Sample records for refrigerators

  1. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  2. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  3. Relationship between composition of mixture charged and that in circulation in an auto refrigerant cascade and a J-T refrigerator operating in liquid refrigerant supply mode

    NASA Astrophysics Data System (ADS)

    Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.

    2017-01-01

    The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.

  4. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  5. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  6. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  7. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  8. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  9. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  10. Performance of solar refrigerant ejector refrigerating machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Khalidy, N.A.H.

    1997-12-31

    In this work a detailed analysis for the ideal, theoretical, and experimental performance of a solar refrigerant ejector refrigerating machine is presented. A comparison of five refrigerants to select a desirable one for the system is made. The theoretical analysis showed that refrigerant R-113 is more suitable for use in the system. The influence of the boiler, condenser, and evaporator temperatures on system performance is investigated experimentally in a refrigerant ejector refrigerating machine using R-113 as a working refrigerant.

  11. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  12. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less

  13. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibilitymore » tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.« less

  14. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    PubMed

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published by Elsevier Ltd.

  15. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOEpatents

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  16. Control method for mixed refrigerant based natural gas liquefier

    DOEpatents

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  17. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  18. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Seiber, Larry E [Oak Ridge, TN; Marlino, Laura D [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  19. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  20. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  1. Refrigeration oils for low GWP refrigerants in various applications

    NASA Astrophysics Data System (ADS)

    Saito, R.; Sundaresan, S. G.

    2017-08-01

    The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.

  2. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    PubMed Central

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. PMID:28364935

  3. Magnetic Refrigeration Development

    NASA Technical Reports Server (NTRS)

    Deardoff, D. D.; Johnson, D. L.

    1984-01-01

    Magnetic refrigeration is being developed to determine whether it may be used as an alternative to the Joule-Thomson circuit of a closed cycle refrigerator for providing 4 K refrigeration. An engineering model 4-15 K magnetic refrigerator has been designed and is being fabricated. This article describes the overall design of the magnetic refrigerator.

  4. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, John

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making themore » global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.« less

  5. Non-intrusive refrigerant charge indicator

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  6. Thermoelectric refrigerator having improved temperature stabilization means

    DOEpatents

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  7. Direct condensation refrigerant recovery and restoration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D.C.H.

    1992-03-10

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting themore » separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.« less

  8. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOEpatents

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  9. Dual-circuit, multiple-effect refrigeration system and method

    DOEpatents

    DeVault, Robert C.

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  10. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A.; Sharma, Vishaldeep; Abdelaziz, Omar

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between Honeywell and the Oak Ridge National Laboratory (ORNL) is to develop a Life Cycle Climate Performance (LCCP) modeling tool for optimally designing HVAC&R equipment with lower life cycle greenhouse gas emissions, and the selection of alternative working fluids that reduce the greenhouse gas emissions of HVAC&R equipment. In addition, an experimental evaluation program is used to measure the coefficient of performance (COP) and refrigerating capacity of various refrigerant candidates, which have differing GWP values, in commercial refrigeration equipment. Through a cooperative effort between industry and government, alternative working fluids will be chosen based on maximum reduction in greenhouse gases at minimal cost impact to the consumer. This project will ultimately result in advancing the goals of reducing greenhouse gas emissions through the use of low GWP working fluids and technologies for HVAC&R and appliance equipment, resulting in cost-competitive products and systems.« less

  11. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOEpatents

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  12. Refrigerant pressurization system with a two-phase condensing ejector

    DOEpatents

    Bergander, Mark [Madison, CT

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  13. REACH. Refrigeration Units.

    ERIC Educational Resources Information Center

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  14. Refrigeration system oil measurement and sampling device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.A.

    1989-09-19

    This patent describes a sampling device for use with a refrigeration system having a refrigerant and oil entrained therein. It comprises: an elongated reservoir having a stepped bore therein for receiving refrigerant and oil carried thereby. The reservoir comprising a large bore diameter upper section having an index marking the fill level of the reservoir and a small bore diameter lower section having graduation marks for oil level measurement. The upper and lower sections comprising transparent material to allow observation of the contents, first valve means for coupling the reservoir to the refrigeration system to admit liquid refrigerant to themore » reservoir, second valve means for selectively coupling the reservoir to the low pressure side of the refrigeration system or to a vacuum line to evacuate vaporized refrigerant from the reservoir, and means for supplying heat to the refrigerant in the bore to facilitate vaporization of the refrigerant.« less

  15. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1998-03-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to thermophysical properties, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air conditioning and refrigeration equipment. It also references documents addressing compatibility ofmore » refrigerants and lubricants with other materials.« less

  16. Being everything to anyone: Applicability of thermoacoustic technology in the commercial refrigeration market

    NASA Astrophysics Data System (ADS)

    Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.

    2005-09-01

    This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.

  17. LOW-GLOBAL-WARMING CHEMICALS AND REFRIGERANT TECHNOLOGIES (ATMOSPHERIC PROTECTION BRANCH, APPCD, NRMRL)

    EPA Science Inventory

    The Atmospheric Protection Branch's Refrigeration Applications Laboratory has the capability to test several types of refrigeration equipment with various refrigerants. Refrigeration compressors are tested according to the ANSI/ASHRAE 23-1993 Test Standard and under various oper...

  18. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  19. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  20. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; systemmore » performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.« less

  1. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  2. A review of pulse tube refrigeration

    NASA Technical Reports Server (NTRS)

    Radebaugh, Ray

    1990-01-01

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  3. 75 FR 77864 - Agency Information Collection Activities; Proposed Collection; Comment Response; National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... used as refrigerants during the service, maintenance, repair, or disposal of refrigeration and air... person in the course of maintaining, servicing, repairing, or disposing of refrigeration or air...-depleting refrigerants recovered during the servicing and disposal of air-conditioning and refrigeration...

  4. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... transparent or solid doors, sliding or hinged doors, a combination of hinged, sliding, transparent, or solid... compressors, refrigerant condensers, condenser fans and motors, and factory supplied accessories. Self... more refrigerant compressors, refrigerant condensers, condenser fans and motors, and factory supplied...

  5. Self-actuating heat switches for redundant refrigeration systems

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor)

    1988-01-01

    A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.

  6. Functional Dependence of Thermodynamic and Thermokinetic Parameters of Refrigerants Used in Mine Air Refrigerators. Part 1 - Refrigerant R407C

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Życzkowski, Piotr; Łuczak, Rafał

    2017-03-01

    The authors of this article dealt with the issue of modeling the thermodynamic and thermokinetic properties (parameters) of refrigerants. The knowledge of these parameters is essential to design refrigeration equipment, to perform their energy efficiency analysis, or to compare the efficiency of air refrigerators using different refrigerants. One of the refrigerants used in mine air compression refrigerators is R407C. For this refrigerant, 23 dependencies were developed, determining its thermodynamic and thermokinetic parameters in the states of saturated liquid, dry saturated vapour, superheated vapor, subcooled liquid, and in the two-phase region. The created formulas have been presented in Tables 2, 5, 8, 10 and 12, respectively. It should be noted that the scope of application of these formulas is wider than the range of changes of that refrigerant during the normal operation of mine refrigeration equipment. The article ends with the statistical verification of the developed dependencies. For this purpose, for each model correlation coefficients and coefficients of determination were calculated, as well as absolute and relative deviations between the given values from the program REFPROP 7 (Lemmon et al., 2002) and the calculated ones. The results of these calculations have been contained in Tables 14 and 15.

  7. High Efficiency, Low Emission Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A.; Sharma, Vishaldeep

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for laboratory and field testing. Laboratory and field testing will demonstrate the high energy efficiency and low environmental impact of the refrigeration system developed in this project.« less

  8. 7 CFR 3300.37 - Testing of a mechanical refrigerating appliance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Testing of a mechanical refrigerating appliance. 3300... SPECIAL EQUIPMENT Procedures for Separate Testing of Mechanical Refrigerating Appliances § 3300.37 Testing of a mechanical refrigerating appliance. For separate testing of a mechanical refrigerating appliance...

  9. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  10. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  11. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  12. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  13. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  14. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  15. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  16. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  17. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  18. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  19. 76 FR 19090 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... used as refrigerants during the service, maintenance, repair, or disposal of refrigeration and air... person in the course of maintaining, servicing, repairing, or disposing of refrigeration or air...-depleting refrigerants recovered during the servicing and disposal of air-conditioning and refrigeration...

  20. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system...

  1. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system...

  2. Health effects among refrigeration repair workers exposed to fluorocarbons.

    PubMed Central

    Campbell, D D; Lockey, J E; Petajan, J; Gunter, B J; Rom, W N

    1986-01-01

    Refrigeration repair workers may be intermittently exposed to fluorocarbons and their thermal decomposition products. A case of peripheral neuropathy (distal axonopathy) in a commercial refrigeration repairman prompted an epidemiological investigation of the health of refrigeration repair workers. No additional cases of peripheral neuropathy were identified among the 27 refrigeration repair workers studied. A reference group of 14 non-refrigeration repair workers was also studied. No differences were noted between groups for the ulnar (motor and sensory), median (motor and sensory), peroneal, sural, or tibial nerve conduction velocities. Refrigeration repair workers reported palpitations and lightheadedness significantly more often than workers in the reference group. No clinical neurological or electroneurophysiological abnormalities were detected in eight refrigeration repair workers followed up for three years during continuous employment. PMID:3004555

  3. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  4. Chapter 7: Refrigerator Recycling Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Keeling, Josh; Bruchs, Doug

    Refrigerator recycling programs are designed to save energy by removing operable, albeit less efficient, refrigerators from service. By offering free pickup, providing incentives, and disseminating information about the operating cost of less efficient refrigerators, these programs are designed to encourage consumers to: - Limit the use of secondary refrigerators -Relinquish refrigerators previously used as primary units when they are replaced (rather than keeping the existing refrigerator as a secondary unit) -Prevent the continued use of less efficient refrigerators in another household through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market).more » Commonly implemented by third-party contractors (who collect and decommission participating appliances), these programs generate energy savings through the retirement of inefficient appliances. The decommissioning process captures environmentally harmful refrigerants and foam, and enables recycling of the plastic, metal, and wiring components.« less

  5. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  6. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerantsmore » for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.« less

  7. Refrigeration system having dual suction port compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Guolian

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less

  8. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  9. Characteristics of a Refrigeration Cycle Using a Zeotropic Refrigerant Mixture with a Temperature Glide Shift Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Endoh, Kazuhiro; Matsushima, Hiroaki; Nonaka, Masayuki

    HFC zeotropic refrigerant mixture R-407C is one of the promising alternatives for HCFC-22. We have found that the coefficient of performance (COP) of the refrigeration cycle using R-407C is improved by installing a temperature glide shift heat exchanger (TGSX) which takes advantage of zeotropic characteristics to an air-conditioner. We obtained the characteristics of a refrigeration cycle of experimental apparatus with comparison to those of a fundamental refrigeration cycle based on the refrigerant thermodynamic properties. We concluded that the COP improvement ratio of experimental apparatus with the TGSX to that without the TGSX is greater than that ratio which is calculated from the fundamental refrigeration cycle. This proved to be caused by the pressure loss of low pressure side which is not taken into account in the fundamental refrigeration cycle.

  10. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase,more » and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.« less

  11. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  12. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  13. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  14. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  15. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  16. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    EPA Science Inventory

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  17. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption of commercial refrigerators, freezers, and refrigerator-freezers. 431.64 Section 431.64 Energy... method for the measurement of energy consumption of commercial refrigerators, freezers, and refrigerator... energy consumption in kilowatt hours per day (kWh/day) for a given product category and volume or total...

  18. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some maymore » be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.« less

  19. Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators

    NASA Astrophysics Data System (ADS)

    Luo, E.; Gong, M.; Wu, J.; Zhou, Y.

    2004-06-01

    The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.

  20. Thermodynamic Analysis of a Mixed Refrigerant Ejector Refrigeration Cycle Operating with Two Vapor-liquid Separators

    NASA Astrophysics Data System (ADS)

    Tan, Yingying; Chen, Youming; Wang, Lin

    2018-06-01

    A mixed refrigerant ejector refrigeration cycle operating with two-stage vapor-liquid separators (MRERC2) is proposed to obtain refrigeration temperature at -40°C. The thermodynamic investigations on performance of MRERC2 using zeotropic mixture refrigerant R23/R134a are performed, and the comparisons of cycle performance between MRERC2 and MRERC1 (MRERC with one-stage vapor-liquid separator) are conducted. The results show that MRERC2 can achieve refrigeration temperature varying between -23.9°C and -42.0°C when ejector pressure ratio ranges from 1.6 to 2.3 at the generation temperature of 57.3-84.9°C. The parametric analysis indicates that increasing condensing temperature decreases coefficient of performance ( COP) of MRERC2, and increasing ejector pressure ratio and mass fraction of the low boiling point component in the mixed refrigerant can improve COP of MRERC2. The MRERC2 shows its potential in utilizing low grade thermal energy as driving power to obtain low refrigeration temperature for the ejector refrigeration cycle.

  1. Two-statge sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  2. Low cost microminiature refrigerators for large unit volume applications

    NASA Technical Reports Server (NTRS)

    Duboc, R. M., Jr.

    1983-01-01

    Photolithographic techniques were employed to fabricate small Joule-Thomson refrigerators in laminated substrates. The gas passages of a J-T refrigerator are formed by etching channels as narrow as 50 microns and as shallow as 5 microns in glass plates which are laminated together. Circular refrigerators on the order of 1.5 centimeters in diameter and .75 millimeters thick were produced which cool down to cryogenic temperatures in a few seconds, using Argon or Nitrogen, with no vacuum or radiation insulation. Smaller refrigerators are developed for both faster cooldown and low refrigeration capacity applications. By using this technology, custom refrigerators can be designed to meet specific application requirements.

  3. Combined caloric effects in a multiferroic Ni-Mn-Ga alloy with broad refrigeration temperature region

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Li, Zongbin; Yang, Bo; Qian, Suxin; Gan, Weimin; Gong, Yuanyuan; Li, Yang; Zhao, Dewei; Liu, Jian; Zhao, Xiang; Zuo, Liang; Wang, Dunhui; Du, Youwei

    2017-04-01

    Solid-state refrigeration based on the caloric effects is promising to replace the traditional vapor-compressing refrigeration technology due to environmental protection and high efficiency. However, the narrow working temperature region has hindered the application of these refrigeration technologies. In this paper, we propose a method of combined caloric, through which a broad refrigeration region can be realized in a multiferroic alloy, Ni-Mn-Ga, by combining its elastocaloric and magnetocaloric effects. Moreover, the materials' efficiency of elastocaloric effect has been greatly improved in our sample. These results illuminate a promising way to use multiferroic alloys for refrigeration with a broad refrigeration temperature region.

  4. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    PubMed

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  5. Commercial Refrigeration: Heat Transfer Optimization and Energy Reduction, Measurement and Verification of a Liquid Refrigerant Pump System Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaul, Chris; Sheppy, Michael

    This study describes the test results of a Refrigerant Pump System integrated into a commercial supermarket direct expansion (DX) vapor compression refrigeration system. The Liquid Refrigerant Pump System retrofit (patent-pending; application number 13/964,198) was introduced to NREL in August 2014 by CTA Architects Engineers.

  6. Heat pump with freeze-up prevention

    DOEpatents

    Ecker, Amir L.

    1981-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  7. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  8. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  9. 46 CFR 195.30-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... is equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of...

  10. 46 CFR 195.30-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... is equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of...

  11. 46 CFR 195.30-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... is equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of...

  12. 76 FR 9987 - Protection of Stratospheric Ozone: Amendments to the Section 608 Leak Repair Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... trigger rates for comfort cooling, commercial refrigeration, and industrial process refrigeration and air..., commercial refrigeration, and industrial process refrigeration appliances. This action also proposes to...

  13. 46 CFR 195.30-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... is equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of...

  14. 46 CFR 195.30-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... is equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of...

  15. Dilution cycle control for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  16. Two stage sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  17. ARTI refrigerant database. Quarterly report, March--May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1997-05-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information an older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some maymore » be added at a later date.« less

  18. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOEpatents

    DeVault, Robert C.; Fairchild, Phillip D.; Biermann, Wendell J.

    1990-01-01

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  19. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

  20. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  1. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, Hans O.; Starr, Thomas L.

    1999-01-01

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  2. Not all counterclockwise thermodynamic cycles are refrigerators

    NASA Astrophysics Data System (ADS)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  3. Measurement of the Space Thermoacoustic Refrigerator Performance

    DTIC Science & Technology

    1990-09-01

    the refrigerator was a requisite towards simplifying the process of selecting the operating frequency . The simplest method allowing for the most...LIST OF FIGURES I-1 Pulse Tube Refrigerator.............................. 3 1-2 Hofler Refrigerator.................................. 5 1-3 Acoustical...qualitative manner as did Rayleigh. The first example of an acoustic heat pump was the pulse - tube refrigerator in which Gifford and Longsworth, by applying

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  5. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  6. Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate

    NASA Astrophysics Data System (ADS)

    Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW

    2018-01-01

    A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.

  7. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  8. 46 CFR 96.30-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than...

  9. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  10. 46 CFR 96.30-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than...

  11. 46 CFR 96.30-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than...

  12. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  13. 46 CFR 96.30-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than...

  14. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  15. 46 CFR 96.30-1 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than... equipped with any refrigeration unit using— (1) Ammonia to refrigerate any space with a volume of more than...

  16. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  17. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... functional characteristics that affect energy consumption. Commercial refrigerator, freezer, and refrigerator... formed by the plane of the door, when the equipment is viewed in cross-section; and (2) For equipment...

  18. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  19. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hessell, Edward Thomas

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  20. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  1. The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1986-01-01

    The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.

  2. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  3. Method and apparatus for desuperheating refrigerant

    DOEpatents

    Zess, James A.; Drost, M. Kevin; Call, Charles J.

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  4. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  5. Cooling system having dual suction port compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Guolian

    2017-08-29

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less

  6. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  7. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    NASA Astrophysics Data System (ADS)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  8. Public policies, private choices: Consumer desire and the practice of energy efficiency

    NASA Astrophysics Data System (ADS)

    Deumling, Reuben Alexander

    Refrigerator energy consumption has been the subject of regulatory attention in the US for some thirty years. Federal product standards, energy labels, and a variety of programs to get consumers to discard their existing refrigerators sooner and buy new, more energy efficient ones have transformed the refrigerator landscape and changed how many of us think about refrigerators. The results of these policies are celebrated as a successful model for how to combine regulatory objectives and consumer preferences in pursuit of environmental outcomes where everyone wins. Yet per capita refrigerator energy consumption today remains (much) higher in the US than anywhere else, in part because energy efficiency overlooks the ways behavior, habit, emulation, social norms, advertising, and energy efficiency policies themselves shape energy consumption patterns. To understand these dynamics I investigate how people replacing their refrigerators through a state-sponsored energy efficiency program make sense of the choices facing them, and how various types of information designed to aid in this process (Consumer Reports tests, Energy Guide labels, rebate programs) frame the issue of responsible refrigerator consumption. Using interviews and archival research I examine how this information is used to script the choice of a refrigerator, whose priorities shape the form and content of these cues, and what the social meanings generated by and through encounters with refrigerators and energy efficiency are. I also helped build a model for estimating historic refrigerator energy consumption in the US, to measure the repercussions of refrigerator energy inefficiency. My focus in this dissertation is on the ways the pursuit of energy efficiency improvements for domestic refrigerators intersects with and sometimes reinforces escalating demand for energy. My research suggests that the practice of pursuing energy efficiency improvements in refrigerators subordinates the issue of refrigerator energy consumption---what factors influence it, how and why it fluctuated historically, how to take it seriously---in pursuit of increased sales. The a priori assumption that consumers desire certain styles of refrigerator has become a compulsion to trade up. In evaluating the results of energy policies celebrating technical achievements without paying attention to the social dynamics which these regulations encounter is insufficient.

  9. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, H.O.; Starr, T.L.

    1999-03-30

    A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

  10. Experimental investigation of an alternating evaporator duty refrigerator/freezer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavanis, M.; Haider, I.; Radermacher, R.

    1998-12-31

    A bistable solenoid valve has been used to build an alternating evaporator duty (AED) domestic refrigerator/freezer. This refrigerator has two vapor compression refrigeration loops that share a common compressor, condenser, and suction line heat exchanger. Each of the refrigeration loops has an expansion device and evaporator. One evaporator is located in the fresh food compartment and the other is located in the freezer compartment. The bistable solenoid valve directs the flow of the refrigerant through one loop at a time. Only one of the two compartments is cooled at any given time. With this configuration, the food compartment is cooledmore » at a higher evaporator temperature than the freezer. Due to this, the energy efficiency of the refrigerator is improved by 8.5% over a conventional domestic refrigerator/freezer. Also, this cycle allows for completely independent temperature control of the freezer and fresh food compartments. There may be a penalty because this cycle does not allow for both loops to be simultaneously optimized. Isobutane was the only refrigerant used in this investigation.« less

  11. 77 FR 76825 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC..., the Department extended the compliance date for certification of commercial refrigeration equipment...

  12. Method and apparatus for de-superheating refrigerant

    DOEpatents

    Zess, J.A.; Drost, M.K.; Call, C.J.

    1997-11-25

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim. 7 figs.

  13. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  14. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  15. Review on Applications of NanoFluids used in Vapour Compression Refrigeration System for Cop Enhancement

    NASA Astrophysics Data System (ADS)

    Veera Raghavalu, K.; Govindha Rasu, N.

    2018-03-01

    The present research paper focuses on the use of Nano additive refrigerants in vapor compression refrigeration system (VCRS) because of their amazing development during Thermo Physical along with heat transfer potential to improve the coefficient of performance (COP) and reliability of refrigeration system. Furthermore, challenges and future instructions of performance enhancement of VCRS using Nano additive refrigerants were presented. Lubricant oil is essential in the entire vapour compression refrigeration systems, mostly for the efficient function of the compressor. But, some assign of the oil is entire the cycle oil circulates with the refrigerant. Presently, an assortment of investigation is going on in the field of the Nano-particles like metals, oxides, carbon Nano-tubes or carbides. Nano-lubricants are unique type of Nano-fluids which are varieties of Nano-particles, lubricants and have a wide variety in the fields of refrigeration systems. This paper, has been done on the application of Nano-particles balanced in lubricating oils of refrigerating systems are reviewed. The aim of this investigation is to study and find which type of lubricant oil works better with Nano-particles in the area of refrigeration. From the review of literature, it has been observed that Nano-particles mixed with mineral oil gives enhanced results than polyolester (POE) oil.

  16. Evaluation of Enthalpy Diagrams for NH3-H2O Absorption Refrigerator

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka; Saito, Kiyoshi; Kawai, Sunao

    The protection of environment is becoming a grave problem nowadays and an absorption refrigerator, which does not use fleon as a refrigerant, is acquiring a close attention. Among the absorption refrigerators, a number of ammonia-water absorption refrigerators are being used in realm such as refrigeration and ice accumulation, since this type of refrigerator can produce below zero degree products. It is essential to conduct an investigation on the characteristics of ammonia-water absorption refrigerator in detail by means of computer simulation in order to realize low cost, highly efficient operation. Unfortunately, there have been number of problems in order to conduct computer simulations. Firstly, Merkel's achievements of enthalpy diagram does not give the relational equations. And secondly, although relational equation are being proposed by Ziegler, simpler equations that can be applied to computer simulation are yet to be proposed. In this research, simper equations based on Ziegler's equations have been derived to make computer simulation concerning the performance of ammonia-water absorption refrigerator possible-Both results of computer simulations using simple equations and Merkel's enthalpy diagram respectively, have been compared with the actual experimental data of one staged ammonia-water absorption refrigerator. Consequently, it is clarified that the results from Ziegler's equations agree with experimental data better than those from Merkel's enthalpy diagram.

  17. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    NASA Astrophysics Data System (ADS)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  18. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE--REFRIGERATORS AND FREEZERS (NHX/SOP-163-001)

    EPA Science Inventory

    This procedure describes the calibration and maintenance activities of a refrigerator custodian in ensuring that refrigerators and freezers are functioning within acceptable temperature ranges. Refrigerators and freezers were used as temperature-controlled repositories for reagen...

  19. 40 CFR 82.32 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...

  20. 40 CFR 82.32 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...

  1. 40 CFR 82.32 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...

  2. 40 CFR 82.32 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle air conditioners means mechanical vapor compression refrigeration equipment used to cool the... the hermetically sealed refrigeration systems used on motor vehicles for refrigerated cargo and the...-conditioning and Refrigeration Institute (ARI 700-93) (which is codified at 40 CFR part 82, subpart F, appendix...

  3. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  4. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  5. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  6. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  7. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  8. 40 CFR 82.32 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrator pursuant to § 82.38. (b) Approved refrigerant recycling equipment means equipment certified by the... equipment extracts and recycles refrigerant or extracts refrigerant for recycling on-site or reclamation off... terms of this paragraph (e), approved refrigerant recycling equipment may be transported off-site and...

  9. A general computer model for predicting the performance of gas sorption refrigerators

    NASA Technical Reports Server (NTRS)

    Sigurdson, K. B.

    1983-01-01

    Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.

  10. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    DOEpatents

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  11. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCPmore » of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.« less

  12. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius

    NASA Astrophysics Data System (ADS)

    Dreepaul, R. K.

    2017-11-01

    The most frequently used refrigerants in the refrigeration and air conditioning (RAC) sector in Mauritius are currently hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC). However, because of their strong influence on global warming and the impact of HCFCs on the ozone layer, refrigerants such as ammonia (NH3), carbon dioxide (CO2) and Hydrocarbons (HC), having minimal impact on the environment, are being considered. So far, HCs have only been safely used in domestic refrigeration. Ammonia has been used mainly for industrial refrigeration whereas CO2 is still under study. In this paper, a comparative study of the various feasible alternatives is presented in a survey that was undertaken with major stake holders in the field. The retrofitting possibility of existing equipment was assessed and safety issues associated with each refrigerant were analysed. The major setback of hydrocarbons as a widely accepted refrigerant is its flammability which was considered as a major safety hazard by the majority of respondents in the survey and the main advantages are the improved equipment coefficient of performance (COP) and better TEWI factor. This resulted in a 12 % drop in energy consumption. Despite the excellent thermodynamic properties of ammonia, its use has mainly been confined to industrial refrigeration due to its toxicity. In Mauritius, the performance of ammonia in air conditioning is being evaluated on a pilot basis. The major setback of carbon dioxide as a refrigerant is the high operating pressure which is considered a safety hazard. The high initial investment cost and the lack of qualified maintenance technician is also an issue. The use of CO2 is mainly being considered in the commercial refrigeration sector.

  13. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  14. Food Safety Practices Linked with Proper Refrigerator Temperatures in Retail Delis.

    PubMed

    Brown, Laura G; Hoover, Edward Rickamer; Faw, Brenda V; Hedeen, Nicole K; Nicholas, David; Wong, Melissa R; Shepherd, Craig; Gallagher, Daniel L; Kause, Janell R

    2018-05-01

    Listeria monocytogenes (L. monocytogenes) causes the third highest number of foodborne illness deaths annually. L. monocytogenes contamination of sliced deli meats at the retail level is a significant contributing factor to L. monocytogenes illness. The Centers for Disease Control and Prevention's Environmental Health Specialists Network (EHS-Net) conducted a study to learn more about retail delis' practices concerning L. monocytogenes growth and cross-contamination prevention. This article presents data from this study on the frequency with which retail deli refrigerator temperatures exceed 41°F, the Food and Drug Administration (FDA)-recommended maximum temperature for ready-to-eat food requiring time and temperature control for safety (TCS) (such as retail deli meat). This provision was designed to control bacterial growth in TCS foods. This article also presents data on deli and staff characteristics related to the frequency with which retail delis refrigerator temperatures exceed 41°F. Data from observations of 445 refrigerators in 245 delis showed that in 17.1% of delis, at least one refrigerator was >41°F. We also found that refrigeration temperatures reported in this study were lower than those reported in a related 2007 study. Delis with more than one refrigerator, that lacked refrigerator temperature recording, and had a manager who had never been food safety certified had greater odds of having a refrigerator temperature >41°F. The data from this study suggest that retail temperature control is improving over time. They also identify a food safety gap: some delis have refrigerator temperatures that exceed 41°F. We also found that two food safety interventions were related to better refrigerated storage practices: kitchen manager certification and recording refrigerated storage temperatures. Regulatory food safety programs and the retail industry may wish to consider encouraging or requiring kitchen manager certification and recording refrigerated storage temperatures.

  15. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  16. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  17. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  18. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  19. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  20. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  1. Coefficient of performance and its bounds with the figure of merit for a general refrigerator

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-02-01

    A general refrigerator model with non-isothermal processes is studied. The coefficient of performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed. This model accounts for different heat capacities during the heat transfer processes. So, different kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the upper bound of the COP is the Curzon-Ahlborn (CA) coefficient of performance and is independent of the time durations of the heat exchanging processes. With the maximum χ criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in the heat absorbing process is not less than that in the heat releasing process, their COPs are bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the general refined upper and lower bounds have been proposed.

  2. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.

    PubMed

    Luo, E C; Dai, W; Zhang, Y; Ling, H

    2006-12-22

    In this paper, a thermally-driven thermoacoustic refrigerator system without any moving part is reported. This refrigeration system consists of a thermoacoustic-Stirling heat engine and a thermoacoustic-Stirling refrigerator; that is, the former is the driving source for the latter. Both the subsystems are designed to operate on traveling-wave mode. In the experiment, it was found that the DC-flows had significant negative effect on the heat engine and the refrigerator. To suppress these DC-flows, two flexible membranes were inserted into the two subsystems and worked very well. Then extensive experiments were made to test the influence of different parameters on refrigeration performance of the whole system. The system has so far achieved a no-load temperature of -65 degrees C, a cooling capacity of about 270 W at -20 degrees C and 405 W at 0 degrees C; in fact, the result showed a good prospect of the refrigeration system in room-temperature cooling such as food refrigeration and air-conditioning.

  3. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some maymore » be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.« less

  5. Redesign 3 R Machine as a Refrigerant Waste Treatment Alternative in Environmental Rescue

    NASA Astrophysics Data System (ADS)

    Negara, I. P. S.; Arsawan, I. M.

    2018-01-01

    Cooling machine technologies really affect nowadays’ modern life, not only limited in enhancement of life quality and comfort, but it has also reached the essential things of humans’ life supporter (Arora, 2001). Cooling machine technologies have direct contribution toward environmental damage such as depletion of ozone layer and global warming through synthetic refrigerant waste and leakage (CFC and HFC) to environment. The refrigerant release to the environment is 60% of the service sector. Destructive characteristics of ozone possessed by CFC were first proposed by Rowland and Molina which were then supported by yard measurement. It is estimated that ozone layer damage occurs for about 3% every decade. The ozone layer located in the stratosphere is functioned to prevent ultraviolet-B ray from entering into earth surface. This Ultraviolet-B is suspected to be the cause of health problem for humans and disorder for plants on earth. As for the purpose of this research is to obtain a product design of refrigerant waste processing system (recovery and recycle refrigerant) as well as to acknowledge the work method (COP) of cooling machines that use CFC refrigerant (R-12) as the result of recovery and recycle compared to CFC refrigerant (R-12)/pure R134a. One method that can be used is by redesigning existing equipment namely 3R machine that cannot be used anymore thus it can be reused. This research will be conducted through modifying the existing 3R machine therefore it can be reused and be easily operated as well as doing the maintenance, after that the refrigerant as the result of recovery will be tried on a refrigeration system and a test of refrigeration system work method will be conducted by using the refrigerant recycle product which is obtained and compared with the work method of the one with pure refrigeration.The result has been achieved that the redesign product of refrigerant waste processing equipment can be reused and able to perform the recovery, recycle and richarging process, although using semi-automatic control system. So the use of car air conditioning refrigerant can be more efficient. With the functioning of 3R mesi is expected wastes refrigerant is not wasted which is one of the efforts to save the environment.

  6. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-section. Basic model means, with respect to commercial refrigerators, freezers, and refrigerator-freezers... 430); (2) Is not designed and marketed exclusively for medical, scientific, or research purposes; (3... standard product temperature-measuring device. Vertical Closed means equipment with hinged or sliding doors...

  7. SIMULATION RESULTS OF SINGLE REFRIGERANTS FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER

    EPA Science Inventory

    The paper reviews the refrigerant/freezer (RF) design and refrigerant selection process that is necessary to design an energy efficient RF that does not use fully halogenated chlorofluorocarbons (CFCs). EPA is interested in phasing out CFCs in RFs to minimize stratospheric ozone ...

  8. 77 FR 72763 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Commercial and Industrial HVAC, Refrigeration and Water Heating Equipment AGENCY: Office of Energy Efficiency... extension to the compliance date for the certification provisions of commercial refrigeration equipment... refrigeration equipment; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers...

  9. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  10. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  11. 76 FR 47451 - Protection of Stratospheric Ozone: Adjustments to the Allowance System for Controlling HCFC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Commercial and Industrial commercial and industrial Refrigeration Equipment Manufacturing. refrigeration... commercial refrigeration installation; HVAC contractors. This table is not intended to be exhaustive, but... servicing of existing refrigeration and air-conditioning equipment), with a total phaseout in 2030. The...

  12. THERMODYNAMIC EVALUATION OF FIVE ALTERNATIVE REFRIGERANTS IN VAPOR-COMPRESSION CYCLES

    EPA Science Inventory

    The paper gives results of a thermodynamic evaluation of five alternative refrigerants in a vapor-compression refrigeration cycle, utilizing throttling, super-heating, and combined throttling and superheating. ive alternative refrigerants (R32, R125, R134a, R143a, and R152a) were...

  13. 78 FR 721 - California State Nonroad Engine Pollution Control Standards; Transport Refrigeration Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...; Transport Refrigeration Units; Request for Authorization; Opportunity for Public Hearing and Comment AGENCY... Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs...''), regarding its ``Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU...

  14. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  15. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  16. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  17. A historical look at chlorofluorocarbon refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatti, M.S.

    1999-07-01

    A class of chemical compounds called chlorofluorocarbon refrigerants has been in widespread use since the 1930s in such diverse applications as refrigerants for refrigerating and air-conditioning systems, blowing agents for plastic foams, solvents for microelectronic circuitry and dry cleaning, sterilants for medical instruments, aerosol propellants for personal hygiene products and pesticides, and freezants for food. This paper describes the historical development of the chlorofluorocarbon refrigerants and gives brief biographical sketches of the inventors. 85 refs., 8 figs., 4 tabs.

  18. Malone refrigeration

    NASA Astrophysics Data System (ADS)

    Swift, G. W.

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  19. Mixed Refrigerants for a Glass Capillary Micro Cryogenic Cooler

    DTIC Science & Technology

    2010-08-01

    refrigerant has the largest ðDhTÞmin 1.35 kJ/mol. To deliver 15 mW of gross refrigeration power, JT cryocoolers using mixed refrigerants only require 1.6...higher than 75 K. Pressure drop in heat exchangers can cause refrigeration loss in cryocooler systems. The minimum enthalpy difference and hence...micro- cryocoolers . They solved it by making the returning flow laminar through re-design- ing micro channels. Fig. 4 shows the relationship between the

  20. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGES

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; ...

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  1. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  2. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    NASA Astrophysics Data System (ADS)

    Gill, Jatinder; Singh, Jagdev

    2018-05-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  3. Thermoacoustic refrigeration

    NASA Technical Reports Server (NTRS)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-01-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  4. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, Gordon B.; Langton, Brian J.; /SLAC

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results frommore » a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)« less

  5. Compatibility of refrigerants and lubricants with elastomers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part IImore » of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.« less

  6. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A andmore » ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.« less

  7. Are central venous catheter tip cultures reliable after 6-day refrigeration?

    PubMed

    Bouza, Emilio; Guembe, Maria; Gómez, Haydee; Martín-Rabadán, Pablo; Rivera, Marisa; Alcalá, Luis

    2009-07-01

    Present guidelines recommend culturing only central venous catheter (CVC) tips from patients with suspected catheter-related bloodstream infection (CR-BSI). However, a high proportion of these suspicions are not confirmed. Moreover, CVC tip culture increases laboratory workload, and reports of colonization may be meaningless or misleading for the clinician. Our working hypothesis was that CVC tips should be refrigerated and cultured only in patients with positive blood cultures. We evaluated the effect of 6-day refrigeration of 215 CVC tips. We selected all the catheters with a significant count according to the Maki's roll-plate technique and randomly assigned them to 2 groups. In group A, the catheters were recultured after 24 h of refrigeration, and in group B, the catheters were recultured after 6 days more of refrigeration, so that the refrigeration time evaluated would be of 6 days. The yield of refrigerated CVC tips that grow significant colony counts of primary culture in group B was compared with the yield of refrigerated catheter tips in group A. The difference showed that 6-day refrigeration reduced the number of significant CVCs by 15.2%. Only 61 CVCs were obtained from patients with CR-BSI, and in most of them, blood cultures were already positive before CVC culture, so only 0.91% of the CR-BSI episodes would have been misdiagnosed as culture negative after refrigeration. Refrigeration of CVC tips sent for culture and culturing only those from patients with positive blood cultures reduce the workload in the microbiology laboratory without misdiagnosing CR-BSI.

  8. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  9. EVALUATION OF OZONE-FRIENDLY HYDROFLUOROPROPANE-BASED ZEOTROPIC REFRIGERANT MIXTURES IN A LORENZ-MEUTZNER REFRIGERATOR/FREEZER

    EPA Science Inventory

    The two-evaporator (located in the freezer and fresh food compartments) design of the Lorenz-Meutzner (L-M) refrigerator/freezer (R/F) makes it a leading candidate for use of zeotropic refrigerant mixtures. Zeotrophic mixtures can have significant temperature glides during evapor...

  10. Solar Refrigerators Store Life-Saving Vaccines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  11. 40 CFR 1039.645 - What special provisions apply to engines used for transportation refrigeration units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines used for transportation refrigeration units? 1039.645 Section 1039.645 Protection of Environment... apply to engines used for transportation refrigeration units? Manufacturers may choose to use the provisions of this section for engines used in transportation refrigeration units (TRUs). The operating...

  12. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...

  13. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...

  14. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  15. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...

  16. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...

  17. 40 CFR 1039.645 - What special provisions apply to engines used for transportation refrigeration units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engines used for transportation refrigeration units? 1039.645 Section 1039.645 Protection of Environment... apply to engines used for transportation refrigeration units? Manufacturers may choose to use the provisions of this section for engines used in transportation refrigeration units (TRUs). The operating...

  18. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...

  19. 78 FR 35894 - Notice of Petition for Waiver of Panasonic Appliances Refrigeration Systems Corporation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Petition for Waiver of Panasonic Appliances Refrigeration Systems Corporation of America Corporation... Panasonic Appliances Refrigeration Systems Corporation of America (PAPRSA) seeking an exemption from... Refrigeration Systems Corporation of America, meaning that it is the same manufacturer to which DOE granted the...

  20. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  1. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  2. 40 CFR 63.463 - Batch vapor and in-line cleaning machine standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of 1.0, superheated vapor. 2 Freeboard refrigeration device, superheated vapor. 3 Working-mode cover, freeboard refrigeration device. 4 Reduced room draft, freeboard ratio of 1.0, superheated vapor. 5 Freeboard refrigeration device, reduced room draft. 6 Freeboard refrigeration device, freeboard ratio of 1.0. 7 Freeboard...

  3. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  4. 76 FR 57612 - Energy Efficiency Program for Consumer Products: Test Procedures for Residential Refrigerators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... (collectively, ``refrigeration products''). 75 FR 78810. The amended test procedures for residential... Rule also included amendments to these procedures that will, once finalized, apply to refrigeration... period deadline to ``30 days after the [refrigeration products] standards final rule is made available to...

  5. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...

  6. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...

  7. 40 CFR 1039.645 - What special provisions apply to engines used for transportation refrigeration units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engines used for transportation refrigeration units? 1039.645 Section 1039.645 Protection of Environment... apply to engines used for transportation refrigeration units? Manufacturers may choose to use the provisions of this section for engines used in transportation refrigeration units (TRUs). The operating...

  8. 40 CFR 1039.645 - What special provisions apply to engines used for transportation refrigeration units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engines used for transportation refrigeration units? 1039.645 Section 1039.645 Protection of Environment... apply to engines used for transportation refrigeration units? Manufacturers may choose to use the provisions of this section for engines used in transportation refrigeration units (TRUs). The operating...

  9. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A refrigeration system for butadiene or vinyl chloride must not use vapor compression unless it: (a) Avoids any...

  10. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...

  11. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel. [CGD 74-289, 44 FR...

  12. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  13. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  14. 77 FR 4800 - Notice of Petition for Waiver of Hussmann From the Department of Energy Commercial Refrigerator...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... for interim waiver; and (4) DOE rulemakings and waivers regarding commercial refrigeration equipment... authority to establish and amend test procedures for commercial refrigeration equipment. On December 8, 2006, DOE published a final rule adopting test procedures for commercial refrigeration equipment, effective...

  15. 40 CFR 1039.645 - What special provisions apply to engines used for transportation refrigeration units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines used for transportation refrigeration units? 1039.645 Section 1039.645 Protection of Environment... apply to engines used for transportation refrigeration units? Manufacturers may choose to use the provisions of this section for engines used in transportation refrigeration units (TRUs). The operating...

  16. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  17. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  18. Super energy saver heat pump with dynamic hybrid phase change material

    DOEpatents

    Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN

    2010-07-20

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  19. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  20. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  1. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  2. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, M.; Aute, V.; Sharma, V.

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less

  3. Fault detection and diagnosis for refrigerator from compressor sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less

  4. Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-11-01

    Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.

  5. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants

    DOE PAGES

    Beshr, M.; Aute, V.; Sharma, V.; ...

    2015-04-09

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less

  6. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  7. 49 CFR 173.5b - Portable and mobile refrigeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable and mobile refrigeration systems. 173.5b...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.5b Portable and mobile refrigeration... refrigeration systems, which may or may not be permanently mounted to a transport vehicle, used for agricultural...

  8. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  9. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...

  10. 21 CFR 115.50 - Refrigeration of shell eggs held for retail distribution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Refrigeration of shell eggs held for retail... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION SHELL EGGS § 115.50 Refrigeration of shell eggs held for... interstate commerce, held for retail distribution: (1) Shall promptly be placed under refrigeration as...

  11. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...

  12. 49 CFR 173.5b - Portable and mobile refrigeration systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable and mobile refrigeration systems. 173.5b...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.5b Portable and mobile refrigeration... refrigeration systems, which may or may not be permanently mounted to a transport vehicle, used for agricultural...

  13. 75 FR 34017 - Protection of Stratospheric Ozone: Notice 25 for Significant New Alternatives Policy Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... sectors: Refrigeration and air-conditioning, foam blowing, aerosols, and sterilants. The majority of the... additional refrigerant alternatives as acceptable will provide users in the refrigeration and air... alternatives to HCFCs other than HCFC-22, HCFC-142b, and blends thereof? D. In servicing existing refrigeration...

  14. 21 CFR 115.50 - Refrigeration of shell eggs held for retail distribution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Refrigeration of shell eggs held for retail... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION SHELL EGGS § 115.50 Refrigeration of shell eggs held for... interstate commerce, held for retail distribution: (1) Shall promptly be placed under refrigeration as...

  15. 21 CFR 115.50 - Refrigeration of shell eggs held for retail distribution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Refrigeration of shell eggs held for retail... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION SHELL EGGS § 115.50 Refrigeration of shell eggs held for... interstate commerce, held for retail distribution: (1) Shall promptly be placed under refrigeration as...

  16. 77 FR 13104 - Decision and Order Amending a Waiver Granted to Fujitsu General America, Inc. From the Department...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Refrigeration Institute 1230 (AHRI) as the alternative test procedure. DATES: This Decision and Order is... testing procedures or rating procedures developed or recognized by the Air-Conditioning and Refrigeration... Refrigeration Institute (AHRI) Standard 1230-2010: Performance Rating of Variable Refrigerant Flow (VRF) Multi...

  17. 75 FR 41102 - Energy Conservation Program: Re-Opening of the Public Comment Period for Commercial Refrigeration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Conservation Program: Re-Opening of the Public Comment Period for Commercial Refrigeration Equipment AGENCY... document for commercial refrigeration equipment and provide notice of a public meeting. The NOPM provided... the framework document for commercial refrigeration equipment is to be re-opened from July 15, 2010 to...

  18. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...

  19. 49 CFR 173.5b - Portable and mobile refrigeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable and mobile refrigeration systems. 173.5b...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.5b Portable and mobile refrigeration... refrigeration systems, which may or may not be permanently mounted to a transport vehicle, used for agricultural...

  20. 75 FR 32210 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... or verify recovery of refrigerant from appliances it accepts for disposal. The Consent Decree...) purchase equipment to recover refrigerant or contract for such services and provide such service at no... provided in appendix A; and (4) keep a refrigerant recovery log regarding refrigerant that it has recovered...

  1. 75 FR 38550 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... 82, Subpart F, by failing to follow the requirement to recover or verify recovery of refrigerant from... ability to pay. The Decree also requires Defendant to (1) purchase equipment to recover refrigerant or... a refrigerant recovery log regarding refrigerant that it has recovered. The Department of Justice...

  2. 21 CFR 864.9700 - Blood storage refrigerator and blood storage freezer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood storage refrigerator and blood storage... Establishments That Manufacture Blood and Blood Products § 864.9700 Blood storage refrigerator and blood storage freezer. (a) Identification. A blood storage refrigerator and a blood storage freezer are devices intended...

  3. 21 CFR 864.9700 - Blood storage refrigerator and blood storage freezer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood storage refrigerator and blood storage... Establishments That Manufacture Blood and Blood Products § 864.9700 Blood storage refrigerator and blood storage freezer. (a) Identification. A blood storage refrigerator and a blood storage freezer are devices intended...

  4. 21 CFR 864.9700 - Blood storage refrigerator and blood storage freezer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood storage refrigerator and blood storage... Establishments That Manufacture Blood and Blood Products § 864.9700 Blood storage refrigerator and blood storage freezer. (a) Identification. A blood storage refrigerator and a blood storage freezer are devices intended...

  5. 21 CFR 864.9700 - Blood storage refrigerator and blood storage freezer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood storage refrigerator and blood storage... Establishments That Manufacture Blood and Blood Products § 864.9700 Blood storage refrigerator and blood storage freezer. (a) Identification. A blood storage refrigerator and a blood storage freezer are devices intended...

  6. 21 CFR 864.9700 - Blood storage refrigerator and blood storage freezer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood storage refrigerator and blood storage... Establishments That Manufacture Blood and Blood Products § 864.9700 Blood storage refrigerator and blood storage freezer. (a) Identification. A blood storage refrigerator and a blood storage freezer are devices intended...

  7. 10 CFR 431.294 - Uniform test method for the measurement of energy consumption of refrigerated bottled or canned...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption of refrigerated bottled or canned beverage vending machines. 431.294 Section 431.294 Energy... method for the measurement of energy consumption of refrigerated bottled or canned beverage vending... test procedure for energy consumption of refrigerated bottled or canned beverage vending machines shall...

  8. Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator

    NASA Astrophysics Data System (ADS)

    Hasan, N.; Knudsen, P.; Ganni, V.

    2017-12-01

    The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.

  9. Demonstration of the Use of Remote Temperature Monitoring Devices in Vaccine Refrigerators in Haiti.

    PubMed

    Cavallaro, Kathleen F; Francois, Jeannot; Jacques, Roody; Mentor, Derline; Yalcouye, Idrissa; Wilkins, Karen; Mueller, Nathan; Turner, Rebecca; Wallace, Aaron; Tohme, Rania A

    After the 2010 earthquake, Haiti committed to introducing 4 new antigens into its routine immunization schedule, which required improving its cold chain (ie, temperature-controlled supply chain) and increasing vaccine storage capacity by installing new refrigerators. We tested the feasibility of using remote temperature monitoring devices (RTMDs) in Haiti in a sample of vaccine refrigerators fueled by solar panels, propane gas, or electricity. We analyzed data from 16 RTMDs monitoring 24 refrigerators in 15 sites from March through August 2014. Although 5 of the 16 RTMDs exhibited intermittent data gaps, we identified typical temperature patterns consistent with refrigerator door opening and closing, propane depletion, thermostat insufficiency, and overstocking. Actual start-up, annual maintenance, and annual electricity costs for using RTMDs were $686, $179, and $9 per refrigerator, respectively. In Haiti, RTMD use was feasible. RTMDs could be prioritized for use with existing refrigerators with high volumes of vaccines and new refrigerators to certify their functionality before use. Vaccine vial monitors could provide additional useful information about cumulative heat exposure and possible vaccine denaturation.

  10. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from themore » operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.« less

  11. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  12. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    PubMed

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future educational interventions to increase safe domestic refrigeration practices.

  13. Utilizing Thermal Mass in Refrigerated Display Cases to Reduce Peak Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A; Kuruganti, Teja; Nutaro, James J

    The potential to store energy within refrigerated food products presents convenience store and supermarket operators with an opportunity to participate in utility sponsored demand response programs, whereby electricity usage can be shifted or reduced during peak periods. To determine the feasibility of reducing peak demand by shifting the refrigeration load to off-peak times, experimental and analytical analyses were performed. Simulated product, consisting of one-pint containers filled with a 50% ethylene glycol and 50% water solution, were stored in a medium-temperature vertical open refrigerated display case. Product temperature rise as a function of time was determined by turning off the refrigerationmore » to the display case, while product temperature pull-down time was subsequently determined by turning on the refrigeration to the display case. It was found that the thermal mass of the product in a medium-temperature display case was such that during a 2.5 hour period with no refrigeration, the average product temperature increased by 5.5 C. In addition, it took approximately 3.5 hours for the product to recover to its initial temperature after the refrigeration was turned on. Transient heat conduction analyses for one-dimensional objects is in good agreement with the experimental results obtained in this study. From the analysis, it appears that the thermal mass of the stored product in refrigerated display cases is sufficient to allow product temperatures to safely drift for a significant time under reduced refrigeration system operation. Thus, strategies for shifting refrigeration system electrical demand can be developed. The use of an advanced refrigeration system controller that can respond to utility signals can enable demand shifting with minimal impact.« less

  14. Improving NIS Tunnel Junction Refrigerators: Modeling, Materials, and Traps

    NASA Astrophysics Data System (ADS)

    O'Neil, Galen Cascade

    This thesis presents a systematic study of electron cooling with Normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS refrigerators have an exciting potential to simplify 100 mK and 10 mK cryogenics. Rather than using an expensive dilution refrigerator, researchers will be able to use much simpler cryogenics to reach 300 mK and supplement them with mass fabricated thin-film NIS refrigerators to reach 100 mK and below. The mechanism enabling NIS refrigeration is energy selective tunneling. Due to the gap in the superconducting density of states, only hot electrons tunnel from the normal-metal. Power is removed from the normal-metal, that same power and the larger IV power are both deposited in the superconductor. NIS refrigerators often cool less than theory predicts because of the power deposited in the superconductor returns to the normal-metal. When the superconductor temperature is raised, or athermal phonons due to quasiparticle recombination are absorbed in the normal-metal, refrigerator performance will be reduced. I studied the quasiparticle excitations in superconductors to develop the most complete thermal model of NIS refrigerators to date. I introduced overlayer quasiparticle traps, a new method for heatsinking the superconductor. I present measurements on NIS refrigerators with and without quasiparticle traps, to determine their effectiveness. This includes an NIS refrigerator that cools from 300 mK to 115 mK or lower, a large improvement over previous designs. I also looked into reducing the power deposited in the superconductor, by choosing the transition temperature of the superconductor based upon the NIS refrigerator launch temperature. I performed a detailed study of the density of states of superconducting AlMn alloys, demonstrating that Mn impurities behave non-magnetically in Al due to resonant scattering. The density of states remains BCS-like, but my measurements show that the deviations from a BCS density of states harm cooling in NIS refrigerators.

  15. Development of a test facility and preliminary testing of flow boiling heat transfer of R410A refrigerant with Al2O3 nanolubricants

    NASA Astrophysics Data System (ADS)

    Wong, Thiam

    In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.

  16. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure ofmore » compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.« less

  17. The Utility of Continuous Temperature Monitoring of Refrigerators in a Long-Term Care Facility.

    PubMed

    Worz, Chad; Postolski, Josh; Williams, Kevin

    2017-04-01

    It is the current practice in most long-term care facilities to use manual logs when documenting refrigerator temperatures. This process is commonly associated with poor or fabricated compliance, little oversight, and documentation errors, both because of overt omissions and unsubstantiated values. It is also well-established that medication storage requirements are mandated by the Centers for Medicare & Medicaid Services (CMS). This analysis demonstrates the potential risk of poor cold-chain management of medications and establishes the possible utility of digitally recorded continuous temperature monitoring over manual logs. This small case-oriented review of a large nursing facility's storage process attempts to expose the risk associated with improper medication storage. The primary outcome of the study was to determine if a difference existed between temperature logs completed manually compared with those done with a continuous monitor. American Thermal Instruments (ATI) thermometers were placed into each of the existing refrigerators in a 147-bed nursing facility. Through a mobile app, the data recorded in each refrigerator were compiled into daily reports. Data were collected from a total of 12 refrigerators, 3 of which were medication refrigerators. Logging intervals were done over a 263-minute period and compiled the lowest recorded temperature, highest recorded temperature, and the average temperature for each refrigerator. In addition, reports showing the real-time results were compiled using the ATI DataNow service. All of the refrigerators analyzed had highest temperature recorded readings exceeding the maximum allowable temperature (50°F for refrigerator). All of the refrigerators had lowest temperature recorded readings below the minimum allowable temperature (32°F for refrigerators). All of the refrigerators also reported average temperatures outside of the allowable temperature range. The results necessitated the replacement of a refrigerator and the evaluation of a dairy refrigerator in the food service area. This resulted in consistent measurements within the allowable range. Following this analysis, it can be concluded that the common assumptions about the effectiveness of manual temperature logs should be verified. It can also be concluded that continuous temperature monitoring improves temperature-reporting accuracy. Proper medication storage is mandated by CMS; risk does exist that an improperly stored vaccine, biologic, or medication could lose effectiveness. While it has not been proven, improved medication storage offered from continuous monitoring could result in improved medication viability and hence improved patient outcomes associated with those medications.

  18. Evaluation of Alternative Refrigerants for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S

    The phase-out of hydrochlorofluorocarbons (HCFC) refrigerants in developing countries is currently underway according to the Montreal Protocol. R-22 is one of the most commonly used HCFCs in the developing nations. It is extremely well suited for air conditioning and refrigeration (AC&R) in high ambient temperature environments. Non-Article 5 countries have already gone through the phase-out of HCFCs and settled on using R-410A as the refrigerant of choice for AC applications. Previous studies have shown that R-410A results in significant capacity and performance degradation at higher ambient temperature conditions. As such, there is a growing concern on finding alternative refrigerants tomore » R-22 that would have zero ODP, lower GWP, and at the same time maintain acceptable performance at higher ambient temperatures. Furthermore, the developed world s transition through higher global warming potential (GWP) refrigerants like HFC and HFC blends resulted in significant direct CO2 equivalent emissions. It is imperative to develop a bridge for developing nations to avoid the transition from HCFC to HFC and then from HFC to alternative lower GWP refrigerants. This paper summarizes data from an experimental campaign on alternative refrigerant evaluation for R-22 and R-410A substitutes for mini-split air conditioners designed for high ambient environments. The experimental evaluation was performed according to ANSI/ASHRAE Standard 37 and the performance was rated at test conditions specified by ANSI/AHRI 210-240 and ISO 5151. Additional tests were conducted at outdoor ambient temperatures of 52 C (125.6 F) and 55 C (131 F) to evaluate their performance at high ambient conditions. Alternative refrigerants, some of which are proprietary, included R-444B, DR-3, N-20b, ARM-20b, R-290, and DR-93 as alternatives to R-22 and R-32, DR-55, L41-2, ARM-71A, and HPR-2A as alternatives to R-410A. The units performances were first verified using the baseline refrigerant and then drop-in refrigerant evaluation followed including soft optimization to ensure refrigerant performance is adequately represented. The soft optimization included: 1) charge optimization, 2) lubricant change, and 3) flow control. The paper presents the relative performances (efficiency and capacity) of the alternative refrigerants compared to the baseline refrigerants at the different operating conditions. Paper concludes with remarks about the suitability of alternative refrigerants for R-22 and R-410A applications in high ambient temperature regions.« less

  19. Managing Refrigerant Emissions

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.

  20. 49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 3A1800”, the service pressure is 12410 kPa (1800 psig). (j) Refrigerant gas or Dispersant gas. The terms Refrigerant gas and Dispersant gas apply to all nonpoisonous refrigerant gases; dispersant gases... °F), used only as a refrigerant, dispersant, or blowing agent. (k) For Division 2.2 gases, the...

  1. 49 CFR 173.115 - Class 2, Divisions 2.1, 2.2, and 2.3-Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 3A1800”, the service pressure is 12410 kPa (1800 psig). (j) Refrigerant gas or Dispersant gas. The terms Refrigerant gas and Dispersant gas apply to all nonpoisonous refrigerant gases; dispersant gases... °F), used only as a refrigerant, dispersant, or blowing agent. (k) For Division 2.2 gases, the...

  2. Design and experimental investigation of an ejector in an air-conditioning and refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL-Khalidy, N.; Zayonia, A.

    1995-12-31

    This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.

  3. Evaluating alternative refrigerants for high ambient temperature environments

    DOE PAGES

    Abdelaziz, Omar; Shrestha, Som S.

    2016-01-01

    According to the Montreal Protocol, developing countries have started the phase out schedule of the ozone depleting substances, including HCFC refrigerants, in 2015 and expect them to reach 35% reduction in 2020. This commitment to the start the phase out of HCFC refrigerants, especially R-22, in developing countries is seen as an opportunity to introduce lower Global Warming Potential (GWP) refrigerants. Furthermore, this paper summarizes an investigation into the performance of lower GWP refrigerants in high ambient temperature environments, experienced in some of the developed countries, in mini-split air conditioning units.

  4. Evaluation and selection of refrigeration systems for lunar surface and space applications

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Blount, T. D.; Williams, J. L.

    1971-01-01

    Evaluated are the various refrigeration machines which could be used to provide heat rejection in environmental control systems for lunar surface and spacecraft applications, in order to select the best refrigeration machine for satisfying each individual application and the best refrigeration machine for satisfying all of the applications. The refrigeration machine considered include: (1) vapor comparison cycle (work-driven); (2) vapor adsorption cycle (heat-driven); (3) vapor absorption cycle (heat-driven); (4) thermoelectric (electrically-driven); (5) gas cycle (work driven); (6) steam-jet (heat-driven).

  5. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    NASA Astrophysics Data System (ADS)

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  6. Dynamic simulation of a reverse Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.

    2014-01-01

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  7. Sorption compressor/mechanical expander hybrid refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  8. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Shen, Bo

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and theirmore » suitability for window air conditioners.« less

  9. Determination of properties of PVE lubricants with HFC refrigerants[PolyVinylEther

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Masato; Sakanoue, Shuichi; Tazaki, Toshihiro

    1999-07-01

    Polyalkyleneglycol (PAG) and polyol ester (POE) have been developed as refrigeration lubricants, used with HFC134a. PAG is used for automotive air conditioning systems and POE is used for domestic reciprocating refrigerators and for A/C systems. Although PAG exhibits good lubricity performance, it is difficult to use for domestic reciprocating refrigerators due to its low dielectric property. POE is difficult to use for automotive A/C systems, due to hydrolysis and poor lubricity performance. Polyvinylether (PVE) can be used in place of PAG and POE with HFC refrigerants. PVE is used for A/C systems as well as refrigerator and freezer applications. PVEmore » is an ideal lubricant for use with HFCs.« less

  10. Section 608 Rule Presentation Slides

    EPA Pesticide Factsheets

    This document presents slides informing the public about updates to the Section 608 concerning appliance disposal, refrigerant reclamation, technician certification, refrigerant sales restriction, recordkeeping, and repairing refrigerant leaks.

  11. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  12. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  13. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  14. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  15. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient to...

  16. Experimental Investigation of COP Using Hydro Carbon Refrigerant in a Domestic Refrigerator

    NASA Astrophysics Data System (ADS)

    Peyyala, Anusha; Sudheer, N. V. V. S., Dr

    2017-08-01

    Under the Montreal protocol 1987 researchers worked on the possibility of alternative refrigerants like Hydroflourocarbon’s [HFC’s] and Hydrocarbon’s[HC’s] to replace refrigerants Chloroflourocarbon’s [CFC’s] and Hydrochlorofluorocarbons [HCFC’s] in air-conditioning and cooling systems that are destroying the ozone layer. On October 15, 2016 one hundred and ninety plus countries including India came to an agreement called Kigali Amendment to phase out potent green house gases by 2045 there by preventing 0.5 C rise in global temperature by 2050. Under this agreement India agreed to a timeline to reduce the use of HFC’s by 85% of their baseline by 2045. HFC’s are a family of greenhouse gases that are largely used in refrigerators and air conditioners which have reduced the Ozone Depleting Potential [ODP] but increased the Global Warming Potential [GWP]. Refrigeration and its applications are important in almost all branches of industry, so engineers have to become aware of its principles, uses and limitations. Since the decade there are major changes in the choice of refrigerants due to environmental factors. This issue is on-going and new developments should be developed to decrease the environmental problems. So the aim of this paper is to present the experimental analysis of Coefficient of performance [COP] values using R134a [HFC] & R600a [HC] as Refrigerants in Domestic refrigerator using conventional and nonconventional energy sources. Based on the results, usage of R600a in domestic refrigerators will reduce the ODP and also GWP problems which fulfills the nominal requirements of human beings without any effects.

  17. Keeping Your Compressor Healthy: Developing the Right Lubricant Formulation is the Key

    NASA Astrophysics Data System (ADS)

    Karnaz, Joseph A.; Kultgen, Derek W.

    2015-08-01

    Selecting the correct compressor lubricant is crucial to the duration of the compressor and the refrigerant systems’ useful life. However, developing an optimized lubricant for a refrigeration system requires a multitude of screenings and tests. The compatibility and stability of the lubricant with the refrigerant and compressor components needs to be examined at various accelerated conditions. The lubricant and refrigerant working viscosity must be determined at various refrigerant concentrations, temperatures and pressures as the diluted refrigerant in the lubricant has a significant effect on the viscosity. The correct lubricant formulation needs to be investigated for optimal performance. A compressor lubricant can provide many benefits to a refrigeration system such as bearing durability, sealing, and increased efficiency. Sometimes it is necessary to formulate the lubricant in order to optimize system performance. Specifically, this study investigated anti-wear properties of different oil additives to create a more robust refrigeration system. Many different additives and concentrations were considered and screened. Pending a successful screen test; these different additives’ anti-wear properties were analyzed using bench top tribology tests. To reduce uncertainty and provide more in-situ results the different additives were operated in a refrigerant compressor on a gas-loop testing apparatus. Oil samples were taken periodically during the test duration for analysis. Lastly, upon test completion the compressors were dismantled and the parts were examined to determine the effectiveness of the anti-wear additives.

  18. ARTI Refrigerant Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  19. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  20. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  1. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  2. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  3. 40 CFR Appendix F to Subpart B of... - Standard for Recover-Only Equipment That Extracts a Single, Specific Refrigerant Other Than CFC...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... refrigerant, which are either (1) to be returned to a refrigerant reclamation facility that will process the... capability is required which shall process contaminated refrigerant samples at specific temperatures. 6.2The... the recovery process to ±2% of the original manufacturer's formulation submitted to, and accepted by...

  4. Development of an effective treatment for a 5-log reduction of Escherichia coli in refrigerated pickle products

    USDA-ARS?s Scientific Manuscript database

    Refrigerated cucumber pickle products cannot be heat processed due to the loss of characteristic sensory attributes. Typically brined refrigerated pickles contain less than 100 mM acetic acid with pH values of 3.7 to 4.0. Refrigeration (4 to 10 ºC) helps to inhibit the growth of spoilage bacteria an...

  5. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  6. Evaluation for Practical Application of HFC Refrigerants

    NASA Astrophysics Data System (ADS)

    Uemura, Shigehiro; Noguchi, Masahiro; Inagaki, Sadayasu; Teraoka, Takuya

    Production restriction of CFCs which are used for refrigerators and air conditioners has been implemented through the international mutual agreement approved by the Montreal Protocol. Due to the less impact on the ozone layer dep1etion, alternative refrigerants for CFCs had included HCFC-123 and HCFC-22. However, H CFC-123 and HCFC-22 do not completely prevent the ozone layer depletion. This paper presents the investigation results of HFC-125, H FC-143a, HFC-152a, and HFC-32 which prevent the ozone layer depletion and are candidates for alternatives of CFCs and HCFCs. The test results of thermal stability of these refrigerants are similar to those of CFC-12 and HCFC-22. The test results show that each refrigerant has different material compatibility. The test results of lubricant solubility show that synthetic oi1s are soluble in these refrigerants, but the mineral oils currently in use for CFCs and HCFCs are not. The refrigeration performance based on the calculated thermodynamic properties corresponds with that of the experimental results.

  7. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  8. 46 CFR 58.20-1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...

  9. 46 CFR 58.20-1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...

  10. 46 CFR 58.20-1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...

  11. 46 CFR 58.20-1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...

  12. 46 CFR 58.20-1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-1 Scope. (a) The regulations in this subpart apply to fixed refrigeration systems for air conditioning, refrigerated spaces, cargo spaces, and reliquefaction of low...

  13. Transition to New Refrigerants

    EPA Pesticide Factsheets

    Overview page provides information on the refrigerants that motor vehicle air conditioners have used over time, with information on environmental impacts, refrigerant fitting sizes, label colors, and alternatives to ozone-depleting substances.

  14. An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Hu, D.

    2017-03-01

    To overcome the bottleneck of traditional gas wave refrigeration, an improved wave rotor refrigerator (WRR) cycle has been proposed, in which the expansion work was recycled during the process of refrigeration. Thermodynamic analysis of the two cycles shows that the refrigeration efficiency of the improved WRR cycle has been greatly increased compared with the traditional WRR. The performance of an improved WRR was investigated by adjusting the major operational parameters, such as the rotational speed of the wave rotor, port size, and inflow overpressure. The experimental results show that pressure loss can be reduced by nearly 40 % in this improved refrigeration system. Meanwhile, a two-dimensional numerical simulation was performed to understand the wave interactions that take place inside the rotor channels.

  15. An experimental investigation of ejector performance based upon different refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.L.; Yen, J.Y.; Huang, M.C.

    1998-12-31

    This article experimentally compares the characteristics of different refrigerants as the working fluid in an ejector cooling system. The study covers common refrigerants including R-113, R-114, R-142b, and R-718. The critical choking conditions against the variation of condenser back pressure, the evaporator pressure, and the generator pressure are determined for each refrigerant. The results are compiled into a convenient performance curve and COP chart. These results can serve as an important reference for future design of ejector cooling systems. Finally, this paper presents a comparison of the performances of different refrigerants in an ejector cooling system.

  16. 75 FR 59469 - Energy Conservation Program: Energy Conservation Standards for Residential Refrigerators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ...The Energy Policy and Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and commercial and industrial equipment, including residential refrigerators, refrigerator-freezers, and freezers. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more stringent, amended standards for these products are technologically feasible and economically justified, and would save a significant amount of energy. In this NOPR, DOE proposes amended energy conservation standards for residential refrigerators, refrigerator- freezers, and freezers. The NOPR also announces a public meeting to receive comment on these proposed standards and associated analyses and results.

  17. Spacecraft-borne long life cryogenic refrigeration: Status and trends

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1983-01-01

    The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.

  18. 46 CFR 58.20-5 - Design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...

  19. 46 CFR 58.20-5 - Design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...

  20. 46 CFR 58.20-5 - Design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...

  1. 46 CFR 58.20-5 - Design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...

  2. 46 CFR 58.20-5 - Design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SYSTEMS Refrigeration Machinery § 58.20-5 Design. (a) Refrigeration machinery may be accepted for... with part 54 of this subchapter. (b) For refrigeration systems other than those for reliquefaction of...

  3. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  4. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  5. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  6. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  7. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  8. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from the...

  9. An experimental study for a miniature Stirling refrigerator

    NASA Technical Reports Server (NTRS)

    Li, S.; Chen, G.; Huang, Z.; Zhang, F.; Cui, C.; Li, J.

    1985-01-01

    Experimental results of a miniature two-stage Stirling cryocooler are introduced. The influence of filling gas pressure and refrigeration temperature on the refrigerating capacity along with the relationship between parameters was measured. The valley pressure corresponding to the lowest refrigeration temperature and the cooldown time versus operating pressure are discussed. The coefficient of performance and thermodynamic efficiency of the cryocooler are calculated based on experimental data.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S.; Shen, Bo

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  11. Acquisition of an Adiabatic Demagnetization Refrigerator for Quantum Information Science with Superconducting Circuits

    DTIC Science & Technology

    2015-11-23

    SECURITY CLASSIFICATION OF: The DURIP award provided funds for acquiring a cryogen-free adiabatic demagnetization refrigerator at Syracuse University...The new refrigerator has been installed and is now fully operational. The PI has intensive research efforts in the area of Quantum Information...Aug-2014 24-Aug-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of an Adiabatic Demagnetization Refrigerator for

  12. CO2LD: An Educational Innovation Project for Advanced Vocational Training in Refrigeration

    ERIC Educational Resources Information Center

    Sánchez, Daniel; Llopis, Rodrigo; Patiño, Jorge; Cabello, Ramón; Torrella, Enrique

    2013-01-01

    Refrigeration is one of the technology sectors that has suffered the most changes in the last twenty years, because of the negative impact of the fluids used in the refrigeration cycles, i.e., refrigerants, due to their impact on the ozone layer and their contribution to global warming. As a result of their negative effects, the European Union has…

  13. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended for... specific minimum equipment requirements for automotive refrigerant recycling equipment intended for use...

  14. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended for... specific minimum equipment requirements for automotive refrigerant recycling equipment intended for use...

  15. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended for... specific minimum equipment requirements for automotive refrigerant recycling equipment intended for use...

  16. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended for... specific minimum equipment requirements for automotive refrigerant recycling equipment intended for use...

  17. Using solar-powered refrigeration for vaccine storage where other sources of reliable electricity are inadequate or costly.

    PubMed

    McCarney, Steve; Robertson, Joanie; Arnaud, Juliette; Lorenson, Kristina; Lloyd, John

    2013-12-09

    Large areas of many developing countries have no grid electricity. This is a serious challenge that threatens the continuity of the vaccine cold chain. The main alternatives to electrically powered refrigerators available for many years--kerosene- and gas-driven refrigerators--are plagued by problems with gas supply interruptions, low efficiency, poor temperature control, and frequent maintenance needs. There are currently no kerosene- or gas-driven refrigerators that qualify under the minimum standards established by the World Health Organization (WHO) Performance, Quality, and Safety (PQS) system. Solar refrigeration was a promising development in the early 1980s, providing an alternative to absorption technology to meet cold chain needs in remote areas. Devices generally had strong laboratory performance data; however, experience in the field over the years has been mixed. Traditional solar refrigerators relied on relatively expensive battery systems, which have demonstrated short lives compared to the refrigerator. There are now alternatives to the battery-based systems and a clear understanding that solar refrigerator systems need to be designed, installed, and maintained by technicians with the necessary knowledge and training. Thus, the technology is now poised to be the refrigeration method of choice for the cold chain in areas with no electricity or extremely unreliable electricity (less than 4h per average day) and sufficient sunlight. This paper highlights some lessons learned with solar-powered refrigeration, and discusses some critical factors for successful introduction of solar units into immunization programs in the future including: •Sustainable financing mechanisms and incentives for health workers and technicians are in place to support long-term maintenance, repair, and replacement parts. •System design is carried out by qualified solar refrigerator professionals taking into account the conditions at installation sites. •Installation and repair are conducted by well-trained technicians. •Temperature performance is continuously monitored and protocols are in place to act on data that indicate problems. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins.

    PubMed

    Wood, Ben; Padula, Matthew P; Marks, Denese C; Johnson, Lacey

    2016-10-01

    Platelets (PLTs) are currently stored at room temperature (22°C), which limits their shelf life, primarily due to the risk of bacterial growth. Alternatives to room temperature storage include PLT refrigeration (2-6°C), which inhibits bacterial growth, thus potentially allowing an extension of shelf life. Additionally, refrigerated PLTs appear more hemostatically active than conventional PLTs, which may be beneficial in certain clinical situations. However, the mechanisms responsible for this hemostatic function are not well characterized. The aim of this study was to assess the protein profile of refrigerated PLTs in an effort to understand these functional consequences. Buffy coat PLTs were pooled, split, and stored either at room temperature (20-24°C) or under refrigerated (2-6°C) conditions (n = 8 in each group). PLTs were assessed for changes in external receptor expression and actin filamentation using flow cytometry. Intracellular proteomic changes were assessed using two-dimensional gel electrophoresis and Western blotting. PLT refrigeration significantly reduced the abundance of glycoproteins (GPIb, GPIX, GPIIb, and GPIV) on the external membrane. However, refrigeration resulted in the increased expression of high-affinity integrins (αIIbβ3 and β1) and activation and apoptosis markers (CD62P, CD63, and phosphatidylserine). PLT refrigeration substantially altered the abundance and localization of several cytoskeletal proteins and resulted in an increase in actin filamentation, as measured by phalloidin staining. Refrigerated storage of PLTs induces significant changes in the expression and localization of both surface-expressed and intracellular proteins. Understanding these proteomic changes may help to identify the mechanisms resulting in the refrigeration-associated alterations in PLT function and clearance. © 2016 AABB.

  19. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z)more » capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.« less

  20. General RMP Guidance - Appendix E: Supplemental Risk Management Program Guidance for Ammonia Refrigeration Facilities

    EPA Pesticide Factsheets

    Additional information for food processors, food distributors, refrigerated warehouses, and any other facility with ammonia refrigeration system. Includes guidance on exemptions, threshold quantity, offsite consequence analysis.

  1. Retail Food Refrigeration and the Phaseout of HCFC-22

    EPA Pesticide Factsheets

    Provides information on the HCFC phaseout that is relevant to food retailers, including alternatives to the use of HCFC-22 in retail food refrigeration, other refrigerant regulations, and resources for more information.

  2. 49 CFR 173.196 - Category A infectious substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerated or frozen (ice, pre-frozen packs, dry ice). Ice, dry ice, or other refrigerant must be placed... the secondary packaging must maintain their integrity at the temperature of the refrigerant used, as...

  3. 49 CFR 177.870 - Regulations for passenger carrying vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... kg (496 pounds). This provision does not apply to nontoxic, nonflammable refrigerants, when such refrigerant is for servicing operations of a motor carrier on whose motor vehicles the refrigerant is used. A...

  4. 49 CFR 177.870 - Regulations for passenger carrying vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... kg (496 pounds). This provision does not apply to nontoxic, nonflammable refrigerants, when such refrigerant is for servicing operations of a motor carrier on whose motor vehicles the refrigerant is used. A...

  5. A Comparative Study on the Environmental Impact of CO2 Supermarket Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Sharma, Vishaldeep

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Accordingly, the interest in using natural refrigerants, such as carbon dioxide (CO2), and new refrigerant blends with low GWP in such systems is increasing. In this paper, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of three supermarket refrigeration systems. These systems include a transcritical CO2 booster system, a cascade CO2/N-40 system, and a baseline R-404A multiplex direct expansion system. The study is performed for cities representing different climates within the USA using EnergyPlusmore » to simulate the systems' hourly performance. Finally, a parametric analysis is performed to study the impact of annual leak rate on the systems' LCCP.« less

  6. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  7. Laboratory testing of a supercritical helium pump for a magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1988-01-01

    A supercritical helium testing system for a magnetic refrigerator has been built. Details of the supercritical helium pump, the test system, and the test instrumentation are given. Actual pump tests were not run during this ASEE term because of delivery problems associated with the required pump flow meter. Consequently, efforts were directed on preliminary design of the magnetic refrigeration system for the pump. The first concern with the magnetic refrigerator design was determining how to effectively make use of the pump. A method to incorporate the supercritical helium pump into a magnetic refrigerator was determined by using a computer model. An illustrated example of this procedure is given to provide a tool for sizing the magnetic refrigerator system as a function of the pump size. The function of the computer model and its operation are also outlined and discussed.

  8. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  9. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    DOE PAGES

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; ...

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo 2Zn 20, can be used for adiabatic demagnetization refrigeration, which does not requiremore » 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb 1$-$xSc xCo 2Zn 20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.« less

  10. Effects of overnight refrigeration on the microscopic evaluation of sputum.

    PubMed Central

    Penn, R L; Silberman, R

    1984-01-01

    Microscopic evaluation of sputum permits selection of specimens suitable for culture, assessment of likely pathogens, and the best interpretation of culture results. We prospectively evaluated 50 sputum specimens which were promptly submitted to our clinical laboratory; smears and cultures were performed both immediately and after 20 h of refrigeration. Specimens were grouped according to the numbers of squamous epithelial cells and neutrophils per low-power field present on coded Gram-stained smears. The numbers of bacteria in five oil immersion fields were used to characterize smears for predominant, mixed, or scanty forms. After refrigeration, only three specimens changed group from a definite loss of squamous epithelial cells, and only two changed group from a definite loss of neutrophils. Based on cellular composition, the majority of samples would have been processed identically both before and after refrigeration. In contrast, organism forms detected on smears and their relative quantities were dramatically altered after refrigeration. A predominant smear form was gained in 11 and lost in 8 refrigerated specimens. The frequent changes on smears observed overall resulted from both increases and decreases in numbers of bacteria and yeasts. The majority of sputum culture results were insignificantly affected by the refrigeration of specimens. We conclude that 20 h of refrigeration renders sputum useless for the microscopic evaluation of potential pathogens and the subsequent interpretation of culture results. However, overnight refrigeration does not affect the determination from smears of sputum suitability for culture based on cellular composition. PMID:6699145

  11. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  12. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo 2Zn 20, can be used for adiabatic demagnetization refrigeration, which does not requiremore » 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb 1$-$xSc xCo 2Zn 20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.« less

  13. Human semen refrigeration at + 4 degrees C: bio-kinetic characteristics.

    PubMed

    Dondero, Franco; Rossi, Tiziana; Delfino, Michele; Imbrogno, Norina; Cannistrà, Stefania; Mazzilli, Fernando

    2006-01-01

    The aim of our study was to evaluate the bio-kinetic characteristics of human semen refrigerated for different periods and to compare the effects of refrigeration at +4 degrees C against cryopreservation of human sperm at -196 degrees C. Semen was obtained from 30 male partners of infertile couples (infertile subjects) with the following semen profile: sperm count >or=10 x 10(6)/ml; progressive motility >or=20%; atypical forms <70% and white blood cells <1.0 x 10(6)/ml. Fifteen normospermic subjects were also selected as controls (control subjects). The following tests were carried out on basal, refrigerated and cryopreserved sperm: a) sperm kinetic properties (by Superimposed Image Analysis System); b) the Hypoosmotic Viability Test (HVT) (combined Hypoosmotic Swelling and Viability Test). The results of the study showed that the percentage recovery of kinetic properties and of HVT were optimum for up to 48 h. After refrigeration for 72 h, a drastic decrease in straight motility recovery was observed. No significant differences were observed between cryopreservation and refrigeration at +4 degrees C for 48 h for motility or HVT recoveries in samples from control subjects. However, in infertile subjects, a significant decrease in straight progressive motility and HVT recoveries was observed in cryopreserved samples compared to those refrigerated for 48 h. Neither refrigeration nor cryopreservation led to the growth of pathogenic bacteria in any of the cases studied. Based on the above results, refrigeration could represent a useful alternative to the cryopreservation method.

  14. Manganese Nitride Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  15. Maximizing NGL recovery by refrigeration optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity ofmore » the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.« less

  16. Experimental comparison between R409A and R437A performance in a heat pump unit

    NASA Astrophysics Data System (ADS)

    Duarte, M. V.; Pires, L. C.; Silva, P. D.; Gaspar, P. D.

    2017-04-01

    This paper reports an experimental comparison between the use of the refrigerants R409A and R437A in a heat pump unit designed and developed to work with R12. Although the use of both refrigerants in new equipments were abolished in EU and US according the new F-Gas Regulation of EU and SNAP, they still being used as options for R12 in old equipments, especially in developing countries. Both refrigerants were studied for the same test conditions, according to two groups of tests: group A (variation of the heat source temperature) and group B (variation of refrigerant flow rate). The results obtained showed that the R437A presents a higher discharge pressure and a lower discharge temperature. The heating and cooling capacities of both refrigerants were similar, as well as the exergetic efficiency. For the group A of tests the COP of both refrigerants was similar and for the group B of tests the R409A presented an average COP 15% higher. According to the results obtained it is recommended the use of R409A in old equipments (as transition refrigerant) until the acquisition of equipments operating with refrigerants with low-GWP becomes technically and economic feasible.

  17. New class of microminiature Joule — Thomson refrigerator and vacuum package

    NASA Astrophysics Data System (ADS)

    Paugh, Robert L.

    1990-12-01

    Progress is reported on the development of a two-stage, fast cooldown Joule — Thomson refrigerator using nitrogen gas and a nitrogen — hydrocarbon gas mixture as the refrigerants. The refrigerator incorporates a microminiature Venturi pump to reduce the pressure of the exhaust of the main boiler to bring the operating temperature of the cold stage to < 70 K in as little as 10 s. The vacuum package for the refrigerator contains no organic materials and is designed to provide a ten year shelf life. Special glass strengthening techniques are being used to achieve cooler survival of acceleration tests of up to 100 000g.

  18. 76 FR 57515 - Energy Conservation Program: Energy Conservation Standards for Residential Refrigerators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ...The Energy Policy and Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and commercial and industrial equipment, including refrigerators, refrigerator-freezers, and freezers. EPCA also requires the U.S. Department of Energy (DOE) to determine if more stringent, amended standards for these products are technologically feasible and economically justified, and would save a significant amount of energy. In this final rule, DOE is adopting more stringent energy conservation standards for refrigerators, refrigerator-freezers, and freezers. It has determined that the amended energy conservation standards for these products would result in the significant conservation of energy and are technologically feasible and economically justified.

  19. Isac Sc-Linac Phase-II Helium Refrigerator Commissioning and First Operational Experience at Triumf

    NASA Astrophysics Data System (ADS)

    Sekachev, I.; Kishi, D.; Laxdal, R. E.

    2010-04-01

    ISAC Phase-II is an upgrade of the radioactive isotope superconducting linear accelerator, SC-linac, at TRIUMF. The Phase-I section of the accelerator, medium-beta, is operational and is cooled with a 600 W helium refrigerator, commissioned in March 2005. An identical refrigerator is being used with the Phase-II segment of the accelerator; which is now under construction. The second refrigerator has been commissioned and tested with the Phase-I section of the linac and is used for Phase-II linac development, including new SC-cavity performance tests. The commissioning of the Phase-II refrigeration system and recent operational experience is presented.

  20. Birth after 12 hours of oocyte refrigeration.

    PubMed

    Coban, Onder; Hacifazlioglu, Oguzhan; Ciray, H Nadir; Ulug, Ulun; Tekin, H Ibrahim; Bahceci, Mustafa

    2010-12-01

    To assess cycle outcome after oocyte refrigeration. Case report. Private IVF center. One couple in a donor oocyte program. Intracytoplasmic sperm injection and blastocyst culture after refrigeration of oocytes for 12 hours. Birth. Fourteen two-pronuclei zygotes from 17 metaphase II refrigerated oocytes resulted in transfer of two blastocysts at day 5 and cryopreservation of six excess embryos at day 6. The patient delivered one healthy male baby after 38 weeks' gestation. The successful outcome of oocyte refrigeration indicates that this protocol could be useful in circumstances in which a delay in obtaining spermatozoa arises. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Appendix E: Supplemental Risk Management Program Guidance for Ammonia Refrigeration Facilities

    EPA Pesticide Factsheets

    Additional information for food processors, food distributors, refrigerated warehouses, and any other facility that has an ammonia refrigeration system. Includes details on exemption for farms, threshold quantity, and offsite consequence analysis.

  2. Transitioning to Low-GWP Alternatives in Transport Refrigeration

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP refrigerant and foam blowing agent alternatives used in transport refrigeration equipment. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  3. OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...

  4. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-04

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions.

  5. Optimal low symmetric dissipation Carnot engines and refrigerators

    NASA Astrophysics Data System (ADS)

    de Tomás, C.; Hernández, A. Calvo; Roco, J. M. M.

    2012-01-01

    A unified optimization criterion for Carnot engines and refrigerators is proposed. It consists of maximizing the product of the heat absorbed by the working system times the efficiency per unit time of the device, either the engine or the refrigerator. This criterion can be applied to both low symmetric dissipation Carnot engines and refrigerators. For engines the criterion coincides with the maximum power criterion and then the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered, where Th and Tc are the temperatures of the hot and cold reservoirs, respectively [Esposito, Kawai, Lindenberg, and Van den Broeck, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.150603 105, 150603 (2010)]. For refrigerators the criterion provides the counterpart of Curzon-Ahlborn efficiency for refrigerators ɛCA=[1/(1-(Tc/Th)]-1, first derived by Yan and Chen for the particular case of an endoreversible Carnot-type refrigerator with linear (Newtonian) finite heat transfer laws [Yan and Chen, J. Phys. D: Appl. Phys.JPAPBE0022-372710.1088/0022-3727/23/2/002 23, 136 (1990)].

  6. Heat exchanger bypass system for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  7. Energy Efficient Operation of Ammonia Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less

  8. 7 CFR 56.35 - Authority to use, and approval of official identification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... review by the Food and Drug Administration prior to approval by the Department. (d) Refrigeration... indicate that refrigeration is required, e.g., “Keep Refrigerated,” or words of similar meaning. [40 FR...

  9. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  10. 7 CFR 56.35 - Authority to use, and approval of official identification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... review by the Food and Drug Administration prior to approval by the Department. (d) Refrigeration... indicate that refrigeration is required, e.g., “Keep Refrigerated,” or words of similar meaning. [40 FR...

  11. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    DTIC Science & Technology

    2015-12-31

    AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments

  12. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE PAGES

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  13. Analysis of a domestic refrigerator cycle with an ejector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasek, M.L.; Radermacher, R.

    1995-08-01

    In this paper, an improved cooling cycle for a conventional domestic refrigerator-freezer utilizing an ejector for vapor precompression is analyzed using an idealized model Its energy efficiency is compared to that of the conventional refrigerator-freezer system. Emphasis is placed on off-design conditions. The ejector-enhanced refrigeration cycle consists of two evaporators that operate at different pressure and temperature levels. The ejector combines the vapor flows exiting the two evaporators into one at an intermediate pressure level The ejector cycle gives an increase of up to 12.4% in the coefficient of performance (COP) compared to that of a standard refrigerator-freezer refrigeration cycle.more » The analysis includes calculations on the optimum throat diameters of the ejector. The investigation on the off-design performance of the ejector cycle shows little dependency of energy consumption on constant ejector throat diameters.« less

  14. Performance modeling of optical refrigerators

    NASA Astrophysics Data System (ADS)

    Mills, Gary; Mord, Allan

    2006-02-01

    Optical refrigeration using anti-Stokes fluorescence in solids has several advantages over more conventional techniques including low mass, low volume, low cost and no vibration. It also has the potential of allowing miniature cryocoolers on the scale of a few cubic centimeters. It has been the topic of analysis and experimental work by several organizations. In 2003, we demonstrated the first optical refrigerator. We have developed a comprehensive system-level performance model of optical refrigerators. Our current version models the refrigeration cycle based on the fluorescent material emission and absorption data at ambient and reduced temperature for the Ytterbium-ZBLAN glass (Yb:ZBLAN) cooling material. It also includes the heat transfer into the refrigerator cooling assembly due to radiation and conduction. In this paper, we report on modeling results which reveal the interplay between size, power input, and cooling load. This interplay results in practical size limitations using Yb:ZBLAN.

  15. Compatibility of refrigerants and lubricants with motor materials. Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerr, R.; Kujak, S.

    This volume contains the abstract, scope, discussion of results, charts of motor material compatibility, test procedures, material identifications, and 84 pages of data summary tables. Compatibility test results for 11 pure refrigerants and 17 refrigerant-lubricant combinations with 24 motor materials are included. The greatest effect on the motor materials was caused by adsorption followed by desorption of refrigerants at higher temperatures. High internal pressure of the adsorbed refrigerants and their tendency to evolve from the materials resulted in blisters, cracks, internal bubbles in the varnish, and delamination or bubbles in the sheet insulations. The second effect was extraction or dissolutionmore » of materials that lead to embrittlement of some sheet insulations. HCFC-22 and HCFC- 22/mineral oil had the most deleterious effects; the materials are expected to be reliable when used with most of the new refrigerants and lubricants. Tables.« less

  16. Improving vaccination cold chain in the general practice setting.

    PubMed

    Page, Sue L; Earnest, Arul; Birden, Hudson; Deaker, Rachelle; Clark, Chris

    2008-10-01

    This study compared temperature control in different types of vaccine storing refrigerators in general practice and tested knowledge of general practice staff in vaccine storage requirements. Temperature data loggers were set to serially record the temperature within vaccine refrigerators in 28 general practices, recording at 12 minute intervals over a period of 10 days on each occasion. A survey of vaccine storage knowledge and records of divisions of general practice immunisation contacts were also obtained. There was a significant relationship between type of refrigerator and optimal temperature, with the odds ratio for bar style refrigerator being 0.005 (95% CI: 0.001-0.044) compared to the purpose built vaccine refrigerators. Score on a survey of vaccine storage was also positively associated with optimal storage temperature. General practices that invest in purpose built vaccine refrigerators will achieve standards of vaccine cold chain maintenance significantly more reliably than can be achieved through regular cold chain monitoring and practice supports.

  17. Cryopump

    DOEpatents

    McFarlin, David J.

    1980-01-01

    A cryopump having a cryopanel adapted for being cooled by a first refrigerant and shielded from radiation incident thereon by shields adapted for being cooled with a second refrigerant is disclosed. The cryopanel and the radiation shield are fabricated with a first material having high thermal conductivity, such as aluminum, while means for distributing refrigerant from refrigerant dewars to the cryopanel and shields are made of a second material, such as stainless steel. The stainless steel and aluminum sections are connected by an aluminum-steel transition connector adapted for providing vacuum tight connections at cryogenic temperatures. Both the cryopanel and chevrons comprising the shields are fabricated and extruded aluminum with coolant passages formed therein. Thermal distortions during operation are compensated by the use of stainless steel bellows within refrigerant distribution lines. Additionally the refrigerant distribution lines are utilized to suspend the cryopanel and shields within an evacuated environment of the cryopump.

  18. Overview of RICOR tactical cryogenic refrigerators for space missions

    NASA Astrophysics Data System (ADS)

    Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan

    2016-05-01

    Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design

  19. Reliability and availability analysis of a 10 kW@20 K helium refrigerator

    NASA Astrophysics Data System (ADS)

    Li, J.; Xiong, L. Y.; Liu, L. Q.; Wang, H. R.; Wang, B. M.

    2017-02-01

    A 10 kW@20 K helium refrigerator has been established in the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. To evaluate and improve this refrigerator’s reliability and availability, a reliability and availability analysis is performed. According to the mission profile of this refrigerator, a functional analysis is performed. The failure data of the refrigerator components are collected and failure rate distributions are fitted by software Weibull++ V10.0. A Failure Modes, Effects & Criticality Analysis (FMECA) is performed and the critical components with higher risks are pointed out. Software BlockSim V9.0 is used to calculate the reliability and the availability of this refrigerator. The result indicates that compressors, turbine and vacuum pump are the critical components and the key units of this refrigerator. The mitigation actions with respect to design, testing, maintenance and operation are proposed to decrease those major and medium risks.

  20. Refrigerants and environment

    NASA Astrophysics Data System (ADS)

    Tsvetkov, O. B.; Laptev, Yu A.

    2017-11-01

    The refrigeration and air-conditioning industries are important sectors of the economy and represents about 15 % of global electricity consumptions. The chlorofluorocarbons also called CFCs are a class of refrigerants containing the halogens chlorine and/or fluorine on a carbon skeleton. Because of their environmental impact the Montreal Protocol was negotiated in 1987 to limit the production of certain CFCs and hydrochlirofluorocarbons (HCFCs) in developed and developing countries. The halogenated refrigerants are depleting the ozone layer also major contribution to the greenhouse effect. To be acceptable as a refrigerant a fluid must satisfy a variety of thermodynamic criteria and should be environment friendly with zero Ozone Depletion Potential and low Global Warming Potential. The perspective of a future phase down of HFCs is considered in this report taking into account a strategy for the phase out of HCFCs and perspective of choosing of various refrigerant followed by safety issues.

  1. Influence of some design parameters on the thermal performance of domestic refrigerator appliances

    NASA Astrophysics Data System (ADS)

    Rebora, Alessandro; Senarega, Maurizio; Tagliafico, Luca A.

    2006-07-01

    This paper presents a thermal study on chest-freezers, the small refrigerators used in domestic and supermarket applications. A thermal and energy model of a particular kind of these refrigerators, the “hot-wall” (or “skin condenser”) refrigerator, is developed and used to perform sensitivity and design optimisation analysis for given working temperatures and useful volume of the refrigerated cell. A finite-element heat transfer model of the refrigerator box is coupled to the complete thermodynamic model of the refrigerating plant, including real working conditions (compressor efficiency, friction pressure losses and so on). A sensitivity study of the main design parameters affecting the global refrigerator performance has been developed (for fixed working temperatures) with reference to the thickness of the metallic plates, to the evaporator and condenser tube diameters and to the evaporator tube pitch (with fixed evaporator-to-condenser tube pitch ratio). The results obtained show that the proposed sensitivity analysis can yield quite reliable results (in comparison with much more complex, albeit more accurate mathematical optimisation algorithms) using small computational resources. The great importance of 2-D heat conduction in the metallic plates is shown, evidencing how the plate thickness and the evaporator and condenser tube diameters affect the global performance of the system according to the well-known “fin efficiency” effect. The influence of the evaporator and condenser tube diameters on the friction pressure losses is also outlined. Some practical suggestions are made in conclusion, regarding the criteria which should be adopted in the thermal design of a hot-wall refrigerator.

  2. GreenChill Store Certification Protocol for Sub-Cooling Contained on Racks Separate from Refrigeration Equipment

    EPA Pesticide Factsheets

    Document describes the protocol used to determine the total load and refrigerant charge of stores that have placed all sub-cooling on a rack separate from all other commercial refrigeration equipment.

  3. GAS CHROMATOGRAPHIC RETENTION PARAMETERS DATABASE FOR REFRIGERANT MIXTURE COMPOSITION MANAGEMENT

    EPA Science Inventory

    Composition management of mixed refrigerant systems is a challenging problem in the laboratory, manufacturing facilities, and large refrigeration machinery. Ths issue of composition management is especially critical for the maintenance of machinery that utilizes zeotropic mixture...

  4. EVALUATION OF REFRIGERANT FROM MOBILE AIR CONDITIONERS

    EPA Science Inventory

    The report gives results of a project to provide a scientific basis for choosing a reasonable standard of purity for recycled chlorofluorocarbon (CFC) refrigerant in operating automobile air conditioners. The quality of refrigerant from air conditioners in automobiles of differen...

  5. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd.sub.0.54 Er.sub.0.46)AlNi alloys having a relatively constant .DELTA.Tmc over a wide temperature range.

  6. Shock isolator for diode laser operation on a closed-cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hillman, J. J.

    1977-01-01

    Closed-cycle helium refrigerators are widely used as coolers for semiconductor diode lasers. These refrigerators pose several difficulties including temperature oscillations due to varying refrigerator capacity during the Solvay cycle, and impact shocks delivered to the diode in the cycle's expansion phase. A shock isolator has been designed to isolate diode lasers from such impact shocks. Slow diode current scans have been made before installation of the shock isolator, with the isolator but no thermal damper, and with both devices. With the isolator and no damper, the diode output frequency oscillated at the refrigerator cycle rate, deviating by plus or minus 40 MHz. Using the isolator and the damper no frequency fluctuation was detected.

  7. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  8. Condensation of nano-refrigerant inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Sadoughi, M. K.; Sheikholeslami, M.

    2018-05-01

    In this paper, condensing pressure drop of refrigerant-based nanofluid inside a tube is studied. Isobutene was selected as the base fluid while CuO nanoparticles were utilized to prepare nano-refrigerant. However, for the feasibility of nanoparticle dispersion into the refrigerant, Polyester oil (POE) was utilized as lubricant oil and added to the pure refrigerant by 1% mass fraction. Various values of mass flux, vapor quality, concentration of nanoparticle are investigated. Results indicate that adding nanoparticles leads to enhance frictional pressure drop. Nanoparticles caused larger pressure drop penalty at relatively lower vapor qualities which may be attributed to the existing condensation flow pattern such that annular flow is less influenced by nanoparticles compared to intermittent flow regime.

  9. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  10. Process Options for Nominal 2-K Helium Refrigeration System Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Knudsen, Venkatarao Ganni

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  11. Combined Wastewater Characterization and Hazardous Waste Survey, Davis-Monthan AFB, Arizona

    DTIC Science & Technology

    1990-04-01

    drain to the sanitary sewer. The chemical additives contained in the cooling discharge are inhibitor (NSN 6850 0059 2537 and 6850 0059 2937) and Cooling...Vacuucleaner 480 DD 836 CES Heating Plant Phosphate 2400 DD 836 CES Refrigeration Inhibitor NQ DD 836 CES Refrigeration Cooling Tower Treat NQ DD 836 CES...BLDG PRODUCT QTY (GAL/YR) 836 CES Refrigeration 5309 Inhibitor NQ 836 CES Refrigeration 5309 Cooling Tower Treat NQ 836 CES Heating Plant 5309 Sodium

  12. Chilling Prospect: Climate Change Effects of Mismanaged Refrigerants in China.

    PubMed

    Duan, Huabo; Miller, T Reed; Liu, Gang; Zeng, Xianlai; Yu, Keli; Huang, Qifei; Zuo, Jian; Qin, Yufei; Li, Jinhui

    2018-06-05

    The global community has responded to the dual threats of ozone depletion and climate change from refrigerant emissions (e.g., chlorofluorocarbons, CFCs, and hydrofluorocarbons, HFCs) in refrigerators and air conditioners (RACs) by agreeing to phase out the production of the most damaging chemicals and replacing them with substitutes. Since these refrigerants are "banked" in products during their service life, they will continue to impact our environment for decades to come if they are released due to mismanagement at the end of life. Addressing such long-term impacts of refrigerants requires a dynamic understanding of the RACs' life cycle, which was largely overlooked in previous studies. Based on field surveys and a dynamic model, we reveal the lingering ozone depletion potential (ODP) and significant global warming potential (GWP) of scrap refrigerants in China, the world's largest producer (62%) and consumer (46%) of RACs in 2015, which comes almost entirely from air conditioners rather than refrigerators. If the use and waste management of RACs continue with the current trend, the total GWP of scrap refrigerants in China will peak by 2025 at a level of 135.2 ± 18.9 Mt CO 2 e (equal to approximately 1.2% ± 0.2% of China's total greenhouse gas emissions or the national total of either The Netherlands and Czech Republic in 2015). Our results imply an urgent need for improving the recycling and waste management of RACs in China.

  13. Design of solar adsorption refrigeration system with CPC and study on the heat and mass transfer performance

    NASA Astrophysics Data System (ADS)

    Du, W. P.; Li, M.; Wang, Y. F.; He, J. H.; He, J. X.

    2017-11-01

    To overcome the problem that the heat source temperature is limited and the lower part of the adsorption tube cannot effectively absorb the solar radiation when solar radiation as the heat source of the adsorption refrigeration system. From the perspective of enhancing the adsorption refrigeration unit tube to absorb solar radiation, thereby strengthening the heat transfer characteristic of adsorption bed, which can improve the efficiency of the refrigeration unit refrigerating capacity and system refrigeration efficiency. Solar adsorption refrigeration system based on CPC was designed and constructed in this paper. The heat and mass transfer performance of the adsorption refrigeration system were studied. The experimental results show that the temperature of the adsorption bed with parabolic concentrating structure can rise to 100°C under low irradiation condition. When the irradiation intensity is 600 w/m2 and 400 w/m2, the average temperature rising to desorption temperature reaches 0.67°C and 0.50°C, respectively. It can effectively solve the problem that the conventional adsorption bed is difficult to reach the required desorption temperature due to the low power density of the sunlight. In the experiment, the system COP were 0.166 and 0.143 when the system in the irradiance of 600 w/m2 and 400 w/m2.

  14. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    NASA Astrophysics Data System (ADS)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  15. Measurement of absorption rates of HFC single and blended refrigerants in POE oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, M.; Jotshi, C.K.; Goswami, D.Y.

    1999-07-01

    Thermophysical properties of refrigerant/lubricant mixtures play an important role in refrigeration and air-conditioning system design. Therefore it is important to have a good understanding of the mixture composition in each system component such as the compressor or evaporator. Because the system operation is dynamic the rates of absorption and desorption become significant parameters. In this paper measured absorption rates of alternative refrigerants in polyolester (POE) oils are reported. An effective online mass gain method was designed and constructed to measure the absorption rates and solubility of refrigerants in lubricants. HFC single refrigerants (R-32, R-125, R-134a, and R-143a), and blended refrigerantsmore » (R-404A, R-407C, and R-410A) were tested with POE ISO 68 lubricant under various conditions. The experimental results showed that, at room temperature, R-134a is the most soluble in POE ISO 68 oil among all the refrigerants tested at pressures of 239 kPa (20 psig) to 446 kPa (70 psig). Among the blended refrigerants tested, R-407C was found to be the most soluble at room temperature and pressures of 239 kPa and 446 kPa. Experimental solubility data from this new measurement method were compared with data available in the literature. Good agreement between the two indicates the feasibility of the new method employed in this investigation.« less

  16. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; Panek, John; Jackson, Michael; King, Todd; Numazawa, Takenori; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA's Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magnet, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled.

  17. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    NASA Astrophysics Data System (ADS)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  18. The Oak Ridge Refrigerant Management Program

    NASA Technical Reports Server (NTRS)

    Kevil, Thomas H.

    1995-01-01

    For many years, chlorofluorocarbons (CFC's) have been used by the Department of Energy's (DOE) Oak Ridge Y-12 Plant in air conditioning and process refrigeration systems. However, Title 6 of the Clean Air Act Amendments (CAAA) and Executive Order 12843 (Procurement Requirements and Policies for Federal Agencies for Ozone Depleting Substances) signed by President Clinton require, as policy, that all federal agencies maximize their use of safe, alternate refrigerants and minimize, where economically practical, the use of Class 1 refrigerants. Unfortunately, many government facilities and industrial plants have no plan or strategy in place to make this changeover, even though their air conditioning and process refrigeration equipment may not be sustainable after CFC production ends December 31, 1995. The Y-12 Plant in Oak Ridge, Tennessee, has taken an aggressive approach to complying with the CAAA and is working with private industry and other government agencies to solve tough manufacturing and application problems associated with CFC and hydrochlorofluorocarbon (HCFC) alternatives. Y-12 was the first DOE Defense Program (DP) facility to develop a long-range Stratospheric Ozone Protection Plan for refrigerant management for compliance with the CAAA. It was also the first DOE DP facility to complete detailed engineering studies on retrofitting and replacing all air conditioning and process refrigeration equipment to enable operation with alternate refrigerants. The management plan and engineering studies are models for use by other government agencies, manufacturing plants, and private industry. This presentation identifies some of the hidden pitfalls to be encountered in the accelerated phaseout schedule of CFC's and explains how to overcome and prevent these problems. In addition, it outlines the general issues that must be considered when addressing the phase-out of ozone depleting substances and gives some 'lessons learned' by Y-12 from its Refrigerant Management Program. Discussion topics include requirements for developing a refrigerant management plan and establishing priorities for cost-effective compliance with the CAAA, as well as ways in which employees can be empowered to develop a comprehensive refrigerant management plan. The result of this employee empowerment was a cooperative labor-management effort that is beneficial for Y-12, DOE, and the environment.

  19. 16 CFR 1750.3 - Scope and application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.3 Scope and application. This standard shall apply to devices furnished with household refrigerators manufactured and...

  20. 40 CFR 82.152 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...); or equipment certified pursuant to § 82.36(a). Commercial refrigeration means, for the purposes of § 82.156(i), the refrigeration appliances utilized in the retail food and cold storage warehouse sectors. Retail food includes the refrigeration equipment found in supermarkets, convenience stores...

  1. 40 CFR 82.152 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...); or equipment certified pursuant to § 82.36(a). Commercial refrigeration means, for the purposes of § 82.156(i), the refrigeration appliances utilized in the retail food and cold storage warehouse sectors. Retail food includes the refrigeration equipment found in supermarkets, convenience stores...

  2. 40 CFR 82.152 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...); or equipment certified pursuant to § 82.36(a). Commercial refrigeration means, for the purposes of § 82.156(i), the refrigeration appliances utilized in the retail food and cold storage warehouse sectors. Retail food includes the refrigeration equipment found in supermarkets, convenience stores...

  3. 76 FR 21813 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... provisions for commercial refrigeration equipment; commercial heating, ventilating, air- conditioning (HVAC... to meet that deadline. In particular, manufacturers of commercial refrigeration equipment; commercial... compliance date for filing complete certification reports for manufacturers of commercial refrigeration...

  4. 40 CFR 82.152 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...); or equipment certified pursuant to § 82.36(a). Commercial refrigeration means, for the purposes of § 82.156(i), the refrigeration appliances utilized in the retail food and cold storage warehouse sectors. Retail food includes the refrigeration equipment found in supermarkets, convenience stores...

  5. Refrigerant leak detector

    NASA Technical Reports Server (NTRS)

    Byrne, E. J.

    1979-01-01

    Quantitative leak detector visually demonstrates refrigerant loss from precision volume of large refrigeration system over established period of time from single test point. Mechanical unit is less costly than electronic "sniffers" and is more reliable due to absence of electronic circuits that are susceptible to drift.

  6. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd{sub 0.54}Er{sub 0.46})AlNi alloys having a relatively constant {Delta}Tmc over a wide temperature range. 16 figs.

  7. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  8. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers.

    PubMed

    Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A

    2017-08-01

    Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.

  9. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  10. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  11. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2018-05-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  12. Technical and Economical Demands on 25K - 77K Refrigerators for Future HTS — Series Products in Power Engineering

    NASA Astrophysics Data System (ADS)

    Gromoll, B.

    2004-06-01

    For the future high temperature superconductivity, HTS, series products new refrigerators are essential. Demands are made on these which are only partly fulfilled by refrigerators available in the market today. This refers to cooling power, initial cost and in particular reliability. Without proper refrigeration techniques it will be almost impossible to bring HTS products to the market. Based on the experiences made by the construction and operation of HTS prototypes within our company, like the 400 kW motor, 1.2 MVA current limiter and 1 MVA traction-transformer provided with refrigerators which are available in the market today, criteria have been established to identify the future technical and economical requirements. These criteria apply to efficiency, maintainability, operation flexibility, feasibility of integration and performance/cost ratio. For the temperature range of 20 K to 77 K cooling with Gifford-McMahon, Pulse Tube, Stirling and Mixture-Cascade refrigerators are applicable. The development potential of these processes are compared for the different applications in future series products. Presented are the necessary steps towards reliable and economic refrigerators from the viewpoint of an equipment manufacturer. These are essential for a market entry in the year 2008.

  13. Improving Control in a Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Borders, James; Pearson, David; Prina, Mauro

    2005-01-01

    A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.

  14. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K

    NASA Technical Reports Server (NTRS)

    Helvensteijn, Ben P. M.; Kashani, Ali

    1990-01-01

    The design of a magnetic refrigerator for space applications is discussed. The refrigerator is to operate in the temperature range of 10 K-2 K, at a 2 K cooling power of 0.10 W. As in other magnetic refrigerators operating in this temperature range GGG has been selected as the refrigerant. Crucial to the design of the magnetic refrigerator are the heat switches at both the hot and cold ends of the GGG pill. The 2 K heat switch utilizes a narrow He II filled gap. The 10 K heat switch is based on a narrow helium gas gap. For each switch, the helium in the gap is cycled by means of activated carbon pumps. The design concentrates on reducing the switching times of the pumps and the switches as a whole. A single stage system (one magnet; one refrigerant pill) is being developed. Continuous cooling requires the fully stationary system to have at least two stages running parallel/out of phase with each other. In order to conserve energy, it is intended to recycle the magnetic energy between the magnets. To this purpose, converter networks designed for superconducting magnetic energy storage are being studied.

  15. 16 CFR 1750.4 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.4 General requirements. Household refrigerators shall be equipped with a device enabling the doors thereof to be opened...

  16. 16 CFR 1750.4 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.4 General requirements. Household refrigerators shall be equipped with a device enabling the doors thereof to be opened...

  17. 16 CFR 1750.4 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.4 General requirements. Household refrigerators shall be equipped with a device enabling the doors thereof to be opened...

  18. 16 CFR 1750.4 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.4 General requirements. Household refrigerators shall be equipped with a device enabling the doors thereof to be opened...

  19. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-perchloroethylene gas-vapor stream contained within each dry cleaning machine through a refrigerated condenser or an... contained within each dry cleaning machine through a refrigerated condenser or an equivalent control device...' specifications and recommendations. (e) Each refrigerated condenser used for the purposes of complying with...

  20. 76 FR 38287 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... commercial refrigeration equipment; commercial heating, ventilating, air- conditioning (HVAC) equipment..., manufacturers of commercial refrigeration equipment; commercial HVAC equipment; commercial WH equipment; walk-in... extension to the compliance date for the certification provisions for commercial refrigeration equipment...

  1. CONTROL OF HYDROCARBON EMISSIONS FROM GASOLINE LOADING BY REFRIGERATION SYSTEMS

    EPA Science Inventory

    The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration sy...

  2. 24 CFR 3280.511 - Comfort cooling certificate and information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Refrigeration Institute Standards The central air conditioning system provided with this home has been sized... and Refrigeration Institute Standards. The central air conditioning system provided with this home has... the appropriate Air Conditioning and Refrigeration Institute Standards. When the air circulators of...

  3. THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...

  4. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure vessels used in refrigeration service. (2) If your vessel's Certificate of Inspection is renewed...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... refrigeration service. (3) Hydraulic accumulators. (4) Pressure vessels which have been satisfactorily examined...

  5. MISCIBILITY, SOLUBILITY, AND VISCOSITY MEASUREMENTS FOR R-236EA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. (NOTE: The data were needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The lubricants...

  6. The Thermodynamics of a Refrigeration System.

    ERIC Educational Resources Information Center

    Azevedo e Silva, J. F. M.

    1991-01-01

    An attempt to clarify the teaching of some of the concepts of thermodynamics through the observation of an experiment with an ordinary refrigeration system is presented. The cycle of operation in the refrigeration system and the individual processes in the cycle are described. (KR)

  7. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  8. Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods

    DOEpatents

    Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian

    2016-03-15

    A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.

  9. A cold ejector for closed-cycle helium refrigerators

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Daggett, D. L.

    1987-01-01

    The test results are presented of an initial cold helium ejector design that can be installed on a closed cycle refrigerator to provide refrigeration at temperatures below 4.2 K. The ejector, test apparatus, instrumentation, and test results are described. Tests were conducted both at room temperature and at cryogenic temperatures to provide operational experience with the ejector as well as for future use in the subsequent design of an ejector that will provide refrigeration at temperatures below 3 K.

  10. Triple-effect absorption refrigeration system with double-condenser coupling

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1993-04-27

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  11. Triple-effect absorption refrigeration system with double-condenser coupling

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  12. Stability and refrigeration of magnet cryosystems near 1.8 K using the thermomechanical effect

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Chen, W. E. W.; Caspi, S.

    1987-01-01

    Magnet cryosystem options utilizing the thermomechanical effect of He II and the mechano-caloric effect for refrigeration (referred to as vortex refrigeration) are examined. The performance of the existing He II magnet refrigeration system is briefly reviewed, with attention given to superleak properties, vortex shedding, heat input, and thermodynamic cycle. It is concluded that the possibilities of magnet heat leak use for energetics and stability improvements are promising when He II is selected as magnet coolant.

  13. Sorption cryogenic refrigeration - Status and future

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.

  14. Refrigeration arrangement and methods for reducing charge migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litch, Andrew D.; Wu, Guolian

    A refrigerator appliance including a refrigerant circuit between a condenser, an evaporator, and a compressor that includes two conduits and pressure reducing devices arranged in parallel between the evaporator and the condenser. The appliance also includes a valve system to direct refrigerant through one, both or none of the conduits and pressure reducing devices, and a heat exchanging member in thermal contact with either one pressure reducing device, or one conduit between the pressure reducing device and the valve system.

  15. Hydrophilic structures for condensation management in refrigerator appliances

    DOEpatents

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2014-10-21

    A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

  16. Drop-in substitute for dichlorodifluoromethane refrigerant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goble, G.H.

    1993-06-01

    A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Francis

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magneticmore » refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.« less

  18. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range: Progress and Future Development

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; King, Todd; Numazawa, Takenori

    2003-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA s Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magne$, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled. The drawback to single-shot ADRs is that the cooling power per unit mass is relatively low. Refrigerants that are suitable for low temperature operation necessarily have low magnetic ion density, and therefore low entropy density. Since ADRs store entropy, systems with even modest cooling powers (a few microwatts) at temperatures below 100 mK tend to be massive, averaging 10-15 kg.

  19. Development of the Consumer Refrigerator Safety Questionnaire: A Measure of Consumer Perceptions and Practices.

    PubMed

    Cairnduff, Victoria; Dean, Moira; Koidis, Anastasios

    2016-09-01

    Food preparation and storage behaviors in the home deviating from the "best practice" food safety recommendations may result in foodborne illnesses. Currently, there are limited tools available to fully evaluate the consumer knowledge, perceptions, and behavior in the area of refrigerator safety. The current study aimed to develop a valid and reliable tool in the form of a questionnaire, the Consumer Refrigerator Safety Questionnaire (CRSQ), for assessing systematically all these aspects. Items relating to refrigerator safety knowledge (n =17), perceptions (n =46), and reported behavior (n =30) were developed and pilot tested by an expert reference group and various consumer groups to assess face and content validity (n =20), item difficulty and consistency (n =55), and construct validity (n =23). The findings showed that the CRSQ has acceptable face and content validity with acceptable levels of item difficulty. Item consistency was observed for 12 of 15 in refrigerator safety knowledge. Further, all 5 of the subscales of consumer perceptions of refrigerator safety practices relating to risk of developing foodborne disease showed acceptable internal consistency (Cronbach's α value > 0.8). Construct validity of the CRSQ was shown to be very good (P = 0.022). The CRSQ exhibited acceptable test-retest reliability at 14 days with the majority of knowledge items (93.3%) and reported behavior items (96.4%) having correlation coefficients of greater than 0.70. Overall, the CRSQ was deemed valid and reliable in assessing refrigerator safety knowledge and behavior; therefore, it has the potential for future use in identifying groups of individuals at increased risk of deviating from recommended refrigerator safety practices, as well as the assessment of refrigerator safety knowledge and behavior for use before and after an intervention.

  20. The effect of refrigerated and frozen storage on butter flavor and texture.

    PubMed

    Krause, A J; Miracle, R E; Sanders, T H; Dean, L L; Drake, M A

    2008-02-01

    Butter is often stored for extended periods of time; therefore, it is important for manufacturers to know the refrigerated and frozen shelf life. The objectives of this study were to characterize the effect of refrigerated and frozen storage on the sensory and physical characteristics of butter. Fresh butter was obtained on 2 occasions from 2 facilities in 113-g sticks and 4-kg bulk blocks (2 facilities, 2 package forms). Butters were placed into both frozen (-20 degrees C) and refrigerated storage (5 degrees C). Frozen butters were sampled after 0, 6, 12, 15, and 24 mo; refrigerated butters were sampled after 0, 3, 6, 9, 12, 15, and 18 mo. Every 3 mo, oxidative stability index (OSI) and descriptive sensory analysis (texture, flavor, and color) were conducted. Every 6 mo, peroxide value (PV), free fatty acid value (FFV), fatty acid profiling, vane, instrumental color, and oil turbidity were examined. A mixed-model ANOVA was conducted to characterize the effects of storage time, temperature, and package type. Storage time, temperature, and package type affected butter flavor, OSI, PV, and FFV. Refrigerated butter quarters exhibited refrigerator/stale off-flavors concurrent with increased levels of oxidation (lower oxidative stability and higher PV and FFV) within 6 mo of refrigerated storage, and similar trends were observed for refrigerated bulk butter after 9 mo. Off-flavors were not evident in frozen butters until 12 or 18 mo for quarters and bulk butters, respectively. Off-flavors in frozen butters were not correlated with instrumental oxidation measurements. Because butter is such a desirable fat source in terms of flavor and textural properties, it is important that manufacturers understand how long their product can be stored before negative attributes develop.

  1. Method of Liquifying a gas

    DOEpatents

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  2. Photovoltaic refrigeration application: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Poley, W. A.; Scudder, L. R.

    1977-01-01

    This foreign and domestic market assessment was performed as part of the Tests and Applications Project being conducted by NASA-LeRC as part of the Department of Energy's (DOE) National Photovoltaic Program. One of the objectives of that program was to stimulate the demand for photovoltaic power systems so that appropriate markets would be developed in concert with the increasing photovoltaic production capacity. The refrigeration application represented a possible market for photovoltaics; hence, a brief survey of potential applications was conducted. Both refrigerators and refrigeration systems were considered in the assessment although the primary emphasis is on refrigerators of 9 cu ft of less. Three user sectors were examined: (1) government, (2) commercial/institutional, and (3) general public.

  3. Vaccine refrigeration

    PubMed Central

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  4. Vaccine refrigeration: thinking outside of the box.

    PubMed

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator with a battery back-up power supply and microprocessor control system is also described.

  5. The design and development of a vapor compression refrigerator/freezer for spacelab

    NASA Technical Reports Server (NTRS)

    Hye, A.

    1983-01-01

    A computer simulation was performed to determine the design criteria for a spacelab refrigerator/freezer using the test results of a vapor compression refrigerator/freezer which flew on STS-4 without problem. It has been established to have a vapor Reynolds number over 3000 at a vapor quality of 0.2 to maintain annular boiling in the evaporator and for the condenser to have a vapor Reynolds number over 15000 at its inlet to maintain annular condensation. These two constraints will virtually eliminate the effect of gravity on the performance of the refrigerator/freezer. These results are being used to build a refrigerator/freezer which will fly in Spacelab-4 scheduled for launch in December 1985.

  6. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOEpatents

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  7. 46 CFR 111.79-15 - Receptacles for refrigerated containers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...

  8. 46 CFR 111.79-15 - Receptacles for refrigerated containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...

  9. 46 CFR 111.79-15 - Receptacles for refrigerated containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...

  10. 46 CFR 111.79-15 - Receptacles for refrigerated containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Receptacles for refrigerated containers. 111.79-15 Section 111.79-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers...

  11. 77 FR 7547 - Energy Conservation Standards for Wine Chillers and Miscellaneous Refrigeration Products: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... Conservation Standards for Wine Chillers and Miscellaneous Refrigeration Products: Public Meeting and.... Department of Energy (DOE) is considering establishing energy conservation standards for residential wine... Conservation Standards for Wine Chillers and Miscellaneous Refrigeration Products, and provide docket number...

  12. 78 FR 65223 - Energy Conservation Program for Consumer Products: Proposed Determination of Miscellaneous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...: The U.S. Department of Energy (DOE) has preliminarily determined that wine chillers and other... Wine Chillers 2. Thermoelectric Refrigeration Products 3. Absorption Refrigeration Products V... to separate them from other miscellaneous residential refrigeration products such as wine chillers...

  13. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  14. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  15. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  16. DESIGN AND OPTIMIZATION OF A REFRIGERATION SYSTEM

    EPA Science Inventory

    The paper discusses the design and optimization of a refrigeration system, using a mathematical model of a refrigeration system modified to allow its use with the optimization program. he model was developed using only algebraic equations so that it could be used with the optimiz...

  17. The Refrigeration System; Appliance Repair--Advanced: 9027.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course outline provides students with an understanding of the observation of basic refrigeration system components, the techniques used in working with copper tubing, and practice demonstrations to show what they have learned. Course content includes specific block objectives, orientation, refrigeration components (evaporator, compressor,…

  18. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236FA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants . (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oi...

  19. 78 FR 41867 - Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Open Teleconference/Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ...), Water Heating (WH), and Refrigeration Certification Working Group (Commercial Certification Group). The... possible, reach consensus on proposed certification requirements for commercial HVAC, WH, and refrigeration...-Conditioning, Heating and Refrigeration Institute) Timothy Ballo (EarthJustice) Jeff Bauman (National...

  20. 10 CFR 434.701 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1. RS-16 ARI Standard.... Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203...-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1...

  1. Commercial Refrigeration Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for commercial refrigeration technology courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for refrigeration mechanic, and its Dictionary of Occupational Titles code, are six sections…

  2. 10 CFR 434.701 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1. RS-16 ARI Standard.... Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203...-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1...

  3. 40 CFR 82.156 - Required practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appliance to four inches of mercury vacuum. (i)(1) Owners or operators of commercial refrigeration equipment...) Owners or operators of federally-owned commercial refrigeration equipment may have more than 30 days to repair leaks if the refrigeration appliance is located in an area subject to radiological contamination...

  4. 40 CFR 82.156 - Required practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appliance to four inches of mercury vacuum. (i)(1) Owners or operators of commercial refrigeration equipment...) Owners or operators of federally-owned commercial refrigeration equipment may have more than 30 days to repair leaks if the refrigeration appliance is located in an area subject to radiological contamination...

  5. 10 CFR 434.701 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1. RS-16 ARI Standard.... Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203...-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1...

  6. 10 CFR 434.701 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1. RS-16 ARI Standard.... Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203...-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1...

  7. 40 CFR 82.156 - Required practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appliance to four inches of mercury vacuum. (i)(1) Owners or operators of commercial refrigeration equipment...) Owners or operators of federally-owned commercial refrigeration equipment may have more than 30 days to repair leaks if the refrigeration appliance is located in an area subject to radiological contamination...

  8. 40 CFR 82.156 - Required practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appliance to four inches of mercury vacuum. (i)(1) Owners or operators of commercial refrigeration equipment...) Owners or operators of federally-owned commercial refrigeration equipment may have more than 30 days to repair leaks if the refrigeration appliance is located in an area subject to radiological contamination...

  9. 10 CFR 434.701 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1. RS-16 ARI Standard.... Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203...-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425, Arlington, VA 22203 434.403.1...

  10. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Refrigerated Volume and Total Shelf Area of Household Refrigerators and Household Wine Chillers,” and sections... Chillers and Freezers.” [70 FR 60414, Oct. 18, 2005, as amended at 77 FR 10318, Feb. 21, 2012] Energy...

  11. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Refrigerated Volume and Total Shelf Area of Household Refrigerators and Household Wine Chillers,” and sections... Chillers and Freezers.” [70 FR 60414, Oct. 18, 2005, as amended at 77 FR 10318, Feb. 21, 2012] Energy...

  12. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  13. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  14. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  15. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  16. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  17. A small, single stage orifice pulse tube cryocooler demonstration

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1990-01-01

    This final report summarizes and presents the analytical and experimental progress in the present effort. The principal objective of this effort was the demonstration of a 0.25 Watt, 80 Kelvin orifice pulse tube refrigerator. The experimental apparatus is described. The design of a partially optimized pulse tube refrigerator is included. The refrigerator demonstrates an ultimate temperature of 77 K, has a projected cooling power of 0.18 Watts at 80 K, and has a measured cooling power of 1 Watt at 97 K, with an electrical efficiency of 250 Watts/Watt, much better than previous pulse tube refrigerators. A model of the pulse tube refrigerator that provides estimates of pressure ratio and mass flow within the pulse tube refrigerator, based on component physical characteristics is included. A model of a pulse tube operation based on generalized analysis which is adequate to support local optimization of existing designs is included. A model of regenerator performance based on an analogy to counterflow heat exchangers is included.

  18. Mixed refrigerant cycle with neon, hydrogen, and helium for cooling sc power transmission lines

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Dittmar, N.; Haberstroh, Ch; Quack, H.

    2017-02-01

    The use of superconductors in very long power transmission lines requires a reliable and effective cooling. Since the use of cryocoolers does not appear feasible for very long distances, a cryogenic refrigeration cycle needs to be developed. For cooling superconducting cables based on MgB2 (T c = 39 K), liquid hydrogen (LH2) is the obvious cooling agent. For recooling LH2, one would need a refrigeration cycle providing temperatures at around 20 K. For this purpose, one could propose the use of a helium refrigeration cycle. But the very low molecular weight of helium restricts the use of turbo compressors, which limits the overall efficiency. In order to increase the molecular weight of the refrigerant a mixture of cryogens could be used, allowing the use of a turbo compressor. Temperatures below the triple point of neon are achieved by phase separation. This paper presents a possible layout of a refrigeration cycle utilizing a three component mixture of neon, hydrogen, and helium.

  19. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  20. Performance of raw bovine meat preservation by hyperbaric storage (quasi energetically costless) compared to refrigeration.

    PubMed

    Freitas, Paulo; Pereira, Sofia A; Santos, Mauro D; Alves, Susana P; Bessa, Rui J B; Delgadillo, Ivonne; Saraiva, Jorge A

    2016-11-01

    Hyperbaric storage at room temperature (without temperature control) of raw bovine meat was studied and compared to refrigeration. Samples were first stored for 12h at 50, 100 and 150MPa, and in a second set of experiments, for a longer period of 10days at 50MPa. For the 12h storage, refrigeration and 50MPa had a similar microbial growth inhibition effect and, at 100 and 150MPa an additional microbial inactivation effect was found. For the longer experiment (10days at 50MPa) results pointed for a shelf-life increase of raw beef compared to samples stored under refrigeration. For both tests (12h and 10days) samples preserved under pressure showed no detrimental effect on physicochemical parameters comparatively to the initial and refrigerated samples. These results indicate that hyperbaric storage at room temperature not only allows high energy savings, but additionally has potential to extend the shelf-life of a perishable food product compared to refrigeration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Oxygen chemisorption compressor study for cryogenic J-T refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary D.

    1987-01-01

    Over twenty potentially reversible heat-powered oxide reactions have been studied and/or tested to determine their potential use as thermochemical oxygen compressors for cryogenic J-T LO2 refrigerators. One gas-solid compound family, Pr(1-n)Ce(n)O(x), proved to be completely reversible with fast kinetics for all pressure ranges tested below 650 C. With a heat-powered charcoal/methane physical adsorption upper stage and a Pr(1-n)Ce(n)O(x) chemisorption lower stage, temperatures should be attainable in the 55-80 K range for less power and over five times less weight than for charcoal/nitrogen sorption refrigeration systems. Total system power requirements with a hydride chemisorption lower stage (10 K to 7 K minimum) are about three times less than any mechanical refrigerator, and spacecraft refrigeration weights are about twenty times less. Due to the lack of wear-related moving parts in sorption refrigerators, life expectancy is at least ten years, and there essentially no vibration.

  2. Development of a refrigeration system for lunar surface and spacecraft applications

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1976-01-01

    An evaluation of refrigeration devices suitable for potential lunar surface and spacecraft applications was performed. The following conclusions were reached: (1) the vapor compression system is the best overall refrigeration system for lunar surface and spacecraft applications and the single phase radiator system is generally preferred for earth orbit applications, (2) the vapor compression cycle may have some application for simultaneous heating and cooling, (3) a Stirling cycle refrigerator was selected for the manned cabin of the space shuttle, and (4) significant increases in payload heat rejection can be obtained by a kit vapor compression refrigerator added to the shuttle R-21 loop. The following recommendations were made: (1) a Stirling cycle refrigerator may be used for food freezer and biomedical sample storage, (2) the best system for a food freezer/experiments compartment for an earth orbit space station has not been determined, (3) a deployed radiator system can be designed for large heat loads in earth orbit.

  3. Thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)

    1996-01-01

    A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.

  4. Magnetic cooling for microkelvin nanoelectronics on a cryofree platform.

    PubMed

    Palma, M; Maradan, D; Casparis, L; Liu, T-M; Froning, F N M; Zumbühl, D M

    2017-04-01

    We present a parallel network of 16 demagnetization refrigerators mounted on a cryofree dilution refrigerator aimed to cool nanoelectronic devices to sub-millikelvin temperatures. To measure the refrigerator temperature, the thermal motion of electrons in a Ag wire-thermalized by a spot-weld to one of the Cu nuclear refrigerators-is inductively picked-up by a superconducting gradiometer and amplified by a SQUID mounted at 4 K. The noise thermometer as well as other thermometers are used to characterize the performance of the system, finding magnetic field independent heat-leaks of a few nW/mol, cold times of several days below 1 mK, and a lowest temperature of 150 μK of one of the nuclear stages in a final field of 80 mT, close to the intrinsic SQUID noise of about 100 μK. A simple thermal model of the system capturing the nuclear refrigerator, heat leaks, and thermal and Korringa links describes the main features very well, including rather high refrigerator efficiencies typically above 80%.

  5. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  6. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  7. Development of Carbon Dioxide Hermitic Compressor

    NASA Astrophysics Data System (ADS)

    Imai, Satoshi; Oda, Atsushi; Ebara, Toshiyuki

    Because of global environmental problems, the existing refrigerants are to be replaced with natural refrigerants. CO2 is one of the natural refrigerants and environmentally safe, inflammable and non-toxic refrigerant. Therefore high efficiency compressor that can operate with natural refrigerants, especially CO2, needs to be developed. We developed a prototype CO2 hermetic compressor, which is able to use in carbon dioxide refrigerating systems for practical use. The compressor has two rolling pistons, and it leads to low vibrations, low noise. In additions, two-stage compression with two cylinders is adopted, because pressure difference is too large to compress in one stage. And inner pressure of the shell case is intermediate pressure to minimize gas leakage between compressing rooms and inner space of shell case. Intermediate pressure design enabled to make the compressor smaller in size and lighter in weight. As a result, the compressor achieved high efficiency and high reliability by these technology. We plan to study heat pump water heater, cup vending machine and various applications with CO2 compressor.

  8. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends onmore » the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.« less

  9. Identifying lubricant options for compressor bearing designs

    NASA Astrophysics Data System (ADS)

    Karnaz, J.; Seeton, C.; Dixon, L.

    2017-08-01

    Today’s refrigeration and air conditioning market is not only driven by the environmental aspects of the refrigerants, but also by the energy efficiency and reliability of system operation. Numerous types of compressor designs are used in refrigeration and air conditioning applications which means that different bearings are used; and in some cases, multiple bearing types within a single compressor. Since only one lubricant is used, it is important to try to optimize the lubricant to meet the various demands and requirements for operation. This optimization entails investigating different types of lubricant chemistries, viscosities, and various formulation options. What makes evaluating these options more challenging is the refrigerant which changes the properties of the lubricant delivered to the bearing. Once the lubricant and refrigerant interaction are understood, through various test methods, then work can start on collaborating with compressor engineers on identifying the lubricant chemistry and formulation options. These interaction properties are important to the design engineer to make decisions on the adequacy of the lubricant before compressor tests are started. This paper will discuss the process to evaluate lubricants for various types of compressors and bearing design with focus on what’s needed for current refrigerant trends. In addition, the paper will show how the lubricant chemistry choice can be manipulated through understanding of the bearing design and knowledge of interaction with the refrigerant to maximize performance. Emphasis will be placed on evaluation of synthetic lubricants for both natural and synthetic low GWP refrigerants.

  10. Immunoglobulin A and Protein Content of Low-Fat Human Milk Prepared for the Treatment of Chylothorax.

    PubMed

    Drewniak, Michelle; Waterhouse, Chris C M; Lyon, Andrew W; Fenton, Tanis R

    2017-12-14

    Several case studies report successful recovery from chylothorax while infants were fed low-fat human milk. The reported growth rates were inadequate despite milk supplementation with added medium-chain triglycerides (MCTs). The objective was to determine the effect that various human milk fat separating methods, refrigerated centrifuge, room temperature centrifuge, and refrigeration have on the loss of immunoglobulin A (IgA) and protein in the preparation of low-fat human milk. Protein and IgA were measured in 31 samples of reduced-fat human milk. Reduced-fat breastmilk samples were prepared by separating the fat using 3 methods (refrigerated centrifuge, room temperature centrifuge, and a refrigeration method), followed by lower fat milk extraction by syringe. The refrigeration method decreased IgA concentration by 17% (P = .035) while centrifugation and fat removal from the human milk samples led to a 38% decline in IgA concentration in both the nonrefrigerated and refrigerated centrifuge samples (P < .0001 for both). Protein declined by 11% with refrigeration and fat removal (P < .0001) while centrifugation and fat removal decreased protein concentration by 31% (P < .0001) in both nonrefrigerated centrifuge and refrigerated centrifuge samples. Preparing low-fat human milk for patients with chylothorax decreased the IgA and protein contents. As well as fat (in the form of MCTs), protein likely needs to be supplemented for infants fed low-fat human milk to support adequate growth. © 2017 American Society for Parenteral and Enteral Nutrition.

  11. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  12. Refrigeration Compressors for the Altitude Wind Tunnel

    NASA Image and Video Library

    1944-09-21

    These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.

  13. Effects of hysteresis and Brayton cycle constraints on magnetocaloric refrigerant performance

    NASA Astrophysics Data System (ADS)

    Brown, T. D.; Buffington, T.; Shamberger, P. J.

    2018-05-01

    Despite promising proofs of concept, system-level implementation of magnetic refrigeration has been critically limited by history-dependent refrigerant losses that interact with governing thermodynamic cycles to adversely impact refrigeration performance. Future development demands a more detailed understanding of how hysteresis limits performance, and of how different types of cycles can mitigate these limitations, but without the extreme cost of experimental realization. Here, the utility of Brayton cycles for magnetic refrigeration is investigated via direct simulation, using a combined thermodynamic-hysteresis modeling framework to compute the path-dependent magnetization and entropy of a model alloy for a variety of feasible Brayton cycles between 0-1.5 T and 0-5 T. By simultaneously varying the model alloy's hysteresis properties and applying extensions of the thermodynamic laws to non-equilibrium systems, heat transfers and efficiencies are quantified throughout the space of hystereses and Brayton cycles and then compared with a previous investigation using Ericsson cycles. It is found that (1) hysteresis losses remain a critical obstacle to magnetic refrigeration implementation, with efficiencies >80% in the model system requiring hysteresis <0.5 K at 1.5 T; (2) optimal-efficiency Brayton cycles for given field and hysteresis constraints exist and are determined uniquely by the refrigerant transformation temperatures at the relevant fields; (3) for a given hysteresis and field constraint, Brayton and Ericsson-type cycles generate similar efficiencies; for a given temperature span, Ericsson cycles lift more heat per cycle, with the difference decreasing with the refrigerant heat capacity outside the phase transformation region.

  14. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  15. 7 CFR 3300.43 - Application for approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...

  16. 7 CFR 3300.43 - Application for approval.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...

  17. 7 CFR 3300.43 - Application for approval.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...

  18. 7 CFR 3300.43 - Application for approval.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...

  19. 7 CFR 3300.43 - Application for approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tests of mechanical refrigerating appliances according to subpart D of this rule. (d) A general... laboratory of a mechanical refrigerating appliance for a Class “C” mechanically refrigerated container or... significant change occur in the facility with respect to structure or test equipment as a result of redesign...

  20. 16 CFR § 1750.4 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...§ 1750.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.4 General requirements. Household refrigerators shall be equipped with a device enabling the doors thereof to be opened...

  1. 46 CFR 151.40-1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...

  2. 46 CFR 151.40-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...

  3. 46 CFR 151.40-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...

  4. 46 CFR 151.40-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...

  5. 46 CFR 151.40-1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lower energy vapor or its condensate returned to the tank. (2) External heat exchange. A refrigeration... heat exchanger. Refrigeration is not accomplished by direct compression of the cargo. (c) Internal heat exchange. A refrigeration system in which a cooling fluid is passed through heat transfer coils immersed in...

  6. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  7. 76 FR 32142 - Bottom Mount Combination Refrigerator-Freezers From the Republic of Korea: Postponement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-866] Bottom Mount Combination... Department) initiated the countervailing duty investigation of bottom mount combination refrigerator-freezers from the Republic of Korea. See Bottom Mount Combination Refrigerator-Freezers From the Republic of...

  8. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  9. 75 FR 24824 - Energy Efficiency Program for Consumer Products: Public Meeting and Availability of the Framework...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Availability of the Framework Document for Commercial Refrigeration Equipment AGENCY: Office of Energy... data collection process to consider amended energy conservation standards for commercial refrigeration... Energy, Building Technologies Program, Mailstop EE-2J, Framework Document for Commercial Refrigeration...

  10. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  11. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  12. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  13. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  14. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  15. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  16. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  17. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  18. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  19. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  20. U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia

    Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’smore » Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.« less

Top