Sample records for refractive index modulation

  1. Refractive index modulation in LiNbO3: MgO slab through Lamb wave

    NASA Astrophysics Data System (ADS)

    Prakash, Suraj; Sharma, Gaurav; Yadav, Gulab Chand; Singh, Vivek

    2018-05-01

    Present theoretical analysis deals with inducing refractive index contrast in Y-Z LiNbO3:MgO plate via GHz Lamb wave perturbation for photonic applications. Dispersion curves for Lamb wave in plate are plotted by employing displacement potential technique. Selecting wave parameters from dispersion curve, fundamental symmetric Lamb mode (S0) is excited in slab for 6GHz frequency. Produced displacement field by propagating S0 mode and thus developed strain is estimated to calculate refractive index modulation by applying photo-elastic relations. Modulated refractive index is of sinusoidal nature with period of modulation dependence on Lamb's wavelength. This plate having periodically modulated refractive index can be used as photonic crystal for different applications with acoustically tunable photonic band gap.

  2. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotovskii, I O; Lapin, V A; Sementsov, D I

    2016-01-31

    We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

  3. Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Ivanov, S. A.; Nikonorov, N. V.; Dubrovin, V. D.; Krykova, V. A.

    2017-05-01

    In this research, we present new holographic material based on fluoride photo-thermo-refractive glass(PTR) - chloride PTR glass. One of the benefit of this type of PTR glass is positive refractive index change. During this work, for the first-time volume Bragg gratings were recorded in this kind of material. The first experiments revealed that such gratings are mixed i.e. possess both absorption and phase components. Complex analysis shows that both refractive index and absorption coefficient are modulated inside the grating structure. We found out that at first there is no strict dependence of the refractive index change from dosage, but as we continue the process of thermal treatment - dependence is appear. Exposure influence on the refractive index change for this glass differs from fluoride one and shows some sort of saturation after the exposure of 4-6 J/cm2 . We distinguished refractive index change and absorption coefficient change and observed both behavior with increasing thermal treatment time. We found out that the increase of thermal treatment time results in the significant refractive index change. At the same time the absorption does `not practically change. It was found that maximum modulation of refractive index is comparable with fluoride PTR glass and achieves value of 1600 ppm. The modulation of absorption is equal to induced absorption caused by silver nanoparticles and depends from reading wavelength. Our study shows that almost all absorption is modulated inside the grating.

  4. Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors.

    PubMed

    Ogata, Tomonari; Yagi, Ryohei; Nakamura, Nozomi; Kuwahara, Yutaka; Kurihara, Seiji

    2012-08-01

    Modulation of the refractive index of a polymer was achieved by combining it with diamond nanoparticles (NDs). The increase in the refractive index was controlled by the amount of NDs added, according to the Lorentz-Lorenz equation. The refractive index of poly(vinyl alcohol) (PVA), which was used as the base polymer, increased from 1.52 to 1.88. A multilayer film consisting of alternating layers of ND-PVA composite and poly(methyl methacrylate) exhibited ca. 80% reflectance with 10 bilayers.

  5. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  6. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording.

    PubMed

    Li, Xiangping; Zhang, Qiming; Chen, Xi; Gu, Min

    2013-10-02

    Graphene oxides (GOs) have emerged as precursors offering the potential of a cost-effective and large-scale production of graphene-based materials. Despite that their intrinsic fluorescence property has already brought interest of researchers for optical applications, to date, refractive-index modulation as one of the fundamental aspects of optical properties of GOs has received less attention. Here we reported on a giant refractive-index modulation on the order of 10(-2) to 10(-1), accompanied by a fluorescence intensity change, through the two-photon reduction of GOs. These features enabled a mechanism for multimode optical recording with the fluorescence contrast and the hologram-encoded refractive-index modulation in GO-dispersed polymers for security-enhanced high-capacity information technologies. Our results show that GO-polymer composites may provide a new material platform enabling flexible micro-/nano-photonic information devices.

  7. Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lei, Kai; Wang, Yang; Jiang, Minghui; Wu, Yiqun

    2016-05-01

    In this study, the controllable effective refractive index modulation of Sb70Te30 phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.

  8. Refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films by multiple femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Kai; Wang, Yang, E-mail: ywang@siom.ac.cn; Jiang, Minghui

    2016-05-07

    In this study, the controllable effective refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.

  9. Photo-oxidation-modulated refractive index in Bi2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Yue, Zengji; Chen, Qinjun; Sahu, Amit; Wang, Xiaolin; Gu, Min

    2017-12-01

    We report on an 800 nm femtosecond laser beam induced giant refractive index modulation and enhancement of near-infrared transparency in topological insulator material Bi2Te3 thin films. An ultrahigh refractive index of up to 5.9 was observed in the Bi2Te3 thin film in near-infrared frequency. The refractive index dramatically decreases by a factor of ~3 by an exposure to the 800 nm femtosecond laser beam. Simultaneously, the transmittance of the Bi2Te3 thin films markedly increases to ~96% in the near-infrared frequency. The Raman spectra provides strong evidences that the observed both refractive index modulation and transparency enhancement result from laser beam induced photooxidation effects in the Bi2Te3 thin films. The Bi2Te3 compound transfers into Bi2O3 and TeO2 under the laser beam illumination. These experimental results pave the way towards the design of various optical devices, such as near-infrared flat lenses, waveguide and holograms, based on topological insulator materials.

  10. Gradient polymer network liquid crystal with a large refractive index change.

    PubMed

    Ren, Hongwen; Xu, Su; Wu, Shin-Tson

    2012-11-19

    A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.

  11. Liquid Crystal Bragg Gratings: Dynamic Optical Elements for Spatial Light Modulators (Postprint)

    DTIC Science & Technology

    2007-01-01

    These gratings consist of a peri- odic modulation of the index of refraction in a material . If the index of refraction can be strongly modulated on a...apparent when releasing the shear force. The slides actually seem to slip across the film with- out losing optical contact. Thin films of thiol-ene...in the material . Monomer is preferentially polymerized in the bright regions of the optical interference pattern, while liquid crystal diffuses to the

  12. Refractive index and viscosity: dual sensing with plastic fibre gratings

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo; Bilro, Lúcia; Marques, Carlos; Oliveira, Ricardo; Nogueira, Rogério

    2014-05-01

    A refractive index and viscosity sensor based on FBGs in mPOF is reported for the first time. The refractive index was measured with a sensitivity of -10:98nm=RIU and a resolution of 1 - 10-4RIU. Viscosity measurements were performed with acousto-optic modulation, obtaining a sensitivity of -94:42%=mPa • s and a resolution of 0:06mPa • s.

  13. Refractive index sensor based on combination of tilted fiber Bragg grating and waist-enlarged fusion bitaper

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohang; Zheng, Jie; Yang, Jingyi; Li, Yi; Dong, Xinyong

    2015-12-01

    Refractive index measurement by using the combination of a tilted fiber Bragg grating (TFBG) and a waist-enlarged fusion bitaper (WEFBT) is proposed and demonstrated. The both devices can couple light between core and cladding modes with coupling coefficients depending on ambient refractive index. It is found that the proposed refractive index sensor offers two measurement ranges respectively from 1.333 to 1.428 and from 1.383 to 1.453 when different sensing segment is used, in addition to advantages of reflection operation mode and intensity-modulated measurement.

  14. Method of determining effects of heat-induced irregular refractive index on an optical system.

    PubMed

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  15. Liquid Crystal Bragg Gratings: Dynamic Optical Elements for Spatial Light Modulators (Preprint)

    DTIC Science & Technology

    2007-01-01

    of the index of refraction in a material . If the index of refraction can be strongly modulated on a pixel •sutherlandr@saic.com 1 • level, then a...two optical beams .~,incident on a photorefractive material write a grating, due to the generation of a periodic space-charge field inducing an index ...modification of the material’s optical properties proportional to the applied voltage. A "read" beam of light incident on the material is thus spatially

  16. Low cost fiber optic sensing of sugar solution

    NASA Astrophysics Data System (ADS)

    Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao

    2015-03-01

    The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.

  17. Silicon-nanocrystal Optoelectronic Kerr Effect for Complementary Metal-oxide Semiconductor (CMOS) Compatible Optical Switching

    DTIC Science & Technology

    2011-04-01

    changes the material’s index of refraction via dispersion . This absorption requires carrier transport and, in present implementations, suffers from slow...designed to take advantage of the large Kerr effect that has been reported in Si-nanocrystals imbedded in oxide (Si-nc). The expected refractive index ...estimate of the expected refractive index change versus applied voltage. An index change of ~2 x 10–4 is enough to modulate the light, corresponding to a

  18. Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)

    2005-01-01

    An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.

  19. Determination of average refractive index of spin coated DCG films for HOE fabrication

    NASA Technical Reports Server (NTRS)

    Kim, T. J.; Campbell, Eugene W.; Kostuk, Raymond K.

    1993-01-01

    The refractive index of holographic emulsions is an important parameter needed for designing holographic optical elements (HOE's). Theoretical calculations of the accuracy required for the refractive index and thickness of emulsions needed to meet predetermined Bragg angle conditions are presented. A modified interferometric method is used to find average refractive index of the unexposed and the developed dichromated gelatin holographic films. Slanted transmission HOE's are designed considering the index and thickness variations, and used to verify the index measurement results. The Brewster angle method is used to measure surface index of the unexposed and the developed films. The differences between average index and surface index are discussed. Theoretical calculation of the effects of index variation on diffraction efficiency, and experimental results for index modulation variation caused by process changes are also presented.

  20. Mechanical property assessment of tissue-mimicking phantoms using remote palpation and optical read-out for amplitude of vibration and refractive index modulation.

    PubMed

    Usha Devi, C; Bharat Chandran, R S; Vasu, R Mohan; Sood, Ajay K

    2007-01-01

    A coherent light beam is used to interrogate the focal region within a tissue-mimicking phantom insonified by an ultrasound transducer. The ultrasound-tagged photons exiting from the object carry with them information on local optical path length fluctuations caused by refractive index variations and medium vibration. Through estimation of the force distribution in the focal region of the ultrasound transducer, and solving the forward elastography problem for amplitude of vibration of tissue particles, we observe that the amplitude is directed along the axis of the transducer. It is shown that the focal region interrogated by photons launched along the transducer axis carries phase fluctuations owing to both refractive index variations and particle vibration, whereas the photons launched perpendicular to the transducer axis carry phase fluctuations arising mainly from the refractive index variations, with only smaller contribution from vibration of particles. Monte-Carlo simulations and experiments done on tissue-mimicking phantoms prove that as the storage modulus of the phantom is increased, the detected modulation depth in autocorrelation is reduced, significantly for axial photons and only marginally for the transverse-directed photons. It is observed that the depth of modulation is reduced to a significantly lower and constant value as the storage modulus of the medium is increased. This constant value is found to be the same for both axial and transverse optical interrogation. This proves that the residual modulation depth is owing to refractive index fluctuations alone, which can be subtracted from the overall measured modulation depth, paving the way for a possible quantitative reconstruction of storage modulus. Moreover, since the transverse-directed photons are not significantly affected by storage modulus variations, for a quantitatively accurate read-out of absorption coefficient variation, the interrogating light should be perpendicular to the focusing ultrasound transducer axis.

  1. Iodine insertion and dispersion of refractive index in organic single crystal semiconductor.

    PubMed

    Kwon, Seonho; Bae, Junwan; Lee, I J

    2018-02-20

    Insertion of halogens such as bromine or iodine affects the electronic polarizability of ions and the local field inside the medium, and thus modifies the refractive index. Acquiring precise knowledge of the dispersion of refractive index and ultimately tailoring conventional semiconductors for wide-range refractive index control have been a vital issue to resolve before realizing advanced organic optoelectronic devices. In this report, dispersions of the refractive index of a single crystal tetramethyltetraselenafulvalene [C 10 H 12 Se 4 ] (TMTSF) are thoroughly studied from broadband interference modulations of photoluminescence (PL) spectra at various temperatures and doping levels. A large enhancement of the refractive index, more than 20% of the intrinsic value, is achieved with inclusion of a small composition of iodide ions, while the structural and optical properties remain mostly intact. Nearly temperature independent dispersion of the refractive index suggests that, unlike most polymers in which the thermal expansion coefficient dominates over the change of polarizability with temperature, the latter enhances significantly and may become more or less comparable to the thermal expansion coefficient given by 1.71 × 10 -4 /K, when single crystal TMTSF is doped by iodine.

  2. The effect of UV irradiation on the refractive index modulation in photo-thermo-refractive glasses: Mechanisms and application

    NASA Astrophysics Data System (ADS)

    Chernakov, Dmitry I.; Sidorov, Alexander I.; Stolyarchuk, Maxim V.; Kozlova, Darya A.; Krykova, Victoria A.; Nikonorov, Nikolay V.

    2018-02-01

    It is shown experimentally that in photo-thermo-refractive glasses the transformation of charged silver subnanosized molecular clusters to neutral state by UV irradiation results in the increase of glass refractive index. The increment of the refractive index reaches Δn = 0.76·10-4. Computer simulation has shown that the polarizability of neutral molecular clusters is by 20-40% larger than of charged ones. The reason of this is the increase of electron density and volume of electron density surfaces during the transformation of molecular cluster to the neutral state. The transition molecular cluster from the ground state to the excited state also results in the increase of its polarizability.

  3. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.

  4. Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography.

    PubMed

    Cazac, V; Meshalkin, A; Achimova, E; Abashkin, V; Katkovnik, V; Shevkunov, I; Claus, D; Pedrini, G

    2018-01-20

    Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As 2 S 3 -Se and thin films As 2 S 3 . The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.

  5. Observation of acoustic Dirac-like cone and double zero refractive index

    PubMed Central

    Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

    2017-01-01

    Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre. PMID:28317927

  6. Femtosecond Z-scan measurements of the nonlinear refractive index of fused silica

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shi, Zhendong; Ma, Hua; Ren, Huan; Yuan, Quan; Ma, Yurong; Feng, Xiaoxuan; Chen, Bo; Yang, Yi

    2018-01-01

    Z-scan technology is a popular experimental technique for determining the nonlinear refractive index of the material. However, it encounters a great difficulty in measuring the weak nonlinear material like fused silica which is about two orders of magnitude below the nonlinear refractive index of most of the materials studied with the nanosecond and picosecond Z-scan methods. In this case, the change of refractive index introduced by accumulation of thermal effects cannot be neglected. In order to have a reliable measurement of the nonlinear refractive index, a metrology bench based on the femtosecond Z-scan technology is developed. The intensity modulation component and the differential measurement system are applied to guarantee the accuracy of the measuring system. Based on the femtosecond Z-scan theory, the femtosecond laser Z-scan technique is performed on fused silica, and the nonlinear refractive index of Fused silica is determined to be 9.2039×10-14esu for 800nm, 37fs pulse duration at I0=50GW/cm2 with a good repeatability of 6.7%.

  7. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gaozhong; Zhang, Saifeng, E-mail: sfzhang@siom.ac.cn, E-mail: jwang@siom.ac.cn; Cheng, Xin

    2014-04-07

    Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphenemore » dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.« less

  8. Modeling photopolymers for holographic data storage applications

    NASA Astrophysics Data System (ADS)

    Sheridan, John T.; Kelly, John V.; Gleeson, Michael R.; Close, Ciara E.

    2006-09-01

    The Nonlocal Polymerization Driven Diffusion model, NPDD, is can be used to describe holographic grating formation in Acrylamide-based photopolymer. The free radical chain polymerization process results in polymer being generated nonlocal both in space and time to the point of chain initiation. Temporal nonlocality can be used to describepost exposure dark effects. Nonlinear response and the effects of dye bleaching have been examined. Both primary and bimolecular chain termination mechanisms have been included and examined. Recently 3-D, and inhibition effects have also been included. In this paper we review of our recent work. It is shown that temporal effects become most notable for short exposres and the inclusion of the nonlocal temporal response function is shown to be necessary to accurately describe the process. In particular, brief post exposure self-amplification of the refractive index modulation is noted. This is attributed to continued chain growth for a brief period after exposure. Following this a slight decay in the grating amplitude also occurs. This we believe is due to the continued diffusion of monomer after exposure. Since the sinusoidal recording pattern generates a monomer concentration gradient during the recording process monomer diffusion occurs both during and after exposure. The evolution of the refractive index modulation is determined by the respective refractive index values of the recording material components. From independent measurements it is noted that the refractive index value of the monomer is slightly less than that of the background material. Therefore as monomer diffuses back into the dark regions, a reduction in overall refractive index modulation occurs. Volume changes occurring within the material also affect the nature of grating evolution. To model these effects we employ a free volume concept. Due to the fact that the covalent single carbon bond in the polymer is up to 50% shorter than the van der Waals bond in the liquid monomer state, free volume is created when monomer is converted to polymer. For each bond conversion we assume a hole is generated which then collapses at some characteristic rate constant. The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). Inhibition is typically observed at the start of grating growth during which the formation of polymer chains is suppressed. In this paper experiments are reported, carried out with the specific aim of understanding of these processes. The results support our description of the inhibition process in an PVA/Acrylamide based photopolymer and can be used to predict behaviour under certain conditions.

  9. Refractive-index profile and physical process determination in thick gratings in electrooptic crystals

    NASA Technical Reports Server (NTRS)

    Su, S. F.; Gaylord, T. K.

    1976-01-01

    A method for determining the refractive index profile of thick phase gratings in linear electrooptic crystals is presented. This method also determines the effective photovoltaic electric field and the relative contributions of diffusion and drift during hologram recording. The method requires only a knowledge of the modulation ratio during hologram recording and the fundamental and the higher-order diffraction efficiencies of the grating. As an illustration of the method, the refractive index profile, the effective photovoltaic field, and the relative contributions of diffusion and drift are determined from experimental measurements for a lithium niobate holographic grating.

  10. Mirage effect from thermally modulated transparent carbon nanotube sheets.

    PubMed

    Aliev, Ali E; Gartstein, Yuri N; Baughman, Ray H

    2011-10-28

    The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is ~100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.

  11. High Dynamic Range (Δn) Two-Stage Photopolymers via Enhanced Solubility of a High Refractive Index Acrylate Writing Monomer.

    PubMed

    Alim, Marvin D; Glugla, David J; Mavila, Sudheendran; Wang, Chen; Nystrom, Philip D; Sullivan, Amy C; McLeod, Robert R; Bowman, Christopher N

    2018-01-10

    Holographic photopolymers capable of high refractive index modulation (Δn) on the order of 10 -2 are integral for the fabrication of functional holographic optical elements that are useful in a myriad of optical applications. In particular, to address the deficiency of suitable high refractive index writing monomers for use in two-stage holographic formulations, here we report a novel high refractive index writing monomer, 1,3-bis(phenylthio)-2-propyl acrylate (BPTPA), simultaneously possessing enhanced solubility in a low refractive index (n = 1.47) urethane matrix. When examined in comparison to a widely used high refractive index monomer, 2,4,6-tribromophenyl acrylate, BPTPA exhibited superior solubility in a stage 1 urethane matrix of approximately 50% with a 20% higher refractive index increase per unit amount of the writing monomer for stage 2 polymerizations. Formulations with 60 wt % loading of BPTPA exhibit a peak-to-mean holographic Δn ≈ 0.029 without obvious deficiencies in transparency, color, or scatter. To the best of our knowledge, this value is the highest reported in the peer-reviewed literature for a transmission hologram. The capabilities and versatility of BPTPA-based formulations are demonstrated at varying length scales via demonstrative refractive index gradient structure examples including direct laser write, projection mask lithography of a 1″ diameter Fresnel lens, and ∼100% diffraction efficiency volume transmission holograms with a 1 μm fringe spacing in 11 μm thick samples.

  12. Method and apparatus of highly linear optical modulation

    DOEpatents

    DeRose, Christopher; Watts, Michael R.

    2016-05-03

    In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.

  13. Remote steering of laser beams by radar- and laser-induced refractive-index gradients in the atmosphere Remote steering of laser beams

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Shneider, M. N.; Voronin, A. A.; Sokolov, A. V.; Scully, M. O.

    2012-01-01

    Refractive-index gradients induced in the atmospheric air by properly tailored laser and microwave fields are shown to enable a remote steering of laser beams. Heating-assisted modulation of the refractive index of the air by microwave radiation is shown to support small-angle laser-beam bending with bending angles on the order of 10-2. Ionization of the atmospheric air by dyads of femto- and nanosecond laser pulses, on the other hand, can provide beam deflection angles in excess of π/5, offering an attractive strategy for radiation transfer, free-space communications, and laser-based standoff detection.

  14. Large refractive index variations induced by accumulating triplet excitons under photoexcitation at low power

    NASA Astrophysics Data System (ADS)

    Hori, Tomoe; Totani, Kenro; Hirata, Shuzo; Watanabe, Toshiyuki

    2018-07-01

    Herein, we present a method for the modification of the refractive index (n), based on employing an organic molecule with a long triplet excited-state lifetime. A host-guest material composed of a cyclic aromatic as the guest and an amorphous steroidal compound as the host was used to modulate n. The guest material exhibited a triplet lifetime longer than 1 s, and a high-density triplet excited-state population was obtained upon excitation with blue-violet light. The refractive index could be changed by 0.002, even when using a relatively low excitation power level of 100 mW cm-2.

  15. Investigation on Nonlinear-Optical Properties of Palm Oil/Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zamiri, R.; Parvizi, R.; Zakaria, A.; Sadrolhosseini, A. R.; Zamiri, G.; Darroudi, M.; Husin, M. S.

    2012-06-01

    We have investigated the spatial self phase modulation of palm oil containing silver nanoparticles (palm oil/Ag-NPs). The study carried out using continuous wave diode pumped solid state laser with wavelength of 405 nm and power of 50 mW. The strong spatial self phase modulation patterns were observed that suggest the palm oil/Ag-NPs have a relatively large nonlinear refractive index. The obtained values of nonlinear refractive index were increased with the increment in the volume fractions. The observed experimental patterns were also theoretically modeled which are in good agreement with experimental results.

  16. Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements.

    PubMed

    Miles, Rachael E H; Walker, Jim S; Burnham, Daniel R; Reid, Jonathan P

    2012-03-07

    The cavity enhanced Raman scattering spectrum recorded from an aerosol droplet provides a unique fingerprint of droplet radius and refractive index, assuming that the droplet is homogeneous in composition. Aerosol optical tweezers are used in this study to capture a single droplet and a Raman fingerprint is recorded using the trapping laser as the source for the Raman excitation. We report here the retrieval of the real part of the refractive index with an uncertainty of ± 0.0012 (better than ± 0.11%), simultaneously measuring the size of the micrometre sized liquid droplet with a precision of better than 1 nm (< ± 0.05% error). In addition, the equilibrium size of the droplet is shown to depend on the laser irradiance due to optical absorption, which elevates the droplet temperature above that of the ambient gas phase. Modulation of the illuminating laser power leads to a modulation in droplet size as the temperature elevation is altered. By measuring induced size changes of <1 nm, we show that the imaginary part of the refractive index can be retrieved even when less than 10 × 10(-9) with an accuracy of better than ± 0.5 × 10(-9). The combination of these measurements allows the complex refractive index of a droplet to be retrieved with high accuracy, with the possibility of making extremely sensitive optical absorption measurements on aerosol samples and the testing of frequently used mixing rules for treating aerosol optical properties. More generally, this method provides an extremely sensitive approach for measuring refractive indices, particularly under solute supersaturation conditions that cannot be accessed by simple bulk-phase measurements.

  17. PMMA and polystyrene films modification under ion implantation studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Leontyev, A. V.; Kovalev, V. I.; Khomich, A. V.; Komarov, Fadei F.; Grigoryev, V. V.; Kamishan, A. S.

    2004-05-01

    We have applied spectroscopic ellipsometry with binary polarization modulation to study the refractive index n(λ) and extinction coefficient k(λ) spectra of as-deposited and irradiated with nitrogen ions polymethylmethacrylate (PMMA) and polystyrene (PS) films in 300-1030 nm range. The results of performed investigation confirmed the possibility and estimate restrictions of the ion implantation for local change the refractive index of polymeric materials.

  18. Measurement of large nonlinear refractive index of natural pigment extracted from Hibiscus rosa-sinensis leaves with a low power CW laser and by spatial self-phase modulation technique

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Kumbhakar, P.

    2017-02-01

    We have reported here, for the first time, to the best of our knowledge, a high nonlinear refractive index (n2e) of a natural pigment extracted from Hibiscus rosa-sinensis leaves by using spatial self-phase modulation technique (SSPM) with a low power CW He-Ne laser radiation at 632.8 nm. It is found by UV-Vis absorption spectroscopic analysis that chlrophyll-a, chlrophyll-b and carotenoid are present in the pigment extract with 56%, 25% and 19%, respectively. The photoluminescence (PL) emission characteristics of the extracted samples have also been measured at room temperature as well as in the temperature range of 283-333 K to investigate the effect of temperature on luminescent properties of the sample. By analyzing the SSPM experimental data, the nonlinear refractive index value of pigment extract has been determined to be 3.5 × 10- 5 cm2/W. The large nonlinear refractive index has been assigned due to asymmetrical structure, molecular reorientation and thermally induced nonlinearity in the sample. The presented results might open new avenues for the green and economical technique of syntheses of organic dyes with such a large nonlinear optical property.

  19. Optical Modulation of BST/STO Thin Films in the Terahertz Range

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan

    2018-04-01

    The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.

  20. Optical Modulation of BST/STO Thin Films in the Terahertz Range

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan

    2018-07-01

    The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.

  1. Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols.

    PubMed

    Anand, N; Satheesh, S K; Krishna Moorthy, K

    2017-07-15

    Effects of absorbing atmospheric aerosols in modulating the tropospheric refractive index structure parameter (Cn2) are estimated using high resolution radiosonde and multi-satellite data along with a radiative transfer model. We report the influence of variations in residence time and vertical distribution of aerosols in modulating Cn2 and why the aerosol induced atmospheric heating needs to be considered while estimating a free space optical communication link budget. The results show that performance of the link is seriously affected if large concentrations of absorbing aerosols reside for a long time in the atmospheric path.

  2. Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals.

    PubMed

    Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori

    2011-09-15

    Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.

  3. Interferometric measurement of refractive index modification in a single mode microfiber

    NASA Astrophysics Data System (ADS)

    Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.

    2017-02-01

    Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.

  4. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    PubMed Central

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D.; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C.; Estudillo-Ayala, Julian M.; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  5. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-10-15

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors.

  6. Refractive Index Sensing Using Visible Electromagnetic Resonances of Supported Cu2O Particles.

    PubMed

    Susman, Mariano D; Vaskevich, Alexander; Rubinstein, Israel

    2017-03-08

    Plasmonic metal nanostructures, in colloidal or surface-supported forms, have been extensively studied in the context of metamaterials design and applications, in particular as refractometric sensing platforms. Recently, high refractive index (high-n) dielectric subwavelength structures have been experimentally shown to support strong Mie scattering resonances, predicted to exhibit analogous refractive index sensing capabilities. Here we present the first experimental demonstration of the use of supported high-n dielectric nano/microparticle ensembles as refractive index sensing platforms, using cuprous oxide as a model high-n material. Single-crystalline Cu 2 O particles were deposited on transparent substrates using a chemical deposition scheme, showing well-defined electric and magnetic dipolar resonances (EDR and MDR, respectively) in the visible range, which change in intensity and wavelength upon changing the medium refractive index (n m ). The significant modulation of the MDR intensity when n m is modified appears to be the most valuable empirical sensing parameter. The Mie scattering properties of Cu 2 O particles, particularly the spectral dependence of the MDR on n m , are theoretically modeled to support the experimental observations. MDR extinction changes (i.e., refractive index sensitivity) per particle are >100 times higher compared to localized surface plasmon resonance (LSPR) changes in supported Au nanoislands, encouraging the evaluation of Cu 2 O and other high-n dielectric particles and sensing modes in order to improve the sensitivity in optical (bio)sensing applications.

  7. Microvolume index of refraction determinations by interferometric backscatter

    NASA Astrophysics Data System (ADS)

    Bornhop, Darryl J.

    1995-06-01

    A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

  8. Block Copolymer Composites: A Bio-Optic Synthetic System for Dynamic Control of Refractive Index

    DTIC Science & Technology

    2005-06-16

    Wagner (interfacial) polarization of dispersed, ion-conductive phases in PS - b -PEO containing NLO-active moieties. In this initiative we postulate that...either by application of an electric or magnetic field. Technical Results Spatial modulation of refractive index in PS - b -PEO composites. Over the 18 month...segments with ionizable salts and polarizable, electrorefractive moieties and nanocrystals. Simple devices comprised of thin films of PS - b -PEO/KDP, PS - b

  9. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang

    2016-06-01

    A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).

  10. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    PubMed

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the refractive index of a sample.

  11. Calibration of photoelastic modulator based dichrometers: maintaining constant phase across the spectrum

    DOE PAGES

    Sutherland, J. C.

    2016-07-20

    Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less

  12. Calibration of photoelastic modulator based dichrometers: maintaining constant phase across the spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J. C.

    Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less

  13. Intensity-modulated refractive index sensor with anti-light source fluctuation based on no-core fiber filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun

    2017-12-01

    A differential intensity-modulated refractive index (RI) sensor consisting of a no-core fiber (NCF) filter, a circulator and two fiber Bragg gratings (FBGs) is proposed and demonstrated. A section of the NCF is sandwiched between two parts of single mode fibers (SMFs) to form a band-pass filter. The Bragg wavelengths of the FBGs are chosen at the two edges of the filter, respectively. The peak wavelength of the NCF filter has a red-shift with the increase of the surrounding refractive index (SRI) while the Bragg wavelengths have no change, which results in the variation of the difference of the two FBGs reflective intensities, thus the differential intensity modulation to the SRI can be accomplished. Compared with directly connecting the NCF filter and the FBGs, this sensing structure can increase the output power so as to improve the measuring resolution. The experimental results show that the RI sensitivities are -99.191 dB/RIU and -139.958 dB/RIU at the range of 1.3329-1.3781 and 1.3781-1.401, respectively. In addition, the disturbance from the light source fluctuation and temperature cross sensitivity can be minimized effectively, which has great potential in actual applications.

  14. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.

    PubMed

    Ye, Qing; Qu, Ronghui; Fang, Zujie

    2007-04-10

    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  15. Spoof four-wave mixing for all-optical wavelength conversion.

    PubMed

    Gong, Yongkang; Huang, Jungang; Li, Kang; Copner, Nigel; Martinez, J J; Wang, Leirang; Duan, Tao; Zhang, Wenfu; Loh, W H

    2012-10-08

    We present for the first time an all-optical wavelength conversion (AOWC) scheme supporting modulation format independency without requiring phase matching. The new scheme is named "spoof" four wave mixing (SFWM) and in contrast to the well-known FWM theory, where the induced dynamic refractive index grating modulates photons to create a wave at a new frequency, the SFWM is different in that the dynamic refractive index grating is generated in a nonlinear Bragg Grating (BG) to excite additional reflective peaks at either side of the original BG bandgap in reflection spectrum. This fundamental difference enable the SFWM to avoid the intrinsic shortcoming of stringent phase matching required in the conventional FWM, and allows AOWC with modulation format transparency and ultrabroad conversion range, which may have great potential applications for next generation of all-optical networks.

  16. Focus modulation of cylindrical vector beams by using 1D photonic crystal lens with negative refraction effect.

    PubMed

    Xu, Ji; Zhong, Yi; Wang, Shengming; Lu, Yunqing; Wan, Hongdan; Jiang, Jian; Wang, Jin

    2015-10-19

    Sub-wavelength focusing of cylindrical vector beams (CVBs) has attracted great attention due to the specific physical effects and the applications in many areas. More powerful, flexible and effective ways to modulate the focus transversally and also longitudinally are always being pursued. In this paper, cylindrically symmetric lens composed of negative-index one-dimensional photonic crystal is proposed to make a breakthrough. By revealing the relationship between focal length and the exit surface shape of the lens, a quite simple and effective principle of designing the lens structure is presented to realize specific focus modulation. Plano-concave lenses are parameterized to modulate the focal length and the number of focuses. An axicon constructed by one-dimensional photonic crystal is proposed for the first time to obtain a large depth of focus and an optical needle focal field with almost a theoretical minimum FWHM of 0.362λ is achieved under radially polarized incident light. Because of the almost identical negative refractive index for TE and TM polarization states, all the modulation methods can be applied for any arbitrary polarized CVBs. This work offers a promising methodology for designing negative-index lenses in related application areas.

  17. Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface.

    PubMed

    Chen, Zan Hui; Tao, Jin; Gu, Jia Hua; Li, Jian; Hu, Di; Tan, Qi Long; Zhang, Fengchun; Huang, Xu Guang

    2016-12-12

    We propose and numerically investigate a gate-controlled on-chip graphene metasurface consisting of a monolayer graphene sheet and silicon photonic crystal-like substrate, to achieve an electrically-tunable induced transparency. The operation mechanism of the induced transparency of the on-chip graphene metasurface is analyzed. The tunable optical properties with different gate-voltages and polarizations have been discussed. Additionally, the spectral feature of the on-chip graphene metasurface as a function of the refractive index of the local environment is also investigated. The result shows that the on-chip graphene metasurface as a refractive index sensor can achieve an overall figure of merit of 8.89 in infrared wavelength range. Our study suggests that the proposed structure is potentially attractive as optoelectronic modulators and refractive index sensors.

  18. Linearity in the response of photopolymers as optical recording media.

    PubMed

    Gallego, Sergi; Marquez, Andrés; Guardiola, Francisco J; Riquelme, Marina; Fernández, Roberto; Pascual, Inmaculada; Beléndez, Augusto

    2013-05-06

    Photopolymer are appealing materials for diffractive elements recording. Two of their properties when they are illuminated are useful for this goal: the relief surface changes and the refractive index modifications. To this goal the linearity in the material response is crucial to design the optimum irradiance for each element. In this paper we measured directly some parameters to know how linear is the material response, in terms of the refractive index modulation versus exposure, then we can predict the refractive index distributions during recording. We have analyzed at different recording intensities the evolution of monomer diffusion during recording for photopolymers based on PVA/Acrylamide. This model has been successfully applied to PVA/Acrylamide photopolymers to predict the transmitted diffracted orders and the agreement with experimental values has been increased.

  19. Analysis of the temporal effects on grating evolution in photopolymer

    NASA Astrophysics Data System (ADS)

    Kelly, John V.; Gleeson, Michael R.; Close, Ciara E.; O'Neill, Feidhlim T.; Sheridan, John T.; Gallego, Sergi; Neipp, Cristian

    2006-04-01

    The nonlocal polymerization driven diffusion model is used to describe holographic grating formation in acrylamidebased photopolymer. The free radical chain polymerization process results in polymer being generated nonlocal both in space and time to the point of chain initiation. A Gaussian spatial material response function and an exponential temporal material response function are used to account for these effects. In this paper we firstly examine the nature of the temporal evolution of grating formation for short recording periods. It is shown that in this case, temporal effects become most notable and the inclusion of the nonlocal temporal response function is shown to be necessary to accurately describe the process. In particular, brief post exposure selfamplification of the refractive index modulation is noted. This is attributed to continued chain growth for a brief period after exposure. Following this a slight decay in the grating amplitude also occurs. This we believe is due to the continued diffusion of monomer after exposure. Since the sinusoidal recording pattern generates a monomer concentration gradient during the recording process monomer diffusion occurs both during and after exposure. The evolution of the refractive index modulation is determined by the respective refractive index values of the recording material components. From independent measurements it is noted that the refractive index value of the monomer is slightly less than that of the background material. Therefore as monomer diffuses back into the dark regions, a reduction in overall refractive index modulation occurs. Volume changes occurring within the material also affect the nature of grating evolution. To model these effects we employ a free volume concept. Due to the fact that the covalent single carbon bond in the polymer is up to 50% shorter than the van der Waals bond in the liquid monomer state, free volume is created when monomer is converted to polymer. For each bond conversion we assume a hole is generated which then collapses at some characteristic rate constant. Incorporating each of these effects into our model, the model is then solved using a Finite-Difference Time- Domain method (FDTD). The Lorentz-Lorenz relation is used to determine the overall evolution refractive index modulation and the corresponding diffraction efficiency of the resulting grating is calculated using Rigorous Coupled Wave Analysis (RCWA). Fits are then carried out to experimental data for 1 second exposures. Good quality fits are achieved and material parameters extracted. Monomer diffusion rates are determined to be of the order of D ~ 10 -10 cm 2/s and the time constant of the nonlocal material temporal response function being of the order of τ n ~ 10 -2s. Material shrinkage occurring over these recording periods is also determined.

  20. Self-anti-reflective density-modulated thin films by HIPS technique

    NASA Astrophysics Data System (ADS)

    Keles, Filiz; Badradeen, Emad; Karabacak, Tansel

    2017-08-01

    A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.

  1. Parity–time-symmetric circular Bragg lasers: a proposal and analysis

    PubMed Central

    Gu, Jiahua; Xi, Xiang; Ma, Jingwen; Yu, Zejie; Sun, Xiankai

    2016-01-01

    We propose a new type of semiconductor lasers by implementing the concept of parity–time symmetry in a two-dimensional circular Bragg grating structure, where both the real and imaginary parts of the refractive index are modulated along the radial direction. The laser modal properties are analyzed with a transfer-matrix method and are verified with numerical simulation of a practical design. Compared with conventional distributed-feedback lasers with modulation of only the real part of refractive index, the parity–time-symmetric circular Bragg lasers feature reduced threshold and enhanced modal discrimination, which in combination with the intrinsic circularly symmetric, large emission aperture are clear advantages in applications that require mode-hop-free, high-power, single-mode laser operation. PMID:27892933

  2. Holographic analysis of photopolymers

    NASA Astrophysics Data System (ADS)

    Sullivan, Amy C.; Alim, Marvin D.; Glugla, David J.; McLeod, Robert R.

    2017-05-01

    Two-beam holographic exposure and subsequent monitoring of the time-dependent first-order Bragg diffraction is a common method for investigating the refractive index response of holographic photopolymers for a range of input writing conditions. The experimental set up is straightforward, and Kogelnik's well-known coupled wave theory (CWT)[1] can be used to separate measurements of the change in index of refraction (Δn) and the thickness of transmission and reflection holograms. However, CWT assumes that the hologram is written and read out with a plane wave and that the hologram is uniform in both the transverse and depth dimensions, assumptions that are rarely valid in practical holographic testing. The effect of deviations from these assumptions on the measured thickness and Δn become more pronounced for over-modulated exposures. As commercial and research polymers reach refractive index modulations on the order of 10-2, even relatively thin (< 20 μm thick) transmission volume holograms become overmodulated. Peak Δn measurements for material analysis must be carefully evaluated in this regime. We present a study of the effects of the finite Gaussian write and read beams on the CWT analysis of photopolymer materials and discuss what intuition this can give us about the effect other non-uniformities, such as mechanical stresses and significant absorption of the write beam, will have on the analysis of the maximum attainable refractive index in a material system. We use this analysis to study a model high Δn two-stage photopolymer holographic material using both transmission and reflection holograms.

  3. Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope.

    PubMed

    Liu, Zhongyao; Dong, Xiaoman; Chen, Qianghua; Yin, Chunyong; Xu, Yuxian; Zheng, Yingjun

    2004-03-01

    A novel transmitted-light differential interference contrast (DIC) system is used for nondestructive measurement of the refractive-index profile (RIP) of an optical fiber. By means of this system the phase of a measured light beam can be modulated with an analyzer, and the phase distribution of a fiber is obtained by calculation of the various interference patterns. The measurement theory and structure and some typical applications of this system are demonstrated. The results of measuring RIPs in graded-index fiber are presented. Both the experimental results and theoretical analysis show that the system takes the advantage of high index resolution and of sufficient measurement accuracy for measuring the refractive index of the optical fiber. The system has strong ability to overcome environmental disturbance because of its common-path design. Moreover, one can use the system to measure the RIP along the fiber axis and acquire an image of the three-dimensional RIP of the fiber.

  4. Refractive index gradient measurement across the thickness of a dielectric film by the prism coupling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N

    2012-08-31

    A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness H{sub f} with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [{Delta} n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)

  5. Refractive indexes of (Al, Ga, In) as epilayers on InP for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Mondry, M. J.; Babic, D. I.; Bowers, J. E.; Coldren, L. A.

    1992-06-01

    MBE grown bulk and short period superlattices of (Al, Ga, In) As epilayers lattice matched to InP were characterized by double-crystal diffractometry and low-temperature photoluminescence. A reflection spectroscopy technique was used to determine the refractive index of (Al, Ga, In) As films as a function of wavelength. The measured data were fitted to a single-oscillator dispersion model and the model coefficients are given. The resulting expression can be used in the design of wave-guides, modulators, and other optical devices.

  6. An original method to determine complex refractive index of liquids by spectroscopic ellipsometry and illustrated applications

    NASA Astrophysics Data System (ADS)

    Stchakovsky, M.; Battie, Y.; Naciri, A. En

    2017-11-01

    We present a method to characterize optical properties of liquids by spectroscopic ellipsometry. The experiments use a specific liquid cell that avoids disturbance of waves at air-liquid interface and allows the determination of the real and the imaginary part of the refractive index, with a sensitivity of the latter below 10-4. The method is illustrated by results obtained with a spectroscopic phase modulation ellipsometer on several liquids such as deionised water, microscope oil and protein solution. Comparisons of the method with standard techniques are given.

  7. Three-photon absorption and nonlinear refraction of BaMgF4 in the ultraviolet region.

    PubMed

    Ma, Yanzhi; Chen, Junjie; Zheng, Yuanlin; Chen, Xianfeng

    2012-08-01

    The nonlinear refraction and nonlinear absorption phenomena are investigated in BaMgF(4) single crystal using the Z-scan technique in the ultraviolet region with a pulsed laser at 400 nm with 1 ps pulse duration. The remarkable nonlinear absorption behavior is identified to be three-photon absorption under the experimental conditions. In addition, both nonlinear refraction and nonlinear absorption have relatively large values and possess small anisotropy along three different crystallographic axes. The large values of nonlinear refractive index are demonstrated through the self-phase modulation effect.

  8. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshehri, Bandar; Dogheche, Elhadj, E-mail: elhadj.dogheche@univ-valenciennes.fr; Lee, Seung-Min

    2014-08-04

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report heremore » the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.« less

  9. Influence of local inhomogeneities induced in corneal ablation on the evolution of contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Ortiz, Dolores; Saiz, Jose M.; González, Francisco

    2004-04-01

    The presence of local inhomogeneities in corneal tissue after refractive surgery has an influence on visual performance. Here we focus on the corneal ablation associated with Lasik surgery and its effect on the modulation transfer function (MTF) that we obtained by modifying a personalized Kooijman model. Inhomogeneities induced by the ablation occur in the form of Gaussian-distributed refractive-index variations of a given correlation length. We show how variation of refractive-index deviation and correlation length (size) of the inhomogeneities allows us to obtain pairs of values that are able to achieve a MTF evolution similar to that observed for contrast sensitivity in the same patients. An estimate of the characteristics of the local effects is obtained.

  10. Refractive index and temperature sensing in anisotropic silver nanostructures with stable photo-physical properties

    NASA Astrophysics Data System (ADS)

    Biswas, Subrata; Kumbhakar, Pathik

    2018-01-01

    In this report, we have demonstrated the refractive index and temperature-sensing abilities of polyvinylpyrrolidone (PVP)-protected silver nanostructures of triangular, connected and plate-like shapes. Interestingly, these nanostructures even after 2 and ½ years of syntheses showed plasmonic-sensing ability of temperature in the temperature range of 283-333 K. Also, refractive index (R.I.) sensing has been demonstrated in the aged samples and obtained the highest R.I. sensitivity of 306 nm/RIU in one of the sample. The synthesized samples have been kept in dark (inside desiccators) intentionally for the extended period of 2 and ½ years after synthesis and monitored intermittently their UV-Vis absorption and photoluminescence (PL) emission characteristics to check the functionally of the aged silver nanostructures. It has been found the samples remain well dispersed in different solvents and can forbid agglomeration even in 0.25 M NaCl solution. We have also demonstrated here fabrication of a flexible and transparent thin film of the synthesized samples in polyvinyl alcohol (PVA) matrix and investigated its low power continuous-wave (CW) nonlinear optical properties using spatial self-phase modulation (SSPM) technique. The nonlinear refractive index ( n 2) value of the film has been determined to be 5.6 × 10- 6 cm2/W at the He-Ne laser wavelength of 632.8 nm. In this report we have demonstrated temperature and R.I. sensing and also it has been demonstrated that the synthesized samples remain functional even after 2 and ½ years of synthesis. Also, samples may find potential applications in nonlinear optical phase modulation devices.

  11. Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere

    NASA Astrophysics Data System (ADS)

    Patel, H. S.; Kushwaha, P. K.; Swami, M. K.

    2018-05-01

    Photonic nanojets (PNJs) owing to their sub-wavelength near-field features have found many interesting applications like nanoscopy, nano photolithography, high density optical storage, enhancement of Raman signal and single molecule spectroscopy etc. More recently, the focus of research has been on tailoring of PNJs either for better confinement and thus higher peak intensity or for elongation of nanojet for high resolution far field applications. In this paper, we show that crescent-shape refractive index profile (CSRP) of microspheres can be used to generate highly confined PNJ. By optimizing the refractive index of different layers in CSRP microsphere, we show a free space confinement down to ∼ λ / 4 . 5 (FWHM ∼ 110 nm for excitation with 500 nm wavelength). Further, it was observed that the optical properties of substrates also modulate the PNJ characteristics and lead to a further improvement in the transverse confinement to ∼ λ / 6 . 7.

  12. Suspended silica beam splitters on silicon with large core-clad index deference

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Armani, Andrea M.

    2012-03-01

    Optical beam splitters form a fundamental component in integrated optical systems, performing as modulators, interferometers and (de)multiplexers. While silica is a desirable material, because of its low non-linear susceptibility, it is extremely challenging to achieve the requisite core-clad refractive index contrast. In this work, silica splitters with an effective refractive index difference of 25% between the core and clad is demonstrated. The splitter can divide power evenly with low crosstalk from 1520 to 1630nm. In addition, the splitting ratio doesn't change and the output power increases linearly with the input power, which indicates a low susceptibility to thermal effects. The splitter's polarization independent behavior is also verified.

  13. Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions

    NASA Astrophysics Data System (ADS)

    Henari, F. Z.; Al-Saie, A.

    2006-12-01

    We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10-4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.

  14. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    NASA Astrophysics Data System (ADS)

    Sotillo, B.; Chiappini, A.; Bharadwaj, V.; Hadden, J. P.; Bosia, F.; Olivero, P.; Ferrari, M.; Ramponi, R.; Barclay, P. E.; Eaton, S. M.

    2018-01-01

    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work, we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as provide a technique for their optimization.

  15. Theoretical Investigation of Tunable Goos-Hänchen Shifts in a Four-Level Quantum System

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Hossein; Payravi, Mohammad

    2018-05-01

    Goos-Hänchen (GH) shifts in the reflected and transmitted light have been discussed in a cavity with four-level quantum system. It is realized that the refraction index of intracavity medium can be negative by manipulating the external coherent laser fields. For the negative refraction index of intracavity medium, the GH shifts of reflected and transmitted light beams have been analyzed in a parametric condition. It is found that due to modulation of laser signals and relative phase between applied fields, large and tunable GH shifts in reflected and transmitted light beams can be obtained.

  16. Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers.

    PubMed

    Teissier, J; Laurent, S; Manquest, C; Sirtori, C; Bousseksou, A; Coudevylle, J R; Colombelli, R; Beaudoin, G; Sagnes, I

    2012-01-16

    We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.

  17. Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Baldeck, P. L.; Ho, P. P.; Alfano, Robert R.

    Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse progagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).

  18. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  19. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    PubMed

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  20. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.

    2017-03-15

    The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.

  1. Controlling soliton refraction in optical lattices.

    PubMed

    Prilepsky, Jaroslaw E; Derevyanko, Stanislav A; Gredeskul, Sergey A

    2011-08-19

    We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the periodic ones. © 2011 American Physical Society

  2. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  3. Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Peiguo; Bian, Lian; Zhou, Qihui; Li, Gaosheng; Liu, Hanqin

    2018-03-01

    A metamaterial analogy of tunable electromagnetically induced transparency (EIT) is theoretically investigated in terahertz regime. The proposed metamaterial consists of vertical gold strips and horizontal graphene wires, which perform as bright elements and dark elements, respectively. The EIT-like phenomenon can be induced by bright-dark mode coupling on condition of structural lateral displacement. Numerical result reveals that the EIT-like effect remains noticeable with a wide range of incidence polarization angles. Most importantly, by manipulating gate voltages, the EIT window can be dynamically controlled without refabricating the structure. The amplitude modulation depth can reach 81%, 79%, and 68% respectively at three characteristic frequencies as Fermi energy changes in the scope of 0.8-1.0 eV. Furthermore, a sensitivity of 0.95 THz per refractive index unit (RIU) is realized varying the refractive index in the surrounding medium. This structure provides potential applications for detectors, sensors, and modulators.

  4. Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities

    NASA Astrophysics Data System (ADS)

    Sumlin, Benjamin J.; Heinson, William R.; Chakrabarty, Rajan K.

    2018-01-01

    The complex refractive index m = n + ik of a particle is an intrinsic property which cannot be directly measured; it must be inferred from its extrinsic properties such as the scattering and absorption cross-sections. Bohren and Huffman called this approach "describing the dragon from its tracks", since the inversion of Lorenz-Mie theory equations is intractable without the use of computers. This article describes PyMieScatt, an open-source module for Python that contains functionality for solving the inverse problem for complex m using extensive optical and physical properties as input, and calculating regions where valid solutions may exist within the error bounds of laboratory measurements. Additionally, the module has comprehensive capabilities for studying homogeneous and coated single spheres, as well as ensembles of homogeneous spheres with user-defined size distributions, making it a complete tool for studying the optical behavior of spherical particles.

  5. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  6. New photosensitive systems for volume phase holography

    NASA Astrophysics Data System (ADS)

    Bianco, Andrea; Colella, Letizia; Galli, Paola; Zanutta, Alessio; Bertarelli, Chiara

    2017-05-01

    Volume phase holographic elements are becoming attractive thanks to the large efficiency and good optical quality. They are based on photosensitive materials where a modulation of the refractive index is induced. In this paper, we highlight the strategies to obtain a change in the refractive index in a dielectric material, namely a change in the material density and/or in the molecular polarizability. Moreover, we show the results achieved for materials that undergo the photo-Fries reaction as function of the molecular structure and the illumination conditions. We also report the results on a system based on the diazo Meldrum's acid where volatile molecules are produced upon light exposure.

  7. Zero refractive index in time-Floquet acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Koutserimpas, Theodoros T.; Fleury, Romain

    2018-03-01

    New scientific investigations of artificially structured materials and experiments have exhibited wave manipulation to the extreme. In particular, zero refractive index metamaterials have been on the front line of wave physics research for their unique wave manipulation properties and application potentials. Remarkably, in such exotic materials, time-harmonic fields have an infinite wavelength and do not exhibit any spatial variations in their phase distribution. This unique feature can be achieved by forcing a Dirac cone to the center of the Brillouin zone ( Γ point), as previously predicted and experimentally demonstrated in time-invariant metamaterials by means of accidental degeneracy between three different modes. In this article, we propose a different approach that enables true conical dispersion at Γ with twofold degeneracy and generates zero index properties. We break time-reversal symmetry and exploit a time-Floquet modulation scheme to demonstrate a time-Floquet acoustic metamaterial with zero refractive index. This behavior, predicted using stroboscopic analysis, is confirmed by full-wave finite element simulations. Our results establish the relevance of time-Floquet metamaterials as a novel reconfigurable platform for wave control.

  8. Fabrication of Refractive Index Tunable Polydimethylsiloxane Photonic Crystal for Biosensor Application

    NASA Astrophysics Data System (ADS)

    Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.

    Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.

  9. Analysis of higher order harmonics with holographic reflection gratings

    NASA Astrophysics Data System (ADS)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  10. Nonbulk motion system for simultaneously measuring the refractive index and thickness of a sample using tunable optics and spatial signal processing-based Gaussian beam imaging.

    PubMed

    Reza, Syed Azer; Qasim, Muhammad

    2016-01-10

    This paper presents a novel approach to simultaneously measuring the thickness and refractive index of a sample. The design uses an electronically controlled tunable lens (ECTL) and a microelectromechanical-system-based digital micromirror device (DMD). The method achieves the desired results by using the DMD to characterize the spatial profile of a Gaussian laser beam at different focal length settings of the ECTL. The ECTL achieves tunable lensing through minimal motion of liquid inside a transparent casing, whereas the DMD contains an array of movable micromirrors, which make it a reflective spatial light modulator. As the proposed system uses an ECTL, a DMD, and other fixed optical components, it measures the thickness and refractive index without requiring any motion of bulk components such as translational and rotational stages. A motion-free system improves measurement repeatability and reliability. Moreover, the measurement of sample thickness and refractive index can be completely automated because the ECTL and DMD are controlled through digital signals. We develop and discuss the theory in detail to explain the measurement methodology of the proposed system and present results from experiments performed to verify the working principle of the method. Refractive index measurement accuracies of 0.22% and 0.2% were achieved for two BK-7 glass samples used, and the thicknesses of the two samples were measured with a 0.1 mm accuracy for each sample, corresponding to a 0.39% and 0.78% measurement error, respectively, for the aforementioned samples.

  11. All-angle negative refraction and active flat lensing of ultraviolet light.

    PubMed

    Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J

    2013-05-23

    Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago flat lensing, in free space, of arbitrarily shaped, two-dimensional objects beyond the near field. We further demonstrate active, all-optical modulation of the image transferred by the flat lens.

  12. Hyperbranched-polymer dispersed nanocomposite volume gratings for holography and diffractive optics

    NASA Astrophysics Data System (ADS)

    Tomita, Yasuo; Takeuchi, Shinsuke; Oyaizu, Satoko; Urano, Hiroshi; Fukamizu, Taka-aki; Nishimura, Naoya; Odoi, Keisuke

    2016-10-01

    We review our experimental investigations of photopolymerizable nanoparticle-polymer composites (NPCs) for holography and diffractive optics. Various types of hyperbranched polymer (HBP) were systhesized and used as transporting organic nanoparticles. These HBPs include hyperbranched poly(ethyl methacrylate) (HPEMA), hyperbranched polystyrene (HPS) and hyperbranched triazine/aromatic polymer units (HTA) whose refractive indices are 1.51, 1.61 and 1.82, respectively. Each HBP was dispersed in (meth)acrylate monomer whose refractive index was so chosen that a refractive index difference between HBP and the formed polymer was large. Such monomer-HBP syrup was mixed with a titanocene photoinitiator for volume holographic recording in the green. We used a two-beam interference setup to write an unslanted transmission volume grating at grating spacing of 1 μm and at a wavelength of 532 nm. It is shown that NPC volume gratings with the saturated refractive index modulation amplitudes as large as 0.008, 0.004 and 0.02 can be recorded in NPCs incorporated with HPEMA, HPS and HTA at their optimum concentrations of 34, 34 and 25 vol.%, respectively. We show the usefulness of HBP-dispersed NPC volume gratings for holographic applications such as holographic data storage and diffractive optical devices.

  13. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    PubMed

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  14. Demonstration of pulse controlled all-optical switch/modulator.

    PubMed

    Akin, Osman; Dinleyici, M S

    2014-03-15

    An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.

  15. Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator

    NASA Technical Reports Server (NTRS)

    Mok, Fai; Psaltis, Demetri; Diep, Joseph; Liu, Hua-Kuang

    1986-01-01

    The usefulness of an inexpensive liquid-crystal television) (LCTV) as a spatial light modulator for coherent-optical processing in the writing and reconstruction of a single computer-generated hologram has been demonstrated. The thickness nonuniformities of the LCTV screen were examined in a Mach-Zehnder interferometer, and the phase distortions were successfully removed using a technique in which the LCTV screen was submerged in a liquid gate filled with an index-matching nonconductive mineral oil with refractive index of about 1.45.

  16. Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy.

    PubMed

    Shin, Hee Jun; Lim, Min-Cheol; Park, Kisang; Kim, Sae-Hyung; Choi, Sung-Wook; Ok, Gyeongsik

    2017-12-06

    We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm) exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transparent in the visible spectrum. From these results, we successfully demonstrate security printing and reading by using photoresist materials and the terahertz technique. This investigation would provide a new insight into anti-counterfeiting applications in fields that need security.

  17. Photochromic gratings in sol gel films containing diazo sulfonamide chromophore

    NASA Astrophysics Data System (ADS)

    Kucharski, Stanisław; Janik, Ryszard

    2005-09-01

    The photochromic sol-gel hybrid materials were prepared by incorporation of an azo chromophore containing sulfonamide fragment into polysiloxane cross-linked network. The materials were used to form transparent films on glass by spin-coating and/or casting. The reversible change of refraction index of the films on illumination with white light was observed by ellipsometry. The experiments with two beam coupling (TBC) and four wave mixing (4 WM) arrangement with green or blue laser beams as writing beams showed formation of a diffraction grating. The diffraction efficiency of the first order was 0.025-0.038 which yielded refraction index modulation in the range of up to 0.0066.

  18. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaoyi; Zhou, You; Qi, Hao

    The electron-doping-induced phase transition of a prototypical perovskite SmNiO 3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO 3. Finally, modulation of a narrow band of light is demonstrated in this paper using plasmonic metasurfaces integrated with SmNiO 3.

  20. A spectroscopic ellispometric study of the tunability of the optical constants and thickness of GeO{sub x} films with swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayarangamuthu, K.; Singh, Chaman; Rath, Shyama

    2011-09-15

    Sub-stoichiometric GeO{sub x} films were fabricated by electron-beam evaporation method. The films were irradiated with 100 MeV Ag{sup 7+} ions at fluences between 1 x 10{sup 12} and 1 x 10{sup 14} ions-cm{sup -2}. Spectroscopic ellipsometric measurements were performed in air at room temperature. The values of the layer thickness and refractive index were extracted from ellipsometry using a multilayer analysis and the Tauc Lorentz model. The refractive index (at 633 nm) of the as-deposited GeO{sub x} film was estimated to be 1.860 and decreased to 1.823 for films irradiated at an ion fluence of 1 x 10{sup 14} ions-cm{supmore » -2}. The thickness of the films also decreased after irradiation and is due to a sputtering induced by the ion beam. The change in the refractive index with ion fluence is attributed to a stoichiometric change and structural transformation represented by GeO{sub x}{yields} Ge + GeO{sub y} (y > x) occurring due to a thermal spike induced by ion irradiation. Swift heavy ions thus provide a scope for modulating the refractive index of GeO{sub x} films. The thickness and stoichiometric changes are supported by Rutherford backscattering measurements.« less

  1. Experimental study of strong nonlinear-optics effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.

    1984-07-01

    Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.

  2. Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation.

    PubMed

    Wu, Di M; Solomon, Michelle L; Naik, Gururaj V; García-Etxarri, Aitzol; Lawrence, Mark; Salleo, Alberto; Dionne, Jennifer A

    2018-02-01

    Chameleons are masters of light, expertly changing their color, pattern, and reflectivity in response to their environment. Engineered materials that share this tunability can be transformative, enabling active camouflage, tunable holograms, and novel colorimetric medical sensors. While progress has been made in creating artificial chameleon skin, existing schemes often require external power, are not continuously tunable, and may prove too stiff or bulky for applications. Here, a chemically tunable, large-area metamaterial is demonstrated that accesses a wide range of colors and refractive indices. An ordered monolayer of nanoresonators is fabricated, then its optical response is dynamically tuned by infiltrating its polymer substrate with solvents. The material shows a strong magnetic response with a dependence on resonator spacing that leads to a highly tunable effective permittivity, permeability, and refractive index spanning negative and positive values. The unity-order index tuning exceeds that of traditional electro-optic and photochromic materials and is robust to cycling, providing a path toward programmable optical elements and responsive light routing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  4. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  5. Optical fiber micro-displacement sensor using a refractive index modulation window-assisted reflection fiber taper

    NASA Astrophysics Data System (ADS)

    Bao, Weijia; Qiao, Xueguang; Yin, Xunli; Rong, Qiangzhou; Wang, Ruohui; Yang, Hangzhou

    2017-12-01

    We demonstrate a compact fiber-optic quasi-Michelson interferometer (QMI) for micro-displacement measurement. The sensor comprises a micro-structure of a reflection taper tip containing a refractive index modification (RIM) as a coupling window over the interface between core and cladding of the fiber. Femtosecond laser-based direct inscription technique is used to achieve this window inscription and to induce large refractive index change. The RIM acts as a window for the strong coupling and recoupling of core-to-cladding modes. As the core and cladding modes are reflected at the taper tip and coupled back to lead-in fiber, a well-defined interference spectrum is achieved. The spectral intensity exhibits a high micro-bending sensitivity of 4 . 94 dB / μm because of the sensitivity to bending of recoupled intensity of cladding modes. In contrast, the spectral wavelength is insensitive to bending but linearly responds to temperature. The simultaneous measurements, including power-referenced for displacement and wavelength-referenced for temperature, were achieved by selective interference dip monitoring.

  6. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  7. The study on mechanism of holographic recording in photopolymer with dual monomer

    NASA Astrophysics Data System (ADS)

    Zhai, Qianli; Tao, Shiquan; Wang, Dayong

    2010-06-01

    In this paper we study the dynamics of refractive index modulation in a dual-monomer photopolymer through grating growth under different experiment stages. By using different sets of parameters for vinyl monomers (NVC) and acrylate monomers (POEA) respectively, a composite dual-monomer model, extended from the uniform post-exposure (UPE) model for single monomer photopolymer, is proposed and fitted with the experiment data very well. Further discussions indicate that the dominant contribution to the total index modulation is made by NVC monomers, and a brief explanation of the function of POEA monomers is given.

  8. Ultrafast transient grating radiation to optical image converter

    DOEpatents

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  9. Chemical micro-sensor

    DOEpatents

    Ruggiero, Anthony J.

    2005-05-03

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  10. Birefringent coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  11. Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator

    PubMed Central

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Han, Yunxin

    2018-01-01

    A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes, as well as the influence of structure parameters on the sensing performance, are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio-sensing and triple rings are also discussed. PMID:29300331

  12. The refractive index of human hemoglobin in the visible range.

    PubMed

    Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A

    2011-07-07

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  13. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    PubMed

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  14. Spherical transceivers for ultrafast optical wireless communications

    NASA Astrophysics Data System (ADS)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  15. Refractive index sensor based on the leaky radiation of a microfiber.

    PubMed

    Gao, F; Liu, H; Sheng, C; Zhu, C; Zhu, S N

    2014-05-19

    In this work we present a refractive index sensor based on the leaky radiation of a microfiber. The 5.3um diameter microfiber is fabricated by drawing a commercial optical fiber. When the microfiber is immersed into a liquid with larger refractive index than the effective index of fiber mode, the light will leak out through the leaky radiation process. The variation of refractive index of liquid can be monitored by measuring radiation angle of light. The refractive index sensitivity can be over 400 degree/RIU in theory. In the experiment, the variation value 0.001 of refractive index of liquid around this microfiber can be detected through this technique. This work provides a simple and sensitive method for refractive index sensing application.

  16. Beam Propagator for Weather Radars, Modules 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Edwin Campos

    2013-10-08

    This program simulates the beam propagation of weather radar pulses under particular and realistic atmospheric conditions (without using the assumption of standard refraction conditions). It consists of two modules: radiosondings_refract_index_many.pro (MAIN MODULE) beam_propagation_function.pro(EXTERNAL FUNCTION) FOR THE MAIN MODULE, THE CODE DOES OUTPUT--INTO A FILE--THE BEAM HEIGHT AS A FUNCTION OF RANGE. THE RADIOSONDE INPUT FILES SHOULD BE ALREADY AVAILABLE BY THE USER. FOR EXAMPLE, RADIOSONDE OBSERVATION FILES CAN BE OBTAINED AT: RADIOSONDE OBSERVATIONS DOWNLOADED AT "http://weather.uwyo.edu/upperair/soounding.html" OR "http://jervis.pyr.ec.gc.ca" THE EXTERNAL FUNCTION DOES THE ACTUAL COMPUTATION OF BEAM PROPAGATION. IT INCLUDES CONDITIONS OF ANOMALOUS PROPAGATION AND NEGATIVE ELEVATION ANGLES. THE EQUATIONSmore » USED HERE WERE DERIVED BY EDWIN CAMPOS, BASED ON THE SNELL-DESCARTES LAW OF REFRACTION, CONSIDERING THE EARTH CURVATURE. THE PROGRAM REQUIRES A COMPILER FOR THE INTERACTIVE DATA LANGUAGE (IDL). DESCRIPTION AND VALIDATION DETAILS HAVE BEEN PUBLISHED IN THE PEER-REVIEWED SCIENTIFIC LITERATURE, AS FOLLOWS: Campos E. 2012. Estimating weather radar coverage over complex terrain, pp.26-32, peer reviewed, in Weather Radar and Hydrology, edited by Moore RJ, Cole SJ and Illingworth AJ. International Association of Hydrological Sciences (IAHS) Press, IAHS Publ. 351. ISBN 978-1-907161-26-1.« less

  17. Global scale variability of the mineral dust longwave refractive index from laboratory chamber experiments: re‒evaluation of its direct radiative effect

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Boucher, O.; Doussin, J. F.

    2017-12-01

    New measurements of the longwave complex refractive index (LW CRI) of mineral dust and its global variability were obtained in situ in the 4.2 m3CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Aerosols generated by mechanical shaking from nineteen natural soils with contrasted mineralogical composition were suspended in the chamber, where their LW extinction spectra (2-16 μm), size distribution, and mineralogical composition were measured. The CRI of the dust aerosol was obtained by optical calculations based upon the measured extinction spectrum and size distribution. Laboratory results indicate that the LW refractive index of dust strongly varies with the source region of emission in link with the changes of its mineralogy. In the 2-16 μm spectral range, the imaginary refractive index (k) is between 0.001 and 0.92, and the real part (n) in the range 0.84-1.94. The strength of the dust absorption at 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. A linear relationship between the magnitude of k at 7, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found, which suggests that predictive rules could be established to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition. Our observations also suggest that the LW CRI of dust does not change as a result of the loss of coarse particles by gravitational settling, so that a constant value can be assumed close to sources and following transport. This unprecedented dataset of refractive indices was used as input into the LMDZORINCA model coupled with the RRTM radiative transfer module in order to re‒evaluate the direct dust LW radiative effect. This represents a first attempt to use regional‒dependent values of the LW refractive indices rather than generic values in models. Results from the simulations indicate that with these new refractive indices the LW direct effect of dust is significantly smaller compared to most of the already published results.

  18. Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities.

    PubMed

    Grote, Richard R; Driscoll, Jeffrey B; Biris, Claudiu G; Panoiu, Nicolae C; Osgood, Richard M

    2011-12-19

    We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel ("wire") waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.

  19. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  20. MQW Optical Feedback Modulators And Phase Shifters

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Laser diodes equipped with proposed multiple-quantum-well (MQW) optical feedback modulators prove useful in variety of analog and digital optical-communication applications, including fiber-optic signal-distribution networks and high-speed, low-crosstalk interconnections among super computers or very-high-speed integrated circuits. Development exploits accompanying electro-optical aspect of QCSE - variation in index of refraction with applied electric field. Also exploits sensitivity of laser diodes to optical feedback. Approach is reverse of prior approach.

  1. Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.

    2017-12-01

    An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.

  2. Denaturation process of laccase in various media by refractive index measurements.

    PubMed

    Saoudi, O; Ghaouar, N; Ben Salah, S; Othman, T

    2017-09-01

    In this work, we are interested in the denaturation process of a laccase from Tramates versicolor via the determination of the refractive index, the refractive index increment and the specific volume in various media. The measurements were carried out using an Abbe refractometer. We have shown that the refractive index increment values obtained from the slope of the variation of the refractive index vs. Concentration are outside the range refractive index increments of proteins. To correct the results, we have followed the theoretical predictions based on the knowledge of the protein refractive index from its amino acids composition. The denaturation process was studied by calculating the specific volume variation where its determination was related to the Gladstone-Dale and the Lorentz-Lorentz models.

  3. Patient age, refractive index of the corneal stroma, and outcomes of uneventful laser in situ keratomileusis.

    PubMed

    Patel, Sudi; Alió, Jorge L; Walewska, Anna; Amparo, Francisco; Artola, Alberto

    2013-03-01

    To determine the influence of age and the corneal stromal refractive index on the difference between the predicted and actual postoperative refractive error after laser in situ keratomileusis (LASIK) and whether the precision of outcomes could be improved by considering age and the refractive index. Vissum Instituto Oftalmologico de Alicante, Alicante, Spain. Case series. Flaps were created using a mechanical microkeratome. The stromal refractive index was measured using a VCH-1 refractometer after flap lifting. Refractive data were obtained 1, 3, and 6 months postoperatively. Uneventful LASIK was performed in 133 eyes. The mean age, refractive index, and applied corrections were 33.4 years ± 9.49 (SD), 1.368 ± 0.006, and -2.43 ± 3.36 diopters (D), respectively. The difference between the predicted and actual postoperative refractive error = 2.315-0.021 age-1.106 refractive index (F = 3.647, r = 0.254, P=.029; n = 109) at 1 month and = 11.820-0.023 age-7.976 refractive index (F = 3.392, r = 0.261, P=.022, n = 106) at 3 months. A correlation between the actual and calculated postoperative refraction improved from r = -0.178 (P=.064; n = 75) to r = -0.418 (P<.001) after considering the true refractive index 6 months postoperatively. The predicted outcomes of LASIK can be improved by inputting the refractive index of the individual corneal stroma. Unexpected outcomes (>0.50 D) of LASIK could be avoided by considering patient age and the refractive index and by adjusting the applied correction accordingly. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes.

    PubMed

    Charman, W Neil; Adnan; Atchison, David A

    2012-12-01

    Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed.

  5. Gradients of refractive index in the crystalline lens and transient changes in refraction among patients with diabetes

    PubMed Central

    Charman, W. Neil; Adnan; Atchison, David A.

    2012-01-01

    Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed. PMID:23243557

  6. Dispersion, controlled dispersion, and three applications

    NASA Astrophysics Data System (ADS)

    Bradshaw, Douglas H.

    Causality dictates that all physical media must be dispersive. (We will call a medium dispersive if its refractive index varies with frequency.) Ordinarily, strong dispersion is accompanied either by strong absorption or strong gain. However, over the past 15 years several groups have demonstrated that it is possible to have media that are both strongly dispersive and roughly transparent for some finite bandwidth. In these media, group and phase velocities may differ from each other by many orders of magnitude and even by sign. Relationships and intuitive models that are satisfactory when it is reasonable to neglect dispersion may then fail dramatically. In this dissertation we analyze three such cases of failure. Before looking at the specific cases, we review some basic ideas relating to dispersion. We review some of the geometric meanings of group velocity, touch on the relationship between group velocity and causality, and give some examples of techniques by which the group velocity may be manipulated. We describe the interplay between group velocity and energy density for non-absorbing dispersive media. We discuss the ideas of temporary absorption and emission as dictated by an instantaneous spectrum. We then apply these concepts in three specific areas. First, non-dispersive formulations for the momentum of light in a medium must be adjusted to account for dispersion. For over 100 years, there has been a gradual discussion of the proper form for the per-photon momentum. Two forms, each of which has experimental relevance in a 'dispersionless' medium, are the Abraham momentum, and the Minkowski momentum. If h is the angular frequency, n is the refractive index, h is Planck's constant, and c is the speed of light, then these reduce in a dispersionless medium to per-photon momenta of ho/(nc), and nho/c respectively. A simple generalization of the two momenta to dispersive media entails multiplying each per-photon momentum by n/ng, where ng is the group refractive index. The resulting forms are experimentally relevant for the case of the Abraham momentum, but not for the Minkowski momentum. We show how dispersion modulates the displacement of a sphere embedded in a dispersive medium by a pulse. Second, pulse transformation in a nonstationary medium is modulated by the presence of dispersion. Dispersion may enhance or mitigate the frequency response of a pulse to a changing refractive index, and if dispersion changes with time, the pulse bandwidth must change in a compensatory fashion. We introduce an explicit description of the kinetics of dispersive nonstationary inhomogeneous media. Using this description, we show how the group velocity can modulate the frequency response to a change in the refractive index and how Doppler shifts may become large in a dispersive medium as the velocity of the Doppler shifting surface approaches the group velocity. We explain a simple way to use existing technology to either compress or decompress a given pulse, changing its bandwidth and spatial extent by several orders of magnitude while otherwise preserving its envelope shape. We then introduce a dynamic descriptions of two simple media--one dispersive and one nondispersive. We compare the transformation of basic quantities like photon number, momentum density, and frequency by a temporal change in the refractive index in a specific non-dispersive medium to those wrought by a temporal change in the group refractive index in a specific dispersive medium. The differences between to media are fundamental and emphasize the salience of dispersion in the study of nonstationary media. Finally, we note that the nature of a single optical cavity quasimode depends on intracavity dispersion. We show that the quantum field noise associated with a single cavity mode may be modulated by dispersion. For a well-chosen mode in a high-Q cavity, this can amount to either an increase or a decrease in total vacuum field energy by several orders of magnitude. We focus on the "white light cavity," showing that the quantum noise of an ideal white light cavity diverges as the cavity finesse improves.

  7. Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen

    2018-03-01

    Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.

  8. Design and optimization of a volume-phase holographic grating for simultaneous use with red, green, and blue light using unpolarized light.

    PubMed

    Mahamat, Adoum H; Narducci, Frank A; Schwiegerling, James

    2016-03-01

    Volume-phase holographic (VPH) gratings have been designed for use in many areas of science and technology, such as optical communication, optical imaging, and astronomy. In this paper, the design of a volume-phase holographic grating, simultaneously optimized to operate in the red, green, and blue wavelengths, is presented along with a study of its fabrication tolerances. The grating is optimized to produce 98% efficiency at λ=532  nm and at least 75% efficiency in the region between 400 and 700 nm, when the incident light is unpolarized. The optimization is done for recording in dichromated gelatin with a thickness of 12 μm, an average refractive index of 1.5, and a refractive index modulation of 0.022.

  9. Effective holographic recordings in the photopolymer nanocomposites with functionalized silica nanoparticle and polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Han, Samsook; Lee, Muncheul; Kim, Byung Kyu

    2011-11-01

    Effective holographic nanocomposites were developed by the surface-functionalized silica nanoparticles and two acrylate monomers/polyurethane (PU) matrix polymer. The functionalization was done with silane compounds carrying long alkyl chain or vinyl group. We evaluated the holographic nanocomposite films by the diffraction efficiency, volume shrinkage, optical loss, and the film morphology. It was found that acrylate monomers/PU system gave higher diffraction efficiency than those of two monomers due to the high refractive index mismatch between the acrylate-rich and PU-rich regions. With the modification of silica particle, up to 35% of particle loading was possible to give a maximum diffraction efficiency of 93.6% for a film of 20 μm in thickness, along with improved refractive index modulation and the sensitivity.

  10. Optofluidic two-dimensional grating volume refractive index sensor.

    PubMed

    Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

    2016-09-10

    We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.

  11. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  12. Refractive index measurements in absorbing media with white light spectral interferometry.

    PubMed

    Arosa, Yago; Lago, Elena López; de la Fuente, Raúl

    2018-03-19

    White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.

  13. Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics

    DOE PAGES

    Li, Zhaoyi; Zhou, You; Qi, Hao; ...

    2016-08-30

    The electron-doping-induced phase transition of a prototypical perovskite SmNiO 3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO 3. Finally, modulation of a narrow band of light is demonstrated in this paper using plasmonic metasurfaces integrated with SmNiO 3.

  14. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  15. Thermally tunable broadband terahertz metamaterials with negative refractive index

    NASA Astrophysics Data System (ADS)

    Li, Weili; Meng, Qinglong; Huang, Renshuai; Zhong, Zheqiang; Zhang, Bin

    2018-04-01

    A thermally tunable broadband metamaterials with negative refractive index (NRI) is investigated in terahertz (THz) region theoretically. The metamaterials is designed by fabricating two stand-up opposite L shape metallic structures on fused quartz substrate, and the indium antimonide (InSb) is filled in the bottom gap of the two L shape structures. The tunability is attributed to the InSb because the InSb can changes the capacitance of the gap area by adjusting the temperature. The transmission characteristics and the retrieved electromagnetic parameters of the metamaterials are analyzed. Results indicate that the resonant frequency and amplitude modulation of the metamaterials can be tuned continuously in broadband range (about 0.62 THz), and the phase modulation from - 2 to 3 rad is also achieved within broadband range (about 0.8 THz). In addition, the metamaterials shows dual-band NRI behaviors at 0 . 4- 0 . 9 THz and 1 . 06- 1 . 15 THz when the temperature increases to 400 K. The wedge-shaped prism simulations are implemented to verify the NRI characteristics and indicate that the NRI of the metamaterials can be achieved.

  16. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid.

    PubMed

    Niskanen, I; Räty, J; Peiponen, K E

    2013-10-15

    The knowledge of the refractive index of a particle is important in sensing and imaging applications, e.g., in biology, medicine and process industry. The refractive index of tiny solid particles such as microsize particles can be determined by the so-called liquid immersion technique. This study deals with three different types of interrogation methods to get the refractive index of a particle in a liquid matrix. These methods utilize thermo-optical properties and wavelength-dependent refractive index of the particle and the immersion liquids, as well as, the classical method using a set of in advance prepared set of immersion liquids with different refractive indices. The emphasis is on a method to get especially the wavelength-dependent refractive index of microparticles and exploiting different wavelength-dependences of immersion liquid and a solid particle because identification of a particle is more reliable if the refractive index of the particle is known at several wavelengths. In this study glycerol-water mixtures served as immersion liquids to obtain the refractive index of CaF2 at several discrete wavelengths in the spectral range 200-500 nm. The idea is to find the maximum value of light transmission of suspension by scanning the wavelength of a commercial spectrophotometer. The light dispersion-based method is suggested as a relatively easy, economic and fast method to determine the refractive index of a particle by a spectrophotometer at several wavelengths of light. The accuracy of the detection of the refractive index is suggested to be better than ± 0.005 refractive index units. © 2013 Elsevier B.V. All rights reserved.

  17. Signal intensity enhancement of laser ablated volume holograms

    NASA Astrophysics Data System (ADS)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to stabilize the metal nanoparticles within the matrix yield more intense holographic signals as the integrity of the fringe is more protected with increasing metal solubility.

  18. Refractive-index measurement and inverse correction using optical coherence tomography.

    PubMed

    Stritzel, Jenny; Rahlves, Maik; Roth, Bernhard

    2015-12-01

    We describe a novel technique for determination of the refractive index of hard biological tissue as well as nonopaque technical samples based on optical coherence tomography (OCT). Our method relies on an inverse refractive-index correction (I-RIC), which matches a measured feature geometry distorted due to refractive-index boundaries to its real geometry. For known feature geometry, the refractive index can be determined with high precision from the best match between the distorted and corrected images. We provide experimental data for refractive-index measurements on a polymethylmethacrylate (PMMA) and on an ex vivo porcine cranial-bone, which are compared to reference measurements and previously published data. Our method is potentially capable of in vivo measurements on rigid biological tissue such as bone as, for example, is required to improve guidance in robot-aided surgical interventions and also for retrieving complex refractive-index profiles of compound materials.

  19. Nondestructive measurement of the refractive index distribution of a glass molded lens by two-wavelength wavefronts.

    PubMed

    Sugimoto, Tomohiro

    2016-10-01

    This paper presents a nondestructive and non-exact-index-matching method for measuring the refractive index distribution of a glass molded lens with high refractivity. The method measures two-wavelength wavefronts of a test lens immersed in a liquid with a refractive index dispersion different from that of the test lens and calculates the refractive index distribution by eliminating the refractive index distribution error caused by the shape error of the test lens. The estimated uncertainties of the refractive index distributions of test lenses with nd≈1.77 and nd≈1.85 were 1.9×10-5  RMS and 2.4×10-5  RMS, respectively. I validated the proposed method by evaluating the agreement between the estimated uncertainties and experimental values.

  20. Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer Anne

    On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub-diffraction-limited microscopy and electromagnetic cloaking. We exploit this tunability of complex plasmon mode indices to create a compact metal-oxide-Si (MOS) field effect plasmonic modulator (or plasMOStor). By transforming the MOS gate oxide into an optical channel, amplitude modulation depths of 11.2 dB are achieved in device volumes as small as one one-fifth of a cubic wavelength. Our results indicate the accessibility of tunable refractive indices over a wide frequency band, facilitating design of a new materials class with extraordinary optical properties and applications.

  1. EDITORIAL: Sensitive structures: refractive indices in nanotechnology Sensitive structures: refractive indices in nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-12-01

    Refractive index effects using nanoscale systems are frequently applied in new imaging, sensing and even visibility cloaking technology. In this issue, researchers in Japan use simulations and experiments to describe the confinement of optical vortices in nanoscale fin structures and the sensitivity of these systems to the refractive index of the surrounding media [1]. The effects of refraction as light rays pass between different media were recorded as long ago as the first century AD, by Ptolemy [2]. Over the following centuries the phenomena inspired Ibn Sahl in 984 [3], Thomas Harriot in 1602 [4], Willebrord Snellius in 1621 [5] and Rene Descartes in 1637 [6] to independently derive the more accurate and elegant equation for refraction so familiar to us today. Recent studies of the interactions between light and matter continue to reveal a wealth of phenomena that originate in the effects of the refractive indices of materials. Nanostructures can be used to manipulate conditions that affect the refractive indices of materials, such as temperature. A E Aliev et al at the University of Texas reported a striking demonstration of temperature-dependent refractive index effects using a free-standing, highly aligned carbon nanotube aerogel sheet [7]. They used the extremely low thermal capacitance and high heat transfer ability of transparent carbon nanotube sheets to enable high-frequency modulation of the sheet temperature over an enormous temperature range. The resulting sharp, rapidly changing gradient of the refractive index in the surrounding liquid or gas makes objects seem to disappear and can be used for visibility cloaking. Light-matter interaction resonances, where light is confined at the nanoscale, can be extremely sensitive to changes in the refractive index of the surrounding media [8], even allowing single-molecule detection [9]. Plasmons, the collective oscillations of electrons in response to incident light, are a typical example. Researchers at Rice University, Texas monitored the shift in the surface plasmon resonance of nanoscale gold pyramid structures at antibody-antigen unbinding events. In their demonstration they identified the effective refractive index of a single protein to be approximately 1.54. C G Biris and N C Panoiu at University College London used nonlinear effects in plasmonic metal nanowire structures to generate non-radiative dark-cavity plasmonic modes for sensing applications [10]. The plasmonic cavity modes of the nanowire structures do not couple to the radiation continuum so that radiative losses are suppressed, resulting in a Q-factor an order of magnitude larger than for the plasmonic modes of metallic nanoparticles. The resonances are highly sensitive to the refractive index of the surrounding medium and can detect changes of 10-5 refractive index units for a detector resolution of 0.01 nm. Optical vortices are also a form of light confinement. They have ring-shaped intensity distributions, an optical torque and their potential use in applications requiring nanoscale light confinement has been well demonstrated [11]. In this issue J-J Delaunay and his colleagues identify dips in the reflectivity spectra from nanoscale fin structures caused by optical vortices [1]. The dips may shift in response to changes in the refractive index of the surrounding medium, lending themselves to sensing applications. While other refractive index sensing approaches exist, the use of optical vortices in nanoscale fins boasts a number of additional attractive features including the potential for large-scale fabrication, ease of integration in microfluidic systems and possible trapping applications. And that is not to mention the fascinating physics of the optical vortices that the effects hinge on. In science and technology research, it is often the case that alternative approaches already exist but lack some or many attractive attributes. Johannes Kepler, who discovered the elliptical paths of the planets and came so close to uncovering the law of refraction [12], once termed his professional efforts 'the restless search for and interpretation of causes, the spiritual anguish for grace' [13]. The outcry will resonate with anyone who has applied themselves in the endeavours of scientific research or indeed any other discipline as a scholar, athlete, artist or otherwise. But while there may be frustrations along the way, the achievements in the end make the effort worthwhile. The work in this issue is just one example of what the 'restless search' in scientific research can achieve in sensing technology using nanoscale systems. References [1] Maeda E, Yaerim L, Kobayashi Y, Taino A, Koizumi M, Fujikawa S and Delauney J-J 2012 Sensitivity to refractive index of high aspect-ratio nano-fins with optical vortex Nanotechnology 23 505502 [2] Smith A M 1982 Ptolemy's search for a law of refraction: a case-study in the classical methodology of 'saving the appearances' and its limitations Arch. Hist. Exact Sci. 26 221-40 [3] Rashed R 1990 A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses ISIS 81 464-91 [4] Kwan A, Dudley J and Lantz E 2002 Who really discovered Snell's law? Phys. World 15 64 [5] Snellius W 1621 unpublished [6]Descartes R 1637 Dioptrique [7] Aliev A E, Gartstein Y N and Baughman R H 2011 Mirage effect from thermally modulated transparent carbon nanotube sheets Nanotechnology 22 435704 [8] Homola J, Yee S S and Gunter G 1999 Surface plasmon resonance sensors: review Sensors Actuators B 54 3-15 [9] Mayer K M, Hao F, Lee S, Nordlander P and Hafner J H 2010 A single molecule immunoassay by localized surface plasmon resonance Nanotechnology 21 255503 [10] Biris C G and Panoiu N C 2011 Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing Nanotechnology 22 235502 [11] Boriskina S V and Reinhard B M 2011 Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates Opt. Express 19 22305-15 [12] Houstoun R A 1925 Kepler's law of refraction Math. Notes 23 1516 [13] Koestler A C 1959 The Sleepwalkers (London: Macmillan)

  2. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  3. In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber.

    PubMed

    Yang, Jing; Guan, Chunying; Tian, Peixuan; Yuan, Tingting; Zhu, Zheng; Li, Ping; Shi, Jinhui; Yang, Jun; Yuan, Libo

    2017-11-01

    We propose a novel and simple in-fiber refractive index sensor based on resonant coupling, constructed by a short section of single eccentric hole-assisted dual-core fiber (SEHADCF) spliced between two single-mode fibers. The coupling characteristics of the SEHADCF are calculated numerically. The strong resonant coupling occurs when the fundamental mode of the center core phase-matches to that of the suspended core in the air hole. The effective refractive index of the fundamental mode of the suspended core can be obviously changed by injecting solution into the air hole. The responses of the proposed devices to the refractive index and temperature are experimentally measured. The refractive index sensitivity is 627.5 nm/refractive index unit in the refractive index range of 1.335-1.385. The sensor without solution filling is insensitive to temperature in the range of 30-90°C. The proposed refractive index sensor has outstanding advantages, such as simple fabrication, good mechanical strength, and excellent microfluidic channel, and will be of importance in biological detection, chemical analysis, and environment monitoring.

  4. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    NASA Astrophysics Data System (ADS)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  5. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

    NASA Astrophysics Data System (ADS)

    McClymer, J. P.

    2016-08-01

    Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

  6. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  7. Design and Analysis of an Optical Interface Message Processor

    DTIC Science & Technology

    1993-03-01

    Device 16 2.2.15 Microchannel Spatial Light Modulator (MSLM) 16 2.2.16 Si/PLST Modulator 16 2.2.17 Deformable Mirror Device ( DMD ) 17 2.2.18 Charged...wavelength of UV light, ’n this process, is the minimum image which can be developed. X-Ray lithography wil’ reduce the image size to the 1000 Angstrom...resonance of laser wavelength. This is due to a change in the index of refraction which results in an optical path allowing constructive interference

  8. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  9. Silicon single mode waveguide modulator based upon switchable Bragg reflector

    NASA Astrophysics Data System (ADS)

    Azogui, Jonathan; Ramon, Yonathan; Businaro, Luca; Ciasca, Gabriele; Gerardino, Annamaria; Zalevsky, Zeev

    2018-02-01

    In this paper we present the development of an electro optical "Bragg" modulator for telecommunication, in both design and fabrication. The device consists from a regular single mode silicon waveguide (WG) in which an effective Bragg reflector is "turned on" within the WG by means of external bias, due to the plasma dispersion effect, in which the (complexed) refractive index is affected by carrier concentration within the Silicon. Three different strategies are presented for both design and fabrication.

  10. Dynamic Optical Grating Device and Associated Method for Modulating Light

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  11. Fermat's principle and the formal equivalence of local light-ray rotation and refraction at the interface between homogeneous media with a complex refractive index ratio.

    PubMed

    Sundar, Bhuvanesh; Hamilton, Alasdair C; Courtial, Johannes

    2009-02-01

    We derive a formal description of local light-ray rotation in terms of complex refractive indices. We show that Fermat's principle holds, and we derive an extended Snell's law. The change in the angle of a light ray with respect to the normal of a refractive index interface is described by the modulus of the refractive index ratio; the rotation around the interface normal is described by the argument of the refractive index ratio.

  12. Periodic density modulation for quasi-phase-matching of optical frequency conversion is inefficient under shallow focusing and constant ambient pressure.

    PubMed

    Hadas, Itai; Bahabad, Alon

    2016-09-01

    The two main mechanisms of a periodic density modulation relevant to nonlinear optical conversion in a gas medium are spatial modulations of the index of refraction and of the number of emitters. For a one-dimensional model neglecting focusing and using a constant ambient pressure, it is shown theoretically and demonstrated numerically that the effects of these two mechanisms during frequency conversion cancel each other exactly. Under the considered conditions, this makes density modulation inefficient for quasi-phase-matching an optical frequency conversion process. This result is particularly relevant for high-order harmonic generation.

  13. Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling.

    PubMed

    Tan, Siyu; Yan, Fengping; Singh, Leena; Cao, Wei; Xu, Ningning; Hu, Xiang; Singh, Ranjan; Wang, Mingwei; Zhang, Weili

    2015-11-02

    The realization of high refractive index is of significant interest in optical imaging with enhanced resolution. Strongly coupled subwavelength resonators were proposed and demonstrated at both optical and terahertz frequencies to enhance the refractive index due to large induced dipole moment in meta-atoms. Here, we report an alternative design for flexible free-standing terahertz metasurface in the strong coupling regime where we experimentally achieve a peak refractive index value of 14.36. We also investigate the impact of the nearest neighbor coupling in the form of frequency tuning and enhancement of the peak refractive index. We provide an analytical circuit model to explain the impact of geometrical parameters and coupling on the effective refractive index of the metasurface. The proposed meta-atom structure enables tailoring of the peak refractive index based on nearest neighbor coupling and this property offers tremendous design flexibility for transformation optics and other index-gradient devices at terahertz frequencies.

  14. Refractive index of liquid mixtures: theory and experiment.

    PubMed

    Reis, João Carlos R; Lampreia, Isabel M S; Santos, Angela F S; Moita, Maria Luísa C J; Douhéret, Gérard

    2010-12-03

    An innovative approach is presented to interpret the refractive index of binary liquid mixtures. The concept of refractive index "before mixing" is introduced and shown to be given by the volume-fraction mixing rule of the pure-component refractive indices (Arago-Biot formula). The refractive index of thermodynamically ideal liquid mixtures is demonstrated to be given by the volume-fraction mixing rule of the pure-component squared refractive indices (Newton formula). This theoretical formulation entails a positive change of refractive index upon ideal mixing, which is interpreted in terms of dissimilar London dispersion forces centred in the dissimilar molecules making up the mixture. For real liquid mixtures, the refractive index of mixing and the excess refractive index are introduced in a thermodynamic manner. Examples of mixtures are cited for which excess refractive indices and excess molar volumes show all of the four possible sign combinations, a fact that jeopardises the finding of a general equation linking these two excess properties. Refractive indices of 69 mixtures of water with the amphiphile (R,S)-1-propoxypropan-2-ol are reported at five temperatures in the range 283-303 K. The ideal and real refractive properties of this binary system are discussed. Pear-shaped plots of excess refractive indices against excess molar volumes show that extreme positive values of excess refractive index occur at a substantially lower mole fraction of the amphiphile than extreme negative values of excess molar volume. Analysis of these plots provides insights into the mixing schemes that occur in different composition segments. A nearly linear variation is found when Balankina's ratios between excess and ideal values of refractive indices are plotted against ratios between excess and ideal values of molar volumes. It is concluded that, when coupled with volumetric properties, the new thermodynamic functions defined for the analysis of refractive indices of liquid mixtures give important complementary information on the mixing process over the whole composition range.

  15. Long period grating refractive-index sensor: optimal design for single wavelength interrogation.

    PubMed

    Kapoor, Amita; Sharma, Enakshi K

    2009-11-01

    We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).

  16. Roughened glass slides and a spectrophotometer for the detection of the wavelength-dependent refractive index of transparent liquids.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Myllylä, Risto; Sutinen, Veijo; Matsuda, Kiyofumi; Homma, Kazuhiro; Silfsten, Pertti; Peiponen, Kai-Erik

    2012-07-01

    We describe a method to determine the wavelength-dependent refractive index of liquids by measurement of light transmittance with a spectrophotometer. The method is based on using roughened glass slides with different a priori known refractive indices and immersing the slides into the transparent liquid with unknown refractive index. Using the dispersion data on the glass material it is possible to find the index match between the liquid and the glass slide, and hence the refractive index of the liquid.

  17. Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix

    NASA Astrophysics Data System (ADS)

    Hocini, Abdesselam; Moukhtari, Riad; Khedrouche, Djamel; Kahlouche, Ahmed; Zamani, Mehdi

    2017-02-01

    Using the three-dimensional finite difference time domain method (3D FDTD) with perfectly matched layers (PML), optical and magneto-optical properties of two-dimensional magneto-photonic crystals micro-cavity is studied. This micro-cavity is fabricated by SiO2/ZrO2 or SiO2/TiO2 matrix doped with magnetic nanoparticles, in which the refractive index varied in the range of 1.51-1.58. We demonstrate that the Q factor for the designed cavity increases as the refractive index increases, and we find that the Q factor decreases as the volume fraction VF% due to off-diagonal elements increases. These magnetic microcavities may serve as a fundamental structure in a variety of ultra compact magneto photonic devices such as optical isolators, circulators and modulators in the future.

  18. Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness.

    PubMed

    Iwaniuk, Daniel; Rastogi, Pramod; Hack, Erwin

    2011-09-26

    In imaging and focusing applications, spherical aberration induces axial broadening of the point spread function (PSF). A transparent medium between lens and object of interest induces spherical aberration. We propose a method that first obtains both the physical thickness and the refractive index of the aberration inducing medium in situ by measuring the induced focal shifts for paraxial and large angle rays. Then, the fourth order angle dependence of the optical path difference inside the medium is used to correct the spherical aberration using a phase-only spatial light modulator. The obtained measurement accuracy of 3% is sufficient for a complete compensation as demonstrated in a model microscope with NA 0.3 with glass plate induced axial broadening of the PSF by a factor of 5. © 2011 Optical Society of America

  19. Compact eccentric long period grating with improved sensitivity in low refractive index region.

    PubMed

    Shen, Fangcheng; Zhou, Kaiming; Gordon, Neil; Zhang, Lin; Shu, Xuewen

    2017-07-10

    We demonstrate a compact eccentric long period grating with enhanced sensitivity in low refractive index region. With a period designed at 15 µm for coupling light to high order cladding modes, the grating is more sensitive to surrounding refractive index in low refractive index region. The intrinsically low coupling coefficients for those high order cladding modes are significantly improved with the eccentric localized inscription induced by the femtosecond laser. The fabricated grating is compact with a length of 4.05 mm, and exhibits an average sensitivity of ~505 nm/RIU in low refractive index region (1.3328-1.3544). The proposed principle can also work in other refractive index region with a proper choice of the resonant cladding modes.

  20. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices.

    PubMed

    Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V; Fleischer, Karsten

    2016-09-13

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.

  1. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  2. Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes.

    PubMed

    Przibilla, Sabine; Dartmann, Sebastian; Vollmer, Angelika; Ketelhut, Steffi; Greve, Burkhard; von Bally, Gert; Kemper, Björn

    2012-09-01

    The intracellular refractive index is an important parameter that describes the optical density of the cytoplasm and the concentration of the intracellular solutes. The refractive index of adherently grown cells is difficult to access. We present a method in which silica microspheres in living cells are used to determine the cytoplasm refractive index with quantitative phase microscopy. The reliability of our approach for refractive index retrieval is shown by data from a comparative study on osmotically stimulated adherent and suspended human pancreatic tumor cells. Results from adherent human fibro sarcoma cells demonstrate the capability of the method for sensing of dynamic refractive index changes and its usage with microfluidics.

  3. Refractive index dependence of L3 photonic crystal nano-cavities.

    PubMed

    Adawi, A M; Chalcraft, A R; Whittaker, D M; Lidzey, D G

    2007-10-29

    We model the optical properties of L3 photonic crystal nano-cavities as a function of the photonic crystal membrane refractive index n using a guided mode expansion method. Band structure calculations revealed that a TE-like full band-gap exists for materials of refractive index as low as 1.6. The Q-factor of such cavities showed a super-linear increase with refractive index. By adjusting the relative position of the cavity side holes, the Q-factor was optimised as a function of the photonic crystal membrane refractive index n over the range 1.6 to 3.4. Q-factors in the range 3000-8000 were predicted from absorption free materials in the visible range with refractive index between 2.45 and 2.8.

  4. Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals

    NASA Astrophysics Data System (ADS)

    Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.

    2016-09-01

    We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.

  5. Regional variation in the refractive-index of the bovine and human cornea.

    PubMed

    Vasudevan, Balamurali; Simpson, Trefford L; Sivak, Jacob G

    2008-10-01

    Given the refractive importance of the human cornea, surprisingly little attention has been directed to the study of local variation in corneal refractive-index. This in vitro and in vivo study measures the refractive-index of different portions of the bovine and human cornea. Fifty fresh bovine corneas (obtained from an abattoir) and 10 human subjects were used for the study. The refractive-index of the central, nasal, and temporal corneal epithelium was measured with a bench-top Abbe refractometer in the case of bovine corneas and with a hand-held refractometer with humans. The mean (+/-standard deviation) refractive-indices of the central, nasal, and temporal bovine corneal epithelium were 1.3760 (+/-0.003), 1.3757 (+/-0.002), and 1.3746 (+/-0.002), respectively. Refractive-indices of the anterior and posterior bovine corneal stroma were 1.3731 (+/-0.002) and 1.3708 (+/-0.004), respectively. The mean (+/-standard deviation) refractive-index in the central, nasal, and temporal periphery of the human cornea epithelium were 1.3970 (+/-0.001), 1.3946 (+/-0.001), and 1.3940 (+/-0.001), respectively. There are small local differences in the refractive-index of the bovine and human corneal epithelium and the refractive-index of the epithelium is higher than that of the anterior and posterior stroma of the bovine cornea.

  6. Influence of stromal refractive index and hydration on corneal laser refractive surgery.

    PubMed

    de Ortueta, Diego; von Rüden, Dennis; Magnago, Thomas; Arba Mosquera, Samuel

    2014-06-01

    To evaluate the influence of the stromal refractive index and hydration on postoperative outcomes in eyes that had corneal laser refractive surgery using the Amaris laser system. Augenzentrum Recklinghausen, Recklinghausen, Germany. Comparative case series. At the 6-month follow-up, right eyes were retrospectively analyzed. The effect of the stromal refractive index and hydration on refractive outcomes was assessed using univariate linear and multilinear correlations. Sixty eyes were analyzed. Univariate linear analyses showed that the stromal refractive index and hydration were correlated with the thickness of the preoperative exposed stroma and was statistically different for laser in situ keratomileusis and laser-assisted subepithelial keratectomy treatments. Univariate multilinear analyses showed that the spherical equivalent (SE) was correlated with the attempted SE and stromal refractive index (or hydration). Analyses suggest overcorrections for higher stromal refractive index values and for lower hydration values. The stromal refractive index and hydration affected postoperative outcomes in a subtle, yet significant manner. An adjustment toward greater attempted correction in highly hydrated corneas and less intended correction in low hydrated corneas might help optimize refractive outcomes. Mr. Magnago and Dr. Arba-Mosquera are employees of and Dr. Diego de Ortueta is a consultant to Schwind eye-tech-solutions GmbH & Co. KG. Mr. Rüden has no financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Fabrication of refractive index distributions in polymer using a photochemical reaction

    NASA Astrophysics Data System (ADS)

    Kada, Takeshi; Obara, Atsushi; Watanabe, Toshiyuki; Miyata, Seizo; Liang, Chuan Xin; Machida, Hideaki; Kiso, Koichi

    2000-01-01

    We demonstrate that a photochemical reaction can create various distributions of refractive index in polymer. When the polymer containing a photochemically active material is irradiated by UV light, the photochemical reaction which breaks the π-conjugated system in the material and decreases its linear polarizability can reduce refractive index of the polymer. We prepared a PMMA film added DMAPN ((4-N,N-dimethylaminophenyl)-N'-phenylnitrone) with a rate of 23 wt % by use of spin coating. Electronic structural change of DMAPN and refractive indices of the film before and after UV irradiation were evaluated by UV absorption spectra and m-line method, respectively. The UV irradiation decreased λmax at 380 nm in the absorption spectra, which is attributed to nitrone, and the refractive indices exponentially with irradiation time. The change of refractive indices reached 0.028. The refractive index profile upon depth of the film was investigated by measuring refractive indices of stacked DMAPN/PMMA films. When UV with a power of 10.7 mW/cm2 irradiated upon three stacked DMAPN/PMMA films for 35 s, variation of the refractive index change showed a quadratic profile. The refractive index profile with various irradiation time can be accounted with the combination of the chemical kinetics with the steady state approximation and Lambert-Beer's law. Thus, the photochemical reaction can be used to control the refractive index distribution in polymer.

  8. On the Accuracy Potential in Underwater/Multimedia Photogrammetry.

    PubMed

    Maas, Hans-Gerd

    2015-07-24

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions.

  9. Ultrafast modulators based on nonlinear photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.

    2011-03-01

    Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot resonance compared to that of conventional waveguide. Measured transmission spectra show a bandgap in the ΓM direction in the reciprocal lattice that is in agreement with the simulated results using the finite-difference time-domain (FDTD) method. Compared to polarization intensity EO modulator with a half-wave voltage length product of 4.7 V•mm. The PhC based EO modulator has a factor of 6.6 improvement in the figure of merit performance. The thin film PhC waveguide devices show considerable potential for ultra-wide bandwidth electro-optic modulators as well as tunable optical filters and switches.

  10. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly.

    PubMed

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-09-29

    The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

  11. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    PubMed Central

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-01-01

    The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

  12. Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

    PubMed

    Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen

    2016-01-25

    A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidayat, Arif, E-mail: arif.hidayat.fmipa@um.ac.id; Latifah, Eny; Kurniati, Diana

    This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.

  14. Cell refractive index for cell biology and disease diagnosis: past, present and future.

    PubMed

    Liu, P Y; Chin, L K; Ser, W; Chen, H F; Hsieh, C-M; Lee, C-H; Sung, K-B; Ayi, T C; Yap, P H; Liedberg, B; Wang, K; Bourouina, T; Leprince-Wang, Y

    2016-02-21

    Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.

  15. Ultraviolet refractometry using field-based light scattering spectroscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  16. Refraction index sensor based on phase resonances in a subwavelength structure with double period.

    PubMed

    Skigin, Diana C; Lester, Marcelo

    2016-10-01

    In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.

  17. Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.

    PubMed

    Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay

    2018-03-05

    We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.

  18. Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating.

    PubMed

    Binfeng, Yun; Guohua, Hu; Ruohu, Zhang; Yiping, Cui

    2014-11-17

    A nanometric and high sensitive refractive index sensor based on the metal-insulator-metal plasmonic Bragg grating is proposed. The wavelength encoded sensing characteristics of the refractive index sensor were investigated by analyzing its transmission spectrum. The numerical results show that a good linear relationship between the Bragg wavelength and the refractive index of the sensing material can be obtained, which is in accordance with the analytical results very well. A high refractive index sensitivity of 1,488 nm/RIU around Bragg resonance wavelength of 1,550 nm was obtained. Besides, the simulation results show that the sensitivity is depended on the Bragg resonance wavelength and the longer the Bragg resonance wavelength, the higher sensitivity can be obtained. Furthermore, the figure of merit of the refractive index sensor can be greatly increased by introducing a nano-cavity in the proposed plasmonic Bragg grating structure. This work pave the way for high sensitive nanometric refractive index sensor design and application.

  19. Age-dependence of the average and equivalent refractive indices of the crystalline lens

    PubMed Central

    Charman, W. Neil; Atchison, David A.

    2013-01-01

    Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required. PMID:24466474

  20. Holographic Optical Elements with Ultra-High Spatial Frequencies.

    DTIC Science & Technology

    1983-01-01

    optical film thickness is equal to one-quarter of the wavelength of the incident radiation and the film’s index of refraction is...Am amount of photoresist material removed by developer N diffractive order number n index of refraction nx index of refraction -- x direction ny index ...since a material with the required index of refraction is usually hard to find4 7 . For example, there is no inorganic material available for

  1. Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

    PubMed Central

    Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten

    2016-01-01

    We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales. PMID:27623228

  2. Refractive index variance of cells and tissues measured by quantitative phase imaging.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Popescu, Gabriel

    2017-01-23

    The refractive index distribution of cells and tissues governs their interaction with light and can report on morphological modifications associated with disease. Through intensity-based measurements, refractive index information can be extracted only via scattering models that approximate light propagation. As a result, current knowledge of refractive index distributions across various tissues and cell types remains limited. Here we use quantitative phase imaging and the statistical dispersion relation (SDR) to extract information about the refractive index variance in a variety of specimens. Due to the phase-resolved measurement in three-dimensions, our approach yields refractive index results without prior knowledge about the tissue thickness. With the recent progress in quantitative phase imaging systems, we anticipate that using SDR will become routine in assessing tissue optical properties.

  3. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam.

    PubMed

    Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo

    2018-06-15

    We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.

  4. Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.

  5. Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach-Zehnder interferometer.

    PubMed

    Hong, Chin-Yih; Chieh, Jen-Jie; Yang, Shieh-Yueh; Yang, Hong-Chang; Horng, Herng-Er

    2009-10-10

    We use a heterodyne Mach-Zehnder interferometer to simultaneously and simply measure the complex refractive index by only normal incidence on the specimen, instead of using a complicated measurement procedure or instrument that only measures the real or imaginary part of the complex refractive index. To study the tiny variation of the complex refractive index, the small complex refractive-index variation of a rare-concentration magnetic-fluid thin film, due to a weak field of less than 200 Oe, was processed by this interferometer. We also present the wavelength trend of the complex refractive index of magnetic fluids to verify the appearance of the slight change in a small wavelength range.

  6. Change in refractive index of muscle tissue during laser-induced interstitial thermotherapy.

    PubMed

    Chen, Na; Chen, Meimei; Liu, Shupeng; Guo, Qiang; Chen, Zhenyi; Wang, Tingyun

    2014-01-01

    This paper presents a long-period fiber-grating (LPG) based Michelson interferometric refractometry to monitor the change in refractive index of porcine muscle during laser-induced interstitial thermotherapy (LITT). As the wavelength of RI interferometer alters with the change in refractive index around the probe, the LPG based refractometry is combined with LITT system to measure the change in refractive index of porcine muscle when irradiated by laser. The experimental results show the denaturation of tissue alters the refractive index significantly and the LPG sensor can be applied to monitor the tissue state during the LITT.

  7. Refractive index sensor based on a polymer fiber directional coupler for low index sensing.

    PubMed

    Lee, Kwang Jo; Liu, Xiaoqi; Vuillemin, Nelly; Lwin, Richard; Leon-Saval, Sergio G; Argyros, Alexander; Kuhlmey, Boris T

    2014-07-14

    We propose, numerically analyze and experimentally demonstrate a novel refractive index sensor specialized for low index sensing. The device is based on a directional coupler architecture implemented in a single microstructured polymer optical fiber incorporating two waveguides within it: a single-mode core and a satellite waveguide consisting of a hollow high-index ring. This hollow channel is filled with fluid and the refractive index of the fluid is detected through changes to the wavelength at which resonant coupling occurs between the two waveguides. The sensor design was optimized for both higher sensitivity and lower detection limit, with simulations and experiments demonstrating a sensitivity exceeding 1.4 × 10(3) nm per refractive index unit. Simulations indicate a detection limit of ~2 × 10(-6) refractive index units is achievable. We also numerically investigate the performance for refractive index changes localized at the surface of the holes, a case of particular importance for biosensing.

  8. Influence of the apex angle of a hollow prism made from an ordinary commercial glass plate as a simple refractometer to the accuracy of the refractive index measurement of the edible oil

    NASA Astrophysics Data System (ADS)

    Idris, N.; Maswati; Yusibani, E.

    2018-05-01

    The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.

  9. On the refractive index of sodium iodide solutions for index matching in PIV

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Katz, Joseph

    2014-04-01

    Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.

  10. The Use of Index-Matched Beads in Optical Particle Counters

    PubMed Central

    Hu, Zhishang; Ripple, Dean C

    2014-01-01

    In this paper, we demonstrate the use of 2-pyridinemethanol (2P) aqueous solutions as a refractive index matching liquid. The high refractive index and low viscosity of 2P-water mixtures enables refractive index matching of beads that cannot be index matched with glycerol-water or sucrose-water solutions, such as silica beads that have the refractive index of bulk fused silica or of polymethylmethacrylate beads. Suspensions of beads in a nearly index-matching liquid are a useful tool to understand the response of particle counting instruments to particles of low optical contrast, such as aggregated protein particles. Data from flow imaging and light obscuration instruments are presented for bead diameters ranging from 6 µm to 69 µm, in a matrix liquid spanning the point of matched refractive index. PMID:26601049

  11. Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Chiasera, Alessandro; Kriegel, Ilka; Scotognella, Francesco

    2017-10-01

    Photonic structures are building blocks for many optical applications in which light manipulation is required spanning optical filtering, lasing, light emitting diodes, sensing and photovoltaics. The fabrication of one-dimensional photonic structures is achievable with a variety of different techniques, such as spin coating, sputtering, evaporation, pulse laser deposition, or extrusion. Such different techniques enable facile integration of the photonic structure with many types of devices. Photonic crystals are characterized by a spatial modulation of the dielectric constant on the length scale of the wavelength of light giving rise to energy ranges where light cannot propagate through the crystal - the photonic band gap. While mostly photonic crystals are referred to as periodic arrangements, in this review we aim to highlight as well how aperiodicity and disorder affects light modulation. In this review article, we introduce the concepts of periodicity, quasi-periodicity, and disorder in photonic crystals, focussing on the one-dimensional case. We discuss in detail the physical peculiarities, the fabrication techniques, and the applications of periodic, quasi-periodic, and disorder photonic structures, highlighting how the degree of crystallinity matters in the manipulation of light. We report different types of disorder in 1D photonic structures and we discuss their properties in terms of light transmission. We discuss the relationship between the average total transmission, in a range of wavelengths around the photonic band gap of the corresponding photonic crystal, and the homogeneity of the photonic structures, quantified by the Shannon index. Then we discuss the light transmission in structures in which the high refractive index layers are aggregated in clusters following a power law distribution. Finally, in the case of structures in which the high refractive index layers are aggregated in clusters with a truncated uniform distribution, we discuss: i) how different refractive index contrast tailors the total light transmission; ii) how the total light transmission is affected by the introduction of defects made with a third material.

  12. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.

    PubMed

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-10-11

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.

  13. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    PubMed

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  14. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    PubMed Central

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-01-01

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607

  15. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    PubMed Central

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  16. Refractive index measurement based on confocal method

    NASA Astrophysics Data System (ADS)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang

    2017-10-01

    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  17. Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.

    PubMed

    Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung

    2008-01-01

    Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.

  18. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  19. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  20. A refractive index sensor based on taper Michelson interferometer in multimode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong

    2016-11-01

    A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.

  1. Experimental verification and simulation of negative index of refraction using Snell's law.

    PubMed

    Parazzoli, C G; Greegor, R B; Li, K; Koltenbah, B E C; Tanielian, M

    2003-03-14

    We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the real part of the index of refraction to be -1.05. The measurements and simulations of the electromagnetic field profiles were performed at distances of 14lambda and 28lambda from the sample; the fields were also computed at 100lambda.

  2. Polymer microfiber bridging Bi-tapered refractive index sensor based on evanescent field

    NASA Astrophysics Data System (ADS)

    Lv, Ri-Qing; Wang, Qi; Wang, Bo-Tao; Liu, Yu; Kong, Lingxin

    2018-05-01

    A PDMS/graphene enhanced PMMA micro optical waveguide sensor is reported in terms of fabrication method and optical characteristics. The micro optical waveguide with a diameter of 6 μm and a length of 800 μm is used as the sensing probe to realize refractive index (RI) measurement suspended in NaCl solutions with different concentrations. Experimental results show that the refractive index sensing sensitivity can reach 2027.97 nm/RIU within the refractive index ranging from 1.3333-1.3426. Research results show that PMMA/graphene micro optical waveguide doped with PDMS is an excellent high sensitive sensing technology in refractive index detection field.

  3. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An

    2016-03-01

    A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.

  4. Investigation of the refractive index repeatability for tantalum pentoxide coatings, prepared by physical vapor film deposition techniques.

    PubMed

    Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J

    2017-02-01

    Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.

  5. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle.

    PubMed

    Sobral, H; Peña-Gomar, M

    2015-10-01

    A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated.

  6. Electro-refractive photonic device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zortman, William A.; Watts, Michael R.

    2015-06-09

    The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive indexmore » enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.« less

  7. Laser interferometry of the hydrolytic changes in protein solutions: the refractive index and hydration shells.

    PubMed

    Sarimov, R M; Matveyeva, T A; Binhi, V N

    2018-05-11

    Using an original laser interferometer of enhanced sensitivity, an increase in the refractive index of a protein solution was observed during the reaction of proteolysis catalyzed by pepsin. The increase in the refractive index of the protein solution at a concentration of 4 mg/ml was [Formula: see text] for bovine serum albumin and [Formula: see text] for lysozyme. The observed effect disproves the existing idea that the refractive index of protein solutions is determined only by their amino acid composition and concentration. It is shown that the refractive index also depends on the state of protein fragmentation. A mathematical model of proteolysis and a real-time method for estimating the state of protein hydration based on the measurement of refractive index during the reaction are proposed. A good agreement between the experimental and calculated time dependences of the refractive index shows that the growth of the surface of protein fragments and the change in the number of hydration cavities during proteolysis can be responsible for the observed effect.

  8. Compact Hybrid Laser Rod and Laser System

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)

    2017-01-01

    A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.

  9. Theoretical study of modulated multi-layer SPR device for improved refractive index sensing

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-02-01

    In the present work, a theoretical investigation of Surface Plasmon Resonance (SPR) properties of a multilayer film (Au-SiO2-Au) coated on a glass prism is being carried out. In this multilayer structure, each interface corresponds to multiple SPR modes. To obtain the maximum reflection dips in the SPR modes, the thickness of SiO2 layer is optimized by varying it from 100-600 nm. Our calculation also reveals that SPR mode corresponding to Au-ambient interface is very sensitive to the changes in the surrounding medium, least affecting other SPR modes. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such multilayer SPR sensing device has advantages over conventional SPR devices in terms of their bulk sensitivity and self-referencing, claiming itself as a potential candidate for the development of highly sensitive biological sensor.

  10. Process of changing the refractive index of a composite containing a polymer and a compound having large dipole moment and polarizability and applications thereof

    NASA Technical Reports Server (NTRS)

    Peyghambarian, Nasser (Inventor); Hendrickx, Eric (Inventor); Volodin, Boris (Inventor); Marder, Seth R. (Inventor); Kippelen, Bernard (Inventor)

    2000-01-01

    Fused ring bridge, ring locked dyes that form thermally stable photorfractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging.

  11. Refractive-Index Tuning of Highly Fluorescent Carbon Dots.

    PubMed

    Kumar, Vijay Bhooshan; Sahu, Amit Kumar; Mohsin, Abu S M; Li, Xiangping; Gedanken, Aharon

    2017-08-30

    In this manuscript, we report the refractive-index (RI) modulation of various concentrations of nitrogen-doped carbon dots (N@C-dots) embedded in poly(vinyl alcohol) (PVA) polymer. The dispersion and size distribution of N@C-dots embedded within PVA have been investigated using electron microscopy. The RI of PVA-N@C-dots can be enhanced by increasing the doping concentration of highly fluorescent C-dots (quantum yield 44%). This is demonstrated using ultraviolet-visible (UV-visible), photoluminscence, Raman, and Fourier transform infrared (FTIR) spectroscopy measurements. The Mie scattering of light on N@C-dots was applied for developing the relationship between RI tuning and absorption cross section of N@C-dots. The extinction cross section of N@C-dot thin films can be rapidly enhanced by either tuning the RI or increasing the concentration of N@C-dots. The developed method can be used as effective RI contrast for various applications such as holography creation and bioimaging.

  12. Index mismatch aberration correction over long working distances using spatial light modulation.

    PubMed

    Gjonaj, Bergin; Johnson, Patrick; Bonn, Mischa; Domke, Katrin F

    2012-11-20

    For many microscopy applications, millimeters-long free working distances (LWD) are required. However, the high resolution and contrast of LWD objectives operated in air are lost when introducing glass and/or liquid with the sample. We propose to use spatial light modulation to correct for such beam aberrations caused by refractive index mismatches. Focusing a monochromatic laser beam with a 10 mm working distance air objective (50×, 0.5 NA) through air, glass, and water, we manage to restore a sharp, intense focus (FWHM<2λ) by adaptive beam phase shaping. Our approach offers a practical and cost-effective route to high resolution and contrast microscopy using LWD air objectives, extending their usage beyond applications in air.

  13. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    PubMed

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2011-10-30

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  14. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    PubMed

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  15. A modified artificial neural network based prediction technique for tropospheric radio refractivity

    PubMed Central

    Javeed, Shumaila; Javed, Wajahat; Atif, M.; Uddin, Mueen

    2018-01-01

    Radio refractivity plays a significant role in the development and design of radio systems for attaining the best level of performance. Refractivity in the troposphere is one of the features affecting electromagnetic waves, and hence the communication system interrupts. In this work, a modified artificial neural network (ANN) based model is applied to predict the refractivity. The suggested ANN model comprises three modules: the data preparation module, the feature selection module, and the forecast module. The first module applies pre-processing to make the data compatible for the feature selection module. The second module discards irrelevant and redundant data from the input set. The third module uses ANN for prediction. The ANN model applies a sigmoid activation function and a multi-variate auto regressive model to update the weights during the training process. In this work, the refractivity is predicted and estimated based on ten years (2002–2011) of meteorological data, such as the temperature, pressure, and humidity, obtained from the Pakistan Meteorological Department (PMD), Islamabad. The refractivity is estimated using the method suggested by the International Telecommunication Union (ITU). The refractivity is predicted for the year 2012 using the database of the previous ten years, with the help of ANN. The ANN model is implemented in MATLAB. Next, the estimated and predicted refractivity levels are validated against each other. The predicted and actual values (PMD data) of the atmospheric parameters agree with each other well, and demonstrate the accuracy of the proposed ANN method. It was further found that all parameters have a strong relationship with refractivity, in particular the temperature and humidity. The refractivity values are higher during the rainy season owing to a strong association with the relative humidity. Therefore, it is important to properly cater the signal communication system during hot and humid weather. Based on the results, the proposed ANN method can be used to develop a refractivity database, which is highly important in a radio communication system. PMID:29494609

  16. Mixed effects modelling for glass category estimation from glass refractive indices.

    PubMed

    Lucy, David; Zadora, Grzegorz

    2011-10-10

    520 Glass fragments were taken from 105 glass items. Each item was either a container, a window, or glass from an automobile. Each of these three classes of use are defined as glass categories. Refractive indexes were measured both before, and after a programme of re-annealing. Because the refractive index of each fragment could not in itself be observed before and after re-annealing, a model based approach was used to estimate the change in refractive index for each glass category. It was found that less complex estimation methods would be equivalent to the full model, and were subsequently used. The change in refractive index was then used to calculate a measure of the evidential value for each item belonging to each glass category. The distributions of refractive index change were considered for each glass category, and it was found that, possibly due to small samples, members of the normal family would not adequately model the refractive index changes within two of the use types considered here. Two alternative approaches to modelling the change in refractive index were used, one employed more established kernel density estimates, the other a newer approach called log-concave estimation. Either method when applied to the change in refractive index was found to give good estimates of glass category, however, on all performance metrics kernel density estimates were found to be slightly better than log-concave estimates, although the estimates from log-concave estimation prossessed properties which had some qualitative appeal not encapsulated in the selected measures of performance. These results and implications of these two methods of estimating probability densities for glass refractive indexes are discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. TiO2 surface functionalization of COC based planar waveguide Bragg gratings for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Girschikofsky, M.; Förthner, M.; Belle, S.; Rommel, M.; Frey, L.; Schmauss, B.; Hellmann, R.

    2018-01-01

    We demonstrate the applicability of a planar waveguide Bragg grating in cyclo-olefin copolymer (COC) for refractive index sensing. The polymer planar waveguide Bragg grating fabricated using a single writing step technique is coated with a high-index layer of titanium dioxide (TiO2) leading to a distinct birefringence. This in turn results in the splitting of the Bragg reflection into two distinct Bragg wavelengths, which strongly differ regarding their refractive index sensitivities. Where one wavelength is only slightly affected by the ambient refractive index, the second Bragg peak shows a strong sensitivity. Furthermore, we investigate the temperature behaviour of the functionalized sensor and discuss it with respect to applications in refractive index sensing.

  18. Ultrasensitive Magnetic Field Sensing Based on Refractive-Index-Matched Coupling.

    PubMed

    Rao, Jie; Pu, Shengli; Yao, Tianjun; Su, Delong

    2017-07-07

    An ultrasensitive magnetic field sensor is proposed and investigated experimentally. The no-core fiber is fusion-spliced between two pieces of single-mode fibers and then immersed in magnetic fluid with an appropriate value of refractive index. Under the refractive-index-matched coupling condition, the guided mode becomes leaky and a coupling wavelength dip in the transmission spectrum of the structure is observed. The coupling wavelength dip is extremely sensitive to the ambient environment. The excellent sensitivity to the refractive index is measured to be 116.681 μm/RIU (refractive index unit) in the refractive index range of 1.45691-1.45926. For the as-fabricated sensors, the highest magnetic field sensing sensitivities of 6.33 and 1.83 nm/mT are achieved at low and high fields, respectively. The sensitivity is considerably enhanced compared with those of previously designed, similar structures.

  19. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.

  20. Unidirectional complex grating assisted couplers

    NASA Astrophysics Data System (ADS)

    Greenberg, Maxim; Orenstein, Meir

    2004-08-01

    We present a novel concept which enables the realization of unidirectional and irreversible grating assisted couplers by using gain-loss modulated medium to eliminate the reversibility. Employing a matched periodic modulation of both refractive index and loss (gain) we achieve a unidirectional energy transfer between the modes of the coupler which translates to light transmission from one waveguide to another while disabling the inverse transmission. The importance of self coupling coefficients is explored as well and a feasible implementation, where the real and imaginary perturbations are implemented in different waveguides is presented.

  1. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, Richard J.

    1985-01-01

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  2. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.

  3. The eye lens: age-related trends and individual variations in refractive index and shape parameters

    PubMed Central

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-01-01

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  4. Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.

    2006-03-01

    The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.

  5. Metamaterials with gradient negative index of refraction.

    PubMed

    Pinchuk, Anatoliy O; Schatz, George C

    2007-10-01

    We propose a new metamaterial with a gradient negative index of refraction, which can focus a collimated beam of light coming from a distant object. A slab of the negative refractive index metamaterial has a focal length that can be tuned by changing the gradient of the negative refractive index. A thin metal film pierced with holes of appropriate size or spacing between them can be used as a metamaterial with the gradient negative index of refraction. We use finite-difference time-domain calculations to show the focusing of a plane electromagnetic wave passing through a system of equidistantly spaced holes in a metal slab with decreasing diameters toward the edges of the slab.

  6. Equivalent refractive-index structure constant of non-Kolmogorov turbulence.

    PubMed

    Li, Yujie; Zhu, Wenyue; Wu, Xiaoqing; Rao, Ruizhong

    2015-09-07

    The relationship between the non-Kolmogorov refractive-index structure constant and the Kolmogorov refractive-index structure constant is derived by using the refractive-index structure function and the variance of refractive-index fluctuations. It shows that the non-Kolmogorov structure constant is proportional to the Kolmogorov structure constant and the scaling factor depends on the outer scale and the spectral power law. For a fixed Kolmogorov structure constant, the non-Kolmogorov structure constant increases with a increasing outer scale for the power law less than 11/3, the trend is opposite for the power law greater than 11/3. This equivalent relation provides a way of obtaining the non-Kolmogorov structure constant by using the Kolmogorov structure constant.

  7. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities.

    PubMed

    Zhang, Xingwang; Zhou, Guangya; Shi, Peng; Du, Han; Lin, Tong; Teng, Jinghua; Chau, Fook Siong

    2016-03-15

    Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.

  8. Photo-Induced Self-Condensation, A Technique For Fabricating Organic Lightguide Structures

    NASA Astrophysics Data System (ADS)

    Franke, H.; Heuer, W.

    1986-11-01

    Planar lightguides have been fabricated from mixtures of the polymer PMMA with benzoin type photoinitiators. Using conventional UV-photolithography 2 dimensional refractive index patterns were recorded in the polymer films. Thickness and refractive index of the organic lightguides were determined by m-line spectroscopy. The achieved refractive index changes increased with increasing photoinitiator concentrations. For high concentrations (< 70 %) the film refractive index could be increased via UV exposure by Δn = 0.03. Thermal treatment at below 100°C caused the out diffusion of the unexposed photoinitiator and completion of the photochemically induced reaction in the exposed parts of the film. Thus refractive index patterns (Δn < 0.05) could be developed and fixed.

  9. Refractive index sensing by Brillouin scattering in side-polished optical fibers.

    PubMed

    Bernini, Romeo; Persichetti, Gianluca; Catalano, Ester; Zeni, Luigi; Minardo, Aldo

    2018-05-15

    In this Letter, we demonstrate the possibility to measure the refractive index of a liquid, using the stimulating Brillouin scattering in a 3-cm-long side-polished optical fiber. In addition, we show that by depositing a high-refractive index layer on the polished surface the sensitivity of the Brillouin frequency shift (BFS) can be increased due to a higher penetration of the evanescent field in the outer medium. Experiments show a maximum BFS change of about 11 MHz when varying the refractive index of the external medium from 1 (air) to 1.402, and a BFS sensitivity to refractive index of about 293 MHz/RIU around 1.40.

  10. Fiber-integrated refractive index sensor based on a diced Fabry-Perot micro-resonator.

    PubMed

    Suntsov, Sergiy; Rüter, Christian E; Schipkowski, Tom; Kip, Detlef

    2017-11-20

    We report on a fiber-integrated refractive index sensor based on a Fabry-Perot micro-resonator fabricated using simple diamond blade dicing of a single-mode step-index fiber. The performance of the device has been tested for the refractive index measurements of sucrose solutions as well as in air. The device shows a sensitivity of 1160 nm/RIU (refractive index unit) at a wavelength of 1.55 μm and a temperature cross-sensitivity of less than 10 -7   RIU/°C. Based on evaluation of the broadband reflection spectra, refractive index steps of 10 -5 of the solutions were accurately measured. The conducted coating of the resonator sidewalls with layers of a high-index material with real-time reflection spectrum monitoring could help to significantly improve the sensor performance.

  11. Formation of bulk refractive index structures

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  12. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

    NASA Astrophysics Data System (ADS)

    Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

    2007-05-01

    Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

  13. Improved retroreflection method for measuring the refractive index of liquids.

    PubMed

    Shao, Duo; Tian, Linghao; Chen, Jingfei; Chen, Xianfeng

    2010-06-01

    We propose a new method for measuring the refractive index of liquids with high precision; the method is based on use of the optical fiber end face. As an example, we investigated the refractive index of sugar solution under varying conditions tens of times. The results show that this method has the advantage of higher stability and repeatability. The concentration and the temperature-dependent refractive index of the sugar solution is also experimentally studied.

  14. Nonscanning Moiré deflectometry for measurement of nonlinear refractive index and absorption coefficient of liquids.

    PubMed

    Farahani, Shahrzad Shahrabi; Madanipour, Khosro; Koohian, Ata

    2017-05-01

    In this work, a nonscanning measurement technique is presented for determining the nonlinear refractive index and absorption coefficient of liquid media based on Moiré deflectometry. In the proposed method two lasers are used: a low power, wide beam as probe and a high power with specific wavelength as a pump. Interaction of the pump laser beam with the nonlinear sample changes the refractive index, which leads to change in convergence/divergence of the collimated incident probe laser beam. The induced deflection is monitored by Moiré deflectometry. If the pump laser has a Gaussian intensity profile, the refractive index profile of the sample is Gaussian, too. Measuring the deflection angle of the probe beam by Moiré fringes deflection, and by using the inverse Abel transform integral, the refractive index profile and nonlinear refractive index can be determined. This method is fast, easy, and insensitive to environmental noise and allows real-time measurement. Also, the refractive index profile of the interacted medium with pump laser can be achieved by this technique. As a liquid sample, a DCJ dye in water solution was studied. The value of nonlinear refractive index, n2, and absorption coefficient, α, were obtained -2.54×10-4  cm2 w-1 and 1.368  cm-1, respectively.

  15. Estimation of the refractive index of rigid contact lenses on the basis of back vertex power measurements.

    PubMed

    Pearson, Richard

    2011-03-01

    To assess the possibility of estimating the refractive index of rigid contact lenses on the basis of measurements of their back vertex power (BVP) in air and when immersed in liquid. First, a spreadsheet model was used to quantify the magnitude of errors arising from simulated inaccuracies in the variables required to calculate refractive index. Then, refractive index was calculated from in-air and in-liquid measurements of BVP of 21 lenses that had been made in three negative BVPs from materials with seven different nominal refractive index values. The power measurements were made by two operators on two occasions. Intraobserver reliability showed a mean difference of 0.0033±0.0061 (t = 0.544, P = 0.59), interobserver reliability showed a mean difference of 0.0043±0.0061 (t = 0.707, P = 0.48), and the mean difference between the nominal and calculated refractive index values was -0.0010±0.0111 (t = -0.093, P = 0.93). The spreadsheet prediction that low-powered lenses might be subject to greater errors in the calculated values of refractive index was substantiated by the experimental results. This method shows good intra and interobserver reliabilities and can be used easily in a clinical setting to provide an estimate of the refractive index of rigid contact lenses having a BVP of 3 D or more.

  16. Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao

    2018-01-01

    Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.

  17. Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.

    2003-08-01

    Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.

  18. On the Accuracy Potential in Underwater/Multimedia Photogrammetry

    PubMed Central

    Maas, Hans-Gerd

    2015-01-01

    Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell’s Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions. PMID:26213942

  19. Predicting of the refractive index of haemoglobin using the Hybrid GA-SVR approach.

    PubMed

    Oyehan, Tajudeen A; Alade, Ibrahim O; Bagudu, Aliyu; Sulaiman, Kazeem O; Olatunji, Sunday O; Saleh, Tawfik A

    2018-04-30

    The optical properties of blood play crucial roles in medical diagnostics and treatment, and in the design of new medical devices. Haemoglobin is a vital constituent of the blood whose optical properties affect all of the optical properties of human blood. The refractive index of haemoglobin has been reported to strongly depend on its concentration which is a function of the physiology of biological cells. This makes the refractive index of haemoglobin an essential non-invasive bio-marker of diseases. Unfortunately, the complexity of blood tissue makes it challenging to experimentally measure the refractive index of haemoglobin. While a few studies have reported on the refractive index of haemoglobin, there is no solid consensus with the data obtained due to different measuring instruments and the conditions of the experiments. Moreover, obtaining the refractive index via an experimental approach is quite laborious. In this work, an accurate, fast and relatively convenient strategy to estimate the refractive index of haemoglobin is reported. Thus, the GA-SVR model is presented for the prediction of the refractive index of haemoglobin using wavelength, temperature, and the concentration of haemoglobin as descriptors. The model developed is characterised by an excellent accuracy and very low error estimates. The correlation coefficients obtained in these studies are 99.94% and 99.91% for the training and testing results, respectively. In addition, the result shows an almost perfect match with the experimental data and also demonstrates significant improvement over a recent mathematical model available in the literature. The GA-SVR model predictions also give insights into the influence of concentration, wavelength, and temperature on the RI measurement values. The model outcome can be used not only to accurately estimate the refractive index of haemoglobin but also could provide a reliable common ground to benchmark the experimental refractive index results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Comparable change in stromal refractive index of cat and human corneas following blue-IRIS.

    PubMed

    Wozniak, Kaitlin T; Gearhart, Sara M; Savage, Daniel E; Ellis, Jonathan D; Knox, Wayne H; Huxlin, Krystel R

    2017-05-01

    Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ? 300 ?? ? m below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ? 1 ?? ? m wide, spaced 5 ?? ? m apart, using a scan speed of 5 ?? mm / s . Additional cat corneas were used to test writing at 3 and 7 ?? mm / s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.

  1. Comparable change in stromal refractive index of cat and human corneas following blue-IRIS

    NASA Astrophysics Data System (ADS)

    Wozniak, Kaitlin T.; Gearhart, Sara M.; Savage, Daniel E.; Ellis, Jonathan D.; Knox, Wayne H.; Huxlin, Krystel R.

    2017-05-01

    Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ˜300 μm below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ˜1 μm wide, spaced 5 μm apart, using a scan speed of 5 mm/s. Additional cat corneas were used to test writing at 3 and 7 mm/s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.

  2. Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip

    NASA Astrophysics Data System (ADS)

    Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando

    2018-05-01

    A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.

  3. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi; Tarvainen, T.; Department of Computer Science, University College London, Gower Street, London WC1E 6BT

    2015-02-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena onmore » the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.« less

  4. REFRACTOMETRY AS A TOOL IN DIABETIC STUDIES

    PubMed Central

    Kavitha, S.; Murthy, V.R.

    2006-01-01

    The refractive index as well as molar refraction, is the true index of purity of substance and plays a vital role in solution chemistry. A small addition of a foreign substance either in solid state of liquid form is going to effect the refractive index. As such the variation of refractive indices in pure glucose solution as a function of concentration is studied in detail and this principle is extended to the study of the refractive indices of urine solution of diabetic patients. The refractive indices are measured by spectrometry and abbe refractometry. A detailed study of variation of refractive indices of urine samples containing different sugar concentrations, of patients of different age groups revealed that the increase in refractive index follows a linear scale and can be explained by the equation, n=no [l+0.00251og (a s)1/4] [l+0.031og0.011C]. These study provided an opportunity to project refractometry as an effective tool in diagnosing the diabetic level of a patient by making use of a simple calibration curve of increment in refractive index ‘Δn, as a function of level of the disease. PMID:22557211

  5. Effect of TiCl4 treatment on the refractive index of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Lee, Jeeyoung; Lee, Myeongkyu

    2015-12-01

    We investigate the effect of TiCl4 treatment on the refractive index of a nanoporous TiO2 film. A nanoparticulate TiO2 film prepared on a glass substrate was immersed in a TiCl4 aqueous solution. The subsequent reaction of TiCl4 with H2O produces TiO2 and thus modifies the density and the refractive index of the film. With increasing TiCl4 concentration, the refractive index initially increased and then declined after being maximized (n = 2.02 at 633 nm) at 0.08 M concentration. A refractive index change as large as 0.45 could be obtained with the TiCl4 treatment, making it possible to achieve diffraction efficiency exceeding 80% in a diffraction grating-embedded TiO2 film. For high TiCl4 concentrations of 0.32 M and 0.64 M, the refractive index remained nearly unchanged. This was attributed to the limited permeability of high-viscosity TiCl4 solutions into the nanoporous films. The measured pore size distributions were in good agreement with the results of a diffraction analysis and refractive index measurement.

  6. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  7. Measurement and design of refractive corrections using ultrafast laser-induced intra-tissue refractive index shaping in live cats

    NASA Astrophysics Data System (ADS)

    Brooks, Daniel R.; Wozniak, Kaitlin T.; Knox, Wayne; Ellis, Jonathan D.; Huxlin, Krystel R.

    2018-02-01

    Intra-Tissue Refractive Index Shaping (IRIS) uses a 405 nm femtosecond laser focused into the stromal region of the cornea to induce a local refractive index change through multiphoton absorption. This refractive index change can be tailored through scanning of the focal region and variations in laser power to create refractive structures, such as gradient index lenses for visual refractive correction. Previously, IRIS was used to create 2.5 mm wide, square, -1 D cylindrical refractive structures in living cats. In the present work, we first wrote 400 μm wide bars of refractive index change at varying powers in enucleated cat globes using a custom flexure-based scanning system. The cornea and surrounding sclera were then removed and mounted into a wet cell. The induced optical phase change was measured with a Mach- Zehnder Interferometer (MZI), and appeared as fringe displacement, whose magnitude was proportional to the refractive index change. The interferograms produced by the MZI were analyzed with a Fourier Transform based algorithm in order to extract the phase change. This provided a phase change versus laser power calibration, which was then used to design the scanning and laser power distribution required to create -1.5 D cylindrical Fresnel lenses in cat cornea covering an area 6 mm in diameter. This prescription was inscribed into the corneas of one eye each of two living cats, under surgical anesthesia. It was then verified in vivo by contrasting wavefront aberration measurements collected pre- IRIS with those obtained over six months post-IRIS using a Shack-Hartmann wavefront sensor.

  8. Refractive index sensor based on optical fiber end face using pulse reference-based compensation technique

    NASA Astrophysics Data System (ADS)

    Bian, Qiang; Song, Zhangqi; Zhang, Xueliang; Yu, Yang; Chen, Yuzhong

    2018-03-01

    We proposed a refractive index sensor based on optical fiber end face using pulse reference-based compensation technique. With good compensation effect of this compensation technique, the power fluctuation of light source, the change of optic components transmission loss and coupler splitting ratio can be compensated, which largely reduces the background noise. The refractive index resolutions can achieve 3.8 × 10-6 RIU and1.6 × 10-6 RIU in different refractive index regions.

  9. Optical Properties of Si, Ge, GaAs, GaSb, InAs, and InP at Elevated Temperatures

    DTIC Science & Technology

    2010-03-01

    transmitted, and an absorbed (or scattered) component. The reflectance can be defined in terms of the index of refraction of the media on either side...of the interface. If the index of refraction of the material is n and the material is surrounded by air (nair ≈ 1), then the reflectance for near...the absorption coefficient and t is the sample thickness. 9 Since R depends on the refractive index and the refractive index depends on the

  10. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    Various aspects of a sensitivity analysis, in particular, the impact of variations in metal sheet resistivity, metal line width, diffused layer sheet resistance, junction depth, base layer lifetime, optical coating thickness and optical coating refractive index and on process reproducibility for A's diffusion from a polymer dopant source and on module fabrication were studied. Model calculations show that acceptable process windows exist for each of these parameters.

  11. Response to Comment on "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Wax, Adam

    2018-06-01

    Recently, Maxim A. Yurkin commented on our paper "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies" as well as on a complementary study "Cell nuclei have lower refractive index and mass density than cytoplasm" from Schürmann et al. In his comment, Yurkin concluded that quantitative phase images of cells with nuclei that are less optically dense than the cytoplasm must exhibit a characteristic concavity, the absence of which is evidence against our conclusion of a less-dense nucleus. In this response, we suggest that Yurkin's conclusion is reached through an oversimplification of the spatial refractive index distribution within cells, which does not account for high index inclusions such as the nucleolus. We further cite recent studies in 3-dimensional refractive index imaging, in which the preponderance of studies supports our conclusion. Finally, we comment on the current state of knowledge regarding subcellular refractive index distributions in living cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multi-parameter optimization of monolithic high-index contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Marciniak, Magdalena; Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Czyszanowski, Tomasz

    2016-03-01

    Conventional High-index Contrast Gratings (HCG) consist of periodically distributed high refractive index stripes surrounded by low index media. Practically, such low/high index stack can be fabricated in several ways however low refractive index layers are electrical insulators of poor thermal conductivities. Monolithic High-index Contrast Gratings (MHCGs) overcome those limitations since they can be implemented in any material with a real refractive index larger than 1.75 without the need of the combination of low and high refractive index materials. The freedom of use of various materials allows to provide more efficient current injection and better heat flow through the mirror, in contrary to the conventional HCGs. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. We present numerical analysis of MHCGs using a three-dimensional, fully vectorial optical model. We investigate possible designs of MHCGs using multidimensional optimization of grating parameters for different refractive indices.

  13. Refractive index inversion based on Mueller matrix method

    NASA Astrophysics Data System (ADS)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  14. Study of optical nonlinearities in Se-Te-Bi thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ambika; Yadav, Preeti; Kumari, Anshu

    2014-04-01

    The present work reports the nonlinear refractive index of Se85-xTe15Bix thin films calculated by Ticha and Tichy relation. The nonlinear refractive index of Chalcogenide amorphous semiconductor is well correlated with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system. The density of the system is calculated theoretical as well as experimentally by using Archimedes principle. The linear refractive index and WDD parameters are calculated using single transmission spectra in the spectral range of 400-1500 nm. It is observed that linear as well as nonlinear refractive index increases with Bi content. The results are analyzed on the basis of increasing polarizability due to larger radii of Bi.

  15. Numerical simulations of negative-index refraction in wedge-shaped metamaterials.

    PubMed

    Dong, Z G; Zhu, S N; Liu, H; Zhu, J; Cao, W

    2005-07-01

    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's Law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's Law experiments.

  16. Three-dimensional refractive index and fluorescence tomography using structured illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.

  17. Random-access technique for modular bathymetry data storage in a continental shelf wave refraction program

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1974-01-01

    A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.

  18. Measurement of Refractive Index Using a Michelson Interferometer.

    ERIC Educational Resources Information Center

    Fendley, J. J.

    1982-01-01

    Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)

  19. String and Sticky Tape Experiments: Refractive Index of Liquids.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1979-01-01

    Describes a simple method of measuring the refractive index of a liquid using a paper cup, a liquid, a pencil, and a ruler. Uses the ratio between the actual depth and the apparent depth of the cup to calculate the refractive index. (GA)

  20. Simulation of imperfections in plastic lenses - transferring local refractive index changes into surface shape modifications

    NASA Astrophysics Data System (ADS)

    Arasa, Josep; Pizarro, Carles; Blanco, Patricia

    2016-06-01

    Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

  1. Long range surface plasmon resonance (LRSPR) based highly sensitive refractive index sensor using Kretschmann prism coupling arrangement

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).

  2. Effect of temperature rise and hydrostatic pressure on microbending loss and refractive index change in double-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Toutian, Golnoosh

    This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.

  3. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    PubMed

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  4. Using a laser source to measure the refractive index of glass beads and Debye theory analysis.

    PubMed

    Li, Shui-Yan; Qin, Shuang; Li, Da-Hai; Wang, Qiong-Hua

    2015-11-20

    Using a monochromatic laser beam to illuminate a homogeneous glass bead, some rainbows will appear around it. This paper concentrates on the study of the scattering intensity distribution and the method of measuring the refractive index for glass beads based on the Debye theory. It is found that the first rainbow due to the scattering superposition of backward light of the low-refractive-index glass beads can be explained approximately with the diffraction, the external reflection plus the one internal reflection, while the second rainbow of high-refractive-index glass beads is due to the contribution from the diffraction, the external reflection, the direct transmission, and the two internal reflections. The scattering intensity distribution is affected by the refractive index, the radius of the glass bead, and the incident beam width. The effects of the refractive index and the glass bead size on the first and second minimum deviation angle position are analyzed in this paper. The results of the measurements agree very well with the specifications.

  5. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film

    PubMed Central

    Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang

    2017-01-01

    In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development. PMID:28796155

  6. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film.

    PubMed

    Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang

    2017-08-10

    In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development.

  7. Database and new models based on a group contribution method to predict the refractive index of ionic liquids.

    PubMed

    Wang, Xinxin; Lu, Xingmei; Zhou, Qing; Zhao, Yongsheng; Li, Xiaoqian; Zhang, Suojiang

    2017-08-02

    Refractive index is one of the important physical properties, which is widely used in separation and purification. In this study, the refractive index data of ILs were collected to establish a comprehensive database, which included about 2138 pieces of data from 1996 to 2014. The Group Contribution-Artificial Neural Network (GC-ANN) model and Group Contribution (GC) method were employed to predict the refractive index of ILs at different temperatures from 283.15 K to 368.15 K. Average absolute relative deviations (AARD) of the GC-ANN model and the GC method were 0.179% and 0.628%, respectively. The results showed that a GC-ANN model provided an effective way to estimate the refractive index of ILs, whereas the GC method was simple and extensive. In summary, both of the models were accurate and efficient approaches for estimating refractive indices of ILs.

  8. Determination of effective complex refractive index of a turbid liquid with surface plasmon resonance phase detection.

    PubMed

    Yingying, Zhang; Jiancheng, Lai; Cheng, Yin; Zhenhua, Li

    2009-03-01

    The dependence of the surface plasmon resonance (SPR) phase difference curve on the complex refractive index of a sample in Kretschmann configuration is discussed comprehensively, based on which a new method is proposed to measure the complex refractive index of turbid liquid. A corresponding experiment setup was constructed to measure the SPR phase difference curve, and the complex refractive index of turbid liquid was determined. By using the setup, the complex refractive indices of Intralipid solutions with concentrations of 5%, 10%, 15%, and 20% are obtained to be 1.3377+0.0005 i, 1.3427+0.0028 i, 1.3476+0.0034 i, and 1.3496+0.0038 i, respectively. Furthermore, the error analysis indicates that the root-mean-square errors of both the real and the imaginary parts of the measured complex refractive index are less than 5x10(-5).

  9. Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry

    DOE PAGES

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...

    2016-08-27

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  10. Method and apparatus for determining peak temperature along an optical fiber

    DOEpatents

    Fox, R.J.

    1982-07-29

    The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.

  11. Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hong; Lipschultz, Kristen A.; Anheier, Norman C.

    2012-04-01

    A state-of-the-art mid-infrared prism coupler was used to study the refractive index properties of forward-looking-infrared (FLIR) grade zinc sulfide samples prepared with unique planar grain orientations and locations with respect to the CVD growth axis. This study was motivated by prior photoluminescence and x-ray diffraction measurements that suggested refractive index may vary according to grain orientation. Measurements were conducted to provide optical dispersion and thermal index (dn/dT) data at discrete laser wavelengths between 0.633 and 10.591 {mu}m at two temperature set points (30 C and 90 C). Refractive index measurements between samples exhibited an average standard deviation comparable to themore » uncertainty of the prism coupler measurement (0.0004 refractive index units), suggesting that the variation in refractive index as a function of planar grain orientation and CVD deposition time is negligible, and should have no impact on subsequent optical designs. Measured dispersion data at mid-infrared wavelengths was found to agree well with prior published measurements.« less

  12. Refractive index, molar refraction and comparative refractive index study of propylene carbonate binary liquid mixtures.

    PubMed

    Wankhede, Dnyaneshwar Shamrao

    2012-06-01

    Refractive indices (n) have been experimentally determined for the binary liquid-liquid mixtures of Propylene carbonate (PC) (1) with benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15, 303.15 and 308.15 K over the entire mole fraction range. The experimental values of n are utilised to calculate deviation in refractive index (Δn), molar refraction (R) and deviation in molar refraction (ΔR). A comparative study of Arago-Biot (A-B), Newton (NW), Eyring and John (E-J) equations for determining refractive index of a liquid has been carried out to test their validity for all the binary mixtures over the entire composition range at 298.15 K. Comparison of various mixing relations is represented in terms of average deviation (AVD). The Δn and ΔR values have been fitted to Redlich-Kister equation at 298.15 K and standard deviations have been calculated. The results are discussed in terms of intermolecular interactions present amongst the components.

  13. Designing optical-fiber modulators by using magnetic fluids.

    PubMed

    Horng, H E; Chieh, J J; Chao, Y H; Yang, S Y; Hong, Chin-Yih; Yang, H C

    2005-03-01

    To reduce interface loss between optical fibers and devices in telecommunication systems, the development of an optical-fiber-based device that can be fused directly with fibers is important. A novel optical modulator consisting of a bare fiber core surrounded by magnetic fluids instead of by a SiO2 cladding layer is proposed. Applying a magnetic field raises the refractive index of the magnetic fluid. Thus we can control the occurrence of total reflection at the interface between the fiber core and the magnetic fluid when light propagates along the fiber. As a result, the intensity of the outgoing light is modulated by variation in field strength. Details of the design, fabrication, and working properties of such a modulator are presented.

  14. Determination of refractive index, size, and concentration of nonabsorbing colloidal nanoparticles from measurements of the complex effective refractive index.

    PubMed

    Márquez-Islas, Roberto; Sánchez-Pérez, Celia; García-Valenzuela, Augusto

    2014-02-01

    We describe a method for obtaining the refractive index (RI), size, and concentration of nonabsorbing nanoparticles in suspension from relatively simple optical measurements. The method requires measuring the complex effective RI of two dilute suspensions of the particles in liquids of different refractive indices. We describe the theoretical basis of the proposed method and provide experimental results validating the procedure.

  15. Method of producing optical quality glass having a selected refractive index

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2000-01-01

    Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.

  16. Agile wide-angle beam steering with electrowetting microprisms

    NASA Astrophysics Data System (ADS)

    Smith, Neil R.; Abeysinghe, Don C.; Haus, Joseph W.; Heikenfeld, Jason

    2006-07-01

    A novel basis for beam steering with electrowetting microprisms (EMPs) is reported. EMPs utilize electrowetting modulation of liquid contact angle in order to mimic the refractive behavior for various classical prism geometries. Continuous beam steering through an angle of 14° (±7°) has been demonstrated with a liquid index of n=1.359. Experimental results are well-matched to theoretical behavior up to the point of electrowetting contact-angle saturation. Projections show that use of higher index liquids (n~1.6) will result in steering through ~30° (±15°). Fundamental factors defining achievable deflection range, and issues for Ladar use, are reviewed. This approach is capable of good switching speed (~ms), polarization independent operation, modulation of beam field-of-view (lensing), and high steering efficiency that is independent of deflection angle.

  17. Polarization modulation based on the hybrid waveguide of graphene sandwiched structure

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Chen, Dingbo; Zhang, Jingjing; Zhang, Zhaojian; Huang, Jie

    2017-09-01

    Polarization beam splitter (PBS) plays an important role to realize beam control and modulation. A novel hybrid structure of graphene sandwiched waveguide is proposed to fulfill polarization manipulation and selection based on the refractive index engineering techniques. The fundamental mode of TM cannot be supported in this case. However, both TE and TM mode are excited and transmitting in the hybrid waveguide if the design parameters, including the waveguide width and the waveguide height, are changed. The incident wavelength largely affects the effective index, which results in supporting/not supporting the TM mode. The proposed design exhibits high extinction ratio, compact in size, flexible to control, compatible with CMOS process, and easy to be integrated with other optoelectronic devices, allowing it to be used in optical communication and optical information processing.

  18. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: comment.

    PubMed

    Andersen, Torben B

    2016-05-01

    In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.

  19. Experimental determination of refractive index of condensed reflectin in squid iridocytes.

    PubMed

    Ghoshal, Amitabh; DeMartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2014-06-06

    Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs.

  20. Experimental determination of refractive index of condensed reflectin in squid iridocytes

    PubMed Central

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2014-01-01

    Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs. PMID:24694894

  1. Note: Index of refraction measurement using the Fresnel equations.

    PubMed

    McClymer, J P

    2014-08-01

    The real part of the refractive index is measured from 1.30 to above 3.00 without the use of index matching fluids. This approach expands upon the Brewster angle technique as both S and P polarized lights are used and the full Fresnel equations fitted to the data to extract the index of refraction using nonlinear curve fitting.

  2. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity.

    PubMed

    Dinc, Tolga; Tymchenko, Mykhailo; Nagulu, Aravind; Sounas, Dimitrios; Alu, Andrea; Krishnaswamy, Harish

    2017-10-06

    Recent research has explored the spatiotemporal modulation of permittivity to break Lorentz reciprocity in a manner compatible with integrated-circuit fabrication. However, permittivity modulation is inherently weak and accompanied by loss due to carrier injection, particularly at higher frequencies, resulting in large insertion loss, size, and/or narrow operation bandwidths. Here, we show that the presence of absorption in an integrated electronic circuit may be counter-intuitively used to our advantage to realize a new generation of magnet-free non-reciprocal components. We exploit the fact that conductivity in semiconductors provides a modulation index several orders of magnitude larger than permittivity. While directly associated with loss in static systems, we show that properly synchronized conductivity modulation enables loss-free, compact and extremely broadband non-reciprocity. We apply these concepts to obtain a wide range of responses, from isolation to gyration and circulation, and verify our findings by realizing a millimeter-wave (25 GHz) circulator fully integrated in complementary metal-oxide-semiconductor technology.Optical non-reciprocity achieved through refractive index modulation can have its challenges and limitations. Here, Dinc et al. introduce the concept of non-reciprocity based on synchronized spatio-temporal modulation of conductivity to achieve different types of non-reciprocal functionality.

  3. Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel.

    PubMed

    Lee, H W; Schmidt, M A; Uebel, P; Tyagi, H; Joly, N Y; Scharrer, M; Russell, P St J

    2011-04-25

    We present a simple refractive index sensor based on a step-index fiber with a hollow micro-channel running parallel to its core. This channel becomes waveguiding when filled with a liquid of index greater than silica, causing sharp dips to appear in the transmission spectrum at wavelengths where the glass-core mode phase-matches to a mode of the liquid-core. The sensitivity of the dip-wavelengths to changes in liquid refractive index is quantified and the results used to study the dynamic flow characteristics of fluids in narrow channels. Potential applications of this fiber microstructure include measuring the optical properties of liquids, refractive index sensing, biophotonics and studies of fluid dynamics on the nanoscale.

  4. Options for refractive index and viscosity matching to study variable density flows

    NASA Astrophysics Data System (ADS)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.

  5. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  6. Plasmas with an index of refraction greater than 1.

    PubMed

    Nilsen, Joseph; Scofield, James H

    2004-11-15

    Over the past decade, x-ray lasers in the wavelength range 14-47 nm have been used for interferometry of plasmas. As in optical interferometry of plasmas, the experimental analysis assumed that the index of refraction is due only to free electrons. This makes the index of refraction less than 1. Recent experiments in A1 plasmas have shown fringe lines bending the wrong way as though the electron density were negative. We show how the bound electrons can dominate the index of refraction in many plasmas and make the index greater than 1 or enhance the index such that one would greatly overestimate the density of the plasma using interferometry.

  7. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers.

    PubMed

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2014-06-01

    An infrared refractive index sensor based on plasmonic perfect absorbers for glucose concentration sensing is experimentally demonstrated. Utilizing substantial absorption contrast between a perfect absorber (∼98% at normal incidence) and a non-perfect absorber upon the refractive index change, a maximum value of figure of merit (FOM*) about 55 and a bulk wavelength sensitivity about 590  nm/RIU are achieved. The demonstrated sensing platform provides great potential in improving the performance of plasmonic refractive index sensors and developing future surface enhanced infrared spectroscopy.

  8. Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models.

    PubMed

    Diamant, Ruth; Garcí-Valenzuela, Augusto; Fernández-Guasti, Manuel

    2012-09-01

    Reflectivity of a random monolayer, consisting of transparent spherical particles, is estimated using a graded refractive index model, an effective medium approach, and two scattering models. Two cases, a self-standing film and one with a substrate, are considered. Neither the surrounding medium nor the substrate are absorbing materials. Results at normal incidence, with different particle sizes, covering ratios and refractive indexes, are compared. The purpose of this work is to find under which circumstances, for reflectivity at normal incidence, a particle monolayer behaves as a graded refractive index film.

  9. Groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Feng, Xinxing; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-07-01

    A groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance (SPR) is proposed and analyzed by the finite element method (FEM). Numerical results show that the average sensitivity is 15,933 nm/refractive index unit (RIU) with the refractive index of analyte ranging from 1.40 to 1.43 and the maximum sensitivity is 28,600 nm/RIU and the resolution of the sensor is 3.50 × 10-8 RIU. The groove micro-structure optical fiber refractive index sensor do some changes on the D-shaped fiber sensor, compared with conventional D-shaped fiber sensor, it has a higher sensitivity and it is easier to produce than the traditional SPR sensor.

  10. Methods for prediction of refractive index in glasses for the infrared

    NASA Astrophysics Data System (ADS)

    McCloy, John S.

    2011-06-01

    It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for highend optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple- DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide) glasses will be compared with measured values of index and dispersion.

  11. Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system.

    PubMed

    Helseth, Lars Egil

    2012-02-13

    The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.

  12. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  13. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  14. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  15. Pressure sensing in high-refractive-index liquids using long-period gratings nanocoated with silicon nitride.

    PubMed

    Smietana, Mateusz; Bock, Wojtek J; Mikulic, Predrag; Chen, Jiahua

    2010-01-01

    The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD>1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n>2.2 at λ=1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters.

  16. Recovering fluorophore concentration profiles from confocal images near lateral refractive index step changes.

    PubMed

    Jonášová, Eleonóra Parelius; Bjørkøy, Astrid; Stokke, Bjørn Torger

    2016-12-01

    Optical aberrations due to refractive index mismatches occur in various types of microscopy due to refractive differences between the sample and the immersion fluid or within the sample. We study the effects of lateral refractive index differences by fluorescence confocal laser scanning microscopy due to glass or polydimethylsiloxane cuboids and glass cylinders immersed in aqueous fluorescent solution, thereby mimicking realistic imaging situations in the proximity of these materials. The reduction in fluorescence intensity near the embedded objects was found to depend on the geometry and the refractive index difference between the object and the surrounding solution. The observed fluorescence intensity gradients do not reflect the fluorophore concentration in the solution. It is suggested to apply a Gaussian fit or smoothing to the observed fluorescence intensity gradient and use this as a basis to recover the fluorophore concentration in the proximity of the refractive index step change. The method requires that the reference and sample objects have the same geometry and refractive index. The best results were obtained when the sample objects were also used for reference since small differences such as uneven surfaces will result in a different extent of aberration.

  17. Liquid refractive index sensing independent of opacity using an optofluidic diffraction sensor.

    PubMed

    Xu, Zhida; Han, Kevin; Khan, Ibrahim; Wang, Xinhao; Liu, G Logan

    2014-10-15

    We have implemented a multifunctional optofluidic sensor that can monitor changes in the refractive index and pressure of biofluid simultaneously and can detect free-solution molecular interaction in situ. In this Letter, we demonstrate two major improvements of this sensor proven by both simulation and experiments. One improvement is the broader measurement range of refractive index by making the diffraction grating with high-index polymer. The other improvement is the separation of refractive index sensing from opacity sensing by using the relative power ratio of diffraction orders. This simple, compact and low-cost multifunctional optofluidic sensor has the potential to be used for in situ biofluid monitoring.

  18. Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP

    NASA Astrophysics Data System (ADS)

    Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang

    2017-12-01

    This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.

  19. Ultra-Low Power Fiber-Coupled Gallium Arsenide Photonic Crystal Cavity Electro-Optical Modulator

    DTIC Science & Technology

    2011-04-11

    1185 (2009). 6. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP , GaAs, and InGaAsP,” IEEE J...Finally, a Au/Ge/Ni/Au n-type contact and a Au/ Zn /Au p-type contact were deposited and the membranes were released by wet etching the sacrificial

  20. Measuring of nonlinear properties of spatial light modulator with different wavelengths

    NASA Astrophysics Data System (ADS)

    Khalid, Farah G.; Younis Al-Dabagh, Samar; Ahmed, Sudad S.; Mahmood, Aseel I.; Al-Naimee, Kais

    2018-05-01

    The non-linear optical properties of Spatial Light Modulator(SLM) represented by Nonlinear Refractive Index (NLR) and nonlinear Absorption coefficient has been measured in this work using highly sensitive method known as Z-scan technique for different wavelengths (red and green). The capability to do instant measurements of different nonlinear optical parameters lead to consider these techniques as a one of the most desired and effective methods that could apply for different materials. The results showed that the NLR were in the same power for the different wavelengths while the nonlinear absorption is higher in case of green laser.

  1. Enhanced tagging of light utilizing acoustic radiation force with speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Vakili, Ali; Hollmann, Joseph L.; Holt, R. Glynn; DiMarzio, Charles A.

    2017-10-01

    In optical imaging, the depth and resolution are limited due to scattering. Unlike light, scattering of ultrasound (US) waves in tissue is negligible. Hybrid imaging methods such as US-modulated optical tomography (UOT) use the advantages of both modalities. UOT tags light by inducing phase change caused by modulating the local index of refraction of the medium. The challenge in UOT is detecting the small signal. The displacement induced by the acoustic radiation force (ARF) is another US effect that can be utilized to tag the light. It induces greater phase change, resulting in a stronger signal. Moreover, the absorbed acoustic energy generates heat, resulting in change in the index of refraction and a strong phase change. The speckle pattern is governed by the phase of the interfering scattered waves; hence, speckle pattern analysis can obtain information about displacement and temperature changes. We have presented a model to simulate the insonation processes. Simulation results based on fixed-particle Monte Carlo and experimental results show that the signal acquired by utilizing ARF is stronger compared to UOT. The introduced mean irradiance change (MIC) signal reveals both thermal and mechanical effects of the focused US beam in different timescales. Simulation results suggest that variation in the MIC signal can be used to generate a displacement image of the medium.

  2. Adaptive Optoelectronic Eyes: Hybrid Sensor/Processor Architectures

    DTIC Science & Technology

    2006-11-13

    corresponding calculated data. The width of the mirror stopband is proportional to the refractive index difference between the high and low index materials ...Silicon VLSI Neuron Unit Arrays 56 Development of a Single-Sided Flip-Chip Bonding Process 65 Development of High Refractive Index Diffractive Optical ...Elements (DOEs) 68 Development of High-Performance Antireflection Coatings for High Refractive Index DOEs 69 Design and Fabrication of Low Threshold

  3. Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation.

    PubMed

    Bahrami, Mehdi; Hoshino, Masato; Pierscionek, Barbara; Yagi, Naoto; Regini, Justyn; Uesugi, Kentaro

    2015-11-01

    A major structure/function relationship in the eye lens is that between the constituent proteins, the crystallins and the optical property of refractive index. Structural breakdown that leads to cataract has been investigated in a number of studies; the concomitant changes in the optics, namely increases in light attenuation have also been well documented. Specific changes in the refractive index gradient that cause such attenuation, however, are not well studied because previous methods of measuring refractive index require transparent samples. The X-ray Talbot interferometric method using synchrotron radiation allows for measurement of fine changes in refractive index through lenses with opacities. The findings of this study on older human lenses show disruptions to the refractive index gradient and in the refractive index contours. These disruptions are linked to location in the lens and occur in polar regions, along or close to the equatorial plane or in lamellar-like formations. The disruptions that are seen in the polar regions manifest branching formations that alter with progression through the lens with some similarity to lens sutures. This study shows how the refractive index gradient, which is needed to maintain image quality of the eye, may be disturbed and that this can occur in a number of distinct ways. These findings offer insight into functional changes to a major optical parameter in older lenses. Further studies are needed to elicit how these may be related to structural degenerations reported in the literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Koichi, E-mail: khattori@yonsei.ac.kr; Itakura, Kazunori, E-mail: kazunori.itakura@kek.jp; Department of Particle and Nuclear Studies, Graduate University for Advanced Studies

    2013-07-15

    We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon intomore » a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.« less

  5. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.

  6. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  7. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  8. Homodyne chiral polarimetry for measuring thermo-optic refractive index variations.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2015-10-10

    Novel reflection-type homodyne chiral polarimetry is proposed for measuring the refractive index variations of a transparent plate under thermal impact. The experimental results show it is a simple and useful method for providing accurate measurements of refractive index variations. The measurement can reach a resolution of 7×10-5.

  9. Refractive index of colloidal dispersions of spheroidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeten, G.H.

    1980-09-01

    The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.

  10. Photorefractive Nonlinear Optics

    DTIC Science & Technology

    1991-01-15

    conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...interaction by considering the refractive index grating as a linear superposition of the gratings from each of the frequency components of the

  11. Small and large particle limits of single scattering albedo for homogeneous, spherical particles

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Sorensen, C. M.

    2018-01-01

    The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.

  12. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  13. Further Studies on the Effect of SiN x Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

    DOE PAGES

    Oh, Jaewon; Dauksher, Bill; Bowden, Stuart; ...

    2017-01-11

    We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less

  14. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.

    PubMed

    Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli

    2018-01-01

    Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.

  15. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.

  16. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging.

    PubMed

    Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu

    2017-05-31

    Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.

  17. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.

    PubMed

    Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias

    2016-04-20

    Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution.

  18. Wave refraction in negative-index media: always positive and very inhomogeneous.

    PubMed

    Valanju, P M; Walser, R M; Valanju, A P

    2002-05-06

    We present the first treatment of the refraction of physical electromagnetic waves in newly developed negative index media (NIM), also known as left-handed media (LHM). The NIM dispersion relation implies that group fronts refract positively even when phase fronts refract negatively. This difference results in rapidly dispersing, very inhomogeneous waves. In fact, causality and finite signal speed always prevent negative wave signal (not phase) refraction. Earlier interpretations of phase refraction as "negative light refraction" and "light focusing by plane slabs" are therefore incorrect, and published NIM experiments can be explained without invoking negative signal refraction.

  19. Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser.

    PubMed

    Shi, Jiawei; Li, Yuhua; Liu, Shuhui; Wang, Haiyan; Liu, Ningliang; Lu, Peixiang

    2011-01-31

    Bragg gratings with the bandwidth(FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

  20. Spatial variation of stratospheric aerosol acidity and model refractive index - Implications of recent results

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hamill, P.

    1984-01-01

    Recent experimental results indicate that little or no solid ammonium sulfate is present in background stratospheric aerosols. Other results allow straightforward calculation of sulfuric acid/water droplet properties (acidity, specific gravity, refractive index) as functions of stratospheric temperature and humidity. These results are combined with a variety of latitudinal and seasonal temperature and humidity profiles to obtain corresponding profiles of droplet properties. These profiles are used to update a previous model of stratospheric aerosol refractive index. The new model retains the simplifying approximation of vertically constant refractive index in the inner stratosphere, but has sulfuric acid/water refractive index values that significantly exceed the previously used room temperature values. Mean conversion ratios (e.g., extinction-to-number, backscatter-to-volume) obtained using Mie scattering calculations with the new refractive indices are very similar to those obtained for the old indices, because the effects of deleting ammonium sulfate and increasing acid indices tend to cancel each other.

  1. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.

    PubMed

    Mao, Xiaole; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-07-21

    We report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light. Tailoring the refractive index profile by adjusting the flow conditions enables not only tuning of the focal distance (translation mode), but also shifting of the output light direction (swing mode), a second degree of freedom that to our knowledge has yet to be accomplished for in-plane tunable microlenses. Advantages of the L-GRIN lens also include a low fluid consumption rate, competitive focusing performance, and high compatibility with existing microfluidic devices. This work provides a new strategy for developing integrative tunable microlenses for a variety of lab-on-a-chip applications.

  2. Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, Nathan; Anheier, Norman C.; Qiao, Hong

    2011-05-01

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5–10.6 μm range. The instrumental error was found to be ±0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  3. Measurement of the refractive index dispersion of As{sub 2}Se{sub 3} bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, N.; Petit, L.; Musgraves, J. D.

    2011-05-15

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 {mu}m range. The instrumental error was found to be {+-}0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  4. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Weintraub, Jacob B; Wax, Adam

    2017-12-01

    The refractive index (RI) of biological materials is a fundamental parameter for the optical characterization of living systems. Numerous light scattering technologies are grounded in a quantitative knowledge of the refractive index at cellular and subcellular scales. Recent work in quantitative phase microscopy (QPM) has called into question the widely held assumption that the index of the cell nucleus is greater than that of the cytoplasm, a result which disagrees with much of the current literature. In this work, we critically examine the measurement of the nuclear and whole-cell refractive index using QPM, validating that nuclear refractive index is lower than that of cytoplasm in four diverse cell lines and their corresponding isolated nuclei. We further examine Mie scattering and phase-wrapping as potential sources of error in these measurements, finding they have minimal impact. Finally, we use simulation to examine the effects of incorrect RI assumptions on nuclear morphology measurements using angle-resolved scattering information. Despite an erroneous assumption of the nuclear refractive index, accurate measurement of nuclear morphology was maintained, suggesting that light scattering modalities remain effective. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  6. Improve the refractive index sensitivity of coaxial-cable type gold nanostructure: the effect of dielectric polarization from the separate layer

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2013-06-01

    The separate layer refractive index sensitivity of a coaxial-cable type three-layered gold nanotube has been studied. Theoretical calculation results based on quasi-static model show that the coaxial-cable type gold nanostructure has higher refractive index sensitivity than that of single-layered gold nanotube. This sensitivity could be improved by increasing the inner wire radius or decreasing the total radius of the tube, and the maximum sensitivity may exceed 1,000 nm per refractive index unit. The physical origin was also investigated based on the coupling of the dielectric media induced polarizations and the local electric fields in separate layer and outer surrounding. These separate layer refractive index sensing properties of coaxial-cable type gold nanostructure present well potential for plasmonic biosensing applications.

  7. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object.

    PubMed

    Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus

    2017-05-10

    To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.

  8. Miniature interferometer for refractive index measurement in microfluidic chip

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli

    2012-12-01

    The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.

  9. Methods for Prediction of Refractive Index in Glasses for the Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.

    It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for high-end optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple-DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide)more » glasses will be compared with measured values of index and dispersion.« less

  10. Photoacoustic measurement of refractive index of dye solutions and myoglobin for biosensing applications

    PubMed Central

    Goldschmidt, Benjamin S.; Mehta, Smit; Mosley, Jeff; Walter, Chris; Whiteside, Paul J. D.; Hunt, Heather K.; Viator, John A.

    2013-01-01

    Current methods of determining the refractive index of chemicals and materials, such as ellipsometry and reflectometry, are limited by their inability to analyze highly absorbing or highly transparent materials, as well as the required prior knowledge of the sample thickness and estimated refractive index. Here, we present a method of determining the refractive index of solutions using the photoacoustic effect. We show that a photoacoustic refractometer can analyze highly absorbing dye samples to within 0.006 refractive index units of a handheld optical refractometer. Further, we use myoglobin, an early non-invasive biomarker for malignant hyperthermia, as a proof of concept that this technique is applicable for use as a medical diagnostic. Comparison of the speed, cost, simplicity, and accuracy of the techniques shows that this photoacoustic method is well-suited for optically complex systems. PMID:24298407

  11. Analyzing refractive index changes and differential bending in microcantilever arrays.

    PubMed

    Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph

    2008-08-01

    A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.

  12. Theoretical study of polarization dependence of carrier-induced refractive index change of quantum dot.

    PubMed

    Miao, Qingyuan; Yang, Ziyi; Dong, Jianji; He, Ping-An; Huang, Dexiu

    2018-02-05

    The influences of dot material component, barrier material component, aspect ratio and carrier density on the refractive index changes of TE mode and TM mode of columnar quantum dot are analyzed, and a multiparameter adjustment method is proposed to realize low polarization dependence of refractive index change. Then the quantum dots with low polarization dependence of refractive index change (<1.5%) within C-band (1530 nm - 1565 nm) are designed, and it shows that quantum dots with different material parameters are anticipated to have similar characteristics of low polarization dependence.

  13. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

    PubMed Central

    Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

    2014-01-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p=0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p<0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data. PMID:24939747

  14. Improved algorithm of ray tracing in ICF cryogenic targets

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin

    2016-10-01

    The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.

  15. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  16. Pressure Sensing in High-Refractive-Index Liquids Using Long-Period Gratings Nanocoated with Silicon Nitride

    PubMed Central

    Smietana, Mateusz; Bock, Wojtek J.; Mikulic, Predrag; Chen, Jiahua

    2010-01-01

    The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nd > 1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n > 2.2 at λ = 1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters. PMID:22163527

  17. Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor

    NASA Astrophysics Data System (ADS)

    Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi

    2018-02-01

    Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.

  18. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    PubMed

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  19. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part I: surface relief gratings.

    PubMed

    Cody, D; Naydenova, I

    2017-12-01

    The suitability of holographic structures fabricated in zeolite nanoparticle-polymer composite materials for gas sensing applications has been investigated. Theoretical modeling of the sensor response (i.e., change in hologram readout due to a change in refractive index modulation or thickness as a result of gas adsorption) of different sensor designs was carried out using Raman-Nath theory and Kogelnik's coupled wave theory. The influence of a range of parameters on the sensor response of holographically recorded surface and volume photonic grating structures has been studied, namely the phase difference between the diffracted and probe beam introduced by the grating, grating geometry, thickness, spatial frequency, reconstruction wavelength, and zeolite nanoparticle refractive index. From this, the optimum fabrication conditions for both surface and volume holographic gas sensor designs have been identified. Here, in part I, results from theoretical modeling of the influence of design on the sensor response of holographically inscribed surface relief structures for gas sensing applications is reported.

  20. Reduction of B-integral accumulation in lasers

    DOEpatents

    Meyerhofer, David D.; Konoplev, Oleg A.

    2000-01-01

    A pulsed laser is provided wherein the B-integral accumulated in the laser pulse is reduced using a semiconductor wafer. A laser pulse is generated by a laser pulse source. The laser pulse passes through a semiconductor wafer that has a negative nonlinear index of refraction. Thus, the laser pulse accumulates a negative B-integral. The laser pulse is then fed into a laser amplification medium, which has a positive nonlinear index of refraction. The laser pulse may make a plurality of passes through the laser amplification medium and accumulate a positive B-integral during a positive non-linear phase change. The semiconductor and laser pulse wavelength are chosen such that the negative B-integral accumulated in the semiconductor wafer substantially cancels the positive B-integral accumulated in the laser amplification medium. There may be additional accumulation of positive B-integral if the laser pulse passes through additional optical mediums such as a lens or glass plates. Thus, the effects of self-phase modulation in the laser pulse are substantially reduced.

  1. Graphene-assisted ultra-compact polarization splitter and rotator with an extended bandwidth.

    PubMed

    Zhang, Tian; Ke, Xianmin; Yin, Xiang; Chen, Lin; Li, Xun

    2017-09-22

    The high refraction-index contrast between silicon and the surrounding cladding makes silicon-on-insulator devices highly polarization-dependent. However, it is greatly desirable for many applications to address the issue of polarization dependence in silicon photonics. Here, a novel ultra-compact polarization splitter and rotator (PSR), constructed with an asymmetrical directional coupler consisting of a rib silicon waveguide and a graphene-embedded rib silicon waveguide (GERSW), on a silicon-on-insulator platform is proposed and investigated. By taking advantage of the large modulation of the effective refractive index of the TE mode for the GERSW by tuning the chemical potential of graphene, the phase matching condition can be well satisfied over a wide spectral band. The presented result demonstrates that for a 7-layer-graphene-embedded PSR with a coupling length of 11.1 μm, a high TM-to-TE conversion efficiency (>-0.5 dB) can be achieved over a broad bandwidth from 1516 to 1602 nm.

  2. An analytical formalism accounting for clouds and other `surfaces' for exoplanet transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bétrémieux, Yan; Swain, Mark R.

    2017-05-01

    Although the formalism of Lecavelier des Etangs et al. is extremely useful to understand what shapes transmission spectra of exoplanets, it does not include the effects of a sharp change in flux with altitude generally associated with surfaces and optically thick clouds. Recent advances in understanding the effects of refraction in exoplanet transmission spectra have, however, demonstrated that even clear thick atmospheres have such a sharp change in flux due to a refractive boundary. We derive a more widely applicable analytical formalism by including first-order effects from all these 'surfaces' to compute an exoplanet's effective radius, effective atmospheric thickness and spectral modulation for an atmosphere with a constant scaleheight. We show that the effective radius cannot be located below these 'surfaces' and that our formalism matches the formalism of Lecavelier des Etangs et al. in the case of a clear atmosphere. Our formalism explains why clouds and refraction reduce the contrast of spectral features, and why refraction decreases the Rayleigh scattering slope as wavelength increases, but also shows that these are common effects of all 'surfaces'. We introduce the concept of a 'surface' cross-section, the minimum mean cross-section that can be observed, as an index to characterize the location of 'surfaces' and provide a simple method to estimate their effects on the spectral modulation of homogeneous atmospheres. We finally devise a numerical recipe that extends our formalism to atmospheres with a non-constant scaleheight and arbitrary sources of opacity, a potentially necessary step to interpret observations.

  3. Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads.

    PubMed

    Jones, Stephanie H; King, Martin D; Ward, Andrew D

    2013-12-21

    A method is described to measure the refractive index dispersion with wavelength of optically trapped solid particles in air. Knowledge of the refraction properties of solid particles is critical for the study of aerosol; both in the laboratory and in the atmosphere for climate studies. Single micron-sized polystyrene beads were optically trapped in air using a vertically aligned counter-propagating configuration of focussed laser beams. Each bead was illuminated using white light from a broadband light emitting diode (LED) and elastic scattering within the bead was collected onto a spectrograph. The resulting Mie spectra were analysed to accurately determine polystyrene bead radii to ±0.4 nm and values of the refractive index to ±0.0005 over a wavelength range of 480-700 nm. We demonstrate that optical trapping combined with elastic scattering can be used to both accurately size polystyrene beads suspended in air and determine their wavelength dependent refractive index. The refractive index dispersions are in close agreement with reported values for polystyrene beads in aqueous dispersion. Our results also demonstrate a variation in the refractive index of polystyrene, from bead to bead, in a commercial sample. The measured variation highlights that care must be taken when using polystyrene beads as a calibration aerosol.

  4. Nonintrusive measurement of the liquid refractive index by using properties of the cuvette wall.

    PubMed

    Xu, Ming; Ren, Junpeng; Miao, Runcai; Zhang, Zongquan

    2016-10-01

    We present a method of nonintrusive measurement of the refractive index of a liquid in a glass cuvette, which uses some optical properties of the cuvette wall and the principle of total internal reflection. By coating a transmission-scattering paint layer on the outer surface of the cuvette, we transform an incident laser beam into a transmitted scattered light. When the transmitted scattered light reaches the interface between the container wall and the liquid inside, the light beams satisfying the condition of total internal reflection are reflected to the coating layer, automatically forming a circular dark pattern that is related to the refractive index of the liquid. Based on an analytic relation between the diameter of the circular dark pattern and the refractive index of the liquid, we devised a method of in situ nonintrusive refractive index measurement. We tested the effect of several parameters on the measuring accuracy and found that the optimal thickness of the transmission-scattering layer is in the range of 50-70 μm, and the aperture of the diaphragm should be in the range of 0.7-1.0 mm. We measured the refractive indices of ethanol, Coca Cola, and red wine, and achieved an accuracy of ±3×10-4  RIU (refractive index unit).

  5. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies

    PubMed Central

    Giannios, Panagiotis; Toutouzas, Konstantinos G.; Matiatou, Maria; Stasinos, Konstantinos; Konstadoulakis, Manousos M.; Zografos, George C.; Moutzouris, Konstantinos

    2016-01-01

    The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools. PMID:27297034

  6. Comparison of Methods for Predicting the Compositional Dependence of the Density and Refractive Index of Organic-Aqueous Aerosols.

    PubMed

    Cai, Chen; Miles, Rachael E H; Cotterell, Michael I; Marsh, Aleksandra; Rovelli, Grazia; Rickards, Andrew M J; Zhang, Yun-Hong; Reid, Jonathan P

    2016-08-25

    Representing the physicochemical properties of aerosol particles of complex composition is of crucial importance for understanding and predicting aerosol thermodynamic, kinetic, and optical properties and processes and for interpreting and comparing analysis methods. Here, we consider the representations of the density and refractive index of aqueous-organic aerosol with a particular focus on the dependence of these properties on relative humidity and water content, including an examination of the properties of solution aerosol droplets existing at supersaturated solute concentrations. Using bulk phase measurements of density and refractive index for typical organic aerosol components, we provide robust approaches for the estimation of these properties for aerosol at any intermediate composition between pure water and pure solute. Approximately 70 compounds are considered, including mono-, di- and tricarboxylic acids, alcohols, diols, nitriles, sulfoxides, amides, ethers, sugars, amino acids, aminium sulfates, and polyols. We conclude that the molar refraction mixing rule should be used to predict the refractive index of the solution using a density treatment that assumes ideal mixing or, preferably, a polynomial dependence on the square root of the mass fraction of solute, depending on the solubility limit of the organic component. Although the uncertainties in the density and refractive index predictions depend on the range of subsaturated compositional data available for each compound, typical errors for estimating the solution density and refractive index are less than ±0.1% and ±0.05%, respectively. Owing to the direct connection between molar refraction and the molecular polarizability, along with the availability of group contribution models for predicting molecular polarizability for organic species, our rigorous testing of the molar refraction mixing rule provides a route to predicting refractive indices for aqueous solutions containing organic molecules of arbitrary structure.

  7. A FORTRAN Program for Computing Refractive Index Using the Double Variation Method.

    ERIC Educational Resources Information Center

    Blanchard, Frank N.

    1984-01-01

    Describes a computer program which calculates a best estimate of refractive index and dispersion from a large number of observations using the double variation method of measuring refractive index along with Sellmeier constants of the immersion oils. Program listing with examples will be provided on written request to the author. (Author/JM)

  8. Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

    NASA Astrophysics Data System (ADS)

    Shepherd, Rosalie H.; King, Martin D.; Marks, Amelia A.; Brough, Neil; Ward, Andrew D.

    2018-04-01

    Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London) and remote (Antarctica) locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A = 1.467 and B = 1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A = 1.465 ± 0.005 and B = 4625 ± 1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A = 1.505 and B = 600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A = 1.541 ± 0.03 and B = 14 800 ± 2900 nm2, resulting in a real refractive index of 1.584 ± 0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere containing a 3 km thick layer of aerosol comprising pure water, pure insoluble organic aerosol, or an aerosol consisting of an aqueous core with an insoluble organic shell. The calculation demonstrated that the top-of-the-atmosphere albedo increases by 0.01 to 0.04 for pure organic particles relative to water particles of the same size and that the top-of-the-atmosphere albedo increases by 0.03 for aqueous core-shell particles as volume fraction of the shell material increases to 25 %.

  9. A Simple Method to Determine the Refractive Index of Glass.

    ERIC Educational Resources Information Center

    Mak, Se-yuen

    1988-01-01

    Describes an experiment for determining the refractive index. Discusses the experiment procedure and mathematical expression for calculating the index. Provides two geometrical diagrams and a graph for determining the index with a typical data. (YP)

  10. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  11. Prediction and observation of tin and silver plasmas with index of refraction greater than one in the soft x-ray range.

    PubMed

    Filevich, Jorge; Grava, Jonathan; Purvis, Mike; Marconi, Mario C; Rocca, Jorge J; Nilsen, Joseph; Dunn, James; Johnson, Walter R

    2006-07-01

    We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths.

  12. Group refractive index quantification using a Fourier domain short coherence Sagnac interferometer.

    PubMed

    Montonen, Risto; Kassamakov, Ivan; Lehmann, Peter; Österberg, Kenneth; Hæggström, Edward

    2018-02-15

    The group refractive index is important in length calibration of Fourier domain interferometers by transparent transfer standards. We demonstrate accurate group refractive index quantification using a Fourier domain short coherence Sagnac interferometer. Because of a justified linear length calibration function, the calibration constants cancel out in the evaluation of the group refractive index, which is then obtained accurately from two uncalibrated lengths. Measurements of two standard thickness coverslips revealed group indices of 1.5426±0.0042 and 1.5434±0.0046, with accuracies quoted at the 95% confidence level. This agreed with the dispersion data of the coverslip manufacturer and therefore validates our method. Our method provides a sample specific and accurate group refractive index quantification using the same Fourier domain interferometer that is to be calibrated for the length. This reduces significantly the requirements of the calibration transfer standard.

  13. The refractive index in electron microscopy and the errors of its approximations.

    PubMed

    Lentzen, M

    2017-05-01

    In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index, linear in the electric potential, is used. In recent years improved calculation schemes have been proposed, aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive index squared, being linear in the electric potential. The second and higher-order corrections thus determined have, however, a large error, compared to those derived from the relativistically correct refractive index. The impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering angles, kinetic energies, and atomic numbers. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Manipulating Refractive Index in Organic Light-Emitting Diodes.

    PubMed

    Salehi, Amin; Chen, Ying; Fu, Xiangyu; Peng, Cheng; So, Franky

    2018-03-21

    In a conventional organic light-emitting diode (OLED), only a fraction of light can escape to the glass substrate and air. Most radiation is lost to two major channels: waveguide modes and surface plasmon polaritons. It is known that reducing the refractive indices of the constituent layers in an OLED can enhance light extraction. Among all of the layers, the refractive index of the electron transport layer (ETL) has the largest impact on light extraction because it is the layer adjacent to the metallic cathode. Oblique angle deposition (OAD) provides a way to manipulate the refractive index of a thin film by creating an ordered columnar void structure. In this work, using OAD, the refractive index of tris(8-hydroxyquinoline)aluminum (Alq3) can be tuned from 1.75 to 1.45. With this low-index ETL deposited by OAD, the resulting phosphorescent OLED shows nearly 30% increase in light extraction efficiency.

  15. Investigation of a pressure-dependent refractive index of germanium film with an optical fiber film sensor.

    PubMed

    Yuan, Dongxu; Gao, Hongyun; Chen, Hao; Li, Min

    2018-02-01

    The refractive index of Ge is found in decline with applied pressure at a specific wavelength in the absorption region below 1900 nm, where the absorption coefficient rises dramatically with decreased wavelength. In this paper, we use a Ge-coated fiber optic probe to demonstrate quantitatively that the downward trend in the refractive index to increasing pressure matches the theoretically simulated optical properties of Ge with a measurement error of 1.03×10 -3 in the refractive index, which is further calculated within the framework of density functional theory with local density approximation. For the first time, to the best of our knowledge, both theoretical and experimental results prove that the refractive index reduces linearly with a gradient of -3.30×10 -4 /MPa as the pressure increases from 0 to 20 MPa.

  16. New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region.

    PubMed

    Ohno, Seigo; Miyamoto, Katsuhiko; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5-26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was approximately 2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.

  17. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  18. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xiuxia; Li, Jiabo; Li, Jun

    2014-09-07

    High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformationmore » (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.« less

  19. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  20. On the Immersion Liquid Evaporation Method Based on the Dynamic Sweep of Magnitude of the Refractive Index of a Binary Liquid Mixture: A Case Study on Determining Mineral Particle Light Dispersion.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2017-07-01

    This is a feasibility study of a modified immersion liquid technique for determining the refractive index of micro-sized particles. The practical challenge of the traditional liquid immersion method is to find or produce a suitable host liquid whose refractive index equals that of a solid particle. Usually, the immersion liquid method uses a set of immersion liquids with different refractive indices or continuously mixes two liquids with different refractive indices, e.g., using a pumping system. Here, the phenomenon of liquid evaporation has been utilized in defining the time-dependent refractive index variation of the host liquid. From the spectral transmittance data measured during the evaporation process, the refractive index of a solid particle in the host liquid can be determined as a function of the wavelength. The method was tested using calcium fluoride (CaF 2 ) particles with an immersion liquid mixed from diethyl ether and diffusion pump fluid. The dispersion data obtained were consistent with the literature values thus indicating the proper functioning of the proposed procedure.

  1. Measuring the Index of Refraction.

    ERIC Educational Resources Information Center

    Phelps, F. M., III; Jacobson, B. S.

    1980-01-01

    Presents two methods for measuring the index of refraction of glass or lucite. These two methods, used in the freshman laboratory, are based on the fact that a ray of light inside a block will be refracted parallel to the surface. (HM)

  2. Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems.

    PubMed

    An, Ni; Zhuang, Bilin; Li, Minglun; Lu, Yuyuan; Wang, Zhen-Gang

    2015-08-20

    We propose a simple theoretical formula for describing the refractive indices in binary liquid mixtures containing salt ions. Our theory is based on the Clausius-Mossotti equation; it gives the refractive index of the mixture in terms of the refractive indices of the pure liquids and the polarizability of the ionic species, by properly accounting for the volume change upon mixing. The theoretical predictions are tested by extensive experimental measurements of the refractive indices for water-acetonitrile-salt systems for several liquid compositions, different salt species, and a range of salt concentrations. Excellent agreement is obtained in all cases, especially at low salt concentrations, with no fitting parameters. A simplified expression of the refractive index for low salt concentration is also given, which can be the theoretical basis for determination of salt concentration using refractive index measurements.

  3. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments.

    PubMed

    Liu, H L; Shi, Y; Liang, L; Li, L; Guo, S S; Yin, L; Yang, Y

    2017-03-29

    A gradient refractive index (GRIN) lens has a great potential for on-chip imaging and detection systems because of its flat surface with reduced defects. This paper reports a liquid thermal GRIN lens prepared using heat conduction between only one liquid, and uses it as a tunable optical tweezer for single living cell trapping in a flowing environment. This liquid GRIN lens consists of a trapezoidal region in the upper layer which is used to establish a GRIN profile by the heat conduction between three streams of benzyl alcohol with different temperatures, and subsequently a rhombus region in the lower layer with compensation liquids to form a steady square-law parabolic refractive index profile only in transverse direction. Simulations and experiments successfully show the real-time tunability of the focusing properties. The focal length can be modulated in the range of 500 μm with the minimum focal length of 430 μm. A considerable high enhancement factor achieves 5.4 whereas the full width at half maximum is 4 μm. The response time of the GRIN lens is about 20 ms. Based on this enhancement, tunable optical trapping for single human embryonic kidney 293 cell in the range of 280 μm is demonstrated by varying the focal length and working distance which is difficult for solid optical tweezers. The considerable quality of this liquid GRIN lens indicates on-chip applications especially in high quality optical imaging, detection and cells' handling.

  4. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  5. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  6. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  7. Determination of the refractive index of dehydrated cells by means of digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Zhikhoreva, A. A.; Bespalov, V. G.; Vasyutinskii, O. S.; Zhilinskaya, N. T.; Novik, V. I.; Semenova, I. V.

    2017-10-01

    Spatial distributions of the integral refractive index in dehydrated cells of human oral cavity epithelium are obtained by means of digital holographic microscopy, and mean refractive index of the cells is determined. The statistical analysis of the data obtained is carried out, and absolute errors of the method are estimated for different experimental conditions.

  8. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  9. Sensitivity enhancement in optical micro-tube resonator sensors via mode coupling

    NASA Astrophysics Data System (ADS)

    Ling, Tao; Guo, L. Jay

    2013-07-01

    A liquid filled, silica micro-tube with a low refractive index material inner-coating has been proposed and theoretically studied as a coupled micro-resonator sensor to greatly enhance biochemical sensor sensitivity. Its unique coupling phenomenon has been analyzed and utilized to boost the device's refractive index sensitivity to 967 nm/Refractive Index Unit (RIU). Through optimization of the coupling strength between the two micro-resonators, further improvement in refractive index sensitivity up to 1100 nm/RIU has been predicted. This mode coupling strategy allows us to design robust, thick-walled micro-tube sensors with ultra-high sensitivity which is useful in practical biochemical sensing applications.

  10. Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states.

    PubMed

    Mareev, Evgenii; Aleshkevich, Victor; Potemkin, Fedor; Bagratashvili, Victor; Minaev, Nikita; Gordienko, Vyacheslav

    2018-05-14

    Direct measurement of pressure dependent nonlinear refractive index of CO 2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10 -20 m 2 /W in CO 2 and 3.5*10 -20 m 2 /W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.

  11. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.

  12. Tapered-fiber-based refractive index sensor at an air/solution interface.

    PubMed

    Lu, Ping; Harris, Jeremie; Wang, Xiaozhen; Lin, Ganbin; Chen, Liang; Bao, Xiaoyi

    2012-10-20

    An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach-Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber.

  13. Development and characterization of high refractive index and high scattering acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-04-01

    The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.

  14. Analysis of interferograms of refractive index inhomogeneities produced in optical materials

    NASA Astrophysics Data System (ADS)

    Tarjányi, N.

    2014-12-01

    Optical homogeneity of materials intended for optical applications is one of the criterions which decide on an appropriate application method for the material. The existence of a refractive index inhomogeneity inside a material may disqualify it from utilization or by contrary, provide an advantage. For observation of a refractive index inhomogeneity, even a weak one, it is convenient to use any of interferometric methods. They are very sensitive and provide information on spatial distribution of the refractive index, immediately. One can use them also in case when the inhomogeneity evolves in time, usually due to action of some external fields. Then, the stream of interferograms provides a dynamic evolution of a spatial distribution of the inhomogeneity. In the contribution, there are presented results of the analysis of interferograms obtained by observing the creation of a refractive index inhomogeneity due to illumination of thin layers of a polyvinyl-alcohol/acrylamide photopolymer and a plate of photorefractive crystal, lithium niobate, by light and a refractive index inhomogeneity originated at the boundary of two layers of polydimethylsiloxane. The obtained dependences can be used for studying of the mechanisms responsible for the inhomogeneity creation, designing various technical applications or for diagnostics of fabricated components.

  15. Development and characterization of high refractive index and high scattering acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-11-01

    In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.

  16. Quantitative reconstruction of refractive index distribution and imaging of glucose concentration by using diffusing light.

    PubMed

    Liang, Xiaoping; Zhang, Qizhi; Jiang, Huabei

    2006-11-10

    We show that a two-step reconstruction method can be adapted to improve the quantitative accuracy of the refractive index reconstruction in phase-contrast diffuse optical tomography (PCDOT). We also describe the possibility of imaging tissue glucose concentration with PCDOT. In this two-step method, we first use our existing finite-element reconstruction algorithm to recover the position and shape of a target. We then use the position and size of the target as a priori information to reconstruct a single value of the refractive index within the target and background regions using a region reconstruction method. Due to the extremely low contrast available in the refractive index reconstruction, we incorporate a data normalization scheme into the two-step reconstruction to combat the associated low signal-to-noise ratio. Through a series of phantom experiments we find that this two-step reconstruction method can considerably improve the quantitative accuracy of the refractive index reconstruction. The results show that the relative error of the reconstructed refractive index is reduced from 20% to within 1.5%. We also demonstrate the possibility of PCDOT for recovering glucose concentration using these phantom experiments.

  17. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

    NASA Astrophysics Data System (ADS)

    Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang

    2016-02-01

    We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

  18. Plasmonic Waveguide Coupled Ring Cavity for a Non-Resonant Type Refractive Index Sensor.

    PubMed

    Kwon, Soon-Hong

    2017-11-03

    Sensitive refractive index sensors with small footprints have been studied to allow the integration of a large number of sensors into a tiny chip for bio/chemical applications. In particular, resonant-type index sensors based on various micro/nanocavities, which use a resonant wavelength dependence on the refractive index of the analyte, have been developed. However, the spectral linewidth of the resonance, which becomes the resolution limit, is considerably large in plasmonic cavities due to the large absorption loss of metals. Therefore, there is demand for a new type of plasmonic refractive index sensor that is not limited by the linewidth of the cavity. We propose a new type of plasmonic index sensors consisting of a channel waveguide and a ring cavity. Two emissions from the ring cavity in both directions of the waveguide couple with a reflection phase difference depending on the length of a closed right arm with a reflecting boundary. Therefore, the output power dramatically and sensitively changes as a function of the refractive index of the analyte filling the waveguide.

  19. Plasmonic Waveguide Coupled Ring Cavity for a Non-Resonant Type Refractive Index Sensor

    PubMed Central

    Kwon, Soon-Hong

    2017-01-01

    Sensitive refractive index sensors with small footprints have been studied to allow the integration of a large number of sensors into a tiny chip for bio/chemical applications. In particular, resonant-type index sensors based on various micro/nanocavities, which use a resonant wavelength dependence on the refractive index of the analyte, have been developed. However, the spectral linewidth of the resonance, which becomes the resolution limit, is considerably large in plasmonic cavities due to the large absorption loss of metals. Therefore, there is demand for a new type of plasmonic refractive index sensor that is not limited by the linewidth of the cavity. We propose a new type of plasmonic index sensors consisting of a channel waveguide and a ring cavity. Two emissions from the ring cavity in both directions of the waveguide couple with a reflection phase difference depending on the length of a closed right arm with a reflecting boundary. Therefore, the output power dramatically and sensitively changes as a function of the refractive index of the analyte filling the waveguide. PMID:29099740

  20. Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy.

    PubMed

    Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel

    2017-10-01

    The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.

  1. Lithographically-Scribed Planar Holographic Optical CDMA Devices and Systems

    DTIC Science & Technology

    2007-02-15

    operate with quite high refractive index contrast (order 0.5). Thin -filn filter devices are viewed as relatively low in chromatic dispersion. We have...stack consists of planar interfaces between materials of refractive index n, and n,. Let An = In2 - nil and n = (n, - n1)/2. The planar interfaces are... index ). It may be desirable to have a relatively large refractive index differential when diffractive elements are formed from cladding material at a

  2. Refractive index measurements of single, spherical cells using digital holographic microscopy.

    PubMed

    Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen

    2015-01-01

    In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Uniform refraction in negative refractive index materials.

    PubMed

    Gutiérrez, Cristian E; Stachura, Eric

    2015-11-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.

  4. Refractive index measurement of the mouse crystalline lens using optical coherence tomography.

    PubMed

    Chakraborty, Ranjay; Lacy, Kip D; Tan, Christopher C; Park, Han Na; Pardue, Machelle T

    2014-08-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lenses using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p < 0.001). Lens thickness was not significantly different between the two strains at any age (p = 0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p < 0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p = 0.052). In form deprived mice, lens refractive index was significantly different between the goggled animals and non-goggled naïve controls in nob mice, but not in WT mice (p = 0.009). Both eyes of goggled nob mice had significantly greater lens refractive index (goggled, 1.49 ± 0.01; opposite, 1.47 ± 0.03) compared to their naïve controls (1.45 ± 0.02, p < 0.05). The results presented here suggest that there are genetic differences in the crystalline lens refractive index of the mouse eye, and that the lens refractive index in mice significantly increase with form deprivation. Research applications requiring precise optical measurements of the mouse eye should take these lens refractive indices into account when interpreting SD-OCT data. Published by Elsevier Ltd.

  5. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time a complete set of vertically resolved aerosol size distribution and refractive index data, yielding the vertical distribution of aerosol optical properties required for the determination of aersol-induced radiative flux changes

  6. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; hide

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time, a complete set of vertically resolved aerosol size distribution and refractive index data. yielding the vertical distribution of aerosol optical properties required for the determination of aerosol-induced radiative flux changes.

  7. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  8. Slot-waveguide biochemical sensor.

    PubMed

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  9. The Predictive Power of Electronic Polarizability for Tailoring the Refractivity of High Index Glasses Optical Basicity Versus the Single Oscillator Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.

    Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less

  10. Computational determination of refractive index distribution in the crystalline cones of the compound eye of Antarctic krill (Euphausia superba).

    PubMed

    Gál, József; Miyazaki, Taeko; Meyer-Rochow, Victor Benno

    2007-01-21

    In order to understand how a compound eye channels light to the retina and forms an image, one needs to know the refractive index distribution in the crystalline cones. Direct measurements of the refractive indices require sections of fresh, unfixed tissue and the use of an interference microscope, but frequently neither is available. Using the eye of the Antarctic krill Euphausia superba (the main food of baleen whales) we developed a computational method to predict a likely refractive index distribution non-invasively from sections of fixed material without the need of an interference microscope. We used a computer model of the eye and calculated the most realistic spatial distribution of the refractive index gradient in the crystalline cone that would enable the eye to produce a sharp image on the retina. The animals are known to see well and on the basis of our computations we predict that for the eyes of the adult a maximum refractive index of 1.45-1.50 in the centre of the cone yields a better angular sensitivity and light absorption in a target receptor of the retina than if N(max) were 1.55. In juveniles with a narrower spatial separation between dioptric structures and retina, however, an N(max) of 1.50-1.55 gives a superior result. Our method to determine the most likely refractive index distribution in the cone without the need of fresh material and an interference microscope could be useful in the study of other invertebrate eyes that are known to possess good resolving power, but for a variety of reasons are not suitable for or will not permit direct refractive index measurements of their dioptric tissues to be taken.

  11. Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating

    DTIC Science & Technology

    2004-01-01

    fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of

  12. Chemical Sensing Sensitivity of Long-Period Grating Sensor Enhanced by Colloidal Gold Nanoparticles

    PubMed Central

    Tang, Jaw-Luen; Wang, Jien-Neng

    2008-01-01

    A simple and effective method is proposed to improve spectral sensitivity and detection limit of long period gratings for refractive index or chemical sensing, where the grating surface is modified by a monolayer of colloidal gold nanoparticles. The transmission spectra and optical properties of gold nanospheres vary with the different refractive index of the environment near the surface of gold nanospheres. The sensor response of gold colloids increases linearly with solvents of increasing refractive index. The results for the measurement of sucrose and sodium chloride solutions are reported, which show that this type of sensor can provide a limiting resolution of ∼10-3 to ∼10-4 for refractive indices in the range of 1.34 to 1.39 and a noticeable increase in detection limit of refractive index to external medium. PMID:27879701

  13. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion.

    PubMed

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-20

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  14. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-01

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  15. Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yu; Fan, Shanhui, E-mail: shanhui@stanford.edu

    2016-01-11

    We introduce a distinct class of dynamic non-reciprocal meta-surfaces with arbitrary phase-reconfigurability. This meta-surface consists of an array of meta-atoms, each of which is subject to temporal refractive index modulation, which induces photonic transitions between the states of the meta-atom. We show that arbitrary phase profile for the outgoing wave can be achieved by controlling the phase of the modulation at each meta-atom. Moreover, such dynamic meta-surfaces exhibit non-reciprocal response without the need for magneto-optical effects. The use of photonic transition significantly enhances the tunability and the possible functionalities of meta-surfaces.

  16. Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography.

    PubMed

    Benoit a la Guillaume, Emilie; Bortolozzo, Umberto; Huignard, Jean-Pierre; Residori, Stefania; Ramaz, Francois

    2013-02-01

    Photorefractive Bi(12)SiO(20) single crystal is used for acousto-optic imaging in thick scattering media in the green part of the spectrum, in an adaptive speckle correlation configuration. Light fields at the output of the scattering sample exhibit typical speckle grains of 1 μm size within the volume of the nonlinear crystal. This heterogeneous illumination induces a complex refractive index structure without applying a reference beam on the crystal, leading to a self-referenced diffraction correlation scheme. We demonstrate that this simple and robust configuration is able to perform axially resolved ultrasound modulated optical tomography of thick scattering media with an improved optical etendue.

  17. Optical Super-Resolution by High-Index Liquid-Immersed Microspheres

    DTIC Science & Technology

    2012-01-01

    the BD without liquid can be achieved using microspheres with small-to-moderate index of refraction such as borosilicate glass (n 1.47), soda lime ...titanate glass microspheres with diameters (D) in the range 2–220 lm and with high refractive index (n 1.9–2.1) can be used for super-resolution...achieving optical super-resolution. It has been demonstrated10 that silica spheres with refractive index (n) about 1.46 and with diame- ters (D) in the

  18. Effects of Source Correlations on the Spectrum of Radiated Fields

    DTIC Science & Technology

    1990-09-01

    media. When the refractive index n(co) is nearly constant over the source spectral width, the medium acts as a non- dispersive homogeneous medium of...constant refractive index no = n(w0 ), where o is the central frequency of the source spectrum. We will consider the non- dispersive case first. It is...in free space (a), for propagation in a homogeneous medium of an index of refraction n((o) = 1.5 (b) and for propagation in a medium of index of

  19. Stochastic digital holography for visualizing inside strongly refracting transparent objects.

    PubMed

    Desse, Jean-Michel; Picart, Pascal

    2015-01-01

    This paper presents a digital holographic method to visualize and measure refractive index variations, convection currents, or thermal gradients, occurring inside a transparent and refracting object. The proof of principle is provided through the visualization of refractive index variation inside a lighting bulb. Comparison with transmission and reflection holography is also provided. A very good agreement is obtained, thus validating the proposed approach.

  20. On-fiber plasmonic interferometer for multi-parameter sensing

    DOE PAGES

    Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...

    2015-01-01

    We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less

  1. Index of Refraction Measurements and Window Corrections for PMMA under Shock Compression

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Williamson, David; Proud, William

    2011-06-01

    Symmetric plate impact experiments were performed to investigate the change in the refractive index of PMMA under shock loading. Flyer and target geometries allowed the measurement of shock velocity, particle velocity, and refractive index in the shocked state, using the simultaneous application of VISAR (532 nm) and Het-V (1550 nm). The change in refractive index of PMMA as a function of density is generally considered to be well described by the Gladstone-Dale relationship, meaning that the ``apparent'' velocity measured by a laser velocity interferometer is the ``true'' velocity, and hence there is no window correction. The results presented characterise the accuracy of this assumption at peak stresses up to 2 GPa.

  2. Measurement of the refractive index of hemoglobin solutions for a continuous spectral region

    PubMed Central

    Wang, Jin; Deng, Zhichao; Wang, Xiaowan; Ye, Qing; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2015-01-01

    Determination of the refractive index of hemoglobin solutions over a wide wavelength range remains challenging. A famous detour approach is the Kramers-Kronig (KK) analysis which can resolve the real part of complex refractive index from the imaginary part. However, KK analysis is limited by the contradiction between the requirement of semi-infinite frequency range and limited measured range. In this paper, based on the Multi-curve fitting method (MFM), continuous refractive index dispersion (CRID) of oxygenated and deoxygenated hemoglobin solutions are measured using a homemade symmetrical arm-linked apparatus in the continuous wavelength range with spectral resolution of about 0.259nm. A novel method to obtain the CRID is proposed. PMID:26203379

  3. Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process.

    PubMed

    Ishizawa, Hitoshi; Niisaka, Shunsuke; Murata, Tsuyoshi; Tanaka, Akira

    2008-05-01

    Porous MgF(2)-SiO(2) thin films consisting of MgF(2) particles connected by an amorphous SiO(2) binder are prepared by a solgel process. The films have a low refractive index of 1.26, sufficient strength to withstand wiping by a cloth, and a high environmental resistance. The refractive index of the film can be controlled by changing the processing conditions. Films can be uniformly formed on curved substrates and at relatively low temperatures, such as 100 degrees C. The low refractive index of the film, which cannot be achieved by conventional dry processes, is effective in improving the performance of antireflective coatings.

  4. Enhancement of graphene visibility on transparent substrates by refractive index optimization.

    PubMed

    Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter

    2013-05-20

    Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.

  5. A method for the detection of the refractive index of irregular shape solid pigments in light absorbing liquid matrix.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2010-06-15

    The immersion liquid method is powerful for the measurement of the refractive index of solid particles in a liquid matrix. However, this method applies best for cases when the liquid matrix is transparent. A problem is usually how to assess the refractive index of a pigment when it is in a colored host liquid. In this article we introduce a method, and show that by combining so-called multifunction spectrophotometer, immersion liquid method and detection of light transmission and reflection we can assess the refractive index of a pigment in a colored liquid, and also the extinction or absorption coefficient of the host liquid.

  6. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  7. Basic characteristics of high-frequency Stark-effect modulation of CO2 lasers.

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Pao, Y. H.

    1971-01-01

    The molecular Stark effect and its application to the modulation of infrared laser radiation have been investigated both theoretically and experimentally. Using a density matrix approach, a quantum mechanical description of the effect of a time-varying electric field on the absorption coefficient and refractive index of a molecular gas near an absorption line has been formulated. For modulation applications a quantity known as the ?modulation depth' is of prime importance. Theoretical expressions for the frequency dependence of the modulation depth show that the response to the frequency of a time-varying Stark field is separated into a nondispersive and a dispersive region, depending on whether the modulating frequency is less than or greater than the homogeneous absorption linewidth. Experimental results showing nondispersive modulation at frequencies to 30 MHz are presented. In addition it is shown that the response of modulation depth to Stark field amplitude is separated into linear and nonlinear regions, the field at which nonlinearities begin being determined by the absorption spectrum of the molecule being used.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  9. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  10. Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, expressions provide the temperature distribution and heat flow for a diffusing medium with a continually varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.

  11. Correct consideration of the index of refraction using blackbody radiation.

    PubMed

    Hartmann, Jurgen

    2006-09-04

    The correct consideration of the index of refraction when using blackbody radiators as standard sources for optical radiation is derived and discussed. It is shown that simply using the index of refraction of air at laboratory conditions is not sufficient. A combination of the index of refraction of the media used inside the blackbody radiator and for the optical path between blackbody and detector has to be used instead. A worst case approximation for the introduced error when neglecting these effects is presented, showing that the error is below 0.1 % for wavelengths above 200 nm. Nevertheless, for the determination of the spectral radiance for the purpose of radiation temperature measurements the correct consideration of the refractive index is mandatory. The worst case estimation reveals that the introduced error in temperature at a blackbody temperature of 3000 degrees C can be as high as 400 mk at a wavelength of 650 nm and even higher at longer wavelengths.

  12. Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared.

    PubMed

    Giannios, Panagiotis; Koutsoumpos, Spyridon; Toutouzas, Konstantinos G; Matiatou, Maria; Zografos, George C; Moutzouris, Konstantinos

    2017-02-01

    A multi-wavelength prism coupling refractometer is utilized to measure the angular reflectance of freshly excised human intestinal tissue specimens. Based on reflectance data, the real and imaginary part of the refractive index is calculated via Fresnel analysis for three visible (blue, green, red) and two near-infrared (963 nm and 1551 nm) wavelengths. Averaged values of the complex refractive index and corresponding Cauchy dispersion fits are given for the mucosa, submucosa and serosa layers of the colorectal wall at the normal state. The refractive constants of tumorous and normal mucosa are then cross-compared for the indicative cases of one patient diagnosed with a benign polyp and three patients diagnosed with adenocarcinomas of different phenotype. Significant index contrast exists between the normal and diseased states, indicating the potential use of refractive index as a marker of colorectal dysplasia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Non-uniform refractive index field measurement based on light field imaging technique

    NASA Astrophysics Data System (ADS)

    Du, Xiaokun; Zhang, Yumin; Zhou, Mengjie; Xu, Dong

    2018-02-01

    In this paper, a method for measuring the non-uniform refractive index field based on the light field imaging technique is proposed. First, the light field camera is used to collect the four-dimensional light field data, and then the light field data is decoded according to the light field imaging principle to obtain image sequences with different acquisition angles of the refractive index field. Subsequently PIV (Particle Image Velocimetry) technique is used to extract ray offset of each image. Finally, the distribution of non-uniform refractive index field can be calculated by inversing the deflection of light rays. Compared with traditional optical methods which require multiple optical detectors from multiple angles to synchronously collect data, the method proposed in this paper only needs a light field camera and shoot once. The effectiveness of the method has been verified by the experiment which quantitatively measures the distribution of the refractive index field above the flame of the alcohol lamp.

  14. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  15. Measurement of refractive index of photopolymer for holographic gratings

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko

    2007-02-01

    We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.

  16. Photogeneration of refractive-index patterns in doped polyimide films.

    PubMed

    Chakravorty, K K

    1993-05-01

    A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.

  17. Plasma Parameters From Reentry Signal Attenuation

    DOE PAGES

    Statom, T. K.

    2018-02-27

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  18. An investigation into dispersion upon switching between solvents within a microfluidic system using a chemically resistant integrated optical refractive index sensor.

    PubMed

    Parker, Richard M; Gates, James C; Wales, Dominic J; Smith, Peter G R; Grossel, Martin C

    2013-02-07

    A planar Bragg grating device has been developed that is capable of detecting changes in the refractive index of a wide range of fluids including solvents, acids and bases. The integration of this high precision refractive index sensor within a chemically resistant microfluidic flow system has enabled the investigation of diverse fluid interactions. By cycling between different solvents, both miscible and immiscible, within the microfluidic system it is shown that the previous solvent determines the nature of the refractive index profile across the transition in composition. This solvent dispersion effect is investigated with particular attention to the methanol-water transition, where transients in refractive index are observed that are an order of magnitude larger in amplitude than the difference between the bulk fluids. The potential complications of such phenomenon are discussed together with an example of a device that exploits this effect for the unambiguous composition measurement of a binary solvent system.

  19. Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis.

    PubMed

    Sydoruk, Oleksiy; Zhernovaya, Olga; Tuchin, Valery; Douplik, Alexandre

    2012-11-01

    Because direct measurements of the refractive index of hemoglobin over a large wavelength range are challenging, indirect methods deserve particular attention. Among them, the Kramers-Kronig relations are a powerful tool often used to derive the real part of a refractive index from its imaginary part. However, previous attempts to apply the relations to solutions of human hemoglobin have been somewhat controversial, resulting in disagreement between several studies. We show that this controversy can be resolved when careful attention is paid not only to the absorption of hemoglobin but also to the dispersion of the refractive index of the nonabsorbing solvent. We present a Kramers-Kroning analysis taking both contributions into account and compare the results with the data from several studies. Good agreement with experiments is found across the visible and parts of near-infrared and ultraviolet regions. These results reinstate the use of the Kramers-Kronig relations for hemoglobin solutions and provide an additional source of information about their refractive index.

  20. Photogeneration of refractive-index patterns in doped polyimide films

    NASA Astrophysics Data System (ADS)

    Chakravorty, K. K.

    1993-05-01

    A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.

  1. Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.

  2. Antireflective coatings with adjustable refractive index and porosity synthesized by micelle-templated deposition of MgF2 sol particles.

    PubMed

    Bernsmeier, Denis; Polte, Jörg; Ortel, Erik; Krahl, Thoralf; Kemnitz, Erhard; Kraehnert, Ralph

    2014-11-26

    Minimizing efficiency losses caused by unwanted light reflection at the interface between lenses, optical instruments and solar cells with the surrounding medium requires antireflective coatings with adequate refractive index and coating thickness. We describe a new type of antireflective coating material with easily and independently tailorable refractive index and coating thickness based on the deposition of colloidal MgF2 nanoparticles. The material synthesis employs micelles of amphiphilic block copolymers as structure directing agent to introduce controlled mesoporosity into MgF2 film. The coatings thickness can be easily adjusted by the applied coating conditions. The coatings refractive index is determined by the materials porosity, which is controlled by the amount of employed pore template. The refractive index can be precisely tuned between 1.23 and 1.11, i.e., in a range that is not accessible to nonporous inorganic materials. Hence, zero reflectance conditions can be established for a wide range of substrate materials.

  3. Plasma Parameters From Reentry Signal Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statom, T. K.

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  4. Index of refraction engineering in five-level dressed interacting ground states atoms.

    PubMed

    Sagona-Stophel, Steven A; Weatherall, James Owen; Search, Christopher P

    2011-08-15

    We present a five-level atomic system in which the index of refraction of a probe laser can be enhanced or reduced below unity with vanishing absorption in the region between pairs of absorption and gain lines formed by dressing of the atoms with a control laser and rf/microwave fields. By weak incoherent pumping of the population into a single metastable state, one can create several narrow amplifying resonances. At frequencies between these gain lines and additional absorption lines, there exist regions of vanishing absorption but resonantly enhanced index of refraction. In Rb vapors with density N in units of cm(-3), we predict an index of refraction up to n≈√(1+1.2×10(-14)N) for the D1 line, which is more than an order of magnitude larger than other proposals for index of refraction enhancement. Furthermore, the index can be readily reduced below 1 by simply changing the sign of the probe or rf field detunings. This enhancement is robust with respect to homogeneous and inhomogeneous broadening. © 2011 Optical Society of America

  5. Refractive Index of Sodium Iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jellison Jr, Gerald Earle; Boatner, Lynn A; Ramey, Joanne Oxendine

    2012-01-01

    The refractive index of sodium iodide, an important scintillator material that is widely used for radiation detection, is based on a single measurement made by Spangenberg at one wavelength using the index-matching liquid immersion method (Z. Kristallogr., 57, 494-534 (1923)). In the present paper, we present new results for the refractive index of sodium iodide as measured by the minimum deviation technique at six wavelengths between 436 nm (n=1.839 0.002) and 633 nm (n=1.786 0.002). These 6 measurements can be fit to a Sellmeier model, resulting in a 2 of 1.02, indicating a good fit to the data. In addition,more » we report on ellipsometry measurements, which suggest that the near-surface region of the air sensitive NaI crystal seriously degrades, even in a moisture-free environment, resulting in a significantly lower value of the refractive index near the surface. First-principles theoretical calculations of the NaI refractive index that agree with the measured values within 0.025-0.045 are also presented and discussed.« less

  6. Bending light via adiabatic optical transition in longitudinally modulated photonic lattices

    PubMed Central

    Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan

    2015-01-01

    Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890

  7. Athermal channeled spectropolarimeter

    DOEpatents

    Jones, Julia Craven

    2015-12-08

    A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.

  8. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A (Inventor)

    2015-01-01

    A multi junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  9. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2016-01-01

    A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  10. Development of 1.0- to 1.4-Micrometer Heterojunction LEDs.

    DTIC Science & Technology

    1980-04-01

    dispersion of silica fibers decreases with increasing wavelength (2]. This is due to the wavelength dependence of the refractive index , which predicts...shown here is sufficient to provide strong electron confine- ment in the low-energy material (InGaAs). A similar difference in refractive index for these...bandgap and refractive - index steps discussed above form the basis of fabricating heterojunction emitters (both edge-emitting LEDs and lasers

  11. Modeling of a Single-Notch Microfiber Coupler for High-Sensitivity and Low Detection-Limit Refractive Index Sensing.

    PubMed

    Zhang, Jiali; Shi, Lei; Zhu, Song; Xu, Xinbiao; Zhang, Xinliang

    2016-05-11

    A highly sensitive refractive index sensor with low detection limit based on an asymmetric optical microfiber coupler is proposed. It is composed of a silica optical microfiber and an As₂Se₃ optical microfiber. Due to the asymmetry of the microfiber materials, a single-notch transmission spectrum is demonstrated by the large refractive index difference between the two optical microfibers. Compared with the symmetric coupler, the bandwidth of the asymmetric structure is over one order of magnitude narrower than that of the former. Therefore, the asymmetric optical microfiber coupler based sensor can reach over one order of magnitude smaller detection limit, which is defined as the minimal detectable refractive index change caused by the surrounding analyte. With the advantage of large evanescent field, the results also show that a sensitivity of up to 3212 nm per refractive index unit with a bandwidth of 12 nm is achieved with the asymmetric optical microfiber coupler. Furthermore, a maximum sensitivity of 4549 nm per refractive index unit can be reached while the radii of the silica optical microfiber and As₂Se₃ optical microfiber are 0.5 μm and a 0.128 μm, respectively. This sensor component may have important potential for low detection-limit physical and biochemical sensing applications.

  12. Choosing a Silicone Encapsulant for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Velderrain, Michelle

    2011-12-01

    Growth in the solar industry has resulted in newer technologies, specifically concentrator photovoltaic (CPV) modules, to explore using new types of materials such as silicone encapsulants. CPV and LCPV module designs are to achieve the most efficient energy conversion possible however it is equally important to demonstrate long term reliability. Silicone is a material of interest due to its thermal stability and ability to absorb stresses incurred during thermal cycling. The refractive index of clear silicone adhesives is advantageous because it can be optimized using phenyl groups to match BK7 glass and other substrates to minimize light loss at the interfaces but it is relatively unknown how the optical properties change over time possibly yellowing in such a harsh environment. A 1.41 silicone encapsulant is compared to a 1.52 refractive index silicone. Optical Absorption (300 nm-1300 nm), Water Vapor Permeability, Moisture Absorption and effects of oxidation at elevated temperatures will be compared of these materials to aid the engineer in choosing a silicone for their CPV application. Non-phenyl containing 1.41 RI silicones have been used for several years for bonding solar arrays in the satellite industry. Phenyl groups on the siloxane polymer can change various properties of the silicone. Understanding how phenyl affects these properties allows the engineer to understand the benefits and risks when using a RI matching silicone to minimize light loss versus a non-phenyl containing silicone.

  13. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals.

    PubMed

    Diroll, Benjamin T; Schramke, Katelyn S; Guo, Peijun; Kortshagen, Uwe R; Schaller, Richard D

    2017-10-11

    Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.

  14. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diroll, Benjamin T.; Schramke, Katelyn S.; Guo, Peijun

    Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Also, unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective massmore » at high effective hole temperatures lead to a sub-picosecond change of the dielectric function resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27% and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates sub-picosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting modulation of transmittance at telecommunications wavelengths. Lastly, the results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.« less

  15. Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals

    DOE PAGES

    Diroll, Benjamin T.; Schramke, Katelyn S.; Guo, Peijun; ...

    2017-09-11

    Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Also, unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective massmore » at high effective hole temperatures lead to a sub-picosecond change of the dielectric function resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27% and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates sub-picosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting modulation of transmittance at telecommunications wavelengths. Lastly, the results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.« less

  16. Refractive index measurement for biomaterial samples by total internal reflection.

    PubMed

    Jin, Y L; Chen, J Y; Xu, L; Wang, P N

    2006-10-21

    The refractive index of biological tissue is a fundamental parameter in applications of optical diagnosis and laser treatments. In the present work, the refractive indices and thermo-optic coefficients of some basic biomaterials, such as blood plasma, haemoglobin solution and lipid membrane, were studied by the method of total internal reflection at the wavelengths of 532 and 632.8 nm that are the most frequently used laser wavelengths in the biomedical field. The effects of the sample concentration and the temperature on refractive index were measured, and empirical relationships were summarized, accompanied by a theoretical explanation based on molecular polarization theory. The results provide some fundamental data for the refractive indices of these biomaterials under variant conditions, and also demonstrate that the total internal reflection method is a feasible and reliable way to measure the refractive indices of biological samples.

  17. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  18. Optical diffusion property of chicken tissue

    NASA Astrophysics Data System (ADS)

    Schneider, Patricia S.; Flamholz, Alex; Wong, Peter K.; Lieberman, David H.; Cheung, Tak D.; Itoka, Harriet; Minott, Troy; Quizhpi, Janie; Rodriguez, Jacquelin

    2004-11-01

    Chicken tissue acts as a turbid medium in optical wavelength. Optical characterization data of fresh chicken dark and white meat were studied using the theory of light diffusion. The gaussian-like transmission profile was used to determine the transport mean free path and absorption. The refractive index, a fundamental parameter, was extracted via transmission correlation function analysis without using index-matching fluid. The variation in refractive index also produced various small shifts in the oscillatory feature of the intensity spatial correlation function at distance shorter than the transport mean free path. The optical system was calibrated with porous silicate slabs containing different water contents and also with a solid alumina slab. The result suggested that the selective scattering/absorption of myoglobin and mitochondria in the dark tissues is consistent with the transmission data. The refractive index was similar for dark and white tissues at the He-Ne wavelength and suggested that the index could serve as a marker for quality control. Application to chicken lunchmeat samples revealed that higher protein and lower carbohydrate would shift the correlation toward smaller distance. The pure fat refractive index was different from that of the meat tissue. Application of refractive index as a fat marker is also discussed

  19. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David A.; Vedral, L. James; Smith, David A.

    2015-04-15

    Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and comparedmore » well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.« less

  20. Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings

    PubMed Central

    Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng

    2013-01-01

    We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5. PMID:24141267

  1. Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings.

    PubMed

    Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng

    2013-10-17

    We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10⁻⁵.

  2. [Measurement and analysis on complex refraction indices of pear pollen in infrared band].

    PubMed

    Li, Le; Hu, Yi-hua; Gu, You-lin; Chen, Wei; Zhao, Yi-zheng; Chen, Shan-jing

    2015-01-01

    Pollen is an important part of bioaerosols, and its complex refractive index is a crucial parameter for study on optical characteristics and detection, identification of bioaerosols. The reflection spectra of pear pollen within the 2. 5 - 15µm waveband were measured by squash method. Based on the measured data, the complex refractive index of pear pollen within the wave-band of 2. 5 to 15 µm was calculated by using Kramers-Kroning (K-K) relation, and calculation deviation about incident angle and different reflectivities at high and low frequencies.were analyzed. The results indicate that 18 degrees angle of incidence and different reflectivities at high and low frequencies have little effect on the results, and it is practicable to calculate the complex refractive index of pollen based on its reflection spectral data. The data of complex refractive index of pollen have some reference value for optical characteristics of pollen, detection and identification of bioaerosols.

  3. Qualitative identification of food materials by complex refractive index mapping in the terahertz range.

    PubMed

    Shin, Hee Jun; Choi, Sung-Wook; Ok, Gyeongsik

    2018-04-15

    We investigated the feasibility of qualitative food analysis using complex refractive index mapping of food materials in the terahertz (THz) frequency range. We studied optical properties such as the refractive index and absorption coefficient of food materials, including insects as foreign substances, from 0.2 to 1.3 THz. Although some food materials had a complex composition, their refractive indices were approximated with effective medium values, and therefore, they could be discriminated on the complex refractive index map. To demonstrate food quality inspection with THz imaging, we obtained THz reflective images and time-of-flight imaging of hidden defects in a sugar and milk powder matrix by using time domain THz pulses. Our results indicate that foreign substances can be clearly classified and detected according to the optical parameters of the foods and insects by using THz pulses. Copyright © 2017. Published by Elsevier Ltd.

  4. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.

    PubMed

    Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime

    2017-12-05

    Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.

  5. Surface plasmon resonance optical cavity enhanced refractive index sensing.

    PubMed

    Giorgini, A; Avino, S; Malara, P; Gagliardi, G; Casalino, M; Coppola, G; Iodice, M; Adam, P; Chadt, K; Homola, J; De Natale, P

    2013-06-01

    We report on a method for surface plasmon resonance (SPR) refractive index sensing based on direct time-domain measurements. An optical resonator is built around an SPR sensor, and its photon lifetime is measured as a function of loss induced by refractive index variations. The method does not rely on any spectroscopic analysis or direct intensity measurement. Time-domain measurements are practically immune to light intensity fluctuations and thus lead to high resolution. A proof of concept experiment is carried out in which a sensor response to liquid samples of different refractive indices is measured. A refractive index resolution of the current system, extrapolated from the reproducibility of cavity-decay time determinations over 133 s, is found to be about 10(-5) RIU. The possibility of long-term averaging suggests that measurements with a resolution better than 10(-7) RIU/√Hz are within reach.

  6. Measuring Variable Refractive Indices Using Digital Photos

    ERIC Educational Resources Information Center

    Lombardi, S.; Monroy, G.; Testa, I.; Sassi, E.

    2010-01-01

    A new procedure for performing quantitative measurements in teaching optics is presented. Application of the procedure to accurately measure the rate of change of the variable refractive index of a water-denatured alcohol mixture is described. The procedure can also be usefully exploited for measuring the constant refractive index of distilled…

  7. Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Leviton, Doug; Frey, Brad

    2013-01-01

    First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.

  8. Measurement of Refractive Index Gradients by Deflection of a Laser Beam

    ERIC Educational Resources Information Center

    Barnard, A. J.; Ahlborn, B.

    1975-01-01

    In this simple experiment for an undergraduate laboratory a laser beam is passed through the mixing zone of two liquids with different refractive indices. The spatial variation of the refractive index, at different times during the mixing, can be determined from the observed deflection of the beam. (Author)

  9. Cryogenic refractive index of Heraeus homosil glass

    NASA Astrophysics Data System (ADS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-08-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.

  10. Cryogenic Refractive Index of Heraeus Homosil Glass

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.343.16 m and temperature range of 120335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  11. Empirical modelling to predict the refractive index of human blood.

    PubMed

    Yahya, M; Saghir, M Z

    2016-02-21

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient's condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

  12. Cryogenic Refractive Index of Heraeus Homosil Glass

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34-3.16 microns and temperature range of 120-335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/d(lamda)) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Deo; Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com; Shapaan, M.

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluatedmore » in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.« less

  14. Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing.

    PubMed

    Huang, Hua; Mao, Xiaole; Lin, Sz-Chin Steven; Kiraly, Brian; Huang, Yiping; Huang, Tony Jun

    2010-09-21

    We report a two-dimensional (2D) tunable liquid gradient refractive index (L-GRIN) lens for variable focusing of light in the out-of-plane direction. This lens focuses a light beam through a liquid medium with a 2D hyperbolic secant (HS) refractive index gradient. The refractive index gradient is established in a microfluidic chamber through the diffusion between two fluids with different refractive indices, i.e. CaCl(2) solution and deionized (DI) water. The 2D HS refractive index profile and subsequently the focal length of the L-GRIN lens can be tuned by changing the ratio of the flow rates of the CaCl(2) solution and DI water. The focusing effect is experimentally characterized through side-view and top-view image analysis, and the experimental data match well with the results from ray-tracing optical simulations. Advantages of the 2D L-GRIN lens include simple device fabrication procedure, low fluid consumption rate, convenient lens-tuning mechanism, and compatibility with existing microfluidic devices. We expect that with further optimizations, this 2D L-GRIN lens can be used in many optics-based lab-on-a-chip applications.

  15. On the effective refractive index of blood

    NASA Astrophysics Data System (ADS)

    Nahmad-Rohen, Alexander; Contreras-Tello, Humberto; Morales-Luna, Gesuri; García-Valenzuela, Augusto

    2016-01-01

    We calculated the real and imaginary parts of the effective refractive index {n}{eff} of blood as functions of wavelength from 400 to 800 nm; we employed van de Hulst’s theory, together with the anomalous diffraction approximation, for the calculation. We modelled blood as a mixture of plasma and erythrocytes. Our results indicate that erythrocyte orientation has a strong effect on {n}{eff}, making blood an optically anisotropic medium except when the erythrocytes are randomly oriented. In the case in which their symmetry axis is perpendicular to the wave vector, {n}{eff} equals the refractive index of plasma at certain wavelengths. Furthermore, the erythrocytes’ shape affects their contribution to {n}{eff} in an important way, implying that studies on the effective refractive index of blood should avoid approximating them as spheres or spheroids. Finally, the effective refractive index of blood predicted by van de Hulst’s theory is different from what would be obtained by averaging the refractive indices of its constituents weighted by volume; such a volume-weighted average is appropriate only for haemolysed blood. We then measured the real part of the refractive index of various blood solutions using two different experimental setups. One of the most important results of our expriment is that {n}{eff} is measurable to a good degree of precision even for undiluted blood, although not all measuring apparatuses are appropriate. The experimental data is self-consistent and in reasonable agreement with our theoretical calculations.

  16. Complex Refractive Index of Ammonium Nitrate in the 2-20 micron Spectral Range

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Norman, Mark L.; Fuller, Kirk A.; Srivastava, Vandana; Cutten, Dean R.

    2002-01-01

    Using high resolution Fourier Transform Infrared Spectroscopy (FTIR) absorbance/transmittance spectral data for ammonium sulfate (AMS), calcium carbonate (CAC) and ammonium nitrate (AMN), comparisons were made with previously published complex refractive indices data for AMS and CAC to infer experimental parameters to determine the imaginary refractive index for AMN in the infrared wavelength range from 2 to 20 microns. Kramers-Kronig mathematical relations were applied to calculate the real refractive index for the three compositions. Excellent agreement for AMS and CAC with the published values was found, validating the complex refractive indices obtained for AMN. Backscatter calculations using a lognormal size distribution for AMS, AMN, and CAC aerosols were performed to show differences in their backscattered spectra.

  17. Phase and group refractive indices of air calculation by fitting of phase difference measured using a combination of laser and low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Pikálek, Tomáš; Šarbort, Martin; Číp, Ondřej; Pham, Minh Tuan; Lešundák, Adam; Pravdová, Lenka; Buchta, Zdeněk.

    2017-06-01

    The air refractive index is an important parameter in interferometric length measurements, since it substantially affects the measurement accuracy. We present a refractive index of air measurement method based on monitoring the phase difference between the ambient air and vacuum inside a permanently evacuated double-spaced cell. The cell is placed in one arm of the Michelson interferometer equipped with two light sources—red LED and HeNe laser, while the low-coherence and laser interference signals are measured separately. Both phase and group refractive indices of air can be calculated from the measured signals. The method was experimentally verified by comparing the obtained refractive index values with two different techniques.

  18. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.

    PubMed

    Borja, David; Manns, Fabrice; Ho, Arthur; Ziebarth, Noel M; Acosta, Ana Carolina; Arrieta-Quintera, Esdras; Augusteyn, Robert C; Parel, Jean-Marie

    2010-04-01

    Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.

  19. Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae

    NASA Astrophysics Data System (ADS)

    Schödel, René; Walkov, Alexander; Voigt, Michael; Bartl, Guido

    2018-06-01

    The refractive index of air is a major limiting factor in length measurements by interferometry, which are mostly performed under atmospheric conditions. Therefore, especially in the last century, measurement and description of the air refractive index was a key point in order to achieve accuracy in the realisation of the length by interferometry. Nevertheless, interferometric length measurements performed in vacuum are much more accurate since the wavelength of the light is not affected by the air refractive index. However, compared with thermal conditions in air, in high vacuum heat conduction is missing. In such a situation, dependent on the radiative thermal equilibrium, a temperature distribution can be very inhomogeneous. Using a so-called contact gas instead of high vacuum is a very effective way to enable heat conduction on nearly the same level as under atmospheric pressure conditions whereby keeping the effect of the air refractive index on a small level. As physics predicts, and as we have demonstrated previously, helium seems like the optimal contact gas because of its large heat conduction and its refractive index that can be calculated from precisely known parameters. On the other hand, helium gas situated in a vacuum chamber could easily be contaminated, e.g. by air leakage from outside. Above the boiling point of oxygen (‑183 °C) it is therefore beneficial to use dry air as a contact gas. In such an approach, the air refractive index could be calculated based on measured quantities for pressure and temperature. However, existing formulas for the air refractive index are not valid in the low-pressure regime. Although it seems reasonable that the refractivity (n  ‑  1) of dry air simply downscales with the pressure, to our knowledge there is no experimental evidence for the applicability of any empirical formula. This evidence is given in the present paper which reports on highly accurate measurements of the air refractive index for the wavelengths 532 nm, 633 nm and 780 nm in the low-pressure regime from 0 Pa to 1300 Pa. In our approach, using a vacuum cell, n  ‑  1 is obtained from the comparison of optical path lengths in vacuum and air along the same path by imaging interferometry. These measured values are compared with the ones obtained from Bönsch’s formula. An agreement of  ±10‑9 is found in the low-pressure regime. Accordingly, this formula could be applied for the accurate determination of the refractive index of dry air even at low pressures, provided that the pressure is measured with high accuracy.

  20. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  1. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  2. Extracting concentrated guided light.

    PubMed

    Ries, H; Segal, A; Karni, J

    1997-05-01

    The maximum concentration of radiation is proportional to the square of the refractive index of the medium in which it propagates. A medium with a high refractive index can also serve as a lightguide for concentrated radiation. However, if concentrated radiation is extracted from one medium, with a high refractive index, to another, whose index is lower (e.g., from fused silica into air), part of the radiation may be lost because of the total internal reflection at the interface. We present polygonal shapes suitable for efficient extraction of the concentrated radiation in a controllable way, without increasing the cross-section area (or diameter) of the lightguide. It is shown analytically and experimentally that the use of a secondary concentrator, followed by such a light extractor, both having a high refractive index, can provide considerably more power to a solar receiver with a specific aperture.

  3. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  4. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  5. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers.

    PubMed

    Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey

    2014-05-21

    Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Quality control analytical methods: refractive index.

    PubMed

    Allen, Loyd V

    2015-01-01

    There are numerous analytical methods that can be utilized in a compounding pharmacy for a quality-assurance program. Since the index of refraction of a liquid/solution is a physical constant, it can be used to assist in identification of a substance, establish its purity, and, in some instances, to determine the concentration of an analyte in solution. This article serves as an introduction to refractive index and some applications of its use in a compounding program.

  7. Measuring refractive index and volume of liquid under high pressure with optical coherence tomography and light microscopy.

    PubMed

    Wang, Donglin; Yang, Kun; Zhou, Yin

    2016-03-20

    Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.

  8. Method of determining dispersion dependence of refractive index of nanospheres building opals

    NASA Astrophysics Data System (ADS)

    Kępińska, Mirosława; Starczewska, Anna; Duka, Piotr

    2017-11-01

    The method of determining dispersion dependence of refractive index of nanospheres building opals is presented. In this method basing on angular dependences of the spectral positions of Bragg diffraction minima on transmission spectra for opal series of known spheres diameter, the spectrum of effective refractive index for opals and then refractive index for material building opal's spheres is determined. The described procedure is used for determination of neff(λ) for opals and nsph(λ) for material which spheres building investigated opals are made of. The obtained results are compared with literature data of nSiO2(λ) considered in the analysis and interpretation of extremes related to the light diffraction at (hkl) SiO2 opal planes.

  9. Temperature and refractive index measurement based on a coating-enhanced dual-microspheric fiber sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and  ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.

  10. Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions.

    PubMed

    Riobóo, R J; Philipp, M; Ramos, M A; Krüger, J K

    2009-09-01

    The temperature and concentration dependence of the refractive index, nD(x, T), in ethanol-water mixtures agrees with previous data in the ethanol-rich concentration range. The refractive index versus concentration x determined at 20 degrees C shows the expected maximum at about 41 mol% water (22 mass% water). The temperature derivative of the refractive index, dnD/dT, shows anomalies at lower water concentrations at about 10 mol% water but no anomaly at 41 mol% water. Both anomalies are related to intermolecular interactions, the one in nD seems to be due to molecular segregation and cluster formation while the origin of the second one in dnD/dT is still not clear.

  11. Estimation of the R134a gas refractive index for use as a Cherenkov radiator, using a high energy charged particle beam

    NASA Astrophysics Data System (ADS)

    Charitonidis, N.; Karyotakis, Y.; Gatignon, L.

    2017-11-01

    Gases with relatively high refractive index, n - 1 ≥ 500 ×10-6 at atmospheric pressure, giving a satisfactory photoelectron yield at relatively low pressures (≤ 5 bar) are rare. These gases are often the only practical solution for low momentum particle identification in conventional secondary beam lines. The refractive index of R134a, one of the most common gases available to the physics community, has never been measured or reported. In the present note, the results of a dedicated experiment to estimate the refractive index of R134a, using mixed hadron/electron beams in the range 0.5-10 GeV are presented.

  12. Fiber optic refractive index monitor

    DOEpatents

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  13. FIBER OPTICS: Ray invariants and wave equations for transverse modes in three-dimensional graded-index waveguides

    NASA Astrophysics Data System (ADS)

    Voevodin, V. G.; Morozov, A. N.; Stepanov, V. E.

    1992-09-01

    A theory of the second ray invariant is proposed using the theory of plane Frenet curves. Its existence requires that the coordinate dependence of the refractive index in the waveguide cross section should satisfy the regularity condition: curves of equal refractive index differ only by an amount which can be obtained using an isotropic scaling transformation. The theoretical conclusions are illustrated using the example of waveguides having the generalized refractive index distribution n ( r ) = n [ (x/ a) + (y/ b)q].

  14. A single-image method for x-ray refractive index CT.

    PubMed

    Mittone, A; Gasilov, S; Brun, E; Bravin, A; Coan, P

    2015-05-07

    X-ray refraction-based computer tomography imaging is a well-established method for nondestructive investigations of various objects. In order to perform the 3D reconstruction of the index of refraction, two or more raw computed tomography phase-contrast images are usually acquired and combined to retrieve the refraction map (i.e. differential phase) signal within the sample. We suggest an approximate method to extract the refraction signal, which uses a single raw phase-contrast image. This method, here applied to analyzer-based phase-contrast imaging, is employed to retrieve the index of refraction map of a biological sample. The achieved accuracy in distinguishing the different tissues is comparable with the non-approximated approach. The suggested procedure can be used for precise refraction computer tomography with the advantage of a reduction of at least a factor of two of both the acquisition time and the dose delivered to the sample with respect to any of the other algorithms in the literature.

  15. Changes in the Refractive Index of the Stroma and Its Extrafibrillar Matrix When the Cornea Swells

    PubMed Central

    Meek, Keith M.; Dennis, Sally; Khan, Shukria

    2003-01-01

    The transparency of the corneal stroma is critically dependent on the hydration of the tissue; if the cornea swells, light scattering increases. Although this scattering has been ascribed to the disruption caused to the arrangement of the collagen fibrils, theory predicts that light scattering could increase if there is an increased mismatch in the refractive indices of the collagen fibrils and the material between them. The purpose of this article is to use Gladstone and Dale's law of mixtures to calculate volume fractions for a number of different constituents in the stroma, and use these to show how the refractive indices of the stroma and its constituent extrafibrillar material would be expected to change as more solvent enters the tissue. Our calculations predict that solvent entering the extrafibrillar space causes a reduction in its refractive index, and hence a reduction in the overall refractive index of the bovine stroma according to the equation n′s = 1.335 + 0.04/(0.22 + 0.24 H′), where n′s is the refractive index and H′ is the hydration of the swollen stroma. This expression is in reasonable agreement with our experimental measurements of refractive index versus hydration in bovine corneas. When the hydration of the stroma increases from H = 3.2 to H = 8.0, we predict that the ratio of the refractive index of the collagen fibrils to that of the material between them increases from 1.041 to 1.052. This change would be expected to make only a small contribution to the large increase in light scattering observed when the cornea swells to H = 8. PMID:14507686

  16. Average value of the shape and direction factor in the equation of refractive index

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    2017-10-01

    The theoretical calculation of the refractive indices is of great significance for the developments of new optical materials. The calculation method of refractive index, which was deduced from the electron-cloud-conductor model, contains the shape and direction factor 〈g〉. 〈g〉 affects the electromagnetic-induction energy absorbed by the electron clouds, thereby influencing the refractive indices. It is not yet known how to calculate 〈g〉 value of non-spherical electron clouds. In this paper, 〈g〉 value is derived by imaginatively dividing the electron cloud into numerous little volume elements and then regrouping them. This paper proves that 〈g〉 = 2/3 when molecules’ spatial orientations distribute randomly. The calculations of the refractive indices of several substances validate this equation. This result will help to promote the application of the calculation method of refractive index.

  17. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  18. Control and measurement of the physical properties in acrylamide based photopolymer materials

    NASA Astrophysics Data System (ADS)

    Close, Ciara E.; Gleeson, Michael R.; O'Neill, Feidhlim T.; Kelly, John V.; Sheridan, John T.

    2005-06-01

    Recent improvements in holographic materials have led to advances in a variety of applications, including data storage and interferometry. To further increase the possibility of commercial applications in these areas it is necessary to have available an inexpensive, self-processing, environmentally stable material that has a good spatial frequency response. One promising type of material is Acrylamide-based photopolymer recording materials. The material can be made self-processing and can be sensitised to different recording wavelengths using different photosensitive dyes. The self-processing capability of this material simplifies the recording and testing processes and enables holographic interferometry to be carried out without the need for complex realignment procedures. Although this material has a lot of advantages over others it has significant disadvantages such as its spatial frequency response range (500-2500 lines/mm). Therefore, it is of ever-increasing importance to resolve uncertainties regarding optical and material properties, i.e. the refractive index and the diffusion constants. Using experimental diffraction efficiency measurements, a value for the refractive index modulation can be obtained. Then carrying out analysis using the Polymerisation Driven Diffusion model (PDD) values for the diffusion coefficients of various materials in the grating layer can be found. Applying the Lorentz-Lorenz relation, refractive index variations within the material can be more fully understood. With the resulting improved understanding it will be possible to improve the characteristics of photopolymer materials by altering the chemical composition, for example by controlling the crosslinker concentration or through the careful use of inhibitor and/or retarders to control the polymer chain growth.

  19. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Guha, Supratik; Lee, Byeongdu

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  20. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE PAGES

    Berman, Diana; Guha, Supratik; Lee, Byeongdu; ...

    2017-01-31

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  1. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Guha, Supratik; Lee, Byeongdu

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al2O3 can be lowered from 1.76 down tomore » 1.1 using this method. The thickness of the Al2O3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  2. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness.

    PubMed

    Berman, Diana; Guha, Supratik; Lee, Byeongdu; Elam, Jeffrey W; Darling, Seth B; Shevchenko, Elena V

    2017-03-28

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al 2 O 3 can be lowered from 1.76 down to 1.1 using this method. The thickness of the Al 2 O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.

  3. Nonlinear optical response of nanocomposites based on KDP single crystal with incorporated Al2O3*nH2O nanofibriles under CW and pulsed laser irradiation at 532 nm

    NASA Astrophysics Data System (ADS)

    Popov, A. S.; Uklein, A. V.; Multian, V. V.; Dantec, R. Le; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Pritula, I. M.; Gayvoronsky, V. Ya.

    2016-11-01

    Optical properties and nonlinear optical response due to the CW and pulsed laser radiation self-action at 532 nm were studied in composites based on KDP single crystals with incorporated nanofibriles of nanostructured oxyhydroxide of aluminum (NOA). It was shown a high optical quality and structural homogeneity of nanocomposites KDP:NOA by the transmittance spectra, elastic optical scattering and XRD analysis. It was observed manifestation of the second harmonic generation efficiency enhancement in the KDP:NOA versus the nominally pure KDP (λ=1064 nm, τ=1 ns) that is correlated with efficient refractive index self-modulation Δn ∼10-4 (λ=532 nm, τ=30 ps). In the pyramidal and prismatic growth sectors of the nominally pure KDP crystal it was shown opposite signs of the photoinduced variations both of the refractive index and of the optical absorption/bleaching due to resonant excitation of the native defects at 532 nm. It should be considered for the wide-aperture laser frequency KDP family based convertors fabrication.

  4. Investigation of giant Kerr nonlinearity in quantum cascade lasers using mid-infrared femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Liu, Sheng; Department of Physics, University of Maryland, Baltimore County

    2015-02-02

    We study the Kerr nonlinearity of quantum cascade lasers (QCLs) by coupling resonant and off-resonant mid-infrared (mid-IR) femtosecond (fs) pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-infrared (mid-IR) pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. Wemore » experimentally estimate the nonlinear refractive index n{sub 2} of a QCL to be ∼8 × 10{sup −9 }cm{sup 2}/W using the far-field beam profile of the transmitted pulses. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results.« less

  5. Optical imaging characterizing brain response to thermal insult in injured rodent

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.

    2018-02-01

    We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.

  6. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.

    PubMed

    Marichy, Catherine; Muller, Nicolas; Froufe-Pérez, Luis S; Scheffold, Frank

    2016-02-25

    Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO2 based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant.

  7. Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers

    NASA Astrophysics Data System (ADS)

    Sola, D.; Lavieja, C.; Orera, A.; Clemente, M. J.

    2018-07-01

    The inscription of diffractive elements in ophthalmic polymers and ocular tissues to induce refractive index changes is of great interest in the fields of Optics and Ophthalmology. In this work fabrication of linear periodic patterns in polydimethylsiloxane (PDMS) intraocular lenses by means of the direct laser interference patterning (DLIP) technique was studied. A Q-Switch Nd:YAG laser coupled to second and third harmonic modules emitting linearly polarized 4 ns pulses at 355 nm with 20 Hz repetition rate was used as the laser source. Laser processing parameters were modified to produce the linear patterns. Processed samples were characterized by means of optical confocal microscopy, Scanning Electron Microscopy SEM, Energy Dispersive X-ray Spectroscopy EDX, Attenuated Total Reflectance-Infrared Spectroscopy ATR-FTIR, and Raman Spectroscopy. Depending on the laser parameters both photo-thermal and photo-chemical damage were observed in the DLIP irradiated areas. Finally, diffractive techniques were used to characterize the diffraction gratings inscribed in the samples resulting in a refractive index change of 1.9 × 10-2 under illumination of a 632.8 nm He-Ne laser.

  8. Immersion Refractometry of Isolated Bacterial Cell Walls

    PubMed Central

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid model. PMID:4201772

  9. Mean effective size and refractive index of transparent atmospheric particulates

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1975-01-01

    It is demonstrated that the scattering ratio-principle originally restricted to exact forward and exact backward scattering, and to values of the size parameter and of the product (refractive index x size parameter) less than 0.8 has a much wider applicability. After relaxing these stringent conditions, it is also shown that this principle can be retained as the basis of an experimental technique for retrieving the mean effective size and refractive index of transparent atmospheric particulates.

  10. Determining Nanoparticle Inhalation Exposure in the Prosthetics Laboratory at Walter Reed National Military Medical Center

    DTIC Science & Technology

    2013-04-29

    monotonic for particles sized between 500 and 1500 nm. There is also a response error for different refractive indexes of particles (59). In addition, all...accuracy when a range of refractive indexes is present. Detector response error ranges from 50-100%, depending on the refractive index present (17...Respiratory Diseases. Journal of American Medical Association 295 1127-33 13. Eftim E, Samet J, anes H, McDermott A, Dominici F. 2008. Fine

  11. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  12. Investigation of Refractive Index Profile Induced with Femtosecond Pulses into Neodymium Doped Phosphate Glass for the Purposes of Hybrid Waveguiding Structures Formation

    NASA Astrophysics Data System (ADS)

    Bukharin, M.; Khudakov, D.; Vartapetov, S.

    The technique of writing depressed cladding waveguides into Nd:phosphate glass with relatively large mode field diameter in 2-line geometry was reported for the purposes of waveguiding structures formation. The easy to use and accurate technique of induced refractive index measurement was proposed, and it was shown the inefficiency of widespread indirect (numerical aperture) technique of refractive index measurement for such femtosecond written waveguides.

  13. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  14. Estimation of effective refractive index of birefringent particles using a combination of the immersion liquid method and light scattering.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2008-04-01

    A method to detect the effective refractive index and concentration of birefringent pigments is suggested. The method is based on the utilization of the immersion liquid method and a multifunction spectrophotometer for the measurement of back scattered light. The method has applications in the measurement of the effective refractive index of pigments that are used, e.g., in the paper industry to improve the opacity of paper products.

  15. Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Byrne, D. M.; Herman, B. M.; King, M. D.; Spinhirne, J. D.

    1980-01-01

    A method is presented for inferring both the size distribution and the complex refractive index of atmospheric particulates from combined bistatic-monostatic lidar and solar radiometer observations. The basic input measurements are spectral optical depths at several visible and near-infrared wavelengths as obtained with a solar radiometer and backscatter and angular scatter coefficients as obtained from a biostatic-monostatic lidar. The spectral optical depth measurements obtained from the radiometer are mathematically inverted to infer a columnar particulate size distribution. Advantage is taken of the fact that the shape of the size distribution obtained by inverting the particulate optical depth is relatively insensitive to the particle refractive index assumed in the inversion. Bistatic-monostatic angular scatter and backscatter lidar data are then processed to extract an optimum value for the particle refractive index subject to the constraint that the shape of the particulate size distribution be the same as that inferred from the solar radiometer data. Specifically, the scattering parameters obtained from the bistatic-monostatic lidar data are compared with corresponding theoretical computations made for various assumed refractive index values. That value which yields best agreement, in a weighted least squares sense, is selected as the optimal refractive index estimate. The results of this procedure applied to a set of simulated measurements as well as to measurements collected on two separate days are presented and discussed.

  16. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.

    PubMed

    Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin

    2017-08-01

    The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

  17. Heat accumulation regime of femtosecond laser writing in fused silica and Nd:phosphate glass

    NASA Astrophysics Data System (ADS)

    Bukharin, M. A.; Khudyakov, D. V.; Vartapetov, S. K.

    2015-04-01

    We investigated refractive index induced by direct femtosecond laser writing inside fused silica and Nd:phosphate glass in heat accumulation regime. Spatial profile and magnitude of induced refractive index were investigated at various pulse repetition rates and translation velocities. It was shown that the magnitude of induced refractive index significantly rises with decreasing in time interval between successive laser pulses below the time for thermal diffusion. Going from nonthermal regime to heat accumulation regime, we achieved induced refractive index growth from 4 × 10-3 up to 6.5 × 10-3 in fused silica and from -6 × 10-3 to -9 × 10-3 in Nd:phosphate glass. Aspect ratio of treated area decreased from 2.1 down to less than 1.5 without correcting optical elements. It was shown that in heat accumulation regime, the treated area was surrounded by region of alternatively changed refractive index with significant magnitude up to -2 × 10-3. Wide regions of decreased refractive index enable fabrication of depressed cladding waveguides. We demonstrated low-loss (0.3 dB/cm) tubular waveguide inside fused silica. For orthogonal polarizations of guiding light, we achieved a small difference between losses as 0.1 dB/cm using highly symmetric written tracks forming the cladding. The desired structure was simulated with the beam propagation method, and the results were in good agreement with experiment data.

  18. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.

    PubMed

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios

    2015-06-01

    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  19. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  20. FIBER AND INTEGRATED OPTICS: Nonlinearity of a channel-waveguide phase modulator

    NASA Astrophysics Data System (ADS)

    Parygin, V. N.; Zhmakin, I. N.; Baglikov, V. B.

    1993-09-01

    The phase velocity of light in a channel waveguide using a LiNbO3 crystal is analyzed as a function of the voltage applied to the crystal. A refinement of the method of an effective refractive index is proposed. This refinement makes it possible to use the method near the cutoff for a waveguide mode. At voltages on the order of 10 V, the nonlinearity of the phase characteristic amounts to ~ 5 · 10- 4 of the linear phase shift.

Top