#### Sample records for refractive index matching

1. Matched Index of Refraction Flow Facility

ScienceCinema

Mcllroy, Hugh

2016-07-12

What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

2. Matched Index of Refraction Flow Facility

SciTech Connect

Mcllroy, Hugh

2010-01-01

What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

3. Refractive index matching and clear emulsions.

PubMed

Sun, James Ziming; Erickson, Michael C E; Parr, James W

2005-01-01

Refractive index (RI) matching is a unique way of making clear emulsions to meet market trends. However, RI matching has not been sufficiently investigated in terms of physical principles and methodologies. Snell's law (n2 sin r2= n1 sin r1) is applicable to cosmetic emulsions. When oil phase and water phase have equal RI (n2 = n1) values, light will not bend as it strikes obliquely at the emulsion interface. Instead, light is transmitted through the emulsion without refraction, which produces clarity. Theoretical RI values in solution can be calculated with summation of the product of the weight percentage and refractive index of each ingredient (RI(mix) = [W1 x n1 + W2 x n2 + W3 x n3 + + Wn x nn]Wtau). Oil-phase RI values are normally at 1.4 or higher. Glycols are used to adjust the water phase RI, since they typically have larger RI values than water. Noticeable deviations from calculated RI values are seen in experimentally prepared solutions. Three basic deviation types are observed: negative, positive, and slightly negative or positive, which can occur in glycol aqueous solutions at different concentrations. The deviations are attributed to changes in molecular interaction between molecules in solution, which can lead to changes in specific gravity. Negative RI deviation corresponds to a decrease in specific gravity, and positive RI deviation corresponds to an increase in specific gravity. RI values will deviate from calculated values since an increase or decrease in specific gravity leads to a change in optical density.

4. Refractive index matching applied to fecal smear clearing.

PubMed

Ferreira, Claúdio S

2005-01-01

Thick smears of human feces can be made adequate for identification of helminth eggs by means of refractive index matching. Although this effect can be obtained by simply spreading a fleck of feces on a microscope slide, a glycerol solution has been routinely used to this end. Aiming at practicability, a new quantitative technique has been developed. To enhance both sharpness and contrast of the images, a sucrose solution (refractive index = 1.49) is used, which reduces the effect of light-scattering particulates. To each slide a template-measured (38.5 mm3) fecal sample is transferred. Thus, egg counts and sensitivity evaluations are easily made.

5. Influence of refractive index matching on the photon diffuse reflectance.

PubMed

Churmakov, D Y; Meglinski, I V; Greenhalgh, D A

2002-12-07

Photon migration in a randomly inhomogeneous, highly scattering and absorbing semi-infinite medium with a plane boundary is considered by a Monte Carlo (MC) technique. The employed MC technique combines the statistical weight scheme and real photon paths simulation, allowing the exclusion of the energy conservation problem. The internal reflection of the scattered radiation on the medium interface is taken into account by allowing the trajectories of photon packets to be split into reflected and transmitted parts. The spatial photon sensitivity profile (SPSP), spatially resolved diffuse reflectance and angular and spatial photon detector weight distributions are considered in terms of Fresnel's reflection/refraction on the boundary of the medium. The effect of the refractive index match is predicted correctly by the MC method and by the diffusion approximation. The results demonstrate that matching of the refractive index of the medium significantly improves the contrast and spatial resolution of the spatial photon sensitivity profile (SPSP). The results of simulation of the spatially resolved diffuse reflectance agree well with the results predicted by the diffusion approximation and the experimental results reported earlier.

6. On the refractive index of sodium iodide solutions for index matching in PIV

Bai, Kunlun; Katz, Joseph

2014-04-01

Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.

7. Refractive index matching improves optical object detection in paper

Saarela, J. M. S.; Heikkinen, S. M.; Fabritius, T. E. J.; Haapala, A. T.; Myllylä, R. A.

2008-05-01

The demand for high-quality recycled pulp products has increased the need for an efficient deinking process. Assessing process efficiency via residual ink on test sheets has so far been limited to the sheet surface due to the poor transparency of paper. A refractive index matching method was studied to obtain a quantitative measure of particles within the volume of a paper sheet. In actual measurements a glass plate with etched lines from 8.5 µm to 281.1 µm wide was placed beneath the layers of cleared paper, and visible lines were counted with a microscope. Three different paper grades were tested with transparentizing agents. A diffusion theory-based regression model was used to find a correlation between transparency, paper grammage and paper thickness. These equations enable the determination of the size of an object detectable from a paper with a certain transparentizing agent or the parameters of a test sheet needed to detect objects of a known size. Anise oil was found to be the better of the two agents used, and they both had better transparentizing ability than air or water. The transparent paper grammage of the paper grades was determined for all the tested media. Paper's transparency was found to depend more on paper's thickness than grammage.

8. Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity

Borrero-Echeverry, D.; Morrison, B. C. A.

2016-07-01

We show that aqueous solutions of ammonium thiocyanate ({NH}4{SCN}) can be used to match the index of refraction of several transparent materials commonly used in experiments, while maintaining low viscosity and density compared to other common refractive index-matching liquids. We present empirical models for estimating the index of refraction, density, and kinematic viscosity of these solutions as a function of temperature and concentration. Finally, we summarize the chemical compatibility of ammonium thiocyanate with materials commonly used in apparatus.

9. Internal characteristics of refractive-index matched debris flows

Gollin, Devis; Bowman, Elisabeth; Sanvitale, Nicoletta

2016-04-01

Debris flows are channelized masses of granular material saturated with water that travel at high speeds downslope. Their destructive character represents a hazard to lives and properties, especially in regions of high relief and runoff. The characteristics that distinguish their heterogeneous, multi-phase, nature are numerous: non-uniform surge formation, particle size ranging from clay to boulders, flow segregation with larger particles concentrating at the flow front and fluid at the tail making the composition and volume of the bulk varying with time and space. These aspects render these events very difficult to characterise and predict, in particular in the area of the deposit spread or runout - zones which are generally of most interest in terms of human risk. At present, considerable gaps exist in our understanding of the flow dynamics of debris flows, which originates from their complex motion and relatively poor observations available. Flume studies offer the potential to examine in detail the behaviour of model debris flows, however, the opaque nature of these flows is a major obstacle in gaining insight of their internal behaviour. Measurements taken at the sidewalls may be poorly representative leading to incomplete or misleading results. To probe internally to the bulk of the flow, alternative, nonintrusive techniques can be used, enabling, for instance, velocities and solid concentrations within the flowing material to be determined. We present experimental investigations into polydisperse granular flows of spherical immersed particles down an inclined flume, with specific attention directed to their internal behavior. To this end, the refractive indices of solids and liquid are closely matched allowing the two phases to be distinguished. Measurements are then made internally at a point in the channel via Plane Laser Induced Fluorescence, Particle Tracking Velocimetry, PTV and Particle Image Velocimetry, PIV. The objective is to to increase our

10. Propagation in and scattering from a matched metamaterial having a zero index of refraction.

PubMed

Ziolkowski, Richard W

2004-10-01

Planar metamaterials that exhibit a zero index of refraction have been realized experimentally by several research groups. Their existence stimulated the present investigation, which details the properties of a passive, dispersive metamaterial that is matched to free space and has an index of refraction equal to zero. Thus, unlike previous zero-index investigations, both the permittivity and permeability are zero here at a specified frequency. One-, two-, and three-dimensional source problems are treated analytically. The one- and two-dimensional source problem results are confirmed numerically with finite difference time domain (FDTD) simulations. The FDTD simulator is also used to treat the corresponding one- and two-dimensional scattering problems. It is shown that in both the source and scattering configurations the electromagnetic fields in a matched zero-index medium take on a static character in space, yet remain dynamic in time, in such a manner that the underlying physics remains associated with propagating fields. Zero phase variation at various points in the zero-index medium is demonstrated once steady-state conditions are obtained. These behaviors are used to illustrate why a zero-index metamaterial, such as a zero-index electromagnetic band-gap structured medium, significantly narrows the far-field pattern associated with an antenna located within it. They are also used to show how a matched zero-index slab could be used to transform curved wave fronts into planar ones.

11. Velocimetry with refractive index matching for complex flow configurations, phase 1

NASA Technical Reports Server (NTRS)

Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

1987-01-01

The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

12. Refractive index and solubility control of para-cymene solutions for index-matched fluid-structure interaction studies

Fort, Charles; Fu, Christopher D.; Weichselbaum, Noah A.; Bardet, Philippe M.

2015-12-01

To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid-structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.

13. Refractive index matched PIV measurements of flow around interacting barchan dunes

Bristow, Nathaniel; Blois, Gianluca; Kim, Taehoon; Best, James; Christensen, Kenneth

2016-11-01

Barchan dunes are crescent shaped bedforms found in both Aeolian and subaqueous environments, including deserts, river beds, continental shelves, and even the craters of Mars. The evolution of and dynamics associated with these mobile bedforms involve a strong degree of coupling between sediment transport, morphological change, and flow, the last of which represents the weakest link in our current understanding of barchan morphodynamics. Their three-dimensional geometry presents experimental challenges for measuring the full flow field, particularly around the horns and in the leeside of the dunes. In this study we present measurements of the turbulent flow surrounding fixed barchan dune models in various configurations using particle image velocimetry in a refractive index matching flume environment. The refractive index matching technique opens the door to making measurements in wall-parallel planes surrounding the models, as well as wall-normal plane measurements in the leeside region between the horns. While fixed bed experiments are unable to directly measure sediment transport, they allow us to focus solely on the flow physics and full resolution of the turbulent flow field in ways that are otherwise not possible in mobile bed experiments.

14. Experimental study on immiscible jet breakup using refractive index matched oil-water pair

Xue, Xinzhi; Katz, Joseph

2016-11-01

A subsea oil well blowout creates an immiscible crude oil jet. This jet fragments shortly after injection, resulting in generation of a droplet cloud. Detailed understanding of the processes involved is crucial for modeling the fragmentation and for predicting the droplet size distribution. High density of opaque droplets near nozzle limits our ability to visualize and quantify the breakup process. To overcome this challenge, two immiscible fluids: silicone oil and sugar water with the same index of refraction (1.4015) are used as surrogates for crude oil and seawater, respectively. Their ratios of kinematic viscosity (5.64), density (0.83) and interfacial tension are closely matched with those of crude oil and seawater. Distribution of the oil phase is visualized by fluorescent tagging. Both phases are also seeded with particles for simultaneous PIV measurements. The measurements are performed within atomization range of Ohnesorge and Reynolds numbers. Index matching facilitates undistorted view of the phase distribution in illuminated section. Ongoing tests show that the jet surface initially rolls up into Kelvin-Helmholtz rings, followed by development of dispersed phase ligaments further downstream, which then break into droplets. Some of these droplets are re-entrained into the high momentum core, resulting in secondary breakup. As the oil layer and ligaments evolve, they often entrain water, resulting in generation of multiple secondary water droplets encapsulated within the oil droplets. This research is made possible by a Grant from Gulf of Mexico Research Initiative.

15. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

SciTech Connect

Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

2007-11-01

The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties.

16. Flow over interacting barchan dunes studied in a refractive-index-matched environment

Tang, Z.; Jiang, N.; Blois, G.; Barros, J. M.; Best, J. L.; Christensen, K. T.

2013-11-01

Barchan dunes are three-dimensional topographic features characterized by a crescentic shape. Very common on Earth's surface, barchans are produced by unidirectional flows in regions of sediment starvation and are characterized by migration rates that are a function of their volume. This results in complex dune-to-dune interaction mechanisms that are poorly understood. In order to quantify the flow structure produced by interacting barchans, PIV measurements were made wherein the dune models were immersed in a flowing fluid that was refractive-index-matched to the dune material. Doing so provided full optical access to the obstructed regions of flow and eliminated reflections from the liquid-solid boundaries, allowing near-wall data to be collected. Clear barchan models with different volumetric ratios were arranged in tandem, and flow-field measurements were made in multiple streamwise-wall-normal and streamwise-spanwise planes. Ensemble-averaged flow fields and Reynolds stresses were obtained for different barchan spacings and compared to the reference case of an isolated barchan. Proper orthogonal decomposition analysis was employed to study the spatial characteristics of the energy distribution both between and downstream of the aligned dunes.

17. Refractive Index Matching for Planar Laser-Induced Fluorescence Imaging of Fluid Mixing in Porous Media

Roth, E. J.; Tigera, R. G.; Crimaldi, J. P.; Mays, D. C.

2015-12-01

Research in porous media is often hampered by the difficulty in making pore-scale observations. By selecting porous media that is refractive index matched (RIM) to the pore fluid, the media becomes transparent. This allows optical imaging techniques such as static light scattering (SLS), dynamic light scattering (DLS), confocal microscopy, and planar laser-induced fluorescence (PLIF) to be employed. RIM is particularly useful for research concerning contaminant remediation in the subsurface, permitting visual observation of plume dynamics at the pore scale. The goal of this research is to explore and assess candidate combinations of porous media, fluid, and fluorescent dye. The strengths and weaknesses of each combination will then be evaluated in terms of safety, cost, and optical quality in order to select the best combination for use with PLIF. Within this framework, top-ranked RIM combinations include Pyrex glass beads, water beads, or granular Nafion saturated in vegetable glycerin, deionized water, and an aqueous solution of 48% isopropanol, respectively. This research lays the groundwork for future efforts to build a flow chamber in which the selected RIM porous media, solution, and dye will be used in evaluating subsurface pumping strategies designed to impose chaotic plume spreading in porous media. Though the RIM porous media explored in this research are selected based on the specifications of a particular experiment, the methods developed for working with and evaluating RIM porous media should be of utility to a wide variety of research interests.

18. Refractive index matched suspensions as a tool for investigating entrainment by avalanches and debris flows

Bates, Belinda; Ancey, Christophe

2015-04-01

Geophysical gravity flows such as avalanches and debris flows are complicated mixtures of fluid and solids, often containing particle sizes of many orders of magnitude. In a debris flow, for example, the composition varies from head to tail, and from bottom to top due to particle size segregation and recirculation. In addition the solid components may have different masses and mechanical properties. For this reason, a complete understanding of substrate entrainment by this type of flow is still out of reach. A common strategy for advancing our understanding of the physics of processes like entrainment is to use a greatly simplified laboratory model of a debris flow, and take internal and bulk measurements. This idealized technique forms the basis of this study, in which a two-phase, monodisperse suspension of PMMA beads in a refractive-index matched suspending fluid flowed down a flume, encountering an entrainable region of the same suspension on the way. This study represents the first attempt of taking continuous internal velocity measurements inside a flowing, entraining model avalanche or debris flow in the laboratory. Interior PIV measurements of flow velocity were taken in the entrainable region, along with surface height measurements, to shed some light on the entrainment mechanisms and to see how the bulk flow responded. Further, some differential pressure measurements were made in the entrainable bed to see if pore-pressure peaks had any correlation with significant events during entrainment. We present our preliminary findings and discuss the suitability of the method to entrainment investigations.

19. Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles

Zhu, W.; Knapp, Y.; Deplano, V.

2016-05-01

A novel refractive index and density-matched liquid-solid suspension system taking into account chemical hazard and health concerns was developed and characterized. The solid phase is made of PMMA spheres, the refractive index of which being adapted with a mixture of 2,2'-thiodiethanol and phosphate-buffered saline (PBS), while the density is adapted with a mixture of PBS and glycerol. The proposed chemicals present low hazard characteristics in comparison with former solutions. Data collected from density and refractive index measurements of the solid phase and of the different fluid constituents are used to define a specific ternary mixture adapted to commercial grade micron-size particles. The defined mixture is validated in a micron-sized granular flow experiment. The described method can be applied to other low-density solids.

20. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

SciTech Connect

Piyush Sabharwall; Carl Stoots; Donald M. McEligot; Richard Skifton; Hugh McIlroy

2014-11-01

Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early

1. Preparation of refractive index matching polymer film alternative to oil for use in a portable surface-plasmon resonance phenomenon-based chemical sensor method.

PubMed

Masadome, Takashi; Asano, Yasukazu; Imato, Toshihiko; Ohkubo, Satoshi; Tobita, Tatsuya; Tabei, Hisao; Iwasaki, Yuzuru; Niwa, Osamu; Fushinuki, Yoshito

2002-07-01

In order to simplify the procedure for assembling a surface-plasmon resonance (SPR) sensor, a refractive index matching polymer film was prepared as an alternative to the conventionally used matching oil. The refractive index matching polymer film, the refractive index of which was nearly equal to the prism and sensor chip material (a cover glass) of the SPR sensor, was prepared by casting a tetrahydrofuran solution of poly (vinyl chloride) (PVC) containing equal weights of dioctyl phthalate and tricresyl phosphate. The refractive index matching polymer film was found to have a refractive index of 1.516, which is identical to that of the prism and the cover glass used for the present SPR sensor. The utility of the matching polymer film for the SPR sensor was confirmed by the detection of anti-human albumin, based on an antigen-antibody reaction.

2. Automatic amending of the tattoo sensor fluorescence localization by refractive index matching

Churmakov, Dmitry Y.; Meglinski, Igor V.; Greenhalgh, Douglas A.

2003-10-01

Fluorescence diagnostic techniques are notable amongst many other optical methods, as they offer high sensitivity and non-invasive measurements of tissue properties. However, a combination of multiple scattering and physical heterogeneity of biological tissues hampers the interpretation of the fluorescence measurements. The analyses of the spatial distribution of endogenous and exogenous fluorophores excitations within tissues and their contribution to the detected signal localization are essential for many applications. We have developed a novel Monte Carlo technique that gives a graphical perception of how the excitation and fluorescence detected signal are localized in tissues. Our model takes into account spatial distribution of fluorophores and their quantum yields. We demonstrate that matching of the refractive indices of ambient medium and topical skin layer improves spatial localization of the detected fluorescence signal within the tissue. This result is consistent with the recent conclusion that administering biocompatible agents results in higher image contrast.

3. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera

Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

2014-05-01

High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

4. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

PubMed Central

Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

2016-01-01

Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0$1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

5. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

PubMed

Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

2016-01-01

Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0$1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

6. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments

Najjari, Mohammad Reza; Hinke, Jessica A.; Bulusu, Kartik V.; Plesniak, Michael W.

2016-06-01

Four commonly used refractive-index (RI)-matched Newtonian blood-analog fluids are reviewed, and different non-Newtonian blood-analogs, with RI of 1.372-1.495, are investigated. Sodium iodide (NaI), sodium thiocyanate (NaSCN) and potassium thiocyanate are used to adjust the RI of blood-analogs to that of test sections for minimizing optical distortions in particle image velocimetry data, and xanthan gum (XG) is added to the fluids to give them non-Newtonian properties (shear thinning and viscoelasticity). Our results support the general belief that adding NaI to Newtonian fluids matches the RI without changing the kinematic viscosity. However, in contrast to claims made in a few studies that did not measure rheology, our investigation revealed that adding NaI or NaSCN to XG-based non-Newtonian fluids changes the viscosity of the fluids considerably and reduces the shear-thinning property. Therefore, the RI of non-Newtonian blood-analog fluids with XG cannot be adjusted easily by varying the concentration of NaI or NaSCN and needs more careful rheological study.

7. Analytical and clinical evaluation of refractive index-matched anomalous diffraction (RIMAD) for assessment of fetal lung maturation.

PubMed

Rohlfs, E M; Chaing, S H; Chapman, J F

1996-11-01

We have evaluated refractive index-matched anomalous defraction (RIMAD) (Dubin SB, Clin Chem 1988;34:938-43) as a potential method for assessment of fetal lung maturity (FLM). This method determines the total light scattered by the surfactant-containing lamellar bodies by subtraction of the A650 from amniotic fluid diluted in glycerol from that of amniotic fluid diluted in distilled water. It is not significantly affected by such contaminating chromogens as hemoglobin and bilirubin up to 2.0 g/L and 11.0 mg/L, respectively. However, the addition of as little as 2.5 microL of erythrocytes as whole blood resulted in significant interference. RIMADs for normal respiratory outcomes (n = 78) ranged from 0.018 to 0.471. RIMADs for respiratory distress syndrome (RDS) outcomes (n = 8) ranged from 0.004 to 0.036. Use of a RIMAD referent value of > 0.040 to indicate maturity yielded sensitivity, specificity, predictive value (PV)RDS, and PVmaturity of 100%, 96.2%, 72.2%, and 100%, respectively. The areas under the receiver-operating characteristic curves were 0.997 for the RIMAD assay, 0.993 (P = 0.3) for the TDx-FLM assay, 0.89 (P = 0.017) for the lecithin/sphingomyelin ratio, and 0.87 (P = 0.023) for the foam stability index.

8. On the use of refractive-index-matched hydrogel for fluid velocity measurement within and around geometrically complex solid obstructions

Weitzman, Joel S.; Samuel, Lianna C.; Craig, Anna E.; Zeller, Robert B.; Monismith, Stephen G.; Koseff, Jeffrey R.

2014-12-01

Laboratory-based particle image velocimetry (PIV) was used to measure current-driven hydrodynamics within and around a collection of complex obstacles. These obstacles were fabricated using a specialty superabsorbent hydrogel produced through the free-radical copolymerization of sodium acrylate and acrylamide. The optical properties of this gel were found to be nearly identical to those of liquid water. Because of refractive index matching (RIM) of both the fluid and solid media, PIV laser light sheets passed through the obstructions without significant degradation or modification. As a result, all tracer particles suspended in the flow were uniformly illuminated, regardless of their position or proximity relative to individual obstacle features. PIV light sheets were also successfully imaged through the hydrogel, enabling accurate velocity measurement in regions that would otherwise be optically inaccessible. These outcomes were reached without reliance on unconventional fluids or specialized flow facilities. For many experimenters interested in fluid-solid interactions, hydrogel-based RIM may thus be less costly and more adaptable than methods that rely on the existing suite of techniques.

9. Refractive index matched half-wave plate with a nematic liquid crystal for three-dimensional laser metrology applications

Piecek, W.; Jaroszewicz, L. R.; Miszczyk, E.; Raszewski, Z.; Mrukiewicz, M.; Perkowski, P.; Nowinowski-Kruszelnicki, E.; Zieliński, J.; Olifierczuk, M.; Kędzierski, J.; Sun, X. W.; Garbat, K.; Kowiorski, K.; Morawiak, P.; Mazur, R.; Tkaczyk, J.

2016-12-01

There exists a need in a quality and accuracy of a three-dimensional laser metrology operating in numerically controlled automatic machines. For this purpose, one sends three laser beams mutually perpendicular. These three beams of the wavelength λ = 0.6328 μm are generated by the same laser and are directed along three independent, orthogonal, mutually perpendicular, optical paths with a given light polarization plain. Using these beams, constituting the frame of coordinates, three independent laser rangefinders are able to determine spatial coordinates of a working tool or a workpiece. To form these optical pulses, a special refractive index matched Half-Wave Plate with nematic Liquid Crystal (LCHWP) was applied. The presented half-wave plate is based on a single Twisted Nematic (TN) cell (with the twist angle Φ = π/2) of a rather high cell gap d 15 μm filled with a newly developed High-Birefringence Nematic Liquid Crystal Mixture (HBLCM) of optical anisotropy as high as Δn 0.40 at λ = 0.6328 μm, where the Mauguin limit above 5.00 Δnd >> λ/2 = 0.32 is fulfilled.

10. Using refractive index matching to image flow above and within a highly-permeable laboratory stream bed

Lichtner, Derek; Best, Jim; Blois, Gianluca; Kim, Taehoon; Christensen, Kenneth

2015-11-01

Turbulent flow over a rough, porous gravel bed is investigated with particle image velocimetry (PIV) and refractive index matching (RIM). A model stream bed was constructed with 4224 pre-cast acrylic spheres (D = 1.27 cm) in a fixed cubic pattern. The flow above and within the bed was measured in the streamwise-wall-normal plane at Reb = 3.20 × 10, with an image resolution of 11 Mpixel, and the flow was seeded with silver-coated hollow glass spheres (ρ = 1700 kg m-3). The highpermeability of the interface in these experiments permits large, instantaneous, near-bed streamwise momentum due to vertical exchange viaturbulence. The mean velocity flow structure exhibitsa significant slip velocity at the bed interface. In the pore spaces, mean velocities are near-horizontal and 5-10% of the maximum free stream velocity. High Reynolds stresses near the bed, particularly around the crests of spherical roughness elements, suggest turbulence is produced by flow separation and the shedding of vortices from streambed grains. The dimensions of turbulent flow structures, determined via two-point correlations and Galilean decompositions, appear similar to those of hairpin vortices, although the resemblance remains unconfirmed without time-resolved data.

11. Refractive index of plant cell walls

NASA Technical Reports Server (NTRS)

Gausman, H. W.; Allen, W. A.; Escobar, D. E.

1974-01-01

Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

12. Fiber optic refractive index monitor

SciTech Connect

Weiss, Jonathan David

2002-01-01

A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

13. Index of Refraction without Geometry

ERIC Educational Resources Information Center

Farkas, N.; Henriksen, P. N.; Ramsier, R. D.

2006-01-01

This article presents several activities that permit students to determine the index of refraction of transparent solids and liquids using simple equipment without the need for geometrical relationships, special lighting or optical instruments. Graphical analysis of the measured data is shown to be a useful method for determining the index of…

14. Study on the refractive index matching effect of ultrasound on optical clearing of bio-tissues based on the derivative total reflection method

PubMed Central

Zeng, Huanhuan; Wang, Jin; Ye, Qing; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

2014-01-01

In recent years, the tissue optical clearing (OC) technique in the biomedicine field has drawn lots of attention. Various physical and chemical methods have been introduced to improve the efficacy of OC. In this study, the effect of the combination of glycerol and ultrasound treatment on OC of in vitro porcine muscle tissues has been investigated. The refractive index (RI) matching mechanism of OC was directly observed based on the derivative total reflection method. A theoretical model was used to simulate the proportion of tissue fluid in the illuminated area. Moreover, the total transmittance spectra have been obtained by a spectrometer over the range from 450 nm to 700 nm. The administration of glycerol and ultrasound has led to an increase of the RI of background medium and a more RI matching environment was achieved. The experimental results support the validity of the ultrasound treatment for OC. The RI matching mechanism has been firstly quantitatively analyzed based on the derivative total reflection method. PMID:25360366

15. Refractive Index Enhancement in Gases

DTIC Science & Technology

2012-02-29

experimentally demonstrated the key ingredients of this approach in Rubidium vapor where we have observe enhanced refractive index with vanishing absorption...beam, Ep. We have recently experimentally demonstrated this effect in a 1-mm-long Rubidium (Rb) vapor cell at high vapor densities. Here, we utilize

16. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

McClymer, J. P.

2016-08-01

Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

17. Refractive index modulation in photo-thermo-refractive fibers

Rotari, Eugeniu; Glebova, Larissa; Glebov, Leonid

2005-04-01

Refractive index decrement was discovered in a fiber made from photo-thermo-refractive (PTR) glass. PTR glass is a fluorosilicate glass doped with cerium and silver which demonstrates refractive index change after UV exposure and thermal development due to precipitation of NaF nanocrystals in the irradiated areas. This glass is widely used for volume holographic optical elements recording. Photosensitivity in PTR optical fibers has been shown after exposure to radiation at 325 nm for about 1 J/cm2 followed by thermal development at 520°C. Refractive index difference between exposed and unexposed areas was about 1000 ppm. A Bragg mirror at 1088 nm was recorded in such fiber which showed narrow band reflection within 1 nm.

18. Nonlinear refractive index of photo-thermo-refractive glass

Santran, Stephane; Martinez-Rosas, Miguel; Canioni, Lionel; Sarger, Laurent; Glebova, Larissa N.; Tirpak, Alan; Glebov, Leonid B.

2006-03-01

Nonlinear properties of a photo-thermo-refractive (PTR) glass are studied and compared with those in fused silica and a conventional optical glass. PTR glass is a new photosensitive medium for high-efficiency phase volume hologram recording which manifests a linear refractive index modulation after exposure to UV radiation followed by thermal treatment. Nonlinear optical properties of PTR glass exposed to femtosecond laser pulses are studied. Diffraction patterns in a propagated laser beam focused in the sample were detected by a CCD, while a nonlinear refractive index was measured by a collinear-orthogonal-polarization-pump-probe (COP3) method. It was found that nonlinear refractive index of PTRG is n2 = 3.3 × 10-20 m2/W (0.33 ppm cm2/GW) which is about the same as for the fused silica. It is important that n2 in PTR glass does not vary after UV exposure and thermal development.

19. A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance

Burgmann, S.; Große, S.; Schröder, W.; Roggenkamp, J.; Jansen, S.; Gräf, F.; Büsen, M.

2009-10-01

The flow field in the respiratory and vascular system is known to be influenced by the flexibility of the walls. However, up to now, most of the experimental biofluidic investigations have been performed in rigid models due to the complexity and necessity of optical access. In this paper, a facility and measurement techniques for studying oscillating and pulsatile flow in elastic vessels will be described. The investigated vessel models have been adapted such that fluid-mechanical and structure-mechanical characteristics represent realistic blood flows in medium blood vessels. That is, characteristic parameters, i.e., the Reynolds and Womersley number, as well as mechanical properties of the flexible wall, i.e., the Young’s modulus and the material compliance, have been chosen to reasonably represent realistic flow conditions. First, a method to manufacture elastic models, which mimic the structure-mechanical properties of vascular vessels is described. The models possess a tunable compliance and are made of transparent polydimethylsiloxane. Second, the experimental setup of the flow facility will be elucidated. The flow facility allows to mimic pulsatile flow at physiologically relevant Reynolds and Womersley numbers. The precise form of the flow cycle can individually be controlled. Water/glycerine is used as flow medium for refractive index matching particle image velocimetry (PIV) measurements. The PIV recordings not only allow to assess the mean cross-sectional flow field but also further enable to simultaneously detect the movement of the flexible wall. Additionally, the local wall-shear stress can be obtained from the single-pixel line resolved near-wall flow field. To confirm the flow conditions of the oscillatory laminar flow inside the flow facility and to evaluate the ability to assess the flow field, measurements in a straight, uniform diameter, rigid Plexiglas pipe under identical conditions to those of the oscillating flow in the flexible vessel

20. Formation of bulk refractive index structures

DOEpatents

Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

2003-07-15

A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

1. Negative index of refraction in optical metamaterials.

PubMed

Shalaev, Vladimir M; Cai, Wenshan; Chettiar, Uday K; Yuan, Hsiao-Kuan; Sarychev, Andrey K; Drachev, Vladimir P; Kildishev, Alexander V

2005-12-15

A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and the magnetic components of light. The refractive index is retrieved from direct phase and amplitude measurements for transmission and reflection, which are all in excellent agreement with simulations. Both experiments and simulations demonstrate that a negative refractive index n' approximately -0.3 is achieved at the optical communication wavelength of 1.5 microm using the array of nanorods. The retrieved refractive index critically depends on the phase of the transmitted wave, which emphasizes the importance of phase measurements in finding n'.

2. Hybrid high refractive index polymer coatings

Wang, Yubao; Flaim, Tony; Mercado, Ramil; Fowler, Shelly; Holmes, Douglas; Planje, Curtis

2005-04-01

Thermally curable hybrid high refractive index polymer solutions have been developed. These solutions are stable up to 6 months under room temperature storage conditions and can be easily spin-coated onto a desired substrate. When cured at elevated temperature, the hybrid polymer coating decomposes to form a metal oxide-rich film that has a high refractive index. The resulting films have refractive indices higher than 1.90 in the entire visible region and achieve film thicknesses of 300-900 nm depending on the level of metal oxide loading, cure temperature being used, and number of coatings. The formed films show greater than 90% internal transmission in the visible wavelength (400-700 nm). These hybrid high refractive index films are mechanically robust, are stable upon exposure to both heat and UV radiation, and are currently being investigated for microlithographic patterning potential.

3. On the effective refractive index of blood

Nahmad-Rohen, Alexander; Contreras-Tello, Humberto; Morales-Luna, Gesuri; García-Valenzuela, Augusto

2016-01-01

We calculated the real and imaginary parts of the effective refractive index {n}{eff} of blood as functions of wavelength from 400 to 800 nm; we employed van de Hulst’s theory, together with the anomalous diffraction approximation, for the calculation. We modelled blood as a mixture of plasma and erythrocytes. Our results indicate that erythrocyte orientation has a strong effect on {n}{eff}, making blood an optically anisotropic medium except when the erythrocytes are randomly oriented. In the case in which their symmetry axis is perpendicular to the wave vector, {n}{eff} equals the refractive index of plasma at certain wavelengths. Furthermore, the erythrocytes’ shape affects their contribution to {n}{eff} in an important way, implying that studies on the effective refractive index of blood should avoid approximating them as spheres or spheroids. Finally, the effective refractive index of blood predicted by van de Hulst’s theory is different from what would be obtained by averaging the refractive indices of its constituents weighted by volume; such a volume-weighted average is appropriate only for haemolysed blood. We then measured the real part of the refractive index of various blood solutions using two different experimental setups. One of the most important results of our expriment is that {n}{eff} is measurable to a good degree of precision even for undiluted blood, although not all measuring apparatuses are appropriate. The experimental data is self-consistent and in reasonable agreement with our theoretical calculations.

4. Fiber optic liquid refractive index sensor

Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

2015-08-01

In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

5. A Liquid Prism for Refractive Index Studies

Edmiston, Michael D.

2001-11-01

A hollow glass prism filled with liquid becomes a "liquid prism". A simple method for constructing hollow glass prisms is presented. A method is given for a demonstration that uses the liquid prism with a laser or laser pointer so the audience can observe differences in refractive index for various liquids. The demonstration provides a quick and easy determination of the sugar content of soft drinks and juices. The prism makes it easy to determine a numerical value for the refractive index of a liquid.

6. Plasmonic crystal enhanced refractive index sensing

SciTech Connect

Stein, Benedikt; Devaux, Eloïse; Genet, Cyriaque Ebbesen, Thomas W.

2014-06-23

We demonstrate experimentally how the local anisotropy of the dispersion relation of surface plasmon modes propagating over periodic metal gratings can lead to an enhancement of the figure of merit of refractive index sensors. Exploiting the possibility to acquire defocused images of the Fourier space of a highly stable leakage radiation microscope, we report a twofold increase in sensing sensitivity close to the band gap of a one-dimensional plasmonic crystal where the anisotropy of the band structure is the most important. A practical sensing resolution of O(10{sup −6}) refractive index units is demonstrated.

7. Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes

SciTech Connect

Feeney, Michael Gerard; Ince, Rabia; Yukselici, Mehmet Hikmet; Allahverdi, Cagdas

2011-07-01

The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nanoparticles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He-Ne laser source at a wavelength of 632.8 nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He-Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

8. Refractive index measurements of Ge

Burnett, John H.; Kaplan, Simon G.; Stover, Eric; Phenis, Adam

2016-09-01

A program has been started at NIST to make high-accuracy measurements of the infrared (IR) index properties of technologically important IR materials, in order to provide the IR optics community with updated values for the highest quality materials now available. For this purpose, we designed and built a minimum-deviation-angle refractometry system enabling diffraction-limited index measurements for wavelengths from 0.12 μm to 14 μm. We discuss the apparatus and procedures that we use for IR measurements. First results are presented for germanium for the wavelength range from 2 μm to 14 μm, with standard uncertainties ranging from 2 × 10-5 near 2 μm to 8 × 10-5 near 14 μm. This is an improvement by about an order of magnitude of the uncertainty level for index data of germanium generally used for optic design. A Sellmeier formula fitting our data for this range is provided. An analysis of the uncertainty is presented in detail. These measurements are compared to previous measurements of Ge.

9. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

2016-02-01

The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

10. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

2016-04-01

The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

11. Interferometric atmospheric refractive-index environmental monitor.

PubMed

Ludman, J E; Ludman, J J; Callahan, H; Caulfield, H J; Watt, D; Sampson, J L; Robinson, J; Davis, S; Hunt, A

1995-06-20

Long, open-path, outdoor interferometric measurement of the index of refraction as a function of wavelength (spectral refractivity) requires a number of innovations. These include active compensation for vibration and turbulence. The use of electronic compensation produces an electronic signal that is ideal for extracting data. This allows the appropriate interpretation of those data and the systematic and fast scanning of the spectrum by the use of bandwidths that are intermediate between lasers (narrow bandwidth) and white light (broad bandwidth). An Environmental Interferometer that incorporates these features should be extremely valuable in both pollutant detection and pollutant identification. Spectral refractivity measurements complement the information available from spectral absorption instruments (e.g., a Fourier-transform infrared spectrometer). The Environmental Interferometer currently uses an electronic compensating device with a 1-kHz response time, and therefore rapid spectral scans are feasibe so that it is possible to monitor the time evolution of pollutant events.

12. Refractive index measurement of nanoparticles by immersion refractometry based on a surface plasmon resonance sensor

Kano, Hiroshi; Iseda, Ayumu; Ohenoja, Katja; Niskanen, Ilpo

2016-06-01

Accurate determination of the refractive index of nanoparticles has important ramifications for applications, such as pharmaceuticals, cosmetics, paints, textiles, and inks. We describe a new method to determine the refractive index of nanoparticles by immersion refractometry with a surface plasmon resonance sensor. With this method, the refractive index of the nanoparticles is perfectly matched with that of the surrounding liquid. We demonstrate this method for calcium fluoride nanoparticles that have an average diameter of 100 nm; the results achieve an accuracy of better than 0.002 refractive index units.

13. Analytical properties of the effective refractive index

Puzko, R. S.; Merzlikin, A. M.

2017-01-01

The propagation of a plane wave through a periodic layered system is considered in terms of the effective parameters. The problem of introduction of effective parameters is discussed. It was demonstrated that although the effective admittance cannot be introduced, it is possible to introduce the effective refractive index, which tends toward the Rytov value when the system size increases. It was shown that the effective wave vector derivative is an analytical function of frequency. In particular, the Kramers-Kronig-like relations for real and imaginary parts of the effective wave vector derivative were obtained. The Kramers-Kronig-like relations for the effective refractive index were also considered. The results obtained numerically were proved by exact solution of Maxwell's equations in the specific case of an "equi-impedance" system.

14. Effective spectral dispersion of refractive index modulation

Vojtíšek, Petr; Květoň, Milan; Richter, Ivan

2017-04-01

For diffraction effects inside photopolymer materials, which act as volume diffraction systems (e.g. gratings), refractive index modulation is one of the key parameters. Due to its importance it is necessary to study this parameter from many perspectives, one of which is its value for different spectral components, i.e. its spectral dispersion. In this paper, we discuss this property and present an approach to experimental and numerical extraction and analysis (via rigorous coupled wave analysis and Cauchy’s empirical relation) of the effective dispersion of refractive index modulation based on an analysis of transmittance maps measured in an angular-spectral plane. It is indicated that the inclusion of dispersion leads to a significantly better description of the real grating behavior (which is often necessary in various design implementations of diffraction gratings) and that this estimation can be carried out for all the diffraction orders present.

15. Uncladded sensing fiber for refractive index measurement

Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

2016-05-01

The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

16. Complex refractive index of Martian dust - Mariner 9 ultraviolet observations

NASA Technical Reports Server (NTRS)

Pang, K.; Ajello, J. M.; Hord, C. W.; Egan, W. G.

1976-01-01

Mariner 9 ultraviolet spectrometer observations of the 1971 dust clouds obscuring the surface of Mars have been analyzed by matching the observed dust phase function with Mie scattering calculations for size distributions of homogeneous and isotropic material. Preliminary results indicate an effective particle radius of not less than 0.2. The real component of the index of refraction is not less than 1.8 at both 268 and 305 nm; corresponding values for the imagery component are 0.02 and 0.01. These values are consistent with those found by Mead (1970) for the visible and near-visible wavelengths. The refractive index and the absorption coefficient increase rapidly with decreasing wavelength in going from the visible to the ultraviolet, indicating the presence of an ultraviolet absorption band which may shield organisms from ultraviolet irradiation.

17. Measurement of refractive index distribution of biotissues by scanning focused refractive index microscopy

Sun, Tengqian; Ye, Qing; Wang, Xiao-Wan; Wang, Jin; Deng, Zhi-Chao; Mei, Jian-Chun; Zhou, Wen-Yuan; Zhang, Chun-Ping; Tian, Jian-Guo

2014-11-01

We adapt the improved scanning focused refractive-index microscopy (SFRIM) technique to the quantitative study of biological tissues. Delicate refractive index (RI) imaging of a porcine muscle tissue is obtained in a reflection mode. Some modifications are made to the SFRIM for better two dimension (2-D) observation of the tissues. The RI accuracy is 0.002. The central spatial resolution of SFRIM achieves 1μm, smaller than the size of the focal spot. Our method is free from signal distortion. The experimental result demonstrates that SFRIM is a potential technique in a wide field of biomedical research.

18. Near-zero refractive index photonics

2017-03-01

Structures with near-zero parameters (for example, media with near-zero relative permittivity and/or relative permeability, and thus a near-zero refractive index) exhibit a number of unique features, such as the decoupling of spatial and temporal field variations, which enable the exploration of qualitatively different wave dynamics. This Review summarizes the underlying principles and salient features, physical realizations and technological potential of these structures. In doing so, we revisit their distinctive impact on multiple optical processes, including scattering, guiding, trapping and emission of light. Their role in emphasizing secondary responses of matter such as nonlinear, non-reciprocal and non-local effects is also discussed.

19. Optofluidic two-dimensional grating volume refractive index sensor.

PubMed

Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

2016-09-10

We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.

20. Study of the index matching for different photopolymers

Fernández, Roberto; Gallego, Sergi; Márquez, Andrés.; Ortuño, Manuel; Marini, Stephan; Pascual, Inmaculada; Beléndez, Augusto

2015-09-01

One of the most promising phase optical recording mediums are photopolymers. In these materials, the use of an index matching component permits a better conservation of the stored information and, additionally, the study of the molecules migration and shrinkage/swelling phenomena separately. In general, the transmitted beam has the information of the thickness and refractive index modulation mixed. Therefore, we propose the introduction of a coverplate besides with an index matching liquid in order to improve the characterization and the conservation. The index matching techniques have been classically used for holographic recording materials. In principle, to obtain an accurate index matching we have to choose a liquid with refractive index very close to the mean of the polymer one. Then, when shrinkage takes place during recording, mainly due to the polymerization, the liquid will fill up the generated grooves minimizing the diffractive effects produced by the relief structure. In fact, in this work we study different index matching components for different photopolymers. The photopolymers analyzed in this work have a polyvinyl alcohol (PVA) as a binder and two different main monomers: one has acrylamide and the other one sodium acrylate. We have recorded very low diffractive gratings and studied their conservation for different index matching components.

1. On retrieving refractive index of dust-like particles using shape distributions of ellipsoids

Kemppinen, O.; Nousiainen, T.; Merikallio, S.; Räisänen, P.

2015-06-01

Ellipsoid-based retrievals are widely used for investigating optical properties of non-ellipsoidal atmospheric particles, such as dust. In this work, the applicability of ellipsoids for retrieving the refractive index of dust-like target model particles from scattering data is investigated. This is a pure modeling study, where stereogrammetrically retrieved model dust shapes are used as targets. The primary objective is to study whether the refractive index of these target particles can be inverted from their scattering matrices using ellipsoidal model particles. To achieve this, first scattering matrices for the target model particles with known refractive indices are computed. On one hand, a non-negative least squares fitting is performed, separately for different scattering matrix elements, for a set of 46 differently shaped ellipsoids by using different assumed refractive indices. Then, the fitting error is evaluated to establish whether the ellipsoidal base best matches the target scattering matrix elements when the correct refractive index is assumed. On the other hand, we also test whether the ellipsoids best match the target data with the correct refractive index, if a predefined (uniform) shape distribution for ellipsoids is assumed, instead of optimizing the shape distribution separately for each tested refractive index. The results show that for both of these approaches using the ellipsoids with the true refractive index produces good results, but also that for each element even better results are acquired by using wrong refractive indices. In addition, the best agreement is found for different scattering matrix elements using different refractive indices. The findings imply that the inversion of refractive index of non-ellipsoidal particles may not be reliable using ellipsoids. Furthermore, it is demonstrated that the differences in single-scattering albedo and asymmetry parameter between the best-match ellipsoid ensemble and the target particles may

2. Retrieving microphysical properties of dust-like particles using ellipsoids: the case of refractive index

Kemppinen, O.; Nousiainen, T.; Merikallio, S.; Räisänen, P.

2015-10-01

Distributions of ellipsoids are often used to simulate the optical properties of non-ellipsoidal atmospheric particles, such as dust. In this work, the applicability of ellipsoids for retrieving the refractive index of dust-like target model particles from scattering data is investigated. This is a pure modeling study, in which stereogrammetrically retrieved model dust shapes are used as targets. The primary objective is to study whether the refractive index of these target particles can be inverted from their scattering matrices using ellipsoidal model particles. To achieve this, first scattering matrices for the target model particles with known refractive indices are computed. First, a non-negative least squares fitting is performed, individually for each scattering matrix element, for 46 differently shaped ellipsoids by using different assumed refractive indices. Then, the fitting error is evaluated to establish whether the ellipsoid ensemble best matches the target scattering matrix elements when the correct refractive index is assumed. Second, we test whether the ellipsoids best match the target data with the correct refractive index, when a predefined (uniform) shape distribution for ellipsoids is assumed, instead of optimizing the shape distribution separately for each tested refractive index. The results show not only that for both of these approaches using ellipsoids with the true refractive index produces good results but also that for each scattering matrix element even better results are acquired by using wrong refractive indices. In addition, the best agreement is obtained for different scattering matrix elements using different refractive indices. The findings imply that retrieval of refractive index of non-ellipsoidal particles whose single-scattering properties have been modeled with ellipsoids may not be reliable. Furthermore, it is demonstrated that the differences in single-scattering albedo and asymmetry parameter between the best-match

3. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

PubMed

Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

2014-03-31

Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

4. Calculation of electron wave functions and refractive index of Ne

Zhu, Min; Liu, Wei; Zhang, Tao

2008-10-01

The radial wave functions of inner electron shell and outer electron shell of a Ne atom were obtained by the approximate analytical method and tested by calculating the ground state energy of the Ne atom. The equivalent volume of electron cloud and the refractive index of Ne were calculated. The calculated refractive index agrees well with the experimental result. Relationship between the refractive index and the wave function of Ne was discovered.

5. Determination of refractive index by Moiré deflectometry

2015-06-01

Determination of refractive index is an important characteristic of material which is crucial parameter for physicists and engineers. Moiré deflectometry technique is convenient, easy-aligning, nondestructive, non-contact and fairly accurate method for refractive index measurement of gas, liquid, solid. In this paper we investigate the theory of the technique and simulate some relations then finally measure refractive index of a glassy lamella, n=1.536.

6. Fiber in-line Michelson Interferometer for refractive index sensing

Liao, C. R.; Wang, D. N.; Wang, Min; Yang, Minghong; Wang, Yiping

2013-09-01

A fiber in-line Michelson interferometer based on open micro-cavity is demonstrated, which is fabricated by femtosecond laser micromachining and thin film coating technique. In refractive index sensing, this interferometer operates in a reflection mode of detection, exhibits compact sensor head, good mechanical reliability, wide operation range and high sensitivity of 975nm/RIU (refractive index unit) at the refractive index value of 1.484.

7. Refractive index fiber sensor based on Brillouin fast light

Chen, Jiali; Gan, Jiulin; Zhang, Zhishen; Yang, Tong; Deng, Huaqiu; Yang, Zhongmin

2014-01-01

A new type of refractive index fiber sensor was invented by combining the evanescent-field scattering sensing mechanism with the Brillouin fast light scheme. Superluminal light was realized using Brillouin lasing oscillation in a fiber ring cavity. The refractive index of the solution around the microfiber within the cavity is related to the group velocity of the fast light. This fast light refractive index sensor offers an alternative for high-accuracy sensing applications.

8. Demonstration of optical interference filters utilizing tunable refractive index layers.

PubMed

Poxson, David J; Mont, Frank W; Schubert, Martin F; Kim, Jong Kyu; Cho, Jaehee; Schubert, E Fred

2010-11-08

Optical interference filters utilizing tunable refractive index layers are shown to have higher spectral fidelity as compared to conventional filters consisting of non-tunable refractive index layers. To demonstrate this increase in spectral fidelity, we design and compare a variety of optical interference filters employing both tunable and non-tunable refractive index layers. Additionally, a five-layer optical interference filter utilizing tunable refractive index layers is designed and fabricated for use with a Xenon lamp to replicate the Air Mass 0 solar irradiance spectrum and is shown to have excellent spectral fidelity.

9. Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass

Lumeau, Julien; Glebova, Larissa; Golubkov, Valerii; Zanotto, Edgar D.; Glebov, Leonid B.

2009-11-01

Photo-thermo-refractive (PTR) glass is a multi-component silicate that undergoes localized refractive index decrease after UV-exposure and thermal treatment for partial crystallization. Based on this refractive index change, high efficiency volume Bragg gratings have been developed in PTR glass and have been successfully used for laser beam control. However, despite the fact that this type of glass has been widely studied and used over the last 20 years, the origin of the refractive index change upon crystallization is poorly understood. In this paper, we introduce three possible mechanisms (the precipitation of nano-sized NaF crystals and the associated local chemical changes of the glass matrix, the volumetric changes due to relaxation, and the local residual stresses) for the refractive index decrement in PTR glass and estimate the partial refractive index change due to each mechanism. Refractive index measurements are compared with high temperature XRD experiments and a general approach for the simulation of the refractive index change in PTR glass is proposed. We show that among the studied variables the residual stresses surrounding the crystals are the main responsible for the local refractive index decrement in this glass.

10. High-refractive-index measurement with an elastomeric grating coupler

Kocabas, Askin; Ay, Feridun; Dâna, Aykutlu; Kiyat, Isa; Aydinli, Atilla

2005-12-01

An elastomeric grating coupler fabricated by the replica molding technique is used to measure the modal indices of a silicon-on-insulator (SOI) planar waveguide structure. Because of the van der Waals interaction between the grating mold and the waveguide, the elastomeric stamp makes conformal contact with the waveguide surface, inducing a periodic index perturbation at the contact region. The phase of the incident light is changed to match the guided modes of the waveguide. The modal and bulk indices are obtained by measuring the coupling angles. This technique serves to measure the high refractive index with a precision better than 10-3 and allows the elastomeric stamp to be removed without damaging the surface of the waveguide.

11. Fresnel reflectance in refractive index estimation of light scattering solid particles in immersion liquid

Räty, J.; Niskanen, I.; Peiponen, K.-E.

2010-06-01

The refractive index of homogenous particle population can be determined by the so-called immersion liquid method. The idea is to find a known liquid whose refractive index matches the index of the particles. We report on a method that simultaneously obtains the refractive index of particles and that of the immersion liquid. It is based on a system using internal light reflection and Fresnel's theory. The method includes a series of straightforward reflection measurements and a fitting procedure. The validity of the method was tested with CaF2 particles. The method has applications within scientific studies of microparticles and nanoparticles or micro-organism in suspensions. It can be also be utilized in industry for the detection of the refractive index of products involving particles for the purpose of improvement of product quality.

12. Measurement of Refractive Index Using a Michelson Interferometer.

ERIC Educational Resources Information Center

Fendley, J. J.

1982-01-01

Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

13. Influences of refractive index on forward light scattering

Han, Xueshan; Shen, Jianqi; Yin, Pengteng; Hu, Shiyu; Bi, Duo

2014-04-01

The influence of the relative refractive index (RRI) of the particles to the surrounding medium on the small-angle forward scattering signals is studied, based on the Mie theory, the Debye series expansion (DSE) and the Fraunhofer diffraction theory. It comes to the conclusion that, for small particles, the influence on the forward scattering signals is mainly due to the part of the internal reflection if the RRI deviates from 1. However, when the RRI is close to 1, the effects on the forward scattered light from both the surface reflection and the internal reflection are great. For large particles, the contributions of the surface reflection and the internal reflection to the forward scattered light are much weaker than the diffraction when the RRI deviates from 1. When the RRI is very close to 1, the effects on the forward scattered light from the internal reflection are great. To determine the influence of the RRI in detail, the modified Chahine algorithm is employed. The inversion results cannot give the correct PSD for small particles if the RRI used in the inversion procedure does not match the one of the sample. The result shows that it is necessary to determine the exact value of the RRI and one should avoid the RRI close to 1 by choosing dispersion with proper refractive index in practice.

14. Complex refractive index of Martian dust - Wavelength dependence and composition

NASA Technical Reports Server (NTRS)

Pang, K.; Ajello, J. M.

1977-01-01

The size distribution and complex refractive index of Martian dust-cloud particles observed in 1971 with the Mariner 9 UV spectrometer are determined by matching the observed single-scattering albedo and phase function with Mie-scattering calculations for size distributions of spheres. Values of phase function times single-scattering albedo are presented for 12 wavelength intervals in the range from 190 to 350 nm, and best-fit values are obtained for the absorption index. It is found that the absorption index of the dust particles increases with decreasing wavelength from 350 to about 210 nm and then drops off shortward of 210 nm, with a structural shoulder occurring in the absorption spectrum between 240 and 250 nm. A search for a candidate material that can explain the strong UV absorption yields TiO2, whose anatase polymorph has an absorption spectrum matching that of the Martian dust. The TiO2 content of the dust particles is estimated to be a few percent or less.

15. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

2016-04-01

Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

16. Observation of acoustic Dirac-like cone and double zero refractive index

PubMed Central

Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

2017-01-01

Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre. PMID:28317927

17. Observation of acoustic Dirac-like cone and double zero refractive index.

PubMed

Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

2017-03-20

Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre.

18. Observation of acoustic Dirac-like cone and double zero refractive index

Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

2017-03-01

Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre.

19. Refractive index and temperature nanosensor with plasmonic waveguide system

Kong, Yan; Qiu, Peng; Wei, Qi; Quan, Wei; Wang, Shouyu; Qian, Weiying

2016-07-01

A surface plasmon polariton sensor consisting of two metal-insulator-metal waveguides and a transverse rectangular resonator is proposed. Both refractive index and temperature sensing characteristics are analyzed by investigating the transmission spectra which demonstrates that the transmission peak wavelength shifting satisfies linear relation with environmental refractive index and temperature, respectively. The proposed design provides high refractive index and temperature sensitivity as 3.38×106%/RIU and 82%/K estimated by integrated response of the sensor, and owns the potentials for high-throughput array sensing. It is believed that the nanoscale sensor can be applied in spot detection for high speed multi-parameter sensing and accurate measurements.

20. Determination of the refractive index of paper with clearing agents

Fabritius, Tapio; Saarela, Juha; Myllyla, Risto

2006-01-01

The refractive index of paper was determined by measuring the propagation delay of photons in optically cleared paper boards. The determination was based on the assumption that photon propagation delay achieves minimum value as the paper is optimally cleared. The measured paper sheets was made from elemental chlorine-free market pulp, i.e. fully bleached, unbeaten, softwood kraft pulp. Nine different clearing agents with a refraction index between 1.329 and 1.741 were eLuperimented with. According to the streakmem measurements, the refractive index of the test paper was 1.557.

1. Analyzing refractive index changes and differential bending in microcantilever arrays

Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph

2008-08-01

A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.

2. Determining the Thickness and Refractive Index of a Mirror

ERIC Educational Resources Information Center

Uysal, Ahmet

2010-01-01

When a laser beam reflects from a back surface glass mirror and falls on a screen, a pattern of discrete bright spots is created by partial reflection and refraction of the light at the air-glass interface and reflection at the mirror surface (Fig. 1). This paper explains how this phenomenon can be used to determine the refractive index and the…

3. Spatially Varying Index of Refraction: An Open Ended Undergraduate Topic.

ERIC Educational Resources Information Center

Krueger, David A.

1980-01-01

Presents an experiment on the bending of light in a medium with a continuously varying index of refraction. Several theoretical approaches for the analysis of this experiment, designed for college physics students, are also presented. (HM)

4. Resolving controversy of unusually high refractive index of a tubulin

Krivosudský, O.; Dráber, P.; Cifra, M.

2017-02-01

The refractive index of a tubulin is an important parameter underlying fundamental electromagnetic and biophysical properties of microtubules – protein fibers essential for several cell functions including cell division. Yet, the only experimental data available in the current literature show values of the tubulin refractive index (n=2.36\\text{--}2.90) which are much higher than what the established theories predict based on the weighted contribution of the polarizability of individual amino acids constituting the protein. To resolve this controversy, we report here modeling and rigorous experimental analysis of the refractive index of a purified tubulin dimer. Our experimental data revealed that the refractive index of the tubulin is n=1.64 at wavelength 589 nm and 25 °C, that is much closer to the values predicted by the established theories than what the earlier experimental data provide.

5. Miniature interferometer for refractive index measurement in microfluidic chip

Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli

2012-12-01

The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.

6. Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials.

PubMed

Ciddor, Philip E

2002-04-20

The author's recent studies of the refractive index of air are extended, and several assumptions made therein are further examined. It is shown that the alternative dispersion equations for CO2, which are due to Edlen [Metrologia 2, 71 (1966)] and Old et al. [J. Opt. Soc. Am. 61, 89 (1971)] result in differences of less than 2 x 10(-9) in the phase refractive index and less than 3 x 10(-9) in the group refractive index for current and predicted concentrations of CO2. However, because the dispersion equation given by Old et al. is consistent with experimental data in the near infrared, it is preferable to the equation used by Edlen, which is valid only in the ultraviolet and the visible. The classical measurement by Barrell and Sears [Philos. Trans. R. Soc. London Ser. A 238, 1 (1939)] on the refractivity of moist air is shown to have some procedural errors in addition to the one discussed by Birch and Downs [Metrologia 30, 155 (1993)]. It is shown that for normal atmospheric conditions the higher refractivity virial coefficients related to the Lorentz-Lorenz relation are adequately incorporated into the empirically determined first refractivity virial. As a guide to users the practical limits to the calculation of the refractive index of the atmosphere that result from the uncertainties in the measurement of the various atmospheric parameters are summarized.

Hu, Changming; Wang, Xiang; Cai, Lingcang; Liu, Cangli

2013-06-01

We study K9 glass refraction index under shock loading conducted on powder gun,all experimental tests are plate impact loading. The impact veceloty range from 300m/s to 1200m/s, and the measure method is laser interferometer Photon Doppler Velocimetry(PDV) to measure the particle velocity both at the impact interface and free surface, The shock pressure from 2 GPa to 8 GPa, values for refraction are found from velocity corrections that must be made to account for refraction-index changes in the K9 glass due to shock wave motion. Experiment results show that refraction-index of K9 glass changes with the shock pressure in line relations, it can be as measure window to study the interesting materials under 10 GPa during the shock loading.

8. Photoresist Exposure Parameter Extraction from Refractive Index Change during Exposure

Sohn, Young-Soo; Sung, Moon-Gyu; Lee, Young-Mi; Lee, Eun-Mi; Oh, Jin-Kyung; Byun, Sung-Hwan; Jeong, Yeon-Un; Oh, Hye-Keun; An, Ilsin; Lee, Kun-Sang; Park, In-Ho; Cho, Joon-Yeon; Lee, Sang-Ho

1998-12-01

The refractive indices of photoresist are usually measured byan ellipsometer or spectrophotometer, but the values are limited to pre-exposure. It is known thatthe real and imaginary indices are changed during the exposure.But there is little report on these variations since itis difficult to measure this refractive index change at deep ultraviolet. The DillABC parameters show a significant variation with the resist and substrate thicknessas well as the experimental conditions.A method is suggested to extract the parameters from the refractive index changes.We can get the refractive index change and extract the Dill ABC exposure parameters from that.The multiple thin film interference calculation is used to fit the measured transmittance data.The results of our experiments and calculations for several resists including193 nm chemically amplified resists are compared with other methods.The results are agreed well with the full multilayer thin film simulation.

9. Three-dimensional optical metamaterial with a negative refractive index.

PubMed

Valentine, Jason; Zhang, Shuang; Zentgraf, Thomas; Ulin-Avila, Erick; Genov, Dentcho A; Bartal, Guy; Zhang, Xiang

2008-09-18

Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.

10. Experimental determination of refractive index of condensed reflectin in squid iridocytes

PubMed Central

Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

2014-01-01

Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs. PMID:24694894

11. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

SciTech Connect

Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan; Kumar, Rajesh

2015-02-15

Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm

12. Water absorption in a refractive index model for bacterial spores

Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.

2009-05-01

The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.

13. Negative light refraction in a gradient medium with ultrasound-modulated refractive index

Naimi, E. K.; Vekilov, Yu. Kh.

2015-01-01

The conditions of the formation of a spatially ordered optical structure with an ultrasound-modulated refractive index in a gradient medium have been considered. It has been shown that the excitation of a standing ultrasonic wave in the medium creates a structure consisting of trajectories of separate light beams, which is a superlattice of the "dynamic 4D photonic crystal." Regions corresponding to negative light refraction have been revealed in beam trajectories. Possible fields of application of such structures have been discussed.

14. Optofluidic whispering gallery mode microcapillary lasers for refractive index sensing

François, Alexandre; Riesen, Nicolas; Gardner, Kristy; Monro, Tanya M.; Meldrum, Al

2016-12-01

Whispering gallery modes (WGMs) allow for remarkable refractive index sensing performance with extremely low detection limits, and thus have found use in various emerging label free biosensing applications. Among the different types of resonators which have been studied, microcapillaries have the unique property of having the evanescent fields extend into and sample the medium inside the resonator, which is particularly interesting because the resonator itself serves as a microfluidic channel. Here, lasing of the WGMs in fluorescent microcapillaries is demonstrated for the first time, and their application to refractive index sensing is investigated. The laser gain medium used here is embedded inside a high refractive index polymer coating deposited onto the inner surface of the capillary. Lasing can only be realized for thick polymer coatings (in this case >= 800 nm), with higher Q factor but also stronger confinement of the propagating wave, which lowers the refractive index sensitivity compared to non-lasing capillaries which can have thinner polymer coatings. We however find that the large improvement in signal-to-noise ratio and Q factor realized upon lasing more than compensates for the reduced sensitivity, resulting in an order-of-magnitude improvement in the detection limit for refractive index sensing.

15. On the anodic aluminium oxide refractive index of nanoporous templates

Hierro-Rodriguez, A.; Rocha-Rodrigues, P.; Valdés-Bango, F.; Alameda, J. M.; Jorge, P. A. S.; Santos, J. L.; Araujo, J. P.; Teixeira, J. M.; Guerreiro, A.

2015-11-01

In the present study, we have determined the intrinsic refractive index of anodic aluminium oxide, which is originated by the formation of nanoporous alumina templates. Different templates have been fabricated by the conventional two-step anodization procedure in oxalic acid. Their porosities were modified by chemical wet etching allowing the tuning of their effective refractive indexes (air-filled nanopores  +  anodic aluminium oxide). By standard spectroscopic light transmission measurements, the effective refractive index for each different template was extracted in the VIS-NIR region. The determination of the intrinsic anodic aluminium oxide refractive index was performed by using the Maxwell-Garnett homogenization theory. The results are coincident for all the fabricated samples. The obtained refractive index (~1.55) is quite lower (~22%) than the commonly used Al2O3 handbook value (~1.75), showing that the amorphous nature of the anodic oxide structure strongly conditions its optical properties. This difference is critical for the correct design and modeling of optical plasmonic metamaterials based on anodic aluminium oxide nanoporous templates.

16. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

2016-02-01

We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

17. Dirac directional emission in anisotropic zero refractive index photonic crystals.

PubMed

He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

2015-08-14

A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

18. Refractive index of carcinogen-induced rat mammary tumours

Zysk, Adam M.; Chaney, Eric J.; Boppart, Stephen A.

2006-05-01

Near-infrared optical techniques for clinical breast cancer screening in humans are rapidly advancing. Based on the computational inversion of the photon diffusion process through the breast, these techniques rely on optical tissue models for accurate image reconstruction. Recent interest has surfaced regarding the effect of refractive index variations on these reconstructions. Although many data exist regarding the scattering and absorption properties of normal and diseased tissue, no measurements of refractive index appear in the literature. In this paper, we present near-infrared refractive index data acquired from N-methyl-N-nitrosourea-induced rat mammary tumours, which are similar in pathology and disease progression to human ductal carcinoma. Eight animals, including one control, were employed in this study, yielding data from 32 tumours as well as adjacent adipose and connective tissues.

19. Refractive index sensor based on tapered multicore fiber

Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Pei, Li; Li, Chao; Lin, Heng

2017-01-01

A novel refractive index (RI) sensor based on middle-tapered multicore fiber (TMCF) is proposed and experimentally demonstrated. The sensing structure consists of two singlemode fibers (SMF) and simply spliced a section tapered four-core fiber between them. The light injected from the SMF into the multicore fiber (MCF) will excite multiple cladding mode, and interference between these modes can be affected by the surrounding refractive index (SRI), which also dictates the wavelength shift of the transmission spectrum. Our experimental investigations achieved a sensitivity around 171.2 nm/RIU for a refractive index range from 1.3448 to 1.3774. All sensors fabricated in this paper show good linearity in terms of the spectral wavelength shift versus changes in RI.

20. Photonic crystal fiber tip interferometer for refractive index sensing.

PubMed

Mileńko, Karolina; Hu, Dora Juan Juan; Shum, Perry Ping; Zhang, Taishi; Lim, Jun Long; Wang, Yixin; Woliński, Tomasz R; Wei, Huifeng; Tong, Weijun

2012-04-15

In this paper we present an interferometer based on photonic crystal fiber (PCF) tip ended with a solid silica-sphere for refractive index sensing. The sensor is fabricated by splicing one end of the holey PCF to a single mode fiber (SMF) and applying arc at the other end to form a solid sphere. The sensor has been experimentally tested for refractive index and temperature sensing by monitoring its wavelength shift. Measurement results show that the sensor has the resolution of the order of 8.7×10(-4) over the refractive index range of 1.33-1.40, and temperature sensitivity of the order of 10 pm/°C in the range of 20-100 °C.

1. Enhanced Nonlinear Refractive Index in ɛ -Near-Zero Materials

Caspani, L.; Kaipurath, R. P. M.; Clerici, M.; Ferrera, M.; Roger, T.; Kim, J.; Kinsey, N.; Pietrzyk, M.; Di Falco, A.; Shalaev, V. M.; Boltasseva, A.; Faccio, D.

2016-06-01

New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ɛ -near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n2) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.

2. Exposed core microstructured optical fiber Bragg gratings: refractive index sensing.

PubMed

Warren-Smith, Stephen C; Monro, Tanya M

2014-01-27

Bragg gratings have been written in exposed-core microstructured optical fibers for the first time using a femtosecond laser. Second and third order gratings have been written and both show strong reflectivity at 1550 nm, with bandwidths as narrow as 60 pm. Due to the penetration of the guided field outside the fiber the Bragg reflections are sensitive to the external refractive index. As different modes have different sensitivities to refractive index but the same temperature sensitivity the sensor can provide temperature-compensated refractive index measurements. Since these Bragg gratings have been formed by physical ablation, these devices can also be used for high temperature sensing, demonstrated here up to 800°C. The fibers have been spliced to single mode fiber for improved handling and integration with commercial interrogation units.

3. Empirical modelling to predict the refractive index of human blood

Yahya, M.; Saghir, M. Z.

2016-02-01

Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient’s condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

4. Development of High Refractive Index Conjugated Materials

Graham, Matthew; Jin, Shi; Cheng, Stephen Z. D.

2007-03-01

The goal of this project is to fabricate a polymeric material with a complete 3-D PBG, to bring the tailorable physical, electrical, and optical properties of polymeric materials to 3-D PBG materials. Because of its conjugated nature and the presence of a heavy sulfur atom in its repeat unit, poly(thiophene) (PT) is predicted to have one of the highest polymeric refractive indices, but the reported n values for PT are 1.4 at 633 nm. This discrepancy is because the potential needed to electrosynthesize PT, the only method available to synthesize thick and high quality PT films, is higher than its degradation potential. It was found that by polymerizing thiophene with an optimized monomer concentration, proton trap concentration, and reaction temperature in a strong aprotic Lewis acid solvent, the polymerization potential could be reduced below the degradation potential of PT. The resultant PT film had a significantly elevated n Photonic templates were then constructed using a combination of Colvin's method^ with monodisperse spheres and mechanical annealing. High n PT was used to infiltrate the templates, and the templates were removed leaving a polymeric inverse opal with the possibility of a complete 3-D PBG.

5. Dual interferometer system for measuring index of refraction

Goodwin, Eric Peter

The optical power of a lens is determined by the surface curvature and the refractive index, n. Knowledge of the index is required for accurate lens design models and for examining material variations from sample to sample. The refractive index of glass can be accurately measured using a prism spectrometer, but measuring the index of soft contact lens materials presents many challenges. These materials are non-rigid, thin, and must remain hydrated in a saline solution during testing. Clearly an alternative to a prism spectrometer must be used to accurately measure index. A Dual Interferometer System has been designed, built and characterized as a novel method for measuring the refractive index of transparent optical materials, including soft contact lens materials. The first interferometer is a Low Coherence Interferometer in a Twyman-Green configuration with a scanning reference mirror. The contact lens material sample is placed in a measurement cuvette, where it remains hydrated. By measuring the locations of the multiple optical interfaces, the physical thickness t of the material is measured. A new algorithm has been developed for processing the low coherence signals obtained from the reflection at each optical interface. The second interferometer is a Mach-Zehnder interferometer with a tunable HeNe laser light source. This interferometer measures the optical path length (OPL) of the test sample in the cuvette in transmission as a function of five wavelengths in the visible spectrum. This is done using phase-shifting interferometry. Multiple thickness regions are used to solve 2pi phase ambiguities in the OPL. The outputs of the two interferometers are combined to determine the refractive index as a function of wavelength: n(lambda) = OPL(lambda)/t. Since both t and OPL are measured using a detector array, n is measured at hundreds of thousands of data points. A measurement accuracy of 0.0001 in refractive index is achieved with this new instrument, which is

6. Quantum dot-embedded microspheres for remote refractive index sensing

PubMed Central

Pang, Shuo; Beckham, Richard E.; Meissner, Kenith E.

2008-01-01

We present a refractometric sensor based on quantum dot-embedded polystyrene microspheres. Optical resonances within a microsphere, known as whispering-gallery modes (WGMs), produce narrow spectral peaks. For sensing applications, spectral shifts of these peaks are sensitive to changes in the local refractive index. In this work, two-photon excited luminescence from the quantum dots couples into several WGMs within the microresonator. By optimizing the detection area, the spectral visibility of the WGMs is improved. The spectral shifts are measured as the surrounding index of the refraction changes. The experimental sensitivity is about five times greater than that predicted by the Mie theory. PMID:19488403

7. Ferromagnetic metamaterial with tunable negative index of refraction

Zou, Da-yong; Jiang, Ai-min; Wu, Rui-xin

2010-01-01

We investigate the index of refraction of the ferromagnetic metamaterial, which consists of periodic layered ferrite and semiconductor or metallic mesh. We find that the metamaterial has the negative index; the frequency range and magnitude of the negative index are tunable in applied magnetic fields. The frequency range of the negative index shifts to higher frequencies as the applied magnetic fields increase. The permeability and permittivity of the ferrite and other component materials, as well as their thickness ratios, influence the tunable range of the negative index. It is demonstrated that ferrite-mesh structure has a much lower loss than that of a ferrite-semiconductor structure.

8. Porous Silicon Gradient Refractive Index Micro-Optics.

PubMed

Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V

2016-12-14

The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.

9. Linearly decayed evanescent optical field in planar refractive index well

Liu, Jianhua; Tao, Li

2017-04-01

Evanescent optical field with linearly decaying profile is theoretically analyzed at the critical angle of incidence in a planar structure of one dimensional refractive index well (RIW). The linearity of the evanescent field is due to the presence of the second refractive index barrier, which also shifts the position of total internal reflection (TIR) away from the critical angle. The decaying rate is determined by the refractive indices of the two barriers, as well as the width of the well. With this linearly decayed evanescent field (LDEF), various profiles across the well, for example uniform one, can be formed via appropriate combination of the LDEFs, which can promote new applications in fields of material analysis and sensing in the molecular scale.

10. A low-reflection coaxial tunable attenuator based on zero refractive index metamaterial

Zhang, Kai-Lun; Hou, Zhi-Ling; Wang, Chan-Yuan; Kong, Ling-Bao; Bian, Xin-Ming

2016-11-01

In this paper, we design a low-reflection coaxial tunable attenuator with a maximum attenuation of -50 dB by use of zero refractive index metamaterial. Almost no reflection is observed from input port of the proposed structure, due to the easily accessible impedance matching derived from the use of zero refractive index metamaterial. The relationship between attenuation and the air gap width can be well described by an equivalent circuit model. Interestingly, the ratio of input to output voltage is linearly related to the gap width due to the eliminated fringing capacitance by zero-refraction metamaterial, which makes it easy to achieve accurate calibration of the proposed attenuator. The low reflection and linear relationships enable the proposed attenuator to hold promising potential for practical applications.

11. Fiber inline Michelson interferometer fabricated by CO2 laser irradiation for refractive index sensing

Wu, Hongbin; Yuan, Lei; Zhao, Longjiang; Cao, Zhitao; Wang, Peng

2014-03-01

A compact Michelson interferometer (MI) in a single-mode fiber (SMF) is successfully formed by CO2 laser irradiation to measure refractive index (RI) values. The fiber inline MI mainly consists of two parts: one is the waist region in fiber formed by CO2 laser irradiation and the other one is the fiber tip end facet with pure gold sputter coating. Based on the MI theory, the interference signal is generate between the core mode and the cladding mode excited by the core mode at the waist region. Reflective spectra at two different interference lengths of 5mm and 15mm are given and the calculated lengths based on theory are well verified. After the measurements of matching liquids with seven different refractive indices, the RI sensitivity of the MI sample is tested of -197.3+/-19.1nm/RIU (refractive index unit), which suggests well potential application in RI sensing.

12. Unidirectional transmission using array of zero-refractive-index metamaterials

SciTech Connect

Fu, Yangyang; Xu, Lin; Hong Hang, Zhi; Chen, Huanyang

2014-05-12

In this Letter, we find that high efficient unidirectional transmission occurs for an array of prisms made of zero-refractive-index metamaterials. As a specific demonstration, we further design the device using Dirac-cone-like photonic crystals. The device can function for a broadband of spectrum. Numerical simulations are performed to verify the one-way wave functionality.

13. Refractive index and its impact on pseudophakic dysphotopsia

PubMed Central

Radmall, Bryce R; Floyd, Anne; Oakey, Zack; Olson, Randall J

2015-01-01

Purpose It has been shown that the biggest dissatisfier for uncomplicated cataract surgery patients is pseudophakic dysphotopsia (PD). While edge design of an intraocular lens (IOL) impacts this problem, refractive index is still controversial as to its impact. This retrospective cohort study was designed to determine the role of increasing refractive index in PD. Patients and methods This study was conducted at the John A. Moran Eye Center, University of Utah, USA. A retrospective chart review identified patients who received one of two hydrophobic acrylic single piece IOLs (AcrySof WF SP [SN60WF] or Tecnis SP [ZCB00]), which differed mainly by refractive index (1.55 versus 1.47). Eighty-seven patients who had received implantation of a one-piece hydrophobic acrylic IOL were enrolled. Patients were included if the surgery had been uncomplicated and took place at least a year before study participation. All eligible patients had 20/20 best corrected vision, without any disease known to impact visual quality. In addition to conducting a record review, the enrolled patients were surveyed for PD, using a modified National Eye Institute Visual Function questionnaire, as well as for overall satisfaction with visual quality. Results Statistical analysis demonstrated no difference between the two cohorts regarding PD, general visual function, and overall visual satisfaction. Conclusion The study suggests that with the two IOLs assessed, increasing the refractive index does not increase incidence of PD or decrease overall visual satisfaction. PMID:26229427

14. A Widely Tunable Refractive Index in a Nanolayered Photonic Material

DTIC Science & Technology

2004-05-03

ethylene - octene ! ~EO!, and the glassy polymer, polycarbonate ~PC! were fabricated using a con- tinuous multilayer co-extrusion process.13 PC possesses...both a substantially larger refractive index and a substantially larger elastic modulus than poly~ ethylene - octene !. Three composite films were

15. Nano-imprint gold grating as refractive index sensor

Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

2016-05-01

Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

16. Structures with negative index of refraction

DOEpatents

Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

2011-11-08

The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

17. An updated equation for the refractive index of air

Li, Wenchen; Dai, Zuoxiao; Dai, Ning; Chen, Ren; Sun, Xiaojie; Xia, Xiang; Li, Tao; Ma, Bei; Sheng, Hao

2014-12-01

Laser has been widely used in spectroscopic and metrological measurement. High-precision laser metrology is affected by the refractive index of air. In order to apply the algorithm for the refractive index of air in some situation where low calculation complexity and high-precision are needed, the algorithm of the refractive index of Rueger is updated. As the errors of Rueger's algorithm are mainly affected by temperature, humidity, and the concentration of carbon dioxide in the atmosphere as well as laser wavelength, we do some revisions about these effects of the factors of atmosphere in Rueger's algorithm. The conditions of standard air is redefined in this paper because of the average concentration of carbon dioxide in the atmosphere has been changed in the past few decades. As the concentration of carbon dioxide in the air is not constant, the effect of carbon dioxide on the refractive index of air is taken into consideration in the updated algorithm. The updated algorithm adapts to the real atmosphere well. The effects of dry air and humid air on the algorithm are also corrected, and the refractive index of air calculated by the updated algorithm is much closer to that of Philip E.Ciddor's algorithm defined as reference algorithm in the paper because of its high-precision. The performance of the updated algorithm is also analyzed in this paper. It is compared to that of the reference algorithm and the real measured data. Comparing results show that the performance of the algorithm has been improved after the correction. Comparing to the reference algorithm, the performance of the updated algorithm is a little bit lower, but the updated algorithm is much simpler and easier to be applied. Comparing to Rueger's algorithm, the performance of the updated algorithm is much higher and the complexity of the updated algorithm increases very small. The updated algorithm meets low calculation complexity and high-precision requirements.

18. Temperature-dependent Refractive Index of Silicon and Germanium

NASA Technical Reports Server (NTRS)

2006-01-01

Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

19. Modelling refractive index changes due to molecular interactions

Varma, Manoj

2016-03-01

There are a large number of sensing techniques which use optical changes to monitor interactions between molecules. In the absence of fluorophores or other labels, the basic signal transduction mechanism relies on refractive index changes arising from the interactions of the molecules involved. A quantitative model incorporating molecular transport, reaction kinetics and optical mixing is presented which reveals important insights concerning the optimal detection of molecular interactions optically. Although conceptually simple, a comprehensive model such as this has not been reported anywhere. Specifically, we investigate the pros and cons of detecting molecular interactions in free solution relative to detecting molecular interactions on surfaces using surface bound receptor molecules such as antibodies. The model reveals that the refractive index change produced in surface based sensors is 2-3 orders of magnitude higher than that from interactions in free solution. On the other hand, the model also reveals that it is indeed possible to distinguish specific molecular interactions from non-specific ones based on free-solution bulk refractometry without any washing step necessary in surface based sensors. However, the refractive index change for free solution interactions predicted by the model is smaller than 10-7 RIU, even for large proteins such as IgG in sufficiently high concentrations. This value is smaller than the typical 10-6 RIU detection limit of most state of the art optical sensing techniques therefore requiring techniques with substantially higher index sensitivity such as Back Scattering Interferometry.

20. High-precision diode-laser-based temperature measurement for air refractive index compensation

SciTech Connect

Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

2011-11-01

We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

1. Refractive Index Compensation in Over-Determined Interferometric Systems

PubMed Central

Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

2012-01-01

We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup. PMID:23202037

2. Refractive index compensation in over-determined interferometric systems.

PubMed

Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

2012-10-19

We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

3. The whistler mode refractive index as a function of gyrofrequency

SciTech Connect

Albert, J. M.

2011-08-15

The refractive index for a constant-frequency whistler mode wave in an electron-proton plasma is considered as a function of position, through the local gyrofrequencies {Omega}{sub e,i}. The full cold plasma dispersion relation is used. The wave frequency can take any value up to the smaller of {Omega}{sub e} and the plasma frequency {omega}{sub pe}, but {omega}{sub pe} is allowed to take any fixed value, as is the wavenormal angle. It is rigorously established that the refractive index is a decreasing function of {Omega}{sub e}. One application of this is to finding locations of Landau and cyclotron resonances, to evaluate the effects of whistler mode waves on radiation belt electrons.

4. A microstrip tunable negative refractive index metamaterial and phase shifter

He, P.; Gao, J.; Marinis, C. T.; Parimi, P. V.; Vittoria, C.; Harris, V. G.

2008-11-01

A tunable negative refractive index metamaterial and miniature phase shifter have been designed and fabricated in a microstrip configuration for applications in radio frequency integrated circuits. The metamaterial consists of plasmonic copper wires and yttrium iron garnet slabs having a low insertion loss of 5dB at the center of the transmission band. The yttrium iron garnet material enables the magnetic field tuning of the negative refractive index in a dynamic frequency band from 7.0to11.0GHz. The insertion phase can be tuned by 45° continuously by varying the bias field from 3.8to4.6kOe at 9.0GHz.

5. INDEX OF REFRACTION OF SHOCK LOADED SODA-LIME GLASS

SciTech Connect

Alexander, C. S.

2009-12-28

Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.

6. Correction of group refraction index based on pulse trains interference

Wei, Dong; Aketagawa, Masato

2015-02-01

We propose a new concept for an unconventional type of two-color method for interferometry-based length measurements based on the adjacent pulse repetition interval length (APRIL), which is the physical length associated with the pulse repetition period. We demonstrate by numerical simulations that if the wavelength-based two-color method can eliminate the inhomogeneous disturbance of effects caused by the phase refractive index, then the APRIL-based two-color method can eliminate the air turbulence of errors induced by the group refractive index. We show that our analysis will benefit the pulse-laser-based two-color method, which secures traceability to the definition of the meter.

7. Nonresonant Transient Refractive Index Spectroscopy in Semiconductor Quantum Dots

Zharkov, D. K.; Leontyev, A. V.; Shmelev, A. G.; Nikiforov, V. G.; Lobkov, V. S.

2015-09-01

We report transient refractive index change in semiconductor nanoparticles dispersed in polymethylmethacrylate matrix via pump-probe experiment. At lower pump intensities the detected signal consists of the pulse autocorrelation-shaped part and another part delayed by 300 fs. The latter's relative intensity depends on the pump level. However in CdS monocrystal the detected signal was found to lack this second feature completely.

8. Fiber Optic-Based Refractive Index Sensing at INESC Porto

PubMed Central

Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

2012-01-01

A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

9. Measuring Refractive Index Using the Focal Displacement Method (Postprint)

DTIC Science & Technology

2014-05-01

measurements of wafer- shaped InAs and InSb,” Appl. Opt. 47, 164–168 (2008). 6. H. J. Choi , H. H. Lim, H. S. Moon, T. B. Eom, J. J. Ju, and M. Cha...coefficients of germanium and silicon,” Appl. Opt. 15, 2348–2351 (1976). 13. P. Hlidek, J. Bok , J. Franc, and R. Grill, “Refractive index of CdTe: spectral and

10. Refractive Index Measurement of Fibers Through Fizeau Interferometry

DTIC Science & Technology

2013-08-01

3 Table 2. Lasers used in interferometer for fiber refractive index measurement. Manufacturer Model Wavelength Laserglow Technologies , Inc...1.4605, well within the acceptable range of error. A similarly precise listed value for S-2 glass was not found, but the manufacturer lists the...internally manufactured fibers. The interferometer is shown to produce accurate, repeatable results for fibers with a cross-sectional area of over

11. Ultrafast refractive index control of a terahertz graphene metamaterial.

PubMed

Lee, Seung Hoon; Choi, Jeongmook; Kim, Hyeon-Don; Choi, Hyunyong; Min, Bumki

2013-01-01

Modulation of the refractive index of materials is elementary, yet it is crucial for the manipulation of electromagnetic waves. Relying on the inherent properties of natural materials, it has been a long-standing challenge in device engineering to increase the index-modulation contrast. Here, we demonstrate a significant amount of ultrafast index modulation by optically exciting non-equilibrium Dirac fermions in the graphene layer integrated onto a high-index metamaterial. Furthermore, an extremely-large electrical modulation of refractive index up to Δn ~ -3.4 (at 0.69 THz) is achieved by electrical tuning of the density of the equilibrium Dirac fermion in the graphene metamaterial. This manifestation, otherwise remaining elusive in conventional semiconductor devices, fully exploits the characteristic ultrafast charge relaxation in graphene as well as the strong capacitive response of the metamaterial, both of which enable us to drastically increase the light-matter interaction of graphene and the corresponding index contrast in the graphene metamaterials.

12. Determining index of refraction from polarimetric hyperspectral radiance measurements

Martin, Jacob A.; Gross, Kevin C.

2015-09-01

Polarimetric hyperspectral imaging (P-HSI) combines two of the most common remote sensing modalities. This work leverages the combination of these techniques to improve material classification. Classifying and identifying materials requires parameters which are invariant to changing viewing conditions, and most often a material's reflectivity or emissivity is used. Measuring these most often requires assumptions be made about the material and atmospheric conditions. Combining both polarimetric and hyperspectral imaging, we propose a method to remotely estimate the index of refraction of a material. In general, this is an underdetermined problem because both the real and imaginary components of index of refraction are unknown at every spectral point. By modeling the spectral variation of the index of refraction using a few parameters, however, the problem can be made overdetermined. A number of different functions can be used to describe this spectral variation, and some are discussed here. Reducing the number of spectral parameters to fit allows us to add parameters which estimate atmospheric downwelling radiance and transmittance. Additionally, the object temperature is added as a fit parameter. The set of these parameters that best replicate the measured data is then found using a bounded Nelder-Mead simplex search algorithm. Other search algorithms are also examined and discussed. Results show that this technique has promise but also some limitations, which are the subject of ongoing work.

13. Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation

PubMed Central

Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi

2013-01-01

A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10−3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor. PMID:23812346

14. Organic plasmon-emitting diodes for detecting refractive index variation.

PubMed

Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi

2013-06-28

A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10-3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor.

15. 3D refractive index measurements of special optical fibers

Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

2016-09-01

A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

16. Evolution of graded refractive index in squid lenses.

PubMed

Sweeney, Alison M; Des Marais, David L; Ban, Yih-En Andrew; Johnsen, Sönke

2007-08-22

A lens with a graded refractive index is required for vision in aquatic animals with camera-type eyes. This optical design entails a radial gradient of protein density, with low density in external layers and high density in internal layers. To maintain the optical stability of the eye, different material properties are required for proteins in different regions of the lens. In low-density regions of the lens where slight protein aggregation causes significant light scattering, aggregation must be minimized. Squid lens S-crystallin proteins are evolutionarily derived from the glutathione S-transferase protein family. We used biochemistry, optical modelling and phylogenetics to study the evolution and material properties of S-crystallins. S-crystallins are differentially expressed in a radial gradient, suggesting a role in refractive index. This gradient in S-crystallin expression is correlated with their evolutionary history and biochemistry. S-crystallins have been under positive selection. This selection appears to have resulted in stabilization of derived S-crystallins via mutations in the dimer interface and extended electrostatic fields. These derived S-crystallins probably cause the glassy organization and stability of low refractive index lens layers. Our work elucidates the molecular and evolutionary mechanisms underlying the production and maintenance of camera-like optics in squid lenses.

17. A simple optical probing technique for nonlinearly induced refractive index

Banerjee, Partha; Abeywickrema, Ujitha

2013-09-01

Self phase modulation is a nonlinear effect that is observed when a laser beam is focused on to a high-absorbing thermal medium. A regular tea sample in a plastic cuvette is used as the nonlinear absorbing sample. The change in the refractive index of the medium occurs due to the heat generated by the focused pump beam, which in turn changes the refractive index. In this paper, self phase modulation is investigated in different ways. An Ar-Ion laser of 514 nm is used as the pump beam and a 632 nm He-Ne laser is used as the probe beam. The probe beam is introduced from the opposite side of the pump beam. Ring patterns are observed from the each side of the sample. Regular far field ring patterns are observed from the pump beam, and two sets of rings are observed with the probe beam. The behaviors of these inner and outer rings are monitored for different pump powers. The steady state heat equation is solved to obtain an exact solution for the radial heat distribution and far field ring patterns are simulated using the Fresnel-Kirchhoff diffraction integral. Ring patterns are theoretically explained using simulations results, and compared with experimental observations. Finally, an interferometric setup using the low power He-Ne laser is also used to determine the induced change in refractive index. Results are compared with those obtained directly from self-phase modulation and from the probe beam method.

18. Microvolume index of refraction determinations by interferometric backscatter

Bornhop, Darryl J.

1995-06-01

A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

19. Refractive index of glass and its dipersion for visible light.

SciTech Connect

Smith, D. Y.; Karstens, W.

2010-01-01

The classification of optical glass and empirical relations between the refractive index and its dispersion are discussed in terms of moments of the glass's IR and UV absorption spectra. The observed linear dependence of index on dispersion within glass families is shown to arise primarily from the approximately linear superposition of the electronic absorptions of glass former and glass modifiers. The binary classification into crown and flint glasses is also based primarily on electronic spectra: Crown glasses are 'wide-gap' materials with excitation energies greater than {approx}12.4 eV, while flint glasses are their 'narrow-gap' counterpart.

20. A numerical method for determining refractive index of a glass sample from its implicit transcendental function

Ince, R.; Sınır, E.; Feeney, M.; Yükselici, M. H.; Ince, A. T.

2008-07-01

The refractive index of a glass sample was determined from an implicit function of its optical path within the sample arm of a Michelson interferometer. On rotation of the sample from normal incidence, the light beam suffers increasing refraction, causing the optical path for air to decrease whilst that for the glass sample increases. This is observed as a shift in the number of fringes, which were captured and counted in real time on a computer, as rotation proceeded. The angle of rotation and the fringe shift were entered into an implicit function of optical path versus refractive index written to an Excel worksheet. A refractive index matching the wavelength of the He-Ne laser light source was read-off to three decimal places. A new source of uncertainty has been identified, misalignment on a micrometer scale of the laser normal to the sample surface. Whilst driving the sample to find normal incidence a finite angular region of insensitivity (dead space) occurs due to misalignment of the laser normal to the sample surface by a few micrometers. A linearization technique was employed to compensate for this offset and hence reduce its uncertainty contribution.

1. Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses

Ji, Shanzuo; Yin, Kezhen; Mackey, Matthew; Brister, Aaron; Ponting, Michael; Baer, Eric

2013-11-01

A nanolayered polymer films approach to designing and fabricating gradient refractive index (GRIN) lenses with designer refractive index distribution profiles and an independently prescribed lens surface geometry have been demonstrated to produce a new class of optics. This approach utilized nanolayered polymer materials, constructed with polymethylmethacrylate and a styrene-co-acrylonitrile copolymer with a tailorable refractive index intermediate to bulk materials, to fabricate discrete GRIN profile materials. A process to fabricate nanolayered polymer GRIN optics from these materials through thermoforming and finishing steps is reviewed. A collection of technology-demonstrating previously reported nanolayered GRIN case studies is presented that include: (1) the optical performance of a f/# 2.25 spherical GRIN plano-convex singlet with one quarter (2) the weight of a similar BK7 lens and a bio-inspired aspheric human eye GRIN lens. Original research on the fabrication and characterization of a Luneburg inspired GRIN ball lens is presented as a developing application of the nanolayered polymer technology.

2. Foldable antibacterial acrylic intraocular lenses of high refractive index.

PubMed

Parra, F; Vázquez, B; Benito, L; Barcenilla, J; San Román, J

2009-11-09

Hydrophilic copolymers with high refractive index and bactericide properties based on quaternary ammonium salts monomers and methacrylates bearing benzothiazole moieties have been developed for application as foldable intraocular lenses. Composition of the systems was adjusted to get materials with optimized flexibility, wettability, and refractive properties. All the materials have been characterized in terms of optical properties, glass transition temperature, water content, and wettability. Water contact values oscillated between 37 and 15% and refractive index values in the wet state between 1.49 and 1.53, depending on composition. Glass transition temperature interval was 63-77 degrees C. Values of surface free energy of the solid ranged from 49 to 54 mN/m, characteristic of IOL hydrogel materials. Bactericide properties of the quaternary ammonium salts methacrylates were higher than that of the benzothiazole derivative, showing inhibition halos as high as 23-25 mm in antibiogram tests against S. epidermidis and P. aeruginosa , strains found in the ocular cavity and responsible for most postsurgical endolphthalmitis. Biocompatibility of the systems was evaluated in cell cultures using human fibroblasts. Cellular viability was higher than 90%, and close to 100% in many cases, for the extracts of selected formulations collected at different periods of time.

3. Determining a fluorophore's transition dipole moment from fluorescence lifetime measurements in solvents of varying refractive index.

PubMed

Chung, Pei-Hua; Tregidgo, Carolyn; Suhling, Klaus

2016-11-11

The transition dipole moment of organic dyes PM546 and rhodamine 123 is calculated from fluorescence lifetime measurements in solutions of different refractive index. A model proposed by Toptygin et al (2002 J. Phys. Chem. B 106 3724-34) provides a relationship between the radiative rate constant and refractive index of the solvent, and allows the electronic transition dipole moments to be found: it is (7.1  ±  1.1) D for PM546 which matches that found in the literature, and (8.1  ±  0.1) D for rhodamine 123. Toptygin's model goes further in predicting the shape of the fluorescent dye and here we predict the shape of PM546 and rhodamine 123 to be ellipsoidal.

4. Imaging based refractometer for hyperspectral refractive index detection

DOEpatents

Baba, Justin S.; Boudreaux, Philip R.

2015-11-24

Refractometers for simultaneously measuring refractive index of a sample over a range of wavelengths of light include dispersive and focusing optical systems. An optical beam including the range of wavelengths is spectrally spread along a first axis and focused along a second axis so as to be incident to an interface between the sample and a prism at a range of angles of incidence including a critical angle for at least one wavelength. An imaging detector is situated to receive the spectrally spread and focused light from the interface and form an image corresponding to angle of incidence as a function of wavelength. One or more critical angles are identified and corresponding refractive indices are determined.

5. Measurement of optical glass refractive index free from effect of environmental temperature

Ma, Jian-rong; Hao, Qun; Zhu, Qiu-dong; Hu, Yao; Cheng, Xu

2010-08-01

A method based on measurement of critical refraction angle is proposed for measurement of optical glass refractive index independent of environment temperature. The critical refraction angle difference between the test sample and a standard refractive index block is measured first, and then the refractive index difference is obtained by a linear regression algorithm and the refractive index of the sample can be calculated from it. The requirement for environmental temperature is 25+/-5 °C , which can be easily satisfied on the production line. Compared with the non-linear algorithm used for direct measurement, this method is simpler, more efficient, and can directly get the refractive index value at standard temperature. Experimental result shows that the measurement repeatability is 1×10-5. The method can be used for fast and accurate measurement of the refractive index for the same glass material in mass production (e.g. X-cube made of K9 optical glass).

6. Extraction of complex refractive index dispersion from SPR data

Nakkach, Mohamed; Moreau, Julien; Canva, Michael

2010-02-01

Surface Plasmon Resonnance (SPR) techniques have been mostly set-up as angular reflectivity interrogation mode using quasi-monochromatic light or as spectral reflectivity interrogation mode at one given wavelength, providing information about variation of effective optical thickness ▵n.e above the metal surface. In this communication we present a dual mode sensor working both in angular and spectral interrogation modes. A white light illuminates the sensor surface and the reflectivity spectra in TE and TM polarization are measured with a spectrometer. By changing the angular coupling conditions, a complete reflectivity surface R(θ, λ) can be measured. The 2D reflectivity decrease valley is affected by both the real and imaginary part of the optical index of the dielectric medium as well as their spectral dispersion. With such experimental data set, it is possible to back calculate the dispersion of the complex refractive index of the dielectric layer. This is demonstrated using a turquoise dye doped solution. According to the Kramers-Kronig relations, the imaginary part of the refractive index for an absorbing medium is proportional to the absorption while the real part presents a large dispersion around the absorption wavelength. The reflectivity surface R(θ, λ) was measured from 500 nm to 750 nm over about 8° angular range. The whole complex refractive optical index of the doped solution, absorbing around 630 nm, was reconstructed from the SPR reflectivity experimental data, using a homemade program based on an extended Rouard method to fit the experimental angular plasmon data for each wavelength. These results show that the classical SPR technique can be extended to acquire precise spectral information about biomolecular interactions occurring on the metallic layer.

7. Optical refractive index of air: dependence on pressure, temperature and composition.

PubMed

Owens, J C

1967-01-01

The theoretical background and present status of formulas for the refractive index of air are reviewed. In supplement to Edlén's recently revised formula for relative refractivity, the density dependence of refractive index is reanalyzed. New formulas are presented for both phase and group refractive index which are more useful over a wide range of pressure, temperature, and composition than any presently available. The application of the new formulas to optical distance measuring is briefly discussed.

8. Interferometric measurement of group and phase refractive index.

PubMed

Hopler, M D; Rogers, J R

1991-03-01

An experimental apparatus has been designed to measure group refractive index (n(g)) by observing the shift of the fringe visibility envelope upon insertion of a sample into one arm of a Twyman-Green interferometer. A criterion is developed for the limiting bandwidth and thickness for which good visibility may be expected and for predicting the bandwidth for the narrowest visibility curve. It is demonstrated that the measured group index data can be converted to phase index data with a previously described technique [J. R. Rogers and M. D. Hopler, J. Opt. Soc. Am. A 5, 1595-1600 (1988)] to an accuracy of approximately 0.0006 across the visible spectrum.

9. Preparation of flexible optical waveguide film with refractive index tunability

Kwon, Yong Ku; Noh, Seung Ju; Han, Jin Young; Suk, Min Kyun; Heo, Sung Ik; Jin, Sun Jin; Ahn, Hang Hee; Ahn, Cheol Hee

2012-09-01

Novel organic-inorganic hybrid materials were successfully synthesized by non-hydrolytic sol-gel processing. Crack-free and thick films were produced with no remaining traces of solvents without high volume shrinkage. Adjusting the chemical composition of the materials allows the precise tailoring of the optical properties of the materials, such as optical loss, birefringence, refractive index, and thermo-optic coefficient. They can be fabricated into the step index optical waveguide structures with well-defined and reproducible refractive index differences within 0.001. The transmission performance of each waveguide channel was tested using a 10 Gbps data stream. The electrical output signal from a photodetector, connected to a wide-band oscilloscope, displays a clear 10 Gbps eye pattern. We produced a series of flexible optical waveguides from organic-inorganic hybrid materials by using soft-lithographic technique. The optical losses of the flexible waveguide arrays bent over various curvatures were measured and the transmission performance of each waveguide channel was also tested. The bending losses of a flexible waveguide array were measured and found to yield no significant loss above 2 mm diameter curvature.

10. Refractive index change detection based on porous silicon microarray

Chen, Weirong; Jia, Zhenhong; Li, Peng; Lv, Guodong; Lv, Xiaoyi

2016-05-01

By combining photolithography with the electrochemical anodization method, a microarray device of porous silicon (PS) photonic crystal was fabricated on the crystalline silicon substrate. The optical properties of the microarray were analyzed with the transfer matrix method. The relationship between refractive index and reflectivity of each array element of the microarray at 633 nm was also studied, and the array surface reflectivity changes were observed through digital imaging. By means of the reflectivity measurement method, reflectivity changes below 10-3 can be observed based on PS microarray. The results of this study can be applied to the detection of biosensor arrays.

11. Quantum vacuum emission from a moving refractive index front

Jacquet, M.; König, F.

2015-09-01

We investigate the spontaneous emission of light from the quantum vacuum in a dispersive dielectric at a moving Refractive Index Front (RIF). Our aim is to develop further an existing analytical model to fully characterize the emission and calculate its spectrum in different configurations. We show in which conditions the RIF acts as a point of non-return, an artificial black hole event horizon, for modes of the field. We calculate the spectrum of this emission and the number of photons emitted from the vacuum in the unique escaping mode as a function of the RIF height and velocity in the medium.

12. Measurements of nonlinear refractive index in scattering media

PubMed Central

Samineni, Prathyush; Perret, Zachary; Warren, Warren S.; Fischer, Martin C.

2012-01-01

We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans. PMID:20588401

13. Homogeneous polymer blend microparticles with a tunable refractive index

SciTech Connect

Barnes, M.D.; Kung, C.; Lermer, N.; Fukui, K.; Sumpter, B.G.; Noid, D.W.; Otaigbe, J.U.

1999-02-01

We show that homogeneous polymer blend microparticles can be prepared {ital in situ} from droplets of dilute solution of codissolved polymers. Provided that the droplet of solution is small enough ({lt}10 {mu}m) , solvent evaporation is rapid enough to inhibit phase separation. Thus the polymers that are being mixed need not be miscible, which greatly enhances the applicability of the technique. From analysis of two-dimensional Fraunhofer diffraction (angular scattering) patterns, we show that both the real and the imaginary parts of the refractive index can be tuned by adjustment of the relative weight fractions of polymers in solution. {copyright} {ital 1999} {ital Optical Society of America}

14. Refractive index dispersion measurement using carrier-envelope phasemeters

Hansinger, Peter; Töpfer, Philipp; Dimitrov, Nikolay; Adolph, Daniel; Hoff, Dominik; Rathje, Tim; Sayler, A. Max; Dreischuh, Alexander; Paulus, Gerhard G.

2017-02-01

We introduce a novel method for direct and accurate measurement of refractive index dispersion based on carrier-envelope phase detection of few-cycle laser pulses, exploiting the difference between phase and group velocity in a dispersive medium. In a layout similar to an interferometer, two carrier-envelope phasemeters are capable of measuring the dispersion of a transparent or reflective sample, where one phasemeter serves as the reference and the other records the influence of the sample. Here we report on proof-of-principle measurements that already reach relative uncertainties of a few 10‑4. Further development is expected to allow for unprecedented precision.

15. Tissue Refractive Index Fluctuations Report on Cancer Development

Popescu, Gabriel

2012-02-01

The gold standard in histopathology relies on manual investigation of stained tissue biopsies. A sensitive and quantitative method for in situ tissue specimen inspection is highly desirable, as it will allow early disease diagnosis and automatic screening. Here we demonstrate that quantitative phase imaging of entire unstained biopsies has the potential to fulfill this requirement. Our data indicates that the refractive index distribution of histopathology slides, which contains information about the molecular scale organization of tissue, reveals prostate tumors. These optical maps report on subtle, nanoscale morphological properties of tissues and cells that cannot be recovered by common stains, including hematoxylin and eosin (H&E). We found that cancer progression significantly alters the tissue organization, as exhibited in our refractive index maps. Furthermore, using the quantitative phase information, we obtained the spatially resolved scattering mean free path and anisotropy factor g for entire biopsies and demonstrated their direct correlation with tumor presence. We found that these scattering parameters are able to distinguish between two adjacent grades, which is a difficult task and relevant for determining patient treatment. In essence, our results show that the tissue refractive index reports on the nanoscale tissue architecture and, in principle, can be used as an intrinsic marker for cancer diagnosis. [4pt] [1] Z. Wang, K. Tangella, A. Balla and G. Popescu, Tissue refractive index as marker of disease, Journal of Biomedical Optics, in press).[0pt] [2] Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette and G. Popescu, Spatial light interference microscopy (SLIM), Optics Express, 19, 1016 (2011).[0pt] [3] Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth and G. Popescu, Spatial light interference tomography (SLIT), Optics Express, 19, 19907-19918 (2011

16. Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index

SciTech Connect

Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.

2003-08-01

Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.

17. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

PubMed Central

Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

2012-01-01

Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

18. Refractive index of erbium doped GaN thin films

SciTech Connect

Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X.; Zavada, J. M.

2014-08-25

GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

19. Size dependence of complex refractive index function of growing nanoparticles

Eremin, A.; Gurentsov, E.; Popova, E.; Priemchenko, K.

2011-08-01

The evidence of the change of the complex refractive index function E( m) of carbon and iron nanoparticles as a function of their size was found from two-color time-resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed from acetylene pyrolysis behind a shock wave and iron particles were synthesized by pulse Kr-F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were found through the fitting of two independently measured values of particle heat up temperature, determined by two-color pyrometry and from the known energy of the laser pulse and the E( m) variation. Small carbon particles of about 1-14 nm in diameter had a low value of E( m)˜0.05-0.07, which tends to increase up to a value of 0.2-0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E( m) rise from ˜0.1 for particles 1-3 nm in diameter up to ˜0.2 for particles >12 nm in diameter.

20. Dark Matter Constraints from a Cosmic Index of Refraction

SciTech Connect

Gardner, Susan; Latimer, David C.

2009-04-01

The dark-matter candidates of particle physics invariably possess electromagnetic interactions, if only via quantum fluctuations. Taken en masse, dark matter can thus engender an index of refraction which deviates from its vacuum value. Its presence is signaled through frequency-dependent effects: the real part yields dispersive effects in propagation, and the imaginary part yields such in attenuation. We discuss theoretical constraints on the expansion of the index of refraction with frequency, the physical interpretation of the terms, and the particular observations needed to isolate its coefficients. This, with the advent of new opportunities to view gamma-ray bursts at cosmological distance scales, gives us a new probe of dark matter. As a first application we use the time delay determined from radio afterglow observations of gamma-ray bursts to limit the charge-to-mass ratio of dark matter to |{var_epsilon}|/M < 1.8 x 10{sup -5} eV{sup -1} at 95% CL.

1. Refractive index and thickness determination in Langmuir monolayers of myelin lipids.

PubMed

Pusterla, Julio M; Malfatti-Gasperini, Antonio A; Puentes-Martinez, Ximena E; Cavalcanti, Leide P; Oliveira, Rafael G

2017-05-01

Langmuir monolayers at the air/water interface are widely used as biomembrane models and for amphiphilic molecules studies in general. Under controlled intermolecular organization (lateral molecular area), surface pressure, surface potential, reflectivity (R) and other magnitudes can be precisely determined on these planar monomolecular films. However, some physical parameters such as the refractive index of the monolayer (n) still remain elusive. The refractive index is very relevant because (in combination with R) it allows for the determination of the thickness of the film. The uncertainties of n determine important errors that propagate non-linearly into the calculation of monolayers thickness. Here we present an analytical method for the determination of n in monolayers based on refractive index matching. By using a Brewster angle microscopy (BAM) setup and monolayers spread over subphases with variable refractive index (n2), a minimum in R is search as a function of n2. In these conditions, n equals n2. The results shown correspond to monolayers of myelin lipids. The n values remain constant at 1.46 upon compression and equals the obtained value for myelin lipid bilayers in suspension. The values for n and R allow for the determination of thickness. We establish comparisons between these thicknesses for the monolayer and those obtained from two X-ray scattering techniques: 1) GIXOS for monolayers at the air/water interface and 2) SAXS for bilayers in bulk suspension. This allows us to conclude that the thickness that we measure by BAM includes the apolar and polar headgroup regions of the monolayer.

2. Measurements of refractive index and physical thickness using optical coherence tomography

Song, Guiju; Wang, Xiangzhao; Ren, Hongwu; Zhang, Weizai; Zhang, Lianying; Fang, Zujie

2000-05-01

The measurements of refractive index and thickness of various transparent plates and films are very important for quality control. Additionally, the knowledge of refractive index, and thickness is significant in biomedicine for the treatment of many kinds of tumors. In this paper, we propose a new method for noninvasive and simultaneous measurement of refractive indices and physical thickness of specimens, which consist of surrounding and interior components with different refractive indices. In our experiment, we measure the refractive index and the physical thickness of a multimode fiber and a lotus root with a hollow hole, respectively. The experimental results verify the feasibility of this method.

3. Refractive index insensitive temperature sensor based on waist-enlarged few mode fiber bitapers

Liu, Qiang; Wang, Si-wen; Fu, Xing-hu; Fu, Guang-wei; Jin, Wa; Bi, Wei-hong

2017-01-01

A refractive index insensitive temperature sensor based on waist-enlarged few mode fiber (FMF) bitapers is presented. The first section of FMF is spliced between two single-mode fibers. In fusion process, the waist-enlarged FMF bitapers can be obtained by large current discharging repeatedly. The refractive index and temperature sensing mechanisms are analyzed. For the sensors with different sizes, the refractive index and temperature experiments have been performed. The results show that in the refractive index ranges of 1.335 0—1.346 6 and 1.348 2—1.419 3, the refractive index insensitivity is verified. In a temperature range of 31.9—90 °C, the sensor sensitivity can be up to 85.57 pm/°C. In addition, it has a compact structure. Therefore, the sensor can avoid the cross sensitivity for measuring the refractive index and temperature simultaneously.

4. Textile inspired flexible metamaterial with negative refractive index

Burgnies, L.; Lheurette, É.; Lippens, D.

2015-04-01

This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

5. Refractive index and thickness of coating measurement interferometer

Wu, Chao-Yuan; Wu, Kai; Chen, Sheng-Hui; Lee, Cheng-Chung

2009-08-01

We proposed a method to measure the optical constants of thin film through polarizing phase shifting interferometer based on Twyman-Green interferometer structure. A broadband light source coming with a narrow band-pass filter was used to generate a low coherence light and the wavelength is tunable by changing the filter. A pixelated micro-polarizer mask on the detection camera made phase shifting array to make different phase shifts at once. Therefore, we can use one single interferogram to extract phase information, and it is effective in reducing environmental vibration. The refractive index and thickness of thin film can be derived from the obtained reflection coefficient's magnitude and phase. The measurement results were compared with the results obtained by an ellipsometer.

6. Full field imaging based instantaneous hyperspectral absolute refractive index measurement

SciTech Connect

Baba, Justin S; Boudreaux, Philip R

2012-01-01

Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

7. Flexible photonic crystal membranes with nanoparticle high refractive index layers.

PubMed

Karrock, Torben; Paulsen, Moritz; Gerken, Martina

2017-01-01

Flexible photonic crystal slabs with an area of 2 cm(2) are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices.

8. Flexible photonic crystal membranes with nanoparticle high refractive index layers

PubMed Central

Paulsen, Moritz; Gerken, Martina

2017-01-01

Flexible photonic crystal slabs with an area of 2 cm2 are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices. PMID:28243558

9. Preparation of diarylethene copolymers and their photoinduced refractive index change

Cho, S. Y.; Yoo, M.; Shin, H.-W.; Ahn, K.-H.; Kim, Y.-R.; Kim, E.

2003-01-01

Diarylethene copolymers were synthesized from 1-(6 '-vinyl-2 '-methylbenzo[ b]thiophene-3 '-yl)-2-(2 ''-methylbenzo [ b]thiophene-3 ''-yl)hexafluorocyclopentene (VMBTF6) and 1-[6 '-(4 '''-vinylbenzoyl)-2 '-methylbenzo[ b]thiophene-3 '-yl]-2-(2 ''-methylbenzo[ b]thiophene-3 ''-yl)hexafluorocyclopentene (VBMBTF6) via living free radical techniques using stable TEMPO derivatives. The diarylethene content was controlled by the feed ratio of diarylethene derivatives and styrene. Transparent photochromic polymer films were prepared from the diarylethene copolymers with narrow molecular weight dispersion (PD˜1.3) by spin coating method. Photoinduced refractive index changes (Δ nTE) of the polymer films, with 25 mol% of diaryethene content, accompanied by the photochromic change were determined as 0.0009 and 0.0030 for poly(styrene- ran -VMBTF6) and poly(styrene- ran-VBMBTF6), respectively.

10. Non-interferometric phase retrieval using refractive index manipulation

PubMed Central

Chen, Chyong-Hua; Hsu, Hsin-Feng; Chen, Hou-Ren; Hsieh, Wen-Feng

2017-01-01

We present a novel, inexpensive and non-interferometric technique to retrieve phase images by using a liquid crystal phase shifter without including any physically moving parts. First, we derive a new equation of the intensity-phase relation with respect to the change of refractive index, which is similar to the transport of the intensity equation. The equation indicates that this technique is unneeded to consider the variation of magnifications between optical images. For proof of the concept, we use a liquid crystal mixture MLC 2144 to manufacture a phase shifter and to capture the optical images in a rapid succession by electrically tuning the applied voltage of the phase shifter. Experimental results demonstrate that this technique is capable of reconstructing high-resolution phase images and to realize the thickness profile of a microlens array quantitatively. PMID:28387382

11. Temperature coefficient of refractive index for candidate optical windows

Lange, Charles H.; Duncan, Donald D.

1990-10-01

The temperature coefficients of refractive index for various crystalline and polycrystalline materials, Al203 (ordinary ray), Y203, LaO3-dOped Y203, ALON, and MgA12O4 were determined from measurements of optical thickness as a function of temperature using a Michelson interferometer operating at 0.633 pm. For the temperature range of 23°C to 500°C, the first order coefficients ranged from 8.28x10I0C for pure yttria to 14.6x10/°C for ALON. Measurements of NaC1 and A1203 samples using this technique are in agreement with published data.

12. Temperature coefficients of the refractive index for candidate optical windows

Lange, Charles H.; Duncan, Donald D.

1993-03-01

The temperature coefficients of the refractive index for various crystalline and polycrystalline materials - Al2O3 (sapphire), Y2O3 (yttria), La2O3-doped Y2O3, MgAl2O4, and ALON (a proprietary ceramic composed of aluminum, oxygen, and nitrogen) - were determined from measurements of optical thickness as a function of temperature using a Michelson interferometer operating at 0.633 micron. For temperatures between 23 and 500 C, the first-order coefficients ranged from 8.3 x 10 exp -6/C for pure yttria to 14.6 x 10 exp -6/C for ALON. Measurements of NaCl and Al2O3 samples using this technique are in agreement with published data.

13. Semiconductor laser devices having lateral refractive index tailoring

DOEpatents

Ashby, Carol I. H.; Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

1990-01-01

A broad-area semiconductor laser diode includes an active lasing region interposed between an upper and a lower cladding layer, the laser diode further comprising structure for controllably varying a lateral refractive index profile of the diode to substantially compensate for an effect of junction heating during operation. In embodiments disclosed the controlling structure comprises resistive heating strips or non-radiative linear junctions disposed parallel to the active region. Another embodiment discloses a multi-layered upper cladding region selectively disordered by implanted or diffused dopant impurities. Still another embodiment discloses an upper cladding layer of variable thickness that is convex in shape and symmetrically disposed about a central axis of the active region. The teaching of the invention is also shown to be applicable to arrays of semiconductor laser diodes.

14. Refractive index sensing using ultrasonically crushed polymer optical fibers

Shimada, Shumpei; Lee, Heeyoung; Shizuka, Makoto; Tanaka, Hiroki; Hayashi, Neisei; Matsumoto, Yukihiro; Tanaka, Yosuke; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro

2017-01-01

We demonstrate power-based refractive index (RI) sensing using an ultrasonically crushed polymer optical fiber (POF). This structure can be easily and cost-effectively fabricated within a short time (i.e., ˜1 s) without the need to employ external heat sources or chemicals. The only requirement is to simply press a horn connected to an ultrasonic transducer against part of the POF. The RI dependence of the transmitted power shows linear trends in RI ranges of ˜1.32 to ˜1.36 [coefficient: -62 dB/RIU (RI unit)] and ˜1.40 to ˜1.44 (coefficient: -257 dB/RIU). The temperature dependence of the transmitted power is also investigated.

15. Laser-induced refractive index changes in nanocrystalline diamond membranes.

PubMed

Preclíková, Jana; Kromka, Alexander; Rezek, Bohuslav; Malý, Petr

2010-02-15

We have observed what we believe to be a new phenomenon in nanocrystalline diamond membranes. The optical thickness of the membrane is changed under laser irradiation, which leads to a spectral shift of interference fringes in the transmission and photoluminescence spectra of high-quality thin self-supporting nanocrystalline membranes. The direction of the spectral shift (red/blue) can be tuned by the ambient air pressure. The effect is reversible and is accompanied by changes in photoluminescence intensity. We interpret the results in terms of the changes in the index of refraction caused by the photoinduced adsorption/desorption of air molecules that subsequently affect the properties of subgap energy states related to the surface and the grain boundaries of the nanocrystals.

16. Controlling a microdisk laser by local refractive index perturbation

SciTech Connect

Liew, Seng Fatt; Redding, Brandon; Cao, Hui; Ge, Li; Solomon, Glenn S.

2016-02-01

We demonstrate a simple yet effective approach of controlling lasing in a semiconductor microdisk by photo-thermal effect. A continuous wave green laser beam, focused onto the microdisk perimeter, can enhance or suppress lasing in different cavity modes, depending on the position of the focused beam. Its main effect is a local modification of the refractive index of the disk, which results in an increase in the power slope of some lasing modes and a decrease of others. The boundary roughness breaks the rotational symmetry of a circular disk, allowing the lasing process to be tuned by varying the green beam position. Using the same approach, we can also fine tune the relative intensity of a quasi-degenerate pair of lasing modes. Such post-fabrication control, enabled by an additional laser beam, is flexible and reversible, thus enhancing the functionality of semiconductor microdisk lasers.

17. A simple design method of negative refractive index metamaterials

Kim, Dongho; Lee, Wangju; Choi, Jaeick

2009-11-01

We propose a very simple design method of negative refractive index (NRI) materials that can overcome some drawbacks of conventional resonant-type NRI materials. The proposed NRI materials consist of single or double metallic patterns printed on a dielectric substrate. Our metamaterials (MTMs) show two properties that are different from other types of MTMs in obtaining effective negative values of permittivity ( ɛ) and permeability ( μ) simultaneously; the geometrical outlines of the metallic patterns are not confined within any specific shape, and the metallic patterns are printed on only one side of the dielectric substrate. Therefore, they are very easy to design and fabricate using common printed circuit board (PCB) technology according to the appropriate application. Excellent agreement between the experiment and prediction data ensures the validity of our design approach.

18. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

2007-05-01

Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

19. Optimized setup for integral refractive index direct determination applying digital holographic microscopy by reflection and transmission

Frómeta, M.; Moreno, G.; Ricardo, J.; Arias, Y.; Muramatsu, M.; Gomes, L. F.; Palácios, G.; Palácios, F.; Velázquez, H.; Valin, J. L.; Ramirez Q, L.

2017-03-01

In this paper the integral refractive index of a microscopic sample was directly measured by applying Digital Holographic Microscopy (DHM) capturing transmission and reflection holograms simultaneously, of the same sample's region, using Mach-Zehnder and Michelson micro interferometers for transmission and reflection holograms capture and modeling the 3D sample in a medium of known refractive index nm. The system was calibrated using standard polystyrene sphere immersed in water with known diameter and refractive index, and the method was applied for erythrocyte integral refractive index determination. The results are in accordance with predicted, the measurements error of the order of ± 0.005 in absolute values.

20. Experimental verification and simulation of negative index of refraction using Snell's law.

PubMed

Parazzoli, C G; Greegor, R B; Li, K; Koltenbah, B E C; Tanielian, M

2003-03-14

We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the real part of the index of refraction to be -1.05. The measurements and simulations of the electromagnetic field profiles were performed at distances of 14lambda and 28lambda from the sample; the fields were also computed at 100lambda.

1. Change in refractive index of muscle tissue during laser-induced interstitial thermotherapy.

PubMed

Chen, Na; Chen, Meimei; Liu, Shupeng; Guo, Qiang; Chen, Zhenyi; Wang, Tingyun

2014-01-01

This paper presents a long-period fiber-grating (LPG) based Michelson interferometric refractometry to monitor the change in refractive index of porcine muscle during laser-induced interstitial thermotherapy (LITT). As the wavelength of RI interferometer alters with the change in refractive index around the probe, the LPG based refractometry is combined with LITT system to measure the change in refractive index of porcine muscle when irradiated by laser. The experimental results show the denaturation of tissue alters the refractive index significantly and the LPG sensor can be applied to monitor the tissue state during the LITT.

2. A refractive index sensor based on taper Michelson interferometer in multimode fiber

Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong

2016-11-01

A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.

3. On the feasibility of optical-CT imaging in media of different refractive index

SciTech Connect

Rankine, Leith; Oldham, Mark

2013-05-15

Purpose: Achieving accurate optical-CT 3D dosimetry without the use of viscous refractive index (RI) matching fluids would greatly increase convenience. Methods: Software has been developed to simulate optical-CT 3D dosimetry for a range of scanning configurations including parallel-beam, point, and converging light sources. For each configuration the efficacy of three refractive media was investigated: air, water, a fluid closely matched to PRESAGE{sup Registered-Sign }, and perfect matching (RI = 1.00, 1.33, 1.49, and 1.501 respectively). Reconstructions were performed using both filtered backprojection (FBP) and algebraic reconstruction technique (ART). The efficacy of the three configurations and the two algorithms was evaluated by calculating the usable radius (i.e., the outermost radius where data were accurate to within 2%), and gamma ({Gamma}) analysis. This definition recognizes that for optical-CT imaging, errors are greatest near the edge of the dosimeter, where refraction can be most pronounced. Simulations were performed on three types of dose distribution: uniform, volumetric modulated arc therapy (VMAT), and brachytherapy (Cs-137). Results: For a uniformly irradiated dosimeter the usable radius achieved with filtered backprojection was 68% for water-matching and 31% for dry-scanning in air. Algebraic reconstruction gave usable radii of 99% for both water and air (dry-scanning), indicating greater recovery of useful data for the uniform distribution. FBP and ART performed equally well for a VMAT dose distribution where less dose is delivered near the edge of the dosimeter. In this case, the usable radius was 86% and 53% for scanning in water and air, respectively. For brachytherapy, the usable radius was 99% and 98% for scanning in water and air, respectively using FBP, and a major decrease was seen with ART. Point source geometry provided 1%-2% larger usable radii than parallel geometry. Converging geometry recovered less usable dosimetry data (up to

4. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly.

PubMed

Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

2016-09-29

The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

5. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

PubMed Central

Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

2016-01-01

The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

6. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

2016-09-01

The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

7. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

DOEpatents

Potter, Jr., Barrett George; Potter, Kelly Simmons

2002-01-01

A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

8. Quantitative index imaging of coculture cells by scanning focused refractive index microscopy

Sun, Teng-Qian; Ye, Qing; Hu, Fen; Liu, Shi-ke; Wang, Xiao-Wan; Wang, Jin; Deng, Zhi-Chao; Mei, Jian-Chun; Zhou, Wen-Yuan; Zhang, Chun-Ping; Wang, Xin-Yu; Pan, Lei-Ting; Tian, Jian-Guo

2016-08-01

We report the quantitative refractive index (RI) imaging of cocultured cells in their living environment by scanning focused refractive index microscopy (SFRIM). Mouse microglial cells and synovial cells are cocultured on the top surface of a trapezoid prism. The RI imaging of living cells is obtained in a reflection-type method. The RI information is deduced with the simple derivative total internal reflection method, where a complex retrieval algorithm or reconstruction process is unnecessary. The outline of each cell is determined according to the RI value compared with that of the immersion liquid. The cocultured cells can be discriminated in the RI image. The measurement is nondestructive and label-free. The experimental results prove that SFRIM is a promising tool in the field of biological optics.

9. Measurement of the refractive index of human teeth by optical coherence tomography

Meng, Zhuo; Yao, X. Steve; Yao, Hui; Liang, Yan; Liu, Tiegen; Li, Yanni; Wang, Guanhua; Lan, Shoufeng

2009-05-01

We describe a novel method based on optical coherence tomography (OCT) for the accurate measurement of the refractive index of in vitro human teeth. We obtain the refractive indices of enamel, dentin, and cementum to be 1.631+/-0.007, 1.540+/-0.013, and 1.582+/-0.010, respectively. The profile of the refractive index is readily obtained via an OCT B scan across a tooth. This method can be used to study the refractive index changes caused by dental decay and therefore has great potential for the clinical diagnosis of early dental caries.

10. Proposed design for high precision refractive index sensor using integrated planar lightwave circuit

Maru, Koichi; Fujii, Yusaku; Zhang, Shulian; Hou, Wenmei

2009-07-01

A high precision and compact refractive index sensor is proposed. The combination of coarse measurement utilizing the change of the angle of refraction and fine measurement utilizing the phase change is newly proposed to measure absolute refractive index precisely. The proposed method does not need expensive optical measurement equipment such as an optical spectrum analyzer. The integrated planar lightwave circuit (PLC) technology enables us to obtain a compact sensor that is preferable for the practical use. The principle, design, and some configurations for precise refractive index measurement are described.

11. Characterization and estimation of refractive index profile of laser-written photopolymer optical waveguides

Dinleyici, Mehmet Salih; Sümer, Can

2011-10-01

In this study, channel waveguides fabricated in photopolymer films by direct-writing using a low-power CW laser, are used as phase objects in a simple plane-wave diffraction setup, and the refractive index modulation profiles of the waveguides are characterized using the recorded diffraction patterns. Index profiles are modeled by piece-wisely combining two Gaussian functions representing the central and the tail regions. Measured diffraction patterns are matched with patterns generated using the model. This simple model makes it possible to design various channel waveguides embedded into polymer substrates. The proposed model is tested on three distinctive waveguide profiles written on the same Acrylamide/Polyvinyl Alcohol based photopolymer with different exposures.

12. Biconcave micro-optofluidic lens with low-refractive-index liquids.

PubMed

Song, Chaolong; Nguyen, Nam-Trung; Asundi, Anand Krishna; Low, Cassandra Lee-Ngo

2009-12-01

One of the current problems of micro-optofluidics is the choice of a suitable liquid with a high refractive index (RI). We report the use of a low-RI liquid in a biconcave liquid-core liquid-cladding lens for focusing light. For the characterization of the lens, a telescope system was constructed from polydimethylsiloxane lenses to collimate and expand a light beam emitted from an optical fiber. The tunable optofluidic biconcave lens focuses the parallel beam. Fluorescent dye diluted in an index-matching liquid was used for the visualization of the light rays in a beam-tracing chamber. The focused beam is tuned by adjusting the flow rate ratio between core and cladding streams.

13. Chromatic confocal method for determination of the refractive index and thickness

Garzon Reyes, Johnson; Meneses, J.; Plata, Arturo; Tribillon, Gilbert M.; Gharbi, Tijani

2004-10-01

The chromatic confocal method to measure the refractive index and thickness of membranes is developed. The method is based on the longitudinal chromatic aberration produced by a diffractive element. The identification of the maximal spectral components coming from the membranes are used for measuring its thickness or its refractive index.

14. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers.

PubMed

Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey

2014-05-21

Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated.

15. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

PubMed

Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

2016-10-08

A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

16. Behavior of 157 nm excimer-laser-induced refractive index changes in silica

SciTech Connect

Smith, Charlene M.; Borrelli, Nicholas F.

2006-09-15

This study describes the observation of large induced refractive index changes produced by 157 nm excimer laser exposure in high-purity synthetic silica glasses. With 157 nm exposure, large induced changes are observed within a few hundred thousand pulses of exposure. Similar to 193 nm exposures, exposure with polarized 157 nm light yields polarization-induced birefringence (PIB). However, the 157 nm exposure also exhibits a behavior not observed with 193 nm exposures; namely, the initial response of the glass is a decrease in refractive index, followed by an increase with continued exposure. An explanation of the behaviors for both wavelength results is proposed where the induced refractive index is considered to arise from two different concurrent phenomena. One produces a decreased refractive index and also accounts for the PIB. The other, which accounts for the increased refractive index, is associated with an isotropic laser-induced volume change.

17. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

PubMed Central

Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten

2016-01-01

We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales. PMID:27623228

18. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

PubMed Central

Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

2016-01-01

A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607

19. Refractive index variance of cells and tissues measured by quantitative phase imaging.

PubMed

Shan, Mingguang; Kandel, Mikhail E; Popescu, Gabriel

2017-01-23

The refractive index distribution of cells and tissues governs their interaction with light and can report on morphological modifications associated with disease. Through intensity-based measurements, refractive index information can be extracted only via scattering models that approximate light propagation. As a result, current knowledge of refractive index distributions across various tissues and cell types remains limited. Here we use quantitative phase imaging and the statistical dispersion relation (SDR) to extract information about the refractive index variance in a variety of specimens. Due to the phase-resolved measurement in three-dimensions, our approach yields refractive index results without prior knowledge about the tissue thickness. With the recent progress in quantitative phase imaging systems, we anticipate that using SDR will become routine in assessing tissue optical properties.

20. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.

PubMed

Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

2016-10-11

The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.

1. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

PubMed Central

Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

2016-01-01

The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

2. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

Caffrey, David; Norton, Emma; Coileáin, Cormac Ó.; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten

2016-09-01

We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.

3. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements

PubMed Central

Nemova, Galina; Kashyap, Raman

2016-01-01

We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs) in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG) sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU) can be reached with abottle resonator on the fiber with the radius 10 μm. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius rco = 10 μm instead of a fiber with a radius rco = 100 μm. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme. PMID:26761011

4. Quantum vacuum emission from a refractive-index front

Jacquet, Maxime; König, Friedrich

2015-08-01

A moving boundary separating two otherwise homogeneous regions of a dielectric is known to emit radiation from the quantum vacuum. An analytical framework based on the Hopfield model, describing a moving refractive-index step in 1 +1 dimensions for realistic dispersive media has been developed by S. Finazzi and I. Carusotto [Phys. Rev. A 87, 023803 (2013)], 10.1103/PhysRevA.87.023803. We expand the use of this model to calculate explicitly spectra of all modes of positive and negative norms. Furthermore, for lower step heights we obtain a unique set of mode configurations encompassing black-hole and white-hole setups. This leads to a realistic emission spectrum featuring black-hole and white-hole emission for different frequencies. We also present spectra as measured in the laboratory frame that include all modes, in particular a dominant negative-norm mode, which is the partner mode in any Hawking-type emission. We find that the emission spectrum is highly structured into intervals of emission with black-hole, white-hole, and no horizons. Finally, we estimate the number of photons emitted as a function of the step height and find a power law of 2.5 for low step heights.

5. Estimating index of refraction from polarimetric hyperspectral imaging measurements.

PubMed

Martin, Jacob A; Gross, Kevin C

2016-08-08

Current material identification techniques rely on estimating reflectivity or emissivity which vary with viewing angle. As off-nadir remote sensing platforms become increasingly prevalent, techniques robust to changing viewing geometries are desired. A technique leveraging polarimetric hyperspectral imaging (P-HSI), to estimate complex index of refraction, N̂(ν̃), an inherent material property, is presented. The imaginary component of N̂(ν̃) is modeled using a small number of "knot" points and interpolation at in-between frequencies ν̃. The real component is derived via the Kramers-Kronig relationship. P-HSI measurements of blackbody radiation scattered off of a smooth quartz window show that N̂(ν̃) can be retrieved to within 0.08 RMS error between 875 cm-1 ≤ ν̃ ≤ 1250 cm-1. P-HSI emission measurements of a heated smooth Pyrex beaker also enable successful N̂(ν̃) estimates, which are also invariant to object temperature.

Kim, Wonkyoung; Kim, Dong Sung

2016-06-01

We propose a simple method that uses a gradient shadow pattern (GSP) to measure the refractive index nL of liquids. A light source generates a “dark-bright-dark” GSP when it is projected through through the back of a transparent, rectangular block with a cylindrical chamber that is filled with a liquid sample. We found that there is a linear relationship between nL and the proportion of the bright region in a GSP, which provides the basic principle of the proposed method. A wide range 1.33 ≤ nL ≤ 1.46 of liquids was measured in the single measurement setup with error <0.01. The proposed method is simple but robust to illuminating conditions, and does not require for any expensive or precise optical components, so we expect that it will be useful in many portable measurement systems that use nL to estimate attributes of liquid samples.

7. Index of Refraction Measurements Using a Laser Distance Meter

ERIC Educational Resources Information Center

Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

2014-01-01

We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

8. Determination of average refractive index of spin coated DCG films for HOE fabrication

NASA Technical Reports Server (NTRS)

Kim, T. J.; Campbell, Eugene W.; Kostuk, Raymond K.

1993-01-01

The refractive index of holographic emulsions is an important parameter needed for designing holographic optical elements (HOE's). Theoretical calculations of the accuracy required for the refractive index and thickness of emulsions needed to meet predetermined Bragg angle conditions are presented. A modified interferometric method is used to find average refractive index of the unexposed and the developed dichromated gelatin holographic films. Slanted transmission HOE's are designed considering the index and thickness variations, and used to verify the index measurement results. The Brewster angle method is used to measure surface index of the unexposed and the developed films. The differences between average index and surface index are discussed. Theoretical calculation of the effects of index variation on diffraction efficiency, and experimental results for index modulation variation caused by process changes are also presented.

9. Refractive index changes in lithium niobate crystals by high-energy particle radiation

SciTech Connect

Peithmann, Konrad; Zamani-Meymian, Mohammad-Reza; Haaks, Matz; Maier, Karl; Andreas, Birk; Breunig, Ingo

2006-10-15

Irradiation of lithium niobate crystals with 41 MeV {sup 3}He ions causes strong changes of the ordinary and extraordinary refractive indexes. We present a detailed study of this effect. Small fluence of irradiation already yields refractive index changes about 5x10{sup -4}; the highest values reach 3x10{sup -3}. These index modulations are stable up to 100 degree sign C and can be erased thermally, for which temperatures up to 500 degree sign C are required. A direct correlation between the refractive index changes and the produced lattice vacancies is found.

10. Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing.

PubMed

Sun, Bing; Chen, Ming-Yang; Zhang, Yong-Kang; Yang, Ji-Chang; Yao, Jian-quan; Cui, Hai-Xia

2011-02-28

We propose a novel photonic crystal fiber refractive index sensor which is based on the selectively resonant coupling between a conventional solid core and a microstructured core. The introduced microstructured core is realized by filling the air-holes in the core with low index analyte. We show that a detection limit (DL) of 2.02×10⁻⁶ refractive index unit (RIU) and a sensitivity of 8500 nm/RIU can be achieved for analyte with refractive index of 1.33.

11. Analysis of the use of tapered graded-index polymer optical fibers for refractive-index Sensors.

PubMed

Arrue, J; Jiménez, F; Aldabaldetreku, G; Durana, G; Zubia, J; Lomer, M; Mateo, J

2008-10-13

The behavior of tapered graded-index polymer optical fibers is analyzed computationally for different refractive indices of the surrounding medium. This serves to clarify the main parameters affecting their possible performance as refractive-index sensors and extends an existing study of similar structures in glass fibers. The ray-tracing method is employed, its specific implementation is explained, and its results are compared with experimental ones, both from our laboratory and from the literature. The results show that the current commercial graded-index polymer optical fibers can be used to measure a large range of refractive indices with several advantages over glass fibers.

12. Determining the nonlinear refractive index of fused quartz by femtosecond laser Z-scan technology

Zhang, Lin; Ren, Huan; Ma, Hua; Shi, Zhendong; Yang, Yi; Yuan, Quan; Feng, Xiaoxuan; Ma, Yurong; Chen, Bo

2016-10-01

Z-scan technology is an experimental technique for determining the nonlinear refractive index based on the principle of transformation of phase distortion to amplitude distortion when a laser beam propagates through a nonlinear material. For most of the Z-scan system based on the nanosecond or picosecond laser, the accumulation of thermal effects becomes a big problem in nonlinear refractive index measurement especially for the nonlinear materials such as fused quartz and neodymium glass which have a weak nonlinear refractive effect. To overcome this problem, a system for determining the nonlinear refractive index of optical materials based on the femtosecond laser Z-scan technology is presented. Using this system, the nonlinear refractive index of the fused quartz is investigated.

13. Refractive index change during exposure for 193-nm chemically amplified resists

Oh, Hye-Keun; Sohn, Young-Soo; Sung, Moon-Gyu; Lee, Young-Mi; Lee, Eun-Mi; Byun, Sung Hwan; An, Ilsin; Lee, Kun-Sang; Park, In-Ho

1999-06-01

Some of the important areas to be improved for lithography simulation are getting correct exposure parameters and determining the change of refractive index. It is known that the real and imaginary refractive indices are changed during exposure. We obtained these refractive index changes during exposure for 193 nm chemically amplified resists. The variations of the transmittance as well as the resist thickness were measured during ArF excimer laser exposure. We found that the refractive index change is directly related to the concentration of the photo acid generator and de-protected resin. It is important to know the exact values of acid concentration from the exposure parameters since a small difference in acid concentration magnifies the variation in the amplified de-protection during post exposure bake. We developed and used a method to extract Dill ABC exposure parameters for 193 nm chemically amplified resist from the refractive index change upon exposure.

14. Tropospheric Refractivity Profiles Inferred from RF Measurements-Passive Refractive Index by Satellite Monitoring (PRISM).

DTIC Science & Technology

1980-10-24

238, Integrated Refractive Effects Prediction System (IREPS), Interim User’s Manual , by HV Hitney and RA Paulus, March 1979. 7 Two methods are used by...refractivity, N, as (n-I) X 10’, which has values in the range 0 to 500. For radio frequencies, the refractivity is related to atmospheric tempera - ture...acquisition band, the first local oscillators are manually ad3usted to drive the IF to its nominal 5 kHz. Both first local oscillators (Hewlett Packard

15. Surrogate Immiscible Liquid Solution Pairs with Refractive Indexes Matchable Over a Wide Range of Density and Viscosity Ratios

Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

2014-11-01

Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.

16. Refractive index chemical sensing with noble metal nanoparticles

Blake, Phillip

Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical localized surface plasmon resonance sensors. Spectral peak location sensitivity was found to be equal to or greater than typical plasmonic sensors. These results were corroborated with numerical simulation with and without nanoparticle interaction to demonstrate the power of harnessing diffractive coupling in nanoparticle sensors. The sensing results were then extended to analyze ordered arrays of nanorings. Nanorings were chosen because they have the highest reported sensitivity of any plasmonic shape (880 nm/RIU) in the literature and have a high surface area to volume ratio, which is a key parameter for plasmonic sensors. Theoretical simulations of diffractive coupling nanorings indicate that sensitivity is comparable to non-coupling nanorings in the literature (890 nm/RIU vs. 880 nm/RIU, respectively). Another metric of sensor performance, the figure of merit, was much higher (34) than the non-coupling ring (2). Ordered nanoring arrays which exhibit diffractive coupling improve upon current refractive index based plasmonic sensors. Further improvements to nanoring sensors' figure of merit are possible based on simulation results for nanosphere arrays.

17. Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing

Ying-Ying, Yu; Xu-You, Li; Kun-Peng, He; Bo, Sun

2016-02-01

We propose a design of terahertz refractive index sensing based on the multi-metal-wire (MMW) hybrid-cladding hollow waveguide. The proposed terahertz hybrid-cladding hollow waveguide comprises one air core in the center surrounding MMW surrounded dielectric. The central air core is used for filling lossless measurands and transmitting terahertz light. In particular, the refractive index sensing is realized by measuring the mode field area (MFA) variation of radially polarized mode. The modal effective refractive index, mode field intensity distribution, and mode field area properties responding to the measurand refractive indexes for different operating frequencies and structure dimensions are investigated, respectively. Simulations show that the proposed terahertz refractive index sensor can realize easily the measurement of the measurand refractive index. Meanwhile, the effects of operating frequency and structure parameters on sensitivity and measurement accuracy are also studied. In view of the trade-off between sensitivity and measurement accuracy, the reasonable choice of the operating frequency and structure parameters can optimize appropriately the sensitivity and measurement accuracy, and the sensitivity can reach approximately 0.585 mm2/RIU (RIU is short for refraction index units) with the proper frequency and structure parameter. Project supported by the National Natural Science Foundation of China (Grant No. 51309059).

18. Temporal and spectral compression of pulses in fibers with a running refractive index wave

Zolotovskii, I. O.; Lapin, V. A.; Sementsov, D. I.; Fotiadi, A. A.

2016-04-01

For pulses propagating in fibers with a running refractive index wave, the pulse power could be drastically increased due to decrease of the pulse duration. We report temporal and spectral compression of the pulses and conditions for formation of soliton-like chirped pulses in nonlinear fibers with a running refractive index wave. We demonstrate 100- fold compression of the wave packets propagating in media with a running refractive index wave (down to sub-picosecond durations) achieved on lengths shorter than 10 cm. In addition, the modulation instability of wave packets will be studied in such media.

19. The temperature dependence of refractive index of hemoglobin at the wavelengths 930 and 1100 nm

Lazareva, Ekaterina N.; Tuchin, Valery V.

2016-04-01

In this study, the refractive index of hemoglobin was measured at different temperatures within a physiological range and above that is characteristic to light-blood interaction at laser therapy. Measurements were carried out using the multi-wavelength Abbe refractometer (Atago, Japan). The refractive index was measured at two NIR wavelengths of 930 nm and 1100 nm. Samples of hemoglobin solutions with concentration of 80, 120 and 160 g/l were investigated. The temperature was varied between 25 and 55 °C. It was shown that the dependence of the refractive index of hemoglobin is nonlinear with temperature, which may be associated with changes in molecular structure of hemoglobin.

20. Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models.

PubMed

Diamant, Ruth; Garcí-Valenzuela, Augusto; Fernández-Guasti, Manuel

2012-09-01

Reflectivity of a random monolayer, consisting of transparent spherical particles, is estimated using a graded refractive index model, an effective medium approach, and two scattering models. Two cases, a self-standing film and one with a substrate, are considered. Neither the surrounding medium nor the substrate are absorbing materials. Results at normal incidence, with different particle sizes, covering ratios and refractive indexes, are compared. The purpose of this work is to find under which circumstances, for reflectivity at normal incidence, a particle monolayer behaves as a graded refractive index film.

1. Sizing colloidal particles from their contribution to the effective refractive index: Experimental results

Sánchez-Pérez, C.; García-Valenzuela, A.; Sato-Berrú, R. Y.; Flores-Flores, J. O.; Barrera, R. G.

2011-01-01

In this work we assess experimentally a new methodology for sizing non-absorbing colloidal particles in situ. It requires measuring the real and imaginary part of the effective refractive index per unit volume fraction occupied by the particles. The mean size and refractive e index of the particles are determined from a suitable model for the effective refractive index of dilute colloids. We present results of experiments made with polystyrene and silica nano-particles and compare them with dynamic light scattering and electron microscopy measurements.

2. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

NASA Technical Reports Server (NTRS)

Siegel, R.; Spuckler, C. M.

1992-01-01

The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

3. Laser-based optical facility for determination of refractive index of liquids

Samedov, F.

2006-02-01

Refractive index knowledge is an important parameter when physical properties of liquids are investigated. For the easy and fast determination of refractive index of liquids, we established a computer-controlled optical facility in National Metrology Institute of Turkey, based on laser beam deviation technique. Basic components of the established facility are stabilized laser sources, temperature-controlled rectangular cells, servomotor-controlled knife edges and trap detectors. The facility was used to measure the refractive index of four liquids; pure water, acetone, methanol and n-propyl alcohol. Temperature and dispersion characterizations of each liquid were also investigated and are presented in this paper.

4. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

SciTech Connect

Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

2010-10-10

A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

5. Refractive index modulation in polymer film doped with diazo Meldrum's acid

Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

2016-08-01

Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

6. Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index.

PubMed

Chen, Chengkun; Laronche, Albane; Bouwmans, Géraud; Bigot, Laurent; Quiquempois, Yves; Albert, Jacques

2008-06-23

Several strong narrowband resonances are observed in the transmission spectra of fiber Bragg gratings photo-written in photonic crystal fiber that has a refractive index-neutral germanium/fluorine co-doped core. Experimental results for the strain, temperature and refractive index sensitivities of these mode resonances are reported and compared to those of conventional single mode fiber. In particular, we identify three kinds of resonances whose relative sensitivities to strain, temperature and refractive index are markedly different and present numerical simulations to explain these properties. Potential multiparameter optical sensor applications of these mode resonances are briefly discussed.

7. Impedance matching vertical optical waveguide couplers for dense high index contrast circuits.

PubMed

Sun, Rong; Beals, Mark; Pomerene, Andrew; Cheng, Jing; Hong, Ching-Yin; Kimerling, Lionel; Michel, Jurgen

2008-08-04

We designed and demonstrated a compact, high-index contrast (HIC) vertical waveguide coupler for TE single mode operation with the lowest coupling loss of 0.20 dB +/- 0.05 dB at 1550 nm. Our vertical coupler consists of a pair of vertically overlapping inverse taper structures made of SOI and amorphous silicon. The vertical coupler can suppress power oscillation observed in regular directional couplers and guarantees vertical optical impedance matching with great tolerance for fabrication and refractive index variations of the waveguide materials. The coupler furthermore shows excellent broadband coupling efficiencies between 1460 nm and 1570 nm.

8. Method of producing optical quality glass having a selected refractive index

DOEpatents

Poco, John F.; Hrubesh, Lawrence W.

2000-01-01

Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.

9. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

NASA Technical Reports Server (NTRS)

Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

1990-01-01

A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

10. Simulation of imperfections in plastic lenses - transferring local refractive index changes into surface shape modifications

Arasa, Josep; Pizarro, Carles; Blanco, Patricia

2016-06-01

Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

11. Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures

NASA Technical Reports Server (NTRS)

2013-01-01

First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.

12. Refraction of nonlinear beams by localized refractive index changes in nematic liquid crystals

SciTech Connect

Assanto, Gaetano; Minzoni, Antonmaria A.; Smyth, Noel F.; Worthy, Annette L.

2010-11-15

The propagation of solitary waves in nematic liquid crystals in the presence of localized nonuniformities is studied. These nonuniformities can be caused by external electric fields, other light beams, or any other mechanism which results in a modified director orientation in a localized region of the liquid-crystal cell. The net effect is that the solitary wave undergoes refraction and trajectory bending. A general modulation theory for this refraction is developed, and particular cases of circular, elliptical, and rectangular perturbations are considered. The results are found to be in excellent agreement with numerical solutions.

13. Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy.

PubMed

Kemper, Björn; Kosmeier, Sebastian; Langehanenberg, Patrik; von Bally, Gert; Bredebusch, Ilona; Domschke, Wolfram; Schnekenburger, Jürgen

2007-01-01

A method for the determination of the integral refractive index of living cells in suspension by digital holographic microscopy is described. Digital holographic phase contrast images of spherical cells in suspension are recorded, and the radius as well as the integral refractive index are determined by fitting the relation between cell thickness and phase distribution to the measured phase data. The algorithm only requires information about the refractive index of the suspension medium and the image scale of the microscope system. The specific digital holographic microscopy advantage of subsequent focus correction allows a simultaneous investigation of cells in different focus planes. Results obtained from human pancreas and liver tumor cells show that the integral cellular refractive index decreases with increasing cell radius.

14. Refractive index determination as a tool for temperature measurement and process control: a new approach

Schaller, Johannes K.; Wassenberg, S.; Fiedler, Detlev K.; Stojanoff, Christo G.

1994-11-01

Recently a new method for temperature measurement of droplets was presented. This method determines the index of refraction of a spherical scatterer with high accuracy and utilizes the dependence of the index of refraction on the temperature to finally determine the temperature. In this paper we show that the method is likewise applicable to cylindrical scatterers with a homogeneous refractive index distribution, like liquid jets. The method can be used to optically determine the temperature of a liquid jet, or to measure other properties of the liquid that influence the index of refraction of that liquid. One such property is the concentration of one liquid in another, like that of glycerol in an aqueous solution, which was studied experimentally for assessing some properties of the proposed method. An estimation of the sensitivity of the method was gained by detecting temperature changes of a cylindrical water jet.

15. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

2016-08-01

The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

16. Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy.

PubMed

Ma, Chaojie; Di, Jianglei; Zhang, Jiwei; Li, Ying; Xi, Teli; Li, Enpu; Zhao, Jianlin

2016-11-20

We propose a method for simultaneously measuring dynamic changes of the refractive index distribution and surface topography, which integrates the transmission and reflection digital holographic microscopy based on polarization and angular multiplexing techniques. The complex amplitudes of the transmitted and reflected object waves can be simultaneously retrieved. The phase information of the reflected object wave is directly used to determine the topography of the specimen which corresponds to its physical thickness. Assuming that the refractive index distribution is uniform in the direction of the specimen thickness, the refractive index distribution can be deduced from the phase distributions of the transmitted and reflected object waves without any approximation. The refractive index distribution and dynamic changes of the topography of a tiny deionized water droplet have been measured for the availability of the proposed method.

17. Velocity Measurement by Scattering from Index of Refraction Fluctuations Induced in Turbulent Flows

NASA Technical Reports Server (NTRS)

Lading, Lars; Saffman, Mark; Edwards, Robert

1996-01-01

Induced phase screen scattering is defined as scatter light from a weak index of refraction fluctuations induced by turbulence. The basic assumptions and requirements for induced phase screen scattering, including scale requirements, are presented.

18. Refractive index engineering of high performance coupler for compact photonic integrated circuits

Liu, Lu; Zhou, Zhiping

2017-04-01

High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

19. Methods for Prediction of Refractive Index in Glasses for the Infrared

SciTech Connect

McCloy, John S.

2011-06-14

It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for high-end optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple-DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide) glasses will be compared with measured values of index and dispersion.

20. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

PubMed Central

Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

2013-01-01

We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

1. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

NASA Technical Reports Server (NTRS)

2005-01-01

The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

2. Determining a fluorophore’s transition dipole moment from fluorescence lifetime measurements in solvents of varying refractive index

Chung, Pei-Hua; Tregidgo, Carolyn; Suhling, Klaus

2016-12-01

The transition dipole moment of organic dyes PM546 and rhodamine 123 is calculated from fluorescence lifetime measurements in solutions of different refractive index. A model proposed by Toptygin et al (2002 J. Phys. Chem. B 106 3724-34) provides a relationship between the radiative rate constant and refractive index of the solvent, and allows the electronic transition dipole moments to be found: it is (7.1  ±  1.1) D for PM546 which matches that found in the literature, and (8.1  ±  0.1) D for rhodamine 123. Toptygin’s model goes further in predicting the shape of the fluorescent dye and here we predict the shape of PM546 and rhodamine 123 to be ellipsoidal.

3. Optical Properties of a Bio-Inspired Gradient Refractive Index Polymer Lens

DTIC Science & Technology

2008-07-21

crystalline lens. GRIN lenses found in nature typically consist of approximately 22,000 nonplanar layers of proteins with different refractive...indices [5]. Systematic variation in protein and water concentration in different layers provides the index gradient [6]. The refractive index range (Δn...typically composed of tens of thousands of protein layers. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) can confirm

4. Planar optical waveguides for optical panel having gradient refractive index core

DOEpatents

Veligdan, James T.

2001-01-01

An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

5. Photoinduced changes in refractive index of nanostructured shungite-containing polyimide systems

Kamanina, N. V.; Serov, S. V.; Shurpo, N. A.; Rozhkova, N. N.

2011-10-01

Photoinduced changes in the refractive index of a conjugate polyimide (PI) matrix sensitized by shungite carbon nanoparticles have been studied for the first time. The results are compared to the data of previous investigations of the photorefractive properties of PI matrices doped with fullerenes, carbon nanotubes, and quantum dots. The nonlinear refractive index of the proposed material has been determined using the dynamic holography techniques. The position of conjugate polymer materials of this type among the other nonlinear optical systems is considered.

6. Planar optical waveguides for optical panel having gradient refractive index core

DOEpatents

Veligdan, James T.

2004-08-24

An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

7. The eye lens: age-related trends and individual variations in refractive index and shape parameters

PubMed Central

Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

2015-01-01

The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

8. Measurements of the refractive indices and refractive index increment of a synthetic PMMA solutions at 488 nm

Ghazy, R.; El-Baradie, B.; El-Shaer, A.; El-Mekawey, F.

1999-12-01

We describe a Mach-Zehnder interferometer (MZI) method for measuring the refractive index (RI) of polymethyl-methacrylate (PMMA) solution in both acetone and methyl-ethyl-ketone (MEK). The measurements are made as a function of concentration values 4, 8, 12, 16 and 20 g/l at a wavelength of 488 nm with a high degree of accuracy tends to 1.4×10 -5. The refractive index increments (RIIs) d n/d c of PMMA in both investigated solvents are determined too. In addition, the RIIs Δ n as a function of concentration and the RIIs at zero concentration (d n/d c) c=0 are determined for both solvents accurately. The PMMA solutions in acetone and MEK solvents are chosen for laser light scattering investigations.

9. Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa

Cao, Xiuxia; Wang, Yuan; Li, Xuhai; Xu, Liang; Liu, Lixin; Yu, Yin; Qin, Rui; Zhu, Wenjun; Tang, Shihui; He, Lin; Meng, Chuanmin; Zhang, Botao; Peng, Xusheng

2017-03-01

Under shock pressures up to 210 GPa, we measured the refractive index of sapphire at a wavelength of 1550 nm by performing plate impact experiments in order to investigate its refractive-index change behaviors and phase transitions along the Hugoniot state. There were two discontinuities in the refractive index at ˜65 to 92 GPa and ˜144 to 163 GPa, respectively. Moreover, above the Hugoniot elastic limit, the pressure dependence of the refractive index was divided into three segments, and there were large differences in their pressure-change trends: the refractive index decreased evidently with pressure in the first segment (˜20 to 65 GPa), remained nearly constant from ˜92 to ˜144 GPa in the second segment, and obviously increased with pressure in the last segment (˜163 to 210 GPa). Our first-principles calculations suggest that the observed discontinuities were closely related to the corundum-Rh2O3(II) and Rh2O3(II)-CaIrO3 structural transitions, and the shock-induced vacancy point defects could be one factor causing these great discrepancies in pressure-change trends. This work provides sapphire refractive-index information in a megabar-pressure range and clear evidence of its shock structural transitions. This not only has a great significance for the velocity correction of laser interferometer experiments and the analysis of sapphire high-pressure properties but also indicates a possible approach to explore the shock transitions of transparent materials.

10. Quantification of nanoscale nuclear refractive index changes during the cell cycle

Bista, Rajan K.; Uttam, Shikhar; Wang, Pin; Staton, Kevin; Choi, Serah; Bakkenist, Christopher J.; Hartman, Douglas J.; Brand, Randall E.; Liu, Yang

2011-07-01

Intrigued by our recent finding that the nuclear refractive index is significantly increased in malignant cells and histologically normal cells in clinical histology specimens derived from cancer patients, we sought to identify potential biological mechanisms underlying the observed phenomena. The cell cycle is an ordered series of events that describes the intervals of cell growth, DNA replication, and mitosis that precede cell division. Since abnormal cell cycles and increased proliferation are characteristic of many human cancer cells, we hypothesized that the observed increase in nuclear refractive index could be related to an abundance or accumulation of cells derived from cancer patients at a specific point or phase(s) of the cell cycle. Here we show that changes in nuclear refractive index of fixed cells are seen as synchronized populations of cells that proceed through the cell cycle, and that increased nuclear refractive index is strongly correlated with increased DNA content. We therefore propose that an abundance of cells undergoing DNA replication and mitosis may explain the increase in nuclear refractive index observed in both malignant and histologically normal cells from cancer patients. Our findings suggest that nuclear refractive index may be a novel physical parameter for early cancer detection and risk stratification.

11. Refraction index sensor based on phase resonances in a subwavelength structure with double period.

PubMed

Skigin, Diana C; Lester, Marcelo

2016-10-01

In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.

12. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

DOEpatents

Yeung, E.S.; Woodruff, S.D.

1984-06-19

A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

13. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

DOEpatents

Yeung, Edward S.; Woodruff, Steven D.

1984-06-19

A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

14. Method of determining effects of heat-induced irregular refractive index on an optical system.

PubMed

Song, Xifa; Li, Lin; Huang, Yifan

2015-09-01

The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

15. Targeted alteration of real and imaginary refractive index of biological cells by histological staining.

PubMed

Cherkezyan, L; Subramanian, H; Stoyneva, V; Rogers, J D; Yang, S; Damania, D; Taflove, A; Backman, V

2012-05-15

Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of stained biological cells. We reveal that specific staining of individual organelles can increase their scattering cross-section by orders of magnitudes, implying a major impact in the field of biophotonics.

16. Targeted alteration of real and imaginary refractive index of biological cells by histological staining

PubMed Central

Cherkezyan, Lusik; Subramanian, Hariharan; Stoyneva, Valentina; Rogers, Jeremy D.; Yang, Seungmoo; Damania, Dhwanil; Taflove, Allen; Backman, Vadim

2012-01-01

Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2-D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of stained biological cells. We reveal that specific staining of individual organelles can increase their scattering cross-section by orders of magnitudes implying a major impact in the field of biophotonics. PMID:22627509

17. Influence of the relative refractive index on the depolarization of multiply scattered waves.

PubMed

Kim, A D; Moscoso, M

2001-08-01

Using the theory of radiative transfer, we investigate the interaction between polarized waves and a multiple scattering medium as functions of the relative index of refraction. To study this problem, we consider circularly and linearly polarized continuous waves incident upon a medium containing spherical scatterers. With an accurate spectral method, we compute the transmitted Stokes parameters through media containing different sized scatterers and different indices of refraction. Our numerical results show that the circular depolarization length exhibits a strong dependence on the relative index of refraction, while the linear depolarization length does not.

18. Transparent, immiscible, surrogate liquids with matchable refractive indexes: Increased range of density and viscosity ratios

Cadillon, Jérémy; Saksena, Rajat; Pearlstein, Arne J.

2016-12-01

By replacing the "heavy" silicone oil used in the oil phase of Saksena, Christensen, and Pearlstein ["Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios," Phys. Fluids 27, 087103 (2015)] by one with a twentyfold higher viscosity, and replacing the "light" silicone oil in that work by one with a viscosity fivefold lower and a density about 10% lower, we have greatly extended the range of viscosity ratio accessible by index-matching the adjustable-composition oil phase to an adjustable-composition 1,2-propanediol + CsBr + H2O aqueous phase and have also extended the range of accessible density ratios. The new system of index-matchable surrogate immiscible liquids is capable of achieving the density and viscosity ratios for liquid/liquid systems consisting of water with the entire range of light or medium crude oils over the temperature range from 40 °F (4.44 °C) to 200 °F (93.3 °C) and can access the density and viscosity ratios for water with some heavy crude oils over part of the same temperature range. It also provides a room-temperature, atmospheric-pressure surrogate for the liquid CO2 + H2O system at 0 °C over almost all of the pressure range of interest in sub-seabed CO2 sequestration.

19. Sharp Nose Lens Design Using Refractive Index Gradient

DTIC Science & Technology

1982-06-01

the normal (N’) were defined previously (equations 3.32, 3.39). 22 The refracted angle at the rear surface: I cos IR N’ (3.41) Both the ray and the...tan-1 [ Yz(l) (4.14)BF -- 22 (I) 4 4 (h) Solve for the Refractive Angles at the Front Surface As in the homogeneous case: 28 n (J) + 12 ’ (J) = 8(J...I- : 22 t.4fl. 11N nv w co -- 4N 0 C -1245 ;.:.;x X 00 (" m.𔄃�,1 -ni 91W’W’.-1.9rnr9’..11 991 rr .im mmmmm n119199mlnmmm9 .91"Cmml amrfMmm imr

20. Amplification of the index of refraction of aqueous immersion fluids by ionic surfactants

Lee, Kwangjoo; Kunjappu, Joy; Jockusch, Steffen; Turro, Nicholas J.; Widerschpan, Tatjana; Zhou, Jianming; Smith, Bruce W.; Zimmerman, Paul; Conley, Will

2005-05-01

In order to find new immersion liquids to improve the resolution of 193 nm immersion photolithography, we have attempted to discover aqueous system possessing an index of refraction greater than that of water using aqueous surfactant systems. The index of refraction (RI) of both cationic and anionic surfactant systems were examined in the presence of wide range of inorganic salts, and parameters such as size of surfactants, concentrations, and temperature were varied. The refractive index (RI) was found to be increased in the presence of both anionic and cationic surfactants compared to those of water and also increased as a function of surfactant concentration. However the refractive index tends to increase much more strongly as a function of salt concentration. In our study, a maximum RI enhancement was observed from 6.5 M CdCl2 in 8.2 mM aqueous SDS solution. The effect of micellar properties such as the critical micelle concentration (cmc) and degree of ionization were systematically studied for aqueous SDS system in the presence of CdCl2. The correlation on index of refraction between empirical data and theoretical prediction were performed using the concept of molar refraction. Wavelength dependence of RI from theoretical prediction based on empirical equation was examined for various concentration of CdCl2 system and the results are reported in the paper.

1. [The arctic sea ice refractive index retrieval based on satellite AMSR-E observations].

PubMed

Chen, Han-Yue; Bi, Hai-Bo; Niu, Zheng

2012-11-01

The refractive index of sea ice in the polar region is an important geophysical parameter. It is needed as a vital input for some numerical climate models and is helpful to classifying sea ice types. In the present study, according to Hong Approximation (HA), we retrieved the arctic sea ice refractive index at 6.9, 10.7, 23, 37, and 89 GHz in different arctic climatological conditions. The refractive indices of wintertime first year (FY) sea ice and summertime ice were derived with average values of 1.78 - 1.75 and 1.724 - 1.70 at different frequencies respectively, which are consistent with previous studies. However, for multiyear (MY) ice, the results indicated relatively large bias between modeled results since 10.7 GHz. At a higher frequency, there is larger MY ice refractive index difference. This bias is mainly attributed to the volume scattering effect on MY microwave radiation due to emergence of massive small empty cavities after the brine water in MY ice is discharged into sea. In addition, the retrieved sea ice refractive indices can be utilized to classify ice types (for example, the winter derivation at 89 GHz), to identify coastal polynyas (winter retrieval at 6.9 GHz), and to outline the areal extent of significantly melting marginal sea ice zone (MIZ) (summer result at 6.9 GHz). The investigation of this study suggests an effective tool of passive microwave remote sensing in monitoring sea ice refractive index variability.

2. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios

Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

2015-08-01

In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.

3. Tuning the Thickness and Orientation of Single Au Pyramids for Improved Refractive Index Sensitivities.

PubMed

Lee, Jeunghoon; Hasan, Warefta; Odom, Teri W

2009-02-12

This paper describes three ways to tune the multipolar surface plasmon resonances of Au pyramidal particles: (1) by varying their thickness; (2) by controlling their relative orientation on a surface; and (3) by changing the refractive index of the surrounding media. We found that as the index of the medium was increased that the plasmon resonances red-shifted linearly from visible to near infrared wavelengths. By screening the different geometric parameters, we found that 25-nm thick pyramids in a tip-up orientation produced the largest refractive index sensitivities.

4. Refractive Index of a Transparent Liquid Measured with a Concave Mirror

ERIC Educational Resources Information Center

Joshi, Amitabh; Serna, Juan D.

2012-01-01

Measuring the refractive index "n" of a substance or medium is part of every introductory physics course. Various approaches to determine this index have been developed over the years based on the different ways light reflects and transmits in the medium. In this paper, the authors would like to present a simple geometrical derivation of the…

5. Measurement of optical penetration depth and refractive index of human tissue

Xie, Shusen; Li, Hui; Li, Buhong

2003-01-01

Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative fluence-depth distribution inside the target tissue. The depth of normal and carcinomatous human lung tissues irradiated with the wavelengths of 406.7, 632.8 and 674.4 nm in vitro are respectively determined. In addition, a novel simple method based on total internal reflection for measuring the refractive index of biotissue in vivo is developed, and the refractive indices of skin from people of different age, sex and skin color are measured. Their refractive indices are almost same and the average is 1.533.

6. Complex Refractive Index of Ammonium Nitrate in the 2-20 micron Spectral Range

NASA Technical Reports Server (NTRS)

Jarzembski, Maurice A.; Norman, Mark L.; Fuller, Kirk A.; Srivastava, Vandana; Cutten, Dean R.

2002-01-01

Using high resolution Fourier Transform Infrared Spectroscopy (FTIR) absorbance/transmittance spectral data for ammonium sulfate (AMS), calcium carbonate (CAC) and ammonium nitrate (AMN), comparisons were made with previously published complex refractive indices data for AMS and CAC to infer experimental parameters to determine the imaginary refractive index for AMN in the infrared wavelength range from 2 to 20 microns. Kramers-Kronig mathematical relations were applied to calculate the real refractive index for the three compositions. Excellent agreement for AMS and CAC with the published values was found, validating the complex refractive indices obtained for AMN. Backscatter calculations using a lognormal size distribution for AMS, AMN, and CAC aerosols were performed to show differences in their backscattered spectra.

7. Determination of Diameter and Index of Refraction of Textile Fibers by Laser Backscattering

SciTech Connect

H. Okuda; B. Stratton; L. Meixler; P. Efthimion; D.Mansfield

2003-07-24

A new method was developed to determine both diameters and indices of refraction and hence the birefringence of cylindrical textile and industrial fibers and bundles by measuring intensity patterns of the scattered light over an interval of scattering angles. The measured intensity patterns are compared with theoretical predictions (Mie theory) to determine fiber diameter and index of refraction. It is shown that the method is simple and accurate and may be useful as an on-line, noncontact diagnostic tool in real time.

8. Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity

Liu, Hanli; Beauvoit, Bertrand; Kimura, Mika; Chance, Britton

1996-04-01

Additions of a solute/carbohydrate in tissue affect the size of tissue cells and the refractive indexes of the extra- and intracellular fluids, and thus the overall tissue scattering properties. We use both the Rayleigh-Gans and Mie theory approximation in calculating effects of the osmolarity and refractive indexes on the reduced scattering coefficient of tissue, and employ photon diffusion theory to associate the reduced scattering coefficient to the mean optical path length. The calculations show that changes of scattering in tissue depend not only on the change in extracellular refractive index but also on the change in osmolarity, and thus on the change in cell size and volume fraction. Experimentally, we have utilized time-domain and frequency- domain NIR techniques to measure the changes of optical properties caused by an addition of a solute in tissue models and in perfused rat livers. The temperature-dependent path length measurement of the perfused liver confirms the dependence of tissue scattering on the tissue cell size. The results obtained from the liver with three kinds of carbohydrate perfusion display different scattering aspects and can be well explained by changes in cell size and in extracellular as well as intracellular refractive indexes. The consistency between the theoretical and experimental results confirms the dependence of optical properties in (liver) tissue on both tissue osmolarity and relative refractive indexes between the extracellular and intracellular compartments. This study suggests that the NIR technique is a novel and useful tool for noninvasive, physiological monitoring.

9. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing

Cheng, Yongzhi; Mao, Xue Song; Wu, Chenjun; Wu, Lin; Gong, RongZhou

2016-03-01

We present a non-planar all-metal plasmonic perfect absorber (PA) with response polarization independent in infrared region, which can be served as a sensor for enhanced refractive index sensing. Distinct from previous designs, the proposed PA consisted of all metal structured film constructed with an assembly of four-tined rod resonators (FRRs). The PA with a high quality-factor (Q-factor) of 41.2 and an absorbance of 99.9% at 142.6 THz has been demonstrated numerically. The resonance behavior occurs in the space between the rods of the FRRs, which is remarkable different conventional sandwiched structural PAs. Based on equivalent LC circuit theory, the absorption peak can be finely tuned by varying the geometrical dimensions of the FRRs. Furthermore, the resonance frequency shows highly sensitive response to the change of refractive index in the surrounding medium. A careful design for refractive index sensor can yield a sensitivity of 1445 nm/refractive index unit (RIU) and a figure of merit (FOM) of 28.8. The demonstrated design of the plasmonic PA for sensing provides great potential application in enhancing refractive index sensors and the enhanced infrared spectroscopy.

10. Control of Refractive Index of Fluorinated Polyimide by Proton Beam Irradiation

Arai, Yukitaka; Ohki, Yoshimichi; Saito, Keisuke; Nishikawa, Hiroyuki

2013-01-01

To clarify the feasibility of controlling the refractive index of a polymer by proton beam irradiation, we irradiated 1.0 MeV protons to a fluorinated polyimide film. Before and after the proton irradiation at a fluence between 1×1014 and 7×1016 cm-2, the film surface was scanned by a profilometer. It was found that the depth of a dent, which increases with fluence, was induced by the irradiation. The refractive index of the ion-irradiated region was calculated using the Lorentz-Lorenz equation, substituting the depth of the dent and the projected range of the protons. When the fluorinated polyimide was irradiated at a fluence of 7×1016 cm-2, the refractive index increased by about 3.3%, which agrees with the increment in refractive index measured by spectroscopic ellipsometry. The increment in refractive index (0.21%) induced by the irradiation of protons at the fluence of 1×1015 cm-2 is comparable to the value (0.35%) observed when protons were irradiated to SiO2 glass at a similar fluence. Therefore, it is reasonable to assume that the ion irradiation to a polymer can be a good method for fabricating a high-performance polymer-based optical waveguide.

11. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel

Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R.; Choi, Wonshik; Yaqoob, Zahid; So, Peter

2014-02-01

The refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, the refractive index contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving-parts approach that provides three-dimensional refractive-index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate refractive-index maps of the samples from the measured spectra. Using this method, we demonstrate label-free three-dimensional imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass, and density of these cells from the measured three-dimensional refractive-index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, shows promise as a quantitative tool for stain-free characterization of a large number of cells.

12. Development and characterization of high refractive index and high scattering acrylate polymer layers

Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas

2016-04-01

The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.

13. Development and characterization of high refractive index and high scattering acrylate polymer layers

Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

2016-11-01

In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.

14. Absolute air refractive index measurement and tracking based on variable length vacuum cell

Yu, Xiangzhi; Zhang, Tieli; Ellis, Jonathan D.

2016-06-01

A refractometer system using four modified Wu-type heterodyne interferometers with a variable length vacuum cell is presented. The proposed system has two working modes: (1) a moving mode for measuring the absolute air refractive index at the start of a measurement and (2) a static mode for monitoring the air refractive index fluctuation with the same bandwidth as a traditional displacement interferometer. The system requires no gas filling or pumping during the measurement and can be used for real-time refractive index compensation. Comparison experiments with empirical equations are conducted to investigate the feasibility and performance of the proposed system. The standard deviation of the measurement difference between the proposed system and empirical equation is 2.8 parts in 107, which is close to the uncertainty of our refractive index reference based on the accuracy of the environmental sensors. The relative refractive index tracking is a few parts in 108 with a bandwidth of 10 Hz, but high bandwidths are readily achievable.

15. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

NASA Technical Reports Server (NTRS)

Leviton, Douglas B.; Frey, Bradley J.

2006-01-01

Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

16. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry.

PubMed

Shendeleva, Margarita L; Molloy, John A

2006-09-20

We report on the development of Monte Carlo software that can model media with spatially varying scattering coefficient, absorption, and refractive index. The varying refractive index is implemented by calculating curved photon paths in the medium. The results of the numerical simulations are compared with analytical solutions obtained using the diffusion approximation. The model under investigation is a scattering medium that contains a spherically symmetrical inclusion (inhomogeneity) created by variation in optical properties and having no sharp boundaries. The following steady-state cases are considered: (a) a nonabsorbing medium with a spherically symmetrical varying refractive index, (b) an inclusion with varying absorption and scattering coefficients and constant refractive index, and (c) an inclusion with varying absorption, scattering, and refractive index. In the latter case it is shown that the interplay between the absorption coefficient and the refractive index may create the effect of a hidden inclusion.

17. Interferometric Spectroscopy of Scattered Light Can Quantify the Statistics of Subdiffractional Refractive-Index Fluctuations

Cherkezyan, L.; Capoglu, I.; Subramanian, H.; Rogers, J. D.; Damania, D.; Taflove, A.; Backman, V.

2013-07-01

Despite major importance in physics, biology, and other sciences, the optical sensing of nanoscale structures in the far zone remains an open problem due to the fundamental diffraction limit of resolution. We establish that the expected value of spectral variance (Σ˜2) of a far-field, diffraction-limited microscope image can quantify the refractive-index fluctuations of a label-free, weakly scattering sample at subdiffraction length scales. We report the general expression of Σ˜ for an arbitrary refractive-index distribution. For an exponential refractive-index spatial correlation, we obtain a closed-form solution of Σ˜ that is in excellent agreement with three-dimensional finite-difference time-domain solutions of Maxwell’s equations. Sensing complex inhomogeneous media at the nanoscale can benefit fields from material science to medical diagnostics.

18. Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations.

PubMed

Cherkezyan, L; Capoglu, I; Subramanian, H; Rogers, J D; Damania, D; Taflove, A; Backman, V

2013-07-19

Despite major importance in physics, biology, and other sciences, the optical sensing of nanoscale structures in the far zone remains an open problem due to the fundamental diffraction limit of resolution. We establish that the expected value of spectral variance (Σ[over ˜](2)) of a far-field, diffraction-limited microscope image can quantify the refractive-index fluctuations of a label-free, weakly scattering sample at subdiffraction length scales. We report the general expression of Σ[over ˜] for an arbitrary refractive-index distribution. For an exponential refractive-index spatial correlation, we obtain a closed-form solution of Σ[over ˜] that is in excellent agreement with three-dimensional finite-difference time-domain solutions of Maxwell's equations. Sensing complex inhomogeneous media at the nanoscale can benefit fields from material science to medical diagnostics.

19. Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations

PubMed Central

Cherkezyan, L.; Capoglu, I.; Subramanian, H.; Rogers, J. D.; Damania, D.; Taflove, A.

2014-01-01

Despite major importance in physics, biology, and other sciences, optical sensing of nanoscale structures in the far-zone remains an open problem due to the fundamental diffraction limit of resolution. We establish that the expected value of spectral variance (Σ̃2) of a far-field, diffraction-limited microscope image can quantify the refractive-index fluctuations of a label-free, weakly scattering sample at subdiffraction length scales. We report the general expression of Σ̃ for an arbitrary refractive-index distribution. For an exponential refractive-index spatial correlation, we obtain a closed-form solution of Σ̃ which is in excellent agreement with three-dimensional finite-difference time-domain solutions of Maxwell's equations. Sensing complex inhomogeneous media at the nanoscale can benefit fields from material science to medical diagnostics. PMID:23909326

20. Suppression of Air Refractive Index Variations in High-Resolution Interferometry

PubMed Central

Lazar, Josef; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

2011-01-01

The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10−8 has been achieved. PMID:22164036

1. Refractive index and equation of state of a shock-compressed aqueous solution of zinc chloride

Wise, J. L.

1983-06-01

Velocity interferometers measurements have yielded refractive index and Hugoniot equation-of-state data for a 9.1-molar aqueous solution of zinc chloride which was shock-compressed to initial stresses ranging from 2.2 to 24.1 GPa in a series of plate-impact experiments. The Hugoniot data are accurately described by a linear variation of shock velocity with particle velocity. The optical data verify sustained solution transparency over the investigated range of shock stresses, and provide a calibration of the correction which must be applied to interferometer measurements to account for the stress-induced change in refractive index of the material. Refractive index data derived from the measured particle velocity corrections exhibit a departure from predictions based on the Gladstone-Dale relation.

2. SPR optimization using metamaterials in a D-type PCF refractive index sensor

Santos, D. F.; Guerreiro, A.; Baptista, J. M.

2017-01-01

Using the finite element method (FEM), this paper presents a numerical investigation of the performance analysis of a D-type photonic crystal fiber (D-type PCF) for refractive index sensing, based on surface plasmon resonance (SPR) with a planar structure made out of a metamaterial. COMSOL Multiphysics was used to evaluate the design of the referred refractive index optical fiber sensor, with higher accuracy and considerable economy of time and resources. A study of different metamaterials concentrations conformed by aluminum oxide (Al2O3) and silver (Ag) is carried out. Another structural parameters, which influences the refractive index sensor performance, the thickness of the metamaterial, is also investigated. The results indicate that the use of metamaterials provides a way of improving the performance of SPR sensors on optical fibers and allows to tailor the working parameters of the sensor.

3. Enhancement of graphene visibility on transparent substrates by refractive index optimization.

PubMed

Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter

2013-05-20

Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.

4. Characterization of the Refractive Index of Strained GaInNAs Layers by Spectroscopic Ellipsometry

Kitatani, Takeshi; Kondow, Masahiko; Shinoda, Kazunori; Yazawa, Yoshiaki; Okai, Makoto

1998-03-01

We have characterized the refractive index of strained GaInNAs layers. Using spectroscopic ellipsometry (SE), the variation in optical constants of GaInNAs layers, about 6 nm thick with a nitrogen content lower than 1%, can be clearly observed. Analysis of the SE data, including the strain effect in the layer, clarified that the refractive index of GaInNAs increases in proportion to the nitrogen content. While the trend for increase in refractive index with a decrease in the bandgap energy is the same as that observed in conventional III V alloy semiconductors, the rate of increase is found to be much larger than that in GaInAs. This result suggests a large density of states in the conduction band characteristics of this type of material system that includes nitrogen atoms.

5. Broadband giant-refractive-index material based on mesoscopic space-filling curves

PubMed Central

Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

2016-01-01

The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications. PMID:27573337

6. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers.

PubMed

Cheben, Pavel; Bock, Przemek J; Schmid, Jens H; Lapointe, Jean; Janz, Siegfried; Xu, Dan-Xia; Densmore, Adam; Delâge, André; Lamontagne, Boris; Hall, Trevor J

2010-08-01

We use subwavelength gratings (SWGs) to engineer the refractive index in microphotonic waveguides, including practical components such as input couplers and multiplexer circuits. This technique allows for direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6-3.5 by lithographic patterning. We demonstrate two experimental examples of refractive index engineering, namely, a microphotonic fiber-chip coupler with a coupling loss as small as -0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide. This yields an operation bandwidth of 170nm for a device size of only approximately 160microm x100microm.

7. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

PubMed

Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

2015-03-26

We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

8. Measurement of the refractive index of hemoglobin solutions for a continuous spectral region

PubMed Central

Wang, Jin; Deng, Zhichao; Wang, Xiaowan; Ye, Qing; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

2015-01-01

Determination of the refractive index of hemoglobin solutions over a wide wavelength range remains challenging. A famous detour approach is the Kramers-Kronig (KK) analysis which can resolve the real part of complex refractive index from the imaginary part. However, KK analysis is limited by the contradiction between the requirement of semi-infinite frequency range and limited measured range. In this paper, based on the Multi-curve fitting method (MFM), continuous refractive index dispersion (CRID) of oxygenated and deoxygenated hemoglobin solutions are measured using a homemade symmetrical arm-linked apparatus in the continuous wavelength range with spectral resolution of about 0.259nm. A novel method to obtain the CRID is proposed. PMID:26203379

9. Emittance of a finite scattering medium with refractive index greater than unity

SciTech Connect

Crosbie, A.L.

1980-01-01

Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directional emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed.

10. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

PubMed

Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

2014-08-01

The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

11. Correction of refraction index based on adjacent pulse repetition interval lengths

Wei, Dong; Aketagawa, Masato

2014-11-01

Correction of refraction index is important for length measurement. The two-color method has been widely used for correction. The wavelengths of lasers have been used as a ruler of that. Based on the analogy between the wavelength and the adjacent pulse repetition interval length (APRIL), in this paper we investigate the possibility of two-color method based on adjacent pulse repetition interval lengths. Since the wavelength-based two-color method can eliminate the inhomogeneous disturbance of effects caused by the phase refractive index, therefore the APRIL-based two-color method can eliminate the air turbulence of errors induced by the group refractive index. Our analysis will contribute to high-precision length measurement.

12. Influence of refractive index and molecular weight of alcohol agents on skin optical clearing effect

Mao, Zhongzhen; Zheng, Ying; Hu, Yating; Lu, Wei; Luo, Qingming; Zhu, Dan

2007-02-01

In order to discuss the relative factors affecting the optical clearing effect of agents on skin tissues, six hydroxy-terminated and saturated alcohols with different refractive index and molecular weight were chosen as the optical clearing agents (OCAs). After being treated by different OCAs, the change of transmitted intensity of porcine skins in vitro was measured by single integrating sphere system. The results showed the optical clearing effects of six OCAs, i.e., glycerol, PEG400, PEG200, 1,3-propylene glycol, 1,4-butanediol and 1-butanol, arranged in the descending order. Based on the above results, the refractive index and molecular weight was further discussed. The optical clearing effect of alcohols has been deduced to have negative correlation with refractive index (r=-0.608), but no correlation with molecular weight (r= 0.008).

13. Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements

Bin, Yang; Yan, Changxiang; Zhang, Junqiang; Zhang, Haiyang

2016-12-01

This paper presents a method to estimate refractive index and surface roughness simultaneously from multispectral and multiangular passive polarimetric measurements. Such a method has ties to passive remote sensing applications. Within the analysis, we use a previously derived expression for the degree of linear polarization, and a nonlinear least-squares algorithm to estimate the parameters of interest (i.e., refractive index and surface roughness) from the measured data. The results obtained from Monte Carlo simulations show that the estimation accuracy improves as the number of spectral channels and detection angles increase. It does so until the estimation accuracy reaches saturation. To take full advantage of the presented method, we also determine the most reasonable number of spectral channels and detection angles for our laboratory measurements using Monte Carlo simulations. Finally, after analyzing the experimental results for dielectric and metallic samples, we validate the effectiveness and advantages of the presented method to estimate refractive index and surface roughness for passive remote sensing.

14. Optical extinction, refractive index, and multiple scattering for suspensions of interacting colloidal particles

Parola, Alberto; Piazza, Roberto; Degiorgio, Vittorio

2014-09-01

We provide a general microscopic theory of the scattering cross-section and of the refractive index for a system of interacting colloidal particles, exact at second order in the molecular polarizabilities. In particular: (a) we show that the structural features of the suspension are encoded into the forward scattered field by multiple scattering effects, whose contribution is essential for the so-called "optical theorem" to hold in the presence of interactions; (b) we investigate the role of radiation reaction on light extinction; (c) we discuss our results in the framework of effective medium theories, presenting a general result for the effective refractive index valid, whatever the structural properties of the suspension, in the limit of particles much larger than the wavelength; (d) by discussing strongly-interacting suspensions, we unravel subtle anomalous dispersion effects for the suspension refractive index.

15. Broadband giant-refractive-index material based on mesoscopic space-filling curves

Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

2016-08-01

The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.

16. Zygo interferometer for the precious measurement of tiny refractive index change of two laser crystals

Wu, Ting; Hui, Yongling; Yan, Zou; Li, Zhitong; Li, Qiang

2017-03-01

An application of the Zygo system for measuring the refractive index change between two crystals such as 1at%Yb3+: YAG and YAG, was introduced in this paper, having a high accuracy at an order of 10-7. In this method, the tiny refractive index change of two crystals was obtained by measuring the difference in optical path distance of equal thickness interference between two crystals. The mean value of refractive index change of the crystals measured by the Zygo interferometer is 1.10×10-4 for a wavelength of 632.8 nm. And a high accuracy of 3.2×10-6 was achieved.

17. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

SciTech Connect

Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.; Sørensen, Kristian T.; Kristensen, Anders

2015-08-10

Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.

18. Scattering of Light by a Sphere with an Arbitrary Radially Variable Refractive Index

Perelman, A. Y.; Zinov'eva, T. V.; Mosseev, I. G.

Based on the piecewise-continuous hyperbolic approximation (PCHA), we have developed a numerically stable and accurate algorithm for computation of the internal and scattered fields, as well as energetic characteristics, of a sphere with an arbitrary radially variable complex refractive index. The algorithm is cast in terms of the power functions, which overcomes a number of problems associated with round-off errors. The method of computation is tested with known solutions relating to the particular cases of the problem. The PCHA is proved to be convergent. The PCHA allows one to solve the scattering problem associated with an arbitrary complex radially variable refractive index in terms of the simplest functions. The PCHA makes it possible to construct the formal refractive index contour reproducing the scattering experimental data considerably more accurately than the Mie theory. This result is of importance in remote sensing problems. Several examples of calculations for the scattering function of cosmic fluffy dust particles are presented.

19. Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature.

PubMed

Wang, Ruohui; Qiao, Xueguang

2014-11-10

We present a hybrid miniature optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature. The interferometer is fabricated by cascading two short sections of capillary tubes with different inner diameters. One extrinsic interferometer is based on the air gap cavity formed by the capillary tube with large diameter. Another section of capillary tube with small inner diameter performs as an intrinsic interferometer and also provides a channel enabling gas to enter and leave the extrinsic cavity freely. The experiment shows that the different dips or peaks in fringe exhibit different responses to the changes in gas refractive index and temperature. Owing to this feature, simultaneous measurement of the gas refractive index and temperature can be realized.

20. Localized surface plasmon resonance and refractive index sensitivity of vacuum-evaporated nanostructured gold thin films

Rai, V. N.; Srivastava, A. K.; Mukherjee, C.; Deb, S. K.

2016-01-01

Plasmonic properties of vacuum-evaporated nanostructured gold thin films having different types of nanoparticles are presented. The films with thickness ≥6 nm show the presence of nanorods having non-cylindrical shape with triangular base. Two characteristic plasmon bands have been recorded in absorption spectra. First one occurs below 500 nm and the other one at higher wavelength side. Both the peaks show dependence on the dielectric property of surroundings. The higher wavelength localized surface plasmon resonance peak shifts to higher wavelength with an increase in the nanoparticle size, surface roughness and refractive index of the surrounding (methylene blue dye coating). This shows that such thin films can be used as sensor for organic molecules with a refractive index sensitivity ranging from 250 to 305 nm/RIU (refractive index unit).

1. X-UV Index of Refraction of Dense and Hot Plasmas.

PubMed

Benattar, R; Galos, C; Ney, P

1995-01-01

In a dense and hot plasma the refractive index in the X-UV range takes into account not only the effect of free electrons, but also the effect of electrons bound by atoms. The refractive index is calculated by the Kramer-Kronig relations using the total opacity of the medium including bound-bound, free-bound, and free-free atomic transitions. A simple method of calculation of the emission and absorption coefficients is presented. These parameters are of great interest when one wants to study radiative transfer in a dense and hot material. The computer program used allows one to obtain either in LTE or in NLTE the values of these coefficients for every material and for a wide range of mass density and temperature, using a screened hydrogenic model. Applications are presented first to generate opacity tables and second to generate the index of refraction of aluminum for a wide range of mass density and temperature.

2. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

PubMed Central

Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

2014-01-01

In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived

3. Tunable Negative Refractive Index Metamaterials and Applications at X and Q-bands

DTIC Science & Technology

2008-03-02

The goal of the current DARPA-ARO funded project is to design, fabricate, and test a tunable negative index metamaterial (TNIM) using ferrites as...Mater., 313 (2007) 187-191. Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials ”, IEEE Trans. Magnetics...2 3 Final Progress Report Tunable Negative Refractive Index Metamaterials and Applications at X and Q- bands Peng He, Jinsheng Gao, P

4. Estimation of volcanic ash refractive index from satellite infrared sounder data

Ishimoto, H.; Masuda, K.

2014-12-01

The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

5. Two-dimensional refractive index and stresses profiles of a homogenous bent optical fiber.

PubMed

Ramadan, W A; Wahba, H H; Shams El-Din, M A

2014-11-01

We present a significant contribution to the theory of determining the refractive index profile of a bent homogenous optical fiber. In this theory we consider two different processes controlling the index profile variations. The first is the linear index variation due to stress along the bent radius, and the second is the release of this stress on the fiber surface. This release process is considered to have radial dependence on the fiber radius. These considerations enable us to construct the index profile in two dimensions normal to the optical axis, considering the refraction of light rays traversing the fiber. This theory is applied to optical homogenous bent fiber with two bending radii when they are located orthogonal to the light path of the object arm in the holographic setup (like the Mach-Zehnder interferometer). Digital holographic phase shifting interferometry is employed in this study. The recorded phase shifted holograms have been combined, reconstructed, and processed to extract the phase map of the bent optical fiber. A comparison between the extracted optical phase differences and the calculated one indicates that the refractive index profile variation should include the above mentioned two processes, which are considered as a response for stress distribution across the fiber's cross section. The experimentally obtained refractive index profiles provide the stress induced birefringence profile. Thus we are able to present a realistic induced stress profile due to bending.

6. Full-field measurement of surface reflectivity using a microscopy for refractive index profiling of GRIN lenses

Weng, Chun-Jen; Chen, Chih-Yen; Hwang, Chi-Hung; Liu, Da-Ren

2016-10-01

This paper outlines an improved technique for profiling the refractive index of Graded-index (GRIN) lenses based on the measurements obtained from a reflectivity image. Reflective cross-sectional image of the GRIN lens were compared with a reflectance reference target under illumination at small incidence angles to obtain the full-field refractive index distribution of the GRIN lens quickly and easily.

7. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

SciTech Connect

Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

2015-08-15

Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

8. Reversing the direction of space and inverse Doppler effect in positive refraction index media

Sun, Fei; He, Sailing

2017-01-01

A negative refractive index medium, in which all spatial coordinates are reversed (i.e. a left-hand triplet is formed) by a spatial folding transformation, can create many novel electromagnetic phenomena, e.g. backward wave propagation, and inversed Doppler effect (IDE). In this study, we use coordinate rotation transformation to reverse only two spatial coordinates (e.g. x‧ and y‧), while keeping z‧ unchanged. In this case, some novel phenomena, e.g. radiation-direction-reversing illusions and IDE, can be achieved in a free space region wrapped by the proposed shell without any negative refractive index medium, which is easier for experimental realization and future applications.

9. Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing

Osório, Jonas H.; Oliveira, Ricardo; Aristilde, Stenio; Chesini, Giancarlo; Franco, Marcos A. R.; Nogueira, Rogério N.; Cordeiro, Cristiano M. B.

2017-03-01

In this paper, we report, to our knowledge, the first extended study of the inscription of Bragg gratings in surface-core fibers and their application in refractive index and directional curvature sensing. The research ranges from fiber fabrication and grating inscription in untapered and tapered fibers to the performance of simulations and sensing measurements. Maximum sensitivities of 40 nm/RIU and 202.7 pm/m-1 were attained in refractive index and curvature measurements respectively. The obtained results compares well to other fiber Bragg grating based devices. Ease of fabrication, robustness and versatility makes surface-core fibers an interesting platform when exploring fiber sensing devices.

10. Refractive index enhancement with vanishing absorption in short, high-density vapor cells

Simmons, Z. J.; Proite, N. A.; Miles, J.; Sikes, D. E.; Yavuz, D. D.

2012-05-01

It has recently been predicted and experimentally demonstrated that the refractive index of a vapor may be enhanced while maintaining vanishing absorption by using the interference of two Raman transitions, one absorptive and one amplifying in nature. In this paper, we present a detailed experimental study of this technique in a 1-mm-long rubidium (Rb) vapor cell with densities exceeding 1014 cm-3. We study the optimization of the achieved refractive index as various experimental parameters are varied and discuss a number of limitations of the current experiments. We also present a detailed discussion of possible experimental improvements and future prospects of this technique.

11. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

PubMed

Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

2010-11-26

We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

12. Solution of transport equations in layered media with refractive index mismatch using the PN-method.

PubMed

Phillips, Kevin G; Jacques, Steven L

2009-10-01

The PN-method is a spectral discretization technique used to obtain numerical solutions to the radiative transport equation. To the best of our knowledge, the PN-method has yet to be generalized to the case of refractive index mismatch in layered slabs used to numerically simulate skin. Our main contribution is the application of a collocation method that takes into account refractive index mismatch at layer interfaces. The stability, convergence, and accuracy of the method are established. Example calculations demonstrating the flexibility of the method are performed.

13. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

NASA Technical Reports Server (NTRS)

Siegel, R.; Spuckler, C. M.

1992-01-01

14. A new wideband negative refractive index metamaterial for dual-band operation

Islam, S. S.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

2017-04-01

A new wideband negative refractive index (NRI) metamaterial for dual-band operation is introduced in this study. Initially, a bare-H-shaped resonator was designed over the FR-4 substrate material. The refractive index curve for the unit cell, displays more than 3-GHz negative real peak from C-band to some portion of X-band. The proposed design also displays NRI property in the same frequency bands with wider bandwidth, when the Rogers RT 3010 substrate material was employed instead of FR-4 substrate material.

15. Determination of refraction nonlinear index, for effect thermal, of solutions with nanoparticles of gold

Olivares-Vargas, A.; Trejo-Durán, M.; Alvarado-Méndez, E.; Cornejo-Monroy, D.; Mata-Chávez, R. I.; Estudillo-Ayala, J. M.; Castaño-Meneses, V.

2013-09-01

Research of nonlinear optical properties of materials for manufacturing opto-electronic devices, had a great growth in the last years. The solutions with nanoparticle metals present nonlinear optical properties. In this work we present the results of characterizing, analyzing and determining the magnitude and sign of the nonlinear refractive index, using the z-scan technique in solutions with nanoparticles of gold, lipoic acid and sodium chloride. We used a continuous Argon laser at 514 nm with variable power, an 18 cms lens, and a chopper. We determined the nonlinear refractive index in the order of 10-9. These materials have potential applications mainly as optical limiters.

16. Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution

Zhou, Xinlei; Chen, Ke; Li, Li; Peng, Wei; Yu, Qingxu

2017-01-01

We design and manufacture an angle modulated surface plasmon resonance (SPR) spectrometer with high detection resolution for refractive index sensing. The presented SPR spectrometer is based on a five-layer Kretchmann configuration. To enhance the sensitivity and resolution of the SPR spectrometer, we introduce a reference beam into the system, which has improved the stability of the system by nearly one order of magnitude. Numerical simulation and experimental study are presented and the results show that a sensitivity of 85 degrees/RIU (refractive index unit) and a good repeatability (standard deviation=3.7×10-6 RIU) have been achieved.

17. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography.

PubMed

Cheng, Hsu-Chih; Liu, Yi-Cheng

2010-02-10

Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3 x 3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

18. Real-time compensation of the refractive index of air in distance measurement.

PubMed

Kang, Hyun Jay; Chun, Byung Jae; Jang, Yoon-Soo; Kim, Young-Jin; Kim, Seung-Woo

2015-10-05

A two-color scheme of heterodyne laser interferometer is devised for distance measurements with the capability of real-time compensation of the refractive index of the ambient air. A fundamental wavelength of 1555 nm and its second harmonic wavelength of 777.5 nm are generated, with stabilization to the frequency comb of a femtosecond laser, to provide fractional stability of the order of 3.0 × 10(-12) at 1 s averaging. Achieved uncertainty is of the order of 10(-8) in measuring distances of 2.5 m without sensing the refractive index of air in adverse environmental conditions.

19. Bragg resonance behavior of the neutron refractive index and crystal acceleration effect

Braginetz, Yu. P.; Berdnikov, Ya. A.; Fedorov, V. V.; Kuznetsov, I. A.; Lasitsa, M. V.; Semenikhin, S. Yu.; Vezhlev, E. O.; Voronin, V. V.

2016-09-01

The energy dependence of neutron refraction index in a perfect crystal for neutron energy, close to the Bragg ones, was studied. The resonance shape of this dependence with approximately the Darwin width was found. As a result, the value of deviation from the exact Bragg condition can change during the neutron time of flight through the accelerated crystal and so the refraction index and the velocity of outgoing neutron can change as well. Such new mechanism of neutron acceleration in the accelerating perfect crystal was proposed and found experimentally. This mechanism is march more effective then known one concerning with the neutron acceleration in the accelerating usual media.

20. Meshless method for solving coupled radiative and conductive heat transfer in refractive index medium

Wang, Cheng-An; Sadat, Hamou; Tan, Jian-Yu

2016-01-01

A diffuse approximation meshless method (DAM) is employed as a means of solving the coupled radiative and conductive heat transfer problems in semi-transparent refractive index media contained in 1D and 2D geometries. The meshless approach for radiative transfer is based on the discrete ordinates equation. Cases of combined conduction- radiation are presented, including plane parallel slab, square enclosure, and semicircular enclosure with an inner circle. The influence of the refractive index on the temperature distributions and heat fluxes is investigated. Results obtained using the proposed meshless method are compared with those reported in the literature to demonstrate the flexibility and accuracy of the method.

1. A Three-Dimensional Self-Supporting Low Loss Microwave Lens with a Negative Refractive Index

DTIC Science & Technology

2012-01-01

A three-dimensional self-supporting low loss microwave lens with a negative refractive index Isaac M. Ehrenberg , Sanjay E. Sarma, and Bae-Ian Wu...ANSI Std Z39-18 A three-dimensional self-supporting low loss microwave lens with a negative refractive index Isaac M. Ehrenberg ,1 Sanjay E. Sarma,1 and...samples reaches the level of air near 10.25 GHz. 073114-2 Ehrenberg , Sarma, and Wu J. Appl. Phys. 112, 073114 (2012) Downloaded 14 Nov 2012 to

2. Observation of a multiply ionized plasma with index of refraction greater than one

SciTech Connect

Filevich, J; Rocca, J J; Marconi, M C; Moon, S J; Nilsen, J; Scofield, J H; Dunn, J; Smith, R F; Keenan, R; Hunter, J R; Shlyaptsev, V N

2004-10-14

We present clear experimental evidence showing that the contribution of bound electrons can dominate the index of refraction of laser created plasmas at soft x-ray wavelengths. We report anomalous fringe shifts in soft x-ray laser interferograms of Al laser-created plasmas. The comparison of measured and simulated interferograms show that this results from the dominant contribution of low charge ions to the index of refraction. This usually neglected bound electron contribution can a.ect the propagation of soft x-ray radiation in plasmas and the interferometric diagnostics of plasmas for many elements.

3. Volumetric negative-refractive-index metamaterials based upon the shunt-node transmission-line configuration

Stickel, Micah; Elek, Francis; Zhu, Jiang; Eleftheriades, George V.

2007-11-01

A volumetric negative-refractive-index transmission-line (NRI-TL) metamaterial is presented. This structure constitutes a natural extension of the planar NRI-TL metamaterials1 and maintains the desired features of broad bandwidth and low transmission loss. Unlike their planar counterparts, the proposed volumetric NRI-TL metamaterials can effectively couple incident plane waves from free space. The proposed topology can be readily made by stacking layers that are individually fabricated using standard multilayer printed-circuit board techniques at microwave frequencies. However, the creation of the volumetric structure results in the presence of a parasitic parallel-plate mode. This mode can interfere with the desired backward wave mode of the metamaterial, causing a stop band to appear. To facilitate the rapid analysis of this new design, a multiconductor transmission line model was developed. Through the use of this model and full-wave simulations, it will be demonstrated that this unwanted parallel-plate mode can be eliminated by properly arranging the vertical inductive loading wires. Using this process, it will be shown that a properly designed inductive load can result in a practical NRI metamaterial slab which is matched to free space over a large bandwidth (22%) and with low insertion loss (<-1 dB). This approach can also be used to design NRI-TL metamaterials with backward wave dispersion bandwidths of over 140%.

4. Single-mode optical waveguides on native high-refractive-index substrates

Grote, Richard R.; Bassett, Lee C.

2016-10-01

High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs). However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

5. Generation of J0-Bessel-Gauss beam by a heterogeneous refractive index map.

PubMed

San-Roman-Alerigi, Damian P; Ng, Tien K; Zhang, Yaping; Ben Slimane, Ahmed; Alsunaidi, Mohammad; Ooi, Boon S

2012-07-01

In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to a J(0)-Bessel-Gauss convertor. We theoretically demonstrate the viability of a device that could be fabricated on a Si/Si(1-y)O(y)/Si(1-x-y)Ge(x)C(y) platform or by photo-refractive media. The proposed device is 200 μm in length and 25 μm in width, and its refractive index varies in controllable steps across the light propagation and transversal directions. The computed conversion efficiency and loss are 90%, and -0.457 dB, respectively. The theoretical results, obtained from the beam conversion efficiency, self-regeneration, and propagation through an opaque obstruction, demonstrate that a two-dimensional (2D) graded index map of the refractive index can be used to transform a Gauss beam into a J(0)-Bessel-Gauss beam. To the best of our knowledge, this is the first demonstration of such beam transformation by means of a 2D index-mapping that is fully integrable in silicon photonics based planar lightwave circuits (PLCs). The concept device is significant for the eventual development of a new array of technologies, such as micro optical tweezers, optical traps, beam reshaping and nonlinear beam diode lasers.

6. Ultrahigh refractive index chalcogenide based copolymers for infrared optics (Conference Presentation)

Anderson, Laura E.; Namnabat, Soha; Char, Kookheon; Glass, Richard; Norwood, Robert A.; Pyun, Jeffrey

2016-09-01

Current trends in technology development demand increased miniaturization and higher level integration of electronic and photonic components. Such needs arise in emerging imaging systems, optoelectronic devices, optical interconnects and photonic integrated circuits. Compact, integrated photonics requires high refractive index materials, which primarily comprise crystalline and amorphous semiconductors, as well as chalcogenide glasses, which can possess refractive indices higher than 4 and good infrared transparency. There is currently no high refractive index (n 2 or above) that has the low cost production and ease of processing available in optical polymers. Such polymers would potentially cover applications that are not convenient or possible with crystalline and vitreous semiconductors. Examples of such applications include micro lens arrays for image sensors, optical adhesives for bonding and antireflection coatings, and high contrast optical waveguides. While much of the focus has been in the telecommunications transparency regions, significant new opportunities exist for a polymer which is capable of transmitting efficiently in the MWIR region. While there are polymers that have been synthesized with refractive indices as high as 1.75, these polymers are generally conjugated and incorporate heteroatoms such as sulfur or metals, and generally have complex and expensive syntheses. Here we report on new chalcogenide based copolymers with very high refractive index (n 2) that also have good optical transmission properties in the near-, short- and mid-wave infrared up to 5µm. These polymers are rich in sulfur, have low hydrogen content and were made using inverse vulcanization.

7. Experiments on the Goos-Hänchen shift with negative and positive index of refraction materials

Orloff, Nathan; Ricci, Michael; Anderson, Collin; Long, Christian; Dutta, Sudeep; Anlage, Steven

2006-03-01

The negative Goos-Hänchen shift occurs when a beam of radiation having a finite transverse extent undergoes total internal reflection at a positive to negative index of refraction interface, hence the reflected beam experiences a negative lateral shift. This phenomenon has been predicted for materials with a negative index of refraction. We investigate a composite wire and split-ring resonator medium between 8-12 GHz, based on that first implemented by [1]. In addition, we present an experiment to investigate the Goos-Hänchen shift and show preliminary results on transmission, refraction, and total internal reflection. Work supported by NSF/ECS-0322844. [1] R. Shelby, D. R. Smith and S. Schultz, Science, 292, 77 (2001)

8. Negative refractive index metamaterials using only metallic cut wires.

PubMed

Sellier, Alexandre; Burokur, Shah Nawaz; Kanté, Boubacar; de Lustrac, André

2009-04-13

We present, design and analyze a novel planar Left-Handed (LH) metamaterial at microwave frequencies. This metamaterial is composed of only metallic cut wires and is used under normal-to-plane incidence. Using Finite Element Method (FEM) based simulations and microwave experiments, we have investigated the material properties of the structure. Simultaneous negative values are observed for the permittivity epsilon and permeability mu by the inversion method from the transmission and reflection responses. A negative index n is verified in a bulk prism engineered by stacking several layers of the metamaterial. Our work demonstrates the feasibility of a LH metamaterial composed of only cut wires.

9. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

PubMed Central

Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark

2015-01-01

Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is

10. Probing multifractality in depth-resolved refractive index fluctuations in biological tissues using backscattering spectral interferometry

Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, P. K.; Ghosh, Nirmalya

2016-12-01

Fourier domain low coherence interferometry is a promising method for quantification of the depth distribution of the refractive index in a layered scattering medium such as biological tissue. Here, we have explored backscattering spectral interferometric measurement in combination with multifractal detrended fluctuation analysis to probe and quantify multifractality in depth distribution of the refractive index in tissue. The depth resolution of the experimental system was validated on model systems comprising of polystyrene microspheres and mica sheet, and was initially tested on turbid collagen layer, the main building blocks of the connective tissue. Following successful evaluation, the method was applied on ex vivo tissues of human cervix. The derived multifractal parameters of depth-resolved index fluctuations of tissue, namely, the generalized Hurst exponent and the width of the singularity spectrum showed interesting differences between tissues having different grades of precancers. The depth-resolved index fluctuations exhibited stronger multifractality with increasing pathological grades, demonstrating its promise as a potential biomarker for precancer detection.

11. Chiral metamaterials with negative refractive index based on four “U” split ring resonators

SciTech Connect

Li, Zhaofeng; Zhao, Rongkuo; Koschny, Thomas; Kafesaki, Maria; Alici, Kamil Boratay; Colak, Evrim; Caglayan, Humeyra; Ozbay, Ekmel; Soukoulis, C.M.

2010-08-23

A uniaxial chiral metamaterial is constructed by double-layered four 'U' split ring resonators mutually twisted by 90{sup o}. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.

12. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

PubMed

Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

2015-10-15

In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors.

13. Concurrency of anisotropy and spatial dispersion in low refractive index dielectric composites

Ushkov, Andrey A.; Shcherbakov, Alexey A.

2017-01-01

The article demonstrates uncommon manifestation of spatial dispersion in low refractive index contrast 3D periodic dielectric composites with periods of about one tenth of the wavelength. First principles simulations by the well established plane wave method reveal that spatial dispersion leads to appearance of additional optical axes and tends to compensate anisotropy in certain directions.

14. Alternative phase-shifting technique for measuring full-field refractive index

Chen, Kun-Huang; Chen, Jing-Heng; Lin, Jiun-You; Chu, Yen-Chang

2015-09-01

This study proposes an alternative and simple method for measuring full-field refractive index. This method is based on the phase-shifting technique with a modulated electro-optical (EO) modulator and the phenomenon of total internal reflection. To this purpose, a linear polarized light is expanded and incident on the interface between the prism and the tested specimen, and the reflected light passes through an analyzer for interference. The phase difference between the s- and p-polarized light is sensitive to the refractive index of the tested specimen when the total internal reflection appears on this interface. Based on this effect, the resulting phase differences make it possible to analyze the refractive index of the tested specimen through a phase-shifting technique with a modulated EO modulator. The feasibility of this method was verified by experiment, and the measurement resolution can reach a value of refractive index unit of at least 3.552×10-4. This method has advantages of simple installation, ease of operation, and fast measurement.

15. Effect of refractive index on the fluorescence lifetime of green fluorescent protein.

PubMed

Tregidgo, Carolyn; Levitt, James A; Suhling, Klaus

2008-01-01

The average fluorescence lifetime of the green fluorescent protein (GFP) in solution is a function of the refractive index of its environment. We report that this is also the case for GFP-tagged proteins in cells. Using time-correlated single-photon counting (TCSPC)-based fluorescence lifetime imaging (FLIM) with a confocal scanning microscope, images of GFP-tagged proteins in cells suspended in different refractive index media are obtained. It is found that the average fluorescence lifetime of GFP decreases on addition of glycerol or sucrose to the media in which the fixed cells are suspended. The inverse GFP lifetime is proportional to the refractive index squared. This is the case for GFP-tagged major histocompatibility complex (MHC) proteins with the GFP located inside the cytoplasm, and also for GPI-anchored GFP that is located outside the cell membrane. The implications of these findings are discussed with regard to total internal reflection fluorescence (TIRF) techniques where the change in refractive index is crucial in producing an evanescent wave to excite fluorophores near a glass interface. Our findings show that the GFP fluorescence lifetime is shortened in TIRF microscopy in comparison to confocal microscopy.

16. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

PubMed

Kiselev, Aleksei P; Plachenov, Alexandr B

2016-04-01

The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.

17. Effect of scintillometer height on structure parameter of the refractive index of air measurements

Technology Transfer Automated Retrieval System (TEKTRAN)

Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

18. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

NASA Technical Reports Server (NTRS)

Rubinstein, R.; Greenberg, P. S.

1994-01-01

Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

19. Effect of optical pumping on the refractive index and temperature in the core of active fibre

SciTech Connect

Gainov, V V; Ryabushkin, Oleg A

2011-09-30

This paper examines the refractive index change (RIC) induced in the core of Yb{sup 3+}-doped active silica fibres by pulsed pumping. RIC kinetic measurements with a Mach - Zehnder interferometer make it possible to separately assess the contributions of the electronic and thermal mechanisms to the RIC and evaluate temperature nonuniformities in the fibre.

20. Engineering high refractive index sensitivity through the internal and external composition of bimetallic nanocrystals.

PubMed

Smith, Alison F; Harvey, Samantha M; Skrabalak, Sara E; Weiner, Rebecca G

2016-10-14

High refractive index sensitivity (RIS) of branched Au-Pd nanocrystals (NCs) is engineered through lowering the dielectric dispersion at the NC resonant wavelength with internal or external atomic % Pd. To our knowledge, these NCs display the highest ensemble RIS measurement for colloids with LSPR maximum band positions ≤900 nm, and these results are corroborated with FDTD computations.

1. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

PubMed Central

Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D.; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C.; Estudillo-Ayala, Julian M.; Rojas-Laguna, Roberto

2015-01-01

In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

2. Glasses having a low non-linear refractive index for laser applications

DOEpatents

Faulstich, Marga; Jahn, Walter; Krolla, Georg; Neuroth, Norbert

1980-01-01

Glass composition ranges are described which permit the introduction of laser activators into fluorphosphate glass with exceptionally high fluorine content while forming glasses of high crystallization stability and permitting the realization of large melt volumes. The high fluorine content imparts to the glasses an exceptionally low nonlinear refractive index n.sub.2 down to O,4 .times.10.sup.-13 esu.

3. Photoinduced refractive index change and absorption bleaching in poly(methylphenylsilane) under varied atmospheres.

SciTech Connect

Potter, Barrett George, Jr.; Simmons-Potter, Kelly; Chandra, Haripin; Thomes, William Joseph, Jr.; Jamison, Gregory Marks

2005-06-01

Polysilane materials exhibit large photo-induced refractive index changes under low incident optical fluences, making them attractive candidates for applications in which rapid patterning of photonic device structures is desired immediately prior to their use. This agile fabrication strategy for integrated photonics inherently requires that optical exposure, and associated material response, occurs in nonlaboratory environments, motivating the study of environmental conditions on the photoinduced response of the material. The present work examines the impact of atmosphere on the photosensitive response of poly(methylphenylsilane) (PMPS) thin films in terms of both photoinduced absorption change and refractive index modification. Material was subjected to UV light exposure resonant with the lowest energy optical transition associated with the conjugated Si-Si backbone. Exposures were performed in both aerobic and anaerobic atmospheres (oxygen, air, nitrogen, and 5% H{sub 2}/95% N{sub 2}). The results clearly demonstrate that the photosensitive response of this model polysilane material was dramatically affected by local environment, exhibiting a photoinduced refractive index change, when exposed under an oxygen containing atmosphere, that was twice that observed under anaerobic conditions. This effect is discussed in terms of photo-oxidation processes within the polysilane structure and in the context of the need for predictable photosensitive refractive index change in varied photoimprinting environments.

4. Scaling property of the diffusion equation for light in a turbid medium with varying refractive index.

PubMed

Shendeleva, Margarita L; Molloy, John A

2007-09-01

A spatially varying refractive index leads to the bending of photon paths in a medium, which complicates the Monte Carlo modeling of a photon random walk. We show that the process of photon diffusion in a turbid medium with varying refractive index and curved photon paths can be mapped to the diffusion process in a medium with straight photon paths and modified optical properties. Specifically, the diffusion coefficient, the absorption, and the refractive index of the second medium should differ from the corresponding properties of the first medium by the factor of the squared refractive index of the first medium. The specific intensity of light in the second medium will then be equal to the specific intensity in the first medium divided by the same factor, which also means that the photon density distributions in the two media will be identical. In a Monte Carlo simulation the scaling property suggests that two different algorithms can be used to obtain the photon density distribution, namely, the algorithm with curved photon paths and given optical properties and the algorithm with straight photon paths and modified optical properties.

5. The refractive index of krypton for lambda in the closed interval 168-288 nm

NASA Technical Reports Server (NTRS)

Smith, P. L.; Parkinson, W. H.; Huber, M. C. E.

1975-01-01

The index of refraction of krypton has been measured at 27 wavelengths between and including 168 and 288 nm. The probable error of each measurement is plus or minus 0.1%. Our results are compared with other measurements. Our data are about 3.8% smaller than those of Abjean et al.

6. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

PubMed

Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

2016-10-17

Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

7. Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample.

PubMed

Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel

2015-08-24

We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively.

8. Ultraviolet complex refractive index of Martian dust Laboratory measurements of terrestrial analogs

NASA Technical Reports Server (NTRS)

Egan, W. G.; Hilgeman, T.; Pang, K.

1975-01-01

The optical complex index of refraction of four candidate Martian surface materials has been determined between 0.185 and 0.4 microns using a modified Kubelka-Munk scattering theory. The cadidate materials were limonite, andesite, montmorillonite, and basalt. The effect of scattering has been removed from the results. Also presented are diffuse reflection and transmission data on these samples.

9. Influence of the refractive index and dispersion of spectacle lens on its imaging properties

Miks, Antonin; Novak, Jiri; Novak, Pavel

2007-12-01

The paper shows an influence of the refractive index and dispersion of the spectacle lens on its imaging properties. Relations are presented for calculation of radii of curvature of anastigmatic spectacle lenses and their chromatic aberration. Moreover, the formulas are derived for calculation of the change of astigmatism of spectacle lens due to dispersion of spectacle lens material.

10. Multi-band Microwave Antennas and Devices based on Generalized Negative-Refractive-Index Transmission Lines

Ryan, Colan Graeme Matthew

11. Surface Wave Cloak from Graded Refractive Index Nanocomposites

PubMed Central

La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

2016-01-01

Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas. PMID:27416815

12. Surface Wave Cloak from Graded Refractive Index Nanocomposites

La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

2016-07-01

Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas.

13. Reconstruction of fiber grating refractive-index profiles from complex bragg reflection spectra.

PubMed

Huang, D W; Yang, C C

1999-07-20

Reconstruction of the refractive-index profiles of fiber gratings from their complex Bragg reflection spectra is experimentally demonstrated. The amplitude and phase of the complex reflection spectrum were measured with a balanced Michelson interferometer. By integrating the coupled-mode equations, we built the relationship between the complex coupling coefficient and the complex reflection spectrum as an iterative algorithm for reconstructing the index profile. This method is expected to be useful for reconstructing the index profiles of fiber gratings with any apodization, chirp, or dc structures. An apodized chirped grating and a uniform grating with a depression of index modulation were used to demonstrate the technique.

14. Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass.

PubMed

Huot, N; Stoian, R; Mermillod-Blondin, A; Mauclair, C; Audouard, E

2007-09-17

We propose a comprehensive analysis of the effects that spherical aberration may have on the process of ultrafast laser photowriting in bulk transparent materials and discuss the consequences for the generated refractive index changes. Practical aspects for a longitudinal photowriting configuration are emphasized. Laser-induced index variation in BK7 optical glass and fused silica (a-SiO(2)) affected by spherical aberration are characterized experimentally using phase-contrast optical microscopy. Experimental data are matched by analytical equations describing light propagation through dielectric interfaces. Corrective solutions are proposed with a particular focus on the spatial resolution achievable and on the conditions to obtain homogeneously photo-induced waveguides in a longitudinal writing configuration.

15. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid.

PubMed

Niskanen, I; Räty, J; Peiponen, K E

2013-10-15

The knowledge of the refractive index of a particle is important in sensing and imaging applications, e.g., in biology, medicine and process industry. The refractive index of tiny solid particles such as microsize particles can be determined by the so-called liquid immersion technique. This study deals with three different types of interrogation methods to get the refractive index of a particle in a liquid matrix. These methods utilize thermo-optical properties and wavelength-dependent refractive index of the particle and the immersion liquids, as well as, the classical method using a set of in advance prepared set of immersion liquids with different refractive indices. The emphasis is on a method to get especially the wavelength-dependent refractive index of microparticles and exploiting different wavelength-dependences of immersion liquid and a solid particle because identification of a particle is more reliable if the refractive index of the particle is known at several wavelengths. In this study glycerol-water mixtures served as immersion liquids to obtain the refractive index of CaF2 at several discrete wavelengths in the spectral range 200-500 nm. The idea is to find the maximum value of light transmission of suspension by scanning the wavelength of a commercial spectrophotometer. The light dispersion-based method is suggested as a relatively easy, economic and fast method to determine the refractive index of a particle by a spectrophotometer at several wavelengths of light. The accuracy of the detection of the refractive index is suggested to be better than ± 0.005 refractive index units.

16. Effect of the refractive index change kinetics of photosensitive materials on the diffraction efficiency of reflecting Bragg gratings.

PubMed

Lumeau, Julien; Glebov, Leonid B

2013-06-10

Experimental and modeled dependencies of the induced refractive index on dosage of UV exposure in photo-thermo-refractive glass for different thermal treatment regimes are presented. Resulting spatial profiles of refractive index modulation in a reflecting Bragg grating recorded by a holographic technique are computed, and corresponding diffraction efficiencies are modeled. It is shown that nonlinearity of the photosensitivity response is responsible for spatial distortions of a recorded grating that result in a decrease of the diffraction efficiency.

17. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.

2015-05-01

Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

18. Linear and nonlinear refractive index of As-Se-Ge and Bi doped As-Se-Ge thin films

Sharma, Pankaj; Katyal, S. C.

2010-06-01

The present work reports the linear and nonlinear refractive index for (As2Se3)90Ge10 and [(As2Se3)90Ge10]95Bi5 thin films. The formulation proposed by Fournier and Snitzer has been used to predict the nonlinear behavior of refractive index. The linear refractive index and Wemple-DiDomenico parameters were used for the determination of nonlinear refractive index in the wavelength region 0.4 to 1.5 μm. Linear refractive index has been determined using the well known Swanepoel method. This is observed that nonlinear refractive index increases linearly with increasing linear refractive index. With Bi addition this has been found that nonlinear refractive index increases by 2.4 times, while on comparing with pure and doped silica glasses results are 2-3 orders higher. Density and molar volume has also been calculated. The obtained results may lead to yield more sensitive optical limiting devices and these glasses may be used as an optical material for high speed communication fibers.

19. The influence of the atmospheric refractive index on radio Xmax measurements of air showers

Corstanje, Arthur; Buitink, Stijn; Bonardi, Antonio; Falcke, Heino; Hörandel, Jörg R.; Mitra, Pragati; Mulrey, Katie; Nelles, Anna; Rachen, Jörg Paul; Rossetto, Laura; Schellart, Pim; Scholten, Olaf; Thoudam, Satyendra; Trinh, Gia; ter Veen, Sander; Winchen, Tobias

2017-03-01

The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n - 1) leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively.

20. Fiber-optic refractive index sensor based on surface plasmon resonance

Hlubina, Petr; Ciprian, Dalibor; Kadulova, Miroslava

2015-01-01

A fiber-optic refractive index sensor based on surface plasmon resonance (SPR) in a thin metal film deposited on an unclad core of a multimode fiber is presented. The sensing element of the SPR fiber-optic sensor is a bare core of a step-index optical fiber made of fused silica with a deposited gold film. First, a model of the SPR fiber-optic sensor based on the theory of attenuated total internal reflection is presented. The analysis is carried out in the frame of optics of multilayered media. The sensing scheme uses a wavelength interrogation method and the calculations are performed over a broad spectral range. Second, in a practical realization of the sensor with a double-sided sputtered gold film, a reflection-based sensing scheme to measure the refractive indices of liquids is considered. The refractive index of a liquid is sensed by measuring the position of the dip in the reflected spectral intensity distribution. As an example, the aqueous solutions of ethanol with refractive indices in a range from 1.333 to 1.364 are measured.

1. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy.

PubMed

van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

2008-04-15

We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91(phox) are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91(phox). By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91(phox) are approximately 1.38 and approximately 1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane.

2. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

PubMed Central

Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

2016-01-01

We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33–1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41–1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost. PMID:27983608

3. A multi-D-shaped optical fiber for refractive index sensing.

PubMed

Chen, Chien-Hsing; Tsao, Tzu-Chein; Tang, Jaw-Luen; Wu, Wei-Te

2010-01-01

A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 × 10(-3)-3.13 × 10(-4) RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions.

4. On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array.

PubMed

Gylfason, Kristinn B; Carlborg, Carl Fredrik; Kaźmierczak, Andrzej; Dortu, Fabian; Sohlström, Hans; Vivien, Laurent; Barrios, Carlos A; van der Wijngaart, Wouter; Stemme, Göran

2010-02-15

We present an experimental study of an integrated slot-waveguide refractive index sensor array fabricated in silicon nitride on silica. We study the temperature dependence of the slot-waveguide ring resonator sensors and find that they show a low temperature dependence of -16.6 pm/K, while at the same time a large refractive index sensitivity of 240 nm per refractive index unit. Furthermore, by using on-chip temperature referencing, a differential temperature sensitivity of only 0.3 pm/K is obtained, without individual sensor calibration. This low value indicates good sensor-to-sensor repeatability, thus enabling use in highly parallel chemical assays. We demonstrate refractive index measurements during temperature drift and show a detection limit of 8.8 x 10-6 refractive index units in a 7 K temperature operating window, without external temperature control. Finally, we suggest the possibility of athermal slot-waveguide sensor design.

5. Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals

Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.

2016-09-01

We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.

6. Long range surface plasmon resonance (LRSPR) based highly sensitive refractive index sensor using Kretschmann prism coupling arrangement

Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

2016-04-01

Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).

7. Prism-pair interferometer for precise measurement of the refractive index of optical glass by using a spectrum lamp.

PubMed

Hori, Yasuaki; Hirai, Akiko; Minoshima, Kaoru

2014-05-01

A prism-pair interferometer for a spectrum lamp was developed for precise measurement of the refractive index of a prism of optical glass. Previously we reported the prism-pair interferometer with a He-Ne laser light source, resulting in a measurement uncertainty of 1.1×10⁻⁶. However, most of the refractive-index values managed by optical glass manufacturers are conventionally measured with spectrum lamps. We have optimized the prism-pair interferometer for spectrum lamps and implemented a signal-processing technique from Fourier-transform spectroscopy. When the refractive index is measured, the wavelength of the spectrum lamp is simultaneously calibrated by part of the interferometer, so that the resulting refractive index is traceable to a national standard of length. The combined standard uncertainty for a refractive index measured with the e-line (546 nm) of a Hg lamp is 6.9×10⁻⁶.

8. Interferometric technique for microstructure metrology using an index matching liquid

Purcell, Daryl

measurements of such faceted microstructures. Refraction is accounted for at the interfaces, rather than consider only optical path length changes due to the index liquid, and this significantly improves the facet angle measurement. The technique is demonstrated with the measurement of an array of micro-pyramids and show that our results are in good agreement with measurements taken on a contact profilometer. The index liquid measurements took approximately five seconds to complete compared to a measurement time of six hours for the contact profilometer. The technique was also extended to measure opaque micro-corner cubes by implementing an intermediate replication step. This allowed a measurement of the angle between facets of a nickel micro-corner cube hexagonal array, a combination not previously demonstrated in the literature. A first order uncertainty analysis was carried out on the index liquid technique to determine any limiting factors that need to be taken into account when assessing such parameters as the sag and facet angle. The uncertainties in the sag and facet angle were found to be well below 1%. Lastly secondary factors such interferometer bias, refraction, masking effects and pixel calibration were investigated to understand the possible implications on the sag and facet angle calculation.

9. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

PubMed Central

Gupta, Rajeev; Kaplan, Simon G.

2003-01-01

We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

10. Nondestructive measurement of two-dimensional refractive index profiles by deflectometry

Lin, Di; Leger, James R.

2015-06-01

We present a method for calculating a two-dimensional refractive index field from measured boundary values of beam position and slope. By initially ignoring the dependence of beam trajectories on the index field and using cubic polynomials to approximate these trajectories, we show that the inverse problem can be reduced to set of linear algebraic equations and solved using a numerical algorithm suited for inverting sparse, ill-conditioned linear systems. The beam trajectories are subsequently corrected using an iterative ray trace procedure so that they are consistent with the ray equation inside the calculated index field. We demonstrate the efficacy of our method through computer simulation, where a hypothetical test index field is reconstructed on a 15 × 15 discrete grid using 800 interrogating rays and refractive index errors (RMS) less than 0.5% of the total index range (nmax-nmin) are achieved. In the subsequent error analysis, we identify three primary sources of error contributing to the reconstruction of the index field and assess the importance of data redundancy. The principles developed in our approach are fully extendable to three-dimensional index fields as well as more complex geometries.

11. Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index

Burokur, Shah Nawaz; Sellier, Alexandre; Kanté, Boubacar; de Lustrac, André

2009-05-01

Metamaterials made of exclusively metallic cut wire pairs have been experimentally demonstrated to exhibit a negative refractive index at optical frequencies. However, other related works have not shown a negative index. In this paper, we propose an easy way to manipulate the magnetic and electric resonances of these metamaterials to produce a negative index. We show that judiciously breaking the symmetry of the structure allows tuning of both resonances leading to an overlapping between the negative permeability and negative permittivity regions. Numerical and experimental parametric studies of several cut wire pairs metamaterials are presented to validate our method at microwave frequencies.

12. On the mechanism of photoinduced refractive index changes in phosphosilicate glass

SciTech Connect

Larionov, Yu V; Sokolov, V O; Plotnichenko, V G

2010-05-26

The photoinduced growth of the refractive index of phosphosilicate glass during Bragg grating inscription and the thermal decay of the grating have a number of unusual features. The observed index variations are interpreted in terms of a new model for photoinduced glass network rearrangement. The model assumes the formation of photoinduced voids (nanopores) in the glass network near point defects. The nanopores may migrate through the network via bond switching when the network is in a 'soft' state. The photoinduced variations in network density lead to index variations. (fibres)

13. Estimation of the enamel and dentin mineral content from the refractive index.

PubMed

Hariri, I; Sadr, A; Nakashima, S; Shimada, Y; Tagami, J; Sumi, Y

2013-01-01

Recent advances in the field of optics have enabled accurate and localized measurement of optical properties of biological substrates. This work aimed to elucidate the relationship between the local refractive index (n) and mineral content (MC) of enamel and dentin. De- and remineralized lesions in bovine enamel and dentin blocks were sectioned into 300- to 400-µm-thick slices, and placed on a metal plate to capture images of sound, de- and remineralized regions transversely by optical coherence tomography. Mean n at each depth level of the lesion (20- or 40-µm steps for enamel or dentin) was measured by the optical path length-matching method and used to plot n through lesion depth. The specimens were further polished and processed for transverse microradiography for analysis of MC. The n and MC ranged from 1.52 to 1.63 and 50 to 87 (vol.%) in enamel, and from 1.43 to 1.57 and 11 to 48 (vol.%) in dentin, respectively. Strong, positive linear correlations were found between n and MC (Pearson's r = 0.95 and 0.91 for de- and remineralized enamel, and r = 0.94 and 0.91 for dentin, respectively, p < 0.001). Experimental data were validated with a theoretical calculation of n from MC. De- and remineralization of enamel and dentin resulted in measurable changes of n, and, in turn, MC changes of the tissue could be estimated with good accuracy from this long-known optical property by the new analytical approach. Compositional changes of enamel crystallites after remineralization affect n.

14. Cryogenic Refractive Index and Coefficient of Thermal Expansion for the S-TIH1 Glass

NASA Technical Reports Server (NTRS)

Quijada, Manuel A.; Leviton, Douglas; Content, David

2013-01-01

Using the CHARMS facility at NASA GSFC, we have measured the cryogenic refractive index of the Ohara S-TIH1 glass from 0.40 to 2.53 micrometers and from 120 to 300 K. We have also examined the spectral dispersion and thermo-optic coefficients (dn/dT). We also derived temperature-dependent Sellmeier models from which refractive index may be calculated for any wavelength and temperature within the stated ranges of each model. The S-TIH1 glass we tested exhibited unusual behavior in the thermo-optic coefficient. We found that for delta < 0.5 micrometers, the index of refraction decrease with a decrease in temperature (positive dn/dT). However, the situation was reversed for delta larger than 0.63 micrometers, where the index will increase with a decrease in temperature (negative dn/dT). We also measured the coefficient of thermal expansion (CTE) for the similar batch of S-TIH1 glass in order to understand its thermal properties. The CTE showed a monotonic change with a decrease in temperature.

15. Complex index of refraction estimation from degree of polarization with diffuse scattering consideration.

PubMed

Zhan, Hanyu; Voelz, David G; Cho, Sang-Yeon; Xiao, Xifeng

2015-11-20

The estimation of the refractive index from optical scattering off a target's surface is an important task for remote sensing applications. Optical polarimetry is an approach that shows promise for refractive index estimation. However, this estimation often relies on polarimetric models that are limited to specular targets involving single surface scattering. Here, an analytic model is developed for the degree of polarization (DOP) associated with reflection from a rough surface that includes the effect of diffuse scattering. A multiplicative factor is derived to account for the diffuse component and evaluation of the model indicates that diffuse scattering can significantly affect the DOP values. The scattering model is used in a new approach for refractive index estimation from a series of DOP values that involves jointly estimating n, k, and ρ(d)with a nonlinear equation solver. The approach is shown to work well with simulation data and additive noise. When applied to laboratory-measured DOP values, the approach produces significantly improved index estimation results relative to reference values.

16. Bend and refractive index sensing based on the tuning fork fiber

Sun, Bo; Li, Xuyou; Yu, Yingying; He, Kunpeng

2015-08-01

A fiber-optic based on the tuning fork structure is investigated for bend and refractive index (RI). The new bend/RI sensor based on the tuning fork structure is ease of fabrication, low cost, and simple signal acquisition. The operation principle relies on the power coupling of two cores inputted into light simultaneously. The beam-propagation method (BPM) is employed for modeling the propagation of light along the optical fiber sensing device proposed. The simulation results show that it exhibits very high sensitivity, accuracy and wide dynamic range in making curvature and RI measurements. The bending sensitivity is about 0.01184 W/m-1 at curvatures ranging from 0 to 50 m-1, the RI sensitivity is about -1.5557, -22.3031 and -102.44878 W/RIU at refractive indexes ranging from 1.33-1.418, 1.418-1.45 and 1.45-1.456, respectively.

17. Refractive index detection of liquid based on magneto-optical surface plasmon resonance

Zhang, Yanfen; Tang, Tingting; Li, Jie; Luo, Li

2016-09-01

We propose a refractive index sensor applied in liquid detection based on magneto-optical surface plasmon resonance. The device is made of a prism-coupling system, which consists of a prism and a CeYIG/Au/liquid waveguide. Systematic simulations using the finite element method and 4  ×  4 transfer matrix methods are implemented to calculate the figure of merit (FOM) of sensitivity. Calculation results show that a FOM of 5.022/RIU for refractive index variation from 1.330 to 1.345 can be obtained when the incident wavelength is 980 nm. The proposed structure can achieve high angular sensitivity for the magnetic field of the proposed structure concentrated in the sensing medium. Meanwhile, our sensor, with gold as the bottom layer, is a better hydrophily for the molecular self-assembly technique compared with other conventional sensors, which makes it more practical in applications.

18. Absolute group refractive index measurement of air by dispersive interferometry using frequency comb.

PubMed

Yang, L J; Zhang, H Y; Li, Y; Wei, H Y

2015-12-28

The absolute group refractive index of air at 1563 nm is measured by dispersive interferometry, and a combined uncertainty of 1.2 × 10(-8) is achieved. The group refractive index of air is calculated from the dispersive interferograms of the two beams passing through the inner and outer regions of a vacuum cell by fast-Fourier-transform. Experimental results show that the discrepancies between our method and modified Edlén equation are less than 3.43 × 10(-8) and 4.4 × 10(-8) for short-term and long-term experiments, respectively. The interferogram update rate is 15 ms, which makes it suitable for application of real-time monitoring. Furthermore, it is promising to improve the measurement uncertainty to 3.0 × 10(-9) by changing the material of the vacuum cell and measuring its length more accurately through optical interferometry.

19. Determination of refractive index and concentration of iodine solutions using opals

Kępińska, Mirosława; Starczewska, Anna; Szala, Janusz

2014-03-01

The determination of refractive index of iodine-ethanol solutions using SiO2 opals has been presented. For the first time concentration of solution iodine in ethanol has been determined by applying a simple method of using opal and de Feijter's relation. Basing on wavelength of diffraction peaks the appropriate formula describing concentration of iodine ethanol solution has been evolved. The uncertainty of the determined concentration has been established, too. The coefficient dnc/dC = 0.0201(4) (% w/w-1) of the linear dependence between refractive index and the concentration of iodine solution has been determined. The procedure of calibration of the used opal sensor is described. The opal sensor is not distracted by the measurement and can be used repeatedly.

20. Diffractive Optical Analysis for Refractive Index Sensing using Transparent Phase Gratings.

PubMed

Kumawat, Nityanand; Pal, Parama; Varma, Manoj

2015-11-18

We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 × 10(-7) was achieved with this technique with scope for further improvement.

1. Diffractive Optical Analysis for Refractive Index Sensing using Transparent Phase Gratings

PubMed Central

Kumawat, Nityanand; Pal, Parama; Varma, Manoj

2015-01-01

We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 × 10−7 was achieved with this technique with scope for further improvement. PMID:26578408

2. Binary and Ternary Mixtures of Biopolymers and Water: Viscosity, Refractive Index, and Density

Silva, Bárbara Louise L. D.; Costa, Bernardo S.; Garcia-Rojas, Edwin E.

2016-08-01

Biopolymers have been the focus of intense research because of their wide applicability. The thermophysical properties of solutions containing biopolymers have fundamental importance for engineering calculations, as well as for thermal load calculations, energy expenditure, and development of new products. In this work, the thermophysical properties of binary and ternary solutions of carboxymethylcellulose and/or high methoxylation pectin and water at different temperatures have been investigated taking into consideration different biopolymer concentrations. The experimental data related to the thermophysical properties were correlated to obtain empirical models that can describe the temperature-concentration combined effect on the density, refractive index, and dynamic viscosity. From data obtained from the experiments, the density, refractive index, and dynamic viscosity increase with increasing biopolymer concentration and decrease with increasing temperature. The polynomial models showed a good fit to the experimental data and high correlation coefficients (R2ge 0.98) for each studied system.

3. Positive phase evolution of waves propagating along a photonic crystal with negative index of refraction.

PubMed

Martínez, Alejandro; Martí, Javier

2006-10-16

We analyze propagation of electromagnetic waves in a photonic crystal at frequencies at which it behaves as an effective medium with a negative index in terms of refraction at its interface with free space. We show that the phase evolution along the propagation direction is positive, despite the fact that the photonic crystal displays negative refraction following Snell's law, and explain it in terms of the Fourier components of the Bloch wave. Two distinct behaviors are found at frequencies far and close to the band edge of the negative-index photonic band. These findings contrast with the negative phase evolution that occurs in left-handed materials, so care has to be taken when applying the term left-handed to photonic crystals.

4. Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing

Teguh Yudistira, Hadi; Pradhipta Tenggara, Ayodya; Dat Nguyen, Vu; Teun Kim, Teun; Dian Prasetyo, Fariza; Choi, Choon-gi; Choi, Muhan; Byun, Doyoung

2013-11-01

Metamaterial is an engineered material whose electromagnetic properties can be determined by the unit structure. Lithography is one of main methods to fabricate metamaterials for fine patterning which has limitations in large-area fabrication. We present a direct fabrication method for metamaterial using the electrohydrodynamic jet printing. An electrical pulse was controlled to make drop-on-demand operation, through which flexible high refractive-index metamaterial could be fabricated in the form of I-shaped silver electrodes with 10-μm widths and 5-μm gaps on polyimide substrate. The peak value of the refractive index was 18.4 at a frequency of around 0.48 THz.

5. Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media

André Ambrosio, Leonardo

2016-09-01

In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.

6. Exciton effects in the index of refraction of multiple quantum wells and superlattices

NASA Technical Reports Server (NTRS)

Kahen, K. B.; Leburton, J. P.

1986-01-01

Theoretical calculations of the index of refraction of multiple quantum wells and superlattices are presented. The model incorporates both the bound and continuum exciton contributions for the gamma region transitions. In addition, the electronic band structure model has both superlattice and bulk alloy properties. The results indicate that large light-hole masses, i.e., of about 0.23, produced by band mixing effects, are required to account for the experimental data. Furthermore, it is shown that superlattice effects rapidly decrease for energies greater than the confining potential barriers. Overall, the theoretical results are in very good agreement with the experimental data and show the importance of including exciton effects in the index of refraction.

7. Properties of material in the submillimeter wave region (instrumentation and measurement of index of refraction)

NASA Technical Reports Server (NTRS)

Lally, J.; Meister, R.

1983-01-01

The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.

8. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

Turnbull, D.; Goyon, C.; Kemp, G. E.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Moody, J. D.; Michel, P.

2017-01-01

We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85 %- 87 % extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

9. Angular scan optical coherence tomography imaging and metrology of spherical gradient refractive index preforms.

PubMed

Yao, Jianing; Meemon, Panomsak; Ponting, Michael; Rolland, Jannick P

2015-03-09

The fabrication of high-performance spherical gradient refractive index (S-GRIN) optics requires nondestructive metrology techniques to inspect the samples. We have developed an angular-scan, swept-source-based, Fourier-domain optical coherence tomography (OCT) system centered at 1318 nm with 5 mm imaging depth capable of 180° polar scan and 360° azimuthal scan to investigate polymeric S-GRIN preforms. We demonstrate a method that enables simultaneous mapping of the group optical thickness, physical thickness, the radially-averaged group refractive index, and the transmitted wavefront of the S-GRIN preforms. The angular scan OCT imaging and metrology enables direct visualization, molding uniformity characterization, and optical property evaluations of the preforms. The results on two generations of S-GRIN preforms are discussed that showcase the evolution of the manufacturing process in response to the OCT metrology feedback.

10. Analysis of dispersion diagram for high performance refractive index sensor based on photonic crystal waveguides

Dutta, Hemant Sankar; Goyal, Amit Kumar; Pal, Suchandan

2017-02-01

Photonic crystal waveguide, to be used as a highly sensitive platform for refractive index based sensing applications, has been analyzed in this paper. The sensing performance is estimated by using dispersion diagram through using plane wave expansion simulations. The dispersion diagram is used to obtain transmittance and cut-off wavelengths for analyzing the sensor characteristics. It has been proposed that the photonic crystal waveguide with ring-type line defect provides a better perspective for sensing applications as compared to the conventional photonic crystal waveguide. An optimized ring-type photonic crystal waveguide structure with a defect filling factor of 50% shows a refractive index sensitivity of 450 nm/RIU having almost double the output signal strength compared to hole-type line defect waveguide with the same filling factor.

11. The refractive index and electronic gap of water and ice increase with increasing pressure

PubMed Central

Pan, Ding; Wan, Quan; Galli, Giulia

2014-01-01

Determining the electronic and dielectric properties of water at high pressure and temperature is an essential prerequisite to understand the physical and chemical properties of aqueous environments under supercritical conditions, for example, in the Earth interior. However, optical measurements of compressed ice and water remain challenging, and it has been common practice to assume that their band gap is inversely correlated with the measured refractive index, consistent with observations reported for hundreds of materials. Here we report ab initio molecular dynamics and electronic structure calculations showing that both the refractive index and the electronic gap of water and ice increase with increasing pressure, at least up to 30 GPa. Subtle electronic effects, related to the nature of interband transitions and band edge localization under pressure, are responsible for this apparently anomalous behaviour. PMID:24861665

12. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing

Li, Benye; Jiang, Lan; Wang, Sumei; Tsai, Hai-Lung; Xiao, Hai

2011-11-01

An improved point-by-point inscription method is proposed to fabricate long period fiber gratings (LPFGs) by using a laser operating at 800 nm with 35 fs duration pulses. The sensitivity to misalignment between the core and the focus is reduced by scanning a rectangular part on the fiber. LPFGs with an attenuation depth of 20 dB are achieved within the wavelength range of 1465-1575 nm. Characterization of the temperature sensitivity and thermal stability of the LPFGs is presented. A 5.6 nm wavelength shift and a 1.2 dB decrease in the attenuation peak are observed following heat treatment at 600 °C for 4 h. The fabricated LPFGs are used as refractive index sensors. The effect of heat treatment on the response of the LPFGs to refractive index changes is also studied.

13. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

2016-08-01

In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

14. Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology.

PubMed

Zhao, Ying; Pang, Fufei; Dong, Yanhua; Wen, Jianxiang; Chen, Zhenyi; Wang, Tingyun

2013-11-04

The atomic layer deposition (ALD) technology is introduced to enhance the sensitivity of optical fiber cladding mode to surrounding refractive index (SRI) variation. The highly uniform Al2O nanofilm was deposited around the double cladding fiber (DCF) which presents cladding mode resonant feature. With the high refractive index coating, the cladding mode resonant spectrum was tuned. And the sensitivity enhancement for SRI sensor was demonstrated. Through adjusting the deposition cycles, a maximum sensitivity of 723 nm/RIU was demonstrated in the DCF with 2500 deposition cycles at the SRI of 1.34. Based on the analysis of cladding modes reorganization, the cladding modes transition of the coated DCF was investigated theoretically. With the high performance nanofilm coating, the proposed SRI sensor is expected to have wide applications in chemical sensors and biosensors.

15. Design of reflective optical fiber sensor for determining refractive index and sugar concentration of aqueous solutions

Marzuki, Ahmad; Wulan Sari, Nila; Riatun

2016-02-01

A reflective optical fiber sensor designed for measuring refractive index and sugar concentration of aqueous solutions is described. Two strains of parallel polymer optical fibers (POF) were wrapped in a bundle such that one of their fiber's end cross-sections had the same distance to the mirror surface. The light coming out from one strain of the fiber was reflected by the mirror to the second fiber. Sugar concentration of the aqueous solution filling the space between the fiber ends and the mirror was varied (1.0 M, 1.5 M, 2.0 M, 2.5 M, 3.0 M, 4.0 M, and 5.0 M). It was shown from the experiment that light intensity detected by photo-detector is linearly related to the percentage of the dissolved sugar in the solution as well as the variation of the sugar solution refractive index (R2 = 0.987).

16. Simultaneous measurement of thickness and refractive index using phase shifted Coherent Gradient Sensor

Disawal, Reena; Suzuki, Takamasa; Prakash, Shashi

2016-12-01

We report simultaneous measurement of thickness and refractive index (RI) using Coherent Gradient Sensing (CGS) based interferometric setup. The collimated light beam transmitted through the specimen is analyzed using two gratings in tandem and a spatial filtering arrangement. At the imaging plane, the desired orders superpose yielding interference fringes. Phase shifting interferometric (PSI) technique has been used to obtain the phase information directly. For decoding the information of thickness and RI, the specimen is rotated and the variation in interferometric phase before and after the specimen rotation determined. Simultaneous measurement on a glass plate of thickness 6.019 mm and refractive index of 1.4570 has been demonstrated. Detailed uncertainty analysis is also reported. The expanded uncertainty for thickness and RI in the measurement process was determined to be ±0.005 mm and ±0.00008 respectively.

17. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

PubMed

Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

2016-08-01

In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

18. Measurement of nonlinear refractive index based on multiple configuration of FBG in generating multi wavelength

Abdullah, Mohd Nizam; Shaari, Sahbudin; Ehsan, Abang Annuar; Menon, Susthitha; Zakaria, Osman

2015-06-01

A reliable method for measurement of the nonlinear refractive index through application of multi wavelength phenomenon. Multi wavelength realisation based on Erbium doped fibre laser (EDFL) is proposed and experimentally demonstrated. A combination of 15 m high efficiency Erbium doped fibre (EDF) and a 20 m Photonic Crystal Fibre (PCF) as main catalyst to suppress the homogenous broadening of EDF and to obtain highly stability of multi wavelength through insertion of a set of fibre Bragg gratings (FBGs) in the cavity. This PCF has zero dispersion of 1040 nm which mismatch from transmission window of 1550 nm. A reliable repeatability of multi wavelength based on multiple configuration of FBGs less than 0.2% obtained. This consistent results influence in determination of nonlinear refractive index by relation of four wave mixing (FWM).

19. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System.

PubMed

Turnbull, D; Goyon, C; Kemp, G E; Pollock, B B; Mariscal, D; Divol, L; Ross, J S; Patankar, S; Moody, J D; Michel, P

2017-01-06

We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

20. Tunable mode coupler in the microfluidic channel for the fiber optics refractive index sensor

Gao, R.; Li, G.; Zhou, Y.; Jiang, Y.

2014-11-01

We propose and demonstrate a highly sensitive optical fiber microfluidic refractometer. A microhole is fabricated in the photonic crystal fiber (PCF) by using femtosecond laser beam, which combines the tunable mode coupler and microfluidic channel. The mode field diameter of the guided light is changed with the refractive index in the microfluidic channel, which results in the tunable coupling ratio between the core and the cladding in the PCF. Therefore, the refractive index of the liquid in the microfluidic channel is detected by interrogating the fringe visibility of the reflection spectrum. These experiments results demonstrate that the sensor is insensitive with the temperature and strain, and a RI sensitivity of up to 150.7 dB/RIU is achieved, establishing the tunable mode coupler as a sensitive and versatile sensor.

1. Refractive index and strain sensor made of S-tapered photonic crystal fiber

Shi, Feifei; Wu, Yun; Huang, Yuewu; Wang, Jinzhong; Liu, Lihua; Zhao, Liancheng

2015-06-01

An experimental investigation on an S-tapered photonic crystal fiber interferometer is presented in this paper. The sensor exhibits highly surrounding refractive index sensitive, which is 4.7 × 10-3 RIU (refractive index unit) in 1.33-1.39 and 1.45 × 10-3 RIU in 1.39-1.44 commensurable with general sensors. Attribute to the S-shape's distortion, red shifts are measured in axial strain test. In addition, insensitivity (4.3 pm/°C) in low temperature and sensitivity (22.4 pm/°C) in high temperature are confirmed by experiments. These properties combined with a simple fabrication process and a durable structure.

2. Estimation of nonlinear refractive index in various silica-based glasses for optical fibers

Kato, T.; Suetsugu, Y.; Nishimura, M.

1995-11-01

The dependence of the nonlinear refractive index n2 on glass compositions for optical fibers is clarified. The relation between n2 and germanium- or fluorine-doped SiO2 is calculated on the basis of the measurement of n 2 at 1.55 mu m with the improved cross-phase-modulation method, taking into account the radial distribution of the optical power in the fibers.

3. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

PubMed

Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

2008-05-15

A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

4. Simultaneous determination of size and refractive index of red blood cells by light scattering measurements

SciTech Connect

Ghosh, N.; Buddhiwant, P.; Uppal, A.; Majumder, S.K.; Patel, H.S.; Gupta, P.K.

2006-02-20

We present a fast and accurate approach for simultaneous determination of both the mean diameter and refractive index of a collection of red blood cells (RBCs). The approach uses the peak frequency of the power spectrum and the corresponding phase angle obtained by performing Fourier transform on the measured angular distribution of scattered light to determine these parameters. Results on the measurement of two important clinical parameters, the mean cell volume and mean cell hemoglobin concentration of a collection of RBCs, are presented.

5. Aluminum-jointed silicon dioxide octagon nanohelix array with desired complex refractive index.

PubMed

Jen, Yi-Jun; Chen, Chien-Chi; Jheng, Ci-Yao

2014-06-15

In this Letter, glancing angle deposition is used to form an aluminum-jointed silicon dioxide octagon nanohelix array as a 3D nanostructured thin film. As a sculptured metal-dielectric composite, the film exhibits a complex refractive index of near unity with a small imaginary part. This structured film is demonstrated as an efficient light absorber to absorb light in a broad band and over a wide range of angles for both polarization states.

6. Photonic crystal cavity on optical fiber facet for refractive index sensing.

PubMed

Wang, Bowen; Siahaan, Timothy; Dündar, Mehmet A; Nötzel, Richard; van der Hoek, Marinus J; He, Sailing; van der Heijden, Rob W

2012-03-01

Using a micromanipulation technique, a planar photonic crystal nanocavity made from a thin semiconductor membrane is released from the host semiconductor and attached to the end facet of a standard single-mode optical fiber. The cavity spectrum can be read out through the fiber by detecting the photoluminescence of embedded quantum dots. The modified fiber end serves as a fiber-optic refractive index sensor.

7. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

SciTech Connect

Brusasco, R.M.

1989-01-01

A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

8. Comment on "Resolving the wave vector and the refractive index from the coefficient of reflectance".

PubMed

Perez-Molina, Manuel; Carretero, Luis

2008-08-15

In a recent Letter, the reflectance coefficient was used to resolve the sign choice of the wave vector and refractive index in active media. We argue that such a coefficient loses its physical meaning for active media (at real frequencies) when the field amplification is limited only by gain saturation. In this case, the amplitude reflectance coefficient leads to fictitious noncausal reflected fields when the backward Fourier transform is used.

9. A novel acousto-optic modulation-deflection mechanism using refractive index grating as graded index beam router

2014-03-01

A novel acousto-optic modulation mechanism will be addressed in this paper. Focused Gaussian beam passing through acousto-optic media experiences different refractive index regions arising from acoustic waves generated by ultrasonic source. In this way according to the snell's law of refraction the beam propagation path will be altered when these periodic traveling waves reach the incoming radiation where a typical p-n junction photodiode located inside the rising or falling lobe of the undiffracted Gaussian beam senses these small lateral deflections. Due to small variations of the refractive index the magnitude of deflection will be up to tens of micron outside the modulator. Hence, sharp intensity gradient is required for detecting such small beam movements by appropriate lens configuration to focus the Gaussian profile on the detector junction area. In the other words intensity profile of zero order beam oscillates proportional to the time dependent amplitude of the acoustic waves versus previous methods that intensity of diffracted beam changes with applied ultrasonic intensity. The extracted signal properties depend on the beam collimation, quality of beam profile and depth of focus inside the modulator. The first experimental approach was proceeded using a collimated 532 nm diode laser source (TEM00), distilled water as interaction media and 10 MHz transducer as ultrasonic generator where a cylindrical glass column with input-output flat windows was used for liquid support. The present method has advantages over common acoustooptical techniques as low cost, simplicity of operation, direct modulation of the signal and minimum alignment requirement.

10. Laser interferometer measurements of refractive index in shock-compressed materials

Wise, J. L.; Chhabildas, L. C.

Laser interferometer systems provide a means for probing the refractive index of transparent specimens subjected to dynamic compression. Previous interferometer measurements of optical properties under shock loading are reviewed for polymethyl methacrylate, fused silica, sapphire, nitromethane, and an aqueous solution of zinc chloride; various degrees of departure from Gladstone-Dale behavior are noted for these materials. In addition, a detailed summary of recent optical studies of lithium fluoride (LiF) is provided. Interferometer data from plate-impact experiments verify sustained LiF transparency for Hugoniot stresses to at least 115 GPa, and establish the variation of LiF refractive index for shock amplitudes ranging from 1.58 to 115 GPa. The refractive-index data for LiF agree with earlier static and shock-wave data, and exhibit a pronounced deviation from predictions based on the Gladstone-Dale, Lorentz-Lorenz, and Drude relations. A modified form of the Gladstone-Dale relation is presented which correctly models the latest LiF measurements. Potential applications of LiF and other window materials to dynamic high-pressure experimentation are discussed.

11. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs.

PubMed

Wu, Guanhao; Takahashi, Mayumi; Arai, Kaoru; Inaba, Hajime; Minoshima, Kaoru

2013-01-01

Optical frequency combs have become an essential tool for distance metrology, showing great advantages compared with traditional laser interferometry. However, there is not yet an appropriate method for air refractive index correction to ensure the high performance of such techniques when they are applied in air. In this study, we developed a novel heterodyne interferometry technique based on two-colour frequency combs for air refractive index correction. In continuous 500-second tests, a stability of 1.0 × 10(-11) was achieved in the measurement of the difference in the optical distance between two wavelengths. Furthermore, the measurement results and the calculations are in nearly perfect agreement, with a standard deviation of 3.8 × 10(-11) throughout the 10-hour period. The final two-colour correction of the refractive index of air over a path length of 61 m was demonstrated to exhibit an uncertainty better than 1.4 × 10(-8), which is the best result ever reported without precise knowledge of environmental parameters.

12. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.

PubMed

Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

2017-04-06

A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.

13. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions.

PubMed

Dong, Miao L; Goyal, Kashika G; Worth, Bradley W; Makkar, Sorab S; Calhoun, William R; Bali, Lalit M; Bali, Samir

2013-08-01

A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

14. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions

Dong, Miao L.; Goyal, Kashika G.; Worth, Bradley W.; Makkar, Sorab S.; Calhoun, William R.; Bali, Lalit M.; Bali, Samir

2013-08-01

A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

15. Method for measuring the refractive index distribution of a GRIN lens with heterodyne interferometry

Hsieh, H. C.; Chen, Y. L.; Wu, W. T.; Su, D. C.

2009-06-01

Based on the Fresnel's equations and the heterodyne interferometry, an alternative method for measuring the refractive index distribution of a GRIN lens is presented. A light coming from the heterodyne light source passes through a quarterwave plate and is incident on the tested GRIN lens. The reflected light passes through an analyzer and an imaging lens; finally it enters a CMOS camera. The interference signals produced by the components of the s- and the p-polarizations are recorded and they are sent to a personal computer to be analyzed. In order to measure the absolute phases of the interference signals accurately, a special condition is chosen. Then, the interference signals become a group of periodic sinusoidal segments, and each segment has an initial phase ψ with the information of the refractive index. Consequently, the estimated data of ψ are substituted into the special equations derived from Fresnel's equations, and the refractive index distribution of the GRIN lens can be obtained. Because of its common-path optical configuration, this method has both merits of the common-path interferometry and the heterodyne interferometry. In addition, the phase can be measured without reference signals.

16. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs

PubMed Central

Wu, Guanhao; Takahashi, Mayumi; Arai, Kaoru; Inaba, Hajime; Minoshima, Kaoru

2013-01-01

Optical frequency combs have become an essential tool for distance metrology, showing great advantages compared with traditional laser interferometry. However, there is not yet an appropriate method for air refractive index correction to ensure the high performance of such techniques when they are applied in air. In this study, we developed a novel heterodyne interferometry technique based on two-colour frequency combs for air refractive index correction. In continuous 500-second tests, a stability of 1.0 × 10−11 was achieved in the measurement of the difference in the optical distance between two wavelengths. Furthermore, the measurement results and the calculations are in nearly perfect agreement, with a standard deviation of 3.8 × 10−11 throughout the 10-hour period. The final two-colour correction of the refractive index of air over a path length of 61 m was demonstrated to exhibit an uncertainty better than 1.4 × 10−8, which is the best result ever reported without precise knowledge of environmental parameters. PMID:23719387

17. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

SciTech Connect

Pacheco-Peña, V. Orazbayev, B. Beaskoetxea, U. Beruete, M.; Navarro-Cía, M.

2014-03-28

A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presented and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.

18. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

PubMed

Thilak, Vimal; Voelz, David G; Creusere, Charles D

2007-10-20

A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

19. Blood pH optrode based on evanescent waves and refractive index change

Hammarling, Krister; Hilborn, Jöns; Nilsson, Hans-Erik; Manuilskiy, Anatoliy

2014-02-01

Sensing pH in blood with an silica multimode optical fiber. This sensor is based on evanescent wave absorption and measures the change of the refractive index and absorption in a cladding made of a biocompatible Polymer. In contrast to many existing fiber optical sensors which are based upon different dyes or florescent material to sense the pH, here presents a solution where a part of the cladding is replaced with a Poly (β-amino ester) made of 1.4-Butanediol diacrylate, Piperazine, and Trimethylolpropane Triacrylate. Piperazine has the feature of changing its volume by swelling or shrinking in response to the pH level. This paper utilizes this dimension effect and measure the refractive index and the absorption of the cladding in respect to different pH-levels. The alteration of refractive index also causes a change in the absorption and therefore the output power changes as a function of the pH level. The sensor is sensitive to pH in a wide spectral range and light absorbency can be observed for wavelengths ranging from UV to far IR.

20. Contrast-enhanced digital holographic imaging of cellular structures by manipulating the intracellular refractive index

Rommel, Christina E.; Dierker, Christian; Schmidt, Lisa; Przibilla, Sabine; von Bally, Gert; Kemper, Björn; Schnekenburger, Jürgen

2010-07-01

The understanding of biological reactions and evaluation of the significance for living cells strongly depends on the ability to visualize and quantify these processes. Digital holographic microscopy (DHM) enables quantitative phase contrast imaging for high resolution and minimal invasive live cell analysis without the need of labeling or complex sample preparation. However, due to the rather homogeneous intracellular refractive index, the phase contrast of subcellular structures is limited and often low. We analyze the impact of the specific manipulation of the intracellular refractive index by microinjection on the DHM phase contrast. Glycerol is chosen as osmolyte, which combines high solubility in aqueous solutions and biological compatibility. We show that the intracellular injection of glycerol causes a contrast enhancement that can be explained by a decrease of the cytosolic refractive index due to a water influx. The underlying principle is proven by experiments inducing cell shrinkage and with fixated cells. The integrity of the cell membrane is considered as a prerequisite and allows a reversible cell swelling and shrinking within a certain limit. The presented approach to control the intracellular phase contrast demonstrated for the example of DHM opens prospects for applications with other quantitative phase contrast imaging methods.

1. Lattice and electronic contributions to the refractive index of CuWO₄

SciTech Connect

Ruiz-Fuertes, J.; Pellicer-Porres, J.; Segura, A.; Rodríguez-Hernández, P.; Muñoz, A.

2014-09-14

We report an investigation of the refractive index dispersion and anisotropy in CuWO₄ by means of interference measurements in two extinction directions from mid infrared to the visible region of the energy spectrum. The analysis of the refractive index dispersion yields ϵ(∞)=4.5(1) for light polarization parallel to the c-axis and ϵ(∞)=5.3(1) with respect to the other extinction axis. In addition, we report reflectance measurements carried out from the far infrared to the near ultraviolet to study the lattice and electronic contributions to the refractive index of CuWO₄. We have determined the wavenumbers of nine infrared active lattice modes and compared them with previous ab initio calculations. The value of the Penn gap, 7eV, as well as the origin of a structure observed at 4.4 eV in the reflectance spectrum, is discussed in the context of the CuWO₄ electronic structure.

2. Isotropic optical negative index of refraction metamaterials composed of randomly arranged nanoparticles

2007-03-01

We report a strategy for achieving fully isotropic negative refraction index in a homogenized composite medium (HCM) conceptualized using both Maxwell-Garnett's and Lewin's effective medium formulations. The HCM consists of two isotropic dielectric-magnetic media (DMM): one DMM (randomly distributed small gold nanoparticles in free space) provides only negative permittivity, and another DMM (spherical SiC particles) provides only negative permeability via the Mie resonance. We prove, in the framework of the effective medium approach, that the mixture of DMMs (with properly adjusted fill factors and sizes of Au and SiC particles) exhibits isotropic negative refraction index metamaterial (NIM) behavior with negative refraction index of in a broad frequency range of the optical part of the spectrum. This result stands for both random distribution of the spherical constituent SiC particles (or Maxwell-Garnett arrangement), and the regular simple-cubic lattice of the same particles (Lewin's arrangement). Due to the high 3D isotropy of both models, both the analytical and numerical solutions of the scattering problems were found to be close to each other, and NIM behavior has been demonstrated. The calculations were carried out accurately taking into account the losses due to both gold and SiC nanoparticles.

3. Standing-wave resonances in plasmonic nanoumbrella cavities for color generation and colorimetric refractive index sensor

Fan, Jiaorong; Li, Zhongyuan; Chen, Zhuojie; Wu, Wengang

2016-10-01

We theoretically investigate the hybridization of the elemental surface plasmons in umbrella-shape plasmonic nanostructures and experimentally demonstrate the implementation of plasmonic multicolor metasurfaces as well as their application in colorimetric sensing. The three-dimension metallic umbrella arrays consist of a periodic canopy-capped-nanopillars with metal-coated sidewall and a backplane metal-film to form vertical nanocavity of canopy and film. Plasmonic coupling and energy confinement in nanocavity induce a noticeably resonance narrowing of multispectral reflection. The metasurfaced nanostructures appeared in vibrant and tunable colors with broad gamut derived from color blending mechanism due to multiple, narrow-band resonances. Vivid colors varied from red, yellow, green, blue to violet are easily achieved. It is also shown that such plasmonic metasurfaces can work as the feasible and real-time colorimetric refractive index sensor by measuring the distinct color variation to glucose concentration changes. Our sensor scheme shows its spectral sensitivity in the periodic umbrella array with respect to the refractive index change to be 242.5 nm/RIU with a figure of merit of 7.3. Furthermore, a refractive index resolution of colorimetric sensing up to 0.025 RIU has been accomplished.

4. The homogeneous and dual-medium cell's refractive index decoupling method and entropy tomographic imaging

Xin, Z. D.; Xu, Y. Y.; Ji, Y.; Jin, W. F.; Zheng, H. R.; Zhang, L.; Wang, Y. W.

2016-10-01

In the paper, a decoupling method for homogeneous and dual-medium cells' refractive index, and the entropy tomographic phase imaging method are proposed. Based on the decoupling method, the 3D morphology of sample can be obtained by the imaging method, which only needs two phase images of the cell. Thus the information about 3D refractive index distribution is given, and the 3D structure image of the model is reconstructed as well based on the relationship between the refractive index and thickness. In order to verify these methods, we set up the typical models after analysing the characteristic of blood cells, and the related orthogonal phase images are obtained by simulation experiment. Thus the 3D reconstructed structure images of the models are presented in this paper. Finally, the feasibility of this method is verified by simulating on a red blood cell and a monocyte model. The results show that subsurface imaging of samples can be achieved based on this method with a good accuracy.

5. Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies

Dolgaleva, Ksenia; Materikina, Daria V.; Boyd, Robert W.; Kozlov, Sergei A.

2015-08-01

We develop a simple analytical model for calculating the vibrational contribution to the nonlinear refractive index n2 (Kerr coefficient) of a crystal in terms of known crystalline parameters such as the linear refractive index, the coefficient of thermal expansion, the atomic density, and the reduced mass and the natural oscillation frequency of the vibrational modes of the crystal lattice. We show that the value of this contribution in the terahertz spectral region can exceed the value of the nonlinear refractive index n2 in the visible and near-IR spectral ranges (which is largely electronic in origin) by several orders of magnitude. For example, for crystal quartz the value of the Kerr coefficient in the low-frequency limit is n2=2.2 ×10-9 esu or, equivalently, 4.4 ×10-16m2 /W, which is very much larger than its value of 3 ×10-20m2 /W in the visible range. Furthermore, we present an analysis of the dispersion of n2 in the terahertz spectral range and show that even larger values of n2 occur at frequencies close to the vibrational resonances.

6. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

Zhao, Huaying; Magone, M. Teresa; Schuck, Peter

2011-08-01

Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.

7. Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0 mol % Mg-Doped Stoichiometric Lithium Tantalate

Lim, Hwan Hong; Kurimura, Sunao; Katagai, Toshio; Shoji, Ichiro

2013-03-01

Mg-doped stoichiometric lithium tantalate (SLT) is a promising material in high power generation, due to its high thermal conductivity. The accuracy of the temperature-dependent Sellmeier equation for Mg-doped SLT is important for designing high-power-frequency converters. We propose a temperature-dependent Sellmeier equation for the extraordinary refractive index of 1.0 mol % Mg-doped SLT. The equation is fitted with measured data in the first-order quasi-phase-matched (QPM) second harmonic generation (SHG) and optical parametric oscillation (OPO) with the fundamental and pump wavelengths being both 1.064 µm and previously published data [Jpn. J. Appl. Phys. 41 (2002) 465] of SLT. The equation allows us to predict accurate QPM periods in the range of 0.5-4 µm wavelength and in temperature range of 30-170 °C.

8. Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

PubMed Central

Perera, Chamanei; Cheng, Elliot; Sathian, Juna; Jaatinen, Esa; Davis, Timothy

2016-01-01

Summary In this paper we report the design and experimental realisation of a novel refractive index sensor based on coupling between three nanoscale stripe waveguides. The sensor is highly compact and designed to operate at a single wavelength. We demonstrate that the sensor exhibits linear response with a resolution of 6 × 10−4 RIU (refractive index unit) for a change in relative output intensity of 1%. Authors expect that the outcome of this paper will prove beneficial in highly compact, label-free and highly sensitive refractive index analysis. PMID:27335763

9. Multiple scattering of matter waves: An analytic model of the refractive index for atomic and molecular gases

SciTech Connect

Lemeshko, Mikhail; Friedrich, Bretislav

2010-08-15

We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines the Wentzel-Kramers-Brillouin (WKB) treatment of the long-range attraction with the Fraunhofer model treatment of the short-range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two-dimensional 'hard core' of the potential, is essential for obtaining a correct imaginary part of the refractive index.

10. The influence of protein fractions and electrolyte imbalance on refractive index of serum in patients with multiple myeloma

Plotnikova, L.; Polyanichko, A.; Kobeleva, M.; Uspenskaya, M.; Garifullin, A.; Voloshin, S.

2017-01-01

Refractometric analysis is very rapid, accurate and simple method of analysis measuring refractive index of biological liquids such as serum, plasma, spinal fluid, urine. This method can be used for definition total protein and solids concentrations in serum. The value of refractive index depends on all substances in serum including proteins, lipids as well as low molecular weight compounds, for example ions of different metals. Refractometric analysis shows strong correlations between protein concentrations in serum of patients with multiple myeloma and its(serum) refractive index which depends on protein concentration and doesn’t depends on electrolyte disbalance.

11. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

PubMed

Liao, C R; Hu, T Y; Wang, D N

2012-09-24

We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.

12. Enhanced light extraction of Bi3Ge4O12 scintillator by graded-refractive-index antireflection coatings

Tong, Fei; Liu, Bo; Chen, Hong; Zhu, Zhichao; Gu, Mu

2013-08-01

A three-layer graded-refractive-index antireflection coating is designed and prepared on the one surface of the Bi3Ge4O12 scintillator by sol-gel technology. The emission intensity of the Bi3Ge4O12 with a graded-refractive-index antireflection coating exhibits a broadband and omnidirectional enhancement of 15.9% compared with the reference sample without coating. This significant enhancement is attributed to the decrease of Fresnel reflection, which is consistent with the measurement of transmission spectra. Additionally, it is evident that the graded-refractive-index coating is superior to the conventional quarter-wave coating due to the omnidirectionality advantage.

13. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

SciTech Connect

Zolotovskii, I O; Lapin, V A; Sementsov, D I

2016-01-31

We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

14. All-dielectric three-dimensional broadband Eaton lens with large refractive index range

SciTech Connect

Yin, Ming; Yong Tian, Xiao Ling Wu, Ling; Chen Li, Di

2014-03-03

We proposed a method to realize three-dimensional (3D) gradient index (GRIN) devices requiring large refractive index (RI) range with broadband performance. By combining non-resonant GRIN woodpile photonic crystals structure in the metamaterial regime with a compound liquid medium, a wide RI range (1–6.32) was fulfilled flexibly. As a proof-of-principle for the low-loss and non-dispersive method, a 3D Eaton lens was designed and fabricated based on 3D printing process. Full-wave simulation and experiment validated its omnidirectional wave bending effects in a broad bandwidth covering Ku band (12 GHz–18 GHz)

15. Measurement of two dimensional refractive index profiles of channel waveguides using an interferometric technique.

PubMed

Oven, R

2009-10-20

Two dimensional refractive index profiles of ion exchanged channel waveguides in glass have been measured using an interferometric method. In order to obtain depth data, a shallow bevel is produced in the glass by polishing. A regularization algorithm for the extraction of the phase data from the interferometer image is presented. The method is applied to waveguides formed by the electric field assisted diffusion of Cu+ ions into a borosilicate glass. The index change obtained from the interferometer is in good agreement with that obtained from measurements on planar waveguides.

16. A three-dimensional self-supporting low loss microwave lens with a negative refractive index

Ehrenberg, Isaac M.; Sarma, Sanjay E.; Wu, Bae-Ian

2012-10-01

Demonstrations of focusing with metamaterial lenses have predominantly featured two dimensional structures or stacks of planar elements, both limited by losses which hinder realized gain near the focal region. In this study, we present a plano-concave lens built from a 3D self-supporting metamaterial structure featuring a negative refractive index between 10 and 12 GHz. Fabricated using macroscopic layered prototyping, the lens curvature, negative index and low loss contribute to a recognizable focus and free space gains above 13 dB.

17. Flow Structures in a Healthy and Plaqued Artificial Artery using Fully Index Matched Vascular Flow Facility

Mehdi, Faraz; Jain, Akash; Sheng, Jian

2014-11-01

Particle Image Velocimetry measurements are made in a closed loop fully index matched flow facility to study the flow structures and flow wall interactions in healthy and diseased model arteries. The test section is 0.63 m long and the facility is capable of emulating both steady and pulsatile flows under physiologically relevant conditions. The model arteries are in-house developed compliant polymer (PDMS) tubes with 1 cm diameter and 1 mm wall thickness. The Reynolds numbers of flows vary up to 20,000. The plaque is simulated by introducing a radially asymmetric bump that can be varied in shape, size and compliancy. The overall compliancy of the model can be also controlled by varying ratio between the elastomer and the curing agent. The tubes are doped with particles allowing the simultaneous measurements of wall deformation and flows over it. The working fluid in the facility is NaI and is refractive index matched to the PDMS model. This allows flow measurement very close to the wall and measurement of wall shear stress. The aim of this study is to characterize the changes in flow as the compliancy and geometry of blood vessels change due to age or disease. These differences can be used to develop a diagnostic tool to detect early onset of vascular diseases.

18. Retrieval of aerosol refractive index from extinction spectra with a damped harmonic-oscillator band model.

PubMed

Thomas, Gareth E; Bass, Stephen F; Grainger, Roy G; Lambert, Alyn

2005-03-01

A new method for the retrieval of the spectral refractive indices of micrometer-sized particles from infrared aerosol extinction spectra has been developed. With this method we use a classical damped harmonic-oscillator model of molecular absorption in conjunction with Mie scattering to model extinction spectra, which we then fit to the measurements using a numerical optimal estimation algorithm. The main advantage of this method over the more traditional Kramers-Kronig approach is that it allows the full complex refractive-index spectra, along with the parameters of the particle size distribution, to be retrieved from a single extinction spectrum. The retrieval scheme has been extensively characterized and has been found to provide refractive indices with a maximum uncertainty of approximately 10% (with a minimum of approximately 0.1%). Comparison of refractive indices calculated from measurements of a ternary solution of HNO3, H2SO4, and H2O with those published in J. Phys. Chem. A 104, 783 (2000) show similar differences as found by other authors.

19. Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics

SciTech Connect

Cote, R.; Devos, A.

2005-05-15

We present a method for refractive indices and longitudinal sound velocity measurements from picosecond ultrasonic experiments made at different probe incidence angles. For transparent or semitransparent materials such as dielectrics or semiconductors, picosecond ultrasonic experiments can lead to oscillations in the reflectivity curves whose frequency depends on the refractive indices, the sound velocity and the experiments angle. From these data we establish a simple method for the calculation of the refractive indices and verify it on a GaAs sample. We show on fluorinated silica glass and aluminum nitride practical applications of this method on thin films. From two experiments we measure the refraction index and the sound velocity of these materials, with no assumption on the materials properties or on the sample layers' thicknesses. Here the materials are buried under a thin aluminum film. It illustrates the fact that the method can be applied to multilayers. From the same experiments we then derive the thickness of the layers. It shows that this method can render picosecond ultrasonic experiments independent from other characterization means.

20. The effect of the atmospheric refractive index on the radio signal of extensive air showers

Corstanje, A.; Bonardi, A.; Buitink, S.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, G.; Winchen, T.

2017-03-01

For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index n. At a given altitude, the refractivity N =106(n - 1) can have relative variations on the order of 10% depending on temperature, humidity, and air pressure. Typical corrections to be applied to N are about 4%. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying N on measurements of the depth of shower maximum Xmax. For an observation band of 30-80 MHz, a difference of 4% in refractivity gives rise to a systematic error in the inferred Xmax between 3.5 and 11 g/cm2, for proton showers with zenith angles ranging from 15 to 50°. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 g/cm2. These offsets were found to be proportional to the geometric distance to Xmax. We have compared the results to a simple model based on the Cherenkov angle. For the 120 - 250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in Xmax compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of Xmax measurements.

1. Research on polarization state of prism coupler sensor for measuring liquid refractive index

Zhang, Zhi-Wei

2013-09-01

Due to many experimental data required and a lot of calculations involved, it is very complex and cumbersome to model prism-based liquid-refractive-index-measuring methods. By use of the feature of TE-polarized wave and TM-polarized wave and differential measurement principle, we developed a new method of mathematical modeling for measuring refractive index of a liquid based upon Fresnel formula and prism internal reflection at incident angle less than critical angle. With this method only two different concentrations measurements for a kind of solution can lead to the determination of computational model. It introduces the principle of an optic-fiber sensor system based on prism-coupler for measuring refractive index of a liquid, and it contains the configuration picture of the sensing optical path, the spectrogram of the semiconductor laser and the structure block diagram of measuring system, the system is mainly made up of the semiconductor laser with 1654.14nm in wavelength, 1×2 optical switch, Y-shaped photo-coupler with coupled rate 50:50, the detector based on isosceles prism-coupler, the data process and control system based on AT89C51 and photoelectric transformer. For TM-polarized wave and TE-polarized wave, theoretical simulations show that the ratio of sensitivity is 1.11, therefore, the beam that the component of TM-polarized wave is more than the one of TE-polarized wave is advantageous to heightening the systemۥs measurement sensitivity. Measurements are performed to examine the validity of the theoretical model and four theoretical models are given, and these results indicate the feasibility of four theoretical models with an error of 3%. In this study, a beam of light is broken down into two beams in the coupler of Y-shaped coupler, the one acts as the reference optical path, the other is known as the sensing optical path, consequently the method can limit well the fluctuation of the light source, the variation of the photodiodeۥ s dark

2. Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation

Bachman, D.; Chen, Z.; Fedosejevs, R.; Tsui, Y. Y.; Van, V.

2016-08-01

An optical damage threshold for crystalline silicon from single femtosecond laser pulses was determined by detecting a permanent change in the refractive index of the material. This index change could be detected with unprecedented sensitivity by measuring the resonant wavelength shift of silicon integrated optics microring resonators irradiated with femtosecond laser pulses at 400 nm and 800 nm wavelengths. The threshold for permanent index change at 400 nm wavelength was determined to be 0.053 ± 0.007 J/cm2, which agrees with previously reported threshold values for femtosecond laser modification of crystalline silicon. However, the threshold for index change at 800 nm wavelength was found to be 0.044 ± 0.005 J/cm2, which is five times lower than the previously reported threshold values for visual change on the silicon surface. The discrepancy is attributed to possible modification of the crystallinity of silicon below the melting temperature that has not been detected before.

3. Infrared Spectra, Index of Refraction, and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

NASA Technical Reports Server (NTRS)

Moore, Marla; Ferrante, Robert; Moore, William; Hudson, Reggie

2010-01-01

Spectra and optical constants of nitrite ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 per cm ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C 2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous- and crystallinephase at 670 nm. Spectra were measured and optical constants were calculated for each nitrite at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous- and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data.

4. Hard X-ray index of refraction tomography of a whole rabbit knee joint: A feasibility study.

PubMed

Gasilov, S; Mittone, A; Horng, A; Geith, T; Bravin, A; Baumbach, T; Coan, P

2016-12-01

We report results of the computed tomography reconstruction of the index of refraction in a whole rabbit knee joint examined at the photon energy of 51keV. Refraction based images make it possible to delineate the bone, cartilage, and soft tissues without adjusting the contrast window width and level. Density variations, which are related to tissue composition and are not visible in absorption X-ray images, are detected in the obtained refraction based images. We discuss why refraction-based images provide better detectability of low contrast features than absorption images.

5. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

NASA Technical Reports Server (NTRS)

Frey, Bradley J.; Leviton, Douglas B.

2004-01-01

The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

6. Determination of refractive index, thickness, and the optical losses of thin films from prism-film coupling measurements.

PubMed

Cardin, Julien; Leduc, Dominique

2008-03-01

We present a method of analysis of prism-film coupler spectroscopy based on the use of transfer matrix and genetic algorithm, which allows the simultaneous determination of refractive index, thickness, and optical losses of the measured layer.

7. Highly sensitive compact refractive index sensor based on phase-shifted sidewall Bragg gratings in slot waveguide.

PubMed

2014-01-01

The geometrical and physical parameters of phase-shifted sidewall Bragg gratings in a silicon slot waveguide are optimized to possess performance characteristics desirable for integrated optical sensors. By tailoring the spectral response of such phase-shifted sidewall gratings, highly sensitive compact refractive index sensors detecting the resonance wavelength shift or the variation of light intensity are designed with the transfer matrix method. Both refractive index sensors have a minimum detection limit on the order of 10(-6), and a linear response and a compact structure dimension as small as 11.7 μm, offering the capabilities for sensor array and lab-on-a-chip integration. The resonance-shift sensor has a much wider detection range of 1.32 refractive index units than the intensity-measurement sensor. The performance parameters are compared with other refractive index sensors, including Mach-Zehnder interferometers, ring resonators, surface gratings, and phase-shifted gratings in silicon nanowire.

8. Fabrication of gradient refractive index ball lenses using the method of combination of ion exchanging and sagging

Hao, Lv; Bangren, Shi; Jijiang, Wu; Lijun, Guo; Aimei, Liu

2007-08-01

Based on the Fick's diffusion equations, the distribution function of refractive index of a gradient refractive index ball lens (GRIN ball lens/GBL) is derived. Lithium containing silicate glass is fabricated and GRIN ball lenses (GBLs) which diameters are from 0.3 mm to 3.0 mm are made by the method of combination of Ion exchanging and sagging in sodium nitrate. Refractive index profiles of these GBLs are measured by interferometer, and the performances such as effective focal length (EFL), back focal length (BFL) and numerical aperture (NA) between GBLs and homogeneous ball lenses (HBLs) are compared. Results show that the distribution of the index of refraction is parabolic curve and its Δn is about 0.0002, the performances of the former are super to the latter.

9. Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm.

PubMed

Schubert, Martin F; Mont, Frank W; Chhajed, Sameer; Poxson, David J; Kim, Jong Kyu; Schubert, E Fred

2008-04-14

Designs of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials are optimized using a genetic algorithm. Co-sputtered and low-refractive-index materials allow the fine-tuning of refractive index, which is required to achieve optimum anti-reflection characteristics. The algorithm minimizes reflection over a wide range of wavelengths and incident angles, and includes material dispersion. Designs of antireflection coatings for silicon-based image sensors and solar cells, as well as triple-junction GaInP/GaAs/Ge solar cells are presented, and are shown to have significant performance advantages over conventional coatings. Nano-porous low-refractive-index layers are found to comprise generally half of the layers in an optimized antireflection coating, which underscores the importance of nano-porous layers for high-performance broadband and omnidirectional antireflection coatings.

10. Design of acid-lead battery stage-of-charge detection system based on refractive index detection technology

Chen, Junyao; Yang, Kecheng; Xia, Min; Li, Lei; Zeng, Xianjiang

2015-10-01

Based on optical total reflection critical Angle method, we have designed a refractive index measurement system. It adopted a divergent light source and a CCD camera as the occurrence and receiver of the signal. The divergent light source sent out a bunch of tapered beam, exposure to the interface of optical medium and sulfuric acid solution. Light intensity reflected from the interface could be detected by the CCD camera and then sent to the embedded system. In the DSP embedded system, we could obtain the critical edge position through the light intensity distribution curve and converted it to critical angle. Through experiment, we concluded the relation between liquid refractive index and the critical angle edge position. In this system, the detecting precision of the refractive index of sulfuric acid solution reached 10-4. Finally, through the conversion of the refractive index and density, we achieved high accuracy online measurement of electrolyte density in lead-acid battery.

11. A separation of the refractive index and topography in photon-scanning tunneling microscopy: simulations and experiments.

PubMed

Wang, Xiaoqiu; Zhang, Jian; Li, Yinli; Jian, Guoshu; Suen, Wei; Pan, Shi; Wu, Shifs

2005-08-01

In order to separate the purely optical and topographic information from images in constant-gap mode simultaneously, we proposed the atomic force/photon-scanning tunneling microscopy (AF/PSTM). In this paper, we focus on the principle of separation of the refractive index image from the images of photon-scanning tunneling microscopy. We prove the formula of refractive index imaging by using a three-dimensional finite-difference time-domain method. The formula indicates that the refractive index of a sample is approximately proportional to photon tunneling information (DeltaI/I )2. From the viewpoint of practical use, we simulated the refractive index images for the realistic experiments. We present line scans along two orthogonal directions and the transmitted intensity as a function of the tip position under the constant-gap mode. The experimental results are presented and are in good agreement with the numerical results.

12. Tuning the number of plasmon band in silver ellipsoidal nanoshell: refractive index sensing based on plasmon blending and splitting

Jian, Zhu; Xing-chun, Deng; Jian-jun, Li; Jun-wu, Zhao

2011-03-01

Because of the geometric features of both rod and shell, dielectric-silver core-shell ellipsoidal nanostructure with 12-40 nm semi-major axis may bring forth four surface plasmon resonance (SPR) absorption peaks at most. Theoretical calculations based on quasi-static approximation show that there is surrounding refractive index-dependent plasmon blending and splitting in the absorption spectra, which makes the number of plasmon band of the silver ellipsoidal nanoshell is tunable. The sensitivity of the plasmon blending and splitting to the surrounding refractive index may be improved by increasing the shell thickness, aspect ratio or core refractive index. This local refractive index dependent-plasmon blending and splitting presents a new sensing picture based on tuning the number of SPR absorption peaks.

13. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

SciTech Connect

Cao, Xiuxia; Li, Jiabo; Li, Jun; Li, Xuhai; Xu, Liang; Wang, Yuan; Zhu, Wenjun; Meng, Chuanmin; Zhou, Xianming

2014-09-07

High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformation (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.

14. Note: refractive index sensing of turbid media by differentiation of the reflectance profile: does error-correction work?

PubMed

Goyal, K G; Dong, M L; Kane, D G; Makkar, S S; Worth, B W; Bali, L M; Bali, S

2012-08-01

A widely used method for determining refractive index postulates that the derivative of the angular profile for light reflected from the sample is maximum at the critical angle for total internal reflection (TIR). It is well-known that in turbid media this "differentiation method" yields errors in refractive index. Unexplained anomalies in previous error-calculations are eliminated if one uses a recent model of TIR which departs from traditional Fresnel theory. However we find that, in practical situations, the refractive index obtained by differentiation even after error-correction is significantly different from the best estimate for the refractive index obtained by curve-fitting the reflectance data. Thus the differentiation method lacks scientific validity in turbid media.

15. Spatial Resolution and Refractive Index Contrast of Resonant Photonic Crystal Surfaces for Biosensing

PubMed Central

Triggs, G. J.; Fischer, M.; Stellinga, D.; Scullion, M. G.; Evans, G. J. O.; Krauss, T. F.

2015-01-01

By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast Δn. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10−2. We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At Δn = 0.077, we observe resolutions of 2 and 6 μm parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45° results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for Δn < 0.01, where we observe a resolution exceeding 10 μm for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution. PMID:26356353

16. Measurement of the complex refractive-index spectrum for birefringent and absorptive liquids.

PubMed

Saito, M; Matsumoto, N; Nishimura, J

1998-08-01

The optical constants of birefringent and/or opaque liquids, e.g., liquid crystals and magnetic fluids, are difficult to measure at wavelengths at which a strong light source such as a laser or an arc lamp is not accessible. The refractive index n and the extinction coefficient kappa of these liquids can be simultaneously evaluated from the reflectance curves that are measured in the large incident angle range. A semicylindrical sample cell allows the spectral reflectance measurement with a weak light source even at large incident angles. By using this method, we evaluated the ordinary and the extraordinary indices of a nematic liquid crystal in the continuous wavelength range of 0.55-1.60 mum. The complex refractive indices of magnetic fluids were also evaluated, and the affect of the magnetic field was demonstrated.

17. Direct measurement of the x-ray refractive index by Fresnel diffraction at a transparent edge.

PubMed

Gayer, C W; Hemmers, D; Stelzmann, C; Pretzler, G

2013-05-01

We demonstrate the feasibility of measuring x-ray refractive indices by transparent edge diffraction without recourse to the Kramers-Kronig relations. The method requires a coherent x-ray source, a transparent sample with a straight edge, and a high resolution x-ray detector. Here, we use the aluminum Kα radiation originating from a laser-produced plasma to coherently illuminate the edge of thin aluminum and beryllium foils. The resulting diffraction patterns are recorded with an x-ray CCD camera. From least-squares fits of Fresnel diffraction modeling to the measured data we determine the refractive index of Al and Be at the wavelength of the Al Kα radiation (0.834 nm, 1.49 keV).

18. Nonadiabatic Landau-Zener tunneling in waveguide arrays with a step in the refractive index.

PubMed

Khomeriki, Ramaz; Ruffo, Stefano

2005-03-25

Landau-Zener tunneling is discussed in connection with optical waveguide arrays. Light injected in a specific band of the Bloch spectrum in the propagation constant can be transmitted to another band, changing its physical properties. This can be achieved using two coupled waveguide arrays with different refractive indices. The step in the refractive index causes wave "acceleration" and thus induces strongly nonadiabatic Landau-Zener tunneling. Theoretically, the analysis is performed by considering a Schrödinger equation in a periodic potential with a step. The region of physical parameters where this phenomenon can occur is analytically determined and a realistic experimental setup is suggested. Its application could allow the realization of light filters.

19. Fabrication quality analysis of a fiber optic refractive index sensor created by CO2 laser machining.

PubMed

Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

2013-03-26

This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10(-4) RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10(-5) RIU, and greater linearity at R2 = 0.999.

20. Pressure sensing in high-refractive-index liquids using long-period gratings nanocoated with silicon nitride.

PubMed

Smietana, Mateusz; Bock, Wojtek J; Mikulic, Predrag; Chen, Jiahua

2010-01-01

The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD>1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n>2.2 at λ=1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters.

1. A proposal of T-structure fiber-optic refractive index sensor based on surface plasmon resonance

Wang, Xiao-Ming; Zhao, Chun-Liu; Wang, Yan-Ru; Jin, Shangzhong

2016-06-01

We present a compact and novel "T" structure optical fiber refractive index sensor proposal based on surface plasmon resonance. "T" structure sensing head consists of a single mode fiber (SMF) with a plasmonic facet and a cladding partly removed single mode fiber (CPR-SMF) with a gap. The gold film is deposited on the end of SMF instead of the side of the CPR-SMF. The simulation results show that the SPR based on the "T" structure can be excited effectively. The SPR transmission spectrum shifts towards longer wavelength with the sensing sample refractive index increasing largely. When we divide the refractive index range of the sensing sample to two parts, the linear relationships between the SPR wavelength and the refractive index can be used. The resolutions can be highly up to 7.115×10-6 RIU and 3.525×10-6 RIU for the refractive index ranges of 1.3333-1.36 and 1.37-1.4, respectively. The proposed "T" structure sensor works well for achieving the refractive index measurement with high sensitivity and wide range for samples with a tiny amount.

2. Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement

Jung, Eun Joo; Lee, Woo-Jin; Kim, Myoung Jin; Hwang, Sung Hwan; Rho, Byung Sup

2014-01-01

We have demonstrated a refractive index sensor based on a fiber optic Fabry-Perot (FP) interferometer with an open air cavity fabricated using a one-step mechanical sawing technique. The sensor head consists of a short FP cavity near the fiber patch cord tip, which was assembled by joining a ceramic ferrule and a single-mode fiber together. Owing to the open air cavity in the sensor head, various liquid samples with different refractive index can fill in-line air cavity, which makes the device usable as a refractometer. Moreover, due to the sensor head encircled with the robust ceramic ferrule, the device is attractive for sensing measurement in harsh environments. The sensor was tested in different refractive index solutions. The experimental result shows that the attenuation peak wavelength of the sensor is shifted toward a shorter wavelength with increasing refractive index, and the refractive index sensitivity is ˜92.5 nm/refractive index unit (RIU) and 73.75 dB/RIU. The proposed sensor can be used as an in-line refractometer for many potential applications in the sensing field.

3. Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers

Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

2016-09-01

This work presents different polymer diffusing films for optical components. In optical applications it is sometimes important to have a film with an adjusted refractive index, scattering properties and a low surface roughness. These diffusing films can be used to increase the efficiency of optical components like organic light emitting diodes (OLEDs). In this study three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol a glycerolate dimethacrylate, Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved with a chemical doping by 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. To prevent sedimentation and agglomeration of these nanoparticles, a stabilization agent [2-(2-methoxyethoxy)ethoxy]acetic acid is added to the mixture. Other ingredients are a UV-starter and thermal starter for the radical polymerization. A high power stirrer (ultraturrax) is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and gets characterized. After the mixing, the monomer mixture is applied on glass substrates by blade coating or screen printing. To initiate the chain growing (polymerization) the produced films are irradiated for 10 minutes long with UV light (UV LED Spot Hönle, 405 nm). After this step a final post bake from the layers in the oven (150°C, 30 min.) is operated. Light transmission measurements (UV-Vis) of the polymer matrix and roughness measurements complement the characterization.

4. Measurement of the nonlinear refractive index of tellurite glass fiber by using induced grating autocorrelation technique

Traore, Aboubakar

Nonlinear phenomena in optical fibers have been attracting considerable attention because of the rapid growth of the fiber optics communication industry. The increasing demand in internet use and the expansion of telecommunications in the developing world have triggered the need for high capacity and ultra-fast communication devices and also the need to increase the number of transmission channels in the fibers. Wavelength Division Multiplexing (WDM) and Dense Wavelength Division Multiplexing (DWDM) systems are capable of transmitting large volumes of data at very high rates into huge numbers of optical transmission channels. This ability is limited by the gain bandwidth of Silica based fiber optics amplifiers already installed in the communication networks. Tellurite based fiber amplifiers offer the necessary bandwidth for amplification of WDM and DWDM channels. To investigate the nonlinear properties of the optical fibers in this research, we used a 10 picoseconds pulse width passively mode-locked Nd:Vanadate ( Nd:YVO4) laser operating at 1342nm with a repetition rate of 76 MHz. We accurately measured the nonlinear refractive index of single mode silica fibers utilizing the Induced Grating Autocorrelation (IGA) technique. IGA technique was extended furthermore to study nonlinear effects in multimode fibers, and for the first time, we successfully measured the nonlinear refractive index (n2) of a multimode silica fiber. Confident of the ability of IGA technique for determining n 2 of multimode silica fibers, we measured the nonlinear refractive index of multimode Tellurite glass fibers with length as short as 0.5 meter. The goal of this work is to provide accurate and reliable information on the nonlinear optical properties of Tellurite glass fibers, novel fibers with promising future for developing ultrafast and high transmission capacity communication devices.

5. Recovering refractive index correlation function from measurement of tissue scattering phase function (Conference Presentation)

Rogers, Jeremy D.

2016-03-01

Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.

6. Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach.

PubMed

Butet, Jérémy; Martin, Olivier J F

2014-12-21

Sensing using surface plasmon resonances is one of the most promising practical applications of plasmonic nanostructures and Fano resonances allow achieving a lower detection limit thanks to their narrow spectral features. However, a narrow spectral width of the subradiant mode in a plasmonic system, as observed in the weak coupling regime, is in general associated with a low modulation of the complete spectral response. In this article, we show that this limitation can be overcome by a nonlinear approach based on second harmonic generation and its dependence on symmetry at the nanoscale. The Fano resonant systems considered in this work are gold nanodolmens. Their linear and nonlinear responses are evaluated using a surface integral equation method. The numerical results demonstrate that a variation of the refractive index of the surrounding medium modifies the coupling between the dark and bright modes, resulting in a modification of the electromagnetic wave scattered at the second harmonic wavelength, especially the symmetry of the nonlinear emission. Reciprocally, we show that evaluating the asymmetry of the nonlinear emission provides a direct measurement of the gold nanodolmens dielectric environment. Interestingly, the influence of the refractive index of the surrounding medium on the nonlinear asymmetry parameter is approximately 10 times stronger than on the spectral position of the surface plasmon resonance: hence, smaller refractive index changes can be detected with this new approach. Practical details for an experimental realization of this sensing scheme are discussed and the resolution is estimated to be as low as Δn = 1.5 × 10(-3), respectively 1.5 × 10(-5), for an acquisition time of 60 s for an isolated gold nanodolmen, respectively an array of 10 × 10 nanodolmens.

7. Long period fiber grating based refractive index sensor with enhanced sensitivity using Michelson interferometric arrangement

Singh, Amit

2015-06-01

8. Refractive index of thin films realized by Satisloh SP reactive sputtering system

Monaco, Gianni; Colautti, Arturo; Allegro, Cristina; Godin, Tom; Gold, Steffan; Witzany, Michael

2013-09-01

Pulsed DC reactive sputtering is a very interesting technique for coating applications. Reactive sputtering can give very dense layers, low stress of the deposited multilayer film, high reproducibility, very high hardness (up to 1200 Vickers hardness) with unbeatable high rates ideal for industrial applications. SP-100 is Satisloh reactive sputtering systems with only one target material but can deposit various film materials simply by using different gases such as argon, as well as the reactive gases nitrogen and oxygen. Silicon-oxides, silicon-nitrides and all kinds of silicon-oxy-nitrides (SiOx-SixOyNz-SixNy) with a refractive index range of 1.44-2.05 in the visible range can be obtained. In the reactive sputtering the material it is usually deposited in the so called "transition mode" where it must be found the correct equilibrium point between the target voltage and the reactive gas flow. The transition mode assures a dense film with a stable rate. Condition to find such equilibrium point is given by the so called "material hysteresis" in which the target voltage is depicted in function of the reactive gas voltage. The hysteresis and the consequent equilibrium point are strongly depended by the power supplied to the target and the inert gas (argon) flow which could affect the optical characteristics and the deposition rate. We checked the refractive indexes of the SiOx and SixNy of very thin (1 QW Optical thickness at 520 nm) and thicker (3, 5 and 9 QW @520 nm) reporting how the different conditions can affect the refractive index and the deposition rate of the different materials.

9. Dielectric black holes induced by a refractive index perturbation and the Hawking effect

SciTech Connect

Belgiorno, F.; Cacciatori, S. L.; Gorini, V.; Ortenzi, G.; Rizzi, L.; Faccio, D.

2011-01-15

We consider a 4D model for photon production induced by a refractive index perturbation in a dielectric medium. We show that, in this model, we can infer the presence of a Hawking type effect. This prediction shows up both in the analogue Hawking framework, which is implemented in the pulse frame and relies on the peculiar properties of the effective geometry in which quantum fields propagate, as well as in the laboratory frame, through standard quantum field theory calculations. Effects of optical dispersion are also taken into account, and are shown to provide a limited energy bandwidth for the emission of Hawking radiation.

10. Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity

Zhou, Jinli; Chen, Huibin; Zhang, Zhidong; Tang, Jun; Cui, Jiangong; Xue, Chenyang; Yan, Shubin

2017-01-01

A metal-insulator-metal (MIM) waveguide-coupled trapezoid cavity is presented, and the transmission properties are investigated by finite-element method. Results show that an asymmetric Fano profile emerged in the transmission spectrum, which was caused by the asymmetrical break of the MIM waveguide-coupled trapezoid cavity system. A refractive index sensitivity, Q-factor and FOM of approximately 750nm/RIU, 68.3 and 65.2 were measured based on the Fano resonance. The effect of the structural parameters on the transmission properties is also investigated. The results provide a new possibility for designing high-performance plasmonic devices.

11. Enhancing the efficiency of slow-wave electron cyclotron masers with the tapered refractive index

SciTech Connect

Kong Lingbao; Hou Zhiling; Jing Jian; Jin Haibo; Du Chaohai

2013-04-15

The nonlinear analysis of slow-wave electron cyclotron masers (ECM) based on anomalous Doppler effect in a slab waveguide is presented. A method of tapered refractive index (TRI) is proposed to enhance the efficiency of slow-wave ECM. The numerical calculations show that the TRI method can significantly enhance the efficiency of slow-wave ECM with the frequency ranging from the microwave to terahertz band. The effect of beam velocity spread on the efficiency has also been studied. Although the velocity spread suppresses the efficiency significantly, a great enhancement of efficiency can still be introduced by the TRI method.

12. Electronic and thermal refractive index changes in ytterbium-doped fiber amplifiers.

PubMed

Kuznetsov, M S; Antipov, O L; Fotiadi, A A; Mégret, P

2013-09-23

We develop a theoretical framework to analyze the mechanism of refractive index changes (RIC) in double-clad Yb³⁺ doped optical fibers under resonant core or clad pumping, and with signal amplification. The model describes and compares thermal and electronic contributions to the phase shifts induced on the amplified signal at 1064 nm and the probe signal at 1550 nm, i.e. located inside and outside of the fiber amplification band, respectively. The ratio between the thermal and electronic phase shifts is evaluated as a function of the pump pulse duration, the gain saturation, the amplified beam power and for a variety of fiber parameters.

13. Determining the refractive index and thickness of thin films from prism coupler measurements

NASA Technical Reports Server (NTRS)

Kirsch, S. T.

1981-01-01

A simple method of determining thin film parameters from mode indices measured using a prism coupler is described. The problem is reduced to doing two least squares straight line fits through measured mode indices vs effective mode number. The slope and y intercept of the line are simply related to the thickness and refractive index of film, respectively. The approach takes into account the correlation between as well as the uncertainty in the individual measurements from all sources of error to give precise error tolerances on the best fit values. Due to the precision of the tolerances, anisotropic films can be identified and characterized.

14. Swift and heavy ion implanted chalcogenide laser glass waveguides and their different refractive index distributions

SciTech Connect

Qiu Feng; Narusawa, Tadashi; Zheng Jie

2011-02-10

Planar waveguides have been fabricated in Nd- or Ho-doped gallium lanthanum sulfide laser glasses by 60 MeV Ar or 20 MeV N ion implantation. The refractive index profiles were reconstructed based on the results of prism coupling. The Ar implanted waveguides exhibit an approximate steplike distribution, while the N implanted ones show a ''well + barrier'' type. This difference can be attributed to the much lower dose of Ar ions. After annealing, the N implanted waveguides can support two modes at 1539 nm and have low propagation loss, which makes them candidates for novel waveguide lasers.

15. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass.

PubMed

Cumming, Benjamin P; Turner, Mark D; Schröder-Turk, Gerd E; Debbarma, Sukanta; Luther-Davies, Barry; Gu, Min

2014-01-13

Chiral gyroid photonic crystals are fabricated in the high refractive index chalcogenide glass arsenic trisulfide with an adaptive optics enhanced direct laser writing system. The severe spherical aberration imparted when focusing into the arsenic trisulfide is mitigated with a defocus decoupled aberration compensation technique that reduces the level of aberration that must be compensated by over an order of magnitude. The fabricated gyroids are shown to have excellent uniformity after our adaptive optics method is employed, and the transmission spectra of the gyroids are shown to have good agreement with numerical simulations that are based on a uniform and diffraction limited fabrication resolution.

16. Optic-null space medium for cover-up cloaking without any negative refraction index materials.

PubMed

Sun, Fei; He, Sailing

2016-07-07

With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.

17. Continuous refractive index dispersion measurement based on derivative total reflection method

Deng, Zhichao; Wang, Jin; Ye, Qing; Sun, Tengqian; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

2015-04-01

Traditionally, continuous refractive index dispersion (CRID) measurement of materials with scattering is hard to realize. In this paper, CRID measurement based on the derivative total reflection method (CRIDM-DTRM) is proposed to measure the CRID of both absorption and scattering materials. It effectively determined the CRID of K9 glass, concentrated milk, and 0.5% methyl red solution in the 400-750 nm range with the spectral resolution of about 0.259 nm. For the first time, CRID of a scattering material is measured. CRIDM-DTRM is a useful technique in the field of RID measurement, especially for biotissues and anomalous dispersion materials.

18. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities.

PubMed

Mártin, Daniel A; Hoyuelos, Miguel

2009-11-01

We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

19. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities

Mártin, Daniel A.; Hoyuelos, Miguel

2009-11-01

We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

20. Ultra-compact chiral metamaterial with negative refractive index based on miniaturized structure

Li, Minhua; Song, Jian; Wu, Fei

2017-03-01

An ultra-compact chiral metamaterial with thin thickness and small unit cells is proposed. Echelon meandered conjugated gammadions are introduced into the planar miniaturized design. In particular, the ratio between period (p) and resonant wavelength (λ) is as small as 1/10.8 in experiment. Negative refractive indexes for circularly polarized waves are demonstrated and the effective parameters are retrieved. The effects of the length of the swing arms, number of folded lines and dielectric layer thickness on the optical activity have also been investigated. This miniaturized structure has great potential application in electronic and photonic devices with small size and integration.

1. Microhardness and refractive index of titanium dioxide-based binary coatings

Atkarskaya, A. B.; D'yachenko, V. V.; Nartsev, V. M.; Shemanin, V. G.

2017-01-01

Glass composites covered by sol-gel TiO2- m Me x O y ( Me x O y = ZnO, CdO, SnO, CuO, and Fe2O3 and m = 2, or 10 wt %) binary oxide coatings have been studied. The microhardness of the composites and glass substrate has been measured, and the microhardness of the coatings has been determined from these measurements. A correlation between the microhardness of the coatings, their refractive index, and packing density of disperse sol phase particles in the coating has been established.

2. Refractive index measured by laser beam displacement at {lambda}=1064 nm for solvents and deuterated solvents

SciTech Connect

Shelton, David P.

2011-07-20

The refractive index of a liquid is determined with 0.0003 accuracy from measurements of laser beam displacement by a liquid-filled standard 10 mm spectrophotometer cell. The apparatus and methods are described and the results of measurements at {lambda}=1064 nm and T=25.0 deg. C for 30 solvents and deuterated solvents are presented. Several sources of potential systematic errors as large as 0.003 are identified, the most important being the curvature of the liquid cell windows. The measurements are analyzed accounting for the significant imperfections of the apparatus.

3. Sensitivity of the Lidar ratio to changes in size distribution and index of refraction

NASA Technical Reports Server (NTRS)

Evans, B. T. N.

1986-01-01

In order to invert lidar signals to obtain reliable extinction coefficients, sigma, a relationship between sigma and the backscatter coefficient, beta, must be given. These two coefficients are linearly related if the complex index of refraction, m, particle shape size distribution, N, does not change along the path illuminated by the laser beam. This, however, is generally not the case. An extensive Mie computation of the lidar ratio R = beta/sigma and the sensitivity of R to the changes in a parametric space defined by N and m were examined.

4. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study.

PubMed

Haseda, Keisuke; Kanematsu, Keita; Noguchi, Keiichi; Saito, Hiromu; Umeda, Norihiro; Ohta, Yoshihiro

2015-03-01

Measurements of refractive indices (RIs) of intracellular components can provide useful information on the structure and function of cells. The present study reports, for the first time, determination of the RI of an isolated mitochondrion in isotonic solution using retardation-modulated differential interference contrast microscopy. The value was 1.41 ± 0.01, indicating that mitochondria are densely packed with molecules having high RIs. Further, the RIs of each mitochondrion were significantly correlated with the mitochondrial membrane potential, an index of mitochondrial activity. These results will provide useful information on the structures and functions of cells based on the intracellular distribution of RIs.

5. Nonlocal nonlinear refractive index of gold nanoparticles synthesized by ascorbic acid reduction: comparison of fitting models.

PubMed

Balbuena Ortega, A; Arroyo Carrasco, M L; Méndez Otero, M M; Gayou, V L; Delgado Macuil, R; Martínez Gutiérrez, H; Iturbe Castillo, M D

2014-12-12

In this paper, the nonlinear refractive index of colloidal gold nanoparticles under continuous wave illumination is investigated with the z-scan technique. Gold nanoparticles were synthesized using ascorbic acid as reductant, phosphates as stabilizer and cetyltrimethylammonium chloride (CTAC) as surfactant agent. The nanoparticle size was controlled with the CTAC concentration. Experiments changing incident power and sample concentration were done. The experimental z-scan results were fitted with three models: thermal lens, aberrant thermal lens and the nonlocal model. It is shown that the nonlocal model reproduces with exceptionally good agreement; the obtained experimental behaviour.

6. Investigation on refractive index sensing of single silver nanoparticle at tightly focused light illumination

Shen, Si; Wang, Xiang-hui; Sun, Jing-wei; Fan, Fei; Chang, Sheng-jiang

2017-01-01

Based on the generalized Mie theory, refractive index sensing characteristics of single silver nanoparticle respectively illuminated by tightly focused linearly-polarized and radially-polarized light beams are investigated. The spectra for localized surface plasmon resonances (LSPR) under different dielectric environments demonstrate that distinct dipolar and quadrupolar resonances can be always observed for the case of radial polarization, while there is only strong dipolar resonance for the case of linear polarization. The dipolar mode has a higher sensitivity. However, the figure of merit ( FOM) for the quadrupolar resonance is much higher than that for the dipolar resonance, because the quadrupolar resonance has a narrower width.

7. Spatially resolved refractive index profiles of electrically switchable computer-generated holographic gratings.

PubMed

Zito, Gianluigi; Finizio, Andrea; De Nicola, Sergio

2009-10-12

We describe a spatially resolved interferometric technique combined with a phase reconstruction method that provides a quantitative two-dimensional profile of the refractive index and spatial distribution of the optical contrast between the on-off states of electrically switchable diffraction gratings as a function of the external electric field. The studied structures are holographic gratings optically written into polymer/liquid crystal composites through single-beam spatial light modulation by means of computer-generated holograms. The electro-optical response of the gratings is also discussed. The diffraction efficiency results to be dependent on the incident light polarization suggesting the possibility to develop polarization dependent switching devices.

8. Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry.

PubMed

Ghim, Young-Sik; Kim, Seung-Woo

2006-11-27

As an extension of the authors' previous report of Ref 1, we describe an improved version of dispersive white-light interferometry that enables us to measure the tomographical thickness profile of a thin-film layer through Fourier-transform analysis of spectrally-resolved interference signals. The group refractive index can also be determined without prior knowledge of the geometrical thickness of the film layer. Owing to fast measurement speed with no need of mechanical depth scanning, the proposed method is well suited for in-line 3-D inspection of dielectric thin film layers particularly for the semiconductor and flat-panel display industry.

9. Structural properties of aqueous metoprolol succinate solutions. Density, viscosity, and refractive index at 311 K

Deosarkar, S. D.; Kalyankar, T. M.

2013-06-01

Density, viscosity and refractive index of aqueous solutions of metoprolol succinate of different concentrations (0.005-0.05 mol dm-3) were measured at 38°C. Apparent molar volume of resultant solutions were calculated and fitted to the Masson's equation and apparent molar volume at infinite dilution was determined graphically. Viscosity data of solutions has been fitted to the Jone-Dole equation and viscosity A- and B-coefficients were determined graphically. Physicochemical data obtained were discussed in terms of molecular interactions.

10. Large and tunable negative refractive index via electromagnetically induced chirality in a semiconductor quantum well nanostructure

Zhao, Sh.-C.; Zhang, Sh.-Y.; Xu, Y.-Y.

2014-11-01

Large and tunable negative refractive index (NRI) via electromagnetically induced chirality is demonstrated in a semiconductor quantum wells (SQWs) nanostructure by using the reported experimental parameters in J.F. Dynes et al., Phys. Rev. Lett. 94, 157403 (2005). It is found: the large and controllable NRI with alterable frequency regions is obtained when the coupling laser field and the relative phase are modulated, which will increase the flexibility and possibility of implementing NRI in the SQWs nanostructure. The scheme rooted in the experimental results may lead a new avenue to NRI material in solid-state nanostructure.

11. Thermal oscillatory behavior analysis and dynamic modulation of refractive index in microspherical resonator.

PubMed

Wang, Quanlong; Wang, Yue; Guo, Zhen; Wu, Junfeng; Wu, Yihui

2015-04-01

The thermal nonlinear effects in whispering-gallery-mode resonators are characterized by oscillatory behavior in the transmission spectrum. Although the thermal linewidth broadening is proven to be practical in mode-locking and dynamic control of the optical path, the oscillatory behavior always leads to instability of mode-locking and influences the control accuracy. We theoretically and experimentally illustrate the thermal oscillatory behavior using a model that combines slow and fast thermal relaxation processes of the microsphere and fluctuations of the pump wavelength. We also report dynamic modulation of the refractive index based on the fast thermal relaxation process.

12. Optic-null space medium for cover-up cloaking without any negative refraction index materials

PubMed Central

Sun, Fei; He, Sailing

2016-01-01

With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology. PMID:27383833

13. Highly birefringent suspended-core photonic microcells for refractive-index sensing

SciTech Connect

Wang, Chao; Jin, Wa; Ma, Jun; Jin, Wei Yang, Fan; Ho, Hoi Lut; Liao, Changrui; Wang, Yiping

2014-08-11

An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

14. CdSe/ZnS quantum dots as sensors for the local refractive index

Aubret, Antoine; Pillonnet, Anne; Houel, Julien; Dujardin, Christophe; Kulzer, Florian

2016-01-01

We explore the potential of CdSe/ZnS colloidal quantum dots (QDs) as probes for their immediate dielectric environment, based on the influence of the local refractive index on the fluorescence dynamics of these nanoemitters. We first compare ensembles of quantum dots in homogeneous solutions with single quantum dots dispersed on various dielectric substrates, which allows us to test the viability of a conceptual framework based on a hard-sphere region-of-influence and the Bruggeman effective-medium approach. We find that all our measurements can be integrated into a coherent description, provided that the conceptualized point-dipole emitter is positioned at a distance from the substrate that corresponds to the geometry of the QD. Three theoretical models for the evolution of the fluorescence decay rate as a function of the local refractive index are compared, showing that the classical Lorentz approach (virtual cavity) is the most appropriate for describing the data. Finally, we use the observed sensitivity of the QDs to their environment to estimate the detection limit, expressed as the minimum number of traceable streptavidin molecules, of a potential QD-nanosensor based on fluorescence lifetime.We explore the potential of CdSe/ZnS colloidal quantum dots (QDs) as probes for their immediate dielectric environment, based on the influence of the local refractive index on the fluorescence dynamics of these nanoemitters. We first compare ensembles of quantum dots in homogeneous solutions with single quantum dots dispersed on various dielectric substrates, which allows us to test the viability of a conceptual framework based on a hard-sphere region-of-influence and the Bruggeman effective-medium approach. We find that all our measurements can be integrated into a coherent description, provided that the conceptualized point-dipole emitter is positioned at a distance from the substrate that corresponds to the geometry of the QD. Three theoretical models for the evolution

15. Nonlocal nonlinear refractive index of gold nanoparticles synthesized by ascorbic acid reduction: comparison of fitting models

PubMed Central

Balbuena Ortega, A.; Arroyo Carrasco, M.L.; Méndez Otero, M.M.; Gayou, V.L.; Delgado Macuil, R.; Martínez Gutiérrez, H.; Iturbe Castillo, M.D.

2014-01-01

In this paper, the nonlinear refractive index of colloidal gold nanoparticles under continuous wave illumination is investigated with the z-scan technique. Gold nanoparticles were synthesized using ascorbic acid as reductant, phosphates as stabilizer and cetyltrimethylammonium chloride (CTAC) as surfactant agent. The nanoparticle size was controlled with the CTAC concentration. Experiments changing incident power and sample concentration were done. The experimental z-scan results were fitted with three models: thermal lens, aberrant thermal lens and the nonlocal model. It is shown that the nonlocal model reproduces with exceptionally good agreement; the obtained experimental behaviour. PMID:25705090

16. The generalized Morse wavelet method to determine refractive index dispersion of dielectric films

Kocahan, Özlem; Özcan, Seçkin; Coşkun, Emre; Özder, Serhat

2017-04-01

The continuous wavelet transform (CWT) method is a useful tool for the determination of refractive index dispersion of dielectric films. Mother wavelet selection is an important factor for the accuracy of the results when using CWT. In this study, generalized Morse wavelet (GMW) was proposed as the mother wavelet because of having two degrees of freedom. The simulation studies, based on error calculations and Cauchy Coefficient comparisons, were presented and also the noisy signal was tested by CWT method with GMW. The experimental validity of this method was checked by D263 T schott glass having 100 μm thickness and the results were compared to those from the catalog value.

17. Vertically stacked plasmonic nanoparticles in a circular arrangement: a key to colorimetric refractive index sensing.

PubMed

Seo, Sujin; Gartia, Manas Ranjan; Liu, Gang Logan

2014-10-21

True colorimetric sensing produces a linear spectral response of a single peak within the visible light range with various surrounding media refractive indices. We demonstrate how the circular arrangement of hemispheric silver nanoparticles achieves colorimetric properties without modifying the associated full-width-half-maximum values in a broad range of surrounding media refractive indices. We also show that the vertical out-of-plane arrangement of each circular array in nanoholes enhances the signal-to-noise ratio. High electric field confinement at the interface of the nanoparticles and the supporting substrate reveals the effect of the dielectric constant of the substrate and the morphology of the 3D nanoparticle arrays on achieving a single resonance peak in the visible range with a change in the surrounding refractive index. This study opens up the pathway to top-down fabricated nanostructure platform based plasmonic colorimetric sensing with a single resonance peak in the visible range. The studied rich set of tunable geometrical nanostructures enables broadening of the working optical range of the device.

18. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

SciTech Connect

Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.

2015-02-01

The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.

19. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

SciTech Connect

Prakash, Deo; Shaaban, E.R.; Shapaan, M.; Mohamed, S.H.; Othman, A.A.; Verma, K.D.

2016-08-15

Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

20. Graded-Index Optics are Matched to Optical Geometry in the Superposition Eyes of Scarab Beetles