into account the effect of refraction of sound wave paths

    NASA Astrophysics Data System (ADS)

    Lu, J.; Wakai, K.; Takahashi, S.; Shimizu, S.

    2000-06-01

    The algorithm which takes into account the effect of refraction of sound wave paths for acoustic computer tomography (CT) is developed. Incorporating the algorithm of refraction into ordinary CT algorithms which are based on Fourier transformation is very difficult. In this paper, the least-squares method, which is capable of considering the refraction effect, is employed to reconstruct the two-dimensional temperature distribution. The refraction effect is solved by writing a set of differential equations which is derived from Fermat's theorem and the calculus of variations. It is impossible to carry out refraction analysis and the reconstruction of temperature distribution simultaneously, so the problem is solved using the iteration method. The measurement field is assumed to take the shape of a circle and 16 speakers, also serving as the receivers, are set around it isometrically. The algorithm is checked through computer simulation with various kinds of temperature distributions. It is shown that the present method which takes into account the algorithm of the refraction effect can reconstruct temperature distributions with much greater accuracy than can methods which do not include the refraction effect.

  20. A modified artificial neural network based prediction technique for tropospheric radio refractivity

    PubMed Central

    Javeed, Shumaila; Javed, Wajahat; Atif, M.; Uddin, Mueen

    2018-01-01

    Radio refractivity plays a significant role in the development and design of radio systems for attaining the best level of performance. Refractivity in the troposphere is one of the features affecting electromagnetic waves, and hence the communication system interrupts. In this work, a modified artificial neural network (ANN) based model is applied to predict the refractivity. The suggested ANN model comprises three modules: the data preparation module, the feature selection module, and the forecast module. The first module applies pre-processing to make the data compatible for the feature selection module. The second module discards irrelevant and redundant data from the input set. The third module uses ANN for prediction. The ANN model applies a sigmoid activation function and a multi-variate auto regressive model to update the weights during the training process. In this work, the refractivity is predicted and estimated based on ten years (2002–2011) of meteorological data, such as the temperature, pressure, and humidity, obtained from the Pakistan Meteorological Department (PMD), Islamabad. The refractivity is estimated using the method suggested by the International Telecommunication Union (ITU). The refractivity is predicted for the year 2012 using the database of the previous ten years, with the help of ANN. The ANN model is implemented in MATLAB. Next, the estimated and predicted refractivity levels are validated against each other. The predicted and actual values (PMD data) of the atmospheric parameters agree with each other well, and demonstrate the accuracy of the proposed ANN method. It was further found that all parameters have a strong relationship with refractivity, in particular the temperature and humidity. The refractivity values are higher during the rainy season owing to a strong association with the relative humidity. Therefore, it is important to properly cater the signal communication system during hot and humid weather. Based on the results, the proposed ANN method can be used to develop a refractivity database, which is highly important in a radio communication system. PMID:29494609

  1. Evaluation of visual acuity measurements after autorefraction vs manual refraction in eyes with and without diabetic macular edema.

    PubMed

    Sun, Jennifer K; Qin, Haijing; Aiello, Lloyd Paul; Melia, Michele; Beck, Roy W; Andreoli, Christopher M; Edwards, Paul A; Glassman, Adam R; Pavlica, Michael R

    2012-04-01

    To compare visual acuity (VA) scores after autorefraction vs manual refraction in eyes of patients with diabetes mellitus and a wide range of VAs. The letter score from the Electronic Visual Acuity (EVA) test from the electronic Early Treatment Diabetic Retinopathy Study was measured after autorefraction (AR-EVA score) and after manual refraction (MR-EVA score), which is the research protocol of the Diabetic Retinopathy Clinical Research Network. Testing order was randomized, study participants and VA examiners were masked to refraction source, and a second EVA test using an identical supplemental manual refraction (MR-EVAsuppl score) was performed to determine test-retest variability. In 878 eyes of 456 study participants, the median MR-EVA score was 74 (Snellen equivalent, approximately 20/32). The spherical equivalent was often similar for manual refraction and autorefraction (median difference, 0.00; 5th-95th percentile range, -1.75 to 1.13 diopters). However, on average, the MR-EVA scores were slightly better than the AR-EVA scores, across the entire VA range. Furthermore, the variability between the AR-EVA scores and the MR-EVA scores was substantially greater than the test-retest variability of the MR-EVA scores (P < .001). The variability of differences was highly dependent on the autorefractor model. Across a wide range of VAs at multiple sites using a variety of autorefractors, VA measurements tend to be worse with autorefraction than manual refraction. Differences between individual autorefractor models were identified. However, even among autorefractor models that compare most favorably with manual refraction, VA variability between autorefraction and manual refraction is higher than the test-retest variability of manual refraction. The results suggest that, with current instruments, autorefraction is not an acceptable substitute for manual refraction for most clinical trials with primary outcomes dependent on best-corrected VA.

  2. Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Byrne, D. M.; Herman, B. M.; King, M. D.; Spinhirne, J. D.

    1980-01-01

    A method is presented for inferring both the size distribution and the complex refractive index of atmospheric particulates from combined bistatic-monostatic lidar and solar radiometer observations. The basic input measurements are spectral optical depths at several visible and near-infrared wavelengths as obtained with a solar radiometer and backscatter and angular scatter coefficients as obtained from a biostatic-monostatic lidar. The spectral optical depth measurements obtained from the radiometer are mathematically inverted to infer a columnar particulate size distribution. Advantage is taken of the fact that the shape of the size distribution obtained by inverting the particulate optical depth is relatively insensitive to the particle refractive index assumed in the inversion. Bistatic-monostatic angular scatter and backscatter lidar data are then processed to extract an optimum value for the particle refractive index subject to the constraint that the shape of the particulate size distribution be the same as that inferred from the solar radiometer data. Specifically, the scattering parameters obtained from the bistatic-monostatic lidar data are compared with corresponding theoretical computations made for various assumed refractive index values. That value which yields best agreement, in a weighted least squares sense, is selected as the optimal refractive index estimate. The results of this procedure applied to a set of simulated measurements as well as to measurements collected on two separate days are presented and discussed.

  3. Atmospheric refraction effects on baseline error in satellite laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1982-01-01

    Because of the mathematical complexities involved in exact analyses of baseline errors, it is not easy to isolate atmospheric refraction effects; however, by making certain simplifying assumptions about the ranging system geometry, relatively simple expressions can be derived which relate the baseline errors directly to the refraction errors. The results indicate that even in the absence of other errors, the baseline error for intercontinental baselines can be more than an order of magnitude larger than the refraction error.

  4. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng

    2017-08-01

    A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.

  5. Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.

  6. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

    PubMed

    Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

    2014-08-01

    The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

  7. Refractive index and viscosity: dual sensing with plastic fibre gratings

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo; Bilro, Lúcia; Marques, Carlos; Oliveira, Ricardo; Nogueira, Rogério

    2014-05-01

    A refractive index and viscosity sensor based on FBGs in mPOF is reported for the first time. The refractive index was measured with a sensitivity of -10:98nm=RIU and a resolution of 1 - 10-4RIU. Viscosity measurements were performed with acousto-optic modulation, obtaining a sensitivity of -94:42%=mPa • s and a resolution of 0:06mPa • s.

  8. Refractive index measurements of single, spherical cells using digital holographic microscopy.

    PubMed

    Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen

    2015-01-01

    In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Hailu; Zhou Xinxing; Shu Weixing

    We theorize an enhanced and switchable spin Hall effect (SHE) of light near the Brewster angle on reflection and demonstrate it experimentally. The obtained spin-dependent splitting reaches 3200 nm near the Brewster angle, which is 50 times larger than the previously reported values in refraction. We find that the amplifying factor in weak measurement is not a constant, which is significantly different from that in refraction. As an analogy of SHE in an electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting themore » incident angle.« less

  10. FIBER AND INTEGRATED OPTICS: New method for determination of the parameters of a channel waveguide

    NASA Astrophysics Data System (ADS)

    Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Sychugov, V. A.; Tishchenko, A. V.; Usievich, B. A.

    1992-02-01

    A new method for the determination of the parameters of channel integrated optical waveguides is proposed. This method is based on measuring the spectral transmission of a system comprising the investigated waveguide and single-mode fiber waveguides, which are brought into contact with the channel waveguide. The results are reported of an investigation of two channel waveguides formed in glass by a variety of methods and characterized by different refractive index profiles. The proposed method is found to be suitable for determination of the parameters of the refractive index profile of the investigated channel waveguides.

  11. Methods for prediction of refractive index in glasses for the infrared

    NASA Astrophysics Data System (ADS)

    McCloy, John S.

    2011-06-01

    It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for highend optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple- DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide) glasses will be compared with measured values of index and dispersion.

  12. Optical coherence refractometry.

    PubMed

    Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew

    2008-10-01

    We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.

  13. Laser Interferometric Measurements of the Physical Properties for He, ne Gases and Their Mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Moniem, N. M.; El-Masry, M. M.; El-Bradie, B.; El-Mekawy, F. M.

    2010-04-01

    A Mach-Zehner interferometer MZI illuminated with He-Ne Laser 632.8nm is used for measuring the refractive index for He, Ne gases and their mixture HeNe. The measurements are carried out at different pressures and temperatures. The error factors of the refractive index measurements for He, Ne and HeNe gases are equal to ±1.7×10-5, ±9.5×10-6 and ±7.25×10-5 respectively. Some calculations of the electrical properties are carried out such as the optical permittivity dielectric susceptibility and specific refractivity from the determination of the refractive index. Also, the molecular radii of the gases under investigation are computed then the transport coefficients (diffusion. viscosity and thermal conductivity) are calculated. All of these calculations are carried out at different pressures and temperatures. The experimental results of refractive index for the above mixture are compared with the results estimated using one of the mixing rules and a good agreement is achieved. Also, some physical parameters are compared with other values in another literatures.

  14. Comparison of two scanning instruments to measure peripheral refraction in the human eye.

    PubMed

    Jaeken, Bart; Tabernero, Juan; Schaeffel, Frank; Artal, Pablo

    2012-03-01

    To better understand how peripheral refraction affects development of myopia in humans, specialized instruments are fundamental for precise and rapid measurements of refraction over the visual field. We compare here two prototype instruments that measure in a few seconds the peripheral refraction in the eye with high angular resolution over a range of about ±45 deg. One instrument is based on the continuous recording of Hartmann-Shack (HS) images (HS scanner) and the other is based on the photorefraction (PR) principle (PR scanner). On average, good correlations were found between the refraction results provided by the two devices, although it varied across subjects. A detailed statistical analysis of the differences between both instruments was performed based on measurements in 35 young subjects. Both instruments have advantages and disadvantages. The HS scanner also provides the high-order aberration data, while the PR scanner is more compact and has a lower cost. Both instruments are current prototypes, and further optimization is possible to make them even more suitable tools for future visual optics and myopia research and also for different ophthalmic applications.

  15. A novel inverse method for determining the refractive indices of medium and dispersed particles simultaneously by turbidity measurement.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei; Zhang, Pu

    2008-10-01

    The refractive indices of particles and dispersion medium are important parameters in many colloidal experiments using optical techniques, such as turbidity and light scattering measurements. These data are in general wavelength-dependent and may not be available at some wavelengths fitting to the experimental requirement. In this study we present a novel approach to inversely determine the refractive indices of particles and dispersion medium by examining the consistency of measured extinction cross sections of particles with their theoretical values using a series of trial values of the refractive indices. The colloidal suspension of polystyrene particles dispersed in water was used as an example to demonstrate how this approach works and the data obtained via such a method are compared with those reported in literature, showing a good agreement between both. Furthermore, the factors that affect the accuracy of measurements are discussed. We also present some data of the refractive indices of polystyrene over a range of wavelengths smaller than 400 nm that have been not reported in the available literature.

  16. Refractive index measurement of imidazolium based ionic liquids in the Vis-NIR

    NASA Astrophysics Data System (ADS)

    Arosa, Yago; Rodríguez Fernández, Carlos Damián; López Lago, Elena; Amigo, Alfredo; Varela, Luis Miguel; Cabeza, Oscar; de la Fuente, Raúl

    2017-11-01

    In this paper spectrally resolved white light interferometry is applied for measuring the refractive index of different ionic liquids over a wide spectral band from 400 to 1000 nm. The measuring device is compound by a Michelson interferometer whose output is analyzed by means of two spectrometers. The first one is a homemade prism spectrometer which provides the interferogram produced by the sample over a wide continuum spectrum. The second one is a commercial diffraction grating spectrometer used to make high precision measurements of the displacement between the Michelson mirrors by interferometry. Both instruments combined allow the retrieval of the refractive index of the sample over a wide visible-near infrared continuum spectrum with deviations on the fourth decimal. A group of 14 different ionic liquids based on the 1-alkyl-3-methylimidazolium cation have been studied through this technique. The measured refractive index of the ionic liquids is used to calculate their electronic polarizability. This makes possible to gain insight into the microscopic behavior of the compounds. To give a better picture, the liquids have been classified in four groups and their refractive indices and polarizabilities are compared in order to find correlations between these magnitudes and the structure of the liquids.

  17. Refractive Index Measurement of Fibers Through Fizeau Interferometry

    DTIC Science & Technology

    2013-08-01

    15. SUBJECT TERMS composite, transparent, refractive index, refractometry , interferometer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...transparent fibers has long presented a significant challenge. Abbe refractometry , the typical measurement technique for bulk materials and liquids

  18. Stochastic digital holography for visualizing inside strongly refracting transparent objects.

    PubMed

    Desse, Jean-Michel; Picart, Pascal

    2015-01-01

    This paper presents a digital holographic method to visualize and measure refractive index variations, convection currents, or thermal gradients, occurring inside a transparent and refracting object. The proof of principle is provided through the visualization of refractive index variation inside a lighting bulb. Comparison with transmission and reflection holography is also provided. A very good agreement is obtained, thus validating the proposed approach.

  19. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  20. Measurement of refractive index of hemoglobin in the visible/NIR spectral range.

    PubMed

    Lazareva, Ekaterina N; Tuchin, Valery V

    2018-03-01

    This study is focused on the measurements of the refractive index of hemoglobin solutions in the visible/near-infrared (NIR) spectral range at room temperature for characteristic laser wavelengths: 480, 486, 546, 589, 644, 656, 680, 930, 1100, 1300, and 1550 nm. Measurements were performed using the multiwavelength Abbe refractometer. Aqua hemoglobin solutions of different concentrations obtained from human whole blood were investigated. The specific increment of refractive index on hemoglobin concentration and the Sellmeier coefficients were calculated. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Note: Automated optical focusing on encapsulated devices for scanning light stimulation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzer, L. A.; Benson, N., E-mail: niels.benson@uni-due.de; Schmechel, R.

    Recently, a scanning light stimulation system with an automated, adaptive focus correction during the measurement was introduced. Here, its application on encapsulated devices is discussed. This includes the changes an encapsulating optical medium introduces to the focusing process as well as to the subsequent light stimulation measurement. Further, the focusing method is modified to compensate for the influence of refraction and to maintain a minimum beam diameter on the sample surface.

  2. FORTRAN program for analyzing ground-based radar data: Usage and derivations, version 6.2

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Whitmore, Stephen A.

    1995-01-01

    A postflight FORTRAN program called 'radar' reads and analyzes ground-based radar data. The output includes position, velocity, and acceleration parameters. Air data parameters are also provided if atmospheric characteristics are input. This program can read data from any radar in three formats. Geocentric Cartesian position can also be used as input, which may be from an inertial navigation or Global Positioning System. Options include spike removal, data filtering, and atmospheric refraction corrections. Atmospheric refraction can be corrected using the quick White Sands method or the gradient refraction method, which allows accurate analysis of very low elevation angle and long-range data. Refraction properties are extrapolated from surface conditions, or a measured profile may be input. Velocity is determined by differentiating position. Accelerations are determined by differentiating velocity. This paper describes the algorithms used, gives the operational details, and discusses the limitations and errors of the program. Appendices A through E contain the derivations for these algorithms. These derivations include an improvement in speed to the exact solution for geodetic altitude, an improved algorithm over earlier versions for determining scale height, a truncation algorithm for speeding up the gradient refraction method, and a refinement of the coefficients used in the White Sands method for Edwards AFB, California. Appendix G contains the nomenclature.

  3. Non-uniform refractive index field measurement based on light field imaging technique

    NASA Astrophysics Data System (ADS)

    Du, Xiaokun; Zhang, Yumin; Zhou, Mengjie; Xu, Dong

    2018-02-01

    In this paper, a method for measuring the non-uniform refractive index field based on the light field imaging technique is proposed. First, the light field camera is used to collect the four-dimensional light field data, and then the light field data is decoded according to the light field imaging principle to obtain image sequences with different acquisition angles of the refractive index field. Subsequently PIV (Particle Image Velocimetry) technique is used to extract ray offset of each image. Finally, the distribution of non-uniform refractive index field can be calculated by inversing the deflection of light rays. Compared with traditional optical methods which require multiple optical detectors from multiple angles to synchronously collect data, the method proposed in this paper only needs a light field camera and shoot once. The effectiveness of the method has been verified by the experiment which quantitatively measures the distribution of the refractive index field above the flame of the alcohol lamp.

  4. Measuring refractive index and volume of liquid under high pressure with optical coherence tomography and light microscopy.

    PubMed

    Wang, Donglin; Yang, Kun; Zhou, Yin

    2016-03-20

    Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.

  5. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  6. Studies of atmospheric refraction effects on laser data

    NASA Technical Reports Server (NTRS)

    Dunn, P. J.; Pearce, W. A.; Johnson, T. S.

    1982-01-01

    The refraction effect from three perspectives was considered. An analysis of the axioms on which the accepted correction algorithms were based was the first priority. The integrity of the meteorological measurements on which the correction model is based was also considered and a large quantity of laser observations was processed in an effort to detect any serious anomalies in them. The effect of refraction errors on geodetic parameters estimated from laser data using the most recent analysis procedures was the focus of the third element of study. The results concentrate on refraction errors which were found to be critical in the eventual use of the data for measurements of crustal dynamics.

  7. An investigation of matched index of refraction technique and its application in optical measurements of fluid flow

    NASA Astrophysics Data System (ADS)

    Amini, Noushin; Hassan, Yassin A.

    2012-12-01

    Optical distortions caused by non-uniformities of the refractive index within the measurement volume is a major impediment for all laser diagnostic imaging techniques applied in experimental fluid dynamic studies. Matching the refractive indices of the working fluid and the test section walls and interfaces provides an effective solution to this problem. The experimental set-ups designed to be used along with laser imaging techniques are typically constructed of transparent solid materials. In this investigation, different types of aqueous salt solutions and various organic fluids are studied for refractive index matching with acrylic and fused quartz, which are commonly used in construction of the test sections. One aqueous CaCl2·2H2O solution (63 % by weight) and two organic fluids, Dibutyl Phthalate and P-Cymene, are suggested for refractive index matching with fused quartz and acrylic, respectively. Moreover, the temperature dependence of the refractive indices of these fluids is investigated, and the Thermooptic Constant is calculated for each fluid. Finally, the fluid viscosity for different shear rates is measured as a function of temperature and is applied to characterize the physical behavior of the proposed fluids.

  8. Validity of automated refraction after segmented refractive multifocal intraocular lens implantation

    PubMed Central

    Albarrán-Diego, César; Muñoz, Gonzalo; Rohrweck, Stephanie; García-Lázaro, Santiago; Albero, José Ricardo

    2017-01-01

    AIM To evaluate the clinical utility of automated refraction (AR) and keratometry (KR) compared with subjective or manifest refraction (MR) after cataract or refractive lens exchange surgery with implantation of Lentis Mplus X (Oculentis GmbH) refractive multifocal intraocular lens (IOL). METHODS Eighty-six eyes implanted with the Lentis Mplus X multifocal IOL were included. MR was performed in all patients followed by three consecutive AR measurements using the Topcon KR-8000 autorefractor. Assessment of repeatability of consecutive AR before and after dilation with phenylephrine 10%, and comparison of the AR and KR with MR using vector analysis were performed at 3mo follow-up. RESULTS Analysis showed excellent repeatability of the AR measurements. Linear regression of AR versus MR showed good correlation for sphere and spherical equivalent, whereas the correlation for astigmatism was low. The mean difference AR-MR was -1.28±0.29 diopters (D) for sphere. Astigmatism showed better correlation between KR and MR. CONCLUSION We suggest AR sphere plus 1.25 D and the KR cylinder as the starting point for MR in eyes with a Lentis Mplus X multifocal IOL. If AR measurements are equal to MR, decentration of the IOL should be suspected. PMID:29181318

  9. Validity of automated refraction after segmented refractive multifocal intraocular lens implantation.

    PubMed

    Albarrán-Diego, César; Muñoz, Gonzalo; Rohrweck, Stephanie; García-Lázaro, Santiago; Albero, José Ricardo

    2017-01-01

    To evaluate the clinical utility of automated refraction (AR) and keratometry (KR) compared with subjective or manifest refraction (MR) after cataract or refractive lens exchange surgery with implantation of Lentis Mplus X (Oculentis GmbH) refractive multifocal intraocular lens (IOL). Eighty-six eyes implanted with the Lentis Mplus X multifocal IOL were included. MR was performed in all patients followed by three consecutive AR measurements using the Topcon KR-8000 autorefractor. Assessment of repeatability of consecutive AR before and after dilation with phenylephrine 10%, and comparison of the AR and KR with MR using vector analysis were performed at 3mo follow-up. Analysis showed excellent repeatability of the AR measurements. Linear regression of AR versus MR showed good correlation for sphere and spherical equivalent, whereas the correlation for astigmatism was low. The mean difference AR-MR was -1.28±0.29 diopters (D) for sphere. Astigmatism showed better correlation between KR and MR. We suggest AR sphere plus 1.25 D and the KR cylinder as the starting point for MR in eyes with a Lentis Mplus X multifocal IOL. If AR measurements are equal to MR, decentration of the IOL should be suspected.

  10. Empirical modelling to predict the refractive index of human blood.

    PubMed

    Yahya, M; Saghir, M Z

    2016-02-21

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient's condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

  11. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

    NASA Astrophysics Data System (ADS)

    Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang

    2016-02-01

    We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

  12. Vision Test in Seconds

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Acuity Systems, Inc. developed an electro-optical instrument under a grant from NASA to measure the visual performance of pilots. Transferred from Ames Research Center, this instrument now allows you to have your eyes tested in seconds by relatively unskilled operators. The device automatically measures refractive error of eye and prints out proper prescription for glasses. The unit also detects cataracts and glaucoma.

  13. Eye shape using partial coherence interferometry, autorefraction, and SD-OCT.

    PubMed

    Clark, Christopher A; Elsner, Ann E; Konynenbelt, Benjamin J

    2015-01-01

    Peripheral refraction and retinal shape may influence refractive development. Peripheral refraction has been shown to have a high degree of variability and can take considerable time to perform. Spectral domain optical coherence tomography (SD-OCT) and peripheral axial length measures may be more reliable, assuming that the retinal position is more important than the peripheral optics of the lens/cornea. Seventy-nine subjects' right eyes were imaged for this study (age range, 22 to 34 years; refractive error, -10 to +5.00). Thirty-degree SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) images were collected in a radial pattern along with peripheral refraction with an autorefractor (Shin-Nippon Autorefractor) and peripheral axial length measurements with partial coherence interferometry (IOLMaster, Zeiss). Statistics were performed using repeated-measures analysis of variance in SPSS (IBM, Armonk, NY), Bland-Altman analyses, and regression. All measures were converted to diopters to allow direct comparison. Spectral domain OCT showed a retinal shape with an increased curvature for myopes compared with emmetropes/hyperopes. This retinal shape change became significant around 5 degrees. The SD-OCT analysis for retinal shape provides a resolution of 0.026 diopters, which is about 10 times more accurate than using autorefraction (AR) or clinical refractive techniques. Bland-Altman analyses suggest that retinal shape measured by SD-OCT and the partial coherence interferometry method were more consistent with one another than either was with AR. With more accurate measures of retinal shape using SD-OCT, consistent differences between emmetropes/hyperopes and myopes were found nearer to the fovea than previously reported. Retinal shape may be influenced by central refractive error, and not merely peripheral optics. Partial coherence interferometry and SD-OCT appear to be more accurate than AR, which may be influenced by other factors such as fixation and accommodation. Autorefraction does measure the optics directly, which may be a strength of that method.

  14. Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement.

    PubMed

    Phan Huy, Minh Châu; Laffont, Guillaume; Dewynter, Véronique; Ferdinand, Pierre; Labonté, Laurent; Pagnoux, Dominique; Roy, Philippe; Blanc, Wilfried; Dussardier, Bernard

    2006-10-30

    We report what we believe to be the first Tilted short-period Fiber Bragg Grating photowritten in a microstructured optical fiber for refractive index measurement. We investigate the spectral sensitivity of Tilted Fiber Bragg Grating to refractive index liquid inserted into the holes of a multimode microstructured fiber. We measure the wavelength shift of the first four modes experimentally observed when calibrated oils are inserted into the fiber holes, and thus we determine the refractive index resolution for each of these modes. Moreover, a cross comparison between experimental and simulation results of a modal analysis is performed. Two simulation tools are used, respectively based on the localized functions method and on a finite element method. All results are in very good agreement.

  15. Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances.

    PubMed

    Beléndez, Augusto; Beléndez, Tarsicio; Neipp, Cristian; Pascual, Inmaculada

    2002-11-10

    A method to determine the refractive index and thickness of silver halide emulsions used in holography is presented. The emulsions are in the form of a layer of film deposited on a thick glass plate. The experimental reflectances of p-polarized light are measured as a function of the incident angles, and the values of refractive index, thickness, and extinction coefficient of the emulsion are obtained by using the theoretical equation for reflectance. As examples, five commercial holographic silver halide emulsions are analyzed. The procedure to obtain the measurements and the numerical analysis of the experimental data are simple, and agreement of the calculated reflectances, by use of the thickness and refractive index obtained, with the measured reflectances is satisfactory.

  16. Comparison of objective refraction in darkness to cycloplegic refraction: a pilot study.

    PubMed

    Vasudevan, Balamurali; Ciuffreda, Kenneth J; Meehan, Kelly; Grk, Dejana; Cox, Misty

    2016-03-01

    The aim was to assess non-cycloplegic objective refraction in darkness using an open-field auto-refractor, and furthermore to compare it with distance cycloplegic subjective refraction and distance cycloplegic retinoscopy in the light, in children and young adults. Twenty-three, visually-normal, young-adults (46 eyes) ages 23 to 31 years, and five children (10 eyes) ages five to 12 years, participated in the study. The spherical component of their refraction ranged from -2.25 D to +3.75 D with a mean of +1.80 D, and a mean cylinder of -0.70 D. Three techniques were used to assess refractive error. An objective measure of the non-cycloplegic refractive state was obtained using an open-field autorefractor (WAM-5500) after five minutes in the dark to allow for dissipation of accommodative transients and relaxation of accommodation. In addition, both distance retinoscopy and subjective distance refraction were performed following cycloplegia (Cyclopentolate, 1%) using conventional clinical procedures. All measurements were obtained on the same day within a single session. The spherical component of the refraction was compared among the three techniques in both the children and adults. There was no significant difference in spherical refraction among the three techniques: non-cycloplegic objective refraction in the dark, distance cycloplegic retinoscopy and distance cycloplegic subjective refraction, in either the adults [F(2, 137) = 0.79, p = 0.45] or the children [F(2, 27) = 0.47, p = 0.62]. Mean difference in the spherical component between refraction in the dark and the cycloplegic distance retinoscopy was -0.34 D (r = 0.89) in the adults and +0.14 D (r = 0.96) in the children. The mean difference in spherical component between refraction in the dark and the cycloplegic distance subjective refraction was -0.25 D (r = 0.92) in the adults and -0.05 D (r = 0.95) in the children. Comparison of the spherical refractive component between the three techniques was not significantly different and furthermore, they were highly correlated in both the children and adults in this pilot study. Non-cycloplegic refraction in the dark may provide a reliable adjunct or alternative to conventional cycloplegic refraction in both children and young adults. © 2016 Optometry Australia.

  17. Refractive index sensor based on the leaky radiation of a microfiber.

    PubMed

    Gao, F; Liu, H; Sheng, C; Zhu, C; Zhu, S N

    2014-05-19

    In this work we present a refractive index sensor based on the leaky radiation of a microfiber. The 5.3um diameter microfiber is fabricated by drawing a commercial optical fiber. When the microfiber is immersed into a liquid with larger refractive index than the effective index of fiber mode, the light will leak out through the leaky radiation process. The variation of refractive index of liquid can be monitored by measuring radiation angle of light. The refractive index sensitivity can be over 400 degree/RIU in theory. In the experiment, the variation value 0.001 of refractive index of liquid around this microfiber can be detected through this technique. This work provides a simple and sensitive method for refractive index sensing application.

  18. String and Sticky Tape Experiments: Refractive Index of Liquids.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1979-01-01

    Describes a simple method of measuring the refractive index of a liquid using a paper cup, a liquid, a pencil, and a ruler. Uses the ratio between the actual depth and the apparent depth of the cup to calculate the refractive index. (GA)

  19. Nonlinear optical properties of TeO2-P2 O5- ZnO-LiNbO3 glass doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Miedzinski, R.; Fuks-Janczarek, I.; El Sayed Said, Y.

    2016-10-01

    A series of lithium niobate LiNbO3 (LN) single crystals doped with Er3+ were grown under the same conditions by melt-quenching method. The distribution coefficients of rare-earth (RE) elements in the "crystal-melt" system of LN were determined at the beginning of the crystal growth. Their dependence on the dopant concentration in melt for 0.4 and 0.8 wt % was investigated. The procedure is applied to RE-doped lithium niobate (LiNbO3), a material of great interest for optoelectronic applications. We have obtained the real χR(3) and imaginary parts χI(3) of the third-order, nonlinear optical susceptibility to the nonlinear refractive index n2 and the nonlinear absorption coefficient β that are valid for absorbing systems. We show that nonlinear refractive or absorptive effects are the consequence of the interplay between the real and imaginary parts of the third-order susceptibilities of the materials. The method for measuring non-linear absorption coefficients and nonlinear refractive index based on well-known Z-scan is presented.

  20. Relationship between lenticular power and refractive error in children with hyperopia

    PubMed Central

    Tomomatsu, Takeshi; Kono, Shinjiro; Arimura, Shogo; Tomomatsu, Yoko; Matsumura, Takehiro; Takihara, Yuji; Inatani, Masaru; Takamura, Yoshihiro

    2013-01-01

    Objectives To evaluate the contribution of axial length, and lenticular and corneal power to the spherical equivalent refractive error in children with hyperopia between 3 and 13 years of age, using noncontact optical biometry. Methods There were 62 children between 3 and 13 years of age with hyperopia (+2 diopters [D] or more) who underwent automated refraction measurement with cycloplegia, to measure spherical equivalent refractive error and corneal power. Axial length was measured using an optic biometer that does not require contact with the cornea. The refractive power of the lens was calculated using the Sanders-Retzlaff-Kraff formula. Single regression analysis was used to evaluate the correlation among the optical parameters. Results There was a significant positive correlation between age and axial length (P = 0.0014); however, the degree of hyperopia did not decrease with aging (P = 0.59). There was a significant negative correlation between age and the refractive power of the lens (P = 0.0001) but not that of the cornea (P = 0.43). A significant negative correlation was observed between the degree of hyperopia and lenticular power (P < 0.0001). Conclusion Although this study is small scale and cross sectional, the analysis, using noncontact biometry, showed that lenticular power was negatively correlated with refractive error and age, indicating that lower lens power may contribute to the degree of hyperopia. PMID:23576859

  1. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.

  2. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-08-01

    The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.

  3. Correcting negatively biased refractivity below ducts in GNSS radio occultation: an optimal estimation approach towards improving planetary boundary layer (PBL) characterization

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Nung; de la Torre Juárez, Manuel; Ao, Chi O.; Xie, Feiqin

    2017-12-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) measurements are promising in sensing the vertical structure of the Earth's planetary boundary layer (PBL). However, large refractivity changes near the top of PBL can cause ducting and lead to a negative bias in the retrieved refractivity within the PBL (below ˜ 2 km). To remove the bias, a reconstruction method with assumption of linear structure inside the ducting layer models has been proposed by Xie et al. (2006). While the negative bias can be reduced drastically as demonstrated in the simulation, the lack of high-quality surface refractivity constraint makes its application to real RO data difficult. In this paper, we use the widely available precipitable water (PW) satellite observation as the external constraint for the bias correction. A new framework is proposed to incorporate optimization into the RO reconstruction retrievals in the presence of ducting conditions. The new method uses optimal estimation to select the best refractivity solution whose PW and PBL height best match the externally retrieved PW and the known a priori states, respectively. The near-coincident PW retrievals from AMSR-E microwave radiometer instruments are used as an external observational constraint. This new reconstruction method is tested on both the simulated GNSS-RO profiles and the actual GNSS-RO data. Our results show that the proposed method can greatly reduce the negative refractivity bias when compared to the traditional Abel inversion.

  4. Long period grating refractive-index sensor: optimal design for single wavelength interrogation.

    PubMed

    Kapoor, Amita; Sharma, Enakshi K

    2009-11-01

    We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).

  5. Roughened glass slides and a spectrophotometer for the detection of the wavelength-dependent refractive index of transparent liquids.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Myllylä, Risto; Sutinen, Veijo; Matsuda, Kiyofumi; Homma, Kazuhiro; Silfsten, Pertti; Peiponen, Kai-Erik

    2012-07-01

    We describe a method to determine the wavelength-dependent refractive index of liquids by measurement of light transmittance with a spectrophotometer. The method is based on using roughened glass slides with different a priori known refractive indices and immersing the slides into the transparent liquid with unknown refractive index. Using the dispersion data on the glass material it is possible to find the index match between the liquid and the glass slide, and hence the refractive index of the liquid.

  6. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  7. Weak-field H3O+ ion cyclotron resonance alters water refractive index.

    PubMed

    D'Emilia, E; Ledda, M; Foletti, A; Lisi, A; Giuliani, L; Grimaldi, S; Liboff, A R

    2017-01-01

    Heretofore only observed in living systems, we report that weak-field ion cyclotron resonance (ICR) also occurs in inanimate matter. Weak magnetic field (50 nT) hydronium ICR at the field combination (7.84 Hz, 7.5 µT) markedly changes water structure, as evidenced by finding an altered index of refraction exactly at this combined field. This observation utilizes a novel technique which measures the scattering of a He-Ne laser beam as the sample is exposed to a ramped magnetic field frequency. In addition to the hydronium resonance, we find evidence of ICR coupling to a more massive structure, possibly a tetrahedral combination of three waters and a single hydronium ion. To check our observations, we extended this technique to D 2 O, successfully predicting the specific ICR charge-to-mass ratio for D 3 O + that alters the index of refraction.

  8. Spatial Frequency Responses of Anisotropic Refractive Index Gratings Formed in Holographic Polymer Dispersed Liquid Crystals

    PubMed Central

    Fukuda, Yoshiaki; Tomita, Yasuo

    2016-01-01

    We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms. PMID:28773314

  9. Spatial Frequency Responses of Anisotropic Refractive Index Gratings Formed in Holographic Polymer Dispersed Liquid Crystals.

    PubMed

    Fukuda, Yoshiaki; Tomita, Yasuo

    2016-03-10

    We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms.

  10. Theory, design, and experimental verification of a reflectionless bianisotropic Huygens' metasurface for wide-angle refraction

    NASA Astrophysics Data System (ADS)

    Chen, Michael; Abdo-Sánchez, Elena; Epstein, Ariel; Eleftheriades, George V.

    2018-03-01

    Huygens' metasurfaces are electrically thin devices which allow arbitrary field transformations. Beam refraction is among the first demonstrations of realized metasurfaces. As previously shown for extreme-angle refraction, control over only the electric impedance and magnetic admittance of the Huygens' metasurface proved insufficient to produce the desired reflectionless field transformation. To maintain zero reflections for wide refraction angles, magnetoelectric coupling between the electric and magnetic response of the metasurface, leading to bianisotropy, can be introduced. In this paper, we report the theory, design, and experimental characterization of a reflectionless bianisotropic metasurface for extreme-angle refraction of a normally incident plane wave towards 71.8° at 20 GHz. The theory and design of three-layer asymmetric bianisotropic unit cells are discussed. The realized printed circuit board structure was tested via full-wave simulations as well as experimental characterization. To experimentally verify the prototype, two setups were used. A quasi-optical experiment was conducted to assess the specular reflections of the metasurface, while a far-field antenna measurement characterized its refraction nature. The measurements verify that the fabricated metasurface has negligible reflections and the majority of the scattered power is refracted to the desired Floquet mode. This provides an experimental demonstration of a reflectionless wide-angle refracting metasurface using a bianisotropic Huygens' metasurface at microwave frequencies.

  11. Fiber-integrated refractive index sensor based on a diced Fabry-Perot micro-resonator.

    PubMed

    Suntsov, Sergiy; Rüter, Christian E; Schipkowski, Tom; Kip, Detlef

    2017-11-20

    We report on a fiber-integrated refractive index sensor based on a Fabry-Perot micro-resonator fabricated using simple diamond blade dicing of a single-mode step-index fiber. The performance of the device has been tested for the refractive index measurements of sucrose solutions as well as in air. The device shows a sensitivity of 1160 nm/RIU (refractive index unit) at a wavelength of 1.55 μm and a temperature cross-sensitivity of less than 10 -7   RIU/°C. Based on evaluation of the broadband reflection spectra, refractive index steps of 10 -5 of the solutions were accurately measured. The conducted coating of the resonator sidewalls with layers of a high-index material with real-time reflection spectrum monitoring could help to significantly improve the sensor performance.

  12. Influence of refractive correction on ocular dominance

    NASA Astrophysics Data System (ADS)

    Nakayama, Nanami; Kawamorita, Takushi; Uozato, Hiroshi

    2010-07-01

    We investigated the effects of refractive correction and refractive defocus on the assessment of sensory ocular dominance. In 25 healthy subjects (4 males and 21 females) aged between 20 and 31 years, a quantitative measurement of sensory ocular dominance was performed with refractive correction and the addition of a positive lens on the dominant eye. Sensory ocular dominance was measured with a chart using binocular rivalry targets. The reversal point changed after the addition of a +1.00 D lens on the dominant eye in all subjects. However, sighting ocular dominance and stereopsis did not change after the addition of a positive lens on the dominant eye ( P > 0:05, Wilcoxon test). These results suggest that refractive correction affects sensory ocular dominance, indicating the possible development of a new type of occlusion for amblyopia in the future.

  13. Methods for Prediction of Refractive Index in Glasses for the Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.

    It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for high-end optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple-DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide)more » glasses will be compared with measured values of index and dispersion.« less

  14. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion.

    PubMed

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-20

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  15. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-01

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  16. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  17. Measurement of wavefront aberrations and lens deformation in the accommodated eye with optical coherence tomography-equipped wavefront system.

    PubMed

    He, Ji C; Wang, Jianhua

    2014-04-21

    To quantitatively approach the relationship between optical changes in an accommodated eye and the geometrical deformation of its crystalline lens, a long scan-depth anterior segment OCT equipped wavefront sensor was developed and integrated with a Badal system. With this system, accommodation was stimulated up to 6.0D in the left eye and also measured in the same eye for three subjects. High correlations between the accommodative responses of refractive power and the radius of the anterior lens surface were found for the three subjects (r>0.98). The change in spherical aberration was also highly correlated with the change in lens thickness (r>0.98). The measurement was very well repeated at a 2nd measurement session on the same day for the three subjects and after two weeks for one subject. The novelty of incorporating the Badal system into the OCT equipped wavefront sensor eliminated axial misalignment of the measurement system with the test eye due to accommodative vergence, as in the contralateral paradigm. The design also allowed the wavefront sensor to capture conjugated sharp Hartmann-Shack images in accommodated eyes to accurately analyze wavefront aberrations. In addition, this design extended the accommodation range up to 10.0D. By using this system, for the first time, we demonstrated linear relationships of the changes between the refractive power and the lens curvature and also between the spherical aberration and the lens thickness during accommodation in vivo. This new system provides an accurate and useful technique to quantitatively study accommodation.

  18. Measurement of wavefront aberrations and lens deformation in the accommodated eye with optical coherence tomography-equipped wavefront system

    PubMed Central

    He, Ji C.; Wang, Jianhua

    2014-01-01

    To quantitatively approach the relationship between optical changes in an accommodated eye and the geometrical deformation of its crystalline lens, a long scan-depth anterior segment OCT equipped wavefront sensor was developed and integrated with a Badal system. With this system, accommodation was stimulated up to 6.0D in the left eye and also measured in the same eye for three subjects. High correlations between the accommodative responses of refractive power and the radius of the anterior lens surface were found for the three subjects (r>0.98). The change in spherical aberration was also highly correlated with the change in lens thickness (r>0.98). The measurement was very well repeated at a 2nd measurement session on the same day for the three subjects and after two weeks for one subject. The novelty of incorporating the Badal system into the OCT equipped wavefront sensor eliminated axial misalignment of the measurement system with the test eye due to accommodative vergence, as in the contralateral paradigm. The design also allowed the wavefront sensor to capture conjugated sharp Hartmann-Shack images in accommodated eyes to accurately analyze wavefront aberrations. In addition, this design extended the accommodation range up to 10.0D. By using this system, for the first time, we demonstrated linear relationships of the changes between the refractive power and the lens curvature and also between the spherical aberration and the lens thickness during accommodation in vivo. This new system provides an accurate and useful technique to quantitatively study accommodation. PMID:24787861

  19. Predicting of the refractive index of haemoglobin using the Hybrid GA-SVR approach.

    PubMed

    Oyehan, Tajudeen A; Alade, Ibrahim O; Bagudu, Aliyu; Sulaiman, Kazeem O; Olatunji, Sunday O; Saleh, Tawfik A

    2018-04-30

    The optical properties of blood play crucial roles in medical diagnostics and treatment, and in the design of new medical devices. Haemoglobin is a vital constituent of the blood whose optical properties affect all of the optical properties of human blood. The refractive index of haemoglobin has been reported to strongly depend on its concentration which is a function of the physiology of biological cells. This makes the refractive index of haemoglobin an essential non-invasive bio-marker of diseases. Unfortunately, the complexity of blood tissue makes it challenging to experimentally measure the refractive index of haemoglobin. While a few studies have reported on the refractive index of haemoglobin, there is no solid consensus with the data obtained due to different measuring instruments and the conditions of the experiments. Moreover, obtaining the refractive index via an experimental approach is quite laborious. In this work, an accurate, fast and relatively convenient strategy to estimate the refractive index of haemoglobin is reported. Thus, the GA-SVR model is presented for the prediction of the refractive index of haemoglobin using wavelength, temperature, and the concentration of haemoglobin as descriptors. The model developed is characterised by an excellent accuracy and very low error estimates. The correlation coefficients obtained in these studies are 99.94% and 99.91% for the training and testing results, respectively. In addition, the result shows an almost perfect match with the experimental data and also demonstrates significant improvement over a recent mathematical model available in the literature. The GA-SVR model predictions also give insights into the influence of concentration, wavelength, and temperature on the RI measurement values. The model outcome can be used not only to accurately estimate the refractive index of haemoglobin but also could provide a reliable common ground to benchmark the experimental refractive index results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Refractive Errors in 3–6 Year-Old Chinese Children: A Very Low Prevalence of Myopia?

    PubMed Central

    Lin, Lixia; Li, Zhen; Zeng, Junwen; Yang, Zhikuan; Morgan, Ian G.

    2013-01-01

    Purpose To examine the prevalence of refractive errors in children aged 3–6 years in China. Methods Children were recruited for a trial of a home-based amblyopia screening kit in Guangzhou preschools, during which cycloplegic refractions were measured in both eyes of 2480 children. Cycloplegic refraction (from 3 to 4 drops of 1% cyclopentolate to ensure abolition of the light reflex) was measured by both autorefraction and retinoscopy. Refractive errors were defined as followed: myopia (at least −0.50 D in the worse eye), hyperopia (at least +2.00 D in the worse eye) and astigmatism (at least 1.50 D in the worse eye). Different definitions, as specified in the text, were also used to facilitate comparison with other studies. Results The mean spherical equivalent refractive error was at least +1.22 D for all ages and both genders. The prevalence of myopia for any definition at any age was at most 2.5%, and lower in most cases. In contrast, the prevalence of hyperopia was generally over 20%, and declined slightly with age. The prevalence of astigmatism was between 6% and 11%. There was very little change in refractive error with age over this age range. Conclusions Previous reports of less hyperopic mean spherical equivalent refractive error, and more myopia and less hyperopia in children of this age may be due to problems with achieving adequate cycloplegia in children with dark irises. Using up to 4 drops of 1% cyclopentolate may be necessary to accurately measure refractive error in paediatric studies of such children. Our results suggest that children from all ethnic groups may follow a similar pattern of early refractive development, with little myopia and a hyperopic mean spherical equivalent over +1.00 D up to the age of 5–6 yearsin most conditions. PMID:24205064

  1. Bi-Tapered Fiber Sensor Using a Supercontinuum Light Source for a Broad Spectral Range

    NASA Astrophysics Data System (ADS)

    Garcia Mina, Diego Felipe

    We describe the fabrication bi-tapered optical fiber sensors designed for shorter wavelength operation and we study their optical properties. The new sensing system designed and built for the project is a specialty optical fiber that is single-mode in the visible/near infrared wavelength region of interest. In fabricating the tapered fiber we control the taper parameters, such as the down-taper and up-taper rate, shape and length, and the fiber waist diameter and length. The sensing is mode is via the electromagnetic field, which is evanescent outside the optical fiber and is confined close to the fiber's surface (within a couple hundred nanometers). The fiber sensor system has multiple advantages as a compact, simple device with an ability to detected tiny changes in the refractive index. We developed a supercontinuum light source to provide a wide spectral wavelength range from visible to near IR. The source design was based on coupling light from a femtosecond laser in a photonic crystal fiber designed for high nonlinearity. The output light was efficiently coupled into the bi-tapered fiber sensor and good signal to noise was achieved across the wavelength region. The bi-tapered fiber starts and ends with a single mode fiber in the waist region there are many modes with different propagation constants that couple to the environment outside the fiber. The signals have a strong periodic component as the wavelength is scanned; we exploit the periodicity in the signal using a discrete Fourier transform analysis to correlate signal phase changes with the refractive index changes in the local environment. For small index changes we also measure a strong correlation with the dominant Fourier amplitude component. Our experiments show that our phase-based signal processing technique works well at shorter wavelengths and we extract a new feature, the Fourier amplitude, to measure the refractive index difference. We conducted experiments using aqueous medium with controlled refractive index, such as water-glycerol mixtures. We find sensitivity to changes in the refractive index close to 0.00002 in so-called Refractive Index Units (RIUs). That is smaller than reported in recent literature, but by no means a limiting value. The technique is not limited to aqueous solutions surrounding the fiber, but it can also be adapted to study volatile organic compounds. Future improvements in the fiber sensing system are discussed, including adding thin films to the surface for label-free detection and to draw the electromagnetic field to the fiber's surface.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with amore » simple, solid, and compact structure.« less

  3. High resolution group refractive index measurement by broadband supercontinuum interferometry and wavelet-transform analysis

    NASA Astrophysics Data System (ADS)

    Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette

    2006-12-01

    In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.

  4. Cycloplegic refraction is the gold standard for epidemiological studies.

    PubMed

    Morgan, Ian G; Iribarren, Rafael; Fotouhi, Akbar; Grzybowski, Andrzej

    2015-09-01

    Many studies on children have shown that lack of cycloplegia is associated with slight overestimation of myopia and marked errors in estimates of the prevalence of emmetropia and hyperopia. Non-cycloplegic refraction is particularly problematic for studies of associations with risk factors. The consensus around the importance of cycloplegia in children left undefined at what age, if any, cycloplegia became unnecessary. It was often implicitly assumed that cycloplegia is not necessary beyond childhood or early adulthood, and thus, the protocol for the classical studies of refraction in older adults did not include cycloplegia. Now that population studies of refractive error are beginning to fill the gap between schoolchildren and older adults, whether cycloplegia is required for measuring refractive error in this age range, needs to be defined. Data from the Tehran Eye Study show that, without cycloplegia, there are errors in the estimation of myopia, emmetropia and hyperopia in the age range 20-50, just as in children. Similar results have been reported in an analysis of data from the Beaver Dam Offspring Eye Study. If the only important outcome measure of a particular study is the prevalence of myopia, then cycloplegia may not be crucial in some cases. But, without cycloplegia, measurements of other refractive categories as well as spherical equivalent are unreliable. In summary, the current evidence suggests that cycloplegic refraction should be considered as the gold standard for epidemiological studies of refraction, not only in children, but in adults up to the age of 50. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Investigation of Refractive Index Profile Induced with Femtosecond Pulses into Neodymium Doped Phosphate Glass for the Purposes of Hybrid Waveguiding Structures Formation

    NASA Astrophysics Data System (ADS)

    Bukharin, M.; Khudakov, D.; Vartapetov, S.

    The technique of writing depressed cladding waveguides into Nd:phosphate glass with relatively large mode field diameter in 2-line geometry was reported for the purposes of waveguiding structures formation. The easy to use and accurate technique of induced refractive index measurement was proposed, and it was shown the inefficiency of widespread indirect (numerical aperture) technique of refractive index measurement for such femtosecond written waveguides.

  6. Estimation of effective refractive index of birefringent particles using a combination of the immersion liquid method and light scattering.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2008-04-01

    A method to detect the effective refractive index and concentration of birefringent pigments is suggested. The method is based on the utilization of the immersion liquid method and a multifunction spectrophotometer for the measurement of back scattered light. The method has applications in the measurement of the effective refractive index of pigments that are used, e.g., in the paper industry to improve the opacity of paper products.

  7. Comparison of self-refraction using a simple device, USee, with manifest refraction in adults.

    PubMed

    Annadanam, Anvesh; Varadaraj, Varshini; Mudie, Lucy I; Liu, Alice; Plum, William G; White, J Kevin; Collins, Megan E; Friedman, David S

    2018-01-01

    The USee device is a new self-refraction tool that allows users to determine their own refractive error. We evaluated the ease of use of USee in adults, and compared the refractive error correction achieved with USee to clinical manifest refraction. Sixty adults with uncorrected visual acuity <20/30 and spherical equivalent between -6.00 and +6.00 diopters completed manifest refraction and self-refraction. Subjects had a mean (±SD) age of 53.1 (±18.6) years, and 27 (45.0%) were male. Mean (±SD) spherical equivalent measured by manifest refraction and self-refraction were -0.90 D (±2.53) and -1.22 diopters (±2.42), respectively (p = 0.001). The proportion of subjects correctable to ≥20/30 in the better eye was higher for manifest refraction (96.7%) than self-refraction (83.3%, p = 0.005). Failure to achieve visual acuity ≥20/30 with self-refraction in right eyes was associated with increasing age (per year, OR: 1.05; 95% CI: 1.00-1.10) and higher cylindrical power (per diopter, OR: 7.26; 95% CI: 1.88-28.1). Subjectively, 95% of participants thought USee was easy to use, 85% thought self-refraction correction was better than being uncorrected, 57% thought vision with self-refraction correction was similar to their current corrective lenses, and 53% rated their vision as "very good" or "excellent" with self-refraction. Self-refraction provides acceptable refractive error correction in the majority of adults. Programs targeting resource-poor settings could potentially use USee to provide easy on-site refractive error correction.

  8. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect

    PubMed Central

    Pontes, Maria José

    2018-01-01

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young’s and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber’s stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5–97% and temperature in the range of 21–46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors. PMID:29558387

  9. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect.

    PubMed

    Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; Marques, Carlos; Pontes, Maria José

    2018-03-20

    This paper presents a system capable of measuring temperature and relative humidity with polymer optical fiber (POF) sensors. The sensors are based on variations of the Young's and shear moduli of the POF with variations in temperature and relative humidity. The system comprises two POFs, each with a predefined torsion stress that resulted in a variation in the fiber refractive index due to the stress-optic effect. Because there is a correlation between stress and material properties, the variation in temperature and humidity causes a variation in the fiber's stress, which leads to variations in the fiber refractive index. Only two photodiodes comprise the sensor interrogation, resulting in a simple and low-cost system capable of measuring humidity in the range of 5-97% and temperature in the range of 21-46 °C. The root mean squared errors (RMSEs) between the proposed sensors and the reference were 1.12 °C and 1.36% for the measurements of temperature and relative humidity, respectively. In addition, fiber etching resulted in a sensor with a 2 s response time for a relative humidity variation of 10%, which is one of the lowest recorded response times for intrinsic POF humidity sensors.

  10. Spectroscopic analysis of lead borate systems

    NASA Astrophysics Data System (ADS)

    Georgi, Akash Daniel; Ramesh, K. P.; Mallikarjunaiah, K. J.

    2018-04-01

    Oxide glass systems are interesting because of their bonding like bridging and non-bridging oxygens. Depending on the modifier, the B2O3 glass system can have various Boron-Oxygen network. It is found that, PbO modifies the borate network and increases the formation of penta and diborate groups. In this work, we investigated optical properties of Lead Borate glass systems (x PbO: (1-x) B2O3) with x varying from 30-85 mol % using UV-VIS Spectra and the corresponding band gap was estimated using Tauc relation and these systems behave like direct allowed band gap systems. These results show that, Eg decreases with the addition of lead content. Further the refractive index measurements also have been carried out at various wavelengths. Many correlation is found between the band gap and refractive index for different compositions. Using different theoretical models a best fit has been tried and Ravindra's relation is found to match with our experimental results.

  11. Experimental study of porous media flow using hydro-gel beads and LED based PIV

    NASA Astrophysics Data System (ADS)

    Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.

    2017-01-01

    A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.

  12. Effects of Progressive Addition Lens Wear on Digital Work in Pre-presbyopes

    PubMed Central

    Kee, Chea-su; Leung, Tsz Wing; Kan, Ka-hung; Lam, Christie Hang-I

    2018-01-01

    SIGNIFICANCE Growing popularity of handheld digital devices imposes significant challenges to our visual system and clinical management. This study aimed to determine the effects of lens design on parameters that may influence the refractive management of pre-presbyopic adult computer users. PURPOSE To determine the effects of wearing conventional single-vision lenses (SVL) versus progressive addition lenses (PAL) on the working distance and refractive status. METHODS Adult computer users, recruited from two age cohorts (18 to 25 years, n = 19; 30 to 40 years, n = 45), were prescribed SVLs and PALs designed for use with handheld digital devices. For each lens type, the working distance and refractive shift (post-task − pre-task) were measured immediately after lens delivery (T0) and after 1 month of lens wear (T1). Working distances were recorded with an automatic ultrasound device while the participants were playing a video game. Refractive status through the subjects' glasses was measured before (pre-task) and after playing the game (post-task). Questionnaires assessing the frequencies of 10 digital work–related visual symptoms were conducted for both lens types at T1. RESULTS Switching from SVL to PAL increased the working distance in both cohorts (mean ± SEM = 1.88 ± 0.60 cm; P = .002) and induced a small but significant positive refractive shift (+0.08 ± 0.04 D, P = .021) in the older cohort at T1. In the younger cohort, the changes in working distance due to the switching lens design were correlated with myopic error (r = +0.66, P = .002). In the older cohort, the changes in refractive shift due to switching lens design were correlated with amplitude of accommodation at both time points (r for T0 and T1 = −0.32 and −0.30, respectively; both P < .05). Progressive addition lens was rated as causing less “increased sensitivity to light” compared with SVL. CONCLUSIONS Switching from SVL to PAL increased the working distance and induced a positive refractive shift in the majority of pre-presbyopic adults. PMID:29683984

  13. Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Gleason, Benn; Sisken, Laura; Smith, Charmayne; Richardson, Kathleen

    2016-05-01

    Seventeen infrared-transmitting GeAsSe chalcogenide glasses were fabricated to determine the role of chemistry and structure on mid-wave infrared (MWIR) optical properties. The refractive index and thermoptic coefficients of samples were measured at λ = 4.515 μm using an IR-modified Metricon prism coupler, located at University of Central Florida. Thermo-optic coefficient (dn/dT) values were shown to range from approximately -40 ppm/°C to +65 ppm/°C, and refractive index was shown to vary between approximately 2.5000 and 2.8000. Trends in refractive index and dn/dT were found to be related to the atomic structures present within the glassy network, as opposed to the atomic percentage of any individual constituent. A linear correlation was found between the quantity (n-3•dn/dT) and the coefficient of thermal expansion (CTE) of the glass, suggesting the ability to compositionally design chalcogenide glass compositions with zero dn/dT, regardless of refractive index or dispersion performance. The tunability of these novel glasses offer increased thermal and mechanical stability as compared to the current commercial zero dn/dT options such as AMTIR-5 from Amorphous Materials Inc. For IR imaging systems designed to achieve passive athermalization, utilizing chalcogenide glasses with their tunable ranges of dn/dT (including zero) can be key to addressing system size, weight, and power (SWaP) limitations.

  14. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest to characterize the temperature dependent refractive index relationship, n(T), for phosphate buffered saline. Phosphate buffered saline (PBS) is a water-based solution used with our biological cells because it maintains an ion concentration similar to that found in body fluids. The n(T) characterization was performed using a custom-built isothermal apparatus in which the temperature could be controlled. To check for the accuracy of the PBS refractive index measurements, water was also measured and compared with known values in the literature. The literature source of choice has affiliations to NIST and a formulation of refractive index involving temperature and wavelength dependence, two parameters which are necessary for our specialized infrared wavelength range. From the NIST formula, linear approximations were found to be dn/dT = -1.4x10-4 RIU °C-1 and dn/dlambda = -1.5x10-5 RIU nm-1 for water. A comparison with the formulated refractive indices of water indicated the measured values were off. This was attributed to the fact that light penetration into the HfO2/SiO2 dielectric mirrors had not been considered. Once accounted for, the refractive indices of water were consistent with the literature, and the values for PBS are believed to be accurate. A further discovery was the refractive index values at the discrete resonant wavelengths were monotonically decreasing, such that the dn/dlambda slope for water was considerably close to the NIST formula. Thus, n(T,lambda) was characterized for both water and PBS. A refractive index relationship for PBS with spatial, temperature, and wavelength dependence is particularly useful for non-uniform temperature distributions caused by DEP electrodes. First, a maximum temperature can be inferred, which is the desired measurement for cell viability concerns. In addition, a lateral refractive index distribution can be measured to help quantify the gradient index lenses that are formed by the energized electrodes. The non-uniform temperature distribution was also simulated with a finite element analysis software package. This simulated temperature distribution was converted to a refractive index distribution, and focal lengths were calculated for positive and negative gradient index lenses to a smallest possible length of about 10mm.

  15. Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements.

    PubMed

    Miles, Rachael E H; Walker, Jim S; Burnham, Daniel R; Reid, Jonathan P

    2012-03-07

    The cavity enhanced Raman scattering spectrum recorded from an aerosol droplet provides a unique fingerprint of droplet radius and refractive index, assuming that the droplet is homogeneous in composition. Aerosol optical tweezers are used in this study to capture a single droplet and a Raman fingerprint is recorded using the trapping laser as the source for the Raman excitation. We report here the retrieval of the real part of the refractive index with an uncertainty of ± 0.0012 (better than ± 0.11%), simultaneously measuring the size of the micrometre sized liquid droplet with a precision of better than 1 nm (< ± 0.05% error). In addition, the equilibrium size of the droplet is shown to depend on the laser irradiance due to optical absorption, which elevates the droplet temperature above that of the ambient gas phase. Modulation of the illuminating laser power leads to a modulation in droplet size as the temperature elevation is altered. By measuring induced size changes of <1 nm, we show that the imaginary part of the refractive index can be retrieved even when less than 10 × 10(-9) with an accuracy of better than ± 0.5 × 10(-9). The combination of these measurements allows the complex refractive index of a droplet to be retrieved with high accuracy, with the possibility of making extremely sensitive optical absorption measurements on aerosol samples and the testing of frequently used mixing rules for treating aerosol optical properties. More generally, this method provides an extremely sensitive approach for measuring refractive indices, particularly under solute supersaturation conditions that cannot be accessed by simple bulk-phase measurements.

  16. Correlation of major components of ocular astigmatism in myopic patients.

    PubMed

    Mohammadpour, Mehrdad; Heidari, Zahra; Khabazkhoob, Mehdi; Amouzegar, Afsaneh; Hashemi, Hassan

    2016-02-01

    To investigate the correlation of major components of ocular astigmatism in myopic patients in an academic hospital. This cross-sectional study was conducted on 376 eyes of 188 patients who were referred to Farabi Eye Hospital for refractive surgery. Preoperative examinations including refraction and corneal topography were performed for all candidates to measure refractive and corneal astigmatism. Ocular residual astigmatism was calculated using vector analysis. Pearson's correlation and ANOVA analysis were used to evaluate the strength of the association between different types of astigmatism. Both eyes were defined as cluster and the Generalized Estimating Equations (GEE) analysis were performed. Mean age of 119 women (63.3%) and 69 men (36.7%) was 27.8 ± 5.7 years. Mean refractive error based on spherical equivalent was -3.59 ± 1.95D (range, -0.54 to -10.22D). Mean refractive and corneal astigmatism was 1.97 ± 1.3D and 1.85 ± 1.01D, respectively. Mean amount of ORA was 0.65 ± 0.36D.There was a significant correlation between ORA and refractive astigmatism(r=0.23, p<0.001), corneal and refractive astigmatism (r=0.91, p<0.001) and a weak correlation between ORA and corneal astigmatism (r=0.13, p=0.014). There was a significant correlation between J0 and J45 values of ORA and corneal astigmatism (p<0.001). There is a significant correlation between ORA and refractive astigmatism, refractive and corneal astigmatism and a weak correlation between ORA and corneal astigmatism in refractive surgery candidates. Identifying the type of astigmatism and preoperative measurement of ocular residual astigmatism is highly recommended prior to any refractive surgery, especially in cases with significant astigmatism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ionospheric refraction effects on TOPEX orbit determination accuracy using the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1991-01-01

    This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions, however, appears likely to reduce this figure substantially. Plans and recommendations for response to these findings are presented.

  18. New Atmospheric Observations from the Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS)

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Xie, F.; Muradyan, P.; Garrison, J. L.; Lulich, T.; Voo, J.; Larson, K. M.

    2008-12-01

    The Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was deployed on the NCAR HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) aircraft to make atmospheric observations over the Gulf of Mexico coastal region in February 2008. The objective of the measurements was to test the performance of the system in comparisons with radiosonde profiles and dropsonde profiles that were also collected during the field campaign. The airborne GNSS radio occultation measures of GNSS signals from satellites that are setting or rising behind the Earth's limb relative to the receiver on board an aircraft. High-gain side-looking antennas and a 10MHz GPS Recording System that records the raw RF signal make this set of instrumentation unique, and especially adapted for open-loop tracking observations in the lower atmosphere. Measurements of the amount of refraction in the signal ray paths are inverted using an Abel transform procedure to retrieve a profile of refractivity, which depends on atmospheric pressure, temperature and relative humidity. The airborne geometry, in contrast to the space- borne satellite occultation geometry, is affected by a large drift in the tangent point location, that is the location of the closest point to the Earth surface, as the ray path descends in the atmosphere. Therefore plans for the validation campaign included releasing dropsondes in the plane of the line of sight of the satellite-receiver occultation geometry in order to study this effect. Careful timing and location of the flight path was used to coordinate occultation times with operational and supplementary radiosonde launches. A total of 6 days of balloon sounding data were collected with 20 dropsondes and 28 supplementary radiosonde profiles. A discussion of the technical performance of the system will be presented, which describes the signal characteristics and antenna performance. Preliminary results on the quality of retrieved refractivity profiles will also be shown.

  19. Development of Algorithms and Programs for the Ray Nonlinear Radiotomography of the Ionosphere and Radiotomography Using Middle and High-Orbital Satellites.

    DTIC Science & Technology

    1995-01-01

    satellites is usefull, too. Such radiotomographic systems allow to search the structure of magnetosphere, protonosphere, etc, and to study the influence...of these mediums on navigation and connection systems in details. In connection with the experiments performed the questions arise concerning the...radiotomography is the ray refraction. Ignoration of refraction limits the resolving power of RT systems . Taking the refraction into account, it allows to

  20. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

    PubMed Central

    Gupta, Rajeev; Kaplan, Simon G.

    2003-01-01

    We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

  1. Study of optical nonlinearities in Se-Te-Bi thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ambika; Yadav, Preeti; Kumari, Anshu

    2014-04-01

    The present work reports the nonlinear refractive index of Se85-xTe15Bix thin films calculated by Ticha and Tichy relation. The nonlinear refractive index of Chalcogenide amorphous semiconductor is well correlated with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system. The density of the system is calculated theoretical as well as experimentally by using Archimedes principle. The linear refractive index and WDD parameters are calculated using single transmission spectra in the spectral range of 400-1500 nm. It is observed that linear as well as nonlinear refractive index increases with Bi content. The results are analyzed on the basis of increasing polarizability due to larger radii of Bi.

  2. Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul

    2007-02-01

    We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.

  3. Effect of TiCl4 treatment on the refractive index of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Lee, Jeeyoung; Lee, Myeongkyu

    2015-12-01

    We investigate the effect of TiCl4 treatment on the refractive index of a nanoporous TiO2 film. A nanoparticulate TiO2 film prepared on a glass substrate was immersed in a TiCl4 aqueous solution. The subsequent reaction of TiCl4 with H2O produces TiO2 and thus modifies the density and the refractive index of the film. With increasing TiCl4 concentration, the refractive index initially increased and then declined after being maximized (n = 2.02 at 633 nm) at 0.08 M concentration. A refractive index change as large as 0.45 could be obtained with the TiCl4 treatment, making it possible to achieve diffraction efficiency exceeding 80% in a diffraction grating-embedded TiO2 film. For high TiCl4 concentrations of 0.32 M and 0.64 M, the refractive index remained nearly unchanged. This was attributed to the limited permeability of high-viscosity TiCl4 solutions into the nanoporous films. The measured pore size distributions were in good agreement with the results of a diffraction analysis and refractive index measurement.

  4. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  5. Measurement of Refractive Index Gradients by Deflection of a Laser Beam

    ERIC Educational Resources Information Center

    Barnard, A. J.; Ahlborn, B.

    1975-01-01

    In this simple experiment for an undergraduate laboratory a laser beam is passed through the mixing zone of two liquids with different refractive indices. The spatial variation of the refractive index, at different times during the mixing, can be determined from the observed deflection of the beam. (Author)

  6. Investigative Studies of Refractive Indices of Liquids and a Demonstration of Refraction by the Use of a Laser Pointer and a Lazy Susan

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Mak, Se-yuen

    2008-01-01

    We describe the design of a simple homemade apparatus for the measurement of the refractive indices of liquids and demonstration of refraction. A circular transparent plastic tank and a lazy Susan are held concentrically. A laser pointer is mounted on the lazy Susan with its laser beam pointing radially through the centre of the plastic tank.…

  7. Concentration dependent refractive index of a binary mixture at high pressure.

    PubMed

    Croccolo, Fabrizio; Arnaud, Marc-Alexandre; Bégué, Didier; Bataller, Henri

    2011-07-21

    In the present work binary mixtures of varying concentrations of two miscible hydrocarbons, 1,2,3,4-tetrahydronaphtalene (THN) and n-dodecane (C12), are subjected to increasing pressure up to 50 MPa in order to investigate the dependence of the so-called concentration contrast factor (CF), i.e., (∂n/∂c)(p, T), on pressure level. The refractive index is measured by means of a Mach-Zehnder interferometer. The setup and experimental procedure are validated with different pure fluids in the same pressure range. The refractive index of the THN-C12 mixture is found to vary both over pressure and concentration, and the concentration CF is found to exponentially decrease as the pressure is increased. The measured values of the refractive index and the concentration CFs are compared with values obtained by two different theoretical predictions, the well-known Lorentz-Lorenz formula and an alternative one proposed by Looyenga. While the measured refractive indices agree very well with predictions given by Looyenga, the measured concentration CFs show deviations from the latter of the order of 6% and more than the double from the Lorentz-Lorenz predictions.

  8. Bifocal optical coherenc refractometry of turbid media.

    PubMed

    Alexandrov, Sergey A; Zvyagin, Andrei V; Silva, K K M B Dilusha; Sampson, David D

    2003-01-15

    We propose and demonstrate a novel technique, which we term bifocal optical coherence refractometry, for the rapid determination of the refractive index of a turbid medium. The technique is based on the simultaneous creation of two closely spaced confocal gates in a sample. The optical path-length difference between the gates is measured by means of low-coherence interferometry and used to determine the refractive index. We present experimental results for the refractive indices of milk solutions and of human skin in vivo. As the axial scan rate determines the acquisition time, which is potentially of the order of tens of milliseconds, the technique has potential for in vivo refractive-index measurements of turbid biological media under dynamic conditions.

  9. Refraction corrections for surveying

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.

  10. Index of refraction, density, and solubility of ammonium iodide solutions at high pressure.

    PubMed

    Lamelas, F J

    2013-03-07

    An asymmetric moissanite anvil cell is used to study aqueous solutions of ammonium iodide at pressures up to 10 kbar. The index of refraction is measured using the rotating Fabry-Perot technique, with an accuracy of approximately 1%. The mass density and molar volume of the solutions are estimated using the measured index values, and the molar volume is used to predict the pressure dependence of the solubility. The solubility derived from the index of refraction measurements is shown to agree with that which is determined by direct observation of the onset of crystallization.

  11. Measurement of the refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall.

    PubMed

    Durán-Ramírez, Víctor M; Martínez-Ríos, Alejandro; Guerrero-Viramontes, J Ascención; Muñoz-Maciel, Jesús; Peña-Lecona, Francisco G; Selvas-Aguilar, Romeo; Anzueto-Sánchez, Gilberto

    2014-12-01

    A very simple method to obtain the refractive index of liquids by using a rectangular glass cell and a diffraction grating engraved by fs laser ablation on the inner face of one of the walls of the cell is presented. When a laser beam impinges normally on the diffraction grating, the diffraction orders are deviated when they pass through the cell filled with the liquid to be measured. By measuring the deviation of the diffraction orders, we can determine the refractive index of the liquid.

  12. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.

    2015-08-10

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only amore » minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.« less

  13. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis. At low latitudes, despite the decreasing number of COSMIC RO soundings and the lower percentage of soundings that penetrate into the lowest 500-m above the mean-sea-level, there are small sampling errors in the mean ABL height climatology. The difference of ABL height climatology between COSMIC RO and ECMWF analysis over SE Pacific is significant and requires further studies.

  14. Validation of the PowerRefractor for Measuring Human Infant Refraction

    PubMed Central

    BLADE, PAMELA J.; CANDY, T. ROWAN

    2009-01-01

    Purpose Eccentric photorefraction provides an opportunity to gather rapid and remote estimates of refraction and gaze position from infants. The technique has the potential for extensive use in vision screenings and studies of visual development. The goal of this study was to assess the refraction calibration of the PowerRefractor (Multichannel Systems) for use with uncyclopleged infants. Methods The defocus measurements from the instrument were compared with the results of simultaneous retinoscopy in one analysis and with known amounts of defocus induced with trial lenses in another. Data were collected from infants 1 to 6 months of age and adults. Results The PowerRefractor typically read <1 D of myopia when the retinoscopy reflex was judged to be neutral at the same working distance in both infants and adults. The slopes of both infant and adult validation functions (trial lens power vs. measurement of induced defocus) were close to 1 over a 4D range. The infant slopes were significantly greater than those of the adults, however. Conclusions The results suggest that the instrument is capable of detecting large amounts of defocus but needs individual calibration for detailed studies of accommodative accuracy and absolute levels of defocus, as has been recommended previously for adult subjects. PMID:16772892

  15. Ciliary Body Thickness and Refractive Error in Children

    PubMed Central

    Bailey, Melissa D.; Sinnott, Loraine T.; Mutti, Donald O.

    2010-01-01

    Purpose To determine whether ciliary body thickness (CBT) is related to refractive error in school-age children. Methods Fifty-three children, 8 to 15 years of age, were recruited. CBT was measured from anterior segment OCT images (Visante; Carl Zeiss Meditec, Inc., Dublin, CA) at 1 (CBT1), 2 (CBT2) and 3 (CBT3) mm posterior to the scleral spur. Cycloplegic refractive error was measured with an autorefractor, and axial length was measured with an optical biometer. Multilevel regression models determined the relationship between CBT measurements and refractive error or axial length. A Bland-Altman analysis was used to assess the between-visit repeatability of the ciliary body measurements. Results The between-visits coefficients of repeatability for CBT1, -2, and -3 were 148.04, 165.68, and 110.90, respectively. Thicker measurements at CBT2 (r = −0.29, P = 0.03) and CBT3 (r = −0.38, P = 0.005) were associated with increasingly myopic refractive errors (multilevel model: P < 0.001). Thicker measurements at CBT2 (r = 0.40, P = 0.003) and CBT3 (r = 0.51, P < 0.001) were associated with longer axial lengths (multilevel model: P < 0.001). Conclusions Thicker ciliary body measurements were associated with myopia and a longer axial length. Future studies should determine whether this relationship is also present in animal models of myopia and determine the temporal relationship between thickening of the ciliary muscle and the onset of myopia. PMID:18566470

  16. Optical parameters of the tunable Bragg reflectors in squid.

    PubMed

    Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2013-08-06

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.

  17. Optical parameters of the tunable Bragg reflectors in squid

    PubMed Central

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2013-01-01

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack—the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures. PMID:23740489

  18. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

    PubMed Central

    Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

    2014-01-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p=0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p<0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data. PMID:24939747

  19. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xiuxia; Li, Jiabo; Li, Jun

    2014-09-07

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformationmore » (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.« less

  20. Production and optical constraints of ice tholin from charged particle irradiation of (1:6) C2H6/H2O at 77 K

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Thompson, W. R.; Cheng, L.; Chyba, C.; Sagan, C.; Arakawa, E. T.; Meisse, C.; Tuminello, P. S.

    1993-06-01

    Fifty separate irradiations of a 6:1 mixture of H2O/C2H6 ice conducted over a 5-month period have yielded sufficient tholin for the determination of its physical constants in the 0.06 to 40 micron range. While the imaginary part of the refractive index k was obtained by transmission measurements on thin-film samples and Kramers-Kronig analysis (KKA), the real part of the refractive index was obtained by KKA and ellipsometry; these data may prove useful in cometary and outer solar system spectrometric interpretation.

  1. Optical Properties of LiNbO3 Single Crystal Grown by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Naim, N. M.; Hamzah, K.

    2011-03-01

    Pure LiNbO3 single crystal was grown by Czochralski method using Automatic Diameter Control—Crystal Growth System (ADC-CGS). The transmission spectrum was determined by using Infrared Spectroscopy while the refractive index was determined using UV-Vis spectroscopy via the Sellmeier equation. The density was also measured using the Archimedes principle. It was found that the peak for the absorption vibrational spectrum for LiNbO3 crystal occurs at 801 cm-1, 672 cm-1, 639 cm-1 and 435 cm-1. The refractive index, ne was found to be 2.480 and the crystal density was around 4.64 g/cm3.

  2. Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties

    DOEpatents

    Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon

    2000-05-02

    A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.

  3. Comparison of self-refraction using a simple device, USee, with manifest refraction in adults

    PubMed Central

    Annadanam, Anvesh; Mudie, Lucy I.; Liu, Alice; Plum, William G.; White, J. Kevin; Collins, Megan E.; Friedman, David S.

    2018-01-01

    Background The USee device is a new self-refraction tool that allows users to determine their own refractive error. We evaluated the ease of use of USee in adults, and compared the refractive error correction achieved with USee to clinical manifest refraction. Methods Sixty adults with uncorrected visual acuity <20/30 and spherical equivalent between –6.00 and +6.00 diopters completed manifest refraction and self-refraction. Results Subjects had a mean (±SD) age of 53.1 (±18.6) years, and 27 (45.0%) were male. Mean (±SD) spherical equivalent measured by manifest refraction and self-refraction were –0.90 D (±2.53) and –1.22 diopters (±2.42), respectively (p = 0.001). The proportion of subjects correctable to ≥20/30 in the better eye was higher for manifest refraction (96.7%) than self-refraction (83.3%, p = 0.005). Failure to achieve visual acuity ≥20/30 with self-refraction in right eyes was associated with increasing age (per year, OR: 1.05; 95% CI: 1.00–1.10) and higher cylindrical power (per diopter, OR: 7.26; 95% CI: 1.88–28.1). Subjectively, 95% of participants thought USee was easy to use, 85% thought self-refraction correction was better than being uncorrected, 57% thought vision with self-refraction correction was similar to their current corrective lenses, and 53% rated their vision as “very good” or “excellent” with self-refraction. Conclusion Self-refraction provides acceptable refractive error correction in the majority of adults. Programs targeting resource-poor settings could potentially use USee to provide easy on-site refractive error correction. PMID:29390026

  4. On the effective refractive index of blood

    NASA Astrophysics Data System (ADS)

    Nahmad-Rohen, Alexander; Contreras-Tello, Humberto; Morales-Luna, Gesuri; García-Valenzuela, Augusto

    2016-01-01

    We calculated the real and imaginary parts of the effective refractive index {n}{eff} of blood as functions of wavelength from 400 to 800 nm; we employed van de Hulst’s theory, together with the anomalous diffraction approximation, for the calculation. We modelled blood as a mixture of plasma and erythrocytes. Our results indicate that erythrocyte orientation has a strong effect on {n}{eff}, making blood an optically anisotropic medium except when the erythrocytes are randomly oriented. In the case in which their symmetry axis is perpendicular to the wave vector, {n}{eff} equals the refractive index of plasma at certain wavelengths. Furthermore, the erythrocytes’ shape affects their contribution to {n}{eff} in an important way, implying that studies on the effective refractive index of blood should avoid approximating them as spheres or spheroids. Finally, the effective refractive index of blood predicted by van de Hulst’s theory is different from what would be obtained by averaging the refractive indices of its constituents weighted by volume; such a volume-weighted average is appropriate only for haemolysed blood. We then measured the real part of the refractive index of various blood solutions using two different experimental setups. One of the most important results of our expriment is that {n}{eff} is measurable to a good degree of precision even for undiluted blood, although not all measuring apparatuses are appropriate. The experimental data is self-consistent and in reasonable agreement with our theoretical calculations.

  5. Quantitative Schlieren analysis applied to holograms of crystals grown on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Brooks, Howard L.

    1986-01-01

    In order to extract additional information about crystals grown in the microgravity environment of Spacelab, a quantitative schlieren analysis technique was developed for use in a Holography Ground System of the Fluid Experiment System. Utilizing the Unidex position controller, it was possible to measure deviation angles produced by refractive index gradients of 0.5 milliradians. Additionally, refractive index gradient maps for any recorded time during the crystal growth were drawn and used to create solute concentration maps for the environment around the crystal. The technique was applied to flight holograms of Cell 204 of the Fluid Experiment System that were recorded during the Spacelab 3 mission on STS 51B. A triglycine sulfate crystal was grown under isothermal conditions in the cell and the data gathered with the quantitative schlieren analysis technique is consistent with a diffusion limited growth process.

  6. Perspectives of using the 223-nm wavelength of the KrCl excimer laser for refractive surgery and for the treatment of some eye diseases

    NASA Astrophysics Data System (ADS)

    Bagayev, Sergei N.; Chernikh, Valery V.; Razhev, Alexander M.; Zhupikov, Andrey A.

    2000-06-01

    The new surgical UV ophthalmic laser system Medilex based on the KrCl (223 nm) excimer laser for refractive surgery was created. The comparative analysis of using the UV ophthalmic laser systems Medilex based on the ArF (193 nm) and the KrCl (223 nm) excimer lasers for the correction of refractive errors was performed. The system with the radiation wavelength of 223 nanometer of the KrCl excimer laser for refractive surgery was shown to have several medical and technical advantages over the system with the traditionally used radiation wavelength of 193 nanometer of the ArF excimer laser. In addition the use of the wavelength of 223 nanometer extends functional features of the system, allowing to make not only standard for this type systems surgical and therapeutic procedures but also to treat such ocular diseases as the glaucoma and herpetic keratities. For the UV ophthalmic laser systems Medilex three variations of the beam delivery system including special rotating masks and different beam homogenize systems were developed. All created beam delivery systems are able to make the correction of myopia, hyperopia, astigmatism and myopic or hyperopic astigmatism and may be used for therapeutic procedures. The results of the initial treatments of refractive error corrections using the UV ophthalmic laser systems Medilex for both photorefractive keratectomy (PRK) and LASIK procedures are presented.

  7. [Peripheral refraction: cause or effect of refraction development?

    PubMed

    Tarutta, E P; Iomdina, E N; Kvaratskheliya, N G; Milash, S V; Kruzhkova, G V

    to study peripheral refraction and the shape of the eyeball in children with different clinical refraction. Using an original method, peripheral refraction was measured at 10-12 degrees temporally and nasally from the fovea in 56 right eyes with different clinical, or axial, refraction of 20 boys and 36 girls aged 7 to 16 years (11.9±1.17 years on average). The shape of the eyeball was judged of by the ratio of its anterior-posterior axial length (AL) to horizontal diameter (HD). The incidence and value of peripheral myopic defocus in children appeared to decrease with clinical refraction increasing from high hyperopia to high myopia. This was the first time, mixed peripheral refraction was found in children, occurring more frequently in higher myopia. This mixed peripheral defocus, shown to be a transitional stage between relative peripheral myopia and relative hyperopia, indicates non-uniform stretching of posterior pole tissues in the course of refraction development and myopia progression. As ocular refraction increases from high hyperopia to high myopia, the growth of AL outpaces that of HD. Obviously, natural peripheral defocus results from changes in size and shape of the eyeball in the course of refraction development.

  8. Refractive errors in Aminu Kano Teaching Hospital, Kano Nigeria.

    PubMed

    Lawan, Abdu; Eme, Okpo

    2011-12-01

    The aim of the study is to retrospectively determine the pattern of refractive errors seen in the eye clinic of Aminu Kano Teaching Hospital, Kano-Nigeria from January to December, 2008. The clinic refraction register was used to retrieve the case folders of all patients refracted during the review period. Information extracted includes patient's age, sex, and types of refractive error. All patients had basic eye examination (to rule out other causes of subnormal vision) including intra ocular pressure measurement and streak retinoscopy at two third meter working distance. The final subjective refraction correction given to the patients was used to categorise the type of refractive error. Refractive errors was observed in 1584 patients and accounted for 26.9% of clinic attendance. There were more females than males (M: F=1.0: 1.2). The common types of refractive errors are presbyopia in 644 patients (40%), various types of astigmatism in 527 patients (33%), myopia in 216 patients (14%), hypermetropia in 171 patients (11%) and aphakia in 26 patients (2%). Refractive errors are common causes of presentation in the eye clinic. Identification and correction of refractive errors should be an integral part of eye care delivery.

  9. Real refractive indices of infrared-characterized nitric-acid/ice films: Implications for optical measurements of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Berland, Brian S.; George, Steven M.; Tolbert, Margaret A.; Toon, Owen B.

    1994-01-01

    The infrared spectra of nitric-acid/ice films representative of polar stratospheric clouds (PSCs) were collected with simultaneous optical interference measurements to determine the real refractive indices at lambda = 632 nm. Ice and amphorous nitric-acid/ice films were prepared by condensation of water and nitric acid vapors onto a wedged Al2O3 substrate. The real refractive indices of these films were determined from the optical interference of a reflected helium-neon laser during film growth. The indices of the amphorous films varied smoothly from n = 1.30 for ice to n = 1.49 for nitric acid, similar to observations in previous work. We were unable to obtain the refractive index of crystlline films during adsorption because of optical scattering caused by surface roughness. Therefore crystlline nitric acid hydrate films were prepared by annealing amphorous nitric-acid/ice films. Further heating caused desorption of the crystalline hydrate films. During desorption, the refractive indices for ice, NAM (nitric acid monohydrate), alpha- and beta-NAT (nitric acid trihydrate) films were measured using the optical interference technique. In agreement with earlier data, the real refractive indices for ice and NAM determined in desorption were n = 1.30 +/- 0.01 and n = 1.53 +/- 0.03, respectively. The real refractive indices for alpha- and beta-NAT were found to be n = 1.51 +/- 0.01 and n greater than or equal to 1.46, respectively. Our measurements also suggest that the shape of crystalline nitric acid particles may depend on whether they nucleate from the liquid or by vapor deposition. If confirmed by future studies, this observation may provide a means of distinguishing the nucleation mechanism of crystalline PSCs.

  10. [Correction of light refraction and reflection in medical transmission optical tomography].

    PubMed

    Tereshchenko, S A; Potapov, D A

    2002-01-01

    The effects of light refraction and reflection on the quality of image reconstruction in medical transmission optical tomography of high-scattering media are considered. It has been first noted that light refraction not only distorts the geometric scheme of measurements, but may lead to the appearance of object areas that cannot be scanned. Some ways of decreasing the effect of refraction on the reconstruction of spatial distribution of the extinction coefficient are stated.

  11. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

    NASA Astrophysics Data System (ADS)

    Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

    2007-05-01

    Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

  12. Capillary-scale direct measurement of hemoglobin concentration of erythrocytes using photothermal angular light scattering.

    PubMed

    Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin

    2015-12-15

    We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. First measurements of the index of refraction of gases for lithium atomic waves.

    PubMed

    Jacquey, M; Büchner, M; Trénec, G; Vigué, J

    2007-06-15

    We report the first measurements of the index of refraction of gases for lithium waves. Using an atom interferometer, we have measured the real and imaginary parts of the index of refraction n for argon, krypton, and xenon as a function of the gas density for several velocities of the lithium beam. The linear dependence of (n-1) with the gas density is well verified. The total collision cross section deduced from the imaginary part of (n-1) is in very good agreement with traditional measurements of this quantity. Finally, the real and imaginary parts of (n-1) and their ratio rho exhibit glory oscillations, in good agreement with calculations.

  14. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.

    PubMed

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita

    2017-07-01

    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R 2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R 2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R 2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R 2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  15. Change in over-refraction after scleral lens settling on average corneas.

    PubMed

    Bray, Chelsea; Britton, Stephanie; Yeung, Debby; Haines, Lacey; Sorbara, Luigina

    2017-07-01

    The purpose of this study was to determine the change in over-refraction, if any, after a scleral lens settled on the eye for 6-8 h. Sixteen patients of varying refractive errors and normal corneal curvatures (measured with Pentacam ™ Oculus) were fitted with trial Mini-Scleral Design (MSD) scleral lenses (15.8 mm diameter) in one eye. The sagittal depths of the scleral lenses were selected by adding 350 μm to the corneal sagittal heights measured at a chord length of 15 mm with the Visante ™ optical coherence tomographer (OCT) anterior segment scans and picking the closest available trial lens in the set. Initial measurements were taken 30 min after lens insertion and included an auto-refraction, subjective refraction, and best sphere refraction over the contact lens. Visual acuities and Visante ™ OCT anterior segment scans were also taken. These measurements were repeated after 6-8 h of lens wear. Over the trial wearing period, the average change in the spherical component of the over-refraction was +0.06 D (S.D. 0.17) (p = 0.16). The average change in cylinder was +0.04 D (S.D. 0.19) (p = 0.33). The average absolute change in axis was 1.06° (S.D. 12.11) (p = 0.74). The average change in best sphere was +0.13 ± 0.30 D (p = 0.12). There was no significant change in visual acuity with the best sphere over-refraction over the 6-8 h wearing period. There was a significant change in central corneal clearance over the wearing period of 83 μm (S.D. 22) (p < 0.0001). Despite a significant change in the central corneal clearance due to thinning of the fluid reservoir as the scleral lens settled (an average decrease of 83 μm after wearing the lenses for 6-8 h), there was not a statistically significant change in the subjective over-refraction (sphere, cylinder, and axis) or best sphere or visual acuity. This study has confirmed that there is no link between reduction in central corneal clearance and change in over-refraction for average corneas. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  16. Study of the physical properties of a mesogenic mixture showing induced smectic A(d) phase by refractive index, density and x-ray diffraction measurements.

    PubMed

    Roy, P D; Prasad, A; Das, M K

    2009-02-18

    The binary mixture of 4-n-pentyl phenyl 4-n'-hexyloxy benzoate (ME6O.5) and p-cyanophenyl trans-4-pentyl cyclohexane carboxylate (CPPCC) shows the presence of an induced smectic A(d) phase in a certain concentration range 0.030.33, whereas there is a discontinuity in these values for mixtures with x<0.33, consistent with the density and transition entropy measurements done on this system. The orientational order parameter, measured from x-ray diffraction studies, are somewhat smaller than those obtained from refractive index measurement in the induced smectic phase for all the mixtures. In the smectic phase, the OOP values initially increases with molar concentration up to x = 0.24 and then decreases showing a broad minima around x = 0.4. The variation of layer thickness in the induced smectic phase with composition has been explained by assuming the formation of homo- and heterodimers. We conclude that the possible packing of molecules in the induced smectic A(d) phase stabilizes the layers but increases the orientational free volume, consistent with the lower orientational order parameter.

  17. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  18. Design and characteristic analysis of shaping optics for optical trepanning

    NASA Astrophysics Data System (ADS)

    Zeng, D.; Latham, W. P.; Kar, A.

    2005-08-01

    Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. The refractive axicon system has been designed to generating a collimated annular beam. In this article, calculations of intensity distributions produced by this refractive system are made by evaluating the Kirchhoff-Fresnel diffraction. It is shown that the refractive system is able to transform a Gaussian beam into a full Gaussian annular beam. The base angle of the axicon lens, input laser beam diameter and intensity profiles are found to be important factors for the axcion refractive system. Their effects on the annular beam profiles are analyzed based on the numerical solutions of the diffraction patterns.

  19. Peripheral defocus does not necessarily affect central refractive development.

    PubMed

    Schippert, Ruth; Schaeffel, Frank

    2006-10-01

    Recent experiments in monkeys suggest that deprivation, imposed only in the periphery of the visual field, can induce foveal myopia. This raises the hypothesis that peripheral refractive errors imposed by the spectacle lens correction could influence foveal refractive development also in humans. We have tested this hypothesis in chicks. Chicks wore either full field spectacle lenses (+6.9 D/-7 D), or lenses with central holes of 4, 6, or 8mm diameter, for 4 days (n=6 for each group). Refractions were measured in the central visual field, and at -45 degrees (temporal) and +45 degrees (nasal), and axial lengths were measured by A-scan ultrasonography. As previously described, full field lenses were largely compensated within 4 days (refraction changes with positive lenses: +4.69+/-1.73 D, negative lenses: -5.98+/-1.78 D, both p<0.001, Dunnett's test, to untreated controls). With holes in the center of the lenses, the central refraction remained emmetropic and there was not even a trend of a shift in refraction (all groups: p>0.5, Dunnetts test). At +/-45 degrees , the lenses were partially compensated despite the 4/6/8mm central holes; positive lenses: +2.63 / +1.44 / +0.43 D, negative lenses: -2.57 / -1.06 / +0.06 D. There is extensive local compensation of imposed refractive errors in chickens. For the tested hole sizes, peripherally imposed defocus did not influence central refractive development. To alter central refractive development, the unobstructed part in the central visual field may have to be quite small (hole sizes smaller than 4mm, with the lenses at a vertex distance of 2-3mm).

  20. [Use of Plusoptix as a screening method for refractive ambliopia].

    PubMed

    Bogdănici, T; Tone, Silvia; Miron, Mihaela; Boboc, Mihaela; Bogdănici, Camelia

    2012-01-01

    Highlighting the differences in the objective refraction using the Plusoptix AO9 comparing them with the refraction performed with TOPCON KR-8900 autorefractor. Prospective study for 3 months held in the Ophthalmology Clinic in Iasi, Hospital Sf. Spiridon on a total of 39 children (21 girls and 18 boys) with mean age of 10.61 +/- 5.67 years. Clinical parameters: sex, age, objective refraction obtained with Plusoptix and with autorefractor corrected visual acuity (with different methods depending on each patient age), ortoptic examination (strabic deviation, binocular vision), the presence of symetry/asymetry while measuring with Plusoptix. The results were statistically processed by F-TEST calculating the correlation coefficient, standard deviation, significance level (using the spherical equivalent of the obtained values). Age limits of the studied cases ranged between 2-23 years. Visual acuity of children who had cooperate was between 0.2-1 with correction, achieving best values on right eye than left eye. 8 cases (20.51%) had large differences between measurements made with Plusoptix and autorefractor, half of that (4 cases) had strabismus. Three of these cases were with small hypermetropia and one with small myopia (Plusoptix shows a lower value). In 2 cases occurred higher differences (about 2-2,5D) between the 2 measurements, in patients with average hypermetropia. Plusoptix refraction was not possible at high hypermetropia or high myopia. This type of determining objective refraction using Plusoptix is a useful method of screening for discovery of refractive errors that can cause refractive amblyopia in young children and in those cases with a difficult collaboration. Because there are differences betweeti this 2 methods, for children with refractive errors are recommended further exploration to determine the appropriate optical correction. Plusoptix is a limited method because it cannot detect the exact values in those cases with high hypermetropia or high myopia.

  1. Refraction in the lower troposphere: Higher order image distortion effects due to refractive profile curvature

    NASA Astrophysics Data System (ADS)

    Short, Daniel J.

    There are many applications that rely on the propagation of light through the atmosphere - all of which are subject to atmospheric conditions. While there are obvious processes such as scattering due to particulates like clouds and dust that affect the received intensity of the radiation, the clear atmosphere can also cause significant effects. Refraction is a clear air effect that can cause a variety of phenomena such as apparent relocation, stretching and compression of objects when viewed through the atmosphere. Recently, there has been significant interest in studying the refractive effects for low angle paths within the troposphere, and in particular, near-horizontal paths in the Earth's boundary layer, which is adjacent to the ground. Refractive effects in this case become problematic for many terrestrial optical applications. For example, the pointing of a free space optical communication or a remote sensing system can suffer wandering effects, high-resolution imagery can present distorted and/or dislocated targets, optical tracking of targets can be inaccurate, and optical geodetic surveying accuracy is also very sensitive to the effects of refraction. The work in this dissertation was inspired by data from a time-lapse camera system that collects images of distant targets over a near-horizontal path along the ground. This system was used previously to study apparent diurnal image displacement and this dissertation extends that work by exploring the higher order effects that result from curvature in the vertical refractive index profile of the atmosphere. There are surprisingly few experiments involving atmospheric refractive effects that carefully correlate field data to analytical expressions and other factors such as meteorological data. In working with the time-lapse data, which is comprised of sequences of hundreds or thousands of images collected over durations of weeks or months, it is important to develop straightforward analysis techniques that can be applied to characterize the refractive effects. To help with the time-lapse image refraction analysis process, a second order ray trace scheme has been developed. The ray trace is based on existing lens system tracing procedures, but is adapted for use with the atmospheric refractivity profile. The standard practice of ray tracing uses linear approximations through each element to obtain a ray path, however, the method described in this dissertation uses a quadratic correction term in order to more accurately and efficiently simulate the curvature of rays as they propagate through a gradient refractive index medium such as the atmosphere. Although a variety of finite element solutions have been implemented to describe ray trajectories in nonlinear refractive mediums, the new ray tracer described here is much easier to implement and provides quick, intuitive results. The method is tested against exact analytical ray height solutions for known profiles and was found to give nearly identical results. The ray trace was then applied to real atmospheric data and was found to give plausible results. The tay trace gives a visual aid in understanding the physical path the light takes in traversing the potential field. This will be beneficial in linking optical data to weather model data in an effort to develop a forecasting model for refraction. By selecting the correct boundary and initial conditions, we are able to model rays through the profile. Understanding the system will ultimately help in later analysis. A primary objective of this dissertation is to expand on the work mentioned above on image dislocation and consider the effects of towering (stretching) and stooping (compression) in the imagery. These effects can be explained as a type of lensing by the atmosphere due to nonlinear gradients. To achieve towering and stooping, a curved vertical index profile is required. Where a positive lensing action by the medium causes some ray focusing, back projection from at the arrival angles shows the target viewed by an observer will appear stretched, or magnified (towering). Conversely, with a negative lensing action the target viewed will appear shortened or compressed (stooping). The lensing can be modeled with a parabolic refractive index profile and the curvature of the profile is characterized by the curvature parameter alpha (units: m-1). The objective of chapter 4 is to estimate the curvature parameter from an analysis of the images collected by the camera system. In effect, the camera acts as a device that measures ray angle of arrival so image changes that appear as a stretch can be related to changes in the curvature of the index profile. Time-lapse images of the F & A Dairy products building in Las Cruces, NM (15.3 km range from the camera at the NMSU campus) were analyzed using a manual cursor-marking MATLAB script developed for this project. For several different dates, we found the largest stretches occur in the morning. For example, a comparison of two morning images separated by an hour shows the apparent height of the building in a second image gained about 34 pixels compared to the first image. The refractive index curvature change for this case is calculated and found to be alpha = 6.0 x 10-5 m-1 . As the day progressed the image slowly compressed back to the early morning size. Optical measurements of the local index of refraction profile of the atmosphere have been made in the past but usually only for isolated events or time periods. There is little data to describe occurrence probabilities, spatial or temporal properties, or relative strength of effects for different seasons, or even durations of weeks. In this dissertation, time-lapse image data from two separate weeks were analyzed for daily stretching/compressing events and presented graphically. The results show a systematic trend of dramatic size changes in the morning and a slow progression to normal building size as the day continues. Using the optical data presented in chapter 5 and the method for determining a in chapter 4, a method using analytical expressions is presented for determining the refractivity. After a solution is found, two checks are done to test the validity of the results. The first check is simulated in a ray trace model to verify the results are physically relevant and produce rays that can plausibly lead to the correct apparent building size. The second check is a comparison of the estimated gradient index profile from the inversion with the values of the numerical weather model. Using the data from week of November 2014, a day from October 2014, and a day from the March 2015, the optical data was inverted to solve for the refractivity constants dh and z in order to recreate an approximate refractivity profile responsible for the observed stretching. Example values found for the constants are dh=21.49m and z=30m for November 26, 2014. The profile that is created by these constants was found to be fairly consistent with available weather model data.

  2. Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-03-01

    The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x ≤ 5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.

  3. Determination of solute descriptors by chromatographic methods.

    PubMed

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  4. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  5. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  6. Refraction of Radio Waves on the Radio-Occultation Satellite-to-Satellite Paths as a Characteristic of the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Matyugov, S. S.; Yakovlev, O. I.; Pavelyev, A. G.; Pavelyev, A. A.; Anufriev, V. A.

    2017-10-01

    We present the results of analyzing the radio-wave refractive characteristics measured on the radio-occultation paths between the GPS navigation satellites and the FORMOSAT-3 research satellites in the central region of the European territory of Russia in 2007-2013. The diurnal, seasonal, and annual variations in the refraction angle at altitudes of 2 to 25 km are discussed. It is shown that the refraction angle can be used as an independent characteristic of the atmospheric state and its long-term variation trends. Diurnal and nocturnal variations in the refraction angle in the winter and summer seasons are analyzed. Trends in the atmospheric refraction variations over seven years are discussed.

  7. Reproducibility of manifest refraction between surgeons and optometrists in a clinical refractive surgery practice.

    PubMed

    Reinstein, Dan Z; Yap, Timothy E; Carp, Glenn I; Archer, Timothy J; Gobbe, Marine

    2014-03-01

    To measure and compare the interobserver reproducibility of manifest refraction according to a standardized protocol for normal preoperative patients in a refractive surgery practice. Private clinic, London, United Kingdom. Retrospective case series. This retrospective study comprised patients attending 2 preoperative refractions before laser vision correction. The first manifest refraction was performed by 1 of 7 optometrists and the second manifest refraction by 1 of 2 surgeons, all trained using a standard manifest refraction protocol. Spherocylindrical data were converted into power vectors for analysis. The dioptric power differences between observers were calculated and analyzed. One thousand nine hundred twenty-two consecutive eyes were stratified into a myopia group and a hyperopia group and then further stratified by each surgeon-optometrist combination. The mean surgeon-optometrist dioptric power difference was 0.21 diopter (D) (range 0.15 to 0.32 D). The mean difference in spherical equivalent refraction was 0.03 D, with 95% of all refractions within ±0.44 D for all optometrist-surgeon combinations. The severity of myopic or hyperopic ametropia did not affect the interobserver reproducibility of the manifest refraction. There was close agreement in refraction between surgeons and optometrists using a standard manifest refraction protocol of less than 0.25 D. This degree of interobserver repeatability is similar to that in intraobserver repeatability studies published to date and may represent the value of training and the use of a standard manifest refraction protocol between refraction observers in a refractive surgery practice involving co-management between surgeons and optometrists. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Outcome of cataract surgery at one year in Kenya, the Philippines and Bangladesh.

    PubMed

    Lindfield, R; Kuper, H; Polack, S; Eusebio, C; Mathenge, W; Wadud, Z; Rashid, A M; Foster, A

    2009-07-01

    To assess the change in vision following cataract surgery in Kenya, Bangladesh and the Philippines and to identify causes and predictors of poor outcome. Cases were identified through surveys, outreach and clinics. They underwent preoperative visual acuity measurement and ophthalmic examination. Cases were re-examined 8-15 months after cataract surgery. Information on age, gender, poverty and literacy was collected at baseline. 452 eyes of 346 people underwent surgery. 124 (27%) eyes had an adverse outcome. In Kenya and the Philippines, the main cause of adverse outcome was refractive error (37% and 49% respectively of all adverse outcomes) then comorbid ocular disease (26% and 27%). In Bangladesh, this was comorbid disease (58%) then surgical complications (21%). There was no significant association between adverse outcome and gender, age, literacy, poverty or preoperative visual acuity. Adverse outcomes following cataract surgery were frequent in the three countries. Main causes were refractive error and preoperative comorbidities. Many patients are not attaining the outcomes available with modern surgery. Focus should be on correcting refractive error, through operative techniques or postoperative refraction, and on a system for assessing comorbidities and communicating risk to patients. These are only achievable with a commitment to ongoing surgical audit.

  9. Temperature and refractive index measurement based on a coating-enhanced dual-microspheric fiber sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and  ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.

  10. Measurement of the refractive index of solutions based on digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Sujuan; Wang, Weiping; Zeng, Junzhang; Yan, Cheng; Lin, Yunyi; Wang, Tingyun

    2018-01-01

    A new approach for the refractive index (RI) measurement of solutions is proposed based on digital holographic microscopy. The experimental system consists of a modified Mach-Zehnder interferometer and related lab-developed analysis software. The high quality digital hologram of the tested solution is obtained by the real-time analysis software, which is firstly encapsulated into a capillary tube, and then the capillary tube is inserted in a matching fluid. An angular spectrum algorithm is adopted to extract the phase distribution from the hologram recorded by a CCD. Based on a capillary multi-layer calculation model, the RI of the tested solution is obtained at high accuracy. The results of transparent glycerol solution measured by the proposed method are more accurate than those measured by the Abbe refractometer. We also measure the RI of translucent magnetic fluid, which is not suitable to be measured by the Abbe refractometer. The relationship between the RI and the concentration of magnetic fluid is experimentally studied, and the results show that the RI is linearly related to the concentration of dilute magnetic fluid.

  11. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities.more » We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.« less

  12. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV.

    PubMed

    Valdivia, M P; Stutman, D; Finkenthal, M

    2014-07-01

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  13. The refractive index of krypton for lambda in the closed interval 168-288 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Parkinson, W. H.; Huber, M. C. E.

    1975-01-01

    The index of refraction of krypton has been measured at 27 wavelengths between and including 168 and 288 nm. The probable error of each measurement is plus or minus 0.1%. Our results are compared with other measurements. Our data are about 3.8% smaller than those of Abjean et al.

  14. Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.

    PubMed

    Yassien, Khaled M; Agour, Mostafa

    2017-02-01

    A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.

  15. Measuring of temperatures of phase objects using a point-diffraction interferometer plate made with the thermocavitation process

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan C.; Berriel-Valdos, L. R.; Aguilar, J. Felix; Mejia-Romero, S.

    An optical system formed by four point-diffraction interferometers is used for measuring the refractive index distribution of a phase object. The phase of the object is assumed enough smooth to be computed in terms of the Radon Transform and it is processed with a tomographic iterative algorithm. Then, the associated refractive index distribution is calculated. To recovery the phase from the inteferograms we use the Kreis method, which is useful for interferograms having only few fringes. As an application of our technique, the temperature distribution of a candle flame is retrieved, this was made with the aid of the Gladstone-Dale equation. We also describe the process of manufacturing the point-diffraction interferometer (PDI) plates. These were made by means of the thermocavitation process. The obtained three dimensional distribution of temperature is presented.

  16. Wavelength-dependent scattering in human eye with cataracts.

    PubMed

    Kelly-Pérez, Ismael; Méndez-Aguilar, Emilia M; Treviño-Palacios, Carlos G; Bruce, Neil C; Berriel-Valdos, Luis R; Al-Hohamedi, Haroun; Bende, Thomas

    2018-03-02

    The gradual process in which the crystalline lens is cloudy due to the appearance of elements giving rise to variations in the refractive index is known as cataract. Clinical assessment is usually complicated because it considers patient's perception, and individuals with similar development have different visual deficits. This work presents a model which considers the fluctuations in the refractive index as spherical particles produce measurable scatter radial profiles patterns on the retina. Measurements for 2 different wavelengths simultaneously provide information on particle size and a quantitative assessment by measurement of the fluctuations of the refractive index. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Measurement method for the refractive index of thick solid and liquid layers.

    PubMed

    Santić, Branko; Gracin, Davor; Juraić, Krunoslav

    2009-08-01

    A simple method is proposed for the refractive index measurement of thick solid and liquid layers. In contrast to interferometric methods, no mirrors are used, and the experimental setup is undemanding and simple. The method is based on the variation of transmission caused by optical interference within the layer as a function of incidence angle. A new equation is derived for the positions of the interference extrema versus incidence angle. Scattering at the surfaces and within the sample, as well as weak absorption, do not play important roles. The method is illustrated by the refractive index measurements of sapphire, window glass, and water.

  18. The BHVI-EyeMapper: peripheral refraction and aberration profiles.

    PubMed

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C; Holden, Brien A

    2014-10-01

    The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, -3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (-2.00 to -5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to -5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development.

  19. The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles

    PubMed Central

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.

    2014-01-01

    ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690

  20. Refractive indices of CaF2 single crystals under elastic shock loading

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhou, X. M.; Liu, C. L.; Luo, S. N.

    2017-07-01

    Refractive indices and Hugoniots of CaF2 single crystals are investigated by laser displacement interferometry under shock loading below 5 GPa. Birefringence is observed for the [110] loading. We obtain the Hugoniot equation of states for [100], [110] and [111], and refractive indices for these orientations with consideration of their polarization. The measured refractive indices are in reasonable agreement with predictions based on the piezo-optic theory, and are used to refine the elasto-optic coefficients.

  1. Determination of astronomical refraction near the horizon in different seasons of the year

    NASA Technical Reports Server (NTRS)

    Vasilenko, N. A.

    1974-01-01

    The results are presented of astronomical refraction measurements for zenith distances of 80-90 degrees performed in different seasons with a two inch universal instrument. The differences between observed and calculated refraction were found to exhibit seasonal variations, and the results were compared with data of atmospheric aerologic soundings. The great departures in observed refraction from that calculated with the Pulkovo tables were ascribed to temperature gradient changes within the ground kilometer layer of atmosphere.

  2. Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads.

    PubMed

    Jones, Stephanie H; King, Martin D; Ward, Andrew D

    2013-12-21

    A method is described to measure the refractive index dispersion with wavelength of optically trapped solid particles in air. Knowledge of the refraction properties of solid particles is critical for the study of aerosol; both in the laboratory and in the atmosphere for climate studies. Single micron-sized polystyrene beads were optically trapped in air using a vertically aligned counter-propagating configuration of focussed laser beams. Each bead was illuminated using white light from a broadband light emitting diode (LED) and elastic scattering within the bead was collected onto a spectrograph. The resulting Mie spectra were analysed to accurately determine polystyrene bead radii to ±0.4 nm and values of the refractive index to ±0.0005 over a wavelength range of 480-700 nm. We demonstrate that optical trapping combined with elastic scattering can be used to both accurately size polystyrene beads suspended in air and determine their wavelength dependent refractive index. The refractive index dispersions are in close agreement with reported values for polystyrene beads in aqueous dispersion. Our results also demonstrate a variation in the refractive index of polystyrene, from bead to bead, in a commercial sample. The measured variation highlights that care must be taken when using polystyrene beads as a calibration aerosol.

  3. Response to Comment on "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Wax, Adam

    2018-06-01

    Recently, Maxim A. Yurkin commented on our paper "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies" as well as on a complementary study "Cell nuclei have lower refractive index and mass density than cytoplasm" from Schürmann et al. In his comment, Yurkin concluded that quantitative phase images of cells with nuclei that are less optically dense than the cytoplasm must exhibit a characteristic concavity, the absence of which is evidence against our conclusion of a less-dense nucleus. In this response, we suggest that Yurkin's conclusion is reached through an oversimplification of the spatial refractive index distribution within cells, which does not account for high index inclusions such as the nucleolus. We further cite recent studies in 3-dimensional refractive index imaging, in which the preponderance of studies supports our conclusion. Finally, we comment on the current state of knowledge regarding subcellular refractive index distributions in living cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  5. The influence of a novel simulated learning environment upon student clinical subjective refraction performance: A pilot study.

    PubMed

    Woodman-Pieterse, Emily C; De Souza, Neilsen J; Vincent, Stephen J

    2016-07-01

    Optometry students are taught the process of subjective refraction through lectures and laboratory-based practicals before progressing to supervised clinical practice. Simulated leaning environments (SLEs) form part of an emerging technology used in a range of health disciplines; however, there is limited evidence regarding the effectiveness of clinical simulators as educational tools. Forty optometry students (20 fourth year and 20 fifth year) were assessed twice by a qualified optometrist (two examinations separated by four to eight weeks), while completing a monocular non-cycloplegic subjective refraction on the same patient with an unknown refractive error, simulated using contact lenses. Half of the students were granted access to an online simulated learning environment, The Brien Holden Vision Institute (BHVI) Virtual Refractor, and the remaining students formed a control group. The primary outcome measures at each visit were; accuracy of the clinical refraction compared to a qualified optometrist and relative to the Optometry Council of Australia and New Zealand (OCANZ) subjective refraction examination criteria. Secondary measures of interest included descriptors of student SLE engagement, student self-reported confidence levels and correlations between performance in the simulated and real-world clinical environment. Eighty per cent of students in the intervention group interacted with the simulated learning environment (for an average of 100 minutes); however, there was no correlation between measures of student engagement with the BHVI Virtual Refractor and speed or accuracy of clinical subjective refractions. Fifth year students were typically more confident and refracted more accurately and more quickly than fourth year students. A year group by experimental group interaction (p = 0.03) was observed for accuracy of the spherical component of refraction and post hoc analysis revealed that less experienced students exhibited greater gains in clinical accuracy following exposure to the SLE intervention. Short-term exposure to a SLE can positively influence clinical subjective refraction outcomes for less experienced optometry students and may be of benefit in increasing the skills of novice refractionists to levels appropriate for commencing supervised clinical interactions. © 2016 Optometry Australia.

  6. Paediatric secondary intraocular lens estimation from the aphakic refraction alone: comparison with a standard biometric technique.

    PubMed

    Khan, A O; AlGaeed, A

    2006-12-01

    To compare the following two methods of paediatric secondary posterior chamber intraocular lens (PCIOL) determination with the Holladay formula: (1) estimation from the aphakic refraction alone (using assumed keratometry (K) of 44 diopters); and (2) calculation based on preoperative measured biometry. (1) Retrospective medical record review in a referral eye hospital of children with aphakia aged < or =12 years who underwent secondary PCIOL implantation with an Alcon MA60BM lens; (2) PCIOL determination for a plano refraction by the above two methods (estimation and calculation); and (3) prediction of pseudophakic refraction for the PCIOL actually implanted by the above two methods compared with the actual pseudophakic refraction. 50 eyes of 30 children with aphakia were studied. The estimated (mean, 95% confidence interval (CI)) secondary PCIOL values (25.81, +/-1.65 D) and the calculated secondary PCIOL values (26.35, +/-1.50 D) were not significantly different (mean absolute value of the difference 1.86 D, 95% CI +/-0.41 D) by the two-tailed paired t test at alpha = 0.05 (p = 0.11). For each eye, the pseudophakic refractions predicted by the two methods for the PCIOL that was actually implanted differed, both from each other and from the actual pseudophakic refraction (repeated-measures analysis of variance, p<0.001; Tukey test, p<0.01). The method of PCIOL estimation from the aphakic refraction alone provides values similar to those obtained by a standard technique and can be useful if biometry is unavailable. Targeting a pseudophakic refraction in paediatric aphakia is prone to error.

  7. Simulation of the trajectory of microwaves during passage of Mesoescale Convective System over Southern Brazil

    NASA Astrophysics Data System (ADS)

    Diniz, F. L.; Munchow, G. B.; Herdies, D. L.; Foster, P. R.

    2010-12-01

    When the eletromagnetic wave travels in the atmosphere from one medium to another with different density and/or composition suffers small changes in speed and direction of propagation. These changes are caused by the vertical variation of atmospheric refractive index. This causes different types of trajectory deviations, which can be called: normal refraction, sub-refraction, super-refraction and duct. The condition to create duct is satisfied when there is a especific vertical profile of refraction, in this case an eletromagnectic wave will oscillate in a layer of the atmosphere. Considering that this ducts condition can causes damage in the transmission and reception of microwave system equipment (e.g. telecomunications, global positioning, weather radars and satellites) and that in the Rio Grande do Sul, state of Brazil, there are two weather radars, this study present a simulation of the trajectory that would have an eletromagnetic wave. In this study was used soundings of the atmosphere to infer the vertical profile of refractive index during the passage of a Mesoescale Convective System on September 7, 2009. In the lack of this data a numerical simulation with nested grids using Weather Research & Forecasting Model was performed to infer this.

  8. IOL calculation using paraxial matrix optics.

    PubMed

    Haigis, Wolfgang

    2009-07-01

    Matrix methods have a long tradition in paraxial physiological optics. They are especially suited to describe and handle optical systems in a simple and intuitive manner. While these methods are more and more applied to calculate the refractive power(s) of toric intraocular lenses (IOL), they are hardly used in routine IOL power calculations for cataract and refractive surgery, where analytical formulae are commonly utilized. Since these algorithms are also based on paraxial optics, matrix optics can offer rewarding approaches to standard IOL calculation tasks, as will be shown here. Some basic concepts of matrix optics are introduced and the system matrix for the eye is defined, and its application in typical IOL calculation problems is illustrated. Explicit expressions are derived to determine: predicted refraction for a given IOL power; necessary IOL power for a given target refraction; refractive power for a phakic IOL (PIOL); predicted refraction for a thick lens system. Numerical examples with typical clinical values are given for each of these expressions. It is shown that matrix optics can be applied in a straightforward and intuitive way to most problems of modern routine IOL calculation, in thick or thin lens approximation, for aphakic or phakic eyes.

  9. Plate refractive camera model and its applications

    NASA Astrophysics Data System (ADS)

    Huang, Longxiang; Zhao, Xu; Cai, Shen; Liu, Yuncai

    2017-03-01

    In real applications, a pinhole camera capturing objects through a planar parallel transparent plate is frequently employed. Due to the refractive effects of the plate, such an imaging system does not comply with the conventional pinhole camera model. Although the system is ubiquitous, it has not been thoroughly studied. This paper aims at presenting a simple virtual camera model, called a plate refractive camera model, which has a form similar to a pinhole camera model and can efficiently model refractions through a plate. The key idea is to employ a pixel-wise viewpoint concept to encode the refraction effects into a pixel-wise pinhole camera model. The proposed camera model realizes an efficient forward projection computation method and has some advantages in applications. First, the model can help to compute the caustic surface to represent the changes of the camera viewpoints. Second, the model has strengths in analyzing and rectifying the image caustic distortion caused by the plate refraction effects. Third, the model can be used to calibrate the camera's intrinsic parameters without removing the plate. Last but not least, the model contributes to putting forward the plate refractive triangulation methods in order to solve the plate refractive triangulation problem easily in multiviews. We verify our theory in both synthetic and real experiments.

  10. Correlation among auto-refractor, wavefront aberration, and subjective manual refraction

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ren, Qiushi

    2005-01-01

    Three optometry methods which include auto-refractor, wavefront aberrometer and subjective manual refraction were studied and compared in measuring low order aberrations of 60 people"s 117 normal eyes. Paired t-test and linear regression were used to study these three methods" relationship when measuring myopia with astigmatism. In order to make the analysis more clear, we divided the 117 normal eyes into different groups according to their subjective manual refraction and redid the statistical analysis. Correlations among three methods show significant in sphere, cylinder and axis in all groups, with sphere"s correlation coefficients largest(R>0.98, P<0.01) and cylinder"s smallest (0.900.01). Auto-refractor had significant change from the other two methods when measuring cylinder (P<0.01). The results after grouping differed a little from the analysis among total people. Although three methods showed significant change from each other in certain parameters, the amplitude of these differences were not large, which indicated that the coherence of auto-refractor, wavefront aberrometer and subjective refraction is good. However, we suggested that wavefront aberration measurement could be a good starting point of optometry, subjective refraction is still necessary for refinement.

  11. Comparing the Impact of Refractive and Non-Refractive Vision Loss on Functioning and Disability: The Salisbury Eye Evaluation

    PubMed Central

    Zebardast, Nazlee; Swenor, Bonnielin K.; van Landingham, Suzanne W.; Massof, Robert W.; Munoz, Beatriz; West, Sheila K.; Ramulu, Pradeep Y.

    2015-01-01

    Purpose To compare the effects of uncorrected refractive error (URE) and non-refractive visual impairment (VI) on performance and disability measures. Design Cross-sectional population-based study. Participants 2469 individuals with binocular presenting visual acuity (PVA) of 20/80 or better who participated in the first round of the Salisbury Eye Evaluation study. Methods URE was defined as binocular PVA of 20/30 or worse, improving to better than 20/30 with subjective refraction. VI was defined as post-refraction binocular best corrected visual acuity (BCVA) of 20/30 or worse. The visual acuity decrement attributable to VI was calculated as the difference between BCVA and 20/30 while that due to URE was taken as the difference between PVA and BCVA. Multivariable regression analyses were used to assess the disability impact of 1) vision status (VI, URE, or normal vision) using the group with normal vision as reference, and 2) a one-line decrement in acuity due to VI or URE. Main Outcome Measures Objective measures of visual function were obtained from timed performance of mobility and near vision tasks, self-reported driving cessation, and self-reported visual difficulty measured by the Activities of Daily Vision (ADV) scale. ADV responses were analyzed using Rasch analysis to determine visual ability. Results Compared to individuals with normal vision, subjects with VI (n=191) had significantly poorer objective and subjective visual functioning in all metrics examined (p<0.05) while subjects with URE (n=132) demonstrated slower walking speeds, slower near task performance, more frequent driving cessation and lower ADV scores (p<0.05), but did not demonstrate slower stair climbing or descent speed. For all functional metrics evaluated, the impact of VI was greater than the impact of URE. The impact of a one-line VA decrement due to VI was associated with greater deficits in mobility measures and driving cessation when compared to a one-line VA decrement due to URE. Conclusions VI is associated with greater disability than URE across a wide variety of functional measures, even in analyses adjusting for the severity of vision loss. Refractive and non-refractive vision loss should be distinguished in studies evaluating visual disability, and should be understood to have differing consequences. PMID:25813453

  12. Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes.

    PubMed

    Wilson, Jeremy D; Cottrell, William J; Foster, Thomas H

    2007-01-01

    Angularly resolved light scattering and wavelength-resolved darkfield scattering spectroscopy measurements were performed on intact, control EMT6 cells and cells stained with high-extinction lysosomal- or mitochondrial-localizing dyes. In the presence of the lysosomal-localizing dye NPe6, we observe changes in the details of light scattering from stained and unstained cells, which have both wavelength- and angular-dependent features. Analysis of measurements performed at several wavelengths reveals a reduced scattering cross section near the absorption maximum of the lysosomal-localizing dye. When identical measurements are made with cells loaded with a similar mitochondrial-localizing dye, HPPH, we find no evidence that staining mitochondria had any effect on the light scattering. Changes in the scattering properties of candidate populations of organelles induced by the addition of an absorber are modeled with Mie theory, and we find that any absorber-induced scattering response is very sensitive to the inherent refractive index of the organelle population. Our measurements and modeling are consistent with EMT6-cell-mitochondria having refractive indices close to those reported in the literature for organelles, approximately 1.4. The reduction in scattering cross section induced by NPe6 constrains the refractive index of lysosomes to be significantly higher. We estimate the refractive index of lysosomes in EMT6 cells to be approximately 1.6.

  13. Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample.

    PubMed

    Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel

    2015-08-24

    We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively.

  14. Peripheral refractive correction and automated perimetric profiles.

    PubMed

    Wild, J M; Wood, J M; Crews, S J

    1988-06-01

    The effect of peripheral refractive error correction on the automated perimetric sensitivity profile was investigated on a sample of 10 clinically normal, experienced observers. Peripheral refractive error was determined at eccentricities of 0 degree, 20 degrees and 40 degrees along the temporal meridian of the right eye using the Canon Autoref R-1, an infra-red automated refractor, under the parametric conditions of the Octopus automated perimeter. Perimetric sensitivity was then undertaken at these eccentricities (stimulus sizes 0 and III) with and without the appropriate peripheral refractive correction using the Octopus 201 automated perimeter. Within the measurement limits of the experimental procedures employed, perimetric sensitivity was not influenced by peripheral refractive correction.

  15. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  16. Atmospheric refraction: a history.

    PubMed

    Lehn, Waldemar H; van der Werf, Siebren

    2005-09-20

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  17. Polymer microfiber bridging Bi-tapered refractive index sensor based on evanescent field

    NASA Astrophysics Data System (ADS)

    Lv, Ri-Qing; Wang, Qi; Wang, Bo-Tao; Liu, Yu; Kong, Lingxin

    2018-05-01

    A PDMS/graphene enhanced PMMA micro optical waveguide sensor is reported in terms of fabrication method and optical characteristics. The micro optical waveguide with a diameter of 6 μm and a length of 800 μm is used as the sensing probe to realize refractive index (RI) measurement suspended in NaCl solutions with different concentrations. Experimental results show that the refractive index sensing sensitivity can reach 2027.97 nm/RIU within the refractive index ranging from 1.3333-1.3426. Research results show that PMMA/graphene micro optical waveguide doped with PDMS is an excellent high sensitive sensing technology in refractive index detection field.

  18. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

    NASA Astrophysics Data System (ADS)

    McClymer, J. P.

    2016-08-01

    Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

  19. A FORTRAN Program for Computing Refractive Index Using the Double Variation Method.

    ERIC Educational Resources Information Center

    Blanchard, Frank N.

    1984-01-01

    Describes a computer program which calculates a best estimate of refractive index and dispersion from a large number of observations using the double variation method of measuring refractive index along with Sellmeier constants of the immersion oils. Program listing with examples will be provided on written request to the author. (Author/JM)

  20. OPTMAIN- A FORTRAN CODE FOR THE CALCULATION OF PROBE VOLUME GEOMETRY CHANGES IN A LASER ANEMOMETRY SYSTEM CAUSED BY WINDOW REFRACTION

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1994-01-01

    The laser anemometer has provided the fluid dynamicist with a powerful tool for nonintrusively measuring fluid velocities. One of the more common types of laser anemometers, the laser fringe anemometer, divides a single laser beam into two parallel beams and then focuses them on a point in space called the "probe volume" (PV) where the fluid velocity is measured. Many applications using this method for measuring fluid velocities require the observation of fluids through a window. The passage of the laser beams through materials having different indices of refraction has the following effects: 1) the position of the probe volume will change; 2) the beams will uncross, i.e., no longer lie in the same plane at the probe volume location; and 3) for nonflat plate windows, the crossing angle of the two beams will change. OPTMAIN uses a ray tracing technique, which is not restricted to special cases, to study the changes in probe volume geometry and position due to refraction effects caused by both flat and general smooth windows. Input parameters are the indices of refraction on both sides of the window and of the window itself, the window shape, the assumed position of the probe volume and the actual position of the focusing lens relative to the window, the orientation of the plane which contains the laser beams, the beam crossing angle, and the laser beam wavelength. OPTMAIN is written in FORTRAN 77 for interactive execution. It has been implemented on a DEC VAX 11/780 under VMS 5.0 with a virtual memory requirement of 50K. OPTMAIN was developed in 1987.

  1. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.

  2. Clinical magnification and residual refraction after implantation of a double intraocular lens system in patients with macular degeneration.

    PubMed

    Amselem, Luis; Diaz-Llopis, Manuel; Felipe, Adelina; Artigas, Jose M; Navea, Amparo; García-Delpech, Salvador

    2008-09-01

    To evaluate the efficacy of a standard double intraocular lens (IOL) system (IOL-Vip) in patients with low vision and central scotoma due to macular degeneration and assess the predictability of the residual refraction and magnification. Ophthalmology Department, Hospital General Universitario, Valencia, Spain. This interventional prospective noncomparative case series comprised 13 consecutive surgical procedures in 10 patients with central scotoma. Follow-up was 12 months. Evaluation included the difference between preoperative and postoperative best corrected visual acuity (BCVA), refraction, position of the IOLs, endothelial cell density, and occurrence of postoperative complications. Residual refraction and eye magnification were calculated using a theory developed in a previous study, and the values were compared with the clinical results. The mean BCVA was 1.37 logMAR preoperatively and 0.68 logMAR 1 year postoperatively. The mean best corrected clinical gain was 44%. There was no statistically significant difference between the clinically evaluated and theoretically calculated residual refractions (P = .17). No intraoperative or postoperative complications occurred. Implantation of the double IOL system improved BCVA in patients with low vision due to advanced maculopathy. The results were best in myopic patients (long eyes); patients with hyperopia (short eyes) had high residual refraction. The postoperative clinical gain and residual refraction were predictable, showing the feasibility of implanting a customized double IOL.

  3. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Kurtis H., E-mail: kdekker2@uwo.ca

    Purpose: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using amore » scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. Methods: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level “step-dose” pattern. Results: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a “cupping” artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. Conclusions: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.« less

  4. Heritability of peripheral refraction in Chinese children and adolescents: the Guangzhou Twin Eye study.

    PubMed

    Ding, Xiaohu; Lin, Zhi; Huang, Qunxiao; Zheng, Yingfeng; Congdon, Nathan; He, Mingguang

    2012-01-10

    To estimate the heritability of peripheral refraction in Chinese children and adolescents. The authors examined 72 monozygotic (MZ) twins and 48 dizygotic (DZ) twins aged 8 to 20 years from a population-based twin registry. Temporal and nasal peripheral refraction, each 40° from the visual axis, and axial refraction were measured using an autorefractor. Relative peripheral refractive error (RPRE) was defined as the peripheral refraction minus the axial refraction. Heritability was assessed by structural equation modeling after adjustment for age and sex. The mean and SD of temporal refraction (T(40)), nasal refraction (N(40)), RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were -0.27 ± 2.0 D, 0.36 ± 2.19 D, 1.18 ± 1.39 D, 1.80 ± 1.69 D, and -0.62 ± 1.58 D, respectively. The intraclass correlations for T(40) refraction, N(40) refraction, RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were 0.87, 0.83, 0.65, 0.74, and 0.58 for MZ pairs and 0.49, 0.42, 0.30, 0.41, and 0.32 for DZ pairs, respectively. A model with additive genetic and unique environmental effects was the most parsimonious, with heritability values estimated as 0.84, 0.76, 0.63, 0.70, and 0.55, respectively, for the peripheral refractive parameters. Additive genetic effects appear to explain most of the variance in peripheral refraction and relative peripheral refraction when adjusting for the effects of axial refraction.

  5. Refractive index measurement of the mouse crystalline lens using optical coherence tomography.

    PubMed

    Chakraborty, Ranjay; Lacy, Kip D; Tan, Christopher C; Park, Han Na; Pardue, Machelle T

    2014-08-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lenses using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p < 0.001). Lens thickness was not significantly different between the two strains at any age (p = 0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p < 0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p = 0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p = 0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p < 0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data. Published by Elsevier Ltd.

  6. Multiple scattering induced negative refraction of matter waves

    PubMed Central

    Pinsker, Florian

    2016-01-01

    Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266

  7. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    NASA Astrophysics Data System (ADS)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  8. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system.

    PubMed

    Campo-Deaño, Laura; Dullens, Roel P A; Aarts, Dirk G A L; Pinho, Fernando T; Oliveira, Mónica S N

    2013-01-01

    The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS.

  9. Fiber optic sensor system for detecting movement or position of a rotating wheel bearing

    DOEpatents

    Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.

    1997-01-01

    An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

  10. A new method of measuring lens refractive index.

    PubMed

    Buckley, John

    2008-07-01

    A new clinical method for determining the refractive index of a lens is described. By measuring lens power in air and then immersing the lens in a liquid of known refractive index (n), it is possible to calculate the refractive index of the lens material (micro) by using the formula: micro = (nK (v,1) - K(v,n))/(K (v,1) - K (v,n)) where K (v,1) is the lens power determined in air K (v,n) is the lens power determined in the immersion liquid. The only materials required are a digital lensmeter and a wet cell for holding the lens in a liquid. The theoretical basis of the method is explained and a description given of the limitations. The optimal method of measuring different types of lenses is discussed. Sources of error include the thin lens theory behind the method, the use of a wetcell and the digital lensmeter. The theoretical accuracy of the results is given as 0.02 but 0.01 is usually achieved. In all cases, measuring the front vertex powers (FVP) yields a more accurate estimate of refractive index of a lens than measuring back vertex power (BVP). The author found half the lenses measured attained values within 0.005 of the known material index. This method is usually sufficiently accurate to isolate which lens material has been used in manufacturing and permit manufacturing spectacles that mimic the appearance of an earlier pair. Some suggestions for further refinement are given.

  11. Cycloplegic autorefraction versus subjective refraction: the Tehran Eye Study.

    PubMed

    Hashemi, Hassan; Khabazkhoob, Mehdi; Asharlous, Amir; Soroush, Sara; Yekta, AbbasAli; Dadbin, Nooshin; Fotouhi, Akbar

    2016-08-01

    To compare cycloplegic autorefraction with non-cycloplegic subjective refraction across all age and refractive error groups. In a cross-sectional study with random stratified cluster sampling, 160 clusters were chosen from various districts proportionate to the population of each district in Tehran. Following retinoscopy and autorefraction with the 0.25 D bracketing (Topcon KR-8000, Topcon, Tokyo, Japan), all participants had a subjective refraction. Then all participants underwent cycloplegic autorefraction. The final analysis was performed on 3482 participants with a mean age of 31.7 years (range 5-92 years). Based on cycloplegic and subjective refraction, mean spherical equivalent (SE) was +0.31±1.80 and -0.32±1.61 D, respectively (p<0.001). The 95% limits of agreement (LoA) between these two types of refraction were from -0.40 to 1.70 D. The largest difference between these two types of refraction was seen in the age group of 5-10 years (1.11±0.60 D), and the smallest difference was in the age group of >70 years (0.34±0.45 D). The 95% LoA was -0.52 to 0.89 D in patients with myopia and -0.12 to 2.04 D in patients with hyperopia. We found that female gender (coefficients=0.048), older age (coefficients=-0.247), higher education (coefficients=-0.043) and cycloplegic SE (coefficients=-0.472) significantly correlated with lower intermethod differences. The cycloplegic refraction is more sensitive than the subjective one to measure refractive error at all age groups especially in children and young adults. The cyclorefraction technique is highly recommended to exactly measure the refractive error in momentous conditions such as refractive surgery, epidemiological researches and amblyopia therapy, especially in hypermetropic eyes and paediatric cases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    NASA Astrophysics Data System (ADS)

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-08-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.

  13. Peripheral refraction and image blur in four meridians in emmetropes and myopes.

    PubMed

    Shen, Jie; Spors, Frank; Egan, Donald; Liu, Chunming

    2018-01-01

    The peripheral refractive error of the human eye has been hypothesized to be a major stimulus for the development of its central refractive error. The purpose of this study was to investigate the changes in the peripheral refractive error across horizontal, vertical and two diagonal meridians in emmetropic and low, moderate and high myopic adults. Thirty-four adult subjects were recruited and aberration was measured using a modified commercial aberrometer. We then computed the refractive error in power vector notation from second-order Zernike terms. Statistical analysis was performed to evaluate the statistical differences in refractive error profiles between the subject groups and across all measured visual field meridians. Small amounts of relative myopic shift were observed in emmetropic and low myopic subjects. However, moderate and high myopic subjects exhibited a relative hyperopic shift in all four meridians. Astigmatism J 0 and J 45 had quadratic or linear changes dependent on the visual field meridians. Peripheral Sphero-Cylindrical Retinal Image Blur increased in emmetropic eyes in most of the measured visual fields. The findings indicate an overall emmetropic or slightly relative myopic periphery (spherical or oblate retinal shape) formed in emmetropes and low myopes, while moderate and high myopes form relative hyperopic periphery (prolate, or less oblate, retinal shape). In general, human emmetropic eyes demonstrate higher amount of peripheral retinal image blur.

  14. [Influence of different multifocal intraocular lens concepts on retinal stray light parameters].

    PubMed

    Ehmer, A; Rabsilber, T M; Mannsfeld, A; Sanchez, M J; Holzer, M P; Auffarth, G U

    2011-10-01

    Multifocal intraocular lenses (MIOL) are known to induce various photic phenomena depending on the optical principle. The aim of this study was to investigate the correlation between stray light measurements performed with the C-Quant (Oculus, Germany) and the results of a subjective patient questionnaire. In this study three different MIOLs were compared: AMO ReZoom (refractive design, n=10), AMO ZM900 (diffractive design, n=10) and Oculentis Mplus (near segment design, n=10). Cataract and refractive patients were enrolled in the study. Functional results were evaluated at least 3 months postoperatively followed by stray light measurements and a subjective questionnaire. Surgery was performed for all patients without complications. The three groups were matched for age, IOL power and corrected distance visual acuity (CDVA). Significantly different stray light (median) values log(s) were found (Kruskal-Wallis test, p<0.05): 1.12 log (refractive), 1.13 log (segment) and 1.28 log (diffractive). The subjective questionnaire did not show differences in glare perception but refractive MIOL patients noticed more halos surrounding light sources than the diffractive and segment MIOL patients. Stray light and subjective photopic phenomena do not show any basic correlation. Measurements in patients with refractive MIOLs showed less stray light than near segment or diffractive MIOLs. However, refractive MIOLs induced more halos compared to the other groups analyzed.

  15. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations.

    PubMed

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; Di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  16. Laser-Based Measurement of Refractive Index Changes: Kinetics of 2,3-Epoxy-1-propanol Hydrolysis.

    ERIC Educational Resources Information Center

    Spencer, Bert; Zare, Richard N.

    1988-01-01

    Describes an experiment in which a simple laser-based apparatus is used for measuring the change in refractive index during the acid-catalyzed hydrolysis of glycidol into glycerine. Gives a schematic of the experimental setup and discusses the kinetic analysis. (MVL)

  17. Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm

    NASA Astrophysics Data System (ADS)

    Tseung, H. Wan Chan; Tolich, N.

    2011-09-01

    We report on ellipsometric measurements of the refractive indices of linear alkylbenzene-2,5-diphenyloxazole (LAB-PPO), Nd-doped LAB-PPO and EJ-301 scintillators to the nearest ± 0.005, in the wavelength range 210-1000 nm.

  18. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects.

    PubMed

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-07-28

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R(2) = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions.

  19. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects

    PubMed Central

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-01-01

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R2 = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions. PMID:26218972

  20. Refraction corrections for surveying

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Optical measurements of range and elevation angles are distorted by refraction of Earth's atmosphere. Theoretical discussion of effect, along with equations for determining exact range and elevation corrections, is presented in report. Potentially useful in optical site surveying and related applications, analysis is easily programmed on pocket calculator. Input to equation is measured range and measured elevation; output is true range and true elevation.

Top