Sample records for refractive index method

  1. Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.

    2017-12-01

    An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.

  2. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid.

    PubMed

    Niskanen, I; Räty, J; Peiponen, K E

    2013-10-15

    The knowledge of the refractive index of a particle is important in sensing and imaging applications, e.g., in biology, medicine and process industry. The refractive index of tiny solid particles such as microsize particles can be determined by the so-called liquid immersion technique. This study deals with three different types of interrogation methods to get the refractive index of a particle in a liquid matrix. These methods utilize thermo-optical properties and wavelength-dependent refractive index of the particle and the immersion liquids, as well as, the classical method using a set of in advance prepared set of immersion liquids with different refractive indices. The emphasis is on a method to get especially the wavelength-dependent refractive index of microparticles and exploiting different wavelength-dependences of immersion liquid and a solid particle because identification of a particle is more reliable if the refractive index of the particle is known at several wavelengths. In this study glycerol-water mixtures served as immersion liquids to obtain the refractive index of CaF2 at several discrete wavelengths in the spectral range 200-500 nm. The idea is to find the maximum value of light transmission of suspension by scanning the wavelength of a commercial spectrophotometer. The light dispersion-based method is suggested as a relatively easy, economic and fast method to determine the refractive index of a particle by a spectrophotometer at several wavelengths of light. The accuracy of the detection of the refractive index is suggested to be better than ± 0.005 refractive index units. © 2013 Elsevier B.V. All rights reserved.

  3. Nondestructive measurement of the refractive index distribution of a glass molded lens by two-wavelength wavefronts.

    PubMed

    Sugimoto, Tomohiro

    2016-10-01

    This paper presents a nondestructive and non-exact-index-matching method for measuring the refractive index distribution of a glass molded lens with high refractivity. The method measures two-wavelength wavefronts of a test lens immersed in a liquid with a refractive index dispersion different from that of the test lens and calculates the refractive index distribution by eliminating the refractive index distribution error caused by the shape error of the test lens. The estimated uncertainties of the refractive index distributions of test lenses with nd≈1.77 and nd≈1.85 were 1.9×10-5  RMS and 2.4×10-5  RMS, respectively. I validated the proposed method by evaluating the agreement between the estimated uncertainties and experimental values.

  4. Improved retroreflection method for measuring the refractive index of liquids.

    PubMed

    Shao, Duo; Tian, Linghao; Chen, Jingfei; Chen, Xianfeng

    2010-06-01

    We propose a new method for measuring the refractive index of liquids with high precision; the method is based on use of the optical fiber end face. As an example, we investigated the refractive index of sugar solution under varying conditions tens of times. The results show that this method has the advantage of higher stability and repeatability. The concentration and the temperature-dependent refractive index of the sugar solution is also experimentally studied.

  5. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  6. Roughened glass slides and a spectrophotometer for the detection of the wavelength-dependent refractive index of transparent liquids.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Myllylä, Risto; Sutinen, Veijo; Matsuda, Kiyofumi; Homma, Kazuhiro; Silfsten, Pertti; Peiponen, Kai-Erik

    2012-07-01

    We describe a method to determine the wavelength-dependent refractive index of liquids by measurement of light transmittance with a spectrophotometer. The method is based on using roughened glass slides with different a priori known refractive indices and immersing the slides into the transparent liquid with unknown refractive index. Using the dispersion data on the glass material it is possible to find the index match between the liquid and the glass slide, and hence the refractive index of the liquid.

  7. Determination of refractive index, size, and concentration of nonabsorbing colloidal nanoparticles from measurements of the complex effective refractive index.

    PubMed

    Márquez-Islas, Roberto; Sánchez-Pérez, Celia; García-Valenzuela, Augusto

    2014-02-01

    We describe a method for obtaining the refractive index (RI), size, and concentration of nonabsorbing nanoparticles in suspension from relatively simple optical measurements. The method requires measuring the complex effective RI of two dilute suspensions of the particles in liquids of different refractive indices. We describe the theoretical basis of the proposed method and provide experimental results validating the procedure.

  8. Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes.

    PubMed

    Przibilla, Sabine; Dartmann, Sebastian; Vollmer, Angelika; Ketelhut, Steffi; Greve, Burkhard; von Bally, Gert; Kemper, Björn

    2012-09-01

    The intracellular refractive index is an important parameter that describes the optical density of the cytoplasm and the concentration of the intracellular solutes. The refractive index of adherently grown cells is difficult to access. We present a method in which silica microspheres in living cells are used to determine the cytoplasm refractive index with quantitative phase microscopy. The reliability of our approach for refractive index retrieval is shown by data from a comparative study on osmotically stimulated adherent and suspended human pancreatic tumor cells. Results from adherent human fibro sarcoma cells demonstrate the capability of the method for sensing of dynamic refractive index changes and its usage with microfluidics.

  9. Refractive index measurement based on confocal method

    NASA Astrophysics Data System (ADS)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang

    2017-10-01

    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  10. Refractive-index measurement and inverse correction using optical coherence tomography.

    PubMed

    Stritzel, Jenny; Rahlves, Maik; Roth, Bernhard

    2015-12-01

    We describe a novel technique for determination of the refractive index of hard biological tissue as well as nonopaque technical samples based on optical coherence tomography (OCT). Our method relies on an inverse refractive-index correction (I-RIC), which matches a measured feature geometry distorted due to refractive-index boundaries to its real geometry. For known feature geometry, the refractive index can be determined with high precision from the best match between the distorted and corrected images. We provide experimental data for refractive-index measurements on a polymethylmethacrylate (PMMA) and on an ex vivo porcine cranial-bone, which are compared to reference measurements and previously published data. Our method is potentially capable of in vivo measurements on rigid biological tissue such as bone as, for example, is required to improve guidance in robot-aided surgical interventions and also for retrieving complex refractive-index profiles of compound materials.

  11. Database and new models based on a group contribution method to predict the refractive index of ionic liquids.

    PubMed

    Wang, Xinxin; Lu, Xingmei; Zhou, Qing; Zhao, Yongsheng; Li, Xiaoqian; Zhang, Suojiang

    2017-08-02

    Refractive index is one of the important physical properties, which is widely used in separation and purification. In this study, the refractive index data of ILs were collected to establish a comprehensive database, which included about 2138 pieces of data from 1996 to 2014. The Group Contribution-Artificial Neural Network (GC-ANN) model and Group Contribution (GC) method were employed to predict the refractive index of ILs at different temperatures from 283.15 K to 368.15 K. Average absolute relative deviations (AARD) of the GC-ANN model and the GC method were 0.179% and 0.628%, respectively. The results showed that a GC-ANN model provided an effective way to estimate the refractive index of ILs, whereas the GC method was simple and extensive. In summary, both of the models were accurate and efficient approaches for estimating refractive indices of ILs.

  12. Refractive index sensor based on the leaky radiation of a microfiber.

    PubMed

    Gao, F; Liu, H; Sheng, C; Zhu, C; Zhu, S N

    2014-05-19

    In this work we present a refractive index sensor based on the leaky radiation of a microfiber. The 5.3um diameter microfiber is fabricated by drawing a commercial optical fiber. When the microfiber is immersed into a liquid with larger refractive index than the effective index of fiber mode, the light will leak out through the leaky radiation process. The variation of refractive index of liquid can be monitored by measuring radiation angle of light. The refractive index sensitivity can be over 400 degree/RIU in theory. In the experiment, the variation value 0.001 of refractive index of liquid around this microfiber can be detected through this technique. This work provides a simple and sensitive method for refractive index sensing application.

  13. Method of determining effects of heat-induced irregular refractive index on an optical system.

    PubMed

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  14. Methods for prediction of refractive index in glasses for the infrared

    NASA Astrophysics Data System (ADS)

    McCloy, John S.

    2011-06-01

    It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for highend optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple- DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide) glasses will be compared with measured values of index and dispersion.

  15. A method for the detection of the refractive index of irregular shape solid pigments in light absorbing liquid matrix.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2010-06-15

    The immersion liquid method is powerful for the measurement of the refractive index of solid particles in a liquid matrix. However, this method applies best for cases when the liquid matrix is transparent. A problem is usually how to assess the refractive index of a pigment when it is in a colored host liquid. In this article we introduce a method, and show that by combining so-called multifunction spectrophotometer, immersion liquid method and detection of light transmission and reflection we can assess the refractive index of a pigment in a colored liquid, and also the extinction or absorption coefficient of the host liquid.

  16. Improved algorithm of ray tracing in ICF cryogenic targets

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin

    2016-10-01

    The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.

  17. Measuring the Index of Refraction.

    ERIC Educational Resources Information Center

    Phelps, F. M., III; Jacobson, B. S.

    1980-01-01

    Presents two methods for measuring the index of refraction of glass or lucite. These two methods, used in the freshman laboratory, are based on the fact that a ray of light inside a block will be refracted parallel to the surface. (HM)

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidayat, Arif, E-mail: arif.hidayat.fmipa@um.ac.id; Latifah, Eny; Kurniati, Diana

    This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.

  19. Ultraviolet refractometry using field-based light scattering spectroscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  20. Methods for Prediction of Refractive Index in Glasses for the Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.

    It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for high-end optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple-DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide)more » glasses will be compared with measured values of index and dispersion.« less

  1. Photoacoustic measurement of refractive index of dye solutions and myoglobin for biosensing applications

    PubMed Central

    Goldschmidt, Benjamin S.; Mehta, Smit; Mosley, Jeff; Walter, Chris; Whiteside, Paul J. D.; Hunt, Heather K.; Viator, John A.

    2013-01-01

    Current methods of determining the refractive index of chemicals and materials, such as ellipsometry and reflectometry, are limited by their inability to analyze highly absorbing or highly transparent materials, as well as the required prior knowledge of the sample thickness and estimated refractive index. Here, we present a method of determining the refractive index of solutions using the photoacoustic effect. We show that a photoacoustic refractometer can analyze highly absorbing dye samples to within 0.006 refractive index units of a handheld optical refractometer. Further, we use myoglobin, an early non-invasive biomarker for malignant hyperthermia, as a proof of concept that this technique is applicable for use as a medical diagnostic. Comparison of the speed, cost, simplicity, and accuracy of the techniques shows that this photoacoustic method is well-suited for optically complex systems. PMID:24298407

  2. Estimation of effective refractive index of birefringent particles using a combination of the immersion liquid method and light scattering.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2008-04-01

    A method to detect the effective refractive index and concentration of birefringent pigments is suggested. The method is based on the utilization of the immersion liquid method and a multifunction spectrophotometer for the measurement of back scattered light. The method has applications in the measurement of the effective refractive index of pigments that are used, e.g., in the paper industry to improve the opacity of paper products.

  3. A FORTRAN Program for Computing Refractive Index Using the Double Variation Method.

    ERIC Educational Resources Information Center

    Blanchard, Frank N.

    1984-01-01

    Describes a computer program which calculates a best estimate of refractive index and dispersion from a large number of observations using the double variation method of measuring refractive index along with Sellmeier constants of the immersion oils. Program listing with examples will be provided on written request to the author. (Author/JM)

  4. Mixed effects modelling for glass category estimation from glass refractive indices.

    PubMed

    Lucy, David; Zadora, Grzegorz

    2011-10-10

    520 Glass fragments were taken from 105 glass items. Each item was either a container, a window, or glass from an automobile. Each of these three classes of use are defined as glass categories. Refractive indexes were measured both before, and after a programme of re-annealing. Because the refractive index of each fragment could not in itself be observed before and after re-annealing, a model based approach was used to estimate the change in refractive index for each glass category. It was found that less complex estimation methods would be equivalent to the full model, and were subsequently used. The change in refractive index was then used to calculate a measure of the evidential value for each item belonging to each glass category. The distributions of refractive index change were considered for each glass category, and it was found that, possibly due to small samples, members of the normal family would not adequately model the refractive index changes within two of the use types considered here. Two alternative approaches to modelling the change in refractive index were used, one employed more established kernel density estimates, the other a newer approach called log-concave estimation. Either method when applied to the change in refractive index was found to give good estimates of glass category, however, on all performance metrics kernel density estimates were found to be slightly better than log-concave estimates, although the estimates from log-concave estimation prossessed properties which had some qualitative appeal not encapsulated in the selected measures of performance. These results and implications of these two methods of estimating probability densities for glass refractive indexes are discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Refractive index inversion based on Mueller matrix method

    NASA Astrophysics Data System (ADS)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  6. On the Immersion Liquid Evaporation Method Based on the Dynamic Sweep of Magnitude of the Refractive Index of a Binary Liquid Mixture: A Case Study on Determining Mineral Particle Light Dispersion.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2017-07-01

    This is a feasibility study of a modified immersion liquid technique for determining the refractive index of micro-sized particles. The practical challenge of the traditional liquid immersion method is to find or produce a suitable host liquid whose refractive index equals that of a solid particle. Usually, the immersion liquid method uses a set of immersion liquids with different refractive indices or continuously mixes two liquids with different refractive indices, e.g., using a pumping system. Here, the phenomenon of liquid evaporation has been utilized in defining the time-dependent refractive index variation of the host liquid. From the spectral transmittance data measured during the evaporation process, the refractive index of a solid particle in the host liquid can be determined as a function of the wavelength. The method was tested using calcium fluoride (CaF 2 ) particles with an immersion liquid mixed from diethyl ether and diffusion pump fluid. The dispersion data obtained were consistent with the literature values thus indicating the proper functioning of the proposed procedure.

  7. Simulation of imperfections in plastic lenses - transferring local refractive index changes into surface shape modifications

    NASA Astrophysics Data System (ADS)

    Arasa, Josep; Pizarro, Carles; Blanco, Patricia

    2016-06-01

    Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

  8. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

    NASA Astrophysics Data System (ADS)

    McClymer, J. P.

    2016-08-01

    Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

  9. Determination of average refractive index of spin coated DCG films for HOE fabrication

    NASA Technical Reports Server (NTRS)

    Kim, T. J.; Campbell, Eugene W.; Kostuk, Raymond K.

    1993-01-01

    The refractive index of holographic emulsions is an important parameter needed for designing holographic optical elements (HOE's). Theoretical calculations of the accuracy required for the refractive index and thickness of emulsions needed to meet predetermined Bragg angle conditions are presented. A modified interferometric method is used to find average refractive index of the unexposed and the developed dichromated gelatin holographic films. Slanted transmission HOE's are designed considering the index and thickness variations, and used to verify the index measurement results. The Brewster angle method is used to measure surface index of the unexposed and the developed films. The differences between average index and surface index are discussed. Theoretical calculation of the effects of index variation on diffraction efficiency, and experimental results for index modulation variation caused by process changes are also presented.

  10. Quantitative reconstruction of refractive index distribution and imaging of glucose concentration by using diffusing light.

    PubMed

    Liang, Xiaoping; Zhang, Qizhi; Jiang, Huabei

    2006-11-10

    We show that a two-step reconstruction method can be adapted to improve the quantitative accuracy of the refractive index reconstruction in phase-contrast diffuse optical tomography (PCDOT). We also describe the possibility of imaging tissue glucose concentration with PCDOT. In this two-step method, we first use our existing finite-element reconstruction algorithm to recover the position and shape of a target. We then use the position and size of the target as a priori information to reconstruct a single value of the refractive index within the target and background regions using a region reconstruction method. Due to the extremely low contrast available in the refractive index reconstruction, we incorporate a data normalization scheme into the two-step reconstruction to combat the associated low signal-to-noise ratio. Through a series of phantom experiments we find that this two-step reconstruction method can considerably improve the quantitative accuracy of the refractive index reconstruction. The results show that the relative error of the reconstructed refractive index is reduced from 20% to within 1.5%. We also demonstrate the possibility of PCDOT for recovering glucose concentration using these phantom experiments.

  11. New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region.

    PubMed

    Ohno, Seigo; Miyamoto, Katsuhiko; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5-26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was approximately 2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.

  12. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  13. Non-uniform refractive index field measurement based on light field imaging technique

    NASA Astrophysics Data System (ADS)

    Du, Xiaokun; Zhang, Yumin; Zhou, Mengjie; Xu, Dong

    2018-02-01

    In this paper, a method for measuring the non-uniform refractive index field based on the light field imaging technique is proposed. First, the light field camera is used to collect the four-dimensional light field data, and then the light field data is decoded according to the light field imaging principle to obtain image sequences with different acquisition angles of the refractive index field. Subsequently PIV (Particle Image Velocimetry) technique is used to extract ray offset of each image. Finally, the distribution of non-uniform refractive index field can be calculated by inversing the deflection of light rays. Compared with traditional optical methods which require multiple optical detectors from multiple angles to synchronously collect data, the method proposed in this paper only needs a light field camera and shoot once. The effectiveness of the method has been verified by the experiment which quantitatively measures the distribution of the refractive index field above the flame of the alcohol lamp.

  14. Refractive index measurements in absorbing media with white light spectral interferometry.

    PubMed

    Arosa, Yago; Lago, Elena López; de la Fuente, Raúl

    2018-03-19

    White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.

  15. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi; Tarvainen, T.; Department of Computer Science, University College London, Gower Street, London WC1E 6BT

    2015-02-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena onmore » the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.« less

  16. Measurement of Refractive Index Using a Michelson Interferometer.

    ERIC Educational Resources Information Center

    Fendley, J. J.

    1982-01-01

    Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

  17. String and Sticky Tape Experiments: Refractive Index of Liquids.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1979-01-01

    Describes a simple method of measuring the refractive index of a liquid using a paper cup, a liquid, a pencil, and a ruler. Uses the ratio between the actual depth and the apparent depth of the cup to calculate the refractive index. (GA)

  18. Refractive index dependence of L3 photonic crystal nano-cavities.

    PubMed

    Adawi, A M; Chalcraft, A R; Whittaker, D M; Lidzey, D G

    2007-10-29

    We model the optical properties of L3 photonic crystal nano-cavities as a function of the photonic crystal membrane refractive index n using a guided mode expansion method. Band structure calculations revealed that a TE-like full band-gap exists for materials of refractive index as low as 1.6. The Q-factor of such cavities showed a super-linear increase with refractive index. By adjusting the relative position of the cavity side holes, the Q-factor was optimised as a function of the photonic crystal membrane refractive index n over the range 1.6 to 3.4. Q-factors in the range 3000-8000 were predicted from absorption free materials in the visible range with refractive index between 2.45 and 2.8.

  19. A single-image method for x-ray refractive index CT.

    PubMed

    Mittone, A; Gasilov, S; Brun, E; Bravin, A; Coan, P

    2015-05-07

    X-ray refraction-based computer tomography imaging is a well-established method for nondestructive investigations of various objects. In order to perform the 3D reconstruction of the index of refraction, two or more raw computed tomography phase-contrast images are usually acquired and combined to retrieve the refraction map (i.e. differential phase) signal within the sample. We suggest an approximate method to extract the refraction signal, which uses a single raw phase-contrast image. This method, here applied to analyzer-based phase-contrast imaging, is employed to retrieve the index of refraction map of a biological sample. The achieved accuracy in distinguishing the different tissues is comparable with the non-approximated approach. The suggested procedure can be used for precise refraction computer tomography with the advantage of a reduction of at least a factor of two of both the acquisition time and the dose delivered to the sample with respect to any of the other algorithms in the literature.

  20. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, Richard J.

    1985-01-01

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  1. Formation of bulk refractive index structures

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  2. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

    NASA Astrophysics Data System (ADS)

    Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

    2007-05-01

    Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

  3. Nonscanning Moiré deflectometry for measurement of nonlinear refractive index and absorption coefficient of liquids.

    PubMed

    Farahani, Shahrzad Shahrabi; Madanipour, Khosro; Koohian, Ata

    2017-05-01

    In this work, a nonscanning measurement technique is presented for determining the nonlinear refractive index and absorption coefficient of liquid media based on Moiré deflectometry. In the proposed method two lasers are used: a low power, wide beam as probe and a high power with specific wavelength as a pump. Interaction of the pump laser beam with the nonlinear sample changes the refractive index, which leads to change in convergence/divergence of the collimated incident probe laser beam. The induced deflection is monitored by Moiré deflectometry. If the pump laser has a Gaussian intensity profile, the refractive index profile of the sample is Gaussian, too. Measuring the deflection angle of the probe beam by Moiré fringes deflection, and by using the inverse Abel transform integral, the refractive index profile and nonlinear refractive index can be determined. This method is fast, easy, and insensitive to environmental noise and allows real-time measurement. Also, the refractive index profile of the interacted medium with pump laser can be achieved by this technique. As a liquid sample, a DCJ dye in water solution was studied. The value of nonlinear refractive index, n2, and absorption coefficient, α, were obtained -2.54×10-4  cm2 w-1 and 1.368  cm-1, respectively.

  4. Method of determining dispersion dependence of refractive index of nanospheres building opals

    NASA Astrophysics Data System (ADS)

    Kępińska, Mirosława; Starczewska, Anna; Duka, Piotr

    2017-11-01

    The method of determining dispersion dependence of refractive index of nanospheres building opals is presented. In this method basing on angular dependences of the spectral positions of Bragg diffraction minima on transmission spectra for opal series of known spheres diameter, the spectrum of effective refractive index for opals and then refractive index for material building opal's spheres is determined. The described procedure is used for determination of neff(λ) for opals and nsph(λ) for material which spheres building investigated opals are made of. The obtained results are compared with literature data of nSiO2(λ) considered in the analysis and interpretation of extremes related to the light diffraction at (hkl) SiO2 opal planes.

  5. Polymer microfiber bridging Bi-tapered refractive index sensor based on evanescent field

    NASA Astrophysics Data System (ADS)

    Lv, Ri-Qing; Wang, Qi; Wang, Bo-Tao; Liu, Yu; Kong, Lingxin

    2018-05-01

    A PDMS/graphene enhanced PMMA micro optical waveguide sensor is reported in terms of fabrication method and optical characteristics. The micro optical waveguide with a diameter of 6 μm and a length of 800 μm is used as the sensing probe to realize refractive index (RI) measurement suspended in NaCl solutions with different concentrations. Experimental results show that the refractive index sensing sensitivity can reach 2027.97 nm/RIU within the refractive index ranging from 1.3333-1.3426. Research results show that PMMA/graphene micro optical waveguide doped with PDMS is an excellent high sensitive sensing technology in refractive index detection field.

  6. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An

    2016-03-01

    A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.

  7. Quality control analytical methods: refractive index.

    PubMed

    Allen, Loyd V

    2015-01-01

    There are numerous analytical methods that can be utilized in a compounding pharmacy for a quality-assurance program. Since the index of refraction of a liquid/solution is a physical constant, it can be used to assist in identification of a substance, establish its purity, and, in some instances, to determine the concentration of an analyte in solution. This article serves as an introduction to refractive index and some applications of its use in a compounding program.

  8. A Simple Method to Determine the Refractive Index of Glass.

    ERIC Educational Resources Information Center

    Mak, Se-yuen

    1988-01-01

    Describes an experiment for determining the refractive index. Discusses the experiment procedure and mathematical expression for calculating the index. Provides two geometrical diagrams and a graph for determining the index with a typical data. (YP)

  9. Group refractive index quantification using a Fourier domain short coherence Sagnac interferometer.

    PubMed

    Montonen, Risto; Kassamakov, Ivan; Lehmann, Peter; Österberg, Kenneth; Hæggström, Edward

    2018-02-15

    The group refractive index is important in length calibration of Fourier domain interferometers by transparent transfer standards. We demonstrate accurate group refractive index quantification using a Fourier domain short coherence Sagnac interferometer. Because of a justified linear length calibration function, the calibration constants cancel out in the evaluation of the group refractive index, which is then obtained accurately from two uncalibrated lengths. Measurements of two standard thickness coverslips revealed group indices of 1.5426±0.0042 and 1.5434±0.0046, with accuracies quoted at the 95% confidence level. This agreed with the dispersion data of the coverslip manufacturer and therefore validates our method. Our method provides a sample specific and accurate group refractive index quantification using the same Fourier domain interferometer that is to be calibrated for the length. This reduces significantly the requirements of the calibration transfer standard.

  10. Homodyne chiral polarimetry for measuring thermo-optic refractive index variations.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2015-10-10

    Novel reflection-type homodyne chiral polarimetry is proposed for measuring the refractive index variations of a transparent plate under thermal impact. The experimental results show it is a simple and useful method for providing accurate measurements of refractive index variations. The measurement can reach a resolution of 7×10-5.

  11. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, R.J.

    1982-07-29

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  12. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  13. Measurement of the refractive index of hemoglobin solutions for a continuous spectral region

    PubMed Central

    Wang, Jin; Deng, Zhichao; Wang, Xiaowan; Ye, Qing; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2015-01-01

    Determination of the refractive index of hemoglobin solutions over a wide wavelength range remains challenging. A famous detour approach is the Kramers-Kronig (KK) analysis which can resolve the real part of complex refractive index from the imaginary part. However, KK analysis is limited by the contradiction between the requirement of semi-infinite frequency range and limited measured range. In this paper, based on the Multi-curve fitting method (MFM), continuous refractive index dispersion (CRID) of oxygenated and deoxygenated hemoglobin solutions are measured using a homemade symmetrical arm-linked apparatus in the continuous wavelength range with spectral resolution of about 0.259nm. A novel method to obtain the CRID is proposed. PMID:26203379

  14. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    PubMed

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  15. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    PubMed Central

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-01-01

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607

  16. Refractive index measurements of single, spherical cells using digital holographic microscopy.

    PubMed

    Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen

    2015-01-01

    In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Gradient polymer network liquid crystal with a large refractive index change.

    PubMed

    Ren, Hongwen; Xu, Su; Wu, Shin-Tson

    2012-11-19

    A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.

  18. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities.

    PubMed

    Zhang, Xingwang; Zhou, Guangya; Shi, Peng; Du, Han; Lin, Tong; Teng, Jinghua; Chau, Fook Siong

    2016-03-15

    Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.

  19. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  20. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    PubMed

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  1. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    NASA Astrophysics Data System (ADS)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  2. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  3. Refractive-index profile and physical process determination in thick gratings in electrooptic crystals

    NASA Technical Reports Server (NTRS)

    Su, S. F.; Gaylord, T. K.

    1976-01-01

    A method for determining the refractive index profile of thick phase gratings in linear electrooptic crystals is presented. This method also determines the effective photovoltaic electric field and the relative contributions of diffusion and drift during hologram recording. The method requires only a knowledge of the modulation ratio during hologram recording and the fundamental and the higher-order diffraction efficiencies of the grating. As an illustration of the method, the refractive index profile, the effective photovoltaic field, and the relative contributions of diffusion and drift are determined from experimental measurements for a lithium niobate holographic grating.

  4. A Simple Accurate Alternative to the Minimum-Deviation Method for the Determination of the Refractive Index of a Prism.

    ERIC Educational Resources Information Center

    Waldenstrom, S.; Naqvi, K. Razi

    1978-01-01

    Proposes an alternative to the classical minimum-deviation method for determining the refractive index of a prism. This new "fixed angle of incidence method" may find applications in research. (Author/GA)

  5. Cell refractive index for cell biology and disease diagnosis: past, present and future.

    PubMed

    Liu, P Y; Chin, L K; Ser, W; Chen, H F; Hsieh, C-M; Lee, C-H; Sung, K-B; Ayi, T C; Yap, P H; Liedberg, B; Wang, K; Bourouina, T; Leprince-Wang, Y

    2016-02-21

    Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.

  6. Phase and group refractive indices of air calculation by fitting of phase difference measured using a combination of laser and low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Pikálek, Tomáš; Šarbort, Martin; Číp, Ondřej; Pham, Minh Tuan; Lešundák, Adam; Pravdová, Lenka; Buchta, Zdeněk.

    2017-06-01

    The air refractive index is an important parameter in interferometric length measurements, since it substantially affects the measurement accuracy. We present a refractive index of air measurement method based on monitoring the phase difference between the ambient air and vacuum inside a permanently evacuated double-spaced cell. The cell is placed in one arm of the Michelson interferometer equipped with two light sources—red LED and HeNe laser, while the low-coherence and laser interference signals are measured separately. Both phase and group refractive indices of air can be calculated from the measured signals. The method was experimentally verified by comparing the obtained refractive index values with two different techniques.

  7. Measurement method for the refractive index of thick solid and liquid layers.

    PubMed

    Santić, Branko; Gracin, Davor; Juraić, Krunoslav

    2009-08-01

    A simple method is proposed for the refractive index measurement of thick solid and liquid layers. In contrast to interferometric methods, no mirrors are used, and the experimental setup is undemanding and simple. The method is based on the variation of transmission caused by optical interference within the layer as a function of incidence angle. A new equation is derived for the positions of the interference extrema versus incidence angle. Scattering at the surfaces and within the sample, as well as weak absorption, do not play important roles. The method is illustrated by the refractive index measurements of sapphire, window glass, and water.

  8. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  9. Nonintrusive measurement of the liquid refractive index by using properties of the cuvette wall.

    PubMed

    Xu, Ming; Ren, Junpeng; Miao, Runcai; Zhang, Zongquan

    2016-10-01

    We present a method of nonintrusive measurement of the refractive index of a liquid in a glass cuvette, which uses some optical properties of the cuvette wall and the principle of total internal reflection. By coating a transmission-scattering paint layer on the outer surface of the cuvette, we transform an incident laser beam into a transmitted scattered light. When the transmitted scattered light reaches the interface between the container wall and the liquid inside, the light beams satisfying the condition of total internal reflection are reflected to the coating layer, automatically forming a circular dark pattern that is related to the refractive index of the liquid. Based on an analytic relation between the diameter of the circular dark pattern and the refractive index of the liquid, we devised a method of in situ nonintrusive refractive index measurement. We tested the effect of several parameters on the measuring accuracy and found that the optimal thickness of the transmission-scattering layer is in the range of 50-70 μm, and the aperture of the diaphragm should be in the range of 0.7-1.0 mm. We measured the refractive indices of ethanol, Coca Cola, and red wine, and achieved an accuracy of ±3×10-4  RIU (refractive index unit).

  10. Refractive index measurement for biomaterial samples by total internal reflection.

    PubMed

    Jin, Y L; Chen, J Y; Xu, L; Wang, P N

    2006-10-21

    The refractive index of biological tissue is a fundamental parameter in applications of optical diagnosis and laser treatments. In the present work, the refractive indices and thermo-optic coefficients of some basic biomaterials, such as blood plasma, haemoglobin solution and lipid membrane, were studied by the method of total internal reflection at the wavelengths of 532 and 632.8 nm that are the most frequently used laser wavelengths in the biomedical field. The effects of the sample concentration and the temperature on refractive index were measured, and empirical relationships were summarized, accompanied by a theoretical explanation based on molecular polarization theory. The results provide some fundamental data for the refractive indices of these biomaterials under variant conditions, and also demonstrate that the total internal reflection method is a feasible and reliable way to measure the refractive indices of biological samples.

  11. Determination of the refractive index of dehydrated cells by means of digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Zhikhoreva, A. A.; Bespalov, V. G.; Vasyutinskii, O. S.; Zhilinskaya, N. T.; Novik, V. I.; Semenova, I. V.

    2017-10-01

    Spatial distributions of the integral refractive index in dehydrated cells of human oral cavity epithelium are obtained by means of digital holographic microscopy, and mean refractive index of the cells is determined. The statistical analysis of the data obtained is carried out, and absolute errors of the method are estimated for different experimental conditions.

  12. Analysis of interferograms of refractive index inhomogeneities produced in optical materials

    NASA Astrophysics Data System (ADS)

    Tarjányi, N.

    2014-12-01

    Optical homogeneity of materials intended for optical applications is one of the criterions which decide on an appropriate application method for the material. The existence of a refractive index inhomogeneity inside a material may disqualify it from utilization or by contrary, provide an advantage. For observation of a refractive index inhomogeneity, even a weak one, it is convenient to use any of interferometric methods. They are very sensitive and provide information on spatial distribution of the refractive index, immediately. One can use them also in case when the inhomogeneity evolves in time, usually due to action of some external fields. Then, the stream of interferograms provides a dynamic evolution of a spatial distribution of the inhomogeneity. In the contribution, there are presented results of the analysis of interferograms obtained by observing the creation of a refractive index inhomogeneity due to illumination of thin layers of a polyvinyl-alcohol/acrylamide photopolymer and a plate of photorefractive crystal, lithium niobate, by light and a refractive index inhomogeneity originated at the boundary of two layers of polydimethylsiloxane. The obtained dependences can be used for studying of the mechanisms responsible for the inhomogeneity creation, designing various technical applications or for diagnostics of fabricated components.

  13. Influence of stromal refractive index and hydration on corneal laser refractive surgery.

    PubMed

    de Ortueta, Diego; von Rüden, Dennis; Magnago, Thomas; Arba Mosquera, Samuel

    2014-06-01

    To evaluate the influence of the stromal refractive index and hydration on postoperative outcomes in eyes that had corneal laser refractive surgery using the Amaris laser system. Augenzentrum Recklinghausen, Recklinghausen, Germany. Comparative case series. At the 6-month follow-up, right eyes were retrospectively analyzed. The effect of the stromal refractive index and hydration on refractive outcomes was assessed using univariate linear and multilinear correlations. Sixty eyes were analyzed. Univariate linear analyses showed that the stromal refractive index and hydration were correlated with the thickness of the preoperative exposed stroma and was statistically different for laser in situ keratomileusis and laser-assisted subepithelial keratectomy treatments. Univariate multilinear analyses showed that the spherical equivalent (SE) was correlated with the attempted SE and stromal refractive index (or hydration). Analyses suggest overcorrections for higher stromal refractive index values and for lower hydration values. The stromal refractive index and hydration affected postoperative outcomes in a subtle, yet significant manner. An adjustment toward greater attempted correction in highly hydrated corneas and less intended correction in low hydrated corneas might help optimize refractive outcomes. Mr. Magnago and Dr. Arba-Mosquera are employees of and Dr. Diego de Ortueta is a consultant to Schwind eye-tech-solutions GmbH & Co. KG. Mr. Rüden has no financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Fabrication of refractive index distributions in polymer using a photochemical reaction

    NASA Astrophysics Data System (ADS)

    Kada, Takeshi; Obara, Atsushi; Watanabe, Toshiyuki; Miyata, Seizo; Liang, Chuan Xin; Machida, Hideaki; Kiso, Koichi

    2000-01-01

    We demonstrate that a photochemical reaction can create various distributions of refractive index in polymer. When the polymer containing a photochemically active material is irradiated by UV light, the photochemical reaction which breaks the π-conjugated system in the material and decreases its linear polarizability can reduce refractive index of the polymer. We prepared a PMMA film added DMAPN ((4-N,N-dimethylaminophenyl)-N'-phenylnitrone) with a rate of 23 wt % by use of spin coating. Electronic structural change of DMAPN and refractive indices of the film before and after UV irradiation were evaluated by UV absorption spectra and m-line method, respectively. The UV irradiation decreased λmax at 380 nm in the absorption spectra, which is attributed to nitrone, and the refractive indices exponentially with irradiation time. The change of refractive indices reached 0.028. The refractive index profile upon depth of the film was investigated by measuring refractive indices of stacked DMAPN/PMMA films. When UV with a power of 10.7 mW/cm2 irradiated upon three stacked DMAPN/PMMA films for 35 s, variation of the refractive index change showed a quadratic profile. The refractive index profile with various irradiation time can be accounted with the combination of the chemical kinetics with the steady state approximation and Lambert-Beer's law. Thus, the photochemical reaction can be used to control the refractive index distribution in polymer.

  15. Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation.

    PubMed

    Bahrami, Mehdi; Hoshino, Masato; Pierscionek, Barbara; Yagi, Naoto; Regini, Justyn; Uesugi, Kentaro

    2015-11-01

    A major structure/function relationship in the eye lens is that between the constituent proteins, the crystallins and the optical property of refractive index. Structural breakdown that leads to cataract has been investigated in a number of studies; the concomitant changes in the optics, namely increases in light attenuation have also been well documented. Specific changes in the refractive index gradient that cause such attenuation, however, are not well studied because previous methods of measuring refractive index require transparent samples. The X-ray Talbot interferometric method using synchrotron radiation allows for measurement of fine changes in refractive index through lenses with opacities. The findings of this study on older human lenses show disruptions to the refractive index gradient and in the refractive index contours. These disruptions are linked to location in the lens and occur in polar regions, along or close to the equatorial plane or in lamellar-like formations. The disruptions that are seen in the polar regions manifest branching formations that alter with progression through the lens with some similarity to lens sutures. This study shows how the refractive index gradient, which is needed to maintain image quality of the eye, may be disturbed and that this can occur in a number of distinct ways. These findings offer insight into functional changes to a major optical parameter in older lenses. Further studies are needed to elicit how these may be related to structural degenerations reported in the literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Surface plasmon resonance optical cavity enhanced refractive index sensing.

    PubMed

    Giorgini, A; Avino, S; Malara, P; Gagliardi, G; Casalino, M; Coppola, G; Iodice, M; Adam, P; Chadt, K; Homola, J; De Natale, P

    2013-06-01

    We report on a method for surface plasmon resonance (SPR) refractive index sensing based on direct time-domain measurements. An optical resonator is built around an SPR sensor, and its photon lifetime is measured as a function of loss induced by refractive index variations. The method does not rely on any spectroscopic analysis or direct intensity measurement. Time-domain measurements are practically immune to light intensity fluctuations and thus lead to high resolution. A proof of concept experiment is carried out in which a sensor response to liquid samples of different refractive indices is measured. A refractive index resolution of the current system, extrapolated from the reproducibility of cavity-decay time determinations over 133 s, is found to be about 10(-5) RIU. The possibility of long-term averaging suggests that measurements with a resolution better than 10(-7) RIU/√Hz are within reach.

  17. Inverse Abbe-method for observing small refractive index changes in liquids.

    PubMed

    Räty, Jukka; Peiponen, Kai-Erik

    2015-05-01

    This study concerns an optical method for the detection of minuscule refractive index changes in the liquid phase. The proposed method reverses the operation of the traditional Abbe refractometer and thus utilizes the light dispersion properties of materials, i.e. it involves the dependence of the refractive index on light wavelength. In practice, the method includes the detection of light reflection spectra in the visible spectral range. This inverse Abbe method is suitable for liquid quality studies e.g. for monitoring water purity. Tests have shown that the method reveals less than per mil NaCl or ethanol concentrations in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Laser interferometry of the hydrolytic changes in protein solutions: the refractive index and hydration shells.

    PubMed

    Sarimov, R M; Matveyeva, T A; Binhi, V N

    2018-05-11

    Using an original laser interferometer of enhanced sensitivity, an increase in the refractive index of a protein solution was observed during the reaction of proteolysis catalyzed by pepsin. The increase in the refractive index of the protein solution at a concentration of 4 mg/ml was [Formula: see text] for bovine serum albumin and [Formula: see text] for lysozyme. The observed effect disproves the existing idea that the refractive index of protein solutions is determined only by their amino acid composition and concentration. It is shown that the refractive index also depends on the state of protein fragmentation. A mathematical model of proteolysis and a real-time method for estimating the state of protein hydration based on the measurement of refractive index during the reaction are proposed. A good agreement between the experimental and calculated time dependences of the refractive index shows that the growth of the surface of protein fragments and the change in the number of hydration cavities during proteolysis can be responsible for the observed effect.

  19. Manufacturing method of photonic crystal

    DOEpatents

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  20. Numerical method for high accuracy index of refraction estimation for spectro-angular surface plasmon resonance systems.

    PubMed

    Alleyne, Colin J; Kirk, Andrew G; Chien, Wei-Yin; Charette, Paul G

    2008-11-24

    An eigenvector analysis based algorithm is presented for estimating refractive index changes from 2-D reflectance/dispersion images obtained with spectro-angular surface plasmon resonance systems. High resolution over a large dynamic range can be achieved simultaneously. The method performs well in simulations with noisy data maintaining an error of less than 10(-8) refractive index units with up to six bits of noise on 16 bit quantized image data. Experimental measurements show that the method results in a much higher signal to noise ratio than the standard 1-D weighted centroid dip finding algorithm.

  1. High-refractive index of acrylate embedding resin clarifies mouse brain tissue

    NASA Astrophysics Data System (ADS)

    Zhou, Hongfu; Xiong, Yumiao; Wang, Yu; Wang, Xiaojun; Li, Pei; Gang, Yadong; Liu, Xiuli; Zeng, Shaoqun

    2017-11-01

    Biological tissue transparency combined with light-sheet fluorescence microscopy is a useful method for studying the neural structure of biological tissues. The development of light-sheet fluorescence microscopy also promotes progress in biological tissue clearing methods. The current clarifying methods mostly use liquid reagent to denature protein or remove lipids first, to eliminate or reduce the scattering index or refractive index of the biological tissue. However, denaturing protein and removing lipids require complex procedures or an extended time period. Therefore, here we have developed acrylate resin with a high refractive index, which causes clearing of biological tissue directly after polymerization. This method can improve endogenous fluorescence retention by adjusting the pH value of the resin monomer.

  2. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    NASA Astrophysics Data System (ADS)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  3. Method of producing optical quality glass having a selected refractive index

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2000-01-01

    Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.

  4. Theoretical study of polarization dependence of carrier-induced refractive index change of quantum dot.

    PubMed

    Miao, Qingyuan; Yang, Ziyi; Dong, Jianji; He, Ping-An; Huang, Dexiu

    2018-02-05

    The influences of dot material component, barrier material component, aspect ratio and carrier density on the refractive index changes of TE mode and TM mode of columnar quantum dot are analyzed, and a multiparameter adjustment method is proposed to realize low polarization dependence of refractive index change. Then the quantum dots with low polarization dependence of refractive index change (<1.5%) within C-band (1530 nm - 1565 nm) are designed, and it shows that quantum dots with different material parameters are anticipated to have similar characteristics of low polarization dependence.

  5. Average value of the shape and direction factor in the equation of refractive index

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    2017-10-01

    The theoretical calculation of the refractive indices is of great significance for the developments of new optical materials. The calculation method of refractive index, which was deduced from the electron-cloud-conductor model, contains the shape and direction factor 〈g〉. 〈g〉 affects the electromagnetic-induction energy absorbed by the electron clouds, thereby influencing the refractive indices. It is not yet known how to calculate 〈g〉 value of non-spherical electron clouds. In this paper, 〈g〉 value is derived by imaginatively dividing the electron cloud into numerous little volume elements and then regrouping them. This paper proves that 〈g〉 = 2/3 when molecules’ spatial orientations distribute randomly. The calculations of the refractive indices of several substances validate this equation. This result will help to promote the application of the calculation method of refractive index.

  6. Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry

    DOE PAGES

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...

    2016-08-27

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  7. Determination of effective complex refractive index of a turbid liquid with surface plasmon resonance phase detection.

    PubMed

    Yingying, Zhang; Jiancheng, Lai; Cheng, Yin; Zhenhua, Li

    2009-03-01

    The dependence of the surface plasmon resonance (SPR) phase difference curve on the complex refractive index of a sample in Kretschmann configuration is discussed comprehensively, based on which a new method is proposed to measure the complex refractive index of turbid liquid. A corresponding experiment setup was constructed to measure the SPR phase difference curve, and the complex refractive index of turbid liquid was determined. By using the setup, the complex refractive indices of Intralipid solutions with concentrations of 5%, 10%, 15%, and 20% are obtained to be 1.3377+0.0005 i, 1.3427+0.0028 i, 1.3476+0.0034 i, and 1.3496+0.0038 i, respectively. Furthermore, the error analysis indicates that the root-mean-square errors of both the real and the imaginary parts of the measured complex refractive index are less than 5x10(-5).

  8. Extinction spectra of suspensions of microspheres: determination of the spectral refractive index and particle size distribution with nanometer accuracy.

    PubMed

    Gienger, Jonas; Bär, Markus; Neukammer, Jörg

    2018-01-10

    A method is presented to infer simultaneously the wavelength-dependent real refractive index (RI) of the material of microspheres and their size distribution from extinction measurements of particle suspensions. To derive the averaged spectral optical extinction cross section of the microspheres from such ensemble measurements, we determined the particle concentration by flow cytometry to an accuracy of typically 2% and adjusted the particle concentration to ensure that perturbations due to multiple scattering are negligible. For analysis of the extinction spectra, we employ Mie theory, a series-expansion representation of the refractive index and nonlinear numerical optimization. In contrast to other approaches, our method offers the advantage to simultaneously determine size, size distribution, and spectral refractive index of ensembles of microparticles including uncertainty estimation.

  9. Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement.

    PubMed

    Phan Huy, Minh Châu; Laffont, Guillaume; Dewynter, Véronique; Ferdinand, Pierre; Labonté, Laurent; Pagnoux, Dominique; Roy, Philippe; Blanc, Wilfried; Dussardier, Bernard

    2006-10-30

    We report what we believe to be the first Tilted short-period Fiber Bragg Grating photowritten in a microstructured optical fiber for refractive index measurement. We investigate the spectral sensitivity of Tilted Fiber Bragg Grating to refractive index liquid inserted into the holes of a multimode microstructured fiber. We measure the wavelength shift of the first four modes experimentally observed when calibrated oils are inserted into the fiber holes, and thus we determine the refractive index resolution for each of these modes. Moreover, a cross comparison between experimental and simulation results of a modal analysis is performed. Two simulation tools are used, respectively based on the localized functions method and on a finite element method. All results are in very good agreement.

  10. Groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Feng, Xinxing; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-07-01

    A groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance (SPR) is proposed and analyzed by the finite element method (FEM). Numerical results show that the average sensitivity is 15,933 nm/refractive index unit (RIU) with the refractive index of analyte ranging from 1.40 to 1.43 and the maximum sensitivity is 28,600 nm/RIU and the resolution of the sensor is 3.50 × 10-8 RIU. The groove micro-structure optical fiber refractive index sensor do some changes on the D-shaped fiber sensor, compared with conventional D-shaped fiber sensor, it has a higher sensitivity and it is easier to produce than the traditional SPR sensor.

  11. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  12. Stochastic digital holography for visualizing inside strongly refracting transparent objects.

    PubMed

    Desse, Jean-Michel; Picart, Pascal

    2015-01-01

    This paper presents a digital holographic method to visualize and measure refractive index variations, convection currents, or thermal gradients, occurring inside a transparent and refracting object. The proof of principle is provided through the visualization of refractive index variation inside a lighting bulb. Comparison with transmission and reflection holography is also provided. A very good agreement is obtained, thus validating the proposed approach.

  13. A new method of measuring lens refractive index.

    PubMed

    Buckley, John

    2008-07-01

    A new clinical method for determining the refractive index of a lens is described. By measuring lens power in air and then immersing the lens in a liquid of known refractive index (n), it is possible to calculate the refractive index of the lens material (micro) by using the formula: micro = (nK (v,1) - K(v,n))/(K (v,1) - K (v,n)) where K (v,1) is the lens power determined in air K (v,n) is the lens power determined in the immersion liquid. The only materials required are a digital lensmeter and a wet cell for holding the lens in a liquid. The theoretical basis of the method is explained and a description given of the limitations. The optimal method of measuring different types of lenses is discussed. Sources of error include the thin lens theory behind the method, the use of a wetcell and the digital lensmeter. The theoretical accuracy of the results is given as 0.02 but 0.01 is usually achieved. In all cases, measuring the front vertex powers (FVP) yields a more accurate estimate of refractive index of a lens than measuring back vertex power (BVP). The author found half the lenses measured attained values within 0.005 of the known material index. This method is usually sufficiently accurate to isolate which lens material has been used in manufacturing and permit manufacturing spectacles that mimic the appearance of an earlier pair. Some suggestions for further refinement are given.

  14. Comparison of Methods for Predicting the Compositional Dependence of the Density and Refractive Index of Organic-Aqueous Aerosols.

    PubMed

    Cai, Chen; Miles, Rachael E H; Cotterell, Michael I; Marsh, Aleksandra; Rovelli, Grazia; Rickards, Andrew M J; Zhang, Yun-Hong; Reid, Jonathan P

    2016-08-25

    Representing the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of aqueous-organic aerosol with a particular focus on the dependence of these properties on relative humidity and water content, including an examination of the properties of solution aerosol droplets existing at supersaturated solute concentrations. Using bulk phase measurements of density and refractive index for typical organic aerosol components, we provide robust approaches for the estimation of these properties for aerosol at any intermediate composition between pure water and pure solute. Approximately 70 compounds are considered, including mono-, di- and tricarboxylic acids, alcohols, diols, nitriles, sulfoxides, amides, ethers, sugars, amino acids, aminium sulfates, and polyols. We conclude that the molar refraction mixing rule should be used to predict the refractive index of the solution using a density treatment that assumes ideal mixing or, preferably, a polynomial dependence on the square root of the mass fraction of solute, depending on the solubility limit of the organic component. Although the uncertainties in the density and refractive index predictions depend on the range of subsaturated compositional data available for each compound, typical errors for estimating the solution density and refractive index are less than ±0.1% and ±0.05%, respectively. Owing to the direct connection between molar refraction and the molecular polarizability, along with the availability of group contribution models for predicting molecular polarizability for organic species, our rigorous testing of the molar refraction mixing rule provides a route to predicting refractive indices for aqueous solutions containing organic molecules of arbitrary structure.

  15. Comparable change in stromal refractive index of cat and human corneas following blue-IRIS.

    PubMed

    Wozniak, Kaitlin T; Gearhart, Sara M; Savage, Daniel E; Ellis, Jonathan D; Knox, Wayne H; Huxlin, Krystel R

    2017-05-01

    Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ? 300 ?? ? m below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ? 1 ?? ? m wide, spaced 5 ?? ? m apart, using a scan speed of 5 ?? mm / s . Additional cat corneas were used to test writing at 3 and 7 ?? mm / s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.

  16. Comparable change in stromal refractive index of cat and human corneas following blue-IRIS

    NASA Astrophysics Data System (ADS)

    Wozniak, Kaitlin T.; Gearhart, Sara M.; Savage, Daniel E.; Ellis, Jonathan D.; Knox, Wayne H.; Huxlin, Krystel R.

    2017-05-01

    Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ˜300 μm below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ˜1 μm wide, spaced 5 μm apart, using a scan speed of 5 mm/s. Additional cat corneas were used to test writing at 3 and 7 mm/s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.

  17. Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence

    PubMed Central

    Zhang, Hui; Ma, Yaoguang; Wan, Yi; Rong, Xin; Xie, Ziang; Wang, Wei; Dai, Lun

    2015-01-01

    Monolayer molybdenum disulphide (MoS2) has attracted much attention, due to its attractive properties, such as two-dimensional properties, direct bandgap, valley-selective circular dichroism, and valley Hall effect. However, some of its fundamental physical parameters, e.g. refractive index, have not been studied in detail because of measurement difficulties. In this work, we have synthesized highly crystalline monolayer MoS2 on SiO2/Si substrates via chemical vapor deposition (CVD) method and devised a method to measure their optical contrast spectra. Using these contrast spectra, we extracted the complex refractive index spectrum of monolayer MoS2 in the wavelength range of 400 nm to 750 nm. We have analyzed the pronounced difference between the obtained complex refractive index spectrum and that of bulk MoS2. The method presented here is effective for two-dimensional materials of small size. Furthermore, we have calculated the color contour plots of the contrast as a function of both SiO2 thickness and incident light wavelength for monolayer MoS2 using the obtained refractive index spectrum. These plots are useful for both fundamental study and device application. PMID:25676089

  18. Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence.

    PubMed

    Zhang, Hui; Ma, Yaoguang; Wan, Yi; Rong, Xin; Xie, Ziang; Wang, Wei; Dai, Lun

    2015-02-13

    Monolayer molybdenum disulphide (MoS2) has attracted much attention, due to its attractive properties, such as two-dimensional properties, direct bandgap, valley-selective circular dichroism, and valley Hall effect. However, some of its fundamental physical parameters, e.g. refractive index, have not been studied in detail because of measurement difficulties. In this work, we have synthesized highly crystalline monolayer MoS2 on SiO2/Si substrates via chemical vapor deposition (CVD) method and devised a method to measure their optical contrast spectra. Using these contrast spectra, we extracted the complex refractive index spectrum of monolayer MoS2 in the wavelength range of 400 nm to 750 nm. We have analyzed the pronounced difference between the obtained complex refractive index spectrum and that of bulk MoS2. The method presented here is effective for two-dimensional materials of small size. Furthermore, we have calculated the color contour plots of the contrast as a function of both SiO2 thickness and incident light wavelength for monolayer MoS2 using the obtained refractive index spectrum. These plots are useful for both fundamental study and device application.

  19. Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Ma, Yaoguang; Wan, Yi; Rong, Xin; Xie, Ziang; Wang, Wei; Dai, Lun

    2015-02-01

    Monolayer molybdenum disulphide (MoS2) has attracted much attention, due to its attractive properties, such as two-dimensional properties, direct bandgap, valley-selective circular dichroism, and valley Hall effect. However, some of its fundamental physical parameters, e.g. refractive index, have not been studied in detail because of measurement difficulties. In this work, we have synthesized highly crystalline monolayer MoS2 on SiO2/Si substrates via chemical vapor deposition (CVD) method and devised a method to measure their optical contrast spectra. Using these contrast spectra, we extracted the complex refractive index spectrum of monolayer MoS2 in the wavelength range of 400 nm to 750 nm. We have analyzed the pronounced difference between the obtained complex refractive index spectrum and that of bulk MoS2. The method presented here is effective for two-dimensional materials of small size. Furthermore, we have calculated the color contour plots of the contrast as a function of both SiO2 thickness and incident light wavelength for monolayer MoS2 using the obtained refractive index spectrum. These plots are useful for both fundamental study and device application.

  20. Using a laser source to measure the refractive index of glass beads and Debye theory analysis.

    PubMed

    Li, Shui-Yan; Qin, Shuang; Li, Da-Hai; Wang, Qiong-Hua

    2015-11-20

    Using a monochromatic laser beam to illuminate a homogeneous glass bead, some rainbows will appear around it. This paper concentrates on the study of the scattering intensity distribution and the method of measuring the refractive index for glass beads based on the Debye theory. It is found that the first rainbow due to the scattering superposition of backward light of the low-refractive-index glass beads can be explained approximately with the diffraction, the external reflection plus the one internal reflection, while the second rainbow of high-refractive-index glass beads is due to the contribution from the diffraction, the external reflection, the direct transmission, and the two internal reflections. The scattering intensity distribution is affected by the refractive index, the radius of the glass bead, and the incident beam width. The effects of the refractive index and the glass bead size on the first and second minimum deviation angle position are analyzed in this paper. The results of the measurements agree very well with the specifications.

  1. Technique for forming ITO films with a controlled refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.

    2016-07-15

    A new method for fabricating transparent conducting coatings based on indium-tin oxide (ITO) with a controlled refractive index is proposed. This method implies the successive deposition of material by electron-beam evaporation and magnetron sputtering. Sputtered coatings with different densities (and, correspondingly, different refractive indices) can be obtained by varying the ratio of the mass fractions of material deposited by different methods. As an example, films with effective refractive indices of 1.2, 1.4, and 1.7 in the wavelength range of 440–460 nm are fabricated. Two-layer ITO coatings with controlled refractive indices of the layers are also formed by the proposed method.more » Thus, multilayer transparent conducting coatings with desired optical parameters can be produced.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Deo; Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com; Shapaan, M.

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluatedmore » in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.« less

  3. Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index

    NASA Astrophysics Data System (ADS)

    Ma, L. X.; Tan, J. Y.; Zhao, J. M.; Wang, F. Q.; Wang, C. A.; Wang, Y. Y.

    2017-07-01

    Due to the dependent scattering and absorption effects, the radiative transfer equation (RTE) may not be suitable for dealing with radiative transfer in dense discrete random media. This paper continues previous research on multiple and dependent scattering in densely packed discrete particle systems, and puts emphasis on the effects of particle complex refractive index. The Mueller matrix elements of the scattering system with different complex refractive indexes are obtained by both electromagnetic method and radiative transfer method. The Maxwell equations are directly solved based on the superposition T-matrix method, while the RTE is solved by the Monte Carlo method combined with the hard sphere model in the Percus-Yevick approximation (HSPYA) to consider the dependent scattering effects. The results show that for densely packed discrete random media composed of medium size parameter particles (equals 6.964 in this study), the demarcation line between independent and dependent scattering has remarkable connections with the particle complex refractive index. With the particle volume fraction increase to a certain value, densely packed discrete particles with higher refractive index contrasts between the particles and host medium and higher particle absorption indexes are more likely to show stronger dependent characteristics. Due to the failure of the extended Rayleigh-Debye scattering condition, the HSPYA has weak effect on the dependent scattering correction at large phase shift parameters.

  4. High-refractive index of acrylate embedding resin clarifies mouse brain tissue.

    PubMed

    Zhou, Hongfu; Xiong, Yumiao; Wang, Yu; Wang, Xiaojun; Li, Pei; Gang, Yadong; Liu, Xiuli; Zeng, Shaoqun

    2017-11-01

    Biological tissue transparency combined with light-sheet fluorescence microscopy is a useful method for studying the neural structure of biological tissues. The development of light-sheet fluorescence microscopy also promotes progress in biological tissue clearing methods. The current clarifying methods mostly use liquid reagent to denature protein or remove lipids first, to eliminate or reduce the scattering index or refractive index of the biological tissue. However, denaturing protein and removing lipids require complex procedures or an extended time period. Therefore, here we have developed acrylate resin with a high refractive index, which causes clearing of biological tissue directly after polymerization. This method can improve endogenous fluorescence retention by adjusting the pH value of the resin monomer. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.

  6. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  7. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  8. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object.

    PubMed

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-05-10

    To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.

  9. Measurement of the index of refraction of μm crystals by a confocal laser microscope--potential application for the refractive index mapping of μm scale.

    PubMed

    Kimura, Keisaku; Sato, Seiichi

    2014-05-01

    A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.

  10. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.

    2015-08-10

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only amore » minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.« less

  11. Estimation of the refractive index of rigid contact lenses on the basis of back vertex power measurements.

    PubMed

    Pearson, Richard

    2011-03-01

    To assess the possibility of estimating the refractive index of rigid contact lenses on the basis of measurements of their back vertex power (BVP) in air and when immersed in liquid. First, a spreadsheet model was used to quantify the magnitude of errors arising from simulated inaccuracies in the variables required to calculate refractive index. Then, refractive index was calculated from in-air and in-liquid measurements of BVP of 21 lenses that had been made in three negative BVPs from materials with seven different nominal refractive index values. The power measurements were made by two operators on two occasions. Intraobserver reliability showed a mean difference of 0.0033±0.0061 (t = 0.544, P = 0.59), interobserver reliability showed a mean difference of 0.0043±0.0061 (t = 0.707, P = 0.48), and the mean difference between the nominal and calculated refractive index values was -0.0010±0.0111 (t = -0.093, P = 0.93). The spreadsheet prediction that low-powered lenses might be subject to greater errors in the calculated values of refractive index was substantiated by the experimental results. This method shows good intra and interobserver reliabilities and can be used easily in a clinical setting to provide an estimate of the refractive index of rigid contact lenses having a BVP of 3 D or more.

  12. Computational determination of refractive index distribution in the crystalline cones of the compound eye of Antarctic krill (Euphausia superba).

    PubMed

    Gál, József; Miyazaki, Taeko; Meyer-Rochow, Victor Benno

    2007-01-21

    In order to understand how a compound eye channels light to the retina and forms an image, one needs to know the refractive index distribution in the crystalline cones. Direct measurements of the refractive indices require sections of fresh, unfixed tissue and the use of an interference microscope, but frequently neither is available. Using the eye of the Antarctic krill Euphausia superba (the main food of baleen whales) we developed a computational method to predict a likely refractive index distribution non-invasively from sections of fixed material without the need of an interference microscope. We used a computer model of the eye and calculated the most realistic spatial distribution of the refractive index gradient in the crystalline cone that would enable the eye to produce a sharp image on the retina. The animals are known to see well and on the basis of our computations we predict that for the eyes of the adult a maximum refractive index of 1.45-1.50 in the centre of the cone yields a better angular sensitivity and light absorption in a target receptor of the retina than if N(max) were 1.55. In juveniles with a narrower spatial separation between dioptric structures and retina, however, an N(max) of 1.50-1.55 gives a superior result. Our method to determine the most likely refractive index distribution in the cone without the need of fresh material and an interference microscope could be useful in the study of other invertebrate eyes that are known to possess good resolving power, but for a variety of reasons are not suitable for or will not permit direct refractive index measurements of their dioptric tissues to be taken.

  13. Method of analysis of polymerizable monomeric species in a complex mixture

    DOEpatents

    Hermes, Robert E

    2014-03-18

    Method of selective quantitation of a polymerizable monomeric species in a well spacer fluid, said method comprising the steps of adding at least one solvent having a refractive index of less than about 1.33 to a sample of the complex mixture to produce a solvent phase, and measuring the refractive index of the solvent phase.

  14. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.

  15. The eye lens: age-related trends and individual variations in refractive index and shape parameters

    PubMed Central

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-01-01

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  16. A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models.

    PubMed

    Nguyen, T T; Biadillah, Y; Mongrain, R; Brunette, J; Tardif, J C; Bertrand, O F

    2004-08-01

    In this work, we propose a simple method to simultaneously match the refractive index and kinematic viscosity of a circulating blood analog in hydraulic models for optical flow measurement techniques (PIV, PMFV, LDA, and LIF). The method is based on the determination of the volumetric proportions and temperature at which two transparent miscible liquids should be mixed to reproduce the targeted fluid characteristics. The temperature dependence models are a linear relation for the refractive index and an Arrhenius relation for the dynamic viscosity of each liquid. Then the dynamic viscosity of the mixture is represented with a Grunberg-Nissan model of type 1. Experimental tests for acrylic and blood viscosity were found to be in very good agreement with the targeted values (measured refractive index of 1.486 and kinematic viscosity of 3.454 milli-m2/s with targeted values of 1.47 and 3.300 milli-m2/s).

  17. Recovering fluorophore concentration profiles from confocal images near lateral refractive index step changes.

    PubMed

    Jonášová, Eleonóra Parelius; Bjørkøy, Astrid; Stokke, Bjørn Torger

    2016-12-01

    Optical aberrations due to refractive index mismatches occur in various types of microscopy due to refractive differences between the sample and the immersion fluid or within the sample. We study the effects of lateral refractive index differences by fluorescence confocal laser scanning microscopy due to glass or polydimethylsiloxane cuboids and glass cylinders immersed in aqueous fluorescent solution, thereby mimicking realistic imaging situations in the proximity of these materials. The reduction in fluorescence intensity near the embedded objects was found to depend on the geometry and the refractive index difference between the object and the surrounding solution. The observed fluorescence intensity gradients do not reflect the fluorophore concentration in the solution. It is suggested to apply a Gaussian fit or smoothing to the observed fluorescence intensity gradient and use this as a basis to recover the fluorophore concentration in the proximity of the refractive index step change. The method requires that the reference and sample objects have the same geometry and refractive index. The best results were obtained when the sample objects were also used for reference since small differences such as uneven surfaces will result in a different extent of aberration.

  18. Index of Refraction without Geometry

    ERIC Educational Resources Information Center

    Farkas, N.; Henriksen, P. N.; Ramsier, R. D.

    2006-01-01

    This article presents several activities that permit students to determine the index of refraction of transparent solids and liquids using simple equipment without the need for geometrical relationships, special lighting or optical instruments. Graphical analysis of the measured data is shown to be a useful method for determining the index of…

  19. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  20. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    PubMed

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  1. Femtosecond Z-scan measurements of the nonlinear refractive index of fused silica

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shi, Zhendong; Ma, Hua; Ren, Huan; Yuan, Quan; Ma, Yurong; Feng, Xiaoxuan; Chen, Bo; Yang, Yi

    2018-01-01

    Z-scan technology is a popular experimental technique for determining the nonlinear refractive index of the material. However, it encounters a great difficulty in measuring the weak nonlinear material like fused silica which is about two orders of magnitude below the nonlinear refractive index of most of the materials studied with the nanosecond and picosecond Z-scan methods. In this case, the change of refractive index introduced by accumulation of thermal effects cannot be neglected. In order to have a reliable measurement of the nonlinear refractive index, a metrology bench based on the femtosecond Z-scan technology is developed. The intensity modulation component and the differential measurement system are applied to guarantee the accuracy of the measuring system. Based on the femtosecond Z-scan theory, the femtosecond laser Z-scan technique is performed on fused silica, and the nonlinear refractive index of Fused silica is determined to be 9.2039×10-14esu for 800nm, 37fs pulse duration at I0=50GW/cm2 with a good repeatability of 6.7%.

  2. Absolute Measurement of the Refractive Index of Water by a Mode-Locked Laser at 518 nm.

    PubMed

    Meng, Zhaopeng; Zhai, Xiaoyu; Wei, Jianguo; Wang, Zhiyang; Wu, Hanzhong

    2018-04-09

    In this paper, we demonstrate a method using a frequency comb, which can precisely measure the refractive index of water. We have developed a simple system, in which a Michelson interferometer is placed into a quartz-glass container with a low expansion coefficient, and for which compensation of the thermal expansion of the water container is not required. By scanning a mirror on a moving stage, a pair of cross-correlation patterns can be generated. We can obtain the length information via these cross-correlation patterns, with or without water in the container. The refractive index of water can be measured by the resulting lengths. Long-term experimental results show that our method can measure the refractive index of water with a high degree of accuracy-measurement uncertainty at 10 -5 level has been achieved, compared with the values calculated by the empirical formula.

  3. Absolute Measurement of the Refractive Index of Water by a Mode-Locked Laser at 518 nm

    PubMed Central

    Meng, Zhaopeng; Zhai, Xiaoyu; Wei, Jianguo; Wang, Zhiyang; Wu, Hanzhong

    2018-01-01

    In this paper, we demonstrate a method using a frequency comb, which can precisely measure the refractive index of water. We have developed a simple system, in which a Michelson interferometer is placed into a quartz-glass container with a low expansion coefficient, and for which compensation of the thermal expansion of the water container is not required. By scanning a mirror on a moving stage, a pair of cross-correlation patterns can be generated. We can obtain the length information via these cross-correlation patterns, with or without water in the container. The refractive index of water can be measured by the resulting lengths. Long-term experimental results show that our method can measure the refractive index of water with a high degree of accuracy—measurement uncertainty at 10−5 level has been achieved, compared with the values calculated by the empirical formula. PMID:29642518

  4. The Effects of Experimental Conditions on the Refractive Index and Density of Low-Temperature Ices: Solid Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    2016-01-01

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO2) at 14-70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz-Lorenz approximation is valid for solid CO2 across the full 14-70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where nvis and ? are not measured in the same experimental setup where the IR spectral measurements are made.

  5. Enhancement of graphene visibility on transparent substrates by refractive index optimization.

    PubMed

    Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter

    2013-05-20

    Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.

  6. Overlapping illusions by transformation optics without any negative refraction material.

    PubMed

    Sun, Fei; He, Sailing

    2016-01-11

    A novel method to achieve an overlapping illusion without any negative refraction index material is introduced with the help of the optic-null medium (ONM) designed by an extremely stretching spatial transformation. Unlike the previous methods to achieve such an optical illusion by transformation optics (TO), our method can achieve a power combination and reshape the radiation pattern at the same time. Unlike the overlapping illusion with some negative refraction index material, our method is not sensitive to the loss of the materials. Other advantages over existing methods are discussed. Numerical simulations are given to verify the performance of the proposed devices.

  7. Chemical Sensing Sensitivity of Long-Period Grating Sensor Enhanced by Colloidal Gold Nanoparticles

    PubMed Central

    Tang, Jaw-Luen; Wang, Jien-Neng

    2008-01-01

    A simple and effective method is proposed to improve spectral sensitivity and detection limit of long period gratings for refractive index or chemical sensing, where the grating surface is modified by a monolayer of colloidal gold nanoparticles. The transmission spectra and optical properties of gold nanospheres vary with the different refractive index of the environment near the surface of gold nanospheres. The sensor response of gold colloids increases linearly with solvents of increasing refractive index. The results for the measurement of sucrose and sodium chloride solutions are reported, which show that this type of sensor can provide a limiting resolution of ∼10-3 to ∼10-4 for refractive indices in the range of 1.34 to 1.39 and a noticeable increase in detection limit of refractive index to external medium. PMID:27879701

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  9. A simulation study for determination of refractive index dispersion of dielectric film from reflectance spectrum by using Paul wavelet

    NASA Astrophysics Data System (ADS)

    Tiryaki, Erhan; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat

    2017-02-01

    In this work, the Continuous Wavelet Transform (CWT) with Paul wavelet was improved as a tool for determination of refractive index dispersion of dielectric film by using the reflectance spectrum of the film. The reflectance spectrum was generated theoretically in the range of 0.8333 - 3.3333 μm wavenumber and it was analyzed with presented method. Obtained refractive index determined from various resolution of Paul wavelet were compared with the input values, and the importance of the tunable resolution with Paul wavelet was discussed briefly. The noise immunity and uncertainty of the method was also studied.

  10. Fabrication of titania inverse opals by multi-cycle dip-infiltration for optical sensing

    NASA Astrophysics Data System (ADS)

    Chiang, Chun-Chen; Tuyen, Le Dac; Ren, Ching-Rung; Chau, Lai-Kwan; Wu, Cheng Yi; Huang, Ping-Ji; Hsu, Chia Chen

    2016-04-01

    We have demonstrated a low-cost method to fabricate TiO2 inverse opal photonic crystals with high refractive index skeleton. The TiO2 inverse opal films were fabricated from a polystyrene opal template by multi-cycle dip-infiltration-coating method. The properties of the TiO2 inverse opal films were characterized by scanning electron microscopy and Bragg reflection spectroscopy. The reflection spectroscopic measurements of the TiO2 inverse opal films were compared with theories of photonic band calculations and Bragg law. The agreement between experiment and theory indicates that we can precisely predict the refractive index of the infiltrated liquid sample in the TiO2 inverse opal films from the measurement results. The red-shift of the peak wavelength in the Bragg reflection spectra for both alcohol mixtures and aqueous sucrose solutions of increasing refractive index was observed and respective refractive index sensitivities of 296 and 286 nm/RIU (refractive index unit) were achieved. As the fabrication of the TiO2 inverse opal films and reflection spectroscopic measurement are fairly easy, the TiO2 inverse opal films have potential applications in optical sensing.

  11. Optical sensing of concentration and refractive index of pigments in a suspension.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2010-06-10

    We describe an immersion liquid and data analysis method for the simultaneous determination of the refractive index and concentration of pigments by measurement of light transmission of suspensions. A new innovation is that, in the event that two different pigments are simultaneously present in a suspension, it is possible to detect the refractive index of an unknown pigment with the aid of half-width of transmittance and, furthermore, to obtain the concentration of the unknown pigment.

  12. Analyzing refractive index profiles of confined fluids by interferometry.

    PubMed

    Kienle, Daniel F; Kuhl, Tonya L

    2014-12-02

    This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.

  13. Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .

  14. Determining the refractive index of particles using glare-point imaging technique

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Ge, Baozhen; Lu, Qieni; Yu, Xiaoxue

    2018-04-01

    A method of measuring the refractive index of a particle is presented from a glare-point image. The space of a doublet image of a particle can be determined with high accuracy by using auto-correlation and Gaussian interpolation, and then the refractive index is obtained from glare-point separation, and a factor that may influence the accuracy of glare-point separation is explored. Experiments are carried out for three different kinds of particles, including polystyrene latex particles, glass beads, and water droplets, whose measuring accuracy is improved by the data fitting method. The research results show that the method presented in this paper is feasible and beneficial to applications such as spray and atmospheric composition measurements.

  15. Temperature and refractive index measurement based on a coating-enhanced dual-microspheric fiber sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and  ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.

  16. A method of determining the refractive index of a prismatic lens.

    PubMed

    Buckley, John G

    2010-01-01

    A new method of measuring lens refractive index requiring immersion in solution and measuring lens power in air and in solution is extended. Prompted by a clinical need, the new method using lens power can be extended by applying it to prismatic power as well. This article provides a theoretical basis explaining why this can be done. The prismatic power of a prism is derived from first principles. Snell's Law and geometrical optics provide the framework for demonstrating the validity of the resulting formula. The sameness in formula derived using lens power or prism is shown, both from a paraxial and non-paraxial optics perspective. The effect of varying lens material and amount of prism is considered. The prismatic method described provides a useful alternative method of determining the refractive index of any lens. In some cases, it may be the only method available. Practitioners should consider when each method will provide optimal results.

  17. Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Shi, Chuan Bo; Chen, Tian Yi; Qing Qi, Mei; Li, Yun Bo; Cui, Tie Jun

    2018-04-01

    A new method is proposed to design gradient refractive-index metamaterial lens antennas by optimizing both the refractive-index distribution of the lens and the feed directivity. Comparing to the conventional design methods, source optimization provides a new degree of freedom to control aperture fields effectively. To demonstrate this method, two lenses with special properties based on this method are designed, to emit high-efficiency plane waves and fan-shaped beams, respectively. Both lenses have good performance and wide frequency band from 12 to 18 GHz, verifying the validity of the proposed method. The plane-wave emitting lens realized a high aperture efficiency of 75%, and the fan-beam lens achieved a high gain of 15 dB over board bandwidth. The experimental results have good agreement with the design targets and full-wave simulations.

  18. Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads.

    PubMed

    Jones, Stephanie H; King, Martin D; Ward, Andrew D

    2013-12-21

    A method is described to measure the refractive index dispersion with wavelength of optically trapped solid particles in air. Knowledge of the refraction properties of solid particles is critical for the study of aerosol; both in the laboratory and in the atmosphere for climate studies. Single micron-sized polystyrene beads were optically trapped in air using a vertically aligned counter-propagating configuration of focussed laser beams. Each bead was illuminated using white light from a broadband light emitting diode (LED) and elastic scattering within the bead was collected onto a spectrograph. The resulting Mie spectra were analysed to accurately determine polystyrene bead radii to ±0.4 nm and values of the refractive index to ±0.0005 over a wavelength range of 480-700 nm. We demonstrate that optical trapping combined with elastic scattering can be used to both accurately size polystyrene beads suspended in air and determine their wavelength dependent refractive index. The refractive index dispersions are in close agreement with reported values for polystyrene beads in aqueous dispersion. Our results also demonstrate a variation in the refractive index of polystyrene, from bead to bead, in a commercial sample. The measured variation highlights that care must be taken when using polystyrene beads as a calibration aerosol.

  19. Experimental determination of refractive index of condensed reflectin in squid iridocytes.

    PubMed

    Ghoshal, Amitabh; DeMartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2014-06-06

    Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs.

  20. Experimental determination of refractive index of condensed reflectin in squid iridocytes

    PubMed Central

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2014-01-01

    Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs. PMID:24694894

  1. Evaluation of a flow cytometry method to determine size and real refractive index distributions in natural marine particle populations.

    PubMed

    Agagliate, Jacopo; Röttgers, Rüdiger; Twardowski, Michael S; McKee, David

    2018-03-01

    A flow cytometric (FC) method was developed to retrieve particle size distributions (PSDs) and real refractive index (n r ) information in natural waters. Geometry and signal response of the sensors within the flow cytometer (CytoSense, CytoBuoy b.v., Netherlands) were characterized to form a scattering inversion model based on Mie theory. The procedure produced a mesh of diameter and n r isolines where each particle is assigned the diameter and n r values of the closest node, producing PSDs and particle real refractive index distributions. The method was validated using polystyrene bead standards of known diameter and polydisperse suspensions of oil with known n r , and subsequently applied to natural samples collected across a broad range of UK shelf seas. FC PSDs were compared with independent PSDs produced from data of two LISST-100X instruments (type B and type C). PSD slopes and features were found to be consistent between the FC and the two LISST-100X instruments, but LISST concentrations were found in disagreement with FC concentrations and with each other. FC n r values were found to agree with expected refractive index values of typical marine particle components across all samples considered. The determination of particle size and refractive index distributions enabled by the FC method has potential to facilitate identification of the contribution of individual subpopulations to the bulk inherent optical properties and biogeochemical properties of the particle population.

  2. [Measurement and analysis on complex refraction indices of pear pollen in infrared band].

    PubMed

    Li, Le; Hu, Yi-hua; Gu, You-lin; Chen, Wei; Zhao, Yi-zheng; Chen, Shan-jing

    2015-01-01

    Pollen is an important part of bioaerosols, and its complex refractive index is a crucial parameter for study on optical characteristics and detection, identification of bioaerosols. The reflection spectra of pear pollen within the 2. 5 - 15µm waveband were measured by squash method. Based on the measured data, the complex refractive index of pear pollen within the wave-band of 2. 5 to 15 µm was calculated by using Kramers-Kroning (K-K) relation, and calculation deviation about incident angle and different reflectivities at high and low frequencies.were analyzed. The results indicate that 18 degrees angle of incidence and different reflectivities at high and low frequencies have little effect on the results, and it is practicable to calculate the complex refractive index of pollen based on its reflection spectral data. The data of complex refractive index of pollen have some reference value for optical characteristics of pollen, detection and identification of bioaerosols.

  3. Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra

    NASA Astrophysics Data System (ADS)

    Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae

    2018-07-01

    It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.

  4. Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties

    DOEpatents

    Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon

    2000-05-02

    A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.

  5. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  6. Plasma Parameters From Reentry Signal Attenuation

    DOE PAGES

    Statom, T. K.

    2018-02-27

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  7. Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis.

    PubMed

    Sydoruk, Oleksiy; Zhernovaya, Olga; Tuchin, Valery; Douplik, Alexandre

    2012-11-01

    Because direct measurements of the refractive index of hemoglobin over a large wavelength range are challenging, indirect methods deserve particular attention. Among them, the Kramers-Kronig relations are a powerful tool often used to derive the real part of a refractive index from its imaginary part. However, previous attempts to apply the relations to solutions of human hemoglobin have been somewhat controversial, resulting in disagreement between several studies. We show that this controversy can be resolved when careful attention is paid not only to the absorption of hemoglobin but also to the dispersion of the refractive index of the nonabsorbing solvent. We present a Kramers-Kroning analysis taking both contributions into account and compare the results with the data from several studies. Good agreement with experiments is found across the visible and parts of near-infrared and ultraviolet regions. These results reinstate the use of the Kramers-Kronig relations for hemoglobin solutions and provide an additional source of information about their refractive index.

  8. Plasma Parameters From Reentry Signal Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statom, T. K.

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  9. Combined Use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of the imaginary part of refractive index of desert dust aerosol in the near UV part of spectrum. The method uses Total Ozone Mapping Spectrometer (TOMS) measurements of the top of the atmosphere radiances at 331 and 360 run and aerosol optical depth provided by the Aerosol Robotic Network (AERONET). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations.

  10. Process equipped with a sloped UV lamp for the fabrication of gradient-refractive-index lenses.

    PubMed

    Liu, Jui-Hsiang; Chiu, Yi-Hong

    2009-05-01

    In this investigation, a method for the preparation of gradient-refractive-index (GRIN) lenses by UV-energy-controlled polymerization has been developed. A glass reaction tube equipped with a sloped UV lamp was designed. Methyl methacrylate and diphenyl sulfide were used as the reactive monomer and nonreactive dopant, respectively. Ciba IRGACURE 184 (1-hydroxy-cyclohexyl-phenyl-ketone) was used as the initiator. The effects of initiator concentration, the addition of acrylic polymers, and the preparation conditions on the optical characteristics of the GRIN lenses produced by this method were also investigated. Refractive index distributions and image transmission properties were estimated for all GRIN lenses prepared.

  11. Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy.

    PubMed

    Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel

    2017-10-01

    The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.

  12. Correction of stain variations in nuclear refractive index of clinical histology specimens

    PubMed Central

    Uttam, Shikhar; Bista, Rajan K.; Hartman, Douglas J.; Brand, Randall E.; Liu, Yang

    2011-01-01

    For any technique to be adopted into a clinical setting, it is imperative that it seamlessly integrates with well-established clinical diagnostic workflow. We recently developed an optical microscopy technique—spatial-domain low-coherence quantitative phase microscopy (SL-QPM) that can extract the refractive index of the cell nucleus from the standard histology specimens on glass slides prepared via standard clinical protocols. This technique has shown great potential in detecting cancer with a better sensitivity than conventional pathology. A major hurdle in the clinical translation of this technique is the intrinsic variation among staining agents used in histology specimens, which limits the accuracy of refractive index measurements of clinical samples. In this paper, we present a simple and easily generalizable method to remove the effect of variations in staining levels on nuclear refractive index obtained with SL-QPM. We illustrate the efficacy of our correction method by applying it to variously stained histology samples from animal model and clinical specimens. PMID:22112118

  13. Miscibility of ethyl cellulose/copolyamide6/66/1010 blends by viscometry and refractive index method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuzhen; Shen, Yuhua; Xie, Anjian; Gao, Sulian; Xing, Zhiying

    2011-04-01

    The miscibility of ethyl cellulose (EC)/copolyamide6/66/1010 (PA-130) in formic acid is studied by viscometry and refractive index techniques at 25°C. Using viscosity data, the criteria Δ b, Δ b', Δ[η]m, interaction parameter μ, β and thermodynamic parameter α are calculated. These investigations indicate that blend of EC/PA-130 is miscible when the ethyl cellulose content is more than 50 wt % in the blend. Further the result was also confirmed by refractive index measurements.

  14. High-Density Near-Field Readout over 50 GB Capacity Using Solid Immersion Lens with High Refractive Index

    NASA Astrophysics Data System (ADS)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Ishimoto, Tsutomu; Nakaoki, Ariyoshi

    2003-02-01

    We have investigated high-density near-field readout using a solid immersion lens with a high refractive index. By using a glass material with a high refractive index of 2.08, we developed an optical pick-up with the effective numerical aperture of 1.8. We could observe a clear eye pattern for a 50 GB capacity disc in 120 mm diameter. We confirmed that the near-field readout system is promising method of realizing a high-density optical disc system.

  15. Refractive Index of Sodium Iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jellison Jr, Gerald Earle; Boatner, Lynn A; Ramey, Joanne Oxendine

    2012-01-01

    The refractive index of sodium iodide, an important scintillator material that is widely used for radiation detection, is based on a single measurement made by Spangenberg at one wavelength using the index-matching liquid immersion method (Z. Kristallogr., 57, 494-534 (1923)). In the present paper, we present new results for the refractive index of sodium iodide as measured by the minimum deviation technique at six wavelengths between 436 nm (n=1.839 0.002) and 633 nm (n=1.786 0.002). These 6 measurements can be fit to a Sellmeier model, resulting in a 2 of 1.02, indicating a good fit to the data. In addition,more » we report on ellipsometry measurements, which suggest that the near-surface region of the air sensitive NaI crystal seriously degrades, even in a moisture-free environment, resulting in a significantly lower value of the refractive index near the surface. First-principles theoretical calculations of the NaI refractive index that agree with the measured values within 0.025-0.045 are also presented and discussed.« less

  16. FIBER AND INTEGRATED OPTICS: Use of the offset method in an analysis of a non-Gaussian field distribution in single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1990-08-01

    An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.

  17. Omnidirectional optical waveguide

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-08-02

    In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.

  18. Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances.

    PubMed

    Beléndez, Augusto; Beléndez, Tarsicio; Neipp, Cristian; Pascual, Inmaculada

    2002-11-10

    A method to determine the refractive index and thickness of silver halide emulsions used in holography is presented. The emulsions are in the form of a layer of film deposited on a thick glass plate. The experimental reflectances of p-polarized light are measured as a function of the incident angles, and the values of refractive index, thickness, and extinction coefficient of the emulsion are obtained by using the theoretical equation for reflectance. As examples, five commercial holographic silver halide emulsions are analyzed. The procedure to obtain the measurements and the numerical analysis of the experimental data are simple, and agreement of the calculated reflectances, by use of the thickness and refractive index obtained, with the measured reflectances is satisfactory.

  19. In situ measurement method for film thickness using transparency resin sheet with low refractive index under wet condition on chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Oniki, Takahiro; Khajornrungruang, Panart; Suzuki, Keisuke

    2017-07-01

    We suggest that a transparency resin sheet with low refractive index can be applied to the measurement of a silicon dioxide (SiO2) film on a silicon wafer under wet condition for a film thickness measurement system on chemical mechanical polishing (CMP). By adjusting the refractive indices of the resin sheet and water, stable measurements of the SiO2 film can be expected, irrespective of slurry film thickness fluctuation because it has robustness against the slurry film. This result indicates that the transparency resin sheet with low refractive index is a useful for monitoring system of CMP.

  20. Assessment of refractive index of pigments by Gaussian fitting of light backscattering data in context of the liquid immersion method.

    PubMed

    Niskanen, Ilpo; Peiponen, Kai-Erik; Räty, Jukka

    2010-05-01

    Using a multifunction spectrophotometer, the refractive index of a pigment can be estimated by measuring the backscattering of light from the pigment in immersion liquids having slightly different refractive indices. A simple theoretical Gaussian function model related to the optical path distribution is introduced that makes it possible to describe quantitatively the backscattering signal from transparent pigments using a set of only a few immersion liquids. With the aid of the data fitting by a Gaussian function, the measurement time of the refractive index of the pigment can be reduced. The backscattering measurement technique is suggested to be useful in industrial measurement environments of pigments.

  1. Method to create gradient index in a polymer

    DOEpatents

    Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James

    2014-10-14

    Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.

  2. Optical coherence refractometry.

    PubMed

    Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew

    2008-10-01

    We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.

  3. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.

    PubMed

    Park, Jiyoung; Kang, Doo-Eui; Paulson, Bjorn; Nazari, Tavakol; Oh, Kyunghwan

    2014-07-14

    A defectless hexagonal air-silica photonic crystal fiber (PCF) structure with its central hole selectively filled by a low-refractive-index liquid is numerically analyzed. Despite the fact that the refractive index of the liquid is significantly lower than that of silica, we found an optimal range of waveguide parameters to ensure light guidance through the liquid core in the fundamental mode, maximizing the light-liquid interaction over a desired wavelength range. Using the vectorial finite element method (FEM), we report detailed parametric studies in terms of the effective index, chromatic dispersion, optical loss, and modal intensity distribution of the liquid core PCFs.

  4. Investigation of the Wave Propagation of Vector Modes of Light in a Spherically Symmetric Refractive Index Profile

    NASA Astrophysics Data System (ADS)

    Pozderac, Preston; Leary, Cody

    We investigated the solutions to the Helmholtz equation in the case of a spherically symmetric refractive index using three different methods. The first method involves solving the Helmholtz equation for a step index profile and applying further constraints contained in Maxwell's equations. Utilizing these equations, we can simultaneously solve for the electric and magnetic fields as well as the allowed energies of photons propagating in this system. The second method applies a perturbative correction to these energies, which surfaces when deriving a Helmholtz type equation in a medium with an inhomogeneous refractive index. Applying first order perturbation theory, we examine how the correction term affects the energy of the photon. In the third method, we investigate the effects of the above perturbation upon solutions to the scalar Helmholtz equation, which are separable with respect to its polarization and spatial degrees of freedom. This work provides insights into the vector field structure of a photon guided by a glass microsphere.

  5. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp.

    NASA Astrophysics Data System (ADS)

    Heng, Ri-Liang; Pilon, Laurent

    2016-05-01

    This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.

  6. Non-destructive geometric and refractive index characterization of single and multi-element lenses using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Tao, Yuankai K.

    2018-02-01

    Design of optical imaging systems requires careful balancing of lens aberrations to optimize the point-spread function (PSF) and minimize field distortions. Aberrations and distortions are a result of both lens geometry and glass material. While most lens manufacturers provide optical models to facilitate system-level simulation, these models are often not reflective of true system performance because of manufacturing tolerances. Optical design can be further confounded when achromatic or proprietary lenses are employed. Achromats are ubiquitous in systems that utilize broadband sources due to their superior performance in balancing chromatic aberrations. Similarly, proprietary lenses may be custom-designed for optimal performance, but lens models are generally not available. Optical coherence tomography (OCT) provides non-contact, depth-resolved imaging with high axial resolution and sensitivity. OCT has been previously used to measure the refractive index of unknown materials. In a homogenous sample, the group refractive index is obtained as the ratio between the measured optical and geometric thicknesses of the sample. In heterogenous samples, a method called focus-tracking (FT) quantifies the effect of focal shift introduced by the sample. This enables simultaneous measurement of the thickness and refractive index of intermediate sample layers. Here, we extend the mathematical framework of FT to spherical surfaces, and describe a method based on OCT and FT for full characterization of lens geometry and refractive index. Finally, we validate our characterization method on commercially available singlet and doublet lenses.

  7. Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability.

    PubMed

    Lama, Pemba; Suslov, Anatoliy; Walser, Ardie D; Dorsinville, Roger

    2014-06-02

    Nonlinear optical characterizations were performed on monodispersed silver (Ag) nanoparticles (NPs) of various sizes using a picosecond Z-scan technique with excitation wavelengths of 532 nm and 1064 nm. The Ag NPs were fabricated using a heterogeneous condensation technique in a gas medium. The nonlinear refraction values were higher for the monodispersed Ag NPs whose surface plasmon resonance (SPR) peak is closer to the excitation wavelength. The higher nonlinear optical response is explained in terms of an electric field enhancement near the SPR. Moreover, the fabrication method allows the tailoring of the nonlinear refraction index of the Ag NPs by tuning the SPR peak of the sample. A comparison of the nonlinear refraction index of the monodispersed and polydispersed Ag NPs showed that the nonlinear refractive index of the monodispersed Ag NPs is higher.

  8. Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.

    PubMed

    Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji

    2013-01-01

    The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.

  9. Interferometric measurement of refractive index modification in a single mode microfiber

    NASA Astrophysics Data System (ADS)

    Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.

    2017-02-01

    Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.

  10. Logarithm conformal mapping brings the cloaking effect

    PubMed Central

    Xu, Lin; Chen, Huanyang

    2014-01-01

    Over the past years, invisibility cloaks have been extensively discussed since transformation optics emerges. Generally, the electromagnetic parameters of invisibility cloaks are complicated tensors, yet difficult to realize. As a special method of transformation optics, conformal mapping helps us design invisibility cloak with isotropic materials of a refractive index distribution. However, for all proposed isotropic cloaks, the refractive index range is at such a breadth that challenges current experimental fabrication. In this work, we propose two new kinds of logarithm conformal mappings for invisible device designs. For one of the mappings, the refractive index distribution of conformal cloak varies from 0 to 9.839, which is more feasible for future implementation. Numerical simulations by using finite element method are performed to confirm the theoretical analysis. PMID:25359138

  11. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Guha, Supratik; Lee, Byeongdu

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  12. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE PAGES

    Berman, Diana; Guha, Supratik; Lee, Byeongdu; ...

    2017-01-31

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  13. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Guha, Supratik; Lee, Byeongdu

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al2O3 can be lowered from 1.76 down tomore » 1.1 using this method. The thickness of the Al2O3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  14. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness.

    PubMed

    Berman, Diana; Guha, Supratik; Lee, Byeongdu; Elam, Jeffrey W; Darling, Seth B; Shevchenko, Elena V

    2017-03-28

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al 2 O 3 can be lowered from 1.76 down to 1.1 using this method. The thickness of the Al 2 O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.

  15. A comparison of electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry for flow measurements

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Stricker, J.

    1985-01-01

    Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for the accurate measurement of refractive index and density change distributions of phase objects. Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the interferometric fringe shift. The phase object for the measurements is a large crystal of KD*P, whose refractive index distribution can be changed accurately and repeatably for the comparison. Although the refractive index change causes only about one interferometric fringe shift over the entire crystal, the derivative shows considerable detail for the comparison. As electronic phase measurement methods, both methods are very accurate and are intrinsically compatible with computer controlled readout and data processing. Heterodyne moire is relatively inexpensive and has high variable sensitivity. Heterodyne holographic interferometry is better developed, and can be used with poor quality optical access to the experiment.

  16. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakalli, I., E-mail: izzet.sakalli@emu.edu.tr; Mirekhtiary, S. F., E-mail: fatemeh.mirekhtiary@emu.edu.tr

    2013-10-15

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropicmore » coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.« less

  17. An improved method for determination of refractive index of absorbing films: A simulation study

    NASA Astrophysics Data System (ADS)

    Özcan, Seçkin; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat

    2017-02-01

    In this work an improved version of the method presented by Gandhi was presented for determination of refractive index of absorbing films. In this method local maxima of consecutive interference order in transmittance spectrum are used. The method is based on the minimizing procedure leading to the determination of interference order accurately by using reasonable Cauchy parameters. It was tested on theoretically generated transmittance spectrum of absorbing film and the details of the minimization procedure were discussed.

  18. In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography.

    PubMed

    de Freitas, Carolina; Ruggeri, Marco; Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie

    2013-01-15

    We present a method for measuring the average group refractive index of the human crystalline lens in vivo using an optical coherence tomography (OCT) system which, allows full-length biometry of the eye. A series of OCT images of the eye including the anterior segment and retina were recorded during accommodation. Optical lengths of the anterior chamber, lens, and vitreous were measured dynamically along the central axis on the OCT images. The group refractive index of the crystalline lens along the central axis was determined using linear regression analysis of the intraocular optical length measurements. Measurements were acquired on three subjects of age 21, 24, and 35 years. The average group refractive index for the three subjects was, respectively, n=1.41, 1.43, and 1.39 at 835 nm.

  19. Retrieval of the thickness and refractive index dispersion of parallel plate from a single interferogram recorded in both spectral and angular domains

    NASA Astrophysics Data System (ADS)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-01

    The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.

  20. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

    PubMed

    Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

    2014-08-01

    The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

  1. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.

    PubMed

    Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K

    2013-04-22

    A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.

  2. Preform For Producing An Optical Fiber And Method Therefor

    DOEpatents

    Kliner, Dahv A. V.; Koplow, Jeffery P.

    2004-08-10

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  3. Preform For Producing An Optical Fiber And Method Therefor

    DOEpatents

    Kliner, Dahv A. V.; Koplow, Jeffery P.

    2005-04-19

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  4. Electronic polarizability of light crude oil from optical and dielectric studies

    NASA Astrophysics Data System (ADS)

    George, A. K.; Singh, R. N.

    2017-07-01

    In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.

  5. Bioinspired adaptive gradient refractive index distribution lens

    NASA Astrophysics Data System (ADS)

    Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael

    2018-02-01

    Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.

  6. Numerical Approach to Modeling and Characterization of Refractive Index Changes for a Long-Period Fiber Grating Fabricated by Femtosecond Laser

    PubMed Central

    Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk

    2016-01-01

    A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings. PMID:28774060

  7. Numerical Approach to Modeling and Characterization of Refractive Index Changes for a Long-Period Fiber Grating Fabricated by Femtosecond Laser.

    PubMed

    Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk

    2016-11-21

    A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings.

  8. Measurement of the refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall.

    PubMed

    Durán-Ramírez, Víctor M; Martínez-Ríos, Alejandro; Guerrero-Viramontes, J Ascención; Muñoz-Maciel, Jesús; Peña-Lecona, Francisco G; Selvas-Aguilar, Romeo; Anzueto-Sánchez, Gilberto

    2014-12-01

    A very simple method to obtain the refractive index of liquids by using a rectangular glass cell and a diffraction grating engraved by fs laser ablation on the inner face of one of the walls of the cell is presented. When a laser beam impinges normally on the diffraction grating, the diffraction orders are deviated when they pass through the cell filled with the liquid to be measured. By measuring the deviation of the diffraction orders, we can determine the refractive index of the liquid.

  9. Three-dimensional particle tracking in concave structures made by ultraviolet nanoimprint via total internal reflection fluorescence microscopy and refractive-index-matching method

    NASA Astrophysics Data System (ADS)

    Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi

    2018-06-01

    Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x- y- z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.

  10. Three-dimensional particle tracking in concave structures made by ultraviolet nanoimprint via total internal reflection fluorescence microscopy and refractive-index-matching method

    NASA Astrophysics Data System (ADS)

    Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi

    2018-03-01

    Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x-y-z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.

  11. Refractive index gradient measurement across the thickness of a dielectric film by the prism coupling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N

    2012-08-31

    A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness H{sub f} with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [{Delta} n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)

  12. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  13. Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing.

    PubMed

    Tan, Chun Hua; Huang, Zhen Jian; Huang, Xu Guang

    2010-06-01

    We describe a simple and rapid method for determining the critical micelle concentration (CMC) of surfactants from fiber-optic measurements of refractive index. The refractive index of an aqueous surfactant solution was monitored as the surfactant concentration was increased using an automated dispensing system. On reaching the surfactant's CMC value, an abrupt change was observed in the rate of increase of the refractive index with increasing concentration. The measurement system provides rapid semiautomatic data collection and analysis, increasing the precision, sensitivity, and range of applicability of the technique while substantially decreasing the amount of manual intervention required. Measurements of CMC for sodium dodecyl sulfate (8.10mM), cetyltrimethylammonium chloride (1.58mM), and Triton X-100 (0.21mM) were in excellent agreement with values previously reported in the literature. The method is applicable to cationic, anionic, and nonionic surfactants, and it offers a facile, in situ, and sensitive means of detecting micelle formation over a broad range of CMC values larger than 10(-1)mM. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  15. Graded-Index "Whispering-Gallery" Optical Microresonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Matsko, Andrey

    2006-01-01

    Graded-index-of-refraction dielectric optical microresonators have been proposed as a superior alternative to prior dielectric optical microresonators, which include microspheres and microtori wherein electromagnetic waves propagate along circumferential paths in "whispering-gallery" modes. The design and method of fabrication of the proposed microresonators would afford improved performance by exploiting a combination of the propagation characteristics of the whisperinggallery modes and the effect of a graded index of refraction on the modes.

  16. Optimization of torque on an optically driven micromotor by manipulation of the index of refraction

    NASA Astrophysics Data System (ADS)

    Wing, Frank M., III; Mahajan, Satish; Collett, Walter

    2004-12-01

    Since the 1970"s, the focused laser beam has become a familiar tool to manipulate neutral, dielectric micro-objects. A number of authors, including Higurashi and Gauthier, have described the effects of radiation pressure from laser light on microrotors. Collett, et al. developed a wave, rather than a ray optic, approach in the calculation of such forces on a microrotor for the first time. This paper describes a modification to the design of a laser driven, radiation pressure microrotor, intended to improve the optically generated torque. Employing the wave approach, the electric and magnetic fields in the vicinity of the rotor are calculated using the finite difference time domain (FDTD) method, which takes into account the wave nature of the incident light. Forces are calculated from the application of Maxwell"s stress tensor over the surfaces of the rotor. Results indicate a significant increase in torque when the index of refraction of the microrotor is changed from a single value to an inhomogeneous profile. The optical fiber industry has successfully employed a variation in the index of refraction across the cross section of a fiber for the purpose of increasing the efficiency of light transmission. Therefore, it is hoped that various fabrication methods can be utilized for causing desired changes in the index of refraction of an optically driven microrotor. Various profiles of the index of refraction inside a microrotor are considered for optimization of torque. Simulation methodology and results of torque on a microrotor for various profiles of the index of refraction are presented. Guidelines for improvised fabrication of efficient microrotors may then be obtained from these profiles.

  17. Method of bundling rods so as to form an optical fiber preform

    DOEpatents

    Kliner, Dahv A. V. [San Ramon, CA; Koplow, Jeffery P [Washington, DC

    2004-03-30

    The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

  18. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2017-01-01

    The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  19. Dispersion dependence of second-order refractive index and complex third-order optical susceptibility in oxide glasses

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal

    2009-10-01

    A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.

  20. About complex refractive index of black Si

    NASA Astrophysics Data System (ADS)

    Pinčík, Emil; Brunner, Robert; Kobayashi, Hikaru; Mikula, Milan

    2017-12-01

    The paper deals with the complex refractive index in the IR light region of two types of samples (i) as prepared black silicon, and (ii) thermally oxidized black silicon (BSi) nano-crystalline specimens produced both by the surface structure chemical transfer method using catalytic Ag evaporated spots (as prepared sample) and by the catalytic Pt catalytic mesh (thermally oxidized sample). We present, compare, and discuss the values of the IR complex refractive index obtained by calculation using the Kramers-Krönig transformation. Results indicate that small differences between optical properties of as prepared black Si and thermally oxidized BSi are given by: (i) - oxidation procedure, (ii) - thickness of the formed black Si layer, mainly, not by utilization of different catalytic metals, and by iii) the different thickness. Contamination of the surface by different catalytic metals contributes almost equally to the calculated values of the corresponding complex refractive index.

  1. Suppression of Air Refractive Index Variations in High-Resolution Interferometry

    PubMed Central

    Lazar, Josef; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

    2011-01-01

    The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10−8 has been achieved. PMID:22164036

  2. Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra.

    PubMed

    Khlebtsov, Boris N; Khanadeev, Vitaly A; Khlebtsov, Nikolai G

    2008-08-19

    The size and concentration of silica cores determine the size and concentration of silica/gold nanoshells in final preparations. Until now, the concentration of silica/gold nanoshells with Stober's silica core has been evaluated through the material balance assumption. Here, we describe a method for simultaneous determination of the average size and concentration of silica nanospheres from turbidity spectra measured within the 400-600 nm spectral band. As the refractive index of silica nanoparticles is the key input parameter for optical determination of their concentration, we propose an optical method and provide experimental data on a direct determination of the refractive index of silica particles n = 1.475 +/- 0.005. Finally, we exemplify our method by determining the particle size and concentration for 10 samples and compare the results with transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering data.

  3. Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Byrne, D. M.; Herman, B. M.; King, M. D.; Spinhirne, J. D.

    1980-01-01

    A method is presented for inferring both the size distribution and the complex refractive index of atmospheric particulates from combined bistatic-monostatic lidar and solar radiometer observations. The basic input measurements are spectral optical depths at several visible and near-infrared wavelengths as obtained with a solar radiometer and backscatter and angular scatter coefficients as obtained from a biostatic-monostatic lidar. The spectral optical depth measurements obtained from the radiometer are mathematically inverted to infer a columnar particulate size distribution. Advantage is taken of the fact that the shape of the size distribution obtained by inverting the particulate optical depth is relatively insensitive to the particle refractive index assumed in the inversion. Bistatic-monostatic angular scatter and backscatter lidar data are then processed to extract an optimum value for the particle refractive index subject to the constraint that the shape of the particulate size distribution be the same as that inferred from the solar radiometer data. Specifically, the scattering parameters obtained from the bistatic-monostatic lidar data are compared with corresponding theoretical computations made for various assumed refractive index values. That value which yields best agreement, in a weighted least squares sense, is selected as the optimal refractive index estimate. The results of this procedure applied to a set of simulated measurements as well as to measurements collected on two separate days are presented and discussed.

  4. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.

    PubMed

    Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin

    2017-08-01

    The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

  5. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    NASA Astrophysics Data System (ADS)

    Bukharin, M. A.; Khudyakov, D. V.; Vartapetov, S. K.

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 × 10-3 up to 6.5 × 10-3 in fused silica and from -6 × 10-3 to -9 × 10-3 in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 × 10-3. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data.

  6. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time a complete set of vertically resolved aerosol size distribution and refractive index data, yielding the vertical distribution of aerosol optical properties required for the determination of aersol-induced radiative flux changes

  7. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; hide

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time, a complete set of vertically resolved aerosol size distribution and refractive index data. yielding the vertical distribution of aerosol optical properties required for the determination of aerosol-induced radiative flux changes.

  8. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the opticalmore » absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.« less

  9. An original method to determine complex refractive index of liquids by spectroscopic ellipsometry and illustrated applications

    NASA Astrophysics Data System (ADS)

    Stchakovsky, M.; Battie, Y.; Naciri, A. En

    2017-11-01

    We present a method to characterize optical properties of liquids by spectroscopic ellipsometry. The experiments use a specific liquid cell that avoids disturbance of waves at air-liquid interface and allows the determination of the real and the imaginary part of the refractive index, with a sensitivity of the latter below 10-4. The method is illustrated by results obtained with a spectroscopic phase modulation ellipsometer on several liquids such as deionised water, microscope oil and protein solution. Comparisons of the method with standard techniques are given.

  10. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.

    PubMed

    Borja, David; Manns, Fabrice; Ho, Arthur; Ziebarth, Noel M; Acosta, Ana Carolina; Arrieta-Quintera, Esdras; Augusteyn, Robert C; Parel, Jean-Marie

    2010-04-01

    Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.

  11. Numerical computations on one-dimensional inverse scattering problems

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Hariharan, S. I.

    1983-01-01

    An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with amore » simple, solid, and compact structure.« less

  13. Large refractive index variations induced by accumulating triplet excitons under photoexcitation at low power

    NASA Astrophysics Data System (ADS)

    Hori, Tomoe; Totani, Kenro; Hirata, Shuzo; Watanabe, Toshiyuki

    2018-07-01

    Herein, we present a method for the modification of the refractive index (n), based on employing an organic molecule with a long triplet excited-state lifetime. A host-guest material composed of a cyclic aromatic as the guest and an amorphous steroidal compound as the host was used to modulate n. The guest material exhibited a triplet lifetime longer than 1 s, and a high-density triplet excited-state population was obtained upon excitation with blue-violet light. The refractive index could be changed by 0.002, even when using a relatively low excitation power level of 100 mW cm-2.

  14. Photonic spin Hall effect enabled refractive index sensor using weak measurements.

    PubMed

    Zhou, Xinxing; Sheng, Lijuan; Ling, Xiaohui

    2018-01-19

    In this work, we theoretically propose an optical biosensor (consists of a BK7 glass, a metal film, and a graphene sheet) based on photonic spin Hall effect (SHE). We establish a quantitative relationship between the spin-dependent shift in photonic SHE and the refractive index of sensing medium. It is found that, by considering the surface plasmon resonance effect, the refractive index variations owing to the adsorption of biomolecules in sensing medium can effectively change the spin-dependent displacements. Remarkably, using the weak measurement method, this tiny spin-dependent shifts can be detected with a desirable accuracy so that the corresponding biomolecules concentration can be determined.

  15. Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index.

    PubMed

    Besseling, T H; Jose, J; Van Blaaderen, A

    2015-02-01

    Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive-index mismatch between the sample and immersion liquid, which are difficult to separate. Additionally, accurate calibration of the axial distances in confocal microscopy remains cumbersome, although several high-end methods exist. In this paper we present two methods to calibrate axial distances in 3D confocal microscopy that are both accurate and easily implemented. With these methods, we measured axial scaling factors as a function of refractive-index mismatch for high-aperture confocal microscopy imaging. We found that our scaling factors are almost completely linearly dependent on refractive index and that they were in good agreement with theoretical predictions that take the full vectorial properties of light into account. There was however a strong deviation with the theoretical predictions using (high-angle) geometrical optics, which predict much lower scaling factors. As an illustration, we measured the PSF of a correctly calibrated point-scanning confocal microscope and showed that a nearly index-matched, micron-sized spherical object is still significantly elongated due to this PSF, which signifies that care has to be taken when determining axial calibration or axial scaling using such particles. © 2014 The Authors Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  16. The refractive index of human hemoglobin in the visible range.

    PubMed

    Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A

    2011-07-07

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  17. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    PubMed

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  18. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  19. Measuring Diffusion of Liquids by Common-Path Interferometry

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2003-01-01

    A method of observing the interdiffusion of a pair of miscible liquids is based on the use of a common-path interferometer (CPI) to measure the spatially varying gradient of the index refraction in the interfacial region in which the interdiffusion takes place. Assuming that the indices of refraction of the two liquids are different and that the gradient of the index of refraction of the liquid is proportional to the gradient in the relative concentrations of either liquid, the diffusivity of the pair of liquids can be calculated from the temporal variation of the spatial variation of the index of refraction. This method yields robust measurements and does not require precise knowledge of the indices of refraction of the pure liquids. Moreover, the CPI instrumentation is compact and is optomechanically robust by virtue of its common- path design. The two liquids are placed in a transparent rectangular parallelepiped test cell. Initially, the interface between the liquids is a horizontal plane, above which lies pure liquid 2 (the less-dense liquid) and below which lies pure liquid 1 (the denser liquid). The subsequent interdiffusion of the liquids gives rise to a gradient of concentration and a corresponding gradient of the index of refraction in a mixing layer. For the purpose of observing the interdiffusion, the test cell is placed in the test section of the CPI, in which a collimated, polarized beam of light from a low-power laser is projected horizontally through a region that contains the mixing layer.

  20. A discussion on validity of the diffusion theory by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Li, Hui; Xie, Shusen

    2008-12-01

    Diffusion theory was widely used as a basis of the experiments and methods in determining the optical properties of biological tissues. A simple analytical solution could be obtained easily from the diffusion equation after a series of approximations. Thus, a misinterpret of analytical solution would be made: while the effective attenuation coefficient of several semi-infinite bio-tissues were the same, the distribution of light fluence in the tissues would be the same. In order to assess the validity of knowledge above, depth resolved internal fluence of several semi-infinite biological tissues which have the same effective attenuation coefficient were simulated with wide collimated beam in the paper by using Monte Carlo method in different condition. Also, the influence of bio-tissue refractive index on the distribution of light fluence was discussed in detail. Our results showed that, when the refractive index of several bio-tissues which had the same effective attenuation coefficient were the same, the depth resolved internal fluence would be the same; otherwise, the depth resolved internal fluence would be not the same. The change of refractive index of tissue would have affection on the light depth distribution in tissue. Therefore, the refractive index is an important optical property of tissue, and should be taken in account while using the diffusion approximation theory.

  1. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    NASA Astrophysics Data System (ADS)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  2. Solution of Radiative Transfer Equation with a Continuous and Stochastic Varying Refractive Index by Legendre Transform Method

    PubMed Central

    Gantri, M.

    2014-01-01

    The present paper gives a new computational framework within which radiative transfer in a varying refractive index biological tissue can be studied. In our previous works, Legendre transform was used as an innovative view to handle the angular derivative terms in the case of uniform refractive index spherical medium. In biomedical optics, our analysis can be considered as a forward problem solution in a diffuse optical tomography imaging scheme. We consider a rectangular biological tissue-like domain with spatially varying refractive index submitted to a near infrared continuous light source. Interaction of radiation with the biological material into the medium is handled by a radiative transfer model. In the studied situation, the model displays two angular redistribution terms that are treated with Legendre integral transform. The model is used to study a possible detection of abnormalities in a general biological tissue. The effect of the embedded nonhomogeneous objects on the transmitted signal is studied. Particularly, detection of targets of localized heterogeneous inclusions within the tissue is discussed. Results show that models accounting for variation of refractive index can yield useful predictions about the target and the location of abnormal inclusions within the tissue. PMID:25013454

  3. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    PubMed Central

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D.; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C.; Estudillo-Ayala, Julian M.; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  4. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface.

    PubMed

    Hu, Jie; Lang, Tingting; Shi, Guo-Hua

    2017-06-26

    In this paper, a novel kind of sensors for simultaneous measurement of refractive index and temperature based on all-dielectric metasurfaces is proposed. The metasurfaces are constructed by an array of silicon nanoblocks on top of the bulk fused silica substrate. We used three-dimensional full wave electromagnetic field simulation by finite integral method to accurately calculate the transmission spectrum of the metasurfaces. Two transmission dips corresponding to the electric and magnetic resonances are observed. Both dips shift as the ambient refractive index or the temperature changes. Simulation results show that the sensing sensitivities of two dips to the refractive index are 243.44 nm/RIU and 159.43 nm/RIU, respectively, while the sensitivities to the temperature are 50.47 pm/°C and 75.20 pm/°C, respectively. After introducing four holes into each silicon nanoblock, the electromagnetic field overlap in the surrounding medium can be further promoted, and the sensitivities to the refractive index increase to 306.71 nm/RIU and 204.27 nm/RIU, respectively. Our proposed sensors have advantages of polarization insensitive, small size, and low loss, which offer them high potential applications in physical, biological and chemical sensing fields.

  5. Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity.

    PubMed

    Moritake, Yuto; Tanaka, Takuo

    2018-02-05

    We propose and demonstrate the elimination of substrate influence on plasmon resonance by using selective and isotropic etching of substrates. Preventing the red shift of the resonance due to substrates and improving refractive index sensitivity were experimentally demonstrated by using plasmonic nanostructures fabricated on silicon substrates. Applying substrate etching decreases the effective refractive index around the metal nanostructures, resulting in elimination of the red shift. Improvement of sensitivity to the refractive index environment was demonstrated by using plasmonic metamaterials with Fano resonance based on far field interference. Change in quality factors (Q-factors) of the Fano resonance by substrate etching was also investigated in detail. The presence of a closely positioned substrate distorts the electric field distribution and degrades the Q-factors. Substrate etching dramatically increased the refractive index sensitivity reaching to 1532 nm/RIU since the electric fields under the nanostructures became accessible through substrate etching. The FOM was improved compared to the case without the substrate etching. The method presented in this paper is applicable to a variety of plasmonic structures to eliminate the influence of substrates for realizing high performance plasmonic devices.

  6. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-10-15

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors.

  7. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  8. FIBER AND INTEGRATED OPTICS: New method for determination of the parameters of a channel waveguide

    NASA Astrophysics Data System (ADS)

    Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Sychugov, V. A.; Tishchenko, A. V.; Usievich, B. A.

    1992-02-01

    A new method for the determination of the parameters of channel integrated optical waveguides is proposed. This method is based on measuring the spectral transmission of a system comprising the investigated waveguide and single-mode fiber waveguides, which are brought into contact with the channel waveguide. The results are reported of an investigation of two channel waveguides formed in glass by a variety of methods and characterized by different refractive index profiles. The proposed method is found to be suitable for determination of the parameters of the refractive index profile of the investigated channel waveguides.

  9. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    PubMed

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes.

  10. Combined use of Satellite and Surface Observations to Infer the Imaginary Part of Refractive Index of Saharan Dust

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.

  11. Photonic jet reconstruction for particle refractive index measurement by digital in-line holography.

    PubMed

    Sentis, Matthias P L; Onofri, Fabrice R A; Lamadie, Fabrice

    2017-01-23

    A new and computationally efficient approach is proposed for determining the refractive index of spherical and transparent particles, in addition to their size and 3D position, using digital in-line holography. The method is based on the localization of the maximum intensity position of the photonic jet with respect to the particle center retrieved from the back propagation of recorded holograms. Rigorous electromagnetic calculations and experimental results demonstrate that for liquid-liquid systems and droplets with a radius > 30µm, a refractive index measurement with a resolution inferior to 4 × 10-3 is achievable, revealing a significant potential for the use of this method to investigate multiphase flows. The resolution for solid or liquid particles in gas is expected to be lower but sufficient for the recognition of particle material.

  12. LETTER TO THE EDITOR: Free-response operator characteristic models for visual search

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. P.

    2007-05-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) is a novel x-ray phase-contrast computed tomography which is applied to inspect weakly absorbing low-Z samples. Refraction-angle images which are extracted from a series of raw DEI images measured in different positions of the rocking curve of the analyser can be regarded as projections of DEI-CT. Based on them, the distribution of refractive index decrement in the sample can be reconstructed according to the principles of CT. How to combine extraction methods and reconstruction algorithms to obtain the most accurate reconstructed results is investigated in detail in this paper. Two kinds of comparison, the comparison of different extraction methods and the comparison between 'two-step' algorithms and the Hilbert filtered backprojection (HFBP) algorithm, draw the conclusion that the HFBP algorithm based on the maximum refraction-angle (MRA) method may be the best combination at present. Though all current extraction methods including the MRA method are approximate methods and cannot calculate very large refraction-angle values, the HFBP algorithm based on the MRA method is able to provide quite acceptable estimations of the distribution of refractive index decrement of the sample. The conclusion is proved by the experimental results at the Beijing Synchrotron Radiation Facility.

  13. Denaturation process of laccase in various media by refractive index measurements.

    PubMed

    Saoudi, O; Ghaouar, N; Ben Salah, S; Othman, T

    2017-09-01

    In this work, we are interested in the denaturation process of a laccase from Tramates versicolor via the determination of the refractive index, the refractive index increment and the specific volume in various media. The measurements were carried out using an Abbe refractometer. We have shown that the refractive index increment values obtained from the slope of the variation of the refractive index vs. Concentration are outside the range refractive index increments of proteins. To correct the results, we have followed the theoretical predictions based on the knowledge of the protein refractive index from its amino acids composition. The denaturation process was studied by calculating the specific volume variation where its determination was related to the Gladstone-Dale and the Lorentz-Lorentz models.

  14. Fractal propagation method enables realistic optical microscopy simulations in biological tissues

    PubMed Central

    Glaser, Adam K.; Chen, Ye; Liu, Jonathan T.C.

    2017-01-01

    Current simulation methods for light transport in biological media have limited efficiency and realism when applied to three-dimensional microscopic light transport in biological tissues with refractive heterogeneities. We describe here a technique which combines a beam propagation method valid for modeling light transport in media with weak variations in refractive index, with a fractal model of refractive index turbulence. In contrast to standard simulation methods, this fractal propagation method (FPM) is able to accurately and efficiently simulate the diffraction effects of focused beams, as well as the microscopic heterogeneities present in tissue that result in scattering, refractive beam steering, and the aberration of beam foci. We validate the technique and the relationship between the FPM model parameters and conventional optical parameters used to describe tissues, and also demonstrate the method’s flexibility and robustness by examining the steering and distortion of Gaussian and Bessel beams in tissue with comparison to experimental data. We show that the FPM has utility for the accurate investigation and optimization of optical microscopy methods such as light-sheet, confocal, and nonlinear microscopy. PMID:28983499

  15. Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy.

    PubMed

    Ryan, Duncan P; Gould, Elizabeth A; Seedorf, Gregory J; Masihzadeh, Omid; Abman, Steven H; Vijayaraghavan, Sukumar; Macklin, Wendy B; Restrepo, Diego; Shepherd, Douglas P

    2017-09-20

    Optical tissue clearing has revolutionized researchers' ability to perform fluorescent measurements of molecules, cells, and structures within intact tissue. One common complication to all optically cleared tissue is a spatially heterogeneous refractive index, leading to light scattering and first-order defocus. We designed C-DSLM (cleared tissue digital scanned light-sheet microscopy) as a low-cost method intended to automatically generate in-focus images of cleared tissue. We demonstrate the flexibility and power of C-DSLM by quantifying fluorescent features in tissue from multiple animal models using refractive index matched and mismatched microscope objectives. This includes a unique measurement of myelin tracks within intact tissue using an endogenous fluorescent reporter where typical clearing approaches render such structures difficult to image. For all measurements, we provide independent verification using standard serial tissue sectioning and quantification methods. Paired with advancements in volumetric image processing, C-DSLM provides a robust methodology to quantify sub-micron features within large tissue sections.Optical clearing of tissue has enabled optical imaging deeper into tissue due to significantly reduced light scattering. Here, Ryan et al. tackle first-order defocus, an artefact of a non-uniform refractive index, extending light-sheet microscopy to partially cleared samples.

  16. Intraocular lens power calculation following LASIK: determination of the new effective index of refraction.

    PubMed

    Jarade, Elias F; Abi Nader, Françoise C; Tabbara, Khalid F

    2006-01-01

    To determine the new corneal effective index of refraction (rN) following LASIK to be used for accurate keratometry reading (K-reading). A total of 332 eyes that underwent myopic LASIK were divided into two groups (group A [n = 137] and group B [n = 1951). In each group, patients were divided into four subgroups according to the amount of spherical equivalent refraction of myopic LASIK ablation (subgroup 1 [< -4.0 D], subgroup 2 [-4.0 to < -8.0 D], subgroup 3 [-8.0 to -12.0 D], and subgroup 4 [> -12.0 D]). In each subgroup of group A, K-reading was measured by the clinical history method and the new corneal effective index (rN) was determined using paraxial formula: (K-reading = (rN-1)/Ra), where Ra is the radius of curvature of the anterior corneal surface. In group B, the anterior radius of curvature of the cornea was determined by automated K-reading, and K-reading was measured in each subgroup using the new effective index in paraxial formula, clinical history method, and automated K-reading. In group A, the new effective index of refraction was 1.3355, 1.3286, 1.3237, and 1.3172 in the four subgroups, respectively. In group B, the mean K-reading measurements using rN in paraxial formula, clinical history method, and automated K-reading were: 40.33 +/- 1.68 D, 40.33 +/- 1.67 D, and 40.54 +/- 1.69 D, respectively, in subgroup 1; 37.96 +/- 1.26 D, 38.03 +/- 1.38 D, and 38.98 +/- 1.28 D, respectively, in subgroup 2; 35.77 +/- 1.75 D, 35.84 +/- 1.85 D, and 37.29 +/- 1.83 D, respectively, in subgroup 3; and 34.03 +/- 1.49 D, 34.15 +/- 1.84 D, and 36.21 +/- 1.59 D, respectively, in subgroup 4. In all subgroups of group B, the results of K-reading obtained using the new effective index of refraction were statistically similar to the results obtained by clinical history method (P > .05). Automated K-reading statistically overestimated the K-reading values in subgroups 2, 3, and 4 of group B (P < .001). The use of the new corneal effective index of refraction allows for an accurate derivation of K-reading from the anterior radius of curvature.

  17. Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models

    NASA Astrophysics Data System (ADS)

    Hsieh, Feng-Ju; Wang, Wei-Chih

    2012-09-01

    This paper discusses two improved methods in retrieving effective refractive indices, impedances, and material properties, such as permittivity (ɛ) and permeability (μ), of metamaterials. The first method modified from Kong's retrieval method allows effective constitutive parameters over all frequencies including the anti-resonant band, where imaginary parts of ɛ or μ are negative, to be solved. The second method is based on genetic algorithms and optimization of properly defined goal functions to retrieve parameters of the Drude and Lorentz dispersion models. Equations of effective refractive index and impedance at any reference planes are derived. Split ring resonator-rod based metamaterials operating in terahertz frequencies are designed and investigated with proposed methods. Retrieved material properties and parameters are used to regenerate S-parameters and compared with simulation results generated by cst microwave studio software.

  18. Patient age, refractive index of the corneal stroma, and outcomes of uneventful laser in situ keratomileusis.

    PubMed

    Patel, Sudi; Alió, Jorge L; Walewska, Anna; Amparo, Francisco; Artola, Alberto

    2013-03-01

    To determine the influence of age and the corneal stromal refractive index on the difference between the predicted and actual postoperative refractive error after laser in situ keratomileusis (LASIK) and whether the precision of outcomes could be improved by considering age and the refractive index. Vissum Instituto Oftalmologico de Alicante, Alicante, Spain. Case series. Flaps were created using a mechanical microkeratome. The stromal refractive index was measured using a VCH-1 refractometer after flap lifting. Refractive data were obtained 1, 3, and 6 months postoperatively. Uneventful LASIK was performed in 133 eyes. The mean age, refractive index, and applied corrections were 33.4 years ± 9.49 (SD), 1.368 ± 0.006, and -2.43 ± 3.36 diopters (D), respectively. The difference between the predicted and actual postoperative refractive error = 2.315-0.021 age-1.106 refractive index (F = 3.647, r = 0.254, P=.029; n = 109) at 1 month and = 11.820-0.023 age-7.976 refractive index (F = 3.392, r = 0.261, P=.022, n = 106) at 3 months. A correlation between the actual and calculated postoperative refraction improved from r = -0.178 (P=.064; n = 75) to r = -0.418 (P<.001) after considering the true refractive index 6 months postoperatively. The predicted outcomes of LASIK can be improved by inputting the refractive index of the individual corneal stroma. Unexpected outcomes (>0.50 D) of LASIK could be avoided by considering patient age and the refractive index and by adjusting the applied correction accordingly. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes.

    PubMed

    Charman, W Neil; Adnan; Atchison, David A

    2012-12-01

    Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed.

  20. Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes

    PubMed Central

    Charman, W. Neil; Adnan; Atchison, David A.

    2012-01-01

    Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed. PMID:23243557

  1. Thin-film thickness measurement method based on the reflection interference spectrum

    NASA Astrophysics Data System (ADS)

    Jiang, Li Na; Feng, Gao; Shu, Zhang

    2012-09-01

    A method is introduced to measure the thin-film thickness, refractive index and other optical constants. When a beam of white light shines on the surface of the sample film, the reflected lights of the upper and the lower surface of the thin-film will interfere with each other and reflectivity of the film will fluctuate with light wavelength. The reflection interference spectrum is analyzed with software according to the database, while the thickness and refractive index of the thin-film is measured.

  2. Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance.

    PubMed

    Wu, JunJun; Li, Shuguang; Wang, Xinyu; Shi, Min; Feng, Xinxing; Liu, Yundong

    2018-05-20

    We propose a D-shaped photonic crystal fiber (PCF) refractive index sensor with ultrahigh sensitivity and a wide detection range. The gold layer is deposited on the polished surface, avoiding filling or coating inside the air holes of the PCF. The influences of the gold layer thickness and the diameter of the larger air holes are investigated. The sensing characteristics of the proposed sensor are analyzed by the finite element method. The maximum sensitivity can reach 31,000  nm/RIU, and the refractive index detection range is from 1.32 to 1.40. Our proposed PCF has excellent sensing characteristics and is competitive in sensing devices.

  3. Determination of the effective refractive index spectrum of a quantum-well semiconductor laser diode from the measured modal gain spectrum

    NASA Astrophysics Data System (ADS)

    Wu, Linzhang; Tian, Wei; Gao, Feng

    2004-09-01

    This paper presents a self-consistent method to directly determine the effective refractive-index spectrum of a semiconductor quantum-well (QW) laser diode from the measured modal gain spectrum for a given current. The dispersion spectra of the optical waveguide confinement factor and the strongly carrier-density-dependent refractive index of the QW active layer of the test laser are also accurately obtained. The experimental result from a single QW GaInP/AlGaInP laser diode, which has 6 nm thick compressively strained Ga0.4InP active layer sandwiched by two 80 nm thick Al0.33GaInP, is presented.

  4. Temperature and refractive index measurements using long-period fiber gratings fabricated by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yu, Yongqin; Zheng, Jiarong; Yi, Kai; Ruan, Shuangchen; Du, Chenlin; Huang, Jianhui; Zhong, Wansheng

    2011-12-01

    Long period fiber gratings (LPFGs) with different periods in the standard single mode fiber were fabricated, using laser direct writing method, by femtosecond laser pulses with pulse width of 200 fs and the repetition rate of 250 kHz at a center wavelength of 800 nm in air. Comparative with bare LPFG in temperature sensor, LPFG had been encapsulated using large coefficient of thermal expansion of epoxy polymer and Aluminum to enhance the temperature sensitivity. The results showed that the temperature sensitivity of encapsulated LPFG was 2 times than that of bare LPFG. In addition, we also researched the relationship between resonant wavelength and surrounding refractive index (SRI) when LPFG immersed in refractive index of solution of different index at 20 degree Celsius.

  5. Simple Refractometers for Index Measurements by Minimum Deviation Method from Far-ultraviolet to Near Infrared

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    The focal shift of an optical filter used in non-collimated light depends directly on substrate thickness and index of refraction. The HST Advanced Camera for Surveys (ACS) requires a set of filters whose focal shifts are tightly matched. Knowing the index of refraction for substrate glasses allows precise substrate thicknesses to be specified. Two refractometers have been developed at the Goddard Space Flight Center (GSFC) to determine the indices of refraction of materials from which ACS filters are made. Modem imaging detectors for the near infrared, visible, and far ultraviolet spectral regions make these simple yet sophisticated refractometers possible. A new technology, high accuracy, angular encoder also developed at GSFC makes high precision index measurement possible in the vacuum ultraviolet.

  6. Optofluidic two-dimensional grating volume refractive index sensor.

    PubMed

    Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

    2016-09-10

    We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.

  7. Microvolume index of refraction determinations by interferometric backscatter

    NASA Astrophysics Data System (ADS)

    Bornhop, Darryl J.

    1995-06-01

    A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

  8. Structure variation of the index of refraction of GaAs-AlAs superlattices and multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1985-01-01

    A detailed calculation of the index refraction of various GaAs-AlAs superlattices is presented for the first time. The calculation is performed by using a hybrid approach which combines the k-p method with the pseudopotential technique. Appropriate quantization conditions account for the influence of the superstructures on the electronic properties of the systems. The results of the model are in very good agreement with the experimental data. In comparison with the index of refraction of the corresponding AlGaAs alloy, characterized by the same average mole fraction of Al, the results indicate that the superlattice index of refraction values attain maxima at the various quantized transition energies. For certain structures the difference can be as large as 2 percent. These results suggest that the waveguiding and dispersion relation properties of optoelectronic devices can be tailored to design for specific optical application by an appropriate choice of the superlattice structure parameters.

  9. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  10. Velocimetry with refractive index matching for complex flow configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

    1987-01-01

    The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO{sub 2}) at 14–70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% atmore » a single temperature depending on the deposition method. We also show that the Lorentz–Lorenz approximation is valid for solid CO{sub 2} across the full 14–70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where n {sub vis} and ρ are not measured in the same experimental setup where the IR spectral measurements are made.« less

  12. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  13. Optical phased array using guided resonance with backside reflectors

    DOEpatents

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2016-11-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  14. Lens Design Using Group Indices of Refraction

    NASA Technical Reports Server (NTRS)

    Vaughan, A. H.

    1995-01-01

    An approach to lens design is described in which the ratio of the group velocity to the speed of light (the group index) in glass is used, in conjunction with the more familiar phase index of refraction, to control certain chromatic properties of a system of thin lenses in contact. The first-order design of thin-lens systems is illustrated by examples incorporating the methods described.

  15. Optical phased array using guided resonance with backside reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2018-03-13

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  16. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2018-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  17. Hollow Rodlike MgF2 with an Ultralow Refractive Index for the Preparation of Multifunctional Antireflective Coatings.

    PubMed

    Bao, Lei; Ji, Zihan; Wang, Hongning; Chen, Ruoyu

    2017-06-27

    Antireflective coatings with superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength have important practical value. In this research, hollow nanorod-like MgF 2 sols with different void volumes were prepared by a template-free solvothermal method to further obtain hollow nanorod-like MgF 2 crystals with an ultralow refractive index of 1.14. Besides, a MgF 2 coating with an adjustable refractive index of 1.10-1.35 was also prepared by the template-free solvothermal method. Then through the combination of base/acid two-step-catalyzed TEOS and hydroxyl modification on the surface of nanosilica spheres, the SiO 2 coating with good mechanical strength, a flat surface, and a refractive index of 1.30-1.45 was obtained. Double-layer broadband antireflective coatings with an average transmittance of 99.6% at 400-1400 nm were designed using the relevant optical theory. After the coating thickness was optimized by the dip-coating method, the double-layer antireflective coatings, whose parameters were consistent with those designed by the theory, were obtained. The bottom layer was a SiO 2 coating with a refractive index of 1.34 and a thickness of 155 nm, and the top layer was a hollow rodlike MgF 2 coating with a refractive index of 1.10 and a thickness of 165 nm. The average transmittance of the obtained MgF 2 -SiO 2 antireflective coatings was 99.1% at 400-1400 nm, which was close to the theoretical value. The hydrophobic angle of the coating surface reached 119° at first, and the angle further reached 152° after conducting surface modification by PFOTES. In addition, because the porosity of the coating surface was only 10.7%, the pencil hardness of the coating surface was 5 H and the critical load Lc was 27.05 N. In summary, the obtained antireflective coatings possessed superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength.

  18. Simultaneous reconstruction of 3D refractive index, temperature, and intensity distribution of combustion flame by double computed tomography technologies based on spatial phase-shifting method

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei

    2017-06-01

    In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.

  19. Refractive-index-matched hydrogel materials for measuring flow-structure interactions

    NASA Astrophysics Data System (ADS)

    Byron, Margaret L.; Variano, Evan A.

    2013-02-01

    In imaging-based studies of flow around solid objects, it is useful to have materials that are refractive-index-matched to the surrounding fluid. However, materials currently in use are usually rigid and matched to liquids that are either expensive or highly viscous. This does not allow for measurements at high Reynolds number, nor accurate modeling of flexible structures. This work explores the use of two hydrogels (agarose and polyacrylamide) as refractive-index-matched models in water. These hydrogels are inexpensive, can be cast into desired shapes, and have flexibility that can be tuned to match biological materials. The use of water as the fluid phase allows this method to be implemented immediately in many experimental facilities and permits investigation of high-Reynolds-number phenomena. We explain fabrication methods and present a summary of the physical and optical properties of both gels, and then show measurements demonstrating the use of hydrogel models in quantitative imaging.

  20. Optical parameters of the tunable Bragg reflectors in squid.

    PubMed

    Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2013-08-06

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.

  1. Optical parameters of the tunable Bragg reflectors in squid

    PubMed Central

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2013-01-01

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack—the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures. PMID:23740489

  2. Index of Refraction Measurements Using a Laser Distance Meter

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  3. Use of supernatant refractive index and supernatant hemoglobin concentration to assess residual glycerol concentration in cryopreserved red blood cells.

    PubMed

    Wong, Kenneth A; Nsier, Nada; Acker, Jason P

    2009-10-01

    Red blood cells (RBCs) cryopreserved in glycerol must be deglycerolized prior to transfusion. The adequacy of glycerol removal is commonly assessed by measurement of the refractive index (RI) of the supernatant fluid. However, the presence of free hemoglobin in the supernatant falsely increases the RI and may lead to discard of units that have an acceptable residual glycerol concentration. We performed an analysis of the diagnostic accuracy of 3 methods for residual glycerol measurement - refractometry, osmometry, and a glycerol assay kit. Residual glycerol measurement using these methods was performed on 12 deglycerolized, citrate-phosphate-dextrose (CPD)/saline-adenine-glucose-mannitol (SAGM) leukoreduced RBCs. A calculation that estimates the glycerol concentration based on the refractive index and supernatant hemoglobin concentration was developed and ensures that units with an elevated RI due to the presence of hemoglobin are not discarded if their residual glycerol concentration was <1.0% (w/v). Osmometry was an accurate method for estimating residual glycerol concentration. Refractometry overestimated the residual glycerol concentration due to the interference from hemoglobin. However, when supernatant hemoglobin values were measured and used in the calculation for glycerol concentration, refractometry accurately estimated the residual glycerol concentration. The residual glycerol concentration of cryopreserved, deglycerolized CPD/SAGM RBCs can be accurately estimated using the supernatant refractive index and an equation that accounts for the supernatant hemoglobin concentration.

  4. Fundamental characteristics of a dual-colour fibre optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Suzuki, Hitoshi; Sugimoto, Mitsunori; Matsui, Yoshikazu; Kondoh, Jun

    2006-06-01

    In this paper, we present the fundamental characteristics of a novel dual-colour optical fibre surface plasmon resonance (SPR) sensor for a portable low-cost sensing system. The principle of the proposed SPR sensor is based on the differential reflectance method. Light from two light-emitting diodes (LEDs), which are flashing alternately with different wavelengths, is fed to a sensor via two optical couplers. The reflected light is detected by a photodiode. Changes of reflectance at two wavelengths are proportional to the refractive index change of the medium of interest. Taking the difference in reflectance at two wavelengths improves the sensitivity almost twofold. Measuring ethanol solutions with different refractive indices reveals that the sensor has a linear response to the refractive index change from 1.333 to 1.3616. By measuring the stability in the time response we estimate that the limit of detection (LOD) of the refractive index is 5.2 × 10-4.

  5. Direct index of refraction measurements at extreme-ultraviolet and soft-x-ray wavelengths.

    PubMed

    Rosfjord, Kristine; Chang, Chang; Miyakawa, Ryan; Barth, Holly; Attwood, David

    2006-03-10

    Coherent radiation from undulator beamlines has been used to directly measure the real and imaginary parts of the index of refraction of several materials at both extreme-ultraviolet and soft-x-ray wavelengths. Using the XOR interferometer, we measure the refractive indices of silicon and ruthenium, essential materials for extreme-ultraviolet lithography. Both materials are tested at wavelength (13.4 nm) and across silicon's L2 (99.8 eV) and L3 (99.2 eV) absorption edges. We further extend this direct phase measurement method into the soft-x-ray region, where measurements of chromium and vanadium are performed around their L3 absorption edges at 574.1 and 512.1 eV, respectively. These are the first direct measurements, to our knowledge, of the real part of the index of refraction made in the soft-x-ray region.

  6. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    NASA Astrophysics Data System (ADS)

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  7. Elastic and Inelastic Light Scattering by Microdroplets

    NASA Astrophysics Data System (ADS)

    Huckaby, James Longinus

    A technique for simultaneously determining microdroplet radius, refractive index and its dispersion is developed and demonstrated for three droplet compounds. Based on the accurate determination of the spectral positions of a set of scattered field optical resonances, the technique is shown to provide size and refractive index values to within a relative error of 5 times 10^{-5}, while also providing the refractive index as a function of wavenumber. A method for unambiguously distinguishing droplet growth by the formation of a layer from homogeneous growth is presented and demonstrated. This method employs the precise determination of the spectral positions of optical resonances associated with the transverse magnetic (TM) and transverse electric (TE) scattered fields from a sphere. The method relies upon the observation that the formation of a coating having a different refractive index than the core droplet results in substantially different spectral shifts of the scattered TE and TM resonances. This method was applied to examine absorption and coating events. Droplet size changes of as small as 3.0 nm due to the absorption of vapor were induced and measured. Coatings of perfluorinated polyether on polyphenol ether droplets were generated and shown to produce peak shifts consistent with theory. The observation of a large number of internal field resonances of the droplet with the incident wavenumber in the Raman spectra of microdroplets is reported. An argument based on the observed density of these internal resonances is made for the observation of all internal field resonances through the techniques described.

  8. All-dielectric three-dimensional broadband Eaton lens with large refractive index range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Ming; Yong Tian, Xiao, E-mail: leoxyt@mail.xjtu.edu.cn; Ling Wu, Ling

    2014-03-03

    We proposed a method to realize three-dimensional (3D) gradient index (GRIN) devices requiring large refractive index (RI) range with broadband performance. By combining non-resonant GRIN woodpile photonic crystals structure in the metamaterial regime with a compound liquid medium, a wide RI range (1–6.32) was fulfilled flexibly. As a proof-of-principle for the low-loss and non-dispersive method, a 3D Eaton lens was designed and fabricated based on 3D printing process. Full-wave simulation and experiment validated its omnidirectional wave bending effects in a broad bandwidth covering Ku band (12 GHz–18 GHz)

  9. Nonbulk motion system for simultaneously measuring the refractive index and thickness of a sample using tunable optics and spatial signal processing-based Gaussian beam imaging.

    PubMed

    Reza, Syed Azer; Qasim, Muhammad

    2016-01-10

    This paper presents a novel approach to simultaneously measuring the thickness and refractive index of a sample. The design uses an electronically controlled tunable lens (ECTL) and a microelectromechanical-system-based digital micromirror device (DMD). The method achieves the desired results by using the DMD to characterize the spatial profile of a Gaussian laser beam at different focal length settings of the ECTL. The ECTL achieves tunable lensing through minimal motion of liquid inside a transparent casing, whereas the DMD contains an array of movable micromirrors, which make it a reflective spatial light modulator. As the proposed system uses an ECTL, a DMD, and other fixed optical components, it measures the thickness and refractive index without requiring any motion of bulk components such as translational and rotational stages. A motion-free system improves measurement repeatability and reliability. Moreover, the measurement of sample thickness and refractive index can be completely automated because the ECTL and DMD are controlled through digital signals. We develop and discuss the theory in detail to explain the measurement methodology of the proposed system and present results from experiments performed to verify the working principle of the method. Refractive index measurement accuracies of 0.22% and 0.2% were achieved for two BK-7 glass samples used, and the thicknesses of the two samples were measured with a 0.1 mm accuracy for each sample, corresponding to a 0.39% and 0.78% measurement error, respectively, for the aforementioned samples.

  10. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    PubMed

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  11. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  12. In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber.

    PubMed

    Yang, Jing; Guan, Chunying; Tian, Peixuan; Yuan, Tingting; Zhu, Zheng; Li, Ping; Shi, Jinhui; Yang, Jun; Yuan, Libo

    2017-11-01

    We propose a novel and simple in-fiber refractive index sensor based on resonant coupling, constructed by a short section of single eccentric hole-assisted dual-core fiber (SEHADCF) spliced between two single-mode fibers. The coupling characteristics of the SEHADCF are calculated numerically. The strong resonant coupling occurs when the fundamental mode of the center core phase-matches to that of the suspended core in the air hole. The effective refractive index of the fundamental mode of the suspended core can be obviously changed by injecting solution into the air hole. The responses of the proposed devices to the refractive index and temperature are experimentally measured. The refractive index sensitivity is 627.5 nm/refractive index unit in the refractive index range of 1.335-1.385. The sensor without solution filling is insensitive to temperature in the range of 30-90°C. The proposed refractive index sensor has outstanding advantages, such as simple fabrication, good mechanical strength, and excellent microfluidic channel, and will be of importance in biological detection, chemical analysis, and environment monitoring.

  13. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    PubMed

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  14. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    PubMed Central

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  15. Refractive index sensor based on total scattering of plasmonic nanotube

    NASA Astrophysics Data System (ADS)

    Yao, Kaiqiang; Zeng, Qingbing; Hu, Zengrong; Zhan, Yaohui

    2018-03-01

    Plasmonic nanostructures can couple free space light into anultrafine space; therefore,they are employed extensively in the refractive index sensors to minimize the device size or further improve the detection sensitivity. In this work, the optical response of the plasmonic nanotube are investigated comprehensively by using full wave finite element method. With a subwavelength scale, the silver nanotube have prominent scattering peaks in the visible range, which is very suitable for observing through the dark field microscope. The geometric dependence of the scattering spectra and the sensing performance are evaluated carefully. Results show that the scattering peaks are in linear relationship to the circumstance refractive index and a sensitivity of 337 nm/RIUcan be achieved easily by such a plasmonicnanotube with an optimized size.

  16. Spectrum online-tunable Mach-Zehnder interferometer based on step-like tapers and its refractive index sensing characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Chen, Mao-qing; Xia, Feng; Hu, Hai-feng

    2017-11-01

    A novel refractive index (RI) sensor based on an asymmetrical Mach-Zehnder interferometer (MZI) with two different step-like tapers is proposed. The step-like taper is fabricated by fusion splicing two half tapers with an appropriate offset. By further applying offset and discharging to the last fabricated step-like taper of MZI, influence of taper parameters on interference spectrum is investigated using only one device. This simple technique provides an on-line method to sweep parameters of step-like tapers and speeds up the optimization process of interference spectrum, meanwhile. In RI sensing experiment, the sensor has a high sensitivity of -185.79 nm/RIU (refractive index unit) in the RI range of 1.3333-1.3673.

  17. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  18. New analytical technique for carbon dioxide absorption solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive indexmore » models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.« less

  19. Fermat's principle and the formal equivalence of local light-ray rotation and refraction at the interface between homogeneous media with a complex refractive index ratio.

    PubMed

    Sundar, Bhuvanesh; Hamilton, Alasdair C; Courtial, Johannes

    2009-02-01

    We derive a formal description of local light-ray rotation in terms of complex refractive indices. We show that Fermat's principle holds, and we derive an extended Snell's law. The change in the angle of a light ray with respect to the normal of a refractive index interface is described by the modulus of the refractive index ratio; the rotation around the interface normal is described by the argument of the refractive index ratio.

  20. Numerical methods for the design of gradient-index optical coatings.

    PubMed

    Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana

    2012-12-01

    We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.

  1. Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling.

    PubMed

    Tan, Siyu; Yan, Fengping; Singh, Leena; Cao, Wei; Xu, Ningning; Hu, Xiang; Singh, Ranjan; Wang, Mingwei; Zhang, Weili

    2015-11-02

    The realization of high refractive index is of significant interest in optical imaging with enhanced resolution. Strongly coupled subwavelength resonators were proposed and demonstrated at both optical and terahertz frequencies to enhance the refractive index due to large induced dipole moment in meta-atoms. Here, we report an alternative design for flexible free-standing terahertz metasurface in the strong coupling regime where we experimentally achieve a peak refractive index value of 14.36. We also investigate the impact of the nearest neighbor coupling in the form of frequency tuning and enhancement of the peak refractive index. We provide an analytical circuit model to explain the impact of geometrical parameters and coupling on the effective refractive index of the metasurface. The proposed meta-atom structure enables tailoring of the peak refractive index based on nearest neighbor coupling and this property offers tremendous design flexibility for transformation optics and other index-gradient devices at terahertz frequencies.

  2. Invited Article: Refractive index matched scanning of dense granular materials

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua A.; Rietz, Frank; Lőrincz, Kinga A.; van Hecke, Martin; Losert, Wolfgang

    2012-01-01

    We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then visualized by exciting, layer by layer, the fluorescent dye in the fluid phase. We collect references and unreported experimental know-how to provide a solid background for future development of the technique, both for new and experienced users.

  3. Analysis of Blood Serum by the Method of Refractometry in Antitumor Therapy in Patients with Multiple Myeloma

    NASA Astrophysics Data System (ADS)

    Plotnikova, L. V.; Polyanichko, A. M.; Kobeleva, M. O.; Nikekhin, A. A.; Uspenskaya, M. V.; Kayava, A. V.; Garifullin, A. D.; Voloshin, S. V.

    2018-01-01

    The serum of patients with multiple myeloma was examined by refractometric methods before and after the course of antitumor therapy. It was found that the amount of protein in the serum of patients with multiple myeloma, determined by the value of the serum refractive index, tended to decrease after the course of treatment. The value of the refractive index of blood serum can be used as an additional criterion for assessing the dynamics of changes in blood-serum properties during antitumor therapy.

  4. Refractive index of liquid mixtures: theory and experiment.

    PubMed

    Reis, João Carlos R; Lampreia, Isabel M S; Santos, Angela F S; Moita, Maria Luísa C J; Douhéret, Gérard

    2010-12-03

    An innovative approach is presented to interpret the refractive index of binary liquid mixtures. The concept of refractive index "before mixing" is introduced and shown to be given by the volume-fraction mixing rule of the pure-component refractive indices (Arago-Biot formula). The refractive index of thermodynamically ideal liquid mixtures is demonstrated to be given by the volume-fraction mixing rule of the pure-component squared refractive indices (Newton formula). This theoretical formulation entails a positive change of refractive index upon ideal mixing, which is interpreted in terms of dissimilar London dispersion forces centred in the dissimilar molecules making up the mixture. For real liquid mixtures, the refractive index of mixing and the excess refractive index are introduced in a thermodynamic manner. Examples of mixtures are cited for which excess refractive indices and excess molar volumes show all of the four possible sign combinations, a fact that jeopardises the finding of a general equation linking these two excess properties. Refractive indices of 69 mixtures of water with the amphiphile (R,S)-1-propoxypropan-2-ol are reported at five temperatures in the range 283-303 K. The ideal and real refractive properties of this binary system are discussed. Pear-shaped plots of excess refractive indices against excess molar volumes show that extreme positive values of excess refractive index occur at a substantially lower mole fraction of the amphiphile than extreme negative values of excess molar volume. Analysis of these plots provides insights into the mixing schemes that occur in different composition segments. A nearly linear variation is found when Balankina's ratios between excess and ideal values of refractive indices are plotted against ratios between excess and ideal values of molar volumes. It is concluded that, when coupled with volumetric properties, the new thermodynamic functions defined for the analysis of refractive indices of liquid mixtures give important complementary information on the mixing process over the whole composition range.

  5. Long period grating refractive-index sensor: optimal design for single wavelength interrogation.

    PubMed

    Kapoor, Amita; Sharma, Enakshi K

    2009-11-01

    We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).

  6. Compact eccentric long period grating with improved sensitivity in low refractive index region.

    PubMed

    Shen, Fangcheng; Zhou, Kaiming; Gordon, Neil; Zhang, Lin; Shu, Xuewen

    2017-07-10

    We demonstrate a compact eccentric long period grating with enhanced sensitivity in low refractive index region. With a period designed at 15 µm for coupling light to high order cladding modes, the grating is more sensitive to surrounding refractive index in low refractive index region. The intrinsically low coupling coefficients for those high order cladding modes are significantly improved with the eccentric localized inscription induced by the femtosecond laser. The fabricated grating is compact with a length of 4.05 mm, and exhibits an average sensitivity of ~505 nm/RIU in low refractive index region (1.3328-1.3544). The proposed principle can also work in other refractive index region with a proper choice of the resonant cladding modes.

  7. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices.

    PubMed

    Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V; Fleischer, Karsten

    2016-09-13

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.

  8. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  9. Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals

    NASA Astrophysics Data System (ADS)

    Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.

    2016-09-01

    We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.

  10. Regional variation in the refractive-index of the bovine and human cornea.

    PubMed

    Vasudevan, Balamurali; Simpson, Trefford L; Sivak, Jacob G

    2008-10-01

    Given the refractive importance of the human cornea, surprisingly little attention has been directed to the study of local variation in corneal refractive-index. This in vitro and in vivo study measures the refractive-index of different portions of the bovine and human cornea. Fifty fresh bovine corneas (obtained from an abattoir) and 10 human subjects were used for the study. The refractive-index of the central, nasal, and temporal corneal epithelium was measured with a bench-top Abbe refractometer in the case of bovine corneas and with a hand-held refractometer with humans. The mean (+/-standard deviation) refractive-indices of the central, nasal, and temporal bovine corneal epithelium were 1.3760 (+/-0.003), 1.3757 (+/-0.002), and 1.3746 (+/-0.002), respectively. Refractive-indices of the anterior and posterior bovine corneal stroma were 1.3731 (+/-0.002) and 1.3708 (+/-0.004), respectively. The mean (+/-standard deviation) refractive-index in the central, nasal, and temporal periphery of the human cornea epithelium were 1.3970 (+/-0.001), 1.3946 (+/-0.001), and 1.3940 (+/-0.001), respectively. There are small local differences in the refractive-index of the bovine and human corneal epithelium and the refractive-index of the epithelium is higher than that of the anterior and posterior stroma of the bovine cornea.

  11. Gradient-index crystalline lens model: A new method for determining the paraxial properties by the axial and field rays

    NASA Astrophysics Data System (ADS)

    Rama, María. Angeles; Pérez, María. Victoria; Bao, Carmen; Flores-Arias, María. Teresa; Gómez-Reino, Carlos

    2005-05-01

    Gradient-index (GRIN) models of the human lens have received wide attention in optometry and vision sciences for considering the effect of inhomogeneity of the refractive index on the optical properties of the lens. This paper uses the continuous asymmetric bi-elliptical model to determine analytically cardinal elements, magnifications and refractive power of the lens by the axial and field rays in order to study the paraxial light propagation through the human lens from its GRIN nature.

  12. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly.

    PubMed

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-09-29

    The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

  13. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    PubMed Central

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-01-01

    The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

  14. O the Determination of the Complex Refractive Index of Powdered Materials in the 9 TO 11 Micrometer Spectral Region Utilizing AN Attenuated Total Reflectance Technique.

    NASA Astrophysics Data System (ADS)

    Gillespie, James Bryce

    1982-03-01

    A specific method of determining the complex refractive index of powdered materials using attenuated total reflectance (ATR) spectroscopy was investigated. A very precise laser/goniometric ATR system was assembled and applied to powdered samples of carbon blacks, graphite, kaolin clay, quartz, calcite, and sodalime glass beads. The reflectivity data fell into two categories: (1) data representative of a medium having a unique effective refractive index and (2) data representative of a scattering medium having no unique refractive index. Data of the first kind were obtained from all the carbon black, graphite, and kaolin clay samples. The Fahrenfort-Visser solution of the Fresnel equations was applied to the goniometric reflectivity data for these samples to obtain the complex refractive index of these effective media. The complex refractive index obtained in this manner is not that of the bulk material but is instead a value which may be related to the bulk material value through some refractive index mixing rule. A systematic experiment using carbon black of particle size 0.0106 mm diameter was conducted to determine the applicability of several mixture rules for the volume packing fraction range of .2 to .6 which is most often encountered. The Bruggemann effective medium theory produced credible results while the Lorentz-Lorenz rule and the empirical Biot-Arago rule were invalid in this volume packing region. The Bruggemann rule was applied to lampblack, Mogul-L carbon black, graphite, and kaolin clay to obtain the complex refractive indices of these materials from the ATR spectroscopy data. Goniometric reflectivity data representative of an inhomogeneous scattering medium were obtained from all the powdered quartz, powdered calcite, and sodalime glass beads samples. These samples all contained particles with diameters nearly as large as the wavelength. These data demonstrate that the ATR technique, coupled with an effective medium analysis, may be used to obtain optical constants of powdered materials only when the particles are small compared to the wavelength.

  15. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.

    PubMed

    Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Pascual, Daniel; Marcos, Susana

    2013-06-28

    The optical properties of the crystalline lens are determined by its shape and refractive index distribution. However, to date, those properties have not been measured together in the same lens, and therefore their relative contributions to optical aberrations are not fully understood. The shape, the optical path difference, and the focal length of ten porcine lenses (age around 6 months) were measured in vitro using Optical Coherence Tomography and laser ray tracing. The 3D Gradient Refractive Index distribution (GRIN) was reconstructed by means of an optimization method based on genetic algorithms. The optimization method searched for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens in 18 different meridians. Spherical aberration and astigmatism of the lenses were estimated using computational ray tracing, with the reconstructed GRIN lens and an equivalent homogeneous refractive index. For all lenses the posterior radius of curvature was systematically steeper than the anterior one, and the conic constant of both the anterior and posterior positive surfaces was positive. In average, the measured focal length increased with increasing pupil diameter, consistent with a crystalline lens negative spherical aberration. The refractive index of nucleus and surface was reconstructed to an average value of 1.427 and 1.364, respectively, for 633 nm. The results of the GRIN reconstruction showed a wide distribution of the index in all lens samples. The GRIN shifted spherical aberration towards negative values when compared to a homogeneous index. A negative spherical aberration with GRIN was found in 8 of the 10 lenses. The presence of GRIN also produced a decrease in the total amount of lens astigmatism in most lenses, while the axis of astigmatism was only little influenced by the presence of GRIN. To our knowledge, this study is the first systematic experimental study of the relative contribution of geometry and GRIN to the aberrations in a mammal lens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.

    PubMed

    Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2017-04-06

    A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.

  17. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs

    PubMed Central

    Wu, Guanhao; Takahashi, Mayumi; Arai, Kaoru; Inaba, Hajime; Minoshima, Kaoru

    2013-01-01

    Optical frequency combs have become an essential tool for distance metrology, showing great advantages compared with traditional laser interferometry. However, there is not yet an appropriate method for air refractive index correction to ensure the high performance of such techniques when they are applied in air. In this study, we developed a novel heterodyne interferometry technique based on two-colour frequency combs for air refractive index correction. In continuous 500-second tests, a stability of 1.0 × 10−11 was achieved in the measurement of the difference in the optical distance between two wavelengths. Furthermore, the measurement results and the calculations are in nearly perfect agreement, with a standard deviation of 3.8 × 10−11 throughout the 10-hour period. The final two-colour correction of the refractive index of air over a path length of 61 m was demonstrated to exhibit an uncertainty better than 1.4 × 10−8, which is the best result ever reported without precise knowledge of environmental parameters. PMID:23719387

  18. Refractive index determination using the central focal masking technique with dispersion colors.

    USGS Publications Warehouse

    Wilcox, R.E.

    1983-01-01

    The procedures, precision, advantages and limitations of central focal masking ("dispersion staining'), a technique for determining the refractive indices of microfragments by the immersion method and for distinguishing between minerals in an immersion mount, are described. -J.A.Z.

  19. Refraction index sensor based on phase resonances in a subwavelength structure with double period.

    PubMed

    Skigin, Diana C; Lester, Marcelo

    2016-10-01

    In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.

  20. Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.

    PubMed

    Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay

    2018-03-05

    We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.

  1. Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating.

    PubMed

    Binfeng, Yun; Guohua, Hu; Ruohu, Zhang; Yiping, Cui

    2014-11-17

    A nanometric and high sensitive refractive index sensor based on the metal-insulator-metal plasmonic Bragg grating is proposed. The wavelength encoded sensing characteristics of the refractive index sensor were investigated by analyzing its transmission spectrum. The numerical results show that a good linear relationship between the Bragg wavelength and the refractive index of the sensing material can be obtained, which is in accordance with the analytical results very well. A high refractive index sensitivity of 1,488 nm/RIU around Bragg resonance wavelength of 1,550 nm was obtained. Besides, the simulation results show that the sensitivity is depended on the Bragg resonance wavelength and the longer the Bragg resonance wavelength, the higher sensitivity can be obtained. Furthermore, the figure of merit of the refractive index sensor can be greatly increased by introducing a nano-cavity in the proposed plasmonic Bragg grating structure. This work pave the way for high sensitive nanometric refractive index sensor design and application.

  2. Age-dependence of the average and equivalent refractive indices of the crystalline lens

    PubMed Central

    Charman, W. Neil; Atchison, David A.

    2013-01-01

    Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required. PMID:24466474

  3. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  4. Holographic Optical Elements with Ultra-High Spatial Frequencies.

    DTIC Science & Technology

    1983-01-01

    optical film thickness is equal to one-quarter of the wavelength of the incident radiation and the film’s index of refraction is...Am amount of photoresist material removed by developer N diffractive order number n index of refraction nx index of refraction -- x direction ny index ...since a material with the required index of refraction is usually hard to find4 7 . For example, there is no inorganic material available for

  5. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshehri, Bandar; Dogheche, Elhadj, E-mail: elhadj.dogheche@univ-valenciennes.fr; Lee, Seung-Min

    2014-08-04

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report heremore » the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.« less

  6. Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating.

    PubMed

    Huang, Xue-Feng; Chen, Zhe-Min; Shao, Li-Yang; Cen, Ke-Fa; Sheng, De-Ren; Chen, Jun; Zhou, Hao

    2008-02-01

    A refractive index sensor based on the thinned and microstructure fiber Bragg grating (ThMs-FBG) was proposed and realized as a chemical sensing. The numerical simulation for the reflectance spectrum of the ThMs-FBG was calculated and the phase shift down-peak could be observed from the reflectance spectrum. Many factors influencing the reflectance spectrum were considered in detail for simulation, including the etched depth, length, and position. The sandwich-solution etching method was utilized to realize the microstructure of the ThMs-FBG, and the photographs of the microstructure were obtained. Experimental results demonstrated that the reflectance spectrum, phase shift down-peak wavelength, and reflected optical intensity of the ThMs-FBG all depended on the surrounding refractive index. However, only the down-peak wavelength of the ThMs-FBG changed with the surrounding temperature. Under the condition that the length and cladding diameter of the ThMs-FBG microstructure were 800 and 14 mum, respectively, and the position of the microstructure of the ThMs-FBG is in the middle of grating region, the refractive index sensitivity of the ThMs-FBG was 0.79 nm/refractive index unit with the wide range of 1.33-1.457 and a high resolution of 1.2 x 10(-3). The temperature sensitivity was 0.0103 nm/ degrees C, which was approximately equal to that of common FBG.

  7. Calculation of Ophthalmic Viscoelastic Device–Induced Focus Shift During Femtosecond Laser–Assisted Cataract Surgery

    PubMed Central

    de Freitas, Carolina P.; Cabot, Florence; Manns, Fabrice; Culbertson, William; Yoo, Sonia H.; Parel, Jean-Marie

    2015-01-01

    Purpose. To assess if a change in refractive index of the anterior chamber during femtosecond laser-assisted cataract surgery can affect the laser beam focus position. Methods. The index of refraction and chromatic dispersion of six ophthalmic viscoelastic devices (OVDs) was measured with an Abbe refractometer. Using the Gullstrand eye model, the index values were used to predict the error in the depth of a femtosecond laser cut when the anterior chamber is filled with OVD. Two sources of error produced by the change in refractive index were evaluated: the error in anterior capsule position measured with optical coherence tomography biometry and the shift in femtosecond laser beam focus depth. Results. The refractive indices of the OVDs measured ranged from 1.335 to 1.341 in the visible light (at 587 nm). The error in depth measurement of the refilled anterior chamber ranged from −5 to +7 μm. The OVD produced a shift of the femtosecond laser focus ranging from −1 to +6 μm. Replacement of the aqueous humor with OVDs with the densest compound produced a predicted error in cut depth of 13 μm anterior to the expected cut. Conclusions. Our calculations show that the change in refractive index due to anterior chamber refilling does not sufficiently shift the laser beam focus position to cause the incomplete capsulotomies reported during femtosecond laser–assisted cataract surgery. PMID:25626971

  8. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

    PubMed Central

    Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten

    2016-01-01

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales. PMID:27623228

  9. Refractive index variance of cells and tissues measured by quantitative phase imaging.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Popescu, Gabriel

    2017-01-23

    The refractive index distribution of cells and tissues governs their interaction with light and can report on morphological modifications associated with disease. Through intensity-based measurements, refractive index information can be extracted only via scattering models that approximate light propagation. As a result, current knowledge of refractive index distributions across various tissues and cell types remains limited. Here we use quantitative phase imaging and the statistical dispersion relation (SDR) to extract information about the refractive index variance in a variety of specimens. Due to the phase-resolved measurement in three-dimensions, our approach yields refractive index results without prior knowledge about the tissue thickness. With the recent progress in quantitative phase imaging systems, we anticipate that using SDR will become routine in assessing tissue optical properties.

  10. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam.

    PubMed

    Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo

    2018-06-15

    We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.

  11. Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.

  12. Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach-Zehnder interferometer.

    PubMed

    Hong, Chin-Yih; Chieh, Jen-Jie; Yang, Shieh-Yueh; Yang, Hong-Chang; Horng, Herng-Er

    2009-10-10

    We use a heterodyne Mach-Zehnder interferometer to simultaneously and simply measure the complex refractive index by only normal incidence on the specimen, instead of using a complicated measurement procedure or instrument that only measures the real or imaginary part of the complex refractive index. To study the tiny variation of the complex refractive index, the small complex refractive-index variation of a rare-concentration magnetic-fluid thin film, due to a weak field of less than 200 Oe, was processed by this interferometer. We also present the wavelength trend of the complex refractive index of magnetic fluids to verify the appearance of the slight change in a small wavelength range.

  13. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    PubMed

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the refractive index of a sample.

  14. Z-scan theoretical and experimental studies for accurate measurements of the nonlinear refractive index and absorption of optical glasses near damage threshold

    NASA Astrophysics Data System (ADS)

    Olivier, Thomas; Billard, Franck; Akhouayri, Hassan

    2004-06-01

    Self-focusing is one of the dramatic phenomena that may occur during the propagation of a high power laser beam in a nonlinear material. This phenomenon leads to a degradation of the wave front and may also lead to a photoinduced damage of the material. Realistic simulations of the propagation of high power laser beams require an accurate knowledge of the nonlinear refractive index γ. In the particular case of fused silica and in the nanosecond regime, it seems that electronic mechanisms as well as electrostriction and thermal effects can lead to a significant refractive index variation. Compared to the different methods used to measure this parmeter, the Z-scan method is simple, offers a good sensitivity and may give absolute measurements if the incident beam is accurately studied. However, this method requires a very good knowledge of the incident beam and of its propagation inside a nonlinear sample. We used a split-step propagation algorithm to simlate Z-scan curves for arbitrary beam shape, sample thickness and nonlinear phase shift. According to our simulations and a rigorous analysis of the Z-scan measured signal, it appears that some abusive approximations lead to very important errors. Thus, by reducing possible errors on the interpretation of Z-scan experimental studies, we performed accurate measurements of the nonlinear refractive index of fused silica that show the significant contribution of nanosecond mechanisms.

  15. Photonic crystal-based optical biosensor: a brief investigation

    NASA Astrophysics Data System (ADS)

    Divya, J.; Selvendran, S.; Sivanantha Raja, A.

    2018-06-01

    In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.

  16. Change in refractive index of muscle tissue during laser-induced interstitial thermotherapy.

    PubMed

    Chen, Na; Chen, Meimei; Liu, Shupeng; Guo, Qiang; Chen, Zhenyi; Wang, Tingyun

    2014-01-01

    This paper presents a long-period fiber-grating (LPG) based Michelson interferometric refractometry to monitor the change in refractive index of porcine muscle during laser-induced interstitial thermotherapy (LITT). As the wavelength of RI interferometer alters with the change in refractive index around the probe, the LPG based refractometry is combined with LITT system to measure the change in refractive index of porcine muscle when irradiated by laser. The experimental results show the denaturation of tissue alters the refractive index significantly and the LPG sensor can be applied to monitor the tissue state during the LITT.

  17. Refractive index sensor based on a polymer fiber directional coupler for low index sensing.

    PubMed

    Lee, Kwang Jo; Liu, Xiaoqi; Vuillemin, Nelly; Lwin, Richard; Leon-Saval, Sergio G; Argyros, Alexander; Kuhlmey, Boris T

    2014-07-14

    We propose, numerically analyze and experimentally demonstrate a novel refractive index sensor specialized for low index sensing. The device is based on a directional coupler architecture implemented in a single microstructured polymer optical fiber incorporating two waveguides within it: a single-mode core and a satellite waveguide consisting of a hollow high-index ring. This hollow channel is filled with fluid and the refractive index of the fluid is detected through changes to the wavelength at which resonant coupling occurs between the two waveguides. The sensor design was optimized for both higher sensitivity and lower detection limit, with simulations and experiments demonstrating a sensitivity exceeding 1.4 × 10(3) nm per refractive index unit. Simulations indicate a detection limit of ~2 × 10(-6) refractive index units is achievable. We also numerically investigate the performance for refractive index changes localized at the surface of the holes, a case of particular importance for biosensing.

  18. Optical properties of spin-on deposited low temperature titanium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rantala, J. T.; Kärkkäinen, A. H. O.

    2003-06-01

    This letter presents a method to fabricate high quality, high refractive index titanium oxide thin films by applying liquid phase spin-on deposition combined with low temperature annealing. The synthesis of the liquid form titanium oxide material is carried out using a sol-gel synthesis technique. The material can be annealed at low temperature (150 C°) to achieve relatively high refractive index of 1.94 at 632.8 nm wavelength, whereas annealing at 350 C° results in index of 2.03 at 632.8 nm. Film depositions are demonstrated on silicon substrates with 0.5% uniformity in thickness. Refractive indices and extinction coefficients are characterized over a broad wavelength range to demonstrate the optical performance of this novel aqueous phase spin-on deposited hybrid titanium oxide material.

  19. Electromagnetic forces in negative-refractive-index metamaterials: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Galiatsatos, Pavlos G.

    2008-04-01

    According to the theory of Veselago, when a particle immersed within a metamaterial with negative refractive index is illuminated by plane wave, it experiences a reversed radiation force due to the antiparallel directions of the phase velocity and energy flow. By employing an ab initio method, we show that, in the limit of zero losses, the effect of reversed radiation pressure is generally true only for the specular beam. Waves generated by diffraction of the incident light at the surface of the slab of the metamaterial can produce a total force which is parallel to the radiation flow. However, when the actual losses of the materials are taken into account, the phenomenon of reversed radiation force is evident within the whole range of a negative refractive index band.

  20. Effect of change in core width and core refractive index on the switching behavior of a nonlinear Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Srivastava, Arpita; Medhekar, Sarang

    2012-09-01

    The effect of variation of core width and core refractive index on output versus input (O-I) and transmission coefficient versus input (T-I) characteristics of a nonlinear Mach-Zehnder interferometer (NMZI) were investigated for the first time. Beam propagation method has been used for the present investigation. Change of core width and/or core refractive index adds extra liberty for changing the operating power of an NMZI to a desired value. Moreover, it is revealed for the first time that use of only the O-I or T-I characteristic presents an incomplete picture of NMZI switching; both O-I and T-I characteristics of both balanced/imbalanced NMZIs are indispensible for complete understanding of NMZI switching.

  1. Optical properties of γ-irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Madhukumar, R.; Asha, S.; Lakshmeesha Rao, B.; Sarojini, B. K.; Byrappa, K.; Wang, Youjiang; Sangappa, Y.

    2015-11-01

    In the present work the Bombyx mori silk fibroin (SF) films were prepared by the solution casting method and effects of γ-irradiation on the optical properties and optical constants of the films have been studied by using Ultra Violet-Visible (UV-Vis) spectrophotometer. The recorded UV-Vis absorption and transmission spectra have been used to determine the optical band gap (Eg), refractive index (n), extinction coefficient (k), optical conductivity (σopt) and dielectric constants (ε*) of virgin and γ-irradiated films. Reduction in optical band gap and increase in refractive index with increasing radiation dosage were observed. It is also found that there is an increase in dielectric constants with increasing photon energy. The obtained results reveal that the refractive index of the SF films may be efficiently changed by γ-irradiation.

  2. Anneal-induced enhancement of refractive index and hardness of silicophosphate glasses containing six-fold coordinated silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn; Jiang, Qi; Li, Xiang

    2015-01-12

    A considerable number of optical devices have significantly benefited from the development of phosphate glasses as substrate materials. Introducing silica into sodium phosphate is an effective method to enhance its mechanical and optical properties. Through annealing treatment, the tetrahedral silicon oxide network structure (Si{sup (4)}) can be transformed into an octahedral structure (Si{sup (6)}) with more constraints. Here, we use high-temperature Raman and Nuclear Magnetic Resonance to reveal the mechanism of transformation between the Si{sup (4)} and Si{sup (6)} silicon oxide structures. The increase of the Si{sup (6)} content results in the phosphate glasses having higher refractive index and hardness.more » Based on this, the refractive index contribution of SiO{sub 6} is obtained.« less

  3. Influence of Shape and Gradient Refractive Index in the Accommodative Changes of Spherical Aberration in Nonhuman Primate Crystalline Lenses

    PubMed Central

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-01-01

    Purpose. To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Methods. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. Results. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (−0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (−0.124 μm/D). Conclusions. When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation. PMID:23927893

  4. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  5. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins

    PubMed Central

    Strop, Pavel; Brunger, Axel T.

    2005-01-01

    The concentration of detergent in membrane protein preparations can have a critical role on protein stability, function, and the potential for crystallization. Unfortunately, dialysis or protein concentration can lead to an unknown amount of detergent in the final membrane protein preparations. Here we present a method for the determination of detergent concentration based on refractive index of the detergent solution. This method was applied to quantitate the amount of detergent remaining in solution after concentration in various concentrators. We found that the ability of the tested detergents to pass through the molecular weight cutoff membrane correlates well with detergent micelle size. Therefore, the micelle size can be used as a rough guide to estimate the retention of a given detergent in various molecular weight cutoff concentrators. The refractive index method is exceptionally informative when coupled with size exclusion chromatography and light scattering, and can be used to determine the oligomeric state of the membrane protein, the size of a protein-associated micelle, as well as the amount and size of the unbound detergent micelle. PMID:16046633

  6. Quasi-D-shaped optical fiber plasmonic refractive index sensor

    NASA Astrophysics Data System (ADS)

    An, Guowen; Li, Shuguang; Wang, Haiyang; Zhang, Xuenan; Yan, Xin

    2018-03-01

    A quasi-D-shaped photonic crystal fiber plasmonic sensor with a rectangular lattice is proposed by using Au as a plasmonic layer and graphene to enhance the sensing performance. By moving the core to the edge of the fiber, a shorter polishing depth is achieved, which makes the fiber proposed have a greater mechanical strength than other common D-shaped fibers. Benefiting from the natural advantage of the rectangular lattice, the dual sensing channels make the proposed sensor show a maximum wavelength interrogation sensitivity of 3877 nm/RIU with the dynamic refractive index range from 1.33 to 1.42 and a maximum amplitude sensitivity of 1236 RIU-1 with the analyte RI = 1.41 in the visible region. The corresponding resolutions are 2.58 × 10-5 and 8.1 × 10-6 with the methods of the wavelength interrogation method and amplitude- or phase-based method. These advantages make the proposed sensor a competitive candidate for biosensing in the field of refractive index detection, such as water quality analysis, clinical medicine detection, and pharmaceutical testing.

  7. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins.

    PubMed

    Strop, Pavel; Brunger, Axel T

    2005-08-01

    The concentration of detergent in membrane protein preparations can have a critical role on protein stability, function, and the potential for crystallization. Unfortunately, dialysis or protein concentration can lead to an unknown amount of detergent in the final membrane protein preparations. Here we present a method for the determination of detergent concentration based on refractive index of the detergent solution. This method was applied to quantitate the amount of detergent remaining in solution after concentration in various concentrators. We found that the ability of the tested detergents to pass through the molecular weight cutoff membrane correlates well with detergent micelle size. Therefore, the micelle size can be used as a rough guide to estimate the retention of a given detergent in various molecular weight cutoff concentrators. The refractive index method is exceptionally informative when coupled with size exclusion chromatography and light scattering, and can be used to determine the oligomeric state of the membrane protein, the size of a protein-associated micelle, as well as the amount and size of the unbound detergent micelle.

  8. A heterodyne refractometer for air index of refraction and air density measurements

    NASA Astrophysics Data System (ADS)

    Fang, H.; Picard, A.; Juncar, P.

    2002-04-01

    We briefly describe a heterodyne refractometer developed at the BIPM in collaboration with the BNM/INM conservatory. The heart of the refractometer, a double Fabry-Perot interferometer, is placed inside the balance case of a very sensitive 1 kg mass comparator, the FB2 balance. Comparisons between methods using refractometry and the NPL revised Edlén formulas, carried out for a period of nine months, yielded a difference in air index of refraction of 4×10-8 with a standard deviation of 1×10-8. The variation of air index of refraction was about 1.5×10-5 during the study. Precise determinations of the short-term and long-term stability of the Fabry-Perot cavity, made of Zerodur, were also achieved. For monitoring air density, results obtained with the refractometry method were compared with those deduced from two other methods: the CIPM formula for the density of moist air and the use of buoyancy artifacts. The response characteristics for the three determinations were comparable and the agreement among the air density determinations was within 1×10-5 kg m-3.

  9. Influence of the apex angle of a hollow prism made from an ordinary commercial glass plate as a simple refractometer to the accuracy of the refractive index measurement of the edible oil

    NASA Astrophysics Data System (ADS)

    Idris, N.; Maswati; Yusibani, E.

    2018-05-01

    The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.

  10. On the refractive index of sodium iodide solutions for index matching in PIV

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Katz, Joseph

    2014-04-01

    Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.

  11. Determination of the spectral values of the real part of the relative refractive index of human blood erythrocytes from the measured directional scattering coefficients

    NASA Astrophysics Data System (ADS)

    Kugeiko, M. M.; Lisenko, S. A.

    2008-07-01

    An easily automated method for determining the real part of the refractive index of human blood erythrocytes in the range 0.3 1.2 μm is proposed. The method is operationally and metrologically reliable and is based on the measurement of the coefficients of light scattering from forward and backward hemisphere by two pairs of angles and on the use of multiple regression equations. An engineering solution for constructing a measurement system according to this method is proposed, which makes it possible to maximally reduce the calibration errors and effects of destabilizing factors.

  12. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat’s principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkus, Harun, E-mail: physicisthakkus@gmail.com

    2013-12-15

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle.

  13. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  14. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  15. The Use of Index-Matched Beads in Optical Particle Counters

    PubMed Central

    Hu, Zhishang; Ripple, Dean C

    2014-01-01

    In this paper, we demonstrate the use of 2-pyridinemethanol (2P) aqueous solutions as a refractive index matching liquid. The high refractive index and low viscosity of 2P-water mixtures enables refractive index matching of beads that cannot be index matched with glycerol-water or sucrose-water solutions, such as silica beads that have the refractive index of bulk fused silica or of polymethylmethacrylate beads. Suspensions of beads in a nearly index-matching liquid are a useful tool to understand the response of particle counting instruments to particles of low optical contrast, such as aggregated protein particles. Data from flow imaging and light obscuration instruments are presented for bead diameters ranging from 6 µm to 69 µm, in a matrix liquid spanning the point of matched refractive index. PMID:26601049

  16. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements

    NASA Astrophysics Data System (ADS)

    Geoghegan, P. H.; Buchmann, N. A.; Spence, C. J. T.; Moore, S.; Jermy, M.

    2012-05-01

    A method for the construction of both rigid and compliant (flexible) transparent flow phantoms of biological flow structures, suitable for PIV and other optical flow methods with refractive-index-matched working fluid is described in detail. Methods for matching the in vivo compliance and elastic wave propagation wavelength are presented. The manipulation of MRI and CT scan data through an investment casting mould is described. A method for the casting of bubble-free phantoms in silicone elastomer is given. The method is applied to fabricate flexible phantoms of the carotid artery (with and without stenosis), the carotid artery bifurcation (idealised and patient-specific) and the human upper airway (nasal cavity). The fidelity of the phantoms to the original scan data is measured, and it is shown that the cross-sectional error is less than 5% for phantoms of simple shape but up to 16% for complex cross-sectional shapes such as the nasal cavity. This error is mainly due to the application of a PVA coating to the inner mould and can be reduced by shrinking the digital model. Sixteen per cent variation in area is less than the natural patient to patient variation of the physiological geometries. The compliance of the phantom walls is controlled within physiologically realistic ranges, by choice of the wall thickness, transmural pressure and Young's modulus of the elastomer. Data for the dependence of Young's modulus on curing temperature are given for Sylgard 184. Data for the temperature dependence of density, viscosity and refractive index of the refractive-index-matched working liquid (i.e. water-glycerol mixtures) are also presented.

  17. Simultaneous measurement of refractive index and temperature based on intensity demodulation using matching grating method.

    PubMed

    Qi, Liang; Zhao, Chun-Liu; Kang, Juan; Jin, Yongxing; Wang, Jianfeng; Ye, Manping; Jin, Shangzhong

    2013-07-01

    A solution refractive index (SRI) and temperature simultaneous measurement sensor with intensity-demodulation system based on matching grating method were demonstrated. Long period grating written in a photonic crystal fiber (LPG-PCF), provides temperature stable and wavelength dependent optical intensity transmission. The reflective peaks of two fiber Bragg gratings (FBGs), one of which is etched then sensitive to both SRI and temperature, another (FBG2) is only sensitive to temperature, were located in the same linear range of the LPG-PCF's transmission spectrum. An identical FBG with FBG2 was chosen as a matching FBG. When environments (SRI and temperature) change, the wavelength shifts of the FBGs are translated effectively to the reflection intensity changes. By monitoring output lights of unmatching and matching paths, the SRI and temperature were deduced by a signal processing unit. Experimental results show that the simultaneous refractive index and temperature measurement system work well. The proposed sensor system is compact and suitable for in situ applications at lower cost.

  18. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Park, Yongkeun

    2017-05-01

    Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.

  19. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com

    2015-04-07

    We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less

  20. Diffractive optics development using a modified stack-and-draw technique.

    PubMed

    Pniewski, Jacek; Kasztelanic, Rafal; Nowosielski, Jedrzej M; Filipkowski, Adam; Piechal, Bernard; Waddie, Andrew J; Pysz, Dariusz; Kujawa, Ireneusz; Stepien, Ryszard; Taghizadeh, Mohammad R; Buczynski, Ryszard

    2016-06-20

    We present a novel method for the development of diffractive optical elements (DOEs). Unlike standard surface relief DOEs, the phase shift is introduced through a refractive index variation achieved by using different types of glass. For the fabrication of DOEs we use a modified stack-and-draw technique, originally developed for the fabrication of photonic crystal fibers, resulting in a completely flat element that is easy to integrate with other optical components. A proof-of-concept demonstration of the method is presented-a two-dimensional binary optical phase grating in the form of a square chessboard with a pixel size of 5 μm. Two types of glass are used: low refractive index silicate glass NC21 and high refractive index lead-silicate glass F2. The measured diffraction characteristics of the fabricated component are presented and it is shown numerically and experimentally that such a DOE can be used as a fiber interconnector that couples light from a small-core fiber into the several cores of a multicore fiber.

  1. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.

    PubMed

    Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J

    2010-03-29

    A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.

  2. The generalized Morse wavelet method to determine refractive index dispersion of dielectric films

    NASA Astrophysics Data System (ADS)

    Kocahan, Özlem; Özcan, Seçkin; Coşkun, Emre; Özder, Serhat

    2017-04-01

    The continuous wavelet transform (CWT) method is a useful tool for the determination of refractive index dispersion of dielectric films. Mother wavelet selection is an important factor for the accuracy of the results when using CWT. In this study, generalized Morse wavelet (GMW) was proposed as the mother wavelet because of having two degrees of freedom. The simulation studies, based on error calculations and Cauchy Coefficient comparisons, were presented and also the noisy signal was tested by CWT method with GMW. The experimental validity of this method was checked by D263 T schott glass having 100 μm thickness and the results were compared to those from the catalog value.

  3. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.

    PubMed

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-10-11

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.

  4. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    PubMed Central

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  5. Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.

    PubMed

    Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung

    2008-01-01

    Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.

  6. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  7. The absorption Ångström exponent of black carbon: from numerical aspects

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Eddy Chung, Chul; Yin, Yan; Schnaiter, Martin

    2018-05-01

    The absorption Ångström exponent (AAE) is an important aerosol optical parameter used for aerosol characterization and apportionment studies. The AAE of black carbon (BC) particles is widely accepted to be 1.0, although observational estimates give quite a wide range of 0.6-1.3. With considerable uncertainties related to observations, a numerical study is a powerful method, if not the only one, to provide a better and more accurate understanding on BC AAE. This study calculates BC AAE using realistic particle geometries based on fractal aggregate and an accurate numerical optical model (namely the multiple-sphere T-matrix method), and considers bulk properties of an ensemble of BC particles following lognormal size distributions. At odds with the expectations, BC AAE is not 1.0, even when BC is assumed to have small sizes and a wavelength-independent refractive index. With a wavelength-independent refractive index, the AAE of fresh BC is approximately 1.05 and relatively insensitive to particle size. For BC with geometric mean diameters larger than 0.12 µm, BC AAE becomes smaller when BC particles are aged (compact structures or coated by other non-absorptive materials). For coated BC, we prescribe the coating fraction variation based on a laboratory study, where smaller BC cores are shown to develop larger coating fractions than those of bigger BC cores. For both compact and coated BC, the AAE is highly sensitive to particle size distribution, ranging from approximately 0.8 to even over 1.4 with wavelength-independent refractive index. When the refractive index is allowed to vary with wavelength, a feature with observational backing, the BC AAE may show an even wider range. For different BC morphologies, we derive simple empirical equations on BC AAE based on our numerical results, which can serve as a guide for the response of BC AAE to BC size and refractive index. Due to its complex influences, the effects of BC geometry is better to be discussed at certain BC properties, i.e., known size and refractive index.

  8. Optic-null space medium for cover-up cloaking without any negative refraction index materials

    PubMed Central

    Sun, Fei; He, Sailing

    2016-01-01

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology. PMID:27383833

  9. Optic-null space medium for cover-up cloaking without any negative refraction index materials.

    PubMed

    Sun, Fei; He, Sailing

    2016-07-07

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.

  10. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions

    NASA Astrophysics Data System (ADS)

    Dong, Miao L.; Goyal, Kashika G.; Worth, Bradley W.; Makkar, Sorab S.; Calhoun, William R.; Bali, Lalit M.; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  11. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions.

    PubMed

    Dong, Miao L; Goyal, Kashika G; Worth, Bradley W; Makkar, Sorab S; Calhoun, William R; Bali, Lalit M; Bali, Samir

    2013-08-01

    A first accurate measurement of the complex refractive index in an intralipid emulsion is demonstrated, and thereby the average scatterer particle size using standard Mie scattering calculations is extracted. Our method is based on measurement and modeling of the reflectance of a divergent laser beam from the sample surface. In the absence of any definitive reference data for the complex refractive index or particle size in highly turbid intralipid emulsions, we base our claim of accuracy on the fact that our work offers several critically important advantages over previously reported attempts. First, our measurements are in situ in the sense that they do not require any sample dilution, thus eliminating dilution errors. Second, our theoretical model does not employ any fitting parameters other than the two quantities we seek to determine, i.e., the real and imaginary parts of the refractive index, thus eliminating ambiguities arising from multiple extraneous fitting parameters. Third, we fit the entire reflectance-versus-incident-angle data curve instead of focusing on only the critical angle region, which is just a small subset of the data. Finally, despite our use of highly scattering opaque samples, our experiment uniquely satisfies a key assumption behind the Mie scattering formalism, namely, no multiple scattering occurs. Further proof of our method's validity is given by the fact that our measured particle size finds good agreement with the value obtained by dynamic light scattering.

  12. A refractive index sensor based on taper Michelson interferometer in multimode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong

    2016-11-01

    A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.

  13. Experimental verification and simulation of negative index of refraction using Snell's law.

    PubMed

    Parazzoli, C G; Greegor, R B; Li, K; Koltenbah, B E C; Tanielian, M

    2003-03-14

    We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the real part of the index of refraction to be -1.05. The measurements and simulations of the electromagnetic field profiles were performed at distances of 14lambda and 28lambda from the sample; the fields were also computed at 100lambda.

  14. Investigation of the refractive index repeatability for tantalum pentoxide coatings, prepared by physical vapor film deposition techniques.

    PubMed

    Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J

    2017-02-01

    Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.

  15. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle.

    PubMed

    Sobral, H; Peña-Gomar, M

    2015-10-01

    A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated.

  16. Low cost fiber optic sensing of sugar solution

    NASA Astrophysics Data System (ADS)

    Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao

    2015-03-01

    The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.

  17. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    PubMed

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2011-10-30

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  18. TiO2 surface functionalization of COC based planar waveguide Bragg gratings for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Girschikofsky, M.; Förthner, M.; Belle, S.; Rommel, M.; Frey, L.; Schmauss, B.; Hellmann, R.

    2018-01-01

    We demonstrate the applicability of a planar waveguide Bragg grating in cyclo-olefin copolymer (COC) for refractive index sensing. The polymer planar waveguide Bragg grating fabricated using a single writing step technique is coated with a high-index layer of titanium dioxide (TiO2) leading to a distinct birefringence. This in turn results in the splitting of the Bragg reflection into two distinct Bragg wavelengths, which strongly differ regarding their refractive index sensitivities. Where one wavelength is only slightly affected by the ambient refractive index, the second Bragg peak shows a strong sensitivity. Furthermore, we investigate the temperature behaviour of the functionalized sensor and discuss it with respect to applications in refractive index sensing.

  19. Ultrasensitive Magnetic Field Sensing Based on Refractive-Index-Matched Coupling.

    PubMed

    Rao, Jie; Pu, Shengli; Yao, Tianjun; Su, Delong

    2017-07-07

    An ultrasensitive magnetic field sensor is proposed and investigated experimentally. The no-core fiber is fusion-spliced between two pieces of single-mode fibers and then immersed in magnetic fluid with an appropriate value of refractive index. Under the refractive-index-matched coupling condition, the guided mode becomes leaky and a coupling wavelength dip in the transmission spectrum of the structure is observed. The coupling wavelength dip is extremely sensitive to the ambient environment. The excellent sensitivity to the refractive index is measured to be 116.681 μm/RIU (refractive index unit) in the refractive index range of 1.45691-1.45926. For the as-fabricated sensors, the highest magnetic field sensing sensitivities of 6.33 and 1.83 nm/mT are achieved at low and high fields, respectively. The sensitivity is considerably enhanced compared with those of previously designed, similar structures.

  20. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.

  1. Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging

    NASA Astrophysics Data System (ADS)

    Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua

    2008-12-01

    SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.

  2. Two-dimensional simulation of holographic data storage medium for multiplexed recording.

    PubMed

    Toishi, Mitsuru; Takeda, Takahiro; Tanaka, Kenji; Tanaka, Tomiji; Fukumoto, Atsushi; Watanabe, Kenjiro

    2008-02-18

    In this paper, we propose a new analysis model for photopolymer recording processes that calculate the two-dimensional refractive index distribution of multiplexed holograms. For the simulation of the photopolymer medium, time evolution of monomer diffusion and polymerization need to be calculated simultaneously. The distribution of the refractive index inside the medium is induced by these processes. By evaluating the refractive index pattern on each layer, the diffraction beams from the multiplexed hologram can be read out by beam propagation method (BPM). This is the first paper to determine the diffraction beam from a multiplexed hologram in a simulated photopolymer medium process. We analyze the time response of the multiplexed hologram recording processes in the photopolymer, and estimate the degradation of diffraction efficiency with multiplexed recording. This work can greatly contribute to understanding the process of hologram recording.

  3. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing

    NASA Astrophysics Data System (ADS)

    Li, Benye; Jiang, Lan; Wang, Sumei; Tsai, Hai-Lung; Xiao, Hai

    2011-11-01

    An improved point-by-point inscription method is proposed to fabricate long period fiber gratings (LPFGs) by using a laser operating at 800 nm with 35 fs duration pulses. The sensitivity to misalignment between the core and the focus is reduced by scanning a rectangular part on the fiber. LPFGs with an attenuation depth of 20 dB are achieved within the wavelength range of 1465-1575 nm. Characterization of the temperature sensitivity and thermal stability of the LPFGs is presented. A 5.6 nm wavelength shift and a 1.2 dB decrease in the attenuation peak are observed following heat treatment at 600 °C for 4 h. The fabricated LPFGs are used as refractive index sensors. The effect of heat treatment on the response of the LPFGs to refractive index changes is also studied.

  4. Measurement and data processing approach for detecting anisotropic spatial statistics of the turbulence-induced index of refraction fluctuations in the upper atmosphere.

    PubMed

    Havens, Timothy C; Roggemann, Michael C; Schulz, Timothy J; Brown, Wade W; Beyer, Jeff T; Otten, L John

    2002-05-20

    We discuss a method of data reduction and analysis that has been developed for a novel experiment to detect anisotropic turbulence in the tropopause and to measure the spatial statistics of these flows. The experimental concept is to make measurements of temperature at 15 points on a hexagonal grid for altitudes from 12,000 to 18,000 m while suspended from a balloon performing a controlled descent. From the temperature data, we estimate the index of refraction and study the spatial statistics of the turbulence-induced index of refraction fluctuations. We present and evaluate the performance of a processing approach to estimate the parameters of an anisotropic model for the spatial power spectrum of the turbulence-induced index of refraction fluctuations. A Gaussian correlation model and a least-squares optimization routine are used to estimate the parameters of the model from the measurements. In addition, we implemented a quick-look algorithm to have a computationally nonintensive way of viewing the autocorrelation function of the index fluctuations. The autocorrelation of the index of refraction fluctuations is binned and interpolated onto a uniform grid from the sparse points that exist in our experiment. This allows the autocorrelation to be viewed with a three-dimensional plot to determine whether anisotropy exists in a specific data slab. Simulation results presented here show that, in the presence of the anticipated levels of measurement noise, the least-squares estimation technique allows turbulence parameters to be estimated with low rms error.

  5. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    NASA Astrophysics Data System (ADS)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  6. 3D microfluidic fabrication using a low refractive index polymer for clear microscopic observation at the fluid boundary

    NASA Astrophysics Data System (ADS)

    Hanada, Y.

    2018-02-01

    Microfluidic chips known as μ-TAS or LoC have become versatile tools in cell research, since functional biochips are able to streamline dynamic observations of various cells. Glass or polymers are generally used as the substrate due to their high transparency, chemical stability and cost-effectiveness. However, these materials are not well suited to the microscopic observation at the fluid boundary due to the refractive index mismatch between the medium and the biochip material. For this reason, we have developed a method of fabricating three-dimensional (3D) microfluidic chips made of a low refractive index fluoric polymer CYTOP. CYTOP has a refractive index of 1.34, a value that is almost equivalent to that of water. This optical property is very important for clear 3D microscopic observations of cell motion near the solid boundary, due to the minimal mismatch between the refractive index values of the medium and the CYTOP substrate. Therefore, CYTOP microfluidics are expected to allow the generation of clear images of unique cell migratory processes near the microfluidic sidewall. Therefore, we established the fabrication procedure involving the use of femtosecond laser direct writing, followed by wet etching and annealing, to create high-quality 3D microfluidics inside a polymer substrate. A microfluidic chip made in this manner enables us to more clearly observe areas near the fluid surface, compared to the observations possible using conventional microfluidic chips.

  7. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons.

    PubMed

    Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu

    2016-09-01

    Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Thermal Annealing Effect on Optical Properties of Binary TiO₂-SiO₂ Sol-Gel Coatings.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2012-12-24

    TiO₂-SiO₂ binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  9. Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.

    2006-03-01

    The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.

  10. Metamaterials with gradient negative index of refraction.

    PubMed

    Pinchuk, Anatoliy O; Schatz, George C

    2007-10-01

    We propose a new metamaterial with a gradient negative index of refraction, which can focus a collimated beam of light coming from a distant object. A slab of the negative refractive index metamaterial has a focal length that can be tuned by changing the gradient of the negative refractive index. A thin metal film pierced with holes of appropriate size or spacing between them can be used as a metamaterial with the gradient negative index of refraction. We use finite-difference time-domain calculations to show the focusing of a plane electromagnetic wave passing through a system of equidistantly spaced holes in a metal slab with decreasing diameters toward the edges of the slab.

  11. Equivalent refractive-index structure constant of non-Kolmogorov turbulence.

    PubMed

    Li, Yujie; Zhu, Wenyue; Wu, Xiaoqing; Rao, Ruizhong

    2015-09-07

    The relationship between the non-Kolmogorov refractive-index structure constant and the Kolmogorov refractive-index structure constant is derived by using the refractive-index structure function and the variance of refractive-index fluctuations. It shows that the non-Kolmogorov structure constant is proportional to the Kolmogorov structure constant and the scaling factor depends on the outer scale and the spectral power law. For a fixed Kolmogorov structure constant, the non-Kolmogorov structure constant increases with a increasing outer scale for the power law less than 11/3, the trend is opposite for the power law greater than 11/3. This equivalent relation provides a way of obtaining the non-Kolmogorov structure constant by using the Kolmogorov structure constant.

  12. Photo-Induced Self-Condensation, A Technique For Fabricating Organic Lightguide Structures

    NASA Astrophysics Data System (ADS)

    Franke, H.; Heuer, W.

    1986-11-01

    Planar lightguides have been fabricated from mixtures of the polymer PMMA with benzoin type photoinitiators. Using conventional UV-photolithography 2 dimensional refractive index patterns were recorded in the polymer films. Thickness and refractive index of the organic lightguides were determined by m-line spectroscopy. The achieved refractive index changes increased with increasing photoinitiator concentrations. For high concentrations (< 70 %) the film refractive index could be increased via UV exposure by Δn = 0.03. Thermal treatment at below 100°C caused the out diffusion of the unexposed photoinitiator and completion of the photochemically induced reaction in the exposed parts of the film. Thus refractive index patterns (Δn < 0.05) could be developed and fixed.

  13. Refractive index sensing by Brillouin scattering in side-polished optical fibers.

    PubMed

    Bernini, Romeo; Persichetti, Gianluca; Catalano, Ester; Zeni, Luigi; Minardo, Aldo

    2018-05-15

    In this Letter, we demonstrate the possibility to measure the refractive index of a liquid, using the stimulating Brillouin scattering in a 3-cm-long side-polished optical fiber. In addition, we show that by depositing a high-refractive index layer on the polished surface the sensitivity of the Brillouin frequency shift (BFS) can be increased due to a higher penetration of the evanescent field in the outer medium. Experiments show a maximum BFS change of about 11 MHz when varying the refractive index of the external medium from 1 (air) to 1.402, and a BFS sensitivity to refractive index of about 293 MHz/RIU around 1.40.

  14. Explaining negative refraction without negative refractive indices.

    PubMed

    Talalai, Gregory A; Garner, Timothy J; Weiss, Steven J

    2018-03-01

    Negative refraction through a triangular prism may be explained without assigning a negative refractive index to the prism by using array theory. For the case of a beam incident upon the wedge, the array theory accurately predicts the beam transmission angle through the prism and provides an estimate of the frequency interval at which negative refraction occurs. The hypotenuse of the prism has a staircase shape because it is built of cubic unit cells. The large phase delay imparted by each unit cell, combined with the staircase shape of the hypotenuse, creates the necessary conditions for negative refraction. Full-wave simulations using the finite-difference time-domain method show that array theory accurately predicts the beam transmission angle.

  15. Waveguide-based optical chemical sensor

    DOEpatents

    Grace, Karen M [Ranchos de Taos, NM; Swanson, Basil I [Los Alamos, NM; Honkanen, Seppo [Tucson, AZ

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  16. Refractive index of dark-adapted bacteriorhodopsin and tris(hydroxymethyl)aminomethane buffer between 390 and 880 nm.

    PubMed

    Heiner, Zsuzsanna; Osvay, Károly

    2009-08-10

    The refractivity of wild-type bacteriorhodopsin (bR(WT)) suspended in tris(hydroxymethyl)aminomethane (TRIS) buffer has been measured in the spectral range of 390-840 nm by the method of angle of minimal deviation with the use of a hollow glass prism. The refractive indices of pure bR(WT) as well as of TRIS buffer have been determined from the concentration dependent refraction values. Sellmeier-type dispersion equations have been fitted for both the TRIS buffer and pure bR(WT).

  17. Fiber-integrated refractive index sensor based on a diced Fabry-Perot micro-resonator.

    PubMed

    Suntsov, Sergiy; Rüter, Christian E; Schipkowski, Tom; Kip, Detlef

    2017-11-20

    We report on a fiber-integrated refractive index sensor based on a Fabry-Perot micro-resonator fabricated using simple diamond blade dicing of a single-mode step-index fiber. The performance of the device has been tested for the refractive index measurements of sucrose solutions as well as in air. The device shows a sensitivity of 1160 nm/RIU (refractive index unit) at a wavelength of 1.55 μm and a temperature cross-sensitivity of less than 10 -7   RIU/°C. Based on evaluation of the broadband reflection spectra, refractive index steps of 10 -5 of the solutions were accurately measured. The conducted coating of the resonator sidewalls with layers of a high-index material with real-time reflection spectrum monitoring could help to significantly improve the sensor performance.

  18. Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao

    2018-01-01

    Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.

  19. Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.

    2003-08-01

    Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.

  20. Demonstration of Simplified Field Test Methods for the Measurement of Diesel Particulate Matter (PM) from Military Diesel Engines

    DTIC Science & Technology

    2008-07-01

    EPA emission standards, the EPA has also specified the measurement methods . According to EPA, the most accurate and precise method of determining ...function of particle size and refractive index . If particle size distributions and refractive indices in diesel exhaust strongly depend on the...to correct the bias of the raw SFTM data and align the data with the values determined by the federal reference method . Thus, to use these methods a

  1. Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2017-03-01

    Several polymer films for improved optical properties in optoelectronic devices are presented. In such optical applications, it is sometimes important to have a film with an adjusted refractive index, scattering properties, and a low surface roughness. These diffusing films can be used to increase the efficiency of optoelectronic components, such as organic light-emitting diodes. Three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol A glycerolate dimethacrylate, and Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved by chemical doping using 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. A high-power stirrer is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and, therefore, the viscosity measurement results are presented. After the mixing, the monomer mixture is applied on glass substrates by screen printing. To initiate polymerization, the produced films are irradiated for 10 min with ultraviolet radiation and heat. Transmission measurements of the polymer matrix and roughness measurements complement the characterization.

  2. Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers.

    PubMed

    Wang, Zongyu; Lu, Zhao; Mahoney, Clare; Yan, Jiajun; Ferebee, Rachel; Luo, Danli; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2017-03-01

    Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.

  3. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology.

    PubMed

    Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng

    2016-06-01

    A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  4. UV-curable ZnS/polymer nanocomposite for replication of micron and submicron features

    NASA Astrophysics Data System (ADS)

    Kalima, Valtteri; Vartiainen, Ismo; Saastamoinen, Toni; Suvanto, Mika; Kuittinen, Markku; Pakkanen, Tuula T.

    2009-08-01

    In view of the wide interest in high refractive index polymers for microreplication, study was made of UV-curable high refractive index nanocomposite material for microreplication purposes. The refractive index of the nanocomposite was tailored through the addition of surface-modified ZnS nanoparticles to commercial ORMOCOMP ® inorganic-organic hybrid polymer. The refractive index of ORMOCOMP ® was increased linearly from 1.514 (620 nm) to 1.645 (620 nm) by embedding of the nanoparticles (18.6 V%). The nanocomposite showed excellent transparency ( T = 89-92%), and increase in the nanoparticle loading shifted the absorption edge from 380 nm to 420 nm. Low scattering of transmitted light (determined by UV-VIS-NIR spectrophotometry) and high dispersion of ZnS (determined by scanning electron microscopy with energy dispersive X-ray spectrometry and transmission electron microscopy) indicated low aggregation of the ZnS nanoparticles. Finally, the nanocomposite was applied to micromolding in capillaries to replicate micrometer-size channels (8 μm × 1.5 μm) with Bragg gratings (period 520 nm and depth 400 nm) on top of the channels. Based on the AFM results the MIMIC molding method was found to be suitable for the replication of microchannels into nanocomposite material.

  5. Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements.

    PubMed

    Miles, Rachael E H; Walker, Jim S; Burnham, Daniel R; Reid, Jonathan P

    2012-03-07

    The cavity enhanced Raman scattering spectrum recorded from an aerosol droplet provides a unique fingerprint of droplet radius and refractive index, assuming that the droplet is homogeneous in composition. Aerosol optical tweezers are used in this study to capture a single droplet and a Raman fingerprint is recorded using the trapping laser as the source for the Raman excitation. We report here the retrieval of the real part of the refractive index with an uncertainty of ± 0.0012 (better than ± 0.11%), simultaneously measuring the size of the micrometre sized liquid droplet with a precision of better than 1 nm (< ± 0.05% error). In addition, the equilibrium size of the droplet is shown to depend on the laser irradiance due to optical absorption, which elevates the droplet temperature above that of the ambient gas phase. Modulation of the illuminating laser power leads to a modulation in droplet size as the temperature elevation is altered. By measuring induced size changes of <1 nm, we show that the imaginary part of the refractive index can be retrieved even when less than 10 × 10(-9) with an accuracy of better than ± 0.5 × 10(-9). The combination of these measurements allows the complex refractive index of a droplet to be retrieved with high accuracy, with the possibility of making extremely sensitive optical absorption measurements on aerosol samples and the testing of frequently used mixing rules for treating aerosol optical properties. More generally, this method provides an extremely sensitive approach for measuring refractive indices, particularly under solute supersaturation conditions that cannot be accessed by simple bulk-phase measurements.

  6. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest to characterize the temperature dependent refractive index relationship, n(T), for phosphate buffered saline. Phosphate buffered saline (PBS) is a water-based solution used with our biological cells because it maintains an ion concentration similar to that found in body fluids. The n(T) characterization was performed using a custom-built isothermal apparatus in which the temperature could be controlled. To check for the accuracy of the PBS refractive index measurements, water was also measured and compared with known values in the literature. The literature source of choice has affiliations to NIST and a formulation of refractive index involving temperature and wavelength dependence, two parameters which are necessary for our specialized infrared wavelength range. From the NIST formula, linear approximations were found to be dn/dT = -1.4x10-4 RIU °C-1 and dn/dlambda = -1.5x10-5 RIU nm-1 for water. A comparison with the formulated refractive indices of water indicated the measured values were off. This was attributed to the fact that light penetration into the HfO2/SiO2 dielectric mirrors had not been considered. Once accounted for, the refractive indices of water were consistent with the literature, and the values for PBS are believed to be accurate. A further discovery was the refractive index values at the discrete resonant wavelengths were monotonically decreasing, such that the dn/dlambda slope for water was considerably close to the NIST formula. Thus, n(T,lambda) was characterized for both water and PBS. A refractive index relationship for PBS with spatial, temperature, and wavelength dependence is particularly useful for non-uniform temperature distributions caused by DEP electrodes. First, a maximum temperature can be inferred, which is the desired measurement for cell viability concerns. In addition, a lateral refractive index distribution can be measured to help quantify the gradient index lenses that are formed by the energized electrodes. The non-uniform temperature distribution was also simulated with a finite element analysis software package. This simulated temperature distribution was converted to a refractive index distribution, and focal lengths were calculated for positive and negative gradient index lenses to a smallest possible length of about 10mm.

  7. Predicting of the refractive index of haemoglobin using the Hybrid GA-SVR approach.

    PubMed

    Oyehan, Tajudeen A; Alade, Ibrahim O; Bagudu, Aliyu; Sulaiman, Kazeem O; Olatunji, Sunday O; Saleh, Tawfik A

    2018-04-30

    The optical properties of blood play crucial roles in medical diagnostics and treatment, and in the design of new medical devices. Haemoglobin is a vital constituent of the blood whose optical properties affect all of the optical properties of human blood. The refractive index of haemoglobin has been reported to strongly depend on its concentration which is a function of the physiology of biological cells. This makes the refractive index of haemoglobin an essential non-invasive bio-marker of diseases. Unfortunately, the complexity of blood tissue makes it challenging to experimentally measure the refractive index of haemoglobin. While a few studies have reported on the refractive index of haemoglobin, there is no solid consensus with the data obtained due to different measuring instruments and the conditions of the experiments. Moreover, obtaining the refractive index via an experimental approach is quite laborious. In this work, an accurate, fast and relatively convenient strategy to estimate the refractive index of haemoglobin is reported. Thus, the GA-SVR model is presented for the prediction of the refractive index of haemoglobin using wavelength, temperature, and the concentration of haemoglobin as descriptors. The model developed is characterised by an excellent accuracy and very low error estimates. The correlation coefficients obtained in these studies are 99.94% and 99.91% for the training and testing results, respectively. In addition, the result shows an almost perfect match with the experimental data and also demonstrates significant improvement over a recent mathematical model available in the literature. The GA-SVR model predictions also give insights into the influence of concentration, wavelength, and temperature on the RI measurement values. The model outcome can be used not only to accurately estimate the refractive index of haemoglobin but also could provide a reliable common ground to benchmark the experimental refractive index results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Measuring the molecular second hyperpolarizability in absorptive solutions by the third harmonic generation ratio technique.

    PubMed

    Tokarz, Danielle; Cisek, Richard; Prent, Nicole; Fekl, Ulrich; Barzda, Virginijus

    2012-11-28

    Measurement of the second hyperpolarizability (γ) values of compounds can provide insight into the molecular structural requirements for enhancement of third harmonic generation (THG) signal. A convenient method for measuring the γ of compounds in solutions was developed by implementing the THG ratio method which is based on measuring the THG intensity from two interfaces using a nonlinear optical microscope while accounting for the refractive index of solutions at the fundamental and third harmonic wavelengths. We demonstrated that the difference in refractive index at both wavelengths strongly influenced the calculation of γ values when compounds have absorption near the third harmonic or fundamental wavelength. To this end, a refractometer with the wavelength tuning range from UV to near IR was constructed, and the measured refractive indices were used to extract the γ values. The γ values of carotenoids and chlorophylls found in photosynthetic pigment-protein complexes were explored. Large differences in the refractive index at third harmonic and fundamental wavelengths for chlorophylls result in γ values that are more than two orders of magnitude larger than γ values for carotenoids as well as the sign of chlorophylls'γ values is negative while carotenoids have positive γ values. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Structural and optical characterization of 1 µm of ternary alloy ZnCuSe thin films

    NASA Astrophysics Data System (ADS)

    Shaaban, E. R.; Hassan, H. Shokry; Aly, S. A.; Elshaikh, H. A.; Mahasen, M. M.

    2016-08-01

    Different compositions of Cu-doped ZnSe in ternary alloy Zn1- x Cu x Se thin films (with x = 0, 0.025, 0.05, 0.075 and 0.10) were evaporated (thickness 1 µm) onto glass substrate using electron beam evaporation method. The X-ray diffraction analysis for both powder and films indicated their polycrystalline nature with zinc blende (cubic) structure. The crystallite size was found to increase, while the lattice microstrain was decreased with increasing Cu dopant. The optical characterization of films was carried out using the transmittance spectra, where the refractive indices have been evaluated in transparent and medium transmittance regions using the envelope method, suggested by Swanepoel. The refractive index has been found to increase with increasing Cu content. The dispersion of refractive index has been analyzed in terms of the Wemple-DiDomenico single-oscillator model. The oscillator parameters, the single-oscillator energy E o, the dispersion energy E d and the static refractive index n 0, were estimated. The optical band gap was determined in strong absorption region of transmittance spectra and was found to increase from 2.702 to 2.821 eV with increasing the Cu content. This increase in the band gap was well explained by the Burstein-Moss effect.

  10. On the optical path length in refracting media

    NASA Astrophysics Data System (ADS)

    Hasbun, Javier E.

    2018-04-01

    The path light follows as it travels through a substance depends on the substance's index of refraction. This path is commonly known as the optical path length (OPL). In geometrical optics, the laws of reflection and refraction are simple examples for understanding the path of light travel from source to detector for constant values of the traveled substances' refraction indices. In more complicated situations, the Euler equation can be quite useful and quite important in optics courses. Here, the well-known Euler differential equation (EDE) is used to obtain the OPL for several index of refraction models. For pedagogical completeness, the OPL is also obtained through a modified Monte Carlo (MC) method, versus which the various results obtained through the EDE are compared. The examples developed should be important in projects involving undergraduate as well as graduate students in an introductory optics course. A simple matlab script (program) is included that can be modified by students who wish to pursue the subject further.

  11. Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip

    NASA Astrophysics Data System (ADS)

    Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando

    2018-05-01

    A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.

  12. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  13. REFRACTOMETRY AS A TOOL IN DIABETIC STUDIES

    PubMed Central

    Kavitha, S.; Murthy, V.R.

    2006-01-01

    The refractive index as well as molar refraction, is the true index of purity of substance and plays a vital role in solution chemistry. A small addition of a foreign substance either in solid state of liquid form is going to effect the refractive index. As such the variation of refractive indices in pure glucose solution as a function of concentration is studied in detail and this principle is extended to the study of the refractive indices of urine solution of diabetic patients. The refractive indices are measured by spectrometry and abbe refractometry. A detailed study of variation of refractive indices of urine samples containing different sugar concentrations, of patients of different age groups revealed that the increase in refractive index follows a linear scale and can be explained by the equation, n=no [l+0.00251og (a s)1/4] [l+0.031og0.011C]. These study provided an opportunity to project refractometry as an effective tool in diagnosing the diabetic level of a patient by making use of a simple calibration curve of increment in refractive index ‘Δn, as a function of level of the disease. PMID:22557211

  14. Effect of TiCl4 treatment on the refractive index of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Lee, Jeeyoung; Lee, Myeongkyu

    2015-12-01

    We investigate the effect of TiCl4 treatment on the refractive index of a nanoporous TiO2 film. A nanoparticulate TiO2 film prepared on a glass substrate was immersed in a TiCl4 aqueous solution. The subsequent reaction of TiCl4 with H2O produces TiO2 and thus modifies the density and the refractive index of the film. With increasing TiCl4 concentration, the refractive index initially increased and then declined after being maximized (n = 2.02 at 633 nm) at 0.08 M concentration. A refractive index change as large as 0.45 could be obtained with the TiCl4 treatment, making it possible to achieve diffraction efficiency exceeding 80% in a diffraction grating-embedded TiO2 film. For high TiCl4 concentrations of 0.32 M and 0.64 M, the refractive index remained nearly unchanged. This was attributed to the limited permeability of high-viscosity TiCl4 solutions into the nanoporous films. The measured pore size distributions were in good agreement with the results of a diffraction analysis and refractive index measurement.

  15. Iodine insertion and dispersion of refractive index in organic single crystal semiconductor.

    PubMed

    Kwon, Seonho; Bae, Junwan; Lee, I J

    2018-02-20

    Insertion of halogens such as bromine or iodine affects the electronic polarizability of ions and the local field inside the medium, and thus modifies the refractive index. Acquiring precise knowledge of the dispersion of refractive index and ultimately tailoring conventional semiconductors for wide-range refractive index control have been a vital issue to resolve before realizing advanced organic optoelectronic devices. In this report, dispersions of the refractive index of a single crystal tetramethyltetraselenafulvalene [C 10 H 12 Se 4 ] (TMTSF) are thoroughly studied from broadband interference modulations of photoluminescence (PL) spectra at various temperatures and doping levels. A large enhancement of the refractive index, more than 20% of the intrinsic value, is achieved with inclusion of a small composition of iodide ions, while the structural and optical properties remain mostly intact. Nearly temperature independent dispersion of the refractive index suggests that, unlike most polymers in which the thermal expansion coefficient dominates over the change of polarizability with temperature, the latter enhances significantly and may become more or less comparable to the thermal expansion coefficient given by 1.71 × 10 -4 /K, when single crystal TMTSF is doped by iodine.

  16. Measurement and design of refractive corrections using ultrafast laser-induced intra-tissue refractive index shaping in live cats

    NASA Astrophysics Data System (ADS)

    Brooks, Daniel R.; Wozniak, Kaitlin T.; Knox, Wayne; Ellis, Jonathan D.; Huxlin, Krystel R.

    2018-02-01

    Intra-Tissue Refractive Index Shaping (IRIS) uses a 405 nm femtosecond laser focused into the stromal region of the cornea to induce a local refractive index change through multiphoton absorption. This refractive index change can be tailored through scanning of the focal region and variations in laser power to create refractive structures, such as gradient index lenses for visual refractive correction. Previously, IRIS was used to create 2.5 mm wide, square, -1 D cylindrical refractive structures in living cats. In the present work, we first wrote 400 μm wide bars of refractive index change at varying powers in enucleated cat globes using a custom flexure-based scanning system. The cornea and surrounding sclera were then removed and mounted into a wet cell. The induced optical phase change was measured with a Mach- Zehnder Interferometer (MZI), and appeared as fringe displacement, whose magnitude was proportional to the refractive index change. The interferograms produced by the MZI were analyzed with a Fourier Transform based algorithm in order to extract the phase change. This provided a phase change versus laser power calibration, which was then used to design the scanning and laser power distribution required to create -1.5 D cylindrical Fresnel lenses in cat cornea covering an area 6 mm in diameter. This prescription was inscribed into the corneas of one eye each of two living cats, under surgical anesthesia. It was then verified in vivo by contrasting wavefront aberration measurements collected pre- IRIS with those obtained over six months post-IRIS using a Shack-Hartmann wavefront sensor.

  17. Refractive index sensor based on optical fiber end face using pulse reference-based compensation technique

    NASA Astrophysics Data System (ADS)

    Bian, Qiang; Song, Zhangqi; Zhang, Xueliang; Yu, Yang; Chen, Yuzhong

    2018-03-01

    We proposed a refractive index sensor based on optical fiber end face using pulse reference-based compensation technique. With good compensation effect of this compensation technique, the power fluctuation of light source, the change of optic components transmission loss and coupler splitting ratio can be compensated, which largely reduces the background noise. The refractive index resolutions can achieve 3.8 × 10-6 RIU and1.6 × 10-6 RIU in different refractive index regions.

  18. Optical Properties of Si, Ge, GaAs, GaSb, InAs, and InP at Elevated Temperatures

    DTIC Science & Technology

    2010-03-01

    transmitted, and an absorbed (or scattered) component. The reflectance can be defined in terms of the index of refraction of the media on either side...of the interface. If the index of refraction of the material is n and the material is surrounded by air (nair ≈ 1), then the reflectance for near...the absorption coefficient and t is the sample thickness. 9 Since R depends on the refractive index and the refractive index depends on the

  19. Response to Comment on "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Wax, Adam

    2018-06-01

    Recently, Maxim A. Yurkin commented on our paper "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies" as well as on a complementary study "Cell nuclei have lower refractive index and mass density than cytoplasm" from Schürmann et al. In his comment, Yurkin concluded that quantitative phase images of cells with nuclei that are less optically dense than the cytoplasm must exhibit a characteristic concavity, the absence of which is evidence against our conclusion of a less-dense nucleus. In this response, we suggest that Yurkin's conclusion is reached through an oversimplification of the spatial refractive index distribution within cells, which does not account for high index inclusions such as the nucleolus. We further cite recent studies in 3-dimensional refractive index imaging, in which the preponderance of studies supports our conclusion. Finally, we comment on the current state of knowledge regarding subcellular refractive index distributions in living cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multi-parameter optimization of monolithic high-index contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Marciniak, Magdalena; Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Czyszanowski, Tomasz

    2016-03-01

    Conventional High-index Contrast Gratings (HCG) consist of periodically distributed high refractive index stripes surrounded by low index media. Practically, such low/high index stack can be fabricated in several ways however low refractive index layers are electrical insulators of poor thermal conductivities. Monolithic High-index Contrast Gratings (MHCGs) overcome those limitations since they can be implemented in any material with a real refractive index larger than 1.75 without the need of the combination of low and high refractive index materials. The freedom of use of various materials allows to provide more efficient current injection and better heat flow through the mirror, in contrary to the conventional HCGs. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. We present numerical analysis of MHCGs using a three-dimensional, fully vectorial optical model. We investigate possible designs of MHCGs using multidimensional optimization of grating parameters for different refractive indices.

  1. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor.

    PubMed

    Shuai, Binbin; Xia, Li; Liu, Deming

    2012-11-05

    We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of -5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.

  2. Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Ivanov, S. A.; Nikonorov, N. V.; Dubrovin, V. D.; Krykova, V. A.

    2017-05-01

    In this research, we present new holographic material based on fluoride photo-thermo-refractive glass(PTR) - chloride PTR glass. One of the benefit of this type of PTR glass is positive refractive index change. During this work, for the first-time volume Bragg gratings were recorded in this kind of material. The first experiments revealed that such gratings are mixed i.e. possess both absorption and phase components. Complex analysis shows that both refractive index and absorption coefficient are modulated inside the grating structure. We found out that at first there is no strict dependence of the refractive index change from dosage, but as we continue the process of thermal treatment - dependence is appear. Exposure influence on the refractive index change for this glass differs from fluoride one and shows some sort of saturation after the exposure of 4-6 J/cm2 . We distinguished refractive index change and absorption coefficient change and observed both behavior with increasing thermal treatment time. We found out that the increase of thermal treatment time results in the significant refractive index change. At the same time the absorption does `not practically change. It was found that maximum modulation of refractive index is comparable with fluoride PTR glass and achieves value of 1600 ppm. The modulation of absorption is equal to induced absorption caused by silver nanoparticles and depends from reading wavelength. Our study shows that almost all absorption is modulated inside the grating.

  3. Study of optical nonlinearities in Se-Te-Bi thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ambika; Yadav, Preeti; Kumari, Anshu

    2014-04-01

    The present work reports the nonlinear refractive index of Se85-xTe15Bix thin films calculated by Ticha and Tichy relation. The nonlinear refractive index of Chalcogenide amorphous semiconductor is well correlated with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system. The density of the system is calculated theoretical as well as experimentally by using Archimedes principle. The linear refractive index and WDD parameters are calculated using single transmission spectra in the spectral range of 400-1500 nm. It is observed that linear as well as nonlinear refractive index increases with Bi content. The results are analyzed on the basis of increasing polarizability due to larger radii of Bi.

  4. Optical Properties of LiNbO3 Single Crystal Grown by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Naim, N. M.; Hamzah, K.

    2011-03-01

    Pure LiNbO3 single crystal was grown by Czochralski method using Automatic Diameter Control—Crystal Growth System (ADC-CGS). The transmission spectrum was determined by using Infrared Spectroscopy while the refractive index was determined using UV-Vis spectroscopy via the Sellmeier equation. The density was also measured using the Archimedes principle. It was found that the peak for the absorption vibrational spectrum for LiNbO3 crystal occurs at 801 cm-1, 672 cm-1, 639 cm-1 and 435 cm-1. The refractive index, ne was found to be 2.480 and the crystal density was around 4.64 g/cm3.

  5. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    PubMed

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  6. Photothermoplastic recording media and its application in the holographic method of determination of the refractive index of liquid objects.

    PubMed

    Davidenko, N A; Davidenko, I I; Pavlov, V A; Chuprina, N G; Kravchenko, V V; Kuranda, N N; Mokrinskaya, E V; Studzinsky, S L

    2018-03-10

    The photothermoplastic medium based on the films of photosensitive polymeric composites with semiconductor properties is developed for application in optical information recording and storage, in holographic interferometry, as well as for medical purposes. This medium was used in the modified holographic device for determination of changes of the refractive index of homogeneous and inhomogeneous liquid objects. The technique and holographic equipment were modified by employing the specially developed and produced transparent cuvette of special shape and the phase shifting interferometry method. Experimentally demonstrated precision of the measurements is not less than 10 -5 .

  7. Ray tracing matrix approach for refractive index mismatch aberrations in confocal microscopy.

    PubMed

    Nastyshyn, S Yu; Bolesta, I M; Lychkovskyy, E; Vankevych, P I; Yakovlev, M Yu; Pansu, B; Nastishin, Yu A

    2017-03-20

    The 2×2 ray tracing matrix (RTM) method is employed for the description of optical aberrations caused by the refractive index mismatch (RIM) in fluorescent confocal polarization microscopy. We predict and experimentally confirm that due to the RIM a liquid crystal layer with highly non-uniform director distribution appears to be imaged as a layer with non-uniform thickness, which shows up in the roughness of the rear surface. For the off-axial focusing of the probing beam in a droplet dispersed in an immiscible liquid, we have developed an extended method still keeping the 2×2 dimensionality of the RTM.

  8. Numerical simulations of negative-index refraction in wedge-shaped metamaterials.

    PubMed

    Dong, Z G; Zhu, S N; Liu, H; Zhu, J; Cao, W

    2005-07-01

    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's Law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's Law experiments.

  9. Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements.

    PubMed

    Herman, Benjamin R; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2008-04-01

    We investigate the assessment of uncertainty in the inference of aerosol size distributions from backscatter and extinction measurements that can be obtained from a modern elastic/Raman lidar system with a Nd:YAG laser transmitter. To calculate the uncertainty, an analytic formula for the correlated probability density function (PDF) describing the error for an optical coefficient ratio is derived based on a normally distributed fractional error in the optical coefficients. Assuming a monomodal lognormal particle size distribution of spherical, homogeneous particles with a known index of refraction, we compare the assessment of uncertainty using a more conventional forward Monte Carlo method with that obtained from a Bayesian posterior PDF assuming a uniform prior PDF and show that substantial differences between the two methods exist. In addition, we use the posterior PDF formalism, which was extended to include an unknown refractive index, to find credible sets for a variety of optical measurement scenarios. We find the uncertainty is greatly reduced with the addition of suitable extinction measurements in contrast to the inclusion of extra backscatter coefficients, which we show to have a minimal effect and strengthens similar observations based on numerical regularization methods.

  10. Long range surface plasmon resonance (LRSPR) based highly sensitive refractive index sensor using Kretschmann prism coupling arrangement

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).

  11. Effect of temperature rise and hydrostatic pressure on microbending loss and refractive index change in double-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Toutian, Golnoosh

    This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.

  12. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    PubMed

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  13. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film

    PubMed Central

    Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang

    2017-01-01

    In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development. PMID:28796155

  14. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film.

    PubMed

    Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang

    2017-08-10

    In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development.

  15. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  16. Predictive methods of some optoelectronic properties for blends based on quaternized polysulfones

    NASA Astrophysics Data System (ADS)

    Dobos, Adina Maria; Filimon, Anca

    2017-11-01

    Blends based on quaternized polysulfones were investigated in terms of optical and electronic properties. By applying the Bicerano formalism the refractive index and dielectric constant were evaluated. Also, the dielectric constant of these blends was studied as a function of temperature and frequency. As the result of the main chain structure and charged groups, an increase in theoretical values of the refractive index and dielectric constant with increasing of the ionic quaternized units content in the polymer blend occurs. Additionally, decrease in the dielectric constant with the increase of frequency and decrease of temperature was observed. Refractive index and dielectric constant values indicate that the analyzed samples are transparent and can be used in obtaining of materials with applications involving a small polarizability. Thus, the results are important in prediction of the special optoelectronic features of new polymers blends to obtain high-performance materials with applications in electronic and biomedical fields.

  17. Index of Refraction of Shock Loaded Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.

    2009-12-01

    Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.

  18. Index of Refraction of Shock Loaded Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Alexander, Scott

    2009-06-01

    Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to approximately 25 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. App. Physics, 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res., 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.

  19. INDEX OF REFRACTION OF SHOCK LOADED SODA-LIME GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, C. S.

    2009-12-28

    Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results bymore » Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.« less

  20. First-Principle Study of the Optical Properties of Dilute-P GaN1-xPx Alloys.

    PubMed

    Borovac, Damir; Tan, Chee-Keong; Tansu, Nelson

    2018-04-16

    An investigation on the optical properties of dilute-P GaN 1-x P x alloys by First-Principle Density Functional Theory (DFT) methods is presented, for phosphorus (P) content varying from 0% up to 12.5%. Findings on the imaginary and real part of the dielectric function are analyzed and the results are compared with previously reported theoretical works on GaN. The complex refractive index, normal-incidence reflectivity and birefringence are presented and a difference in the refractive index in the visible regime between GaN and GaNP alloys of ~0.3 can be engineered by adding minute amounts of phosphorus, indicating strong potential for refractive index tunability. The optical properties of the GaN 1-x P x alloys indicate their strong potential for implementation in various III-nitride-based photonic waveguide applications and Distributed Bragg Reflectors (DBR).

  1. Multiband super-resolution imaging of graded-index photonic crystal flat lens

    NASA Astrophysics Data System (ADS)

    Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun

    2018-05-01

    Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Characterisation of optically cleared paper by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fabritius, T.; Alarousu, E.; Prykäri, T.; Hast, J.; Myllylä, Risto

    2006-02-01

    Due to the highly light scattering nature of paper, the imaging depth of optical methods such as optical coherence tomography (OCT) is limited. In this work, we study the effect of refractive index matching on improving the imaging depth of OCT in paper. To this end, four different refractive index matching liquids (ethanol, 1-pentanol, glycerol and benzyl alcohol) with a refraction index between 1.359 and 1.538 were used in experiments. Low coherent light transmission was studied in commercial copy paper sheets, and the results indicate that benzyl alcohol offers the best improvement in imaging depth, while also being sufficiently stable for the intended purpose. Constructed cross-sectional images demonstrate visually that the imaging depth of OCT is considerably improved by optical clearing. Both surfaces of paper sheets can be detected along with information about the sheet's inner structure.

  3. Refractive Index Dispersion in Ternary Germanate Glasses

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Shigeki; Todoroki, Shinichi; Rigout, Nathalie

    1995-10-01

    The refractive index dispersion in germanate oxyfluoride glasses of GeO2-P2O5-MF2 (M=Ca, Zn), which are developed for optical fiber application, is investigated in the 0.4-4 µ m wavelength range by the minimum deviation method. The prepared glasses have a GeO2 content varying from 80 to 30 mol%. The dispersion curves for these glasses tend to shift to shorter wavelengths as the GeO2 content is decreased. Material dispersions are also derived from the refractive index measurements and the zero-material dispersion wavelengths (λ0) are found in the vicinity of 1.5 µ m. On the basis of the empirical relationship between λ0 and the minimum loss wavelength (λ0), the λ min values are located at around 1.8 µ m. A minimum loss of as low as 0.08 dB/km is expected for the present germanate glasses.

  4. Refractive index matching to develop transparent polyaphrons: Characterization of immobilized proteins.

    PubMed

    Ward, Keeran; Stuckey, David C

    2016-06-01

    Refractive index matching was used to create optically transparent polyaphrons to enable proteins adsorbed to the aphron surface to be characterized. Due to the significant light scattering created by polyaphrons, refractive index matching allowed for representative circular dichroism (CD) spectra and acceptable structural characterization. The method utilized n-hexane as the solvent phase, a mixture of glycerol and phosphate buffer (30% [w/v]) as the aqueous phase, and the non-ionic surfactants, Laureth-4 and Kolliphor P-188. Deconvolution of CD spectra revealed that the immobilized protein adapted its native conformation, showing that the adsorbed protein interacted only with the bound water layer ("soapy shell") of the aphron. Isothermal calorimetry further demonstrated that non-ionic surfactant interactions were virtually non-existent, even at the high concentrations used (5% [w/v]), proving that non-ionic surfactants can preserve protein conformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High Dynamic Range (Δn) Two-Stage Photopolymers via Enhanced Solubility of a High Refractive Index Acrylate Writing Monomer.

    PubMed

    Alim, Marvin D; Glugla, David J; Mavila, Sudheendran; Wang, Chen; Nystrom, Philip D; Sullivan, Amy C; McLeod, Robert R; Bowman, Christopher N

    2018-01-10

    Holographic photopolymers capable of high refractive index modulation (Δn) on the order of 10 -2 are integral for the fabrication of functional holographic optical elements that are useful in a myriad of optical applications. In particular, to address the deficiency of suitable high refractive index writing monomers for use in two-stage holographic formulations, here we report a novel high refractive index writing monomer, 1,3-bis(phenylthio)-2-propyl acrylate (BPTPA), simultaneously possessing enhanced solubility in a low refractive index (n = 1.47) urethane matrix. When examined in comparison to a widely used high refractive index monomer, 2,4,6-tribromophenyl acrylate, BPTPA exhibited superior solubility in a stage 1 urethane matrix of approximately 50% with a 20% higher refractive index increase per unit amount of the writing monomer for stage 2 polymerizations. Formulations with 60 wt % loading of BPTPA exhibit a peak-to-mean holographic Δn ≈ 0.029 without obvious deficiencies in transparency, color, or scatter. To the best of our knowledge, this value is the highest reported in the peer-reviewed literature for a transmission hologram. The capabilities and versatility of BPTPA-based formulations are demonstrated at varying length scales via demonstrative refractive index gradient structure examples including direct laser write, projection mask lithography of a 1″ diameter Fresnel lens, and ∼100% diffraction efficiency volume transmission holograms with a 1 μm fringe spacing in 11 μm thick samples.

  6. Matching refractive indices of two fluids and finding interfacial tension for the purpose of fuel spray imaging

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.

    2017-06-01

    This study attempts to prepare a fluid pair for use in spray dynamics investigations. Better understanding the behavior of fuel sprays is one of the things that can help improve the efficiency of internal combustion engines. To address the scattering issue in current imaging methods, the refractive index difference between the injected fluid and the medium that it is injected into is eliminated. Two immiscible fluids (sucrose solution and silicone oil) with the same refractive index was identified, their surface tension to build a model fluid engine system injection was also studied. At the same time, Weber number is found to help correct the difference. Results show that 63.7% mass sucrose solution has the same refractive index as silicone oil, and the sucrose solution/silicone oil interface has a surface tension of 0.08941 N/m, which is roughly four times larger than that of ethanol/air. This means using the sucrose/silicone oil fluid pair to model fuel spray will involve some adjustments to be accurate.

  7. Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hong; Lipschultz, Kristen A.; Anheier, Norman C.

    2012-04-01

    A state-of-the-art mid-infrared prism coupler was used to study the refractive index properties of forward-looking-infrared (FLIR) grade zinc sulfide samples prepared with unique planar grain orientations and locations with respect to the CVD growth axis. This study was motivated by prior photoluminescence and x-ray diffraction measurements that suggested refractive index may vary according to grain orientation. Measurements were conducted to provide optical dispersion and thermal index (dn/dT) data at discrete laser wavelengths between 0.633 and 10.591 {mu}m at two temperature set points (30 C and 90 C). Refractive index measurements between samples exhibited an average standard deviation comparable to themore » uncertainty of the prism coupler measurement (0.0004 refractive index units), suggesting that the variation in refractive index as a function of planar grain orientation and CVD deposition time is negligible, and should have no impact on subsequent optical designs. Measured dispersion data at mid-infrared wavelengths was found to agree well with prior published measurements.« less

  8. Third-order nonlinear optical properties of acid green 25 dye by Z-scan method

    NASA Astrophysics Data System (ADS)

    Jeyaram, S.; Geethakrishnan, T.

    2017-03-01

    Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.

  9. Impact of sulfur content on structural and optical properties of Ge20Se80-xSx chalcogenide glasses thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; Elhady, A. F.; Ebied, M. S.; Abuelwafa, A. A.

    2018-04-01

    Chalcogenide system Ge20Se80-xSx (x = 0, 15 and 30%) thin films were prepared by thermal evaporation technique. The amorphous state of the samples was confirmed according to XRD. The structural changes occurring upon replacement Se by S was investigated using Raman spectroscopy. The optical properties of the as-deposited Ge20Se80-xSx thin films have been studied by analysis the transmittance T(λ) measured at room temperature in the wavelength range 200-2500 nm using Swanepoel's method. Urbach energy (Ee) and optical band gap (Eg) were strongly affected by sulfur concentration in the sample. The refractive index evaluated through envelope method was extrapolated by Cauchy dispersion relationship over the whole spectral range. Moreover, the dispersion of refractive index was analyzed in terms of the single-oscillator Wemple-Di Domenico model. The third-order nonlinear susceptibility (χ(3)) and nonlinear refractive index (n2) were calculated and discussed for different Ge20Se80-xSx (x = 0, 15 and 30%).

  10. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    PubMed

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Segment density profiles of polyelectrolyte brushes determined by Fourier transform ellipsometry

    NASA Astrophysics Data System (ADS)

    Biesalski, Markus; Rühe, Jürgen; Johannsmann, Diethelm

    1999-10-01

    We describe a method for the explicit determination of the segment density profile φ(z) of surface-attached polymer brushes with multiple angle of incidence null-ellipsometry. Because the refractive index contrast between the brush layer and the solvent is weak, multiple reflections are of minor influence and the ellipsometric spectrum is closely related to the Fourier transform of the refractive index profile, thereby allowing for explicit inversion of the ellipsometric data. We chose surface-attached monolayers of polymethacrylic acid (PMAA), a weak polyelectrolyte, as a model system and determined the segment density profile of this system as a function of the pH value of the surrounding medium by the Fourier method. Complementary to the Fourier analysis, fits with error functions are given as well. The brushes were prepared on the bases of high refractive index prisms with the "grafting-from" technique. In water, the brushes swell by more than a factor of 30. The swelling increases with increasing pH because of a growing fraction of dissociated acidic groups leading to a larger electrostatic repulsion.

  12. Refractive index, molar refraction and comparative refractive index study of propylene carbonate binary liquid mixtures.

    PubMed

    Wankhede, Dnyaneshwar Shamrao

    2012-06-01

    Refractive indices (n) have been experimentally determined for the binary liquid-liquid mixtures of Propylene carbonate (PC) (1) with benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15, 303.15 and 308.15 K over the entire mole fraction range. The experimental values of n are utilised to calculate deviation in refractive index (Δn), molar refraction (R) and deviation in molar refraction (ΔR). A comparative study of Arago-Biot (A-B), Newton (NW), Eyring and John (E-J) equations for determining refractive index of a liquid has been carried out to test their validity for all the binary mixtures over the entire composition range at 298.15 K. Comparison of various mixing relations is represented in terms of average deviation (AVD). The Δn and ΔR values have been fitted to Redlich-Kister equation at 298.15 K and standard deviations have been calculated. The results are discussed in terms of intermolecular interactions present amongst the components.

  13. Response to Comment on "Cell nuclei have lower refractive index and mass density than cytoplasm": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.

    PubMed

    Müller, Paul; Guck, Jochen

    2018-05-02

    In a recent study entitled "Cell nuclei have lower refractive index and mass density than cytoplasm," we provided strong evidence indicating that the nuclear refractive index (RI) is lower than the RI of the cytoplasm for several cell lines. In a complementary study in 2017, entitled "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies," Steelman et al. observed a lower nuclear RI also for other cell lines and ruled out methodological error sources such as phase wrapping and scattering effects. Recently, Yurkin composed a comment on these 2 publications, entitled "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?," putting into question the methods used for measuring the cellular and nuclear RI in the aforementioned publications by suggesting that a lower nuclear RI would produce a characteristic dip in the measured phase profile in situ. We point out the difficulty of identifying this dip in the presence of other cell organelles, noise, or blurring due to the imaging point spread function. Furthermore, we mitigate Yurkin's concerns regarding the ability of the simple-transmission approximation to compare cellular and nuclear RI by analyzing a set of phase images with a novel, scattering-based approach. We conclude that the absence of a characteristic dip in the measured phase profiles does not contradict the usage of the simple-transmission approximation for the determination of the average cellular or nuclear RI. Our response can be regarded as an addition to the response by Steelman, Eldridge and Wax. We kindly ask the reader to attend to their thorough ascertainment prior to reading our response. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solid state radiative heat pump

    DOEpatents

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  15. One-dimensional transient radiative transfer by lattice Boltzmann method.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  16. Signal Enhancement Strategies for Refractive Index-Sensitive Nanobiosensor.

    PubMed

    Syahir, Amir; Kajikawa, Kotaro; Mihara, Hisakazu

    2018-01-01

    Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio. This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality. In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes. As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method. We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: comment.

    PubMed

    Andersen, Torben B

    2016-05-01

    In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.

  18. Note: Index of refraction measurement using the Fresnel equations.

    PubMed

    McClymer, J P

    2014-08-01

    The real part of the refractive index is measured from 1.30 to above 3.00 without the use of index matching fluids. This approach expands upon the Brewster angle technique as both S and P polarized lights are used and the full Fresnel equations fitted to the data to extract the index of refraction using nonlinear curve fitting.

  19. [The application of vector analysis for evaluation of astigmatism correction in the corneal refractive surgery].

    PubMed

    Zhang, Jiamei; Wang, Yan

    2016-01-01

    Since sixty percent of ametropes obtain astigmatism, which has influence on the visual quality, correcting the astigmatism is always the focus of concerns during visual correction procedures especially for the corneal refractive surgery. The postoperative spherical equivalent or residual cylindrical dioptors was used as quantitative index to evaluate the correction of astigmatism previously; however, such results neglect the effect of astigmatic axis shift on the treatment. Taking astigmatism as a vector parameter could describe the magnitude and direction of astigmatism accurately, thus it was increasingly applied in the evaluation of astigmatism correction. This paper reviews the present vector analysis methods, evaluation indexes and its application for the correction of astigmatism in the corneal refractive surgery.

  20. Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel.

    PubMed

    Lee, H W; Schmidt, M A; Uebel, P; Tyagi, H; Joly, N Y; Scharrer, M; Russell, P St J

    2011-04-25

    We present a simple refractive index sensor based on a step-index fiber with a hollow micro-channel running parallel to its core. This channel becomes waveguiding when filled with a liquid of index greater than silica, causing sharp dips to appear in the transmission spectrum at wavelengths where the glass-core mode phase-matches to a mode of the liquid-core. The sensitivity of the dip-wavelengths to changes in liquid refractive index is quantified and the results used to study the dynamic flow characteristics of fluids in narrow channels. Potential applications of this fiber microstructure include measuring the optical properties of liquids, refractive index sensing, biophotonics and studies of fluid dynamics on the nanoscale.

  1. Options for refractive index and viscosity matching to study variable density flows

    NASA Astrophysics Data System (ADS)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.

  2. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi

    2011-05-15

    Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less

  3. Refractive index and thickness determination in Langmuir monolayers of myelin lipids.

    PubMed

    Pusterla, Julio M; Malfatti-Gasperini, Antonio A; Puentes-Martinez, Ximena E; Cavalcanti, Leide P; Oliveira, Rafael G

    2017-05-01

    Langmuir monolayers at the air/water interface are widely used as biomembrane models and for amphiphilic molecules studies in general. Under controlled intermolecular organization (lateral molecular area), surface pressure, surface potential, reflectivity (R) and other magnitudes can be precisely determined on these planar monomolecular films. However, some physical parameters such as the refractive index of the monolayer (n) still remain elusive. The refractive index is very relevant because (in combination with R) it allows for the determination of the thickness of the film. The uncertainties of n determine important errors that propagate non-linearly into the calculation of monolayers thickness. Here we present an analytical method for the determination of n in monolayers based on refractive index matching. By using a Brewster angle microscopy (BAM) setup and monolayers spread over subphases with variable refractive index (n 2 ), a minimum in R is search as a function of n 2 . In these conditions, n equals n 2 . The results shown correspond to monolayers of myelin lipids. The n values remain constant at 1.46 upon compression and equals the obtained value for myelin lipid bilayers in suspension. The values for n and R allow for the determination of thickness. We establish comparisons between these thicknesses for the monolayer and those obtained from two X-ray scattering techniques: 1) GIXOS for monolayers at the air/water interface and 2) SAXS for bilayers in bulk suspension. This allows us to conclude that the thickness that we measure by BAM includes the apolar and polar headgroup regions of the monolayer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Block Copolymer Nanocomposites with High Refractive Index Contrast for One-Step Photonics.

    PubMed

    Song, Dong-Po; Li, Cheng; Li, Wenhao; Watkins, James J

    2016-01-26

    Photonic crystals (PhCs) prepared using the self-assembly of block copolymers (BCPs) offer the potential for simple and rapid device fabrication but typically suffer from low refractive index contrast (Δn ≤ 0.1) between the phase-segregated domains. Here, we report the simple fabrication of BCP-based photonic nanocomposites with large differences in refractive index (Δn > 0.27). Zirconium oxide (ZrO2) nanoparticles coated with gallic acid are used to tune the optical constants of the target domains of self-assembled (polynorbornene-graft-poly(tert-butyl acrylate))-block-(polynorbornene-graft-poly(ethylene oxide)) (PtBA-b-PEO) brush block copolymers (BBCPs). Strong hydrogen-bonding interactions between the ligands on ZrO2 and PEO brushes of the BBCPs enable selective incorporation and high loading of up to 70 wt % (42 vol %) of the ZrO2 nanoparticles within the PEO domain, resulting in a significant increase of refractive index from 1.45 to up to 1.70. Consequently, greatly enhanced reflection at approximately 398 nm (increases of ∼250%) was observed for the photonic nanocomposites (domain spacing = 137 nm) relative to that of the unmodified BBCPs, which is consistent with numeric modeling results using transfer matrix methods. This work provides a simple strategy for a wide range tuning of optical constants of BCP domains, thereby enabling the design and creation of high-performance photonic coatings for various applications. The large refractive index contrast enables high reflectivity while simultaneously reducing the coating thickness necessary, compared to pure BCP systems.

  5. Effect of antimony (Sb) addition on the linear and non-linear optical properties of amorphous Ge-Te-Sb thin films

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Kaur, J.; Tripathi, S. K.; Sharma, I.

    2017-12-01

    Non-crystalline thin films of Ge20Te80-xSbx (x = 0, 2, 4, 6, 10) systems were deposited on glass substrate using thermal evaporation technique. The optical coefficients were accurately determined by transmission spectra using Swanepoel envelope method in the spectral region of 400-1600 nm. The refractive index was found to increase from 2.38 to 2.62 with the corresponding increase in Sb content over the entire spectral range. The dispersion of refractive index was discussed in terms of the single oscillator Wemple-DiDomenico model. Tauc relation for the allowed indirect transition showed decrease in optical band gap. To explore non-linearity, the spectral dependence of third order susceptibility of a-Ge-Te-Sb thin films was evaluated from change of index of refraction using Miller's rule. Susceptibility values were found to enhance rapidly from 10-13 to 10-12 (esu), with the red shift in the absorption edge. Non-linear refractive index was calculated by Fourier and Snitzer formula. The values were of the order of 10-12 esu. At telecommunication wavelength, these non-linear refractive index values showed three orders higher than that of silica glass. Dielectric constant and optical conductivity were also reported. The prepared Sb doped thin films on glass substrate with observed improved functional properties have a noble prospect in the application of nonlinear optical devices and might be used for a high speed communication fiber. Non-linear parameters showed good agreement with the values given in the literature.

  6. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  7. Plasmas with an index of refraction greater than 1.

    PubMed

    Nilsen, Joseph; Scofield, James H

    2004-11-15

    Over the past decade, x-ray lasers in the wavelength range 14-47 nm have been used for interferometry of plasmas. As in optical interferometry of plasmas, the experimental analysis assumed that the index of refraction is due only to free electrons. This makes the index of refraction less than 1. Recent experiments in A1 plasmas have shown fringe lines bending the wrong way as though the electron density were negative. We show how the bound electrons can dominate the index of refraction in many plasmas and make the index greater than 1 or enhance the index such that one would greatly overestimate the density of the plasma using interferometry.

  8. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers.

    PubMed

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2014-06-01

    An infrared refractive index sensor based on plasmonic perfect absorbers for glucose concentration sensing is experimentally demonstrated. Utilizing substantial absorption contrast between a perfect absorber (∼98% at normal incidence) and a non-perfect absorber upon the refractive index change, a maximum value of figure of merit (FOM*) about 55 and a bulk wavelength sensitivity about 590  nm/RIU are achieved. The demonstrated sensing platform provides great potential in improving the performance of plasmonic refractive index sensors and developing future surface enhanced infrared spectroscopy.

  9. Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models.

    PubMed

    Diamant, Ruth; Garcí-Valenzuela, Augusto; Fernández-Guasti, Manuel

    2012-09-01

    Reflectivity of a random monolayer, consisting of transparent spherical particles, is estimated using a graded refractive index model, an effective medium approach, and two scattering models. Two cases, a self-standing film and one with a substrate, are considered. Neither the surrounding medium nor the substrate are absorbing materials. Results at normal incidence, with different particle sizes, covering ratios and refractive indexes, are compared. The purpose of this work is to find under which circumstances, for reflectivity at normal incidence, a particle monolayer behaves as a graded refractive index film.

  10. Refractive index modulation in LiNbO3: MgO slab through Lamb wave

    NASA Astrophysics Data System (ADS)

    Prakash, Suraj; Sharma, Gaurav; Yadav, Gulab Chand; Singh, Vivek

    2018-05-01

    Present theoretical analysis deals with inducing refractive index contrast in Y-Z LiNbO3:MgO plate via GHz Lamb wave perturbation for photonic applications. Dispersion curves for Lamb wave in plate are plotted by employing displacement potential technique. Selecting wave parameters from dispersion curve, fundamental symmetric Lamb mode (S0) is excited in slab for 6GHz frequency. Produced displacement field by propagating S0 mode and thus developed strain is estimated to calculate refractive index modulation by applying photo-elastic relations. Modulated refractive index is of sinusoidal nature with period of modulation dependence on Lamb's wavelength. This plate having periodically modulated refractive index can be used as photonic crystal for different applications with acoustically tunable photonic band gap.

  11. Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system.

    PubMed

    Helseth, Lars Egil

    2012-02-13

    The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.

  12. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  13. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  14. Pressure sensing in high-refractive-index liquids using long-period gratings nanocoated with silicon nitride.

    PubMed

    Smietana, Mateusz; Bock, Wojtek J; Mikulic, Predrag; Chen, Jiahua

    2010-01-01

    The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD>1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n>2.2 at λ=1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters.

  15. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  16. Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography.

    PubMed

    Bourke, Levi; Blaikie, Richard J

    2017-12-01

    Dielectric waveguide resonant underlayers are employed in ultra-high NA interference photolithography to effectively double the depth of field. Generally a single high refractive index waveguiding layer is employed. Here multilayer Herpin effective medium methods are explored to develop equivalent multilayer waveguiding layers. Herpin equivalent resonant underlayers are shown to be suitable replacements provided at least one layer within the Herpin trilayer supports propagating fields. In addition, a method of increasing the intensity incident upon the photoresist using resonant overlayers is also developed. This method is shown to greatly enhance the intensity within the photoresist making the use of thicker, safer, non-absorbing, low refractive index matching liquids potentially suitable for large-scale applications.

  17. Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.

    1981-01-01

    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.

  18. Detection of Influenza Virus with Specific Subtype by Using Localized Surface Plasmons Excited on a Flat Metal Surface

    NASA Astrophysics Data System (ADS)

    Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi

    2013-08-01

    We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.

  19. Geometrical-optics approximation of forward scattering by gradient-index spheres.

    PubMed

    Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen

    2007-08-01

    By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.

  20. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength

    NASA Astrophysics Data System (ADS)

    Millard, R. C.; Seaver, G.

    1990-12-01

    A 27-term index of refraction algorithm for pure and sea waters has been developed using four experimental data sets of differing accuracies. They cover the range 500-700 nm in wavelength, 0-30°C in temperature, 0-40 psu in salinity, and 0-11,000 db in pressure. The index of refraction algorithm has an accuracy that varies from 0.4 ppm for pure water at atmospheric pressure to 80 ppm at high pressures, but preserves the accuracy of each original data set. This algorithm is a significant improvement over existing descriptions as it is in analytical form with a better and more carefully defined accuracy. A salinometer algorithm with the same uncertainty has been created by numerically inverting the index algorithm using the Newton-Raphson method. The 27-term index algorithm was used to generate a pseudo-data set at the sodium D wavelength (589.26 nm) from which a 6-term densitometer algorithm was constructed. The densitometer algorithm also produces salinity as an intermediate step in the salinity inversion. The densitometer residuals have a standard deviation of 0.049 kg m -3 which is not accurate enough for most oceanographic applications. However, the densitometer algorithm was used to explore the sensitivity of density from this technique to temperature and pressure uncertainties. To achieve a deep ocean densitometer of 0.001 kg m -3 accuracy would require the index of refraction to have an accuracy of 0.3 ppm, the temperature an accuracy of 0.01°C and the pressure 1 db. Our assessment of the currently available index of refraction measurements finds that only the data for fresh water at atmospheric pressure produce an algorithm satisfactory for oceanographic use (density to 0.4 ppm). The data base for the algorithm at higher pressures and various salinities requires an order of magnitude or better improvement in index measurement accuracy before the resultant density accuracy will be comparable to the currently available oceanographic algorithm.

  1. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  2. Liquid refractive index sensing independent of opacity using an optofluidic diffraction sensor.

    PubMed

    Xu, Zhida; Han, Kevin; Khan, Ibrahim; Wang, Xinhao; Liu, G Logan

    2014-10-15

    We have implemented a multifunctional optofluidic sensor that can monitor changes in the refractive index and pressure of biofluid simultaneously and can detect free-solution molecular interaction in situ. In this Letter, we demonstrate two major improvements of this sensor proven by both simulation and experiments. One improvement is the broader measurement range of refractive index by making the diffraction grating with high-index polymer. The other improvement is the separation of refractive index sensing from opacity sensing by using the relative power ratio of diffraction orders. This simple, compact and low-cost multifunctional optofluidic sensor has the potential to be used for in situ biofluid monitoring.

  3. Inversion of the anomalous diffraction approximation for variable complex index of refraction near unity. [numerical tests for water-haze aerosol model

    NASA Technical Reports Server (NTRS)

    Smith, C. B.

    1982-01-01

    The Fymat analytic inversion method for retrieving a particle-area distribution function from anomalous diffraction multispectral extinction data and total area is generalized to the case of a variable complex refractive index m(lambda) near unity depending on spectral wavelength lambda. Inversion tests are presented for a water-haze aerosol model. An upper-phase shift limit of 5 pi/2 retrieved an accurate peak area distribution profile. Analytical corrections using both the total number and area improved the inversion.

  4. Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite

    PubMed Central

    Gant, Patricia; Ghasemi, Foad; Maeso, David; Munuera, Carmen; López-Elvira, Elena; Frisenda, Riccardo; De Lara, David Pérez; Rubio-Bollinger, Gabino; Garcia-Hernandez, Mar

    2017-01-01

    We study mechanically exfoliated nanosheets of franckeite by quantitative optical microscopy. The analysis of transmission-mode and epi-illumination-mode optical microscopy images provides a rapid method to estimate the thickness of the exfoliated flakes at first glance. A quantitative analysis of the optical contrast spectra by means of micro-reflectance allows one to determine the refractive index of franckeite over a broad range of the visible spectrum through a fit of the acquired spectra to a model based on the Fresnel law. PMID:29181292

  5. Optical Properties of Bismuth Tellurite Based Glass

    PubMed Central

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  6. Adaptive Optoelectronic Eyes: Hybrid Sensor/Processor Architectures

    DTIC Science & Technology

    2006-11-13

    corresponding calculated data. The width of the mirror stopband is proportional to the refractive index difference between the high and low index materials ...Silicon VLSI Neuron Unit Arrays 56 Development of a Single-Sided Flip-Chip Bonding Process 65 Development of High Refractive Index Diffractive Optical ...Elements (DOEs) 68 Development of High-Performance Antireflection Coatings for High Refractive Index DOEs 69 Design and Fabrication of Low Threshold

  7. Three-dimensional ordered particulate structures: Method to retrieve characteristics from photonic band gap data

    NASA Astrophysics Data System (ADS)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-01-01

    A method to retrieve characteristics of ordered particulate structures, such as photonic crystals, is proposed. It is based on the solution of the inverse problem using data on the photonic band gap (PBG). The quasicrystalline approximation (QCA) of the theory of multiple scattering of waves and the transfer matrix method (TMM) are used. Retrieval of the refractive index of particles is demonstrated. Refractive indices of the artificial opal particles are estimated using the published experimental data.

  8. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Koichi, E-mail: khattori@yonsei.ac.kr; Itakura, Kazunori, E-mail: kazunori.itakura@kek.jp; Department of Particle and Nuclear Studies, Graduate University for Advanced Studies

    2013-07-15

    We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon intomore » a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.« less

  9. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  10. Broadband arrayed waveguide grating multiplexers on indium phosphide

    NASA Astrophysics Data System (ADS)

    Rausch, Kameron

    2005-11-01

    Coarse Wavelength Division Multiplexing (CWDM) is becoming a popular way to increase the optical throughput of fibers for short to medium haul networks at a reduced cost. The International Telecommunications Union (ITU) has defined the CWDM network to consist of eighteen channels with channel spacings of 20 nm starting at 1270 nm and ending at 1610 nm. Four and eight channel AWGs suitable for CWDM were fabricated using a versatile S-shape design novel to InP. The standard horseshoe layout will not work on semiconductor for AWGs with a free spectral range (FSR) larger than 30 nm. The AWG design provides operation insensitive to thermal and polarization fluctuations; which is key for low cost operation and packaging. It will be shown that, refractive index changes over the large operating wavelength band produced negligible effects in the transmission spectrum. Standard AWG design assumes refractive index is a constant over the operating wavelength band. As a result, the output waveguide separations are held constant on the second star coupler. As the channel number increases, secondary focal dispersion caused from a changing refractive index can have detrimental effects on performance. A new design method will be introduced which includes refractive index dispersion by allowing the output waveguide separations to vary. The new design is consistent with standard design but is applicable in materials with a linear index dispersion over an arbitrarily large wavelength band. Lastly, a method for increasing the transmission using multimode waveguides is discussed. Traditionally, single mode waveguides are required in order to prevent higher order waveguide modes creating ghost images in the output spectrum. Using bend loss and waveguide junction offsets, higher order modes can be filtered from the output, thereby eliminating ghost images and at the same time, increase transmission.

  11. A three-dimensional refractive index model for simulation of optical wave propagation in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Paramonov, P. V.; Vorontsov, A. M.; Kunitsyn, V. E.

    2015-10-01

    Numerical modeling of optical wave propagation in atmospheric turbulence is traditionally performed with using the so-called "split"-operator method, when the influence of the propagation medium's refractive index inhomogeneities is accounted for only within a system of infinitely narrow layers (phase screens) where phase is distorted. Commonly, under certain assumptions, such phase screens are considered as mutually statistically uncorrelated. However, in several important applications including laser target tracking, remote sensing, and atmospheric imaging, accurate optical field propagation modeling assumes upper limitations on interscreen spacing. The latter situation can be observed, for instance, in the presence of large-scale turbulent inhomogeneities or in deep turbulence conditions, where interscreen distances become comparable with turbulence outer scale and, hence, corresponding phase screens cannot be statistically uncorrelated. In this paper, we discuss correlated phase screens. The statistical characteristics of screens are calculated based on a representation of turbulent fluctuations of three-dimensional (3D) refractive index random field as a set of sequentially correlated 3D layers displaced in the wave propagation direction. The statistical characteristics of refractive index fluctuations are described in terms of the von Karman power spectrum density. In the representation of these 3D layers by corresponding phase screens, the geometrical optics approximation is used.

  12. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    PubMed Central

    Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng

    2016-01-01

    A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281

  13. Measuring Refractive Index Using the Focal Displacement Method (Postprint)

    DTIC Science & Technology

    2014-05-01

    refractive in- dex data at wavelengths longer than 1.8 μm [19] (2.5 μm [20]). The CdMgTe and CdMnTe crystals were obtained from Brimrose Technology...increase its accuracy. The authors gratefully acknowledge Dr. Sudhir Trivedi ( Brimrose Corp.) for providing the CdMgTe and CdMnTe samples, Dr. Jonathan

  14. Spectral solution of the inverse Mie problem

    NASA Astrophysics Data System (ADS)

    Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.

    2017-10-01

    We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.

  15. Refractive index of colloidal dispersions of spheroidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeten, G.H.

    1980-09-01

    The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.

  16. Photorefractive Nonlinear Optics

    DTIC Science & Technology

    1991-01-15

    conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...interaction by considering the refractive index grating as a linear superposition of the gratings from each of the frequency components of the

  17. Small and large particle limits of single scattering albedo for homogeneous, spherical particles

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Sorensen, C. M.

    2018-01-01

    The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.

  18. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  19. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE PAGES

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart; ...

    2017-01-11

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  20. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.

    PubMed

    Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli

    2018-01-01

    Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.

  1. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.

  2. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging.

    PubMed

    Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu

    2017-05-31

    Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.

  3. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.

    PubMed

    Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias

    2016-04-20

    Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution.

  4. Wave refraction in negative-index media: always positive and very inhomogeneous.

    PubMed

    Valanju, P M; Walser, R M; Valanju, A P

    2002-05-06

    We present the first treatment of the refraction of physical electromagnetic waves in newly developed negative index media (NIM), also known as left-handed media (LHM). The NIM dispersion relation implies that group fronts refract positively even when phase fronts refract negatively. This difference results in rapidly dispersing, very inhomogeneous waves. In fact, causality and finite signal speed always prevent negative wave signal (not phase) refraction. Earlier interpretations of phase refraction as "negative light refraction" and "light focusing by plane slabs" are therefore incorrect, and published NIM experiments can be explained without invoking negative signal refraction.

  5. Spatial variation of stratospheric aerosol acidity and model refractive index - Implications of recent results

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hamill, P.

    1984-01-01

    Recent experimental results indicate that little or no solid ammonium sulfate is present in background stratospheric aerosols. Other results allow straightforward calculation of sulfuric acid/water droplet properties (acidity, specific gravity, refractive index) as functions of stratospheric temperature and humidity. These results are combined with a variety of latitudinal and seasonal temperature and humidity profiles to obtain corresponding profiles of droplet properties. These profiles are used to update a previous model of stratospheric aerosol refractive index. The new model retains the simplifying approximation of vertically constant refractive index in the inner stratosphere, but has sulfuric acid/water refractive index values that significantly exceed the previously used room temperature values. Mean conversion ratios (e.g., extinction-to-number, backscatter-to-volume) obtained using Mie scattering calculations with the new refractive indices are very similar to those obtained for the old indices, because the effects of deleting ammonium sulfate and increasing acid indices tend to cancel each other.

  6. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.

    PubMed

    Mao, Xiaole; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-07-21

    We report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light. Tailoring the refractive index profile by adjusting the flow conditions enables not only tuning of the focal distance (translation mode), but also shifting of the output light direction (swing mode), a second degree of freedom that to our knowledge has yet to be accomplished for in-plane tunable microlenses. Advantages of the L-GRIN lens also include a low fluid consumption rate, competitive focusing performance, and high compatibility with existing microfluidic devices. This work provides a new strategy for developing integrative tunable microlenses for a variety of lab-on-a-chip applications.

  7. Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, Nathan; Anheier, Norman C.; Qiao, Hong

    2011-05-01

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5–10.6 μm range. The instrumental error was found to be ±0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  8. Measurement of the refractive index dispersion of As{sub 2}Se{sub 3} bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, N.; Petit, L.; Musgraves, J. D.

    2011-05-15

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 {mu}m range. The instrumental error was found to be {+-}0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  9. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Weintraub, Jacob B; Wax, Adam

    2017-12-01

    The refractive index (RI) of biological materials is a fundamental parameter for the optical characterization of living systems. Numerous light scattering technologies are grounded in a quantitative knowledge of the refractive index at cellular and subcellular scales. Recent work in quantitative phase microscopy (QPM) has called into question the widely held assumption that the index of the cell nucleus is greater than that of the cytoplasm, a result which disagrees with much of the current literature. In this work, we critically examine the measurement of the nuclear and whole-cell refractive index using QPM, validating that nuclear refractive index is lower than that of cytoplasm in four diverse cell lines and their corresponding isolated nuclei. We further examine Mie scattering and phase-wrapping as potential sources of error in these measurements, finding they have minimal impact. Finally, we use simulation to examine the effects of incorrect RI assumptions on nuclear morphology measurements using angle-resolved scattering information. Despite an erroneous assumption of the nuclear refractive index, accurate measurement of nuclear morphology was maintained, suggesting that light scattering modalities remain effective. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improve the refractive index sensitivity of coaxial-cable type gold nanostructure: the effect of dielectric polarization from the separate layer

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2013-06-01

    The separate layer refractive index sensitivity of a coaxial-cable type three-layered gold nanotube has been studied. Theoretical calculation results based on quasi-static model show that the coaxial-cable type gold nanostructure has higher refractive index sensitivity than that of single-layered gold nanotube. This sensitivity could be improved by increasing the inner wire radius or decreasing the total radius of the tube, and the maximum sensitivity may exceed 1,000 nm per refractive index unit. The physical origin was also investigated based on the coupling of the dielectric media induced polarizations and the local electric fields in separate layer and outer surrounding. These separate layer refractive index sensing properties of coaxial-cable type gold nanostructure present well potential for plasmonic biosensing applications.

  11. Miniature interferometer for refractive index measurement in microfluidic chip

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli

    2012-12-01

    The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.

  12. Group refractive index reconstruction with broadband interferometric confocal microscopy

    PubMed Central

    Marks, Daniel L.; Schlachter, Simon C.; Zysk, Adam M.; Boppart, Stephen A.

    2010-01-01

    We propose a novel method of measuring the group refractive index of biological tissues at the micrometer scale. The technique utilizes a broadband confocal microscope embedded into a Mach–Zehnder interferometer, with which spectral interferograms are measured as the sample is translated through the focus of the beam. The method does not require phase unwrapping and is insensitive to vibrations in the sample and reference arms. High measurement stability is achieved because a single spectral interferogram contains all the information necessary to compute the optical path delay of the beam transmitted through the sample. Included are a physical framework defining the forward problem, linear solutions to the inverse problem, and simulated images of biologically relevant phantoms. PMID:18451922

  13. Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.

    PubMed

    Noll, R; Haas, C R; Weikl, B; Herziger, G

    1986-03-01

    Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.

  14. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotovskii, I O; Lapin, V A; Sementsov, D I

    2016-01-31

    We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

  15. Refractive index sensor based on combination of tilted fiber Bragg grating and waist-enlarged fusion bitaper

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohang; Zheng, Jie; Yang, Jingyi; Li, Yi; Dong, Xinyong

    2015-12-01

    Refractive index measurement by using the combination of a tilted fiber Bragg grating (TFBG) and a waist-enlarged fusion bitaper (WEFBT) is proposed and demonstrated. The both devices can couple light between core and cladding modes with coupling coefficients depending on ambient refractive index. It is found that the proposed refractive index sensor offers two measurement ranges respectively from 1.333 to 1.428 and from 1.383 to 1.453 when different sensing segment is used, in addition to advantages of reflection operation mode and intensity-modulated measurement.

  16. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  17. Analyzing refractive index changes and differential bending in microcantilever arrays.

    PubMed

    Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph

    2008-08-01

    A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.

  18. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

    PubMed Central

    Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

    2014-01-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p=0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p<0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data. PMID:24939747

  19. Pressure Sensing in High-Refractive-Index Liquids Using Long-Period Gratings Nanocoated with Silicon Nitride

    PubMed Central

    Smietana, Mateusz; Bock, Wojtek J.; Mikulic, Predrag; Chen, Jiahua

    2010-01-01

    The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nd > 1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n > 2.2 at λ = 1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters. PMID:22163527

  20. Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor

    NASA Astrophysics Data System (ADS)

    Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi

    2018-02-01

    Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.

Top