Science.gov

Sample records for regenerate central nervous

  1. Central nervous system regeneration: from leech to opossum

    PubMed Central

    Mladinic, M; Muller, K J; Nicholls, J G

    2009-01-01

    A major problem of neurobiology concerns the failure of injured mammalian spinal cord to repair itself. This review summarizes work done on two preparations in which regeneration can occur: the central nervous system of an invertebrate, the leech, and the spinal cord of an immature mammal, the opossum. The aim is to understand cellular and molecular mechanisms that promote and prevent regeneration. In the leech, an individual axon regrows successfully to re-establish connections with its synaptic target, while avoiding other neurons. Functions that were lost are thereby restored. Moreover, pairs of identified neurons become re-connected with appropriate synapses in culture. It has been shown that microglial cells and nitric oxide play key roles in leech CNS regeneration. In the opossum, the neonatal brain and spinal cord are so tiny that they survive well in culture. Fibres grow across spinal cord lesions in neonatal animals and in vitro, but axon regeneration stops abruptly between postnatal days 9 and 12. A comprehensive search has been made in spinal cords that can and cannot regenerate to identify genes and establish their locations. At 9 days, growth-promoting genes, their receptors and key transcription molecules are up-regulated. By contrast at 12 days, growth-inhibitory molecules associated with myelin are prominent. The complete sequence of the opossum genome and new methods for transfecting genes offer ways to determine which molecules promote and which inhibit spinal cord regeneration. These results lead to questions about how basic research on mechanisms of regeneration could be ‘translated’ into effective therapies for patients with spinal cord injuries. PMID:19525562

  2. Central nervous system regeneration: from leech to opossum.

    PubMed

    Mladinic, M; Muller, K J; Nicholls, J G

    2009-06-15

    A major problem of neurobiology concerns the failure of injured mammalian spinal cord to repair itself. This review summarizes work done on two preparations in which regeneration can occur: the central nervous system of an invertebrate, the leech, and the spinal cord of an immature mammal, the opossum. The aim is to understand cellular and molecular mechanisms that promote and prevent regeneration. In the leech, an individual axon regrows successfully to re-establish connections with its synaptic target, while avoiding other neurons. Functions that were lost are thereby restored. Moreover, pairs of identified neurons become re-connected with appropriate synapses in culture. It has been shown that microglial cells and nitric oxide play key roles in leech CNS regeneration. In the opossum, the neonatal brain and spinal cord are so tiny that they survive well in culture. Fibres grow across spinal cord lesions in neonatal animals and in vitro, but axon regeneration stops abruptly between postnatal days 9 and 12. A comprehensive search has been made in spinal cords that can and cannot regenerate to identify genes and establish their locations. At 9 days, growth-promoting genes, their receptors and key transcription molecules are up-regulated. By contrast at 12 days, growth-inhibitory molecules associated with myelin are prominent. The complete sequence of the opossum genome and new methods for transfecting genes offer ways to determine which molecules promote and which inhibit spinal cord regeneration. These results lead to questions about how basic research on mechanisms of regeneration could be 'translated' into effective therapies for patients with spinal cord injuries.

  3. Evolution and regeneration of the planarian central nervous system.

    PubMed

    Umesono, Yoshihiko; Agata, Kiyokazu

    2009-04-01

    More than 100 years ago, early workers realized that planarians offer an excellent system for regeneration studies. Another unique aspect of planarians is that they occupy an interesting phylogenetic position with respect to the nervous system in that they possess an evolutionarily primitive brain structure and can regenerate a functional brain from almost any tiny body fragment. Recent molecular studies have revisited planarian regeneration and revealed key information about the cellular and molecular mechanisms underlying brain regeneration in planarians. One of our great advances was identification of a gene, nou-darake, which directs the formation of a proper extrinsic environment for pluripotent stem cells to differentiate into brain cells in the planarian Dugesia japonica. Our recent findings have provided mechanistic insights into stem cell biology and also evolutionary biology.

  4. [Neurogenesis as a therapeutic strategy to regenerate central nervous system].

    PubMed

    Arias-Carrión, O; Drucker-Colín, R

    In the past few years, it has been demonstrated that the adult mammalian brain maintains the capacity to generate new neurons from neural stem/progenitor cells. These new neurons integrate into pre-existing systems through a process referred to as 'neurogenesis in the adult brain'. This discovery has modified our understanding of how the central nervous system functions in health and disease. Until today, a great effort has been made attempting to decipher the mechanisms regulating adult neurogenesis, which might help to induce neuronal endogenous cell replacement in various neurological diseases. In this revision, we will attempt to shed some light on the neurogenesis process with respect to diseases of the central nervous system and we will describe some therapeutic potentials in relation to neurodegenerative diseases.

  5. Promoting central nervous system regeneration: lessons from cranial nerve I.

    PubMed

    Ruitenberg, Marc J; Vukovic, Jana

    2008-01-01

    The olfactory nerve differs from cranial nerves III-XII in that it contains a specialised type of glial cell, called 'olfactory ensheathing cell' (OEC), rather than Schwann cells. In addition, functional neurogenesis persists postnatally in the olfactory system, i.e. the primary olfactory pathway continuously rebuilds itself throughout adult life. The presence of OECs in the olfactory nerve is thought to be critical to this continuous growth process. Because of this intrinsic capacity for self-repair, the mammalian olfactory system has proved as a useful model in neuroregeneration studies. In addition, OECs have been used in transplantation studies to promote pathway regeneration elsewhere in the nervous system. Here, we have reviewed the parameters that allow for repair within the primary olfactory pathway and the role that OECs are thought to play in this process. We conclude that, in addition to intrinsic growth potential, the presence of an aligned substrate to the target structure is a fundamental prerequisite for appropriate restoration of connectivity with the olfactory bulb. Hence, strategies to promote regrowth of injured nerve pathways should incorporate usage of aligned, oriented substrates of OECs or other cellular conduits with additional intervention to boost neuronal cell body responses to injury and/or neutralisation of putative inhibitors.

  6. Self-assembling peptide nanofiber hydrogels for central nervous system regeneration

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Pi, Bin; Wang, Hui; Wang, Xiu-Mei

    2015-03-01

    Central nervous system (CNS) presents a complex regeneration problem due to the inability of central neurons to regenerate correct axonal and dendritic connections. However, recent advances in developmental neurobiology, cell signaling, cell-matrix interaction, and biomaterials technologies have forced a reconsideration of CNS regeneration potentials from the viewpoint of tissue engineering and regenerative medicine. The applications of a novel tissue regeneration-inducing biomaterial and stem cells are thought to be critical for the mission. The use of peptide nanofiber hydrogels in cell therapy and tissue engineering offers promising perspectives for CNS regeneration. Self-assembling peptide undergo a rapid transformation from liquid to gel upon addition of counterions or pH adjustment, directly integrating with the host tissue. The peptide nanofiber hydrogels have mechanical properties that closely match the native central nervous extracellular matrix, which could enhance axonal growth. Such materials can provide an optimal three dimensional microenvironment for encapsulated cells. These materials can also be tailored with bioactive motifs to modulate the wound environment and enhance regeneration. This review intends to detail the recent status of self-assembling peptide nanofiber hydrogels for CNS regeneration.

  7. Reconstitution of the central and peripheral nervous system during salamander tail regeneration.

    PubMed

    McHedlishvili, Levan; Mazurov, Vladimir; Grassme, Kathrin S; Goehler, Kerstin; Robl, Bernhard; Tazaki, Akira; Roensch, Kathleen; Duemmler, Annett; Tanaka, Elly M

    2012-08-21

    We show that after tail amputation in Ambystoma mexicanum (Axolotl) the correct number and spacing of dorsal root ganglia are regenerated. By transplantation of spinal cord tissue and nonclonal neurospheres, we show that the central spinal cord represents a source of peripheral nervous system cells. Interestingly, melanophores migrate from preexisting precursors in the skin. Finally, we demonstrate that implantation of a clonally derived spinal cord neurosphere can result in reconstitution of all examined cell types in the regenerating central spinal cord, suggesting derivation of a cell with spinal cord stem cell properties.

  8. Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis.

    PubMed

    Chen, Qiang; Lin, Gui-miao; Wu, Nan; Tang, Sheng-wei; Zheng, Zhi-jia; Lin, Marie Chia-mi; Xu, Gai-xia; Liu, Hao; Deng, Yue-yue; Zhang, Xiao-yun; Chen, Si-ping; Wang, Xiao-mei; Niu, Han-ben

    2016-05-01

    Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity. © 2016 Wiley Periodicals, Inc.

  9. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  10. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  11. Taurine as a micronutrient in development and regeneration of the central nervous system.

    PubMed

    Lima, L; Obregon, F; Cubillos, S; Fazzino, F; Jaimes, I

    2001-01-01

    Taurine is an amino acid known to possess trophic properties in the central nervous system. The relevance of its presence in maternal milk is related to its role as an essential nutrient. Taurine deficiency around birth produces anatomical and functional modifications in the brain and in the retina. In addition, taurine favors neuron proliferation and survival, as well as neurite extension. The mechanisms by which taurine exerts its trophic role in the regenerating retina are related to increases in calcium fluxes, to modifications of protein phosphorylation, and to influence of the target organ. Moreover, taurine-zinc interaction might be crucial in the development of structures such as the hippocampal formation. Thus, taurine can be considered as one of the determinant nutritional molecules during development and regeneration of the central nervous system.

  12. Regeneration strategies after the adult mammalian central nervous system injury—biomaterials

    PubMed Central

    Gao, Yudan; Yang, Zhaoyang; Li, Xiaoguang

    2016-01-01

    The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood–brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration. PMID:27047678

  13. Reconstitution of the central nervous system during salamander tail regeneration from the implanted neurospheres.

    PubMed

    McHedlishvili, Levan; Mazurov, Vladimir; Tanaka, Elly M

    2012-01-01

    Urodele amphibians such as axolotl are well known for their regenerative potential of the damaged central nervous system structures. Upon tail amputation, neural stem cells behind the amputation plane undergo self-renewing divisions and contribute to the functional spinal cord in the newly formed regenerate. The neural stem cells, harboring this potential, can be isolated from the animal and cultured under the suspension conditions. After 2-3 weeks in vitro they will proliferate and form the floating aggregates of the spherical shape, so-called neurospheres. Reimplanted back into the animal, the neurospheres can efficiently integrate in the spinal cord lesion and contribute to the following spinal cord regeneration events. Here we demonstrate the unique method of the axolotl tail spinal cord regeneration from the implanted neurosphere.

  14. Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System

    PubMed Central

    Van houcke, Jessie

    2017-01-01

    Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies. PMID:28203046

  15. Neural stem cells and strategies for the regeneration of the central nervous system.

    PubMed

    Okano, Hideyuki

    2010-01-01

    The adult mammalian central nervous system (CNS), especially that of adult humans, is a representative example of organs that do not regenerate. However, increasing interest has focused on the development of innovative therapeutic methods that aim to regenerate damaged CNS tissue by taking advantage of recent advances in stem cell and neuroscience research. In fact, the recapitulation of normal neural development has become a vital strategy for CNS regeneration. Normal CNS development is initiated by the induction of stem cells in the CNS, i.e., neural stem cells (NSCs). Thus, the introduction or mobilization of NSCs could be expected to lead to CNS regeneration by recapitulating normal CNS development, in terms of the activation of the endogenous regenerative capacity and cell transplantation therapy. Here, the recent progress in basic stem cell biology, including the author's own studies, on the prospective identification of NSCs, the elucidation of the mechanisms of ontogenic changes in the differentiation potential of NSCs, the induction of neural fate and NSCs from pluripotent stem cells, and their therapeutic applications are summarized. These lines of research will, hopefully, contribute to a basic understanding of the nature of NSCs, which should in turn lead to feasible strategies for the development of ideal "stem cell therapies" for the treatment of damaged brain and spinal cord tissue.

  16. Robust axonal regeneration occurs in the injured CAST/Ei mouse central nervous system

    PubMed Central

    Omura, Takao; Omura, Kumiko; Tedeschi, Andrea; Riva, Priscilla; Painter, Michio W; Rojas, Leticia; Martin, Joshua; Lisi, Véronique; Huebner, Eric A; Latremoliere, Alban; Yin, Yuqin; Barrett, Lee; Singh, Bhagat; Lee, Stella; Crisman, Tom; Gao, Fuying; Li, Songlin; Kapur, Kush; Geschwind, Daniel H; Kosik, Kenneth S; Coppola, Giovanni; He, Zhigang; Carmichael, S Thomas; Benowitz, Larry I; Costigan, Michael; Woolf, Clifford J

    2015-01-01

    SUMMARY Axon regeneration in the central nervous system (CNS) requires reactivating injured neurons’ intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater spouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. Inhibition of Activin signaling in CAST/Ei mice diminishes their CNS regenerative capacity whereas its activation in C57BL/6 animals boosts regeneration. This screen demonstrates that mammalian CNS regeneration can occur and reveals a molecular pathway that contributes to this ability. PMID:26004914

  17. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system.

    PubMed

    Elliott Donaghue, Irja; Tam, Roger; Sefton, Michael V; Shoichet, Molly S

    2014-09-28

    Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted.

  18. Endogenous bioelectric fields: a putative regulator of wound repair and regeneration in the central nervous system

    PubMed Central

    Baer, Matthew L.; Colello, Raymond J.

    2016-01-01

    Studies on a variety of highly regenerative tissues, including the central nervous system (CNS) in non-mammalian vertebrates, have consistently demonstrated that tissue damage induces the formation of an ionic current at the site of injury. These injury currents generate electric fields (EF) that are 100-fold increased in intensity over that measured for uninjured tissue. In vitro and in vivo experiments have convincingly demonstrated that these electric fields (by their orientation, intensity and duration) can drive the migration, proliferation and differentiation of a host of cell types. These cellular behaviors are all necessary to facilitate regeneration as blocking these EFs at the site of injury inhibits tissue repair while enhancing their intensity promotes repair. Consequently, injury-induced currents, and the EFs they produce, represent a potent and crucial signal to drive tissue regeneration and repair. In this review, we will discuss how injury currents are generated, how cells detect these currents and what cellular responses they can induce. Additionally, we will describe the growing evidence suggesting that EFs play a key role in regulating the cellular response to injury and may be a therapeutic target for inducing regeneration in the mammalian CNS. PMID:27482197

  19. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture.

    PubMed

    Cebrià, Francesc; Newmark, Phillip A

    2005-08-01

    Conserved axon guidance mechanisms are essential for proper wiring of the nervous system during embryogenesis; however, the functions of these cues in adults and during regeneration remain poorly understood. Because freshwater planarians can regenerate a functional central nervous system (CNS) from almost any portion of their body, they are useful models in which to study the roles of guidance cues during neural regeneration. Here, we characterize two netrin homologs and one netrin receptor family member from Schmidtea mediterranea. RNAi analyses indicate that Smed-netR (netrin receptor) and Smed-netrin2 are required for proper CNS regeneration and that Smed-netR may mediate the response to Smed-netrin2. Remarkably, Smed-netR and Smed-netrin2 are also required in intact planarians to maintain the proper patterning of the CNS. These results suggest a crucial role for guidance cues, not only in CNS regeneration but also in maintenance of neural architecture.

  20. A tunable protein-based scaffold for the study of central nervous system regeneration

    NASA Astrophysics Data System (ADS)

    Straley, Karin

    Central nervous system (CNS) injuries pose a significant and potentially debilitating health problem in society today and, to date, no successful clinical repair strategies have been advanced. The development of effective treatments is severely hindered by the quick formation of a complex, inhibitory scar at the site of CNS injury. This scar both physically blocks and chemically suppresses nerve regeneration. It has been hypothesized that combinatorial approaches involving biomaterial scaffolds, cell transplantation, and pro-survival factors, which provide a more permissive growth environment, have the highest chance of stimulating regeneration. The work completed in this thesis focuses on the design and characterization of a biomimetic hydrogel scaffold constructed from chemically crosslinked recombinant proteins. This protein-based scaffold has been designed to offer a flexible platform for the systematic optimization of key scaffold design parameters, such as mechanical strength, degradation, cellular interaction, molecule delivery, and topography. Specifically, a collection of proteins containing sequences previously shown to enhance cell adhesion, to promote neurite extension, and to exhibit varying susceptibility to cleavage by neurite-secreted proteases were synthesized to serve as the polymer backbone for the scaffold. Experiments were conducted to analyze the capacity of scaffolds, constructed from single proteins or mixtures of proteins, to independently control cell behavior, scaffold degradation properties, and scaffold mechanical properties based upon differences in the primary protein sequence and crosslinking conditions. In addition, composite scaffolds constructed by layered spatial deposition of chemically crosslinked, protease-degradable proteins were applied to the formation of dynamic internal, three-dimensional scaffold patterns that can be directly coupled to molecule delivery. Overall, this work demonstrates the tunable and bio

  1. Metallothionein in the central nervous system: roles in protection, regeneration and cognition

    PubMed Central

    West, Adrian K.; Hidalgo, Juan; Eddins, Donnie; Levin, Edward D.; Aschner, Michael

    2008-01-01

    Metallothionein (MT) is an enigmatic protein, and its physiological role remains a matter of intense study and debate fifty years after its discovery. This is particularly true of its function in the central nervous system (CNS), where the challenge remains to link its known biochemical properties of metal binding and free radical scavenging to the intricate workings of brain. In this compilation of four reports, first delivered at the 11th International Neurotoxicology Association (INA-11) meeting, June 2007, the authors present the work of their laboratories, each of which gives an important insight into the actions of MT in the brain. What emerges is that MT has the potential to contribute to a variety of processes, including neuroprotection, regeneration, and even cognitive functions. In this article, the properties and CNS expression of MT are briefly reviewed before Dr Juan Hidalgo describes his pioneering work using transgenic models of MT expression to demonstrate how this protein plays a major role in the defence of the CNS against neurodegenerative disorders and other CNS injuries. His group’s work leads to two further questions, what are the mechanisms at the cellular level by which MT acts, and does this protein influence higher order issues of architecture and cognition. These topics are addressed in the second and third sections of this review by Dr Adrian West, and Drs Edward Levin and Donnie Eddins, respectively. Finally, Dr Michael Aschner examines the ability of MT to protect against a specific toxicant, methymercury, in the CNS. PMID:18313142

  2. Perforated microelectrode arrays implanted in the regenerating adult central nervous system.

    PubMed

    Heiduschka, P; Romann, I; Stieglitz, T; Thanos, S

    2001-09-01

    Adult mammalian optic nerve axons are able to regenerate, when provided with the permissive environment of an autologous peripheral nerve graft, which is usually the sciatic nerve. This study demonstrates the ability of adult rat optic nerve axons to regenerate through the preformed perforations of a polyimide electrode carrier implanted at the interface between the proximal stump of the cut optic nerve and the stump of the peripheral nerve piece used for grafting. Evidence that retinal ganglion cells regenerated their axons through the perforated electrode carrier was obtained by retrograde labeling with a fluorescent dye deposited into the sciatic nerve graft beyond the nerve-carrier-nerve junction. The number of regenerating cells could be enhanced by injecting neuroprotective drugs like aurintricarboxylic acid and cortisol intravitreally. A second line of evidence was obtained by immunohistochemical staining with antibodies to neurofilament. Third, electrical activity of the regenerating nerves was recorded after stimulating the retina with a flash of light. The results suggest that a regenerating central nerve tract may serve as an experimental model to implant artificial microdevices to monitor the physiological and topographical properties of neurites passing through the device or to stimulate them, thus interfering with their potential to grow. This study reports for the first time that the optic nerve has unique properties, which aids in the realization of these goals.

  3. Metallothionein-I/II Promotes Axonal Regeneration in the Central Nervous System*

    PubMed Central

    Siddiq, Mustafa M.; Hannila, Sari S.; Carmel, Jason B.; Bryson, John B.; Hou, Jianwei; Nikulina, Elena; Willis, Matthew R.; Mellado, Wilfredo; Richman, Erica L.; Hilaire, Melissa; Hart, Ronald P.; Filbin, Marie T.

    2015-01-01

    The adult CNS does not spontaneously regenerate after injury, due in large part to myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo-A, and oligodendrocyte-myelin glycoprotein. All three inhibitors can interact with either the Nogo receptor complex or paired immunoglobulin-like receptor B. A conditioning lesion of the sciatic nerve allows the central processes of dorsal root ganglion (DRG) neurons to spontaneously regenerate in vivo after a dorsal column lesion. After a conditioning lesion, DRG neurons are no longer inhibited by myelin, and this effect is cyclic AMP (cAMP)- and transcription-dependent. Using a microarray analysis, we identified several genes that are up-regulated both in adult DRGs after a conditioning lesion and in DRG neurons treated with cAMP analogues. One gene that was up-regulated under both conditions is metallothionein (MT)-I. We show here that treatment with two closely related isoforms of MT (MT-I/II) can overcome the inhibitory effects of both myelin and MAG for cortical, hippocampal, and DRG neurons. Intrathecal delivery of MT-I/II to adult DRGs also promotes neurite outgrowth in the presence of MAG. Adult DRGs from MT-I/II-deficient mice extend significantly shorter processes on MAG compared with wild-type DRG neurons, and regeneration of dorsal column axons does not occur after a conditioning lesion in MT-I/II-deficient mice. Furthermore, a single intravitreal injection of MT-I/II after optic nerve crush promotes axonal regeneration. Mechanistically, MT-I/II ability to overcome MAG-mediated inhibition is transcription-dependent, and MT-I/II can block the proteolytic activity of α-secretase and the activation of PKC and Rho in response to soluble MAG. PMID:25947372

  4. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury.

    PubMed

    Sachdeva, Rahul; Farrell, Kaitlin; McMullen, Mary-Katharine; Twiss, Jeffery L; Houle, John D

    2016-01-01

    Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.

  5. Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury

    PubMed Central

    Sachdeva, Rahul; Farrell, Kaitlin; McMullen, Mary-Katharine; Twiss, Jeffery L.; Houle, John D.

    2016-01-01

    Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury. PMID:27375904

  6. Applications of human umbilical cord blood cells in central nervous system regeneration.

    PubMed

    Herranz, Antonio S; Gonzalo-Gobernado, Rafael; Reimers, Diana; Asensio, Maria J; Rodríguez-Serrano, Macarena; Bazán, Eulalia

    2010-03-01

    In recent decades, there has been considerable amount of information about embryonic stem cells (ES). The dilemma facing scientists interested in the development and use of human stem cells in replacement therapies is the source of these cells, i.e. the human embryo. There are many ethical and moral problems related to the use of these cells. Hematopoietic stem cells from umbilical cord blood have been proposed as an alternative source of embryonic stem cells. After exposure to different agents, these cells are able to express antigens of diverse cellular lineages, including the neural type. The In vitro manipulation of human umbilical cord blood (hUCB) cells has shown their stem capacity and plasticity. These cells are easily accessible, In vitro amplifiable, well tolerated by the host, and with more primitive molecular characteristics that give them great flexibility. Overall, these properties open a promising future for the use of hUCB in regenerative therapies for the Central Nervous System (CNS). This review will focus on the available literature concerning umbilical cord blood cells as a therapeutic tool for the treatment of neurodegenerative diseases.

  7. Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons.

    PubMed

    Gervasi, Christine; Thyagarajan, Amar; Szaro, Ben G

    2003-06-23

    Characteristic changes in the expression of neuronal intermediate filaments (nIFs), an abundant cytoskeletal component of vertebrate axons, accompany successful axon regeneration. In mammalian regenerating PNS, expression of nIFs that are characteristic of mature neurons becomes suppressed throughout regeneration, whereas that of peripherin, which is abundant in developing axons, increases. Comparable changes are absent from mammalian injured CNS; but in goldfish and lamprey CNS, expression of several nIFs increases during axon regrowth. To obtain a broader view of the nIF response of successfully regenerating vertebrate CNS, in situ hybridization and video densitometry were used to track multiple nIF mRNAs during optic axon regeneration in Xenopus laevis. As in other successfully regenerating systems, peripherin expression increased rapidly after injury and expression of those nIFs characteristic of mature retinal ganglion cells decreased. Unlike the decrease in nIF mRNAs of regenerating PNS, that of Xenopus retinal ganglion cells was transient, with most nIF mRNAs increasing above normal during axon regrowth. At the peak of regeneration, increases in each nIF mRNA resulted in a doubling of the total amount of nIF mRNA, as well as a shift in the relative proportions contributed by each nIF. The relative proportions of peripherin and NF-M increased above normal, whereas proportions of xefiltin and NF-L decreased and that of XNIF remained the same. The increases in peripherin and NF-M mRNAs were accompanied by increases in protein. These results are consistent with the hypothesis that successful axon regeneration involves changes in nIF subunit composition conducive to growth and argue that a successful injury response differs between CNS and PNS. Copyright 2003 Wiley-Liss, Inc.

  8. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  9. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons.

    PubMed

    Dupraz, Sebastián; Grassi, Diego; Karnas, Diana; Nieto Guil, Alvaro F; Hicks, David; Quiroga, Santiago

    2013-01-01

    Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal

  10. Targeting cell surface receptors for axon regeneration in the central nervous system

    PubMed Central

    Cheah, Menghon; Andrews, Melissa R.

    2016-01-01

    Axon regeneration in the CNS is largely unsuccessful due to excess inhibitory extrinsic factors within lesion sites together with an intrinsic inability of neurons to regrow following injury. Recent work demonstrates that forced expression of certain neuronal transmembrane receptors can recapitulate neuronal growth resulting in successful growth within and through inhibitory lesion environments. More specifically, neuronal expression of integrin receptors such as alpha9beta1 integrin which binds the extracellular matrix glycoprotein tenascin-C, trk receptors such as trkB which binds the neurotrophic factor BDNF, and receptor PTPσ which binds chondroitin sulphate proteoglycans, have all been show to significantly enhance regeneration of injured axons. We discuss how reintroduction of these receptors in damaged neurons facilitates signalling from the internal environment of the cell with the external environment of the lesion milieu, effectively resulting in growth and repair following injury. In summary, we suggest an appropriate balance of intrinsic and extrinsic factors are required to obtain substantial axon regeneration. PMID:28197173

  11. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration

    PubMed Central

    Winter, Carla C.; Katiyar, Kritika S.; Hernandez, Nicole S.; Song, Yeri J.; Struzyna, Laura A.; Harris, James P.; Cullen, D. Kacy

    2017-01-01

    Neurotrauma, stroke, and neurodegenerative disease may result in widespread loss of neural cells as well as the complex interconnectivity necessary for proper central nervous system function, generally resulting in permanent functional deficits. Potential regenerative strategies involve the recruitment of endogenous neural stem cells and/or directed axonal regeneration through the use of tissue engineered “living scaffolds” built to mimic features of three-dimensional (3-D) in vivo migratory or guidance pathways. Accordingly, we devised a novel biomaterial encasement scheme using tubular hydrogel-collagen micro-columns that facilitated the self-assembly of seeded astrocytes into 3-D living scaffolds consisting of long, cable-like aligned astrocytic networks. Here, robust astrocyte alignment was achieved within a micro-column inner diameter (ID) of 180 μm or 300–350 μm but not 1.0 mm, suggesting that radius of curvature dictated the extent of alignment. Moreover, within small ID micro-columns, >70% of the astrocytes assumed a bi-polar morphology, versus ~10% in larger micro-columns or planar surfaces. Cell–cell interactions also influenced the aligned architecture, as extensive astrocyte-collagen contraction was achieved at high (9–12 × 105 cells/mL) but not lower (2–6 × 105 cells/mL) seeding densities. This high density micro-column seeding led to the formation of ultra-dense 3-D “bundles” of aligned bi-polar astrocytes within collagen measuring up to 150 μm in diameter yet extending to a remarkable length of over 2.5 cm. Importantly, co-seeded neurons extended neurites directly along the aligned astrocytic bundles, demonstrating permissive cues for neurite extension. These transplantable cable-like astrocytic networks structurally mimic the glial tube that guides neuronal progenitor migration in vivo along the rostral migratory stream, and therefore may be useful to guide progenitor cells to repopulate sites of widespread neurodegeneration

  12. GSK3β regulates AKT-induced central nervous system axon regeneration via an eIF2Bε-dependent, mTORC1-independent pathway

    PubMed Central

    Guo, Xinzheng; Snider, William D; Chen, Bo

    2016-01-01

    Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3β promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3β reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3β in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3β and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3β-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS. DOI: http://dx.doi.org/10.7554/eLife.11903.001 PMID:26974342

  13. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system

    PubMed Central

    Gang, Lin; Yao, Yu-chen; Liu, Ying-fu; Li, Yi-peng; Yang, Kai; Lu, Lei; Cheng, Yuan-chi; Chen, Xu-yi; Tu, Yue

    2015-01-01

    We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1–40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1–40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system. PMID:26692858

  14. Central nervous system toxicity.

    PubMed

    Ruha, Anne-Michelle; Levine, Michael

    2014-02-01

    Central nervous system toxicity caused by xenobiotic exposure is a common reason for presentation to the emergency department. Sources of exposure may be medicinal, recreational, environmental, or occupational; the means of exposure may be intentional or unintended. Toxicity may manifest as altered thought content resulting in psychosis or confusion; may affect arousal, resulting in lethargy, stupor, or coma; or may affect both elements of consciousness. Seizures may also occur. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Aberrant nerve fibres within the central nervous system.

    PubMed

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  16. Identification and structural mechanism for a novel interaction between a ubiquitin ligase WWP1 and Nogo-A, a key inhibitor for central nervous system regeneration.

    PubMed

    Qin, Haina; Pu, Helen X; Li, Minfen; Ahmed, Sohail; Song, Jianxing

    2008-12-23

    Nogo-A has been extensively demonstrated to play key roles in inhibiting central nervous system regeneration, regulating endoplasmic reticulum formation, and maintaining the integrity of the neuromuscular junction. In this study, an E3 ubiquitin ligase WWP1 was first identified to be a novel interacting partner for Nogo-A both in vitro and in vivo. By using CD, ITC, and NMR, we have further conducted extensive studies on all four WWP1 WW domains and their interactions with a Nogo-A peptide carrying the only PPxY motif. The results lead to several striking findings. (1) Despite containing an unstructured region, the 186-residue WWP1 fragment containing all four WW domains is able to interact with the Nogo-A(650-666) peptide with a high affinity, with a dissociation constant (K(d)) of 1.68 microM. (2) Interestingly, four isolated WW domains show differential structural properties in the free states. WW1 and WW2 are only partially folded, while WW4 is well-folded. Nevertheless, they all become well-folded upon binding to Nogo-A(650-666), with K(d) values ranging from 1.03 to 3.85 microM. (3) The solution structure of the best-folded WW4 domain is determined, and the binding-perturbed residues were derived for both WW4 and Nogo-A(650-666) by NMR HSQC titrations. Moreover, on the basis of the NMR data, the complex model is constructed by HADDOCK 2.0. This study provides rationales as well as a template Nogo-A(650-666) for further design of molecules to intervene in the WWP1-Nogo-A interaction which may regulate the Nogo-A protein level by controlling its ubiquitination.

  17. Central nervous system stimulants.

    PubMed

    George, A J

    2000-03-01

    Three major types of CNS stimulant are currently abused in sport: amphetamine, cocaine and caffeine. Each drug type has its own characteristic mechanism of action on CNS neurones and their associated receptors and nerve terminals. Amphetamine is widely abused in sports requiring intense anaerobic exercise where it prolongs the tolerance to anaerobic metabolism. It is addictive, and chronic abuse causes marked behavioural change and sometimes psychosis. Major sports abusing amphetamine are cycling, American football, ice-hockey and baseball. Cocaine increases tolerance to intense exercise, yet most of its chronic effects on energy metabolism are negative. Its greatest effects seem to be as a central stimulant and the enhancement of short-term anaerobic exercise. It is highly addictive and can cause cerebral and cardiovascular fatalities. Caffeine enhances fatty acid metabolism leading to glucose conservation, which appears to benefit long-distance endurance events such as skiing. Caffeine is also addictive, and chronic abuse can lead to cardiac damage. Social abuse of each of the three drugs is often difficult to distinguish from their abuse in sport.

  18. Scaffolds for central nervous system tissue engineering

    NASA Astrophysics Data System (ADS)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  19. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  20. Primary central nervous system lymphoma.

    PubMed

    Pels, Hendrik; Schlegel, Uwe

    2006-07-01

    There is no class I evidence for any therapeutic option in primary central nervous system lymphoma (PCNSL). When possible, patients should be included in clinical trials. The role of surgery is restricted to stereotactic biopsy in order to gain material for histopathologic diagnosis. Radiotherapy alone is associated with a median survival of no more than 1.5 years; cure is exceptional. However, in patients aged younger than 60 years, cure is the therapeutic aim. Polychemotherapy based on high-dose methotrexate with deferred radiation results in long-term survival in most of these patients and possibly cure in a substantial fraction of these patients. With regard to chemotherapy in PCNSL, the following must be considered: 1) the most efficient drug in PCNSL is methotrexate at a dosage of at least 1.5 g/m(2) per single dose; 2) methotrexate alone will lead to complete remission in only some patients, whereas the combination of methotrexate with other drugs is more efficient; and 3) the value of additional intraventricular chemotherapy and the necessity of "consolidation" radiotherapy after response to chemotherapy are not yet defined. For patients aged older than 60 years, no curative regimen with acceptable toxicity has yet been established. The combination of radiotherapy with methotrexate-based chemotherapy leads to severe long-term neurotoxic sequelae, ie, cognitive dysfunction, in most older patients and in some patients aged younger than 60 years.

  1. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury

    PubMed Central

    Ousman, Shalina S.; Frederick, Ariana; Lim, Erin-Mai F.

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act. PMID:28270745

  2. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury.

    PubMed

    Ousman, Shalina S; Frederick, Ariana; Lim, Erin-Mai F

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.

  3. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  4. Genomic scale profiling of autoimmune inflammation in the central nervous system: the nervous response to inflammation.

    PubMed

    Carmody, Ruaidhrí J; Hilliard, Brendan; Maguschak, Kimberly; Chodosh, Lewis A; Chen, Youhai H

    2002-12-01

    Using gene microarray technology, we found that inflammation in the central nervous system (CNS) not only induced the expression of many immune-related genes, but also significantly altered the gene expression profile of neural cells. Two unique groups of CNS genes were identified. The first group includes genes encoding ion channels, neural transmitters and growth factors. The second group includes genes that are important for nervous tissue regeneration. Additionally, a distinct pattern of gene expression was also identified in recovering animals. Thus, during autoimmune inflammation, the CNS actively responds to immune attacks by activating its own defense and repair genes.

  5. mTORC1 is necessary but mTORC2 and GSK3β are inhibitory for AKT3-induced axon regeneration in the central nervous system

    PubMed Central

    Miao, Linqing; Yang, Liu; Huang, Haoliang; Liang, Feisi; Ling, Chen; Hu, Yang

    2016-01-01

    Injured mature CNS axons do not regenerate in mammals. Deletion of PTEN, the negative regulator of PI3K, induces CNS axon regeneration through the activation of PI3K-mTOR signaling. We have conducted an extensive molecular dissection of the cross-regulating mechanisms in axon regeneration that involve the downstream effectors of PI3K, AKT and the two mTOR complexes (mTORC1 and mTORC2). We found that the predominant AKT isoform in CNS, AKT3, induces much more robust axon regeneration than AKT1 and that activation of mTORC1 and inhibition of GSK3β are two critical parallel pathways for AKT-induced axon regeneration. Surprisingly, phosphorylation of T308 and S473 of AKT play opposite roles in GSK3β phosphorylation and inhibition, by which mTORC2 and pAKT-S473 negatively regulate axon regeneration. Thus, our study revealed a complex neuron-intrinsic balancing mechanism involving AKT as the nodal point of PI3K, mTORC1/2 and GSK3β that coordinates both positive and negative cues to regulate adult CNS axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.14908.001 PMID:27026523

  6. [Functional anatomy of the central nervous system].

    PubMed

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  7. Cellular Mechanisms of Central Nervous Modulation.

    DTIC Science & Technology

    1983-06-30

    achieve selective disruption of the neuroglia in the central nervous system 4 of our experimental animal, the cockroach (Periplaneta americana). Such...RD-A147 878 CELLULAR MECHANISMIS OF CENTRAL NERVOUS MODULATION(U) i/i I CAMBRIDGE UNIV (ENGLAND) DEPT OF ZOOLOGY J E TRENERNE 30 JUN 83 DHJA37-8i-C...BOOBI UNCLASSFE F/G 6/16 NL bi L& 2. MICROCOPY RESOLUTION TEST CHART NATIONA BUJREAUJ OF STANDOW-S1963-A [.1 PI CELLULAR MECHANISMIS OF CENTRAL NERVOUS

  8. Cellular Mechanisms of Central Nervous Modulation.

    DTIC Science & Technology

    1981-12-31

    Schofield, P.K. (1981) Mechanism of ionic homeostasis in the central nervous system of an insect. J. exp. Biol., 95, 61-73. Treherne, J.E., Schofield...P.K. & Lane, N.J. (1982) Physiological and ultra- structural evidence for an extracellular anion matrix in the central nervous system of an insect...AD-R147 875 CELLULAR MECHANISM1S OF CENTRAL NERVOUS tODULATION(U) I/i CAMBRIDGE UNIV (ENGLAND) DEPT OF ZOOLOGY J E TREHERNE 31 DEC 81 DAJA37-Si-C

  9. Regeneration in the nervous system with erythropoietin

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system. PMID:26549969

  10. Regeneration in the nervous system with erythropoietin.

    PubMed

    Maiese, Kenneth

    2016-01-01

    Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.

  11. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration

    PubMed Central

    Ko, Hyo Rim; Kwon, Il-Sun; Hwang, Inwoo; Jin, Eun-Ju; Shin, Joo-Ho; Brennan-Minnella, Angela M; Swanson, Raymond; Cho, Sung-Woo; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2016-01-01

    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI: http://dx.doi.org/10.7554/eLife.20799.001 PMID:27938661

  12. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration.

    PubMed

    Ko, Hyo Rim; Kwon, Il-Sun; Hwang, Inwoo; Jin, Eun-Ju; Shin, Joo-Ho; Brennan-Minnella, Angela M; Swanson, Raymond; Cho, Sung-Woo; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2016-12-12

    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration.

  13. Central nervous system complications after liver transplantation.

    PubMed

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  14. Proteolytic events are relevant cellular responses during nervous system regeneration of the starfish Marthasterias glacialis.

    PubMed

    Ferraz Franco, Catarina; Santos, Romana; Varela Coelho, Ana

    2014-03-17

    The molecular pathways that trigger the amazing intrinsic regenerative ability of echinoderm nervous system are still unknown. In order to approach this subject, a 2D-DIGE proteomic strategy was used, to screen proteome changes during neuronal regeneration in vivo, using starfish (Asteroidea, Echinodermata) as a model. A total of 528 proteins showed significant variations during radial nerve cord regeneration in both soluble and membrane protein-enriched fractions. Several functional classes of proteins known to be involved in axon regeneration events in other model organisms, such as chordates, were identified for the first time in the regenerating echinoderm nervous system. Unexpectedly, most of the identified proteins presented a molecular mass either higher or lower than expected. Such results suggest a functional modulation through protein post-translational modifications, such as proteolysis. Among these are proteins involved in cytoskeleton and microtubule regulators, axon guidance molecules and growth cone modulators, protein de novo synthesis machinery, RNA binding and transport, transcription factors, kinases, lipid signaling effectors and proteins with neuroprotective functions. In summary, the impact of proteolysis during regeneration events is here shown, although requiring further studies to detail on the mechanisms involving this post-transcriptional event on nervous system regeneration. The nervous systems of some organisms present a complete inability of neurons to regrow across a lesion site, which is the case of the adult mammalian central nervous system (CNS). Expanding our knowledge on how other animals regenerate their nervous system offers great potential for groundbreaking biomedical applications towards the enhancement of mammalian CNS regeneration. In order to approach this subject, a 2D-DIGE proteomic strategy was used for the first time, to screen the proteome changes during neuronal regeneration in vivo, using starfish (Asteroidea

  15. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  16. [Parasitic diseases of the central nervous system].

    PubMed

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  17. CENTRAL NERVOUS MECHANISMS IN CIRCULATION REGULATION AND FUNCTIONAL DERANGEMENT (HYPERTENSION).

    DTIC Science & Technology

    BLOOD CIRCULATION, *CENTRAL NERVOUS SYSTEM, * HYPERTENSION , AUTONOMIC NERVOUS SYSTEM, ELECTROENCEPHALOGRAPHY, ELECTROPHYSIOLOGY, CHEMORECEPTORS...PERCEPTION, CARDIOVASCULAR SYSTEM, PATHOLOGY, REFLEXES, BEHAVIOR, BLOOD PRESSURE , ANOXIA, BRAIN, ITALY.

  18. Integrins and the extracellular matrix: key mediators of development and regeneration of the sensory nervous system.

    PubMed

    Gardiner, Natalie J

    2011-11-01

    The somatosensory nervous system is responsible for the transmission of a multitude of sensory information from specialized receptors in the periphery to the central nervous system. Sensory afferents can potentially be damaged at several sites: in the peripheral nerve; the dorsal root; or the dorsal columns of the spinal cord; and the success of regeneration depends on the site of injury. The regeneration of peripheral nerve branches following injury is relatively successful compared to central branches. This is largely attributed to the presence of neurotrophic factors and a Schwann cell basement membrane rich in permissive extracellular matrix (ECM) components which promote axonal regeneration in the peripheral nerve. Modulation of the ECM environment and/or neuronal integrins may enhance regenerative potential of sensory neurons following peripheral or central nerve injury or disease. This review describes the interactions between integrins and ECM molecules (particularly the growth supportive ligands, laminin, and fibronectin; and the growth inhibitory chondroitin sulfate proteoglycans (CSPGs)) during development and regeneration of sensory neurons following physical injury or neuropathy. Copyright © 2011 Wiley Periodicals, Inc.

  19. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    PubMed Central

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  20. [Central nervous system malformations: neurosurgery correlates].

    PubMed

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-06

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  1. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  2. Development of Central Nervous System Radioprotectors.

    DTIC Science & Technology

    1982-05-01

    accompanied ionizing radiation exposure of the central nervous system (CNS). Implicit in this objective is the requirement that this.. drug be...CNS injury either 27?’ concentrate on the late consequences of radio therapeutic exposures , or involve large mammals which would not lend themselves to...assays in which the rats are anesthetized with ketamine at the time of exposure and assayed for sensitivity to anesthesia induced by sodium

  3. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  4. CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION

    PubMed Central

    Zunt, Joseph R.

    2009-01-01

    The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299

  5. Engineering Biomaterial Properties for Central Nervous System Applications

    NASA Astrophysics Data System (ADS)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  6. Rhabdoid tumors of the central nervous system.

    PubMed

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  7. Tuberculoma of the central nervous system.

    PubMed

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  8. Intrinsic regenerative mechanisms of central nervous system neurons.

    PubMed

    Muramatsu, Rieko; Ueno, Masaki; Yamashita, Toshihide

    2009-10-01

    Injuries to the adult central nervous system (CNS), such as spinal cord injury and brain contusion, can cause permanent functional deficits if axonal connections are broken. Spontaneous functional recovery rarely occurs. It has been widely accepted that the extracellular environment of the CNS inhibits neuronal regeneration. However, it should be noted that another reason for injured neurons failing to regenerate is their weak intrinsic ability to do so. The regeneration of injured neurons is a process involving many intracellular phenomena, including cytoskeletal changes, gene and protein expression, and changes in the responsiveness to extracellular cues. The capacity of injured neurons to regenerate is modulated to some extent by changes in the expression of intracellular signaling molecules such as glycogen synthase kinase-3beta and cyclic adenosine 3',5'-monophosphate. Knowledge of these effects has guided the development of animal models for regenerative therapies of CNS injury. Enhancing the intrinsic regenerative machinery of injured axons in the adult CNS is a potentially powerful strategy for treating patients with a CNS injury.

  9. Childhood Central Nervous System Germ Cell Tumors Treatment

    MedlinePlus

    ... Ependymoma Treatment Research Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Central Nervous System (CNS) Germ Cell Tumors Go to Health Professional Version Key Points ...

  10. [Stem cell-based therapy in central nervous system diseases].

    PubMed

    Paczkowska, Edyta; Dabkowska, Elzbieta; Nowacki, Przemysław; Machaliński, Bogusław

    2009-01-01

    Much of the current research into stem cell biology is focused on its potential for regeneration of various tissues and organs. Stem cell-based therapy with autologous bone marrow stem cells could provide an attractive alternative to the classical therapeutic approach in the foreseeable future. The possibility of nervous tissue regeneration in neurodegenerative disorders of the central nervous system generates a special challenge for researchers and clinicians involved in that field of medicine. Very small embryonic-like stem cells (VSEL SCs), recently discovered in murine bone marrow and human umbilical cord blood, arouse great hope. VSEL SCs display several features typical for embryonic stem cells, such as a large nucleus surrounded by a narrow rim of cytoplasm, euchromatin, and expression of pluripotent markers (Oct-4, Nanog, SSEA-4). Application of these cells in regenerative medicine could have considerable advantages over strategies using embryonic stem cells, since ethical concerns might be naturally solved. Thus, these cells can become a recommended source of stem cells for cell therapy as compared to those isolated from developing embryos.

  11. Glycosaminoglycans of the porcine central nervous system†

    PubMed Central

    Liu, Zhenling; Masuko, Sayaka; Solakyildirim, Kemal; Pu, Dennis; Linhardt, Robert J.; Zhang, Fuming

    2010-01-01

    Glycosaminoglycans (GAG) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study on GAGs from porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord, were isolated and purified by defating, proteolysis, anion-exchange chromatography and methanol precipitation. The isolated GAG content in brain was 5-times higher than in spinal cord (0.35 mg/g, compared to 0.07 mg/g dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG. The average molecular weight of CS from brain and spinal cord was 35.5 and 47.1 kDa, respectively, and HS from brain and spinal cord was 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the composition of CS from brain and spinal cords are similar with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type-A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine but their composition of minor disaccharides differed. Analysis by 1H- and two-dimensional-NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance. PMID:20954748

  12. Role of the autonomic nervous system in rat liver regeneration.

    PubMed

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  13. Mold Infections of the Central Nervous System

    PubMed Central

    McCarthy, Matthew; Rosengart, Axel; Schuetz, Audrey N.; Kontoyiannis, Dimitrios P.; Walsh, Thomas J.

    2016-01-01

    The recent outbreak of exserohilum rostratum meningitis linked to epidural injections of methylprednisolone acetate has brought renewed attention to mold infections of the central nervous system (CNS).1 Although uncommon, these infections are often devastating and difficult to treat. This focused review of the epidemiologic aspects, clinical characteristics, and treatment of mold infections of the CNS covers a group of common pathogens: aspergillus, fusarium, and scedosporium species, molds in the order Mucorales, and dematiaceous molds. Infections caused by these pathogen groups have distinctive epidemiologic profiles, clinical manifestations, microbiologic characteristics, and therapeutic implications, all of which clinicians should understand. PMID:25006721

  14. Histoplasmosis of the central nervous system.

    PubMed Central

    Tan, V; Wilkins, P; Badve, S; Coppen, M; Lucas, S; Hay, R; Schon, F

    1992-01-01

    Histoplasma capsulatum infection of the central nervous system is extremely rare in the United Kingdom partly because the organism is not endemic. However, because the organism can remain quiescent in the lungs or the adrenal glands for over 40 years before dissemination, it increasingly needs to be considered in unexplained neurological disease particularly in people who lived in endemic areas as children. In this paper a rapidly progressive fatal myelopathy in an English man brought up in India was shown at necropsy to be due to histoplasmosis. The neurological features of this infection are reviewed. Images PMID:1640242

  15. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns

  16. Microglia in central nervous system repair after injury.

    PubMed

    Jin, Xuemei; Yamashita, Toshihide

    2016-05-01

    Accumulating evidence suggests that immune cells perform crucial inflammation-related functions including clearing dead tissue and promoting wound healing. Thus, they provide a conducive environment for better neuronal regeneration and functional recovery after adult mammalian central nervous system (CNS) injury. However, activated immune cells can also induce secondary damage of intact tissue and inhibit post-injury CNS repair. The inflammation response is due to the microglial production of cytokines and chemokines for the recruitment of peripheral immune cell populations, such as monocytes, neutrophils, dendritic cells and T lymphocytes. Interestingly, microglia and T lymphocytes can be detected at the injured site in both the early and later stages after nerve injury, whereas other peripheral immune cells infiltrate the injured parenchyma of the brain and spinal cord only in the early post-injury phase, and subsequently disappear. This suggests that microglia and T cells may play crucial roles in the post-injury functional recovery of the CNS. In this review, we summarize the current studies on microglia that examined neuronal regeneration and the molecular signalling mechanisms in the injured CNS. Better understanding of the effects of microglia on neural regeneration will aid the development of therapy strategies to enhance CNS functional recovery after injury.

  17. Progress in Central Nervous System Lymphomas

    PubMed Central

    Wang, Chia-Ching; Carnevale, Julia; Rubenstein, James L.

    2014-01-01

    Until recently, primary central nervous system lymphoma (PCNSL) was associated with a uniformly dismal prognosis. It is now reasonable to anticipate long-term survival and possibly cure for a significant proportion of patients diagnosed with PCNSL. Accumulated data generated over the past ten years has provided evidence that long-term progression-free survival (PFS) can reproducibly be attained in a significant fraction of PCNSL patients that receive dose-intensive chemotherapy consolidation, without whole brain radiotherapy. One consolidative regimen that has reproducibly demonstrated promise is the combination of infusional etoposide plus high-dose cytarabine (EA), administered in first complete remission after methotrexate, temozolomide and rituximab-based induction. Given evolving principles of management and the mounting evidence for reproducible improvements in survival rates in prospective clinical series, our goal in this review is to highlight and update principles in diagnosis, staging and management as well as to review data regarding the pathogenesis of central nervous system lymphomas, information that is likely to constitute a basis for the implementation of novel therapies that are requisite for further progress in this unique phenotype of non-Hodgkin lymphoma. PMID:24837460

  18. Central nervous system vasculitis in children.

    PubMed

    Cellucci, Tania; Benseler, Susanne M

    2010-09-01

    To review the current literature of childhood primary and secondary central nervous system (CNS) vasculitis and to evaluate the growing differential diagnosis of inflammatory and noninflammatory brain diseases. Primary angiitis of the central nervous system in children (cPACNS) is a reversible cause of severe neurological deficits and/or psychiatric symptoms. This disease is classified into subtypes based on distinct clinical and radiological features, treatment strategies, and disease trajectories. Also, the increased diagnostic yield from elective brain biopsies in children has improved our ability to diagnose angiography-negative cPACNS. Over the past few years, the differential diagnosis for cPACNS has rapidly expanded due to the characterization of novel inflammatory and noninflammatory brain diseases. Specifically, vasoconstrictive disorders and neuronal antibody-associated conditions have now been described in children and have overlapping clinical features with cPACNS. This review summarizes the recent data on diagnosis, treatment, and prognosis of cPACNS. It also addresses the evolving differential diagnosis for CNS vasculitis. Our improved understanding of these disorders allows a tailored diagnostic approach leading to rapid diagnosis and initiation of therapy in these potentially reversible conditions.

  19. Diagnosing central nervous system vasculitis in children.

    PubMed

    Cellucci, Tania; Benseler, Susanne M

    2010-12-01

    To review the current literature of childhood central nervous system vasculitis, and to discuss a tailored approach to diagnosis and treatment based on recent evidence. Primary angiitis of the central nervous system in children (cPACNS) is an increasingly recognized inflammatory brain disease with potentially devastating neurological consequences. The diagnostic approach should be tailored to the clinical presentation of the child with suspected cPACNS and should address the expanding spectrum of inflammatory and noninflammatory brain diseases with overlapping clinical features. New evidence has confirmed that elective brain biopsies in children have a higher diagnostic yield than in adults and improve our ability to diagnose angiography-negative cPACNS. Finally, observational studies have shown that early diagnosis and aggressive treatment lead to improved neurological outcomes and lower mortality rates in patients with cPACNS. This review summarizes the recent data on diagnosis, classification, treatment, and outcomes in cPACNS. Our improved understanding of cPACNS facilitates a tailored diagnostic approach that results in earlier diagnosis and initiation of therapy for this potentially reversible condition.

  20. Development-Inspired Reprogramming of the Mammalian Central Nervous System

    PubMed Central

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-01

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the exciting demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell-type into another not only turns fundamental principles of development on their head but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may impact regeneration and modeling of a system historically considered immutable and hardwired. PMID:24482482

  1. Electrical stimuli in the central nervous system microenvironment.

    PubMed

    Thompson, Deanna M; Koppes, Abigail N; Hardy, John G; Schmidt, Christine E

    2014-07-11

    Electrical stimulation to manipulate the central nervous system (CNS) has been applied as early as the 1750s to produce visual sensations of light. Deep brain stimulation (DBS), cochlear implants, visual prosthetics, and functional electrical stimulation (FES) are being applied in the clinic to treat a wide array of neurological diseases, disorders, and injuries. This review describes the history of electrical stimulation of the CNS microenvironment; recent advances in electrical stimulation of the CNS, including DBS to treat essential tremor, Parkinson's disease, and depression; FES for the treatment of spinal cord injuries; and alternative electrical devices to restore vision and hearing via neuroprosthetics (retinal and cochlear implants). It also discusses the role of electrical cues during development and following injury and, importantly, manipulation of these endogenous cues to support regeneration of neural tissue.

  2. Development-inspired reprogramming of the mammalian central nervous system.

    PubMed

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  3. Role of metallothionein-III following central nervous system damage.

    PubMed

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes; Camats, Jordi; Molinero, Amalia; Campbell, Iain L; Palmiter, Richard D; Hidalgo, Juan

    2003-06-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area surrounding the lesioned tissue, along with signs of increased oxidative stress and apoptosis. There was also significant upregulation of cytokines/growth factors such as tumor necrosis factor-alpha, interleukin (IL)-1 alpha/beta, and IL-6 as measured by ribonuclease protection assay. Mt3-null mice did not differ from control mice in these responses, in sharp contrast to results obtained in Mt1- Mt2-null mice. In contrast, Mt3-null mice showed increased expression of several neurotrophins as well as of the neuronal sprouting factor GAP-43. Thus, unlike MT-I and MT-II, MT-III does not affect the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process.

  4. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  5. [Idiopathic hypersomnia of the central nervous system].

    PubMed

    Bové-Ribé, A

    Idiopathic hypersomnia of the central nervous system is a cause of excessive diurnal somnolence which affects 5-10% of the patients who attend sleep clinics for this reason. We describe three male patients who consulted for excessive diurnal somnolence. Nocturnal polysomnographic studies followed by tests for multiple latencies of sleep were done. In all cases there was confirmation of lengthening of the time of nocturnal sleep with normal phases of sleep and an increase in the number of sleep spindles in phase II. Similarly there was an average latency of sleep of less than 10 minutes and fewer than two phases of REM in the multiple latencies test. All patients improved with drugs stimulating vigil, two of them with centramine and the third with methilphenidate. We consider the clinical data the polysomnographic criteria which help to establish the diagnosis.

  6. Central nervous system nocardiosis in Queensland

    PubMed Central

    Rafiei, Nastaran; Peri, Anna Maria; Righi, Elda; Harris, Patrick; Paterson, David L.

    2016-01-01

    Abstract Nocardia infection of the central nervous system (CNS) is an uncommon but clinically important disease, often occurring in immunocompromised individuals and carrying a high mortality rate. We present 20 cases of microbiologically proven CNS nocardiosis diagnosed in Queensland from 1997 to 2015 and review the literature from 1997 to 2016. Over 50% of cases occurred in immunocompromised individuals, with corticosteroid use posing a particularly significant risk factor. Nine (45%) patients were immunocompetent and 3 had no comorbidities at time of diagnosis. Nocardia farcinica was the most frequently isolated species (8/20) and resistance to trimethoprim–sulfamethoxazole (TMP-SMX) was found in 2 isolates. Overall, 35% of our patients died within 1 year, with the majority of deaths occurring in the first month following diagnosis. Interestingly, of the 7 deaths occurring at 1 year, 6 were attributed to N farcinica with the seventh isolate being unspeciated, suggesting the virulence of the N farcinica strain. PMID:27861348

  7. BK Channels in the Central Nervous System

    PubMed Central

    Contet, C.; Goulding, S. P.; Kuljis, D. A.; Barth, A. L.

    2016-01-01

    Large conductance Ca2+- and voltage-activated K+ (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca2+ concentrations. In neurons, they regulate the timing and duration of K+ influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction. PMID:27238267

  8. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  9. Neuroactive steroids and central nervous system disorders.

    PubMed

    Wang, M; Bäckström, T; Sundström, I; Wahlström, G; Olsson, T; Zhu, D; Johansson, I M; Björn, I; Bixo, M

    2001-01-01

    Steroid hormones are vital for the cell life and affect a number of neuroendocrine and behavioral functions. In contrast to their endocrine actions, certain steroids have been shown to rapidly alter brain excitability and to produce behavioral effects within seconds to minutes. In this article we direct attention to this issue of neuroactive steroids by outlining several aspects of current interest in the field of steroid research. Recent advances in the neurobiology of neuroactive are described along with the impact of advances on drug design for central nervous system (CNS) disorders provoked by neuroactive steriods. The theme was selected in association with the clinical aspects and therapeutical potentials of the neuroactive steroids in CNS disorders. A wide range of topics relating to the neuroactive steroids are outlined, including steroid concentrations in the brain, premenstrual syndrome, estrogen and Alzheimer's disease, side effects of oral contraceptives, mental disorder in menopause, hormone replacement therapy, Catamenial epilepsy, and neuractive steroids in epilepsy treatment.

  10. Autonomic complications following central nervous system injury.

    PubMed

    Baguley, Ian J

    2008-11-01

    Severe sympathetic overactivity occurs in several conditions that are recognized as medical emergencies. Following central nervous system injury, a small proportion of individuals develop severe paroxysmal sympathetic and motor overactivity. These individuals have a high attendant risk of unnecessary secondary morbidity. Following acquired brain injury, the syndrome is known by a number of names including dysautonomia and sympathetic storm. Dysautonomia is currently a diagnosis of exclusion and often goes unrecognized. The evidence base for management is almost entirely anecdotal in nature; there has been little structured or prospective research. In contrast, the evidence base for autonomic dysreflexia following spinal cord injury is much stronger, with level 1 evidence for many treatment interventions. This review presents a current understanding of each condition and suggests simple management protocols. With the marked disparity in the literature for the two conditions, the main focus is on the literature for dysautonomia. The similarity between these two conditions and the other autonomic emergency conditions is discussed.

  11. Gravity sensing in the central nervous system.

    PubMed

    Wiedemann, Meike; Hanke, Wolfgang

    2002-07-01

    For human based space research it is of high importance to understand the influence of gravity on the properties of the central nervous system (CNS). Until now it is not much known about how neuronal tissue can sense gravity. The aim of this study was to find out weather and how the CNS, as a complex system, can percept and react to changes in gravity. Neuronal tissue and especially the CNS fulfils all the requirements for excitable media. Consequently, self-organisation, pattern formation and propagating excitation waves as typical events of excitable media have been observed in such tissue. The spreading depression (SD), an excitation depression wave is the most obvious and best described of these phenomena in the CNS. In our experiments we showed that the properties of the SD and therefore the CNS in its properties as an excitable medium reacts very sensitive to changes in gravity.

  12. [Viral infections of human central nervous system].

    PubMed

    Agut, Henri

    2016-01-01

    The viruses that can infect the central nervous system of humans are numerous and form a heterogeneous group with respect to their structural, functional and epidemiological properties. The pathophysiological mechanisms leading to associated neurological diseases, mainly meningitis and encephalitis, also are complex and often intertwined. Overall, neurological clinical symptoms correspond either to acute viral diseases associated with primary infections or to acute, subacute or chronic diseases associated with persistent viral infections. The frequent severity of the clinical situation requires in all cases the practice of virological diagnosis for which the PCR techniques applied to cerebrospinal fluid samples occupy a prominent place. The severity of clinical manifestations justifies the use of prophylactic vaccination when available and antiviral treatment as soon as the causative virus is identified or suspected.

  13. [Tumors of the central nervous system].

    PubMed

    Alegría-Loyola, Marco Antonio; Galnares-Olalde, Javier Andrés; Mercado, Moisés

    2017-01-01

    Central nervous system (CNS) tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. Recent advances in the underlying oncogenic mechanisms of these tumors have led to new classification systems, which, in turn, allow for a better diagnostic approach and therapeutic planning. Most of these neoplasms occur sporadically and several risk factors have been found to be associated with their development, such as exposure to ionizing radiation or electromagnetic fields and the concomitant presence of conditions like diabetes, hypertension and Parkinson's disease. A relatively minor proportion of primary CNS tumors occur in the context of hereditary syndromes. The purpose of this review is to analyze the etiopathogenesis, clinical presentation, diagnosis and therapy of CNS tumors with particular emphasis in the putative risk factors mentioned above.

  14. Plants and the central nervous system.

    PubMed

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed.

  15. Central nervous system manifestations of neonatal lupus: a systematic review.

    PubMed

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  16. Bilastine and the central nervous system.

    PubMed

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  17. Oak Regeneration Guidelines for the Central Appalachians

    Treesearch

    Kim C. Steiner; James C. Finley; Peter J. Gould; Songlin Fei; Marc McDill

    2008-01-01

    This article presents the first explicit guidelines for regenerating oaks in the central Appalachians. The objectives of this paper are (1) to describe the research foundation on which the guidelines are based and (2) to provide users with the instructions, data collection forms, supplementary tables, and decision charts needed to apply the guidelines in the field. The...

  18. ApoE isoform-specific regulation of regeneration in the peripheral nervous system

    PubMed Central

    Comley, Laura H.; Fuller, Heidi R.; Wishart, Thomas M.; Mutsaers, Chantal A.; Thomson, Derek; Wright, Ann K.; Ribchester, Richard R.; Morris, Glenn E.; Parson, Simon H.; Horsburgh, Karen; Gillingwater, Thomas H.

    2011-01-01

    Apolipoprotein E (apoE) is a 34 kDa glycoprotein with three distinct isoforms in the human population (apoE2, apoE3 and apoE4) known to play a major role in differentially influencing risk to, as well as outcome from, disease and injury in the central nervous system. In general, the apoE4 allele is associated with poorer outcomes after disease or injury, whereas apoE3 is associated with better responses. The extent to which different apoE isoforms influence degenerative and regenerative events in the peripheral nervous system (PNS) is still to be established, and the mechanisms through which apoE exerts its isoform-specific effects remain unclear. Here, we have investigated isoform-specific effects of human apoE on the mouse PNS. Experiments in mice ubiquitously expressing human apoE3 or human apoE4 on a null mouse apoE background revealed that apoE4 expression significantly disrupted peripheral nerve regeneration and subsequent neuromuscular junction re-innervation following nerve injury compared with apoE3, with no observable effects on normal development, maturation or Wallerian degeneration. Proteomic isobaric tag for relative and absolute quantitation (iTRAQ) screens comparing healthy and regenerating peripheral nerves from mice expressing apoE3 or apoE4 revealed significant differences in networks of proteins regulating cellular outgrowth and regeneration (myosin/actin proteins), as well as differences in expression levels of proteins involved in regulating the blood–nerve barrier (including orosomucoid 1). Taken together, these findings have identified isoform-specific roles for apoE in determining the protein composition of peripheral nerve as well as regulating nerve regeneration pathways in vivo. PMID:21478199

  19. [Microbiological diagnosis of central nervous system infections].

    PubMed

    Codina, María Gema; de Cueto, Marina; Vicente, Diego; Echevarría, Juan Emilio; Prats, Guillem

    2011-02-01

    The infections of the central nervous system are associated with high morbidity and mortality. Several agents including bacteria, viruses, fungi and protozoa can invade the CNS. They are different clinical presentations of these infections: meningitis, encephalitis, brain and epidural abscesses and cerebrospinal fluid shunt infections. The clinical course could be acute, subacute or chronic depending on the infecting agent and the location of the infection. The travelling entails a risk of infection by exotic agents of meningo-encephalitis such as robovirus and arbovirus, which require new diagnostic and therapeutic methods. Despite some progress in the treatment of the CNS infections, the mortality is usually high. Rapid diagnosis and emergent interventions are necessary to improve the outcome of those patients, and early and targeted antimicrobial treatment and support measures are of paramount importance for a favourable clinical patient outcome. The antigen detection techniques and particularly those of genetic diagnosis by amplification (PCR and others) have advanced, and improved the diagnostic of those diseases. In this paper the clinical signs and symptoms and diagnostic procedures of CNS infections are presented.

  20. Histology of the central nervous system.

    PubMed

    Garman, Robert H

    2011-01-01

    The intent of this article is to assist pathologists inexperienced in examining central nervous system (CNS) sections to recognize normal and abnormal cell types as well as some common artifacts. Dark neurons are the most common histologic artifact but, with experience, can readily be distinguished from degenerating (eosinophilic) neurons. Neuron degeneration stains can be useful in lowering the threshold for detecting neuron degeneration as well as for revealing degeneration within populations of neurons that are too small to show the associated eosinophilic cytoplasmic alteration within H&E-stained sections. Neuron degeneration may also be identified by the presence of associated macroglial and microglial reactions. Knowledge of the distribution of astrocyte cytoplasmic processes is helpful in determining that certain patterns of treatment-related neuropil vacuolation (as well as some artifacts) represent swelling of these processes. On the other hand, vacuoles with different distribution patterns may represent alterations of the myelin sheath. Because brains are typically undersampled for microscopic evaluation, many pathologists are unfamiliar with the circumventricuar organs (CVOs) that represent normal brain structures but are often mistaken for lesions. Therefore, the six CVOs found in the brain are also illustrated in this article.

  1. Environmental effects on the central nervous system.

    PubMed Central

    Paulson, G W

    1977-01-01

    The central nervous system (CNS) is designed to respond to the environment and is peculiarly vulnerable to many of the influences found in the environment. Utilizing an anatomical classification (cortex, cerebellum, peripheral nerves) major toxins and stresses are reviewed with selections from recent references. Selective vulnerability of certain areas to particular toxins is apparent at all levels of the CNS, although the amount of damage produced by any noxious agent depends on the age and genetic substrate of the subject. It is apparent that the effects of certain well known and long respected environmental toxins such as lead, mercury, etc., deserve continued surveillance. In addition, the overwhelming impact on the CNS of social damages such as trauma, alcohol, and tobacco cannot be ignored by environmentalists. The effect of the hospital and therapeutic environment has become apparent in view of increased awareness of iatrogenic disorders. The need for particular laboratory tests, for example, examination of CSF and nerve conduction toxicity studies, is suggested. Epidemics such as the recent solvent neuropathies suggest a need for continued animal studies that are chronic, as well as acute evaluations when predicting the potential toxic effects of industrial compounds. PMID:202447

  2. Time Perception Mechanisms at Central Nervous System

    PubMed Central

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  3. Central nervous system tumors in Mexican children.

    PubMed

    De la Torre Mondragón, L; Ridaura Sanz, C; Reyes Mujica, M; Rueda Franco, F

    1993-08-01

    Five hundred and seventy primary central nervous system (CNS) tumors from the Department of Pathology at the National Institute of Pediatrics in Mexico City, collected from 1970 to 1989, were histologically reclassified in order to find out their relative incidence as well as their outstanding features. With this, we could establish a frame of reference for our local population, contributing to the epidemiological analysis of these entities. All the tumors were examined independently by two pathologists (C.R. and M.R.), using the classification of Rorke et al. Histological type, patient age and sex, and tumor location were analyzed. CNS tumors were the secondmost frequently encountered solid tumors, after lymphomas, and were increasing in incidence at a rate of 2.2 annually. Children in the age group 0-9 years were most often affected, and there was a predominance of male patients. Astrocytoma and medulloblastoma were the most common tumor types. The infratentorial region was the most frequent tumor location in the 2- to 9-year age group. By contrast, in the under 2-year-olds a supratentorial location was more frequent, and the incidence of germ cell tumors was proportionally high. In general, some histological types seemed to be associated with particular age groups. Although we found primitive neuroectodermal tumors to be the fifth most common at all ages (except for medulloblastoma), many other authors do not report a similar finding.

  4. Time Perception Mechanisms at Central Nervous System.

    PubMed

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  5. Primary central nervous system posttransplant lymphoproliferative disorders.

    PubMed

    Castellano-Sanchez, Amilcar A; Li, Shiyong; Qian, Jiang; Lagoo, Anand; Weir, Edward; Brat, Daniel J

    2004-02-01

    Posttransplant lymphoproliferative disorders (PTLDs) represent a spectrum ranging from Epstein-Barr virus (EBV)-driven polyclonal lymphoid proliferations to EBV+ or EBV- malignant lymphomas. Central nervous system (CNS) PTLDs have not been characterized fully. We reviewed the clinical, radiologic, and pathologic features of 12 primary CNS PTLDs to define them more precisely. Patients included 10 males and 2 females (median age, 43.4 years) who were recipients of kidney (n = 5), liver (n = 2), heart (n = 2), peripheral blood stem cells (n = 2), or bone marrow (n = 1). All received immunosuppressive therapy. CNS symptoms developed 3 to 131 months (mean, 31 months) after transplantation. By neuroimaging, most showed multiple (3 to 9) intra-axial, contrast-enhancing lesions. Histologic sections showed marked expansion of perivascular spaces by large, cytologically malignant lymphoid cells that were CD45+, CD20+, EBV+ and showed light chain restriction or immunoglobulin gene rearrangement. In distinction to PTLDs in other organ systems, CNS PTLDs were uniformly high-grade lymphomas that fulfilled the World Health Organization criteria for monomorphic PTLDs. Extremely short survival periods were noted for each CNS PTLD that followed peripheral blood stem cell transplantation. Survival of others with CNS PTLD varied; some lived more than 2 years.

  6. [Primary central nervous system lymphoma: report of one case].

    PubMed

    Zhao, Peng; Su, Rong-Gang

    2002-04-01

    One case of primary central nervous system lymphoma was reported. The patient received comprehensive therapy, mainly the surgical treatment, with the survival time 12 months, and local recurrence was considered as the major cause of death. The pathology, imagine examination, diagnosis and treatment of primary central nervous system lymphoma were discussed.

  7. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules.

    PubMed

    Tian, Lingling; Prabhakaran, Molamma P; Ramakrishna, Seeram

    2015-03-01

    Nerve diseases including acute injury such as peripheral nerve injury (PNI), spinal cord injury (SCI) and traumatic brain injury (TBI), and chronic disease like neurodegeneration disease can cause various function disorders of nervous system, such as those relating to memory and voluntary movement. These nerve diseases produce great burden for individual families and the society, for which a lot of efforts have been made. Axonal pathways represent a unidirectional and aligned architecture allowing systematic axonal development within the tissue. Following a traumatic injury, the intricate architecture suffers disruption leading to inhibition of growth and loss of guidance. Due to limited capacity of the body to regenerate axonal pathways, it is desirable to have biomimetic approach that has the capacity to graft a bridge across the lesion while providing optimal mechanical and biochemical cues for tissue regeneration. And for central nervous system injury, one more extra precondition is compulsory: creating a less inhibitory surrounding for axonal growth. Electrospinning is a cost-effective and straightforward technique to fabricate extracellular matrix (ECM)-like nanofibrous structures, with various fibrous forms such as random fibers, aligned fibers, 3D fibrous scaffold and core-shell fibers from a variety of polymers. The diversity and versatility of electrospinning technique, together with functionalizing cues such as neurotrophins, ECM-based proteins and conductive polymers, have gained considerable success for the nerve tissue applications. We are convinced that in the future the stem cell therapy with the support of functionalized electrospun nerve scaffolds could be a promising therapy to cure nerve diseases.

  8. Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system.

    PubMed

    Han, Ah Mi; Heo, Hwon; Kwon, Yunhee Kim

    2012-04-01

    Berberine, an isoquinoline alkaloid component of Coptidis Rhizoma (goldenthread) extract, has been reported to have therapeutic potential for central nervous system disorders such as Alzheimer's disease, cerebral ischemia, and schizophrenia. We have previously shown that berberine promotes the survival and differentiation of hippocampal precursor cells. In a memory-impaired rat model induced by ibotenic acid injection, the survival of pyramidal and granular cells was greatly increased in the hippocampus by berberine administration. In the present study, we investigated the effects of berberine on neurite outgrowth in the SH-SY5Y neuronal cell line and axonal regeneration in the rat peripheral nervous system (PNS). Berberine enhanced neurite extension in differentiating SH-SY5Y cells at concentrations of 0.25-3 μg/mL. In an injury model of the rat sciatic nerve, we examined the neuroregenerative effects of berberine on axonal remyelination by using immunohistochemical analysis. Four weeks after berberine administration (20 mg/kg i.p. once per day for 1 week), the thickness of remyelinated axons improved approximately 1.4-fold in the distal stump of the injury site. Taken together, these results indicate that berberine promotes neurite extension and axonal regeneration in injured nerves of the PNS.

  9. Aging, the Central Nervous System, and Mobility

    PubMed Central

    2013-01-01

    Background. Mobility limitations are common and hazardous in community-dwelling older adults but are largely understudied, particularly regarding the role of the central nervous system (CNS). This has limited development of clearly defined pathophysiology, clinical terminology, and effective treatments. Understanding how changes in the CNS contribute to mobility limitations has the potential to inform future intervention studies. Methods. A conference series was launched at the 2012 conference of the Gerontological Society of America in collaboration with the National Institute on Aging and the University of Pittsburgh. The overarching goal of the conference series is to facilitate the translation of research results into interventions that improve mobility for older adults. Results. Evidence from basic, clinical, and epidemiological studies supports the CNS as an important contributor to mobility limitations in older adults without overt neurologic disease. Three main goals for future work that emerged were as follows: (a) develop models of mobility limitations in older adults that differentiate aging from disease-related processes and that fully integrate CNS with musculoskeletal contributors; (b) quantify the contribution of the CNS to mobility loss in older adults in the absence of overt neurologic diseases; (c) promote cross-disciplinary collaboration to generate new ideas and address current methodological issues and barriers, including real-world mobility measures and life-course approaches. Conclusions. In addition to greater cross-disciplinary research, there is a need for new approaches to training clinicians and investigators, which integrate concepts and methodologies from individual disciplines, focus on emerging methodologies, and prepare investigators to assess complex, multisystem associations. PMID:23843270

  10. Congenital tumors of the central nervous system.

    PubMed

    Severino, Mariasavina; Schwartz, Erin S; Thurnher, Majda M; Rydland, Jana; Nikas, Ioannis; Rossi, Andrea

    2010-06-01

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into "definitely congenital" (present or producing symptoms at birth), "probably congenital" (present or producing symptoms within the first week of life), and "possibly congenital" (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors, where aggressive surgical treatment leads to disease-free survival.

  11. Melatonin Metabolism in the Central Nervous System

    PubMed Central

    Hardeland, Rüdiger

    2010-01-01

    The metabolism of melatonin in the central nervous system is of interest for several reasons. Melatonin enters the brain either via the pineal recess or by uptake from the blood. It has been assumed to be also formed in some brain areas. Neuroprotection by melatonin has been demonstrated in numerous model systems, and various attempts have been undertaken to counteract neurodegeneration by melatonin treatment. Several concurrent pathways lead to different products. Cytochrome P450 subforms have been demonstrated in the brain. They either demethylate melatonin to N-acetylserotonin, or produce 6-hydroxymelatonin, which is mostly sulfated already in the CNS. Melatonin is deacetylated, at least in pineal gland and retina, to 5-methoxytryptamine. N1-acetyl-N2-formyl-5-methoxykynuramine is formed by pyrrole-ring cleavage, by myeloperoxidase, indoleamine 2,3-dioxygenase and various non-enzymatic oxidants. Its product, N1-acetyl-5-methoxykynuramine, is of interest as a scavenger of reactive oxygen and nitrogen species, mitochondrial modulator, downregulator of cyclooxygenase-2, inhibitor of cyclooxygenase, neuronal and inducible NO synthases. Contrary to other nitrosated aromates, the nitrosated kynuramine metabolite, 3-acetamidomethyl-6-methoxycinnolinone, does not re-donate NO. Various other products are formed from melatonin and its metabolites by interaction with reactive oxygen and nitrogen species. The relative contribution of the various pathways to melatonin catabolism seems to be influenced by microglia activation, oxidative stress and brain levels of melatonin, which may be strongly changed in experiments on neuroprotection. Many of the melatonin metabolites, which may appear in elevated concentrations after melatonin administration, possess biological or pharmacological properties, including N-acetylserotonin, 5-methoxytryptamine and some of its derivatives, and especially the 5-methoxylated kynuramines. PMID:21358968

  12. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    PubMed

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis.

  13. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  14. Embryonic Development of the Central Nervous System.

    PubMed

    de Lahunta, Alexander; Glass, Eric N; Kent, Marc

    2016-03-01

    Ultimately, it is only with an understanding of normal embryologic development that there can be an understanding of why and how a specific malformation develops. Knowing from where and when a specific part of the nervous system develops and what morphogens are at play will enable us to identify undescribed malformation as well as better define causality. The following article reviews the normal embryologic development of the mammalian nervous system and is intended to serve as a foundation for the understanding of the various malformations presented in this issue.

  15. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat

    PubMed Central

    Schmitt, Andreas B; Breuer, Sebastian; Liman, Jan; Buss, Armin; Schlangen, Christiane; Pech, Katrin; Hol, Elly M; Brook, Gary A; Noth, Johannes; Schwaiger, Franz-Werner

    2003-01-01

    Background It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. Results To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (~15%) have been demonstrated to be differentially expressed. Conclusions The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues. PMID:12756057

  16. Deoxyribozymes: New Therapeutics to Treat Central Nervous System Disorders

    PubMed Central

    Grimpe, Barbara

    2011-01-01

    This mini-review focuses on a knockdown technology called deoxyribozymes, which has rarely been utilized in the field of neurobiology/neuroscience. Deoxyribozymes are catalytic DNA molecules, which are also entitled DNA enzyme or DNAzyme. This mini-review presents a description of their development, structure, function, and therapeutic application. In addition, information on siRNA, ribozymes, and antisense are given. Further information on two deoxyribozymes against c-Jun and xylosyltransferase (XT) mRNA are summarized of which the first is important to influence many neurological disorders and the last potentially treats spinal cord injuries (SCIs). In particular, insults to the central nervous system (CNS) such as SCI generate an inhibitory environment (lesion scar) at the injury site that prevents the endogenous and therapy-induced axonal regeneration and thereby limits repair strategies. Presently, there are no treatments available. Hence, deoxyribozymes provide an opportunity for new therapeutics that alter the inhibitory nature of the lesion scar and thus promote axonal growth in the injured spinal cord. When used cautiously and within the limits of its ability the deoxyribozyme technology holds promise to become a major contributing factor in repair strategies of the CNS. PMID:21977013

  17. Role of Wnt Signaling in Central Nervous System Injury.

    PubMed

    Lambert, Catherine; Cisternas, Pedro; Inestrosa, Nibaldo C

    2016-05-01

    The central nervous system (CNS) is highly sensitive to external mechanical damage, presenting a limited capacity for regeneration explained in part by its inability to restore either damaged neurons or the synaptic network. The CNS may suffer different types of external injuries affecting its function and/or structure, including stroke, spinal cord injury, and traumatic brain injury. These pathologies critically affect the quality of life of a large number of patients worldwide and are often fatal because available therapeutics are ineffective and produce limited results. Common effects of the mentioned pathologies involves the triggering of several cellular and metabolic responses against injury, including infiltration of blood cells, inflammation, glial activation, and neuronal death. Although some of the underlying molecular mechanisms of those responses have been elucidated, the mechanisms driving these processes are poorly understood in the context of CNS injury. In the last few years, it has been suggested that the activation of the Wnt signaling pathway could be important in the regenerative response after CNS injury, activating diverse protective mechanisms including the stimulation of neurogenesis, blood brain structure consolidation and the recovery of cognitive brain functions. Because Wnt signaling is involved in several physiological processes, the putative positive role of its activation after injury could be the basis for novel therapeutic approaches to CNS injury.

  18. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    MedlinePlus

    ... the Central and Peripheral Nervous Systems Fact Sheet Table of Contents (click to jump to sections) What ... Information Page NINDS Epilepsy Information Page NINDS Familial Periodic Paralyses Information Page NINDS Farber's Disease Information Page ...

  19. [Microglial cells and development of the embryonic central nervous system].

    PubMed

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  20. Structure and anterior regeneration of musculature and nervous system in Cirratulus cf. cirratus (Cirratulidae, Annelida).

    PubMed

    Weidhase, Michael; Bleidorn, Christoph; Helm, Conrad

    2014-12-01

    Annelids provide suitable models for studying regeneration. By now, comprehensive information is restricted to only a few taxa. For many other annelids, comparative data are scarce or even missing. Here, we describe the regeneration of a member of the Cirratulus cirratus species complex. Using phalloidin-labeling and antibody-stainings combined with subsequent confocal laser scanning microscopy, we provide data about the organization of body wall musculature and nervous system of intact specimens, as well as about anteriorly regenerating specimens. Our analyses show that C. cf. cirratus exhibits a prominent longitudinal muscle layer forming a dorsal muscle plate, two ventral muscle strands and a ventral-median muscle fiber. The circular musculature forms closed rings which are interrupted in the area of parapodia. The nervous system of C. cf. cirratus shows a typical rope-ladder like arrangement and the circumesophageal connectives exhibit two separate roots leading to the brain. During regeneration, the nervous system redevelops remarkably earlier than the musculature, first constituting a tripartite loop-like structure which later become the circumesophageal connectives. Regeneration of longitudinal musculature starts with diffuse ingrowth and subsequent structuring into the blastema. In contrast, circular musculature develops independently inside the blastema. Our findings constitute the first analysis of regeneration for a member of the Cirratuliformia on a structural level. Summarizing the regeneration process in C. cf. cirratus, five main phases can be subdivided: 1) wound closure, 2) blastema formation, 3) blastema differentiation, 4) resegmentation, and 5) growth, respectively elongation. Additionally, the described tripartite loop-like structure of the regenerating nervous system has not been reported for any other annelid taxon. In contrast, the regeneration of circular and longitudinal musculature originating from different groups of cells seems to be a

  1. Central nervous system adaptation to exercise training

    NASA Astrophysics Data System (ADS)

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  2. Uropharmacology: X. Central nervous system stimulants and depressants.

    PubMed

    Bissada, N K; Finkbeiner, A E; Welch, L T

    1979-04-01

    Several drugs that are utilized primarily for their effects on the central nervous system also affect lower urinary tract function. Most of these effects are produced by the action of these drugs on adrenergic and cholinergic receptors or by direct action of lower urinary tract musculature. Central nervous system stimulants and depressants which are known to affect the storage or evacuation role of the lower urinary tract are discussed.

  3. Central nervous system systemic lupus erythematosus mimicking progressive multifocal leucoencephalopathy.

    PubMed Central

    Kaye, B R; Neuwelt, C M; London, S S; DeArmond, S J

    1992-01-01

    The case is reported of a patient with central nervous system systemic lupus erythematosus (SLE) with features of progressive multifocal leucoencephalopathy (PML) seen clinically and by magnetic resonance imaging. A brain biopsy sample showed microinfarcts. The use of magnetic resonance imaging and IgG synthesis rates in evaluating central nervous system lupus, the co-occurrence of SLE and PML, and the differentiation of these entities by magnetic resonance imaging and by histology are considered. Images PMID:1444628

  4. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  5. Metal toxicity in the central nervous system.

    PubMed Central

    Clarkson, T W

    1987-01-01

    The nervous system is the principal target for a number of metals. Inorganic compounds of aluminum, arsenic, lead, lithium, manganese, mercury, and thallium are well known for their neurological and behavioral effects in humans. The alkyl derivatives of certain metals--lead, mercury and tin--are specially neurotoxic. Concern over human exposure and in some cases, outbreaks of poisoning, have stimulated research into the toxic action of these metals. A number of interesting hypotheses have been proposed for the mechanism of lead toxicity on the nervous system. Lead is known to be a potent inhibitor of heme synthesis. A reduction in heme-containing enzymes could compromise energy metabolism. Lead may affect brain function by interference with neurotransmitters such as gamma-amino-isobutyric acid. There is mounting evidence that lead interferes with membrane transport and binding of calcium ions. Methylmercury produces focal damage to specific areas in the adult brain. One hypothesis proposes that certain cells are susceptible because they cannot repair the initial damage to the protein sythesis machinery. The developing nervous system is especially susceptible to damage by methylmercury. It has been discovered that microtubules are destroyed by this form of mercury and this effect may explain the inhibition of cell division and cell migration, processes that occur only in the developmental stages. These and other hypotheses will stimulate considerable experimental challenges in the future. PMID:3319566

  6. Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians.

    PubMed

    Cebrià, Francesc; Newmark, Phillip A

    2007-03-01

    The process by which the proper pattern is restored to newly formed tissues during metazoan regeneration remains an open question. Here, we provide evidence that the nervous system plays a role in regulating morphogenesis during anterior regeneration in the planarian Schmidtea mediterranea. RNA interference (RNAi) knockdown of a planarian ortholog of the axon-guidance receptor roundabout (robo) leads to unexpected phenotypes during anterior regeneration, including the development of a supernumerary pharynx (the feeding organ of the animal) and the production of ectopic, dorsal outgrowths with cephalic identity. We show that Smed-roboA RNAi knockdown disrupts nervous system structure during cephalic regeneration: the newly regenerated brain and ventral nerve cords do not re-establish proper connections. These neural defects precede, and are correlated with, the development of ectopic structures. We propose that, in the absence of proper connectivity between the cephalic ganglia and the ventral nerve cords, neurally derived signals promote the differentiation of pharyngeal and cephalic structures. Together with previous studies on regeneration in annelids and amphibians, these results suggest a conserved role of the nervous system in pattern formation during blastema-based regeneration.

  7. Review: Glial lineages and myelination in the central nervous system

    PubMed Central

    COMPSTON, ALASTAIR; ZAJICEK, JOHN; SUSSMAN, JON; WEBB, ANNA; HALL, GILLIAN; MUIR, DAVID; SHAW, CHRISTOPHER; WOOD, ANDREW; SCOLDING, NEIL

    1997-01-01

    Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease. PMID:9061442

  8. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules

    PubMed Central

    Tian, Lingling; Prabhakaran, Molamma P.; Ramakrishna, Seeram

    2015-01-01

    Nerve diseases including acute injury such as peripheral nerve injury (PNI), spinal cord injury (SCI) and traumatic brain injury (TBI), and chronic disease like neurodegeneration disease can cause various function disorders of nervous system, such as those relating to memory and voluntary movement. These nerve diseases produce great burden for individual families and the society, for which a lot of efforts have been made. Axonal pathways represent a unidirectional and aligned architecture allowing systematic axonal development within the tissue. Following a traumatic injury, the intricate architecture suffers disruption leading to inhibition of growth and loss of guidance. Due to limited capacity of the body to regenerate axonal pathways, it is desirable to have biomimetic approach that has the capacity to graft a bridge across the lesion while providing optimal mechanical and biochemical cues for tissue regeneration. And for central nervous system injury, one more extra precondition is compulsory: creating a less inhibitory surrounding for axonal growth. Electrospinning is a cost-effective and straightforward technique to fabricate extracellular matrix (ECM)-like nanofibrous structures, with various fibrous forms such as random fibers, aligned fibers, 3D fibrous scaffold and core-shell fibers from a variety of polymers. The diversity and versatility of electrospinning technique, together with functionalizing cues such as neurotrophins, ECM-based proteins and conductive polymers, have gained considerable success for the nerve tissue applications. We are convinced that in the future the stem cell therapy with the support of functionalized electrospun nerve scaffolds could be a promising therapy to cure nerve diseases. PMID:26813399

  9. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system.

    PubMed

    Lopez-Verrilli, María Alejandra; Picou, Frederic; Court, Felipe A

    2013-11-01

    Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.

  10. Calcium pumps in the central nervous system.

    PubMed

    Mata, Ana M; Sepúlveda, M Rosario

    2005-09-01

    Two families of Ca2+ transport ATPases are involved in the maintenance of Ca2+ homeostasis in the nervous system, the plasma membrane Ca2+-ATPase that pumps Ca2+ to the extracellular medium and the intracellular sarco/endoplasmic reticulum Ca2+-ATPase that transports Ca2+ from the cytosol to the endoplasmic reticulum. Both types of calcium pumps show precise regulatory properties and they are localized in specific subcellular regions. In this review, we describe the functional and regulatory properties of both families of calcium pumps, their distribution in nerve cells, and their involvement in neurological disorders. The functional characterization of neuronal calcium pumps is very important in order to understand the biochemical processes involved in the maintenance of intracellular calcium in synaptic terminals.

  11. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  12. Structural and functional features of central nervous system lymphatic vessels.

    PubMed

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  13. [Clinical Importance of Central Nervous System Dysfunction in Myopathy].

    PubMed

    Matsumura, Tsuyoshi

    2016-02-01

    Multidisciplinary treatments including mechanical ventilation and cardioprotective therapy have improved life expectancy in many neuromuscular disorders such as Duchenne muscular dystrophy. For these patients, central nervous system disturbances such as intellectual and/or developmental disability can hinder social activities and communications. In myotonic dystrophy, the personality and/or cognitive dysfunction affects medical consultation behavior and decreases the efficacy of medical treatments. Understanding central nervous system disturbances in myopathies and providing care keeping in mind the patient burden are critical for improving prognosis and quality of life.

  14. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system.

    PubMed

    Richner, Mette; Ulrichsen, Maj; Elmegaard, Siri Lander; Dieu, Ruthe; Pallesen, Lone Tjener; Vaegter, Christian Bjerggaard

    2014-12-01

    Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.

  15. COE Loss-of-Function Analysis Reveals a Genetic Program Underlying Maintenance and Regeneration of the Nervous System in Planarians

    PubMed Central

    Cowles, Martis W.; Omuro, Kerilyn C.; Stanley, Brianna N.; Quintanilla, Carlo G.; Zayas, Ricardo M.

    2014-01-01

    Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. PMID:25356635

  16. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians.

    PubMed

    Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M

    2014-10-01

    Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.

  17. Multiple Changes in Peptide and Lipid Expression Associated with Regeneration in the Nervous System of the Medicinal Leech

    PubMed Central

    Meriaux, Céline; Arafah, Karim; Tasiemski, Aurélie; Wisztorski, Maxence; Bruand, Jocelyne; Boidin-Wichlacz, Céline; Desmons, Annie; Debois, Delphine; Laprévote, Olivier; Brunelle, Alain; Gaasterland, Terry; Macagno, Eduardo; Fournier, Isabelle; Salzet, Michel

    2011-01-01

    Background The adult medicinal leech central nervous system (CNS) is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested. Results Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV) receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth. Conclusion The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and

  18. Pediatric central nervous system infections and inflammatory white matter disease.

    PubMed

    Silvia, Mary T; Licht, Daniel J

    2005-08-01

    This article reviews the immunology of the central nervous system and the clinical presentation, diagnosis, and treatment of children with viral or parainfectious encephalitis. The emphasis is on the early recognition of treatable causes of viral encephalitis (herpes simplex virus), and the diagnosis and treatment of acute disseminated encephalomyelitis are described in detail. Laboratory and imaging findings in the two conditions also are described.

  19. Thiophene Scaffold as Prospective Central Nervous System Agent: A Review.

    PubMed

    Deep, Aakash; Narasimhan, Balasubramanian; Aggarwal, Swati; Kaushik, Dhirender; Sharma, Arun K

    2016-01-01

    Heterocyclic compounds are extensively dispersed in nature and are vital for life. Various investigational approaches towards Structural Activity Relationship that focus upon the exploration of optimized candidates have become vastly important. Literature studies tell that for a series of compounds that are imperative in industrial and medicinal chemistry, thiophene acts as parent. Among various classes of heterocyclic compounds that have potential central nervous system activity, thiophene is the most important one. In the largely escalating chemical world of heterocyclic compounds showing potential pharmacological character, thiophene nucleus has been recognized as the budding entity. Seventeen Papers were included in this review article to define the central nervous system potential of thiophene. This review article enlightens the rationalized use and scope of thiophene scaffold as novel central nervous system activity such as anticonvulsant, acetylcholinesterase inhibitor, cyclin-dependent kinase 5 (cdk5/p25) inhibitors, CNS depressant, capability to block norepinephrine, serotonin and dopamine reuptake by their respective transporters etc. The Finding of this review confirm the importance of thiophene scaffold as potential central nervous system agents. From this outcome, ideas for future molecular modifications leading to the novel derivatives with better constructive pharmacological potential may be derived.

  20. The Role of Central Nervous System Plasticity in Tinnitus

    ERIC Educational Resources Information Center

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  1. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  2. Central nervous system depressant effect of Hoslundia opposita vahl.

    PubMed

    Olajide, O A; Awe, S O; Makinde, J M

    1999-08-01

    The chloroform extract of the dried root of Hoslundia opposita has been evaluated for effects on the central nervous system (CNS). The extract significantly potentiated the phenobarbitone sleeping time in mice and produced a 60% protection against leptazol-induced convulsion. Neuropharmacological screening revealed CNS depression. Copyright 1999 John Wiley & Sons, Ltd.

  3. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    ERIC Educational Resources Information Center

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  4. Axon guidance in the vertebrate central nervous system.

    PubMed

    Lumsden, A; Cohen, J

    1991-08-01

    The development of connections in the central nervous system depends on the ability of the tips of growing axons to find their appropriate, often distant, target field. Factors that regulate axon outgrowth may be distinct from those that influence direction finding. Tissue culture methods have helped to distinguish between possible in vivo mechanisms and, in some cases, have identified candidate molecules.

  5. The Role of Central Nervous System Plasticity in Tinnitus

    ERIC Educational Resources Information Center

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  6. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  7. [Therapy of central nervous system listeriosis in sheep].

    PubMed

    Kümper, H

    1991-08-01

    Twenty-two sheep and 4 goats suffering from central nervous listeriosis were treated with a therapy that had proved to be successful in cattle. For one week they received daily subcutaneous injections of 50,000 IU Procaine Penicillin G per kg live weight and 5 to 10 mg Vitamin B1 per kg body weight. The base excess was tested by blood gas analysis, and it was compensated by intravenous infusion of Na-bicarbonate. Animals that could not eat or swallow received water and rumen liquid by stomach tube. Eight of 26 patients (31%) were healed. The prognosis of central nervous listeriosis depends mainly on the time of initial treatment and on the degree of general disturbances: More than 90% of the animals that were recumbent (16 of 17) or showed dysphagia (12 of 13) at the beginning of treatment died or had to be euthanized because of persistent central nervous disturbances. The correction of blood-pH was of no therapeutic benefit when the disease was already in progress. Treatment of central nervous listeriosis seems to be effective as long as the patients can stand and swallow. When patients received care at this early stage of disease, 77% (7 of 9) were healed and returned to the flock.

  8. Parasitic central nervous system infections in immunocompromised hosts.

    PubMed

    Walker, Melanie; Zunt, Joseph R

    2005-04-01

    Immunosuppression due to therapy after transplantation or associated with HIV infection increases susceptibility to various central nervous system (CNS) infections. This article discusses how immunosuppression modifies the presentation, diagnosis, and treatment of selected parasitic CNS infections, with a focus on toxoplasmosis, Chagas disease, neurocysticercosis, schistosomiasis, and strongyloidiasis.

  9. Parasitic Central Nervous System Infections in Immunocompromised Hosts

    PubMed Central

    Walker, Melanie; Zunt, Joseph R.

    2009-01-01

    Immunosuppression due to therapy after transplantation or associated with HIV infection increases susceptibility to various central nervous system (CNS) infections. This article discusses how immunosuppression modifies the presentation, diagnosis, and treatment of selected parasitic CNS infections, with a focus on toxoplasmosis, Chagas disease, neurocysticercosis, schistosomiasis, and strongyloidiasis. PMID:15824993

  10. Blocking Action of Snake Venom Neurotoxins at Receptor Sites to Putative Central Nervous System Transmitters.

    DTIC Science & Technology

    SNAKES, *VENOMS, *PARASYMPATHOLYTIC AGENTS, PROBES, PRECURSORS, VERTEBRATES, NERVOUS SYSTEM, CENTRAL NERVOUS SYSTEM, TOXINS AND ANTITOXINS, CHOLINERGIC NERVES, NERVE TRANSMISSION, MOLLUSCA , EPINEPHRINE.

  11. Evolution of flatworm central nervous systems: Insights from polyclads

    PubMed Central

    Quiroga, Sigmer Y.; Carolina Bonilla, E.; Marcela Bolaños, D.; Carbayo, Fernando; Litvaitis, Marian K.; Brown, Federico D.

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies. PMID:26500427

  12. Evolution of flatworm central nervous systems: Insights from polyclads.

    PubMed

    Quiroga, Sigmer Y; Carolina Bonilla, E; Marcela Bolaños, D; Carbayo, Fernando; Litvaitis, Marian K; Brown, Federico D

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.

  13. Immunocytochemical Detection of Acetylcholine in the Rat Central Nervous System

    NASA Astrophysics Data System (ADS)

    Geffard, M.; McRae-Degueurce, A.; Souan, Marie Laure

    1985-07-01

    A specific antibody to acetylcholine was raised and used as a marker for cholinergic neurons in the rat central nervous system. The acetylcholine conjugate was obtained by a two-step immunogen synthesis procedure. An enzyme-linked immunosorbent assay was used to test the specificity and affinity of the antibody in vitro; the results indicated high affinity. A chemical perfusion mixture of allyl alcohol and glutaraldehyde was used to fix the acetylcholine in the nervous tissue. Peroxidase-antiperoxidase immunocytochemistry showed many acetylcholine-immunoreactive cells and fibers in sections from the medial septum region.

  14. Neuroinflammation of the central and peripheral nervous system: an update.

    PubMed

    Stüve, O; Zettl, U

    2014-03-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology.

  15. Neuroinflammation of the central and peripheral nervous system: an update

    PubMed Central

    Stüve, O; Zettl, U

    2014-01-01

    Inflammatory disorders of the peripheral nervous system (PNS) and central nervous system (CNS) are common, and contribute substantially to physical and emotional disability of affected individuals. Often, the afflicted are young and in their active years. In the past, physicians and scientists often had very little to offer in terms of diagnostic precision and therapeutic effectiveness. During the past two decades, both of these relative shortcomings have clearly improved. Some of the recent developments in clinical neuroimmunology are illustrated in this special edition of Clinical and Experimental Immunology. PMID:24384012

  16. Temporal and spatial analysis of enteric nervous system regeneration in the sea cucumber Holothuria glaberrima

    PubMed Central

    Tossas, Karen; Qi‐Huang, Sunny; Cuyar, Eugenia

    2014-01-01

    Abstract There is limited information on the regeneration of the enteric nervous system (ENS) following major reconstruction of the digestive tract. We have studied ENS regeneration in the sea cucumber Holothuria glaberrima which undergoes an organogenic process forming a new digestive tract at the tip of the mesentery. Our results show that (1) a degeneration of nerve fibers occurs early in the regeneration process, prior to eventual regeneration; (2) nerve fibers that innervate the regenerating intestine are of extrinsic and intrinsic origin; (3) innervation by extrinsic fibers occurs in a gradient that begins in the proximal area of the regenerate; (4) late events include the appearance of nerve fibers that project from the serosa into the connective tissue and of nerve bundles in the mesothelial layer; (5) neurons and neuroendocrine cells appear early following the formation of the epithelial layers. Our results provide not only a comparative biological approach to study ENS regeneration but also an alternative point of view for the study of enteric neuropathologies and for the innervation of organs made in vitro. PMID:27499861

  17. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  18. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  19. The soft mechanical signature of glial scars in the central nervous system

    NASA Astrophysics Data System (ADS)

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-03-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

  20. The Role of Serotonin beyond the Central Nervous System during Embryogenesis

    PubMed Central

    Lv, Junhua; Liu, Feng

    2017-01-01

    Serotonin, or 5-hydroxytryptamine (5-HT), is a well-known neurotransmitter that plays vital roles in neural activities and social behaviors. Clinically, deficiency of serotonin is linked with many psychiatric disorders. Interestingly, a large proportion of serotonin is also produced outside the central nervous system (CNS). There is increasing evidence demonstrating important roles of serotonin in the peripheral tissues. Here, we will describe the multiple biological functions of serotonin in hematopoietic system, such as development of hematopoietic stem and progenitor cells (HSPCs), differentiation of hematopoietic cells, maintenance of vascular system, and relationship with hematological diseases. The roles of serotonin in inflammatory responses mediated by hematopoietic cells as well as in liver regeneration are also discussed. Our recent understandings of the impact of serotonin on hematopoietic system, immune responses, and tissue regeneration support utilization of serotonin as a potential therapeutic target for the treatment of hematological diseases and organ repair in clinic. PMID:28348520

  1. The soft mechanical signature of glial scars in the central nervous system

    PubMed Central

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-01-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury. PMID:28317912

  2. Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia

    PubMed Central

    Silver, Jerry; Schwab, Martin E.; Popovich, Phillip G.

    2015-01-01

    Animal studies are now showing the exciting potential to achieve significant functional recovery following central nervous system (CNS) injury by manipulating both the inefficient intracellular growth machinery in neurons, as well as the extracellular barriers, which further limit their regenerative potential. In this review, we have focused on the three major glial cell types: oligodendrocytes, astrocytes, and microglia/macrophages, in addition to some of their precursors, which form major extrinsic barriers to regrowth in the injured CNS. Although axotomized neurons in the CNS have, at best, a limited capacity to regenerate or sprout, there is accumulating evidence that even in the adult and, especially after boosting their growth motor, neurons possess the capacity for considerable circuit reorganization and even lengthy regeneration when these glial obstacles to neuronal regrowth are modified, eliminated, or overcome. PMID:25475091

  3. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    PubMed

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.

  5. Neurotropic Enterovirus Infections in the Central Nervous System.

    PubMed

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  6. Neurotropic Enterovirus Infections in the Central Nervous System

    PubMed Central

    Huang, Hsing-I; Shih, Shin-Ru

    2015-01-01

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells. PMID:26610549

  7. Pathophysiological mechanisms of Flavivirus infection of the central nervous system.

    PubMed

    Pardigon, N

    2017-09-01

    Flaviviruses are important human pathogens. Transmitted by the bite of infected mosquitoes, Flaviviruses such as West Nile and Japanese encephalitis may reach the central nervous system where they can elicit severe diseases. Their ability to cross the blood-brain-barrier is still poorly understood. The newly emerging Zika Flavivirus on the other hand very rarely reaches the brain of adults, but can infect neural progenitors in the developing central nervous system of fetuses, eliciting devastating congenital malformations including microcephaly. This short review focuses on selected aspects of West Nile, Japanese encephalitis and Zika virus pathophysiological features such as neuroinvasion and neurovirulence, and highlights what we know about some possible mechanisms involved in Flaviviral neuropathogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Central nervous system histoplasmosis in an immunocompetent pediatric patient.

    PubMed

    Esteban, Ignacio; Minces, Pablo; De Cristofano, Analía M; Negroni, Ricardo

    2016-06-01

    Neurohistoplasmosis is a rare disease, most prevalent in immunosuppressed patients, secondary to disseminated disease with a high mortality rate when diagnosis and treatment are delayed. We report a previously healthy 12 year old girl, from a bat infested region of Tucuman Province, Argentine Republic, who developed meningoencephalitis due to Histoplasma capsulatum. Eighteen months prior to admission the patient started with headaches and intermittent fever. The images of the central nervous system showed meningoencephalitis suggestive of tuberculosis. She received antibiotics and tuberculostatic medications without improvement. Liposomal amphotericin B was administered for six weeks. The patient's clinical status improved remarkably. Finally the culture of cerebral spinal fluid was positive for micelial form of Histoplasma capsulatum. The difficulties surrounding the diagnosis and treatment of neurohistoplasmosis in immunocompetent patients are discussed in this manuscript, as it also intends to alert to the presence of a strain of Histoplasma capsulatum with affinity for the central nervous system.

  9. Neurogenesis during development of the vertebrate central nervous system

    PubMed Central

    Paridaen, Judith TML; Huttner, Wieland B

    2014-01-01

    During vertebrate development, a wide variety of cell types and tissues emerge from a single fertilized oocyte. One of these tissues, the central nervous system, contains many types of neurons and glial cells that were born during the period of embryonic and post-natal neuro- and gliogenesis. As to neurogenesis, neural progenitors initially divide symmetrically to expand their pool and switch to asymmetric neurogenic divisions at the onset of neurogenesis. This process involves various mechanisms involving intrinsic as well as extrinsic factors. Here, we discuss the recent advances and insights into regulation of neurogenesis in the developing vertebrate central nervous system. Topics include mechanisms of (a)symmetric cell division, transcriptional and epigenetic regulation, and signaling pathways, using mostly examples from the developing mammalian neocortex. PMID:24639559

  10. Molecular Targets for Organophosphates in the Central Nervous System

    DTIC Science & Technology

    2006-04-01

    interest is the report that at the neuromuscular junction VX increases acetylcholine (ACh) release by a mechanism unrelated to cholinesterase...neurons of the central nervous system (CNS) are different from those modulating the release of ACh at the neuromuscular junction. Not only do the...solution, and when miniature postsynaptic currents (MPSCs) were recorded, the muscarinic blocker atropine (1 µM) was also added to the external

  11. Isolated central nervous system Whipple's disease: Two cases.

    PubMed

    Vural, Atay; Acar, Nazire Pinar; Soylemezoglu, Figen; Oguz, Kader K; Dericioğlu, Neşe; Saka, Esen

    2015-12-01

    Although it is an orphan disease, isolated central nervous system Whipple's disease is one of the "must be known" conditions in neurology because it belongs to the list of "treatable disorders". Here, we present two cases which highlight the importance of early diagnosis. Additionally, we provide a discussion on up to date diagnostic approach to this life-threatening disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Atypical presentation of pheochromocytoma: Central nervous system pseudovasculitis

    PubMed Central

    Rupala, Ketankumar; Mittal, Varun; Gupta, Rajiv; Yadav, Rajiv

    2017-01-01

    Pheochromocytoma has atypical presentation in 9%–10% of patients. Atypical presentations include myocardial infarction, renal failure, and rarely cerebrovascular events. Various etiologies for central nervous system (CNS) involvement in pheochromocytoma have been described in the literature. A rare association of CNS vasculitis-like features has been described with pheochromocytoma. We report a rare case of pheochromocytoma detected on evaluation for CNS vasculitis-like symptoms. PMID:28197038

  13. [Systemic lupus erythematosus and the central nervous system].

    PubMed

    Rojas, E; Orrea Solano, M

    1993-01-01

    The central nervous system (CNS) manifestations of the chronic autoimmune disease systemic lupus erythematous (SLE) are reviewed. SLE-CNS dysfunction is broadly divided into neurologic and psychiatric clinical categories. The distinct clinical entities within these broad categories are fully described. Diagnostic criteria employed to verify the presence of SLE-CNS dysfunction, including laboratory serum and cerebral spinal fluid analyses as well as radiologic and other multimodality diagnostic tools, are compared and contrasted with respect to sensitivity and specificity.

  14. Central nervous system involvement of polyarteritis nodosa: a case report.

    PubMed

    Altinok, D; Yildiz, Y T; Ruşen, E; Eryilmaz, M; Tacal, T

    2001-01-01

    Polyarteritis nodosa (PAN) is a necrotizing vasculitis involving small and medium-sized arteries and it affects multiple organ systems in the body Central nervous system (CNS) involvement appears less frequently, and usually develops after the disease is established. Although aneurysms are common in visceral arteries in PAN, intracranial aneurysms are uncommon and have been documented rarely. This case is reported to raise awareness among radiologists as it has characteristic and rare, if not specific, imaging findings of CNS involvement of PAN.

  15. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    PubMed

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  16. Regulation of Neurotransmitter Responses in the Central Nervous System

    DTIC Science & Technology

    1990-02-05

    neurotransmitter systems was of general physiological relevance to mammalian central nervous system function and (2) that multiple CABA receptors may exist...pharmacologically distinct CABA receptors in mammalian tissues. Furthermore, the results predict it may be possible to develop more potent compounds which...present. Project co-ordination and scientific direction. E. Coupling Activities. S.J. Enna, Ph.D., invited speaker, First International CABA Receptor

  17. Autoimmune disorders affecting both the central and peripheral nervous system.

    PubMed

    Kamm, Christoph; Zettl, Uwe K

    2012-01-01

    Various case series of patients with autoimmune demyelinating disease affecting both the central and peripheral nervous system (CNS and PNS), either sequentially or simultaneously, have been reported for decades, but their frequency is considerably lower than that of the "classical" neurological autoimmune diseases affecting only either CNS or PNS, such as multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP) or Guillain-Barré-Syndrome (GBS), and attempts to define or even recognize the former as a clinical entity have remained elusive. Frequently, demyelination started with CNS involvement with subsequent PNS pathology, in some cases with a relapsing-remitting course. Three potential mechanisms for the autoimmune etiology of these conditions can be discussed: (I) They could be caused by a common autoimmunological reactivity against myelin antigens or epitopes present in both the central and peripheral nervous system; (II) They could be due to a higher general susceptibility to autoimmune disease, which in some cases may have been caused or exacerbated by immunomodulatory treatment, e.g. b-interferon; (III) Their co-occurrence might be coincidental. Another example of an autoimmune disease variably involving the central or peripheral nervous system or both is the overlapping and continuous clinical spectrum of Fisher syndrome (FS), as a variant of GBS, and Bickerstaff brainstem encephalitis (BBE). Recent data from larger patient cohorts with demonstration of common autoantibodies, antecedent infections, and results of detailed clinical, neuroimaging and neurophysiological investigations suggest that these three conditions are not separate disorders, but rather form a continuous spectrum with variable central and peripheral nervous system involvement. We herein review clinical and paraclinical data and therapeutic options of these disorders and discuss potential underlying common vs. divergent immunopathogenic mechanisms.

  18. [Nogo-A functions during the development of the central nervous system and in the adult].

    PubMed

    Mingorance, A; Soriano-García, E; del Rio, J A

    The myelin-associated inhibitors play a very important role in preventing the regeneration of the adult central nervous system. Among these inhibitors it is Nogo-A, a recently cloned protein expressed by oligodendrocytes. However, after its discovery as a myelin-associated protein, there has been described new functions for Nogo-A far from its role in the oligodendrocytes myelin. After an introduction to the molecular changes that occur after a central nervous system (CNS) injury we focus in the figure of Nogo-A and its family of proteins. Finally, we make a revision of the different functions that have been described to date for Nogo-A, from the development of the CNS to the inhibition of axonal regeneration in the adult, highlighting the therapeutic potential of the selective blockade of Nogo-A. Although Nogo-A was discovered in the context of axonal growth inhibition, in which it is indeed playing a determining role, Nogo-A has turned out to be also a neuronal protein involved in diverse processes that go from axonal fasciculation to apoptosis. As we deepened in our knowledge about the molecular mechanisms that organize the complex functioning of the CNS, it is clearer that the proteins implicated in fasciculation and axonal guidance during development also play equally important roles in mechanisms like the axonal inhibition or the regulation of the synaptic plasticity in the adult CNS.

  19. The Neuroimmunology of Degeneration and Regeneration in the Peripheral Nervous System

    PubMed Central

    Zigmond, R. E.

    2014-01-01

    Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration. Wallerian degeneration and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process. PMID:25242643

  20. [The interleukin-10 in the central nervous system].

    PubMed

    Kurowska, Ewelina; Majkutewicz, Irena

    2015-07-27

    Cytokines, including interleukin-10 (IL-10), are cell signaling molecules taking part in cell‑to‑cell communication, cell proliferation, differentiation, migration and apoptosis. Cytokines also have the ability to induce, regulate, and inhibit inflammation. Cytokines are produced mainly by activated peripheral immune cells, but due to dissemination of the concept of the central nervous system as an immunologically specialized zone, it is considered that cytokine signaling is one of the components of the immune system which can modulate brain functioning. IL-10 shows immunosuppressive properties, and since expression of this cytokine has been shown in the central nervous system, researchers have started to investigate the therapeutic possibilities of IL-10 action in the context of neurodegenerative diseases, which may involve neuroinflammation in their pathogenesis. Recent studies using cell cultures or animal models of neurodegenerative disorders have shown that the importance of IL-10 in the central nervous system goes beyond the anti-inflammatory activity of this cytokine. Involvement of IL-10 in neuroprotection, neurogenesis, regulation of the stress response and hippocampal synaptic plasticity connected with learning and memory is suggested.

  1. Radon exposure and tumors of the central nervous system.

    PubMed

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Effect of hyperthermia on the central nervous system: a review.

    PubMed

    Sminia, P; van der Zee, J; Wondergem, J; Haveman, J

    1994-01-01

    Experimental data show that nervous tissue is sensitive to heat. Animal data indicate that the maximum tolerated heat dose after local hyperthermia of the central nervous system (CNS) lies in the range of 40-60 min at 42-42 x 5 degrees C or 10-30 min at 43 degrees C. No conclusions concerning the heat sensitivity of nervous tissue can be derived from clinical studies using localized hyperthermia. The choice whether or not to exceed the critical heat dose, as derived from laboratory studies, in clinical practice is very much dependent on the clinical situation such as the anatomical site and volume of the tissue involved, and prior therapy. Data on clinical application of whole body hyperthermia (WBH) show that nervous tissue can withstand a slightly higher heat dose than after localized heating, which might be the result of developing thermal resistance during treatment. Expression of thermotolerance was observed in the spinal cord of laboratory animals. After WBH in man at a maximum between 40 and 43 degrees C for 6 h-30 min CNS complications were reported, but other complications seemed to be more life-threatening. Most studies indicate that impairment of the CNS after WBH was not due to direct heat injury to the brain or spinal cord, but was secondary as a result of physiological changes. Heat, at least if applied shortly after X-rays, enhances the response of nervous tissue to radiation. Neurotoxicity of chemotherapeutic drugs does not seem to be a limiting complication in hyperthermia if combined with chemotherapy, but only few data are available. The limited clinical experience shows that safe hyperthermic treatment of CNS malignancies or tumours located close to the CNS seems feasible under appropriate technical conditions with adequate thermometry and taking the sensitivity of the surrounding normal nervous tissue into account.

  3. Kruppel-Like Transcription Factors in the Nervous System: Novel players in neurite outgrowth and axon regeneration

    PubMed Central

    Moore, Darcie L.; Apara, Akintomide; Goldberg, Jeffrey L.

    2011-01-01

    The Krüppel-like family of transcription factors (KLFs) have been widely studied in proliferating cells, though very little is known about their role in post-mitotic cells, such as neurons. We have recently found that the KLFs play a role in regulating intrinsic axon growth ability in retinal ganglion cells (RGCs), a type of central nervous system (CNS) neuron. Previous KLF studies in other cell types suggest that there may be cell-type specific KLF expression patterns, and that their relative expression allows them to compete for binding sites, or to act redundantly to compensate for another’s function. With at least 15 of 17 KLF family members expressed in neurons, it will be important for us to determine how this complex family functions to regulate the intricate gene programs of axon growth and regeneration. By further characterizing the mechanisms of the KLF family in the nervous system, we may better understand how they regulate neurite growth and axon regeneration. PMID:21635952

  4. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.

    PubMed

    Rawji, Khalil S; Mishra, Manoj K; Michaels, Nathan J; Rivest, Serge; Stys, Peter K; Yong, V Wee

    2016-03-01

    Ageing of the central nervous system results in a loss of both grey and white matter, leading to cognitive decline. Additional injury to both the grey and white matter is documented in many neurological disorders with ageing, including Alzheimer's disease, traumatic brain and spinal cord injury, stroke, and multiple sclerosis. Accompanying neuronal and glial damage is an inflammatory response consisting of activated macrophages and microglia, innate immune cells demonstrated to be both beneficial and detrimental in neurological repair. This article will propose the following: (i) infiltrating macrophages age differently from central nervous system-intrinsic microglia; (ii) several mechanisms underlie the differential ageing process of these two distinct cell types; and (iii) therapeutic strategies that selectively target these diverse mechanisms may rejuvenate macrophages and microglia for repair in the ageing central nervous system. Most responses of macrophages are diminished with senescence, but activated microglia increase their expression of pro-inflammatory cytokines while diminishing chemotactic and phagocytic activities. The senescence of macrophages and microglia has a negative impact on several neurological diseases, and the mechanisms underlying their age-dependent phenotypic changes vary from extrinsic microenvironmental changes to intrinsic changes in genomic integrity. We discuss the negative effects of age on neurological diseases, examine the response of senescent macrophages and microglia in these conditions, and propose a theoretical framework of therapeutic strategies that target the different mechanisms contributing to the ageing phenotype in these two distinct cell types. Rejuvenation of ageing macrophage/microglia may preserve neurological integrity and promote regeneration in the ageing central nervous system. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions

  5. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections

    PubMed Central

    Panseri, Silvia; Cunha, Carla; Lowery, Joseph; Del Carro, Ubaldo; Taraballi, Francesca; Amadio, Stefano; Vescovi, Angelo; Gelain, Fabrizio

    2008-01-01

    Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL) to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group) and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They can be knitted in meshes

  6. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.

  7. Functional roles of neuropeptides in the insect central nervous system

    NASA Astrophysics Data System (ADS)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  8. Unraveling the differential dynamics of developmental fate in central and peripheral nervous systems

    PubMed Central

    Sengupta, Dola; Kar, Sandip

    2016-01-01

    Bone morphogenetic protein 2 (BMP2), differentially regulates the developmental lineage commitment of neural stem cells (NSC’s) in central and peripheral nervous systems. However, the precise mechanism beneath such observations still remains illusive. To decipher the intricacies of this mechanism, we propose a generic mathematical model of BMP2 driven differentiation regulation of NSC’s. The model efficiently captures the dynamics of the wild-type as well as various mutant and over-expression phenotypes for NSC’s in central nervous system. Our model predicts that the differential developmental dynamics of the NSC’s in peripheral nervous system can be reconciled by altering the relative positions of the two mutually interconnected bi-unstable switches inherently present in the steady state dynamics of the crucial developmental fate regulatory proteins as a function of BMP2 dose. This model thus provides a novel mechanistic insight and has the potential to deliver exciting therapeutic strategies for neuronal regeneration from NSC’s of different origin. PMID:27805068

  9. Long-term survival and integration of transplanted engineered nervous tissue constructs promotes peripheral nerve regeneration.

    PubMed

    Huang, Jason H; Cullen, D Kacy; Browne, Kevin D; Groff, Robert; Zhang, Jun; Pfister, Bryan J; Zager, Eric L; Smith, Douglas H

    2009-07-01

    Although peripheral nerve injury is a common consequence of trauma or surgery, there are insufficient means for repair. In particular, there is a critical need for improved methods to facilitate regeneration of axons across major nerve lesions. Here, we engineered transplantable living nervous tissue constructs to provide a labeled pathway to guide host axonal regeneration. These constructs consisted of stretch-grown, longitudinally aligned living axonal tracts inserted into poly(glycolic acid) tubes. The constructs (allogenic) were transplanted to bridge an excised segment of sciatic nerve in the rat, and histological analyses were performed at 6 and 16 weeks posttransplantation to determine graft survival, integration, and host regeneration. At both time points, the transplanted constructs were found to have maintained their pretransplant geometry, with surviving clusters of graft neuronal somata at the extremities of the constructs spanned by tracts of axons. Throughout the transplanted region, there was an intertwining plexus of host and graft axons, suggesting that the transplanted axons mediated host axonal regeneration across the lesion. By 16 weeks posttransplant, extensive myelination of axons was observed throughout the transplant region. Further, graft neurons had extended axons beyond the margins of the transplanted region, penetrating into the host nerve. Notably, this survival and integration of the allogenic constructs occurred in the absence of immunosuppression therapy. These findings demonstrate the promise of living tissue-engineered axonal constructs to bridge major nerve lesions and promote host regeneration, potentially by providing axon-mediated axonal outgrowth and guidance.

  10. Central- and autonomic nervous system coupling in schizophrenia

    PubMed Central

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen

    2016-01-01

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986

  11. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  12. Vulnerable periods and processes during central nervous system development.

    PubMed Central

    Rodier, P M

    1994-01-01

    The developing central nervous system (CNS) is the organ system most frequently observed to exhibit congenital abnormalities. While the developing CNS lacks a blood brain barrier, the characteristics of known teratogens indicate that differential doses to the developing vs mature brain are not the major factor in differential sensitivity. Instead, most agents seem to act on processes that occur only during development. Thus, it appears that the susceptibility of the developing brain compared to the mature one depends to a great extent on the presence of processes sensitive to disruption. Yet cell proliferation, migration, and differentiation characterize many other developing organs, so the difference between CNS and other organs must depend on other properties of the developing CNS. The most important of these is probably the fact that nervous system development takes much longer than development of other organs, making it subject to injury over a longer period. PMID:7925182

  13. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  14. The Central Nervous Connections Involved in the Vomiting Reflex

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Mehler, W. R.

    1986-01-01

    The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.

  15. Gut commensalism, cytokines, and central nervous system demyelination.

    PubMed

    Telesford, Kiel; Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-08-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination.

  16. Gut Commensalism, Cytokines, and Central Nervous System Demyelination

    PubMed Central

    Ochoa-Repáraz, Javier; Kasper, Lloyd H.

    2014-01-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination. PMID:25084177

  17. [Extranuclear functions of protein sumoylation in the central nervous system].

    PubMed

    Martin, Stéphane

    2009-01-01

    Post-translational protein modifications play essential roles in many aspects of cellular functions and therefore in the maintenance of cell integrity. These protein modifications are involved at all stages of neuronal communication within the central nervous system. Sumoylation is a reversible post-translational protein modification that consists in the covalent labelling of a small protein called SUMO to lysine residues of selected target proteins. Sumoylation is a well characterized regulator of nuclear functions and has recently emerged as a key factor for numerous extranuclear processes. Furthermore, sumoylation has recently been shown to modulate synaptic transmission and is also implicated in a wide range of neurodegenerative diseases.

  18. [Necrotizing systemic sarcoidosis with pulmonary and central nervous system involvement].

    PubMed

    Ríos Fernández, R; Callejas-Rubio, J L; Guerrero Fernández, M; Serrano Falcón, M M; Ortego-Centeno, N

    2008-01-01

    Sarcoidosis is a multisystemic disease which diagnosis depends on the presence of nonnecrotizing granulomas in the biopsy. However there are variants such as necrotizing sarcoidal granulomas or nodular sarcoidosis which have atypical findings and make difficult the differential diagnosis with other infectious processes. We describe a case of a man who develops granulomas with extensive necrosis in a systemic sarcoidosis that affected the lung and the central nervous system. This finding made us to make the diagnosis of tuberculosis and delay the specific treatment.

  19. [Primary central nervous system lymphoma: pathogenesis and histomorphology].

    PubMed

    Méhes, Gábor

    2017-03-08

    Lymphoproliferative diseases of the central nervous system are rare, diagnostics and treatment are accordingly challenging. Since the introduction of the 2008 WHO lymphoma classification, primary CNS DLBCL - also covering the associated primary ocular (vitreoretinal) lymphoma - is a separate entity. The special localization is related with a series of newly recognized genetic, genomic and immunologic features directing to the strong interaction between transformed lymphoma cells, neural tissue components and the local immune response. Histological differentiation is frequently disabled by the limited sampling opportunities and requires the application of all available hematopathologic technologies including immunohistochemistry, cytology, liquor serology, flow cytometry, fluorescence in situ hybridization and polymerase chain reaction with sequencing.

  20. [Congenital anomalies of the central nervous system in autopsy specimens].

    PubMed

    Sobaniec-Lotowska, M; Ostapiuk, H; Sulkowski, S; Sobaniec, W; Sulik, M; Famulski, W

    1989-02-01

    On the basis of an analysis of 2398 autopsies of infants aged up to 1 year in 194 cases congenital anomalies of the central nervous system were found (8.1%). Most cases of these anomalies were noted in the group of newborns (85%) and the most frequent anomalies were: myelomeningocele (35.6%), multiple anomalies (20.1%), congenital hydrocephalus (17%), anencephaly (14.4%) and corpus callosum malformations (3.6%). Myelomeningocele, congenital hydrocephalus, anencephaly and true microcephaly were more frequent in girls, while multiple anomalies and corpus callosum malformations were more frequent in boys.

  1. Area 51: How do Acanthamoeba invade the central nervous system?

    PubMed

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This text provides an introduction to magnetic resonance imaging (MRI) of disorders of the central nervous system, spine, neck, and nasopharynx. The book offers guidance in performing and interpreting MRI studies for specific clinical problems. Included are more than 800 images showing pathologic findings for various disorders and demonstrating how abnormalities detected in MRI scans can aid both in differential diagnosis and in clinical staging. The book summarizes the basic principles of MRI and describes the major equipment components and contrast agents. A review of the principles and potential applications of magnetic resonance spectroscopy is also included.

  3. Vestigial expression in the Drosophila embryonic central nervous system.

    PubMed

    Guss, Kirsten A; Mistry, Hemlata; Skeath, James B

    2008-09-01

    The Drosophila central nervous system is an excellent model system in which to resolve the genetic and molecular control of neuronal differentiation. Here we show that the wing selector vestigial is expressed in discrete sets of neurons. We track the axonal trajectories of VESTIGIAL-expressing cells in the ventral nerve cord and show that these cells descend from neuroblasts 1-2, 5-1, and 5-6. In addition, along the midline, VESTIGIAL is expressed in ventral unpaired median motorneurons and cells that may descend from the median neuroblast. These studies form the requisite descriptive foundation for functional studies addressing the role of vestigial during interneuron differentiation.

  4. Inflammatory diseases of the central nervous system in dogs.

    PubMed

    Thomas, W B

    1998-08-01

    Inflammatory diseases of the central nervous system (CNS) are important causes of seizures in dogs. Specific diseases include canine distemper, rabies, cryptococcosis, coccidioidomycosis, toxoplasmosis, neosporosis, Rocky Mountain spotted fever, ehrlichiosis, granulomatous meningoencephalomyelitis, and pug dog encephalitis. Inflammatory disorders should be considered when a dog with seizures has persistent neurological deficits, suffers an onset of seizures at less than 1 or greater than 5 years of age, or exhibits signs of systemic illness. A thorough history, examination, and analysis of cerebrospinal fluid are important in the diagnosis of inflammatory diseases. However, even with extensive diagnostic testing, a specific etiology is identified in less than two thirds of dogs with inflammatory diseases of the CNS.

  5. Neurofeedback: an emerging technology for treating central nervous system dysregulation.

    PubMed

    Larsen, Stephen; Sherlin, Leslie

    2013-03-01

    Neurofeedback is a machine-mediated noninvasive treatment modality based on the analysis and "feeding back" of electroencephalogram brainwaves, which has shown efficacy with a variety of central nervous system-based problems. It has special application where patients have adverse reaction to psychopharmacologic treatments and psychotherapy, cognitive behavioral therapy, and dialectical behavior therapy have proved ineffective. Treatment modalities include active forms based on operant conditioning, involving a subject's response to stimuli. Neurofeedback is strong in clinical confirmations of efficacy (case studies) and has thus far limited controlled studies in the peer-reviewed journals. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Language disorders in children with central nervous system injury

    PubMed Central

    Dennis, Maureen

    2011-01-01

    Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional taxonomy of language, with examples of the phenomenology and neurobiology of clinical deficits in children with CNS insults. Finally, it attempts to situate language in the broader realm of cognition and in current theoretical accounts of embodied cognition. PMID:20397297

  7. Central Nervous System Complications of Hemorrhagic and Coagulation Disorders.

    PubMed

    Filatova, Irina; Stratchko, Lindsay L; Kanekar, Sangam

    2016-08-01

    Hematologic disorders affect the central nervous system in a variety of ways, producing a wide range of neurologic disturbances. Early identification of these complications allows for early intervention and better outcome. Cross-sectional imaging plays an important role in identifying brain abnormalities and helps the clinician in deciding appropriate course of action and treatment. This article discuss in short the basics of hemostasis including the coagulation cascade and the application of basic laboratory tests in evaluation of hematologic function. Imaging features of various neurologic disorders associated with these clotting and bleeding diatheses are discussed in detail with illustrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Central nervous system tuberculosis: pathophysiology and imaging findings.

    PubMed

    Patkar, Deepak; Narang, Jayant; Yanamandala, Rama; Lawande, Malini; Shah, Gaurang V

    2012-11-01

    With the onset of the human immunodeficiency virus pandemic, the incidence of tuberculosis, including central nervous system (CNS) tuberculosis, has increased in developed countries. It is no longer a disease confined to underdeveloped and developing countries. The imaging appearance has become more complex with the onset of multidrug-resistant tuberculosis. Imaging plays an important role in the early diagnosis of CNS tuberculosis and may prevent unnecessary morbidity and mortality. This article presents an extensive review of typical and atypical imaging appearances of intracranial tuberculosis, and discusses pathogenesis, patterns of involvement, and advances in imaging of intracranial tuberculosis.

  9. Ependymal Proliferation: A Conduit for Tricking the Central Nervous System into Bioengineering Itself.

    PubMed

    Sheikh, Amin A; Mohamed, Adel

    2015-01-01

    Ependymal Cells are a type of Glial Cell lining the ventricles and central canal of the spinal cord. Their primary function is to secrete and circulate cerebrospinal fluid (CSF). Neural stem cells (NSC) exist within the ependymal lining that are capable of neurogenesis. Historically it was thought that neurogenesis only occurred prenatally and that adult ependymal cells are incapable of regeneration. It is now known that primary neurogenic areas within the Central Nervous System (CNS) are located within the lateral ventricle and hippocampus. Recent studies have demonstrated that ependymal cells lining the central cord canal possess dormant neural stem cells capable of differentiation following Spinal Cord Injury (SCI). Recent research has focused on strategies to modulate cellular proliferation and differentiation in the spinal cord. In SCI these cells have the propensity to migrate to the site of damage and differentiate into astrocytes and oligodendrocytes. Ependymal cells are also capable of migrating into the hypothalamus and undergo proliferation. Neurological insult such as SCI leads the oxidative stress response, inflammation and subsequent activation of ependymal cells into astrocytes that are the body’s way to regenerate and heal. The presence or absence of astrocytes, neuronal growth factors, non-neuronal growth factors, microtubule and microtubule activating proteins are factors which promote cell survival and terminal differentiation of neurons.

  10. Effects of snake venom polypeptides on central nervous system.

    PubMed

    Osipov, Alexey; Utkin, Yuri

    2012-12-01

    The nervous system is a primary target for animal venoms as the impairment of its function results in the fast and efficient immobilization or death of a prey. There are numerous evidences about effects of crude snake venoms or isolated toxins on peripheral nervous system. However, the data on their interactions with the central nervous system (CNS) are not abundant, as the blood-brain barrier (BBB) impedes penetration of these compounds into brain. This updated review presents the data about interaction of snake venom polypeptides with CNS. Such data will be described according to three main modes of interactions: - Direct in vivo interaction of CNS with venom polypeptides either capable to penetrate BBB or injected into the brain. - In vitro interactions of cell or sub-cellular fractions of CNS with crude venoms or purified toxins. - Indirect effects of snake venoms or their components on functioning of CNS under different conditions. Although the venom components penetrating BBB are not numerous, they seem to be the most suitable candidates for the leads in drug design. The compounds with other modes of action are more abundant and better studied, but the lack of the data about their ability to penetrate BBB may substantially aggravate the potentials for their medical perspectives. Nevertheless, many such compounds are used for research of CNS in vitro. These investigations may give invaluable information for understanding the molecular basis of CNS diseases and thus lay the basis for targeted drug design. This aspect also will be outlined in the review.

  11. The role of the surface on microglia function: implications for central nervous system tissue engineering.

    PubMed

    Pires, Liliana R; Rocha, Daniela N; Ambrosio, Luigi; Pêgo, Ana Paula

    2015-02-06

    In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia-the resident immune cells of the central nervous system (CNS)-and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. The role of the surface on microglia function: implications for central nervous system tissue engineering

    PubMed Central

    Pires, Liliana R.; Rocha, Daniela N.; Ambrosio, Luigi; Pêgo, Ana Paula

    2015-01-01

    In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia—the resident immune cells of the central nervous system (CNS)—and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration. PMID:25540243

  13. Pathogen-inspired drug delivery to the central nervous system

    PubMed Central

    McCall, Rebecca L; Cacaccio, Joseph; Wrabel, Eileen; Schwartz, Mary E; Coleman, Timothy P; Sirianni, Rachael W

    2014-01-01

    For as long as the human blood-brain barrier (BBB) has been evolving to exclude bloodborne agents from the central nervous system (CNS), pathogens have adopted a multitude of strategies to bypass it. Some pathogens, notably viruses and certain bacteria, enter the CNS in whole form, achieving direct physical passage through endothelial or neuronal cells to infect the brain. Other pathogens, including bacteria and multicellular eukaryotic organisms, secrete toxins that preferentially interact with specific cell types to exert a broad range of biological effects on peripheral and central neurons. In this review, we will discuss the directed mechanisms that viruses, bacteria, and the toxins secreted by higher order organisms use to enter the CNS. Our goal is to identify ligand-mediated strategies that could be used to improve the brain-specific delivery of engineered nanocarriers, including polymers, lipids, biologically sourced materials, and imaging agents. PMID:25610755

  14. Diverse Roles of Neurotensin Agonists in the Central Nervous System

    PubMed Central

    Boules, Mona; Li, Zhimin; Smith, Kristin; Fredrickson, Paul; Richelson, Elliott

    2013-01-01

    Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD. PMID:23526754

  15. Detection of BMAA in the human central nervous system.

    PubMed

    Berntzon, L; Ronnevi, L O; Bergman, B; Eriksson, J

    2015-04-30

    Amyotrophic lateral sclerosis (ALS) is an extremely devastating neurodegenerative disease with an obscure etiology. The amino acid β-N-methylamino-l-alanine (BMAA) produced by globally widespread phytoplankton has been implicated in the etiology of human motor neuron diseases [corrected]. BMAA was recently proven to be present in Baltic Sea food webs, ranging from plankton to larger Baltic Sea organisms, some serving as important food items (fish) for humans. To test whether exposure to BMAA in a Baltic Sea setting is reflected in humans, blood and cerebrospinal fluid (CSF) from individuals suffering from ALS were analyzed, together with sex- and age-matched individuals not inflicted with ALS. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and multiple reaction monitoring (MRM), in conjunction with diagnostic transitions revealed BMAA in three (12%) of the totally 25 Swedish individuals tested, with no preference for those suffering from ALS. The three BMAA-positive samples were all retrieved from the CSF, while BMAA was not detected in the blood. The data show that BMAA, potentially originating from Baltic Sea phytoplankton, may reach the human central nervous system, but does not lend support to the notion that BMAA is resident specifically in ALS-patients. However, while dietary exposure to BMAA may be intermittent and, if so, difficult to detect, our data provide the first demonstration of BMAA in the central nervous system of human individuals ante mortem quantified with UHPLC-MS/MS, and therefore calls for extended research efforts.

  16. Interleukin-1β in Central Nervous System Injury and Repair

    PubMed Central

    Hewett, Sandra J.

    2015-01-01

    Summary Acute inflammation is a self-limiting, complex biological response mounted to combat pathogen invasion, to protect against tissue damage, and to promote tissue repair should it occur. However, unabated inflammation can be deleterious and contribute to injury and pathology. Interleukin-1β (IL-1β), a prototypical “pro-inflammatory” cytokine, is essential to cellular defense and tissue repair in nearly all tissues. With respect to brain, however, studies suggest that IL-1β has pleiotrophic effects. It acts as a neuromodulator in the healthy central nervous system (CNS), has been implicated in the pathogenic processes associated with a number of CNS maladies, but may also provide protection to the injured CNS. Here, we will review the physiological and pathophysiological functions of IL-1β in the central nervous system with regard to synaptic plasticity. With respect to disease, emphasis will be placed on stroke, epilepsy, Parkinson’s disease and Alzheimer’s disease where the ultimate injurious or reparative effects of IL-1β appear to depend on time, concentration and environmental milieu. PMID:26082912

  17. Mechanisms of immunological tolerance in central nervous system inflammatory demyelination.

    PubMed

    Mari, Elisabeth R; Moore, Jason N; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2015-08-01

    Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune system. Given that central nervous system inflammation can be suppressed by various immunological tolerance mechanisms, immune tolerance has become a focus of research in the attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying this tolerance induction include induction of regulatory T cell populations, anergy and the induction of tolerogenic antigen-presenting cells. The intravenous administration of encephalitogenic peptides has been shown to suppress experimental autoimmune encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell populations thereby weakening the pathogenic, pro-inflammatory cell populations.

  18. HIV Immune Recovery Inflammatory Syndrome and Central Nervous System Paracoccidioidomycosis.

    PubMed

    de Almeida, Sérgio Monteiro; Roza, Thiago Henrique

    2017-04-01

    The immune reconstitution inflammatory syndrome (IRIS) is a deregulated inflammatory response to invading microorganisms. It is manifested when there is an abrupt change in host immunity from an anti-inflammatory and immunosuppressive state to a pro-inflammatory state as a result of rapid depletion or removal of factors that promote immune suppression or inhibition of inflammation. The aim of this paper is to discuss and re-interpret the possibility of association of paracoccidioidomycosis (PCM) with IRIS in the central nervous system (CNS) in a case from Brazil published by Silva-Vergara ML. et al. (Mycopathologia 177:137-141, 6). An AIDS patient who was not receiving medical care developed pulmonary PCM successfully treated with itraconazole. The patient developed central nervous system PCM (NPCM) after starting the ARV therapy with recovery of immunity and control of HIV viral load, although it was not interpreted as IRIS by the authors, it fulfills the criteria for CNS IRIS. This could be the first case of NPCM associated with IRIS described. Although not frequent, IRIS must be considered in PCM patients and HIV, from endemic areas or patients that traveled to endemic areas, receiving ARV treatment and with worsening symptoms.

  19. Targeted Temperature Management in Pediatric Central Nervous System Disease

    PubMed Central

    Newmyer, Robert; Mendelson, Jenny; Pang, Diana; Fink, Ericka L.

    2015-01-01

    Opinion Statement Acute central nervous system conditions due to hypoxic-ischemic encephalopathy, traumatic brain injury (TBI), status epilepticus, and central nervous system infection/inflammation, are a leading cause of death and disability in childhood. There is a critical need for effective neuroprotective therapies to improve outcome targeting distinct disease pathology. Fever, defined as patient temperature > 38°C, has been clearly shown to exacerbate brain injury. Therapeutic hypothermia (HT) is an intervention using targeted temperature management that has multiple mechanisms of action and robust evidence of efficacy in multiple experimental models of brain injury. Prospective clinical evidence for its neuroprotective efficacy exists in narrowly-defined populations with hypoxic-ischemic injury outside of the pediatric age range while trials comparing hypothermia to normothermia after TBI have failed to demonstrate a benefit on outcome but consistently demonstrate potential use in decreasing refractory intracranial pressure. Data in children from prospective, randomized controlled trials using different strategies of targeted temperature management for various outcomes are few but a large study examining HT versus controlled normothermia to improve neurological outcome in cardiac arrest is underway. PMID:26042193

  20. Experimental therapies for repair of the central nervous system: stem cells and tissue engineering.

    PubMed

    Forraz, N; Wright, K E; Jurga, M; McGuckin, C P

    2013-07-01

    Several stem cell-based therapeutic tools are currently being investigated for the regeneration of central nervous system (CNS) injuries. This review focuses on innovative approaches for CNS tissue repair via the use of implantable cellular devices. These devices are supported by biopharmaceuticals and conventional physiotherapy for the restoration of lost neuronal circuits and CNS function. This paper further reviews new and promising tools currently in pre-clinical and clinical tests for the treatment of CNS diseases where substantial loss of cellular and extracellular components of neural tissue has occurred such as stroke, encephalopathy and traumatic neural injuries. We also discuss selected 3D bioscaffolds co-cultured with clinically applicable human mesenchymal stem cells. Recent advances in neural tissue engineering and stem cell differentiation methods have shown promise for their clinical application in treating yet incurable CNS deficits.

  1. Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system

    PubMed Central

    Caillava, Céline; Vandenbosch, Renaud; Jablonska, Beata; Deboux, Cyrille; Spigoni, Giulia; Gallo, Vittorio; Malgrange, Brigitte

    2011-01-01

    The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2−/− mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin. PMID:21502361

  2. Central nervous system transplantation benefited by low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, Rachel; Wollman, Yoram; Simantov, Rabi; Nissan, Moshe; Barr-Nea, Lilian

    1990-06-01

    Effect of low-level laser irradiation on the central nervous system transplantation is reported. Ernbryonal brain allografts were transplanted into the brain of 20 adult rats and peripheral nerve graft transplanted into the severely injured spinal cord of 16 dogs. The operated wound of 10 rats and 8 dogs were exposed daily for 21 days to lowpower laser irradiation CW HeNe laser (35 mW, 632.8 run, energy density of 30 J/cm2 at each point for rats and 70 J/cm2 at each point for dogs). This study shows that (i) the low-level laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between embryonal transplants and host brain; (ii) Dogs made paraplegic by spinal cord injury were able to walk 3-6 months later. Recovery of these dogs was effected by the implantation of a fragment of autologous sciatic nerve at the site of injury and subsequently exposing the dogs to low-level laser irradiation. The effect of laser irradiation on the embryonal nerve cells grown in tissue culture was also observed. We found that low-level laser irradiation induced intensive migration of neurites outward of the aggregates 15-22 The results of the present study and our previous investigations suggest that low-level laser irradiation is a novel tool for treatment of peripheral and central nervous system injuries.

  3. Applications of Nanotechnology to the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Blumling, James P., II

    Nanotechnology and nanomaterials, in general, have become prominent areas of academic research. The ability to engineer at the nano scale is critical to the advancement of the physical and medical sciences. In the realm of physical sciences, the applications are clear: smaller circuitry, more powerful computers, higher resolution intruments. However, the potential impact in the fields of biology and medicine are perhaps even grander. The implementation of novel nanodevices is of paramount importance to the advancement of drug delivery, molecular detection, and cellular manipulation. The work presented in this thesis focuses on the development of nanotechnology for applications in neuroscience. The nervous system provides unique challenges and opportunities for nanoscale research. This thesis discusses some background in nanotechnological applications to the central nervous system and details: (1) The development of a novel calcium nanosenser for use in neurons and astrocytes. We implemented the calcium responsive component of Dr. Roger Tsien's Cameleon sensor, a calmodulin-M13 fusion, in the first quantum dot-based calcium sensor. (2) The exploration of cell-penetrating peptides as a delivery mechanism for nanoparticles to cells of the nervous system. We investigated the application of polyarginine sequences to rat primary cortical astrocytes in order to assess their efficacy in a terminally differentiated neural cell line. (3) The development of a cheap, biocompatible alternative to quantum dots for nanosensor and imaging applications. We utilized a positively charged co-matrix to promote the encapsulation of free sulforhodamine B in silica nanoparticles, a departure from conventional reactive dye coupling to silica matrices. While other methods have been invoked to trap dye not directly coupled to silica, they rely on positively charged dyes that typically have a low quantum yield and are not extensively tested biologically, or they implement reactive dyes bound

  4. Signaling Mechanisms Regulating Myelination in the Central Nervous System

    PubMed Central

    AHRENDSEN, Jared T.; MACKLIN, Wendy B.

    2014-01-01

    The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis (MS), cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. In this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much more is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination. PMID:23558589

  5. Systemic delivery to central nervous system by engineered PLGA nanoparticles

    PubMed Central

    Cai, Qiang; Wang, Long; Deng, Gang; Liu, Junhui; Chen, Qianxue; Chen, Zhibiao

    2016-01-01

    Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications. PMID:27158367

  6. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  7. Current approaches for drug delivery to central nervous system.

    PubMed

    Hossain, Sharif; Akaike, Toshihiro; Chowdhury, Ezharul Hoque

    2010-12-01

    Brain, the center of the nervous system in all vertebrate, plays the most vital role in every function of human body. However, many neurodegenerative diseases, cancer and infections of the brain become more prevalent as populations become older. In spite of the major advances in neuroscience, many potential therapeutics are still unable to reach the central nervous system (CNS) due to the blood-brain barrier (BBB) which is formed by the tight junctions within the capillary endothelium of the vertebrate brain. This results in the capillary wall behaving as a continuous lipid bilayer and preventing the passage of polar and lipid insoluble substances. Several approaches for delivering drugs to the CNS have been developed to enhance the capacity of therapeutic molecules to cross the BBB by modifying the drug itself, or by coupling it to a vector for receptor-mediated, carrier mediated or adsorption-mediated transcytosis. The current challenge is to develop drug delivery systems that ensure the safe and effective passage of drugs across the BBB. This review focuses on the strategies and approaches developed to enhance drug delivery to the CNS.

  8. Interactions between taurine and ethanol in the central nervous system.

    PubMed

    Olive, M F

    2002-01-01

    This purpose of this review will be to summarize the interactions between the endogenous amino acid taurine and ethyl alcohol (ethanol) in the central nervous system (CNS). Taurine is one of the most abundant amino acids in the CNS and plays an integral role in physiological processes such as osmoregulation, neuroprotection and neuromodulation. Both taurine and ethanol exert positive allosteric modulatory effects on neuronal ligand-gated chloride channels (i.e., GABA(A) and glycine receptors) as well as inhibitory effects on other ligand- and voltage-gated cation channels (i.e., NMDA and Ca(2+) channels). Behavioral evidence suggests that taurine can alter the locomotor stimulatory, sedating, and motivational effects of ethanol in a strongly dose-dependent manner. Microdialysis studies have revealed that ethanol elevates extracellular levels of taurine in numerous brain regions, although the functional consequences of this phenomenon are currently unknown. Finally, taurine and several related molecules including the homotaurine derivative acamprosate (calcium acetylhomotaurinate) can reduce ethanol self-administration and relapse to drinking in both animals and humans. Taken together, these data suggest that the endogenous taurine system may be an important modulator of effects of ethanol on the nervous system, and may represent a novel therapeutic avenue for the development of medications to treat alcohol abuse and alcoholism.

  9. GABA-ergic neurons in the leach central nervous system

    SciTech Connect

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10/sup -5/M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by /sup 3/H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites.

  10. Developmental and pathological angiogenesis in the central nervous system

    PubMed Central

    Vallon, Mario; Chang, Junlei; Zhang, Haijing

    2014-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood–brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases. PMID:24760128

  11. Neuroinvasion and Inflammation in Viral Central Nervous System Infections

    PubMed Central

    Schroten, Horst

    2016-01-01

    Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In this review, we illustrate examples of established brain barrier models, in which the specific reaction patterns of different viral families can be analyzed. Furthermore, we highlight the pathogen specific array of cytokines and chemokines involved in immunological responses in viral CNS infections. We discuss in detail the link between specific cytokines and chemokines and leukocyte migration profiles. The thorough understanding of the complex and interrelated inflammatory mechanisms as well as identifying universal mediators promoting CNS inflammation is essential for the development of new diagnostic and treatment strategies. PMID:27313404

  12. Fungal Infections of the Central Nervous System: A Pictorial Review

    PubMed Central

    Gavito-Higuera, Jose; Mullins, Carola Birgit; Ramos-Duran, Luis; Olivas Chacon, Cristina Ivette; Hakim, Nawar; Palacios, Enrique

    2016-01-01

    Fungal infections of the central nervous system (CNS) pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome. PMID:27403402

  13. Leptin sustains spontaneous remyelination in the adult central nervous system

    PubMed Central

    Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide

    2017-01-01

    Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609

  14. [Imaging diagnosis of central nervous system malignant lymphoma].

    PubMed

    Kan, Shinichi

    2014-08-01

    With a typical case, imaging diagnosis of central nervous system malignant lymphoma is not difficult. High density on non contrast CT, periventricular location, homogenous contrast enhancement, iso- to hypointensity to gray matter on T(2) weighted MR imaging and high intensity on diffusion weighted MR imaging are characteristic findings. Hemorrhage is rare. When a patient is immunocompromised, irregular ring enhancement is noted on enhanced study. Intravascular lymphomatois is a rare type of lymphoma. A variety of imaging findings are reported. Differential diagnosis are many. Most difficult to distinguish is a tumefactive multiple sclerosis. Most of the reported cases of tumefactive multiple sclerosis are diagnosed by brain biopsy when the brain tumor, especially malignant lymphoma is suspected. CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) has been recently identified. However, there still remains whether CLIPPERS is an actual new disease entity or represents overlapping disease.

  15. Targeting protein kinases in central nervous system disorders

    PubMed Central

    Chico, Laura K.; Van Eldik, Linda J.; Watterson, D. Martin

    2010-01-01

    Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges. PMID:19876042

  16. Excitability tuning of axons in the central nervous system.

    PubMed

    Ohura, Shunsuke; Kamiya, Haruyuki

    2016-05-01

    The axon is a long neuronal process that originates from the soma and extends towards the presynaptic terminals. The pioneering studies on the squid giant axon or the spinal cord motoneuron established that the axon conducts action potentials faithfully to the presynaptic terminals with self-regenerative processes of membrane excitation. Recent studies challenged the notion that the fundamental understandings obtained from the study of squid giant axons are readily applicable to the axons in the mammalian central nervous system (CNS). These studies revealed that the functional and structural properties of the CNS axons are much more variable than previously thought. In this review article, we summarize the recent understandings of axon physiology in the mammalian CNS due to progress in the subcellular recording techniques which allow direct recordings from the axonal membranes, with emphasis on the hippocampal mossy fibers as a representative en passant axons typical for cortical axons.

  17. Primary large-cell lymphoma of the central nervous system

    SciTech Connect

    Amendola, B.E.; McClatchey, K.D.; Amendola, M.A.; Gebarski, S.S.

    1986-06-01

    Primary non-Hodgkin's lymphoma of the central nervous system (CNS) is a rare disease. Seven patients were seen and treated at the University of Michigan Medical Center between January 1969 and December 1983. All patients had histologically proven diagnoses of large cell lymphoma with clinical and radiologic evidence of involvement limited to the CNS. Five of seven patients received postoperative radiation therapy, two of whom have had apparent local control at 1- and 2-year follow-up. The two patients without postoperative radiation died of local recurrence 2 and 3 months following subtotal resection. These poor results suggest that adjuvant therapy may be required for improved control of this type of extranodal lymphoma.

  18. Central nervous system hypoxia in children due to near drowning

    SciTech Connect

    Fitch, S.J.; Gerald, B.; Magill, H.L.; Tonkin, I.L.D.

    1985-09-01

    Fourteen children who experienced acute, profound central nervous system hypoxia secondary to near drowning, aspiration, or respiratory arrest underwent CT examination. During the first week after the episode, the most frequent finding was a loss of gray-white matter differentiation. Other findings included effacement of sulci and cisterns, focal areas of edema in the cerebral cortex or basal ganglia, and hemorrhagic infarctions of the basal ganglia. Subsequent CT scans obtained from two weeks to five months after the hypoxic episode showed progression of cerebral loss from cortical infarction with gyral hemorrhage and enhancement to global parenchymal atrophy. The prognosis is poor in these patients: seven children experienced severe neurologic deficits and seven died.

  19. HIV and aging: effects on the central nervous system.

    PubMed

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J

    2014-02-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.

  20. HIV and Aging: Effects on the Central Nervous System

    PubMed Central

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J.

    2014-01-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer’s disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age. PMID:24715486

  1. Role of radiology in central nervous system stimulation

    PubMed Central

    Pereira, E A C; Young, V E L; Hogarth, K M; Quaghebeur, G

    2015-01-01

    Central nervous system (CNS) stimulation is becoming increasingly prevalent. Deep brain stimulation (DBS) has been proven to be an invaluable treatment for movement disorders and is also useful in many other neurological conditions refractory to medical treatment, such as chronic pain and epilepsy. Neuroimaging plays an important role in operative planning, target localization and post-operative follow-up. The use of imaging in determining the underlying mechanisms of DBS is increasing, and the dependence on imaging is likely to expand as deep brain targeting becomes more refined. This article will address the expanding role of radiology and highlight issues, including MRI safety concerns, that radiologists may encounter when confronted with a patient with CNS stimulation equipment in situ. PMID:25715044

  2. Chemokines and their receptors in central nervous system disease.

    PubMed

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  3. Outcomes of persons with blastomycosis involving the central nervous system.

    PubMed

    Bush, Jonathan W; Wuerz, Terry; Embil, John M; Del Bigio, Marc R; McDonald, Patrick J; Krawitz, Sherry

    2013-06-01

    Blastomyces dermatitidis is a dimorphic fungus which is potentially life-threatening if central nervous system (CNS) dissemination occurs. Sixteen patients with proven or probable CNS blastomycosis are presented. Median duration of symptoms was 90 days; headache and focal neurologic deficit were the most common presenting symptoms. Magnetic resonance imaging (MRI) consistently demonstrated an abnormality, compared to 58% of computed tomography scans. Tissue culture yielded the pathogen in 71% of histology-confirmed cases. All patients who completed treatment of an amphotericin B formulation and extended azole-based therapy did not relapse. Initial nonspecific symptoms lead to delayed diagnosis of CNS blastomycosis. A high index of suspicion is necessary if there is history of contact with an area where B. dermatitidis is endemic. Diagnostic tests should include MRI followed by biopsy for tissue culture and pathology. Optimal treatment utilizes a lipid-based amphotericin B preparation with an extended course of voriconazole. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Central nervous system syndromes in solid organ transplant recipients.

    PubMed

    Wright, Alissa J; Fishman, Jay A

    2014-10-01

    Solid organ transplant recipients have a high incidence of central nervous system (CNS) complications, including both focal and diffuse neurologic deficits. In the immunocompromised host, the initial clinical evaluation must focus on both life-threatening CNS infections and vascular or anatomic lesions. The clinical signs and symptoms of CNS processes are modified by the immunosuppression required to prevent graft rejection. In this population, these etiologies often coexist with drug toxicities and metabolic abnormalities that complicate the development of a specific approach to clinical management. This review assesses the multiple risk factors for CNS processes in solid organ transplant recipients and establishes a timeline to assist in the evaluation and management of these complex patients.

  5. Cell fate control in the developing central nervous system

    SciTech Connect

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  6. Noncongenital central nervous system infections in children: radiology review.

    PubMed

    Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio

    2014-06-01

    Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.

  7. Fungal Infections of the Central Nervous System: A Pictorial Review.

    PubMed

    Gavito-Higuera, Jose; Mullins, Carola Birgit; Ramos-Duran, Luis; Olivas Chacon, Cristina Ivette; Hakim, Nawar; Palacios, Enrique

    2016-01-01

    Fungal infections of the central nervous system (CNS) pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome.

  8. Central nervous system infections caused by varicella-zoster virus.

    PubMed

    Chamizo, Francisco J; Gilarranz, Raúl; Hernández, Melisa; Ramos, Diana; Pena, María José

    2016-08-01

    We carried out a clinical and epidemiological study of adult patients with varicella-zoster virus central nervous system infection diagnosed by PCR in cerebrospinal fluid. Twenty-six patients were included. Twelve (46.2 %) patients were diagnosed with meningitis and fourteen (53.8 %) with meningoencephalitis. Twelve (46.2 %) had cranial nerves involvement (mainly the facial (VII) and vestibulocochlear (VIII) nerves), six (23.1 %) had cerebellar involvement, fourteen (53.8 %) had rash, and four (15.4 %) developed Ramsay Hunt syndrome. Three (11.5 %) patients had sequelae. Length of stay was significantly lower in patients diagnosed with meningitis and treatment with acyclovir was more frequent in patients diagnosed with meningoencephalitis. We believe routine detection of varicella-zoster virus, regardless of the presence of rash, is important because the patient may benefit from a different clinical management.

  9. Zinc in the central nervous system: From molecules to behavior.

    PubMed

    Gower-Winter, Shannon D; Levenson, Cathy W

    2012-01-01

    The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.

  10. Choroid plexus in the central nervous system: biology and physiopathology.

    PubMed

    Strazielle, N; Ghersi-Egea, J F

    2000-07-01

    Choroid plexuses (CPs) are localized in the ventricular system of the brain and form one of the interfaces between the blood and the central nervous system (CNS). They are composed of a tight epithelium responsible for cerebrospinal fluid secretion, which encloses a loose connective core containing permeable capillaries and cells of the lymphoid lineage. In accordance with its peculiar localization between 2 circulating fluid compartments, the CP epithelium is involved in numerous exchange processes that either supply the brain with nutrients and hormones, or clear deleterious compounds and metabolites from the brain. Choroid plexuses also participate in neurohumoral brain modulation and neuroimmune interactions, thereby contributing greatly in maintaining brain homeostasis. Besides these physiological functions, the implication of choroid plexuses in pathological processes is increasingly documented. In this review, we focus on some of the novel aspects of CP functions in relation to brain development, transfer of neuro-humoral information, brain/immune system interactions, brain aging, and cerebral pharmaco-toxicology.

  11. Pyrimidine derivatives as potential agents acting on central nervous system.

    PubMed

    Kumar, Sanjiv; Deep, Aakash; Narasimhan, Balasubramanian

    2015-01-01

    Pyrimidine and its derivatives are present in many of the bioactive aromatic compounds that are of wide interest because of their diverse biological and clinical applications. The utility of pyrimidines as synthon for various biologically active compounds has given impetus to these studies. The review article aims to review the work reported on pharmacological activities of central nervous system (CNS) such as anticonvulsant and antidepressant, which created interest among researchers to synthesize variety of pyrimidine and their derivatives. The present study shows, objective of the work can be summarized as pyrimidine derivative constitute an important class of compounds for new drug development. These observations have been given novel idea for the development of new pyrimidine derivative that possess varied biological activities. This article aims to review the recent works on pyrimidine moiety together with the biological potential during the past year.

  12. Tuberculous Panophthalmitis with Lymphadenitis and Central Nervous System Tuberculoma

    PubMed Central

    Srichatrapimuk, Sirawat; Wattanatranon, Duangkamon

    2016-01-01

    Tuberculosis (TB) is a serious infectious disease that spreads globally. The ocular manifestations of TB are uncommon and diverse. TB panophthalmitis has been rarely reported. Here, we described a 38-year-old Thai man presenting with panophthalmitis of the right eye. Further investigation showed that he had concurrent TB lymphadenitis and central nervous system (CNS) tuberculoma, as well as HIV infection, with a CD4 cell count of 153 cells/mm3. Despite the initial response to antituberculous agents, the disease had subsequently progressed and enucleation was required. The pathological examination revealed acute suppurative granulomatous panophthalmitis with retinal detachment. Further staining demonstrated acid-fast bacilli in the tissue. Colonies of Mycobacterium tuberculosis were obtained from tissue culture. He was treated with antiretroviral agents for HIV infection and 12 months of antituberculous agents. Clinicians should be aware of the possibility of TB in the differential diagnosis of endophthalmitis and panophthalmitis, especially in regions where TB is endemic. PMID:27051539

  13. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    PubMed Central

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  14. Enterovirus Infections of the Central Nervous System Review

    PubMed Central

    Rhoades, Ross E.; Tabor-Godwin, Jenna M.; Tsueng, Ginger; Feuer, Ralph

    2011-01-01

    Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes. PMID:21251690

  15. Therapeutics targeting the inflammasome after central nervous system injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Dietrich, W Dalton; Keane, Robert W

    2016-01-01

    Innate immunity is part of the early response of the body to deal with tissue damage and infections. Because of the early nature of the innate immune inflammatory response, this inflammatory reaction represents an attractive option as a therapeutic target. The inflammasome is a component of the innate immune response involved in the activation of caspase 1 and the processing of pro-interleukin 1β. In this article, we discuss the therapeutic potential of the inflammasome after central nervous system (CNS) injury and stroke, as well as the basic knowledge we have gained so far regarding inflammasome activation in the CNS. In addition, we discuss some of the therapies available or under investigation for the treatment of brain injury, spinal cord injury, and stroke.

  16. The expression of SEIPIN in the mouse central nervous system.

    PubMed

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  17. Intranasal delivery of biologics to the central nervous system.

    PubMed

    Lochhead, Jeffrey J; Thorne, Robert G

    2012-05-15

    Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.

  18. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    PubMed Central

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction. PMID:17952658

  19. Infiltration of central nervous system in adult acute myeloid leukaemia.

    PubMed Central

    Pippard, M J; Callender, S T; Sheldon, P W

    1979-01-01

    Out of 64 consecutive unselected patients with acute myeloid leukaemia studied during 1973-6, five developed clinical evidence of spread to the central nervous system (CNS). Neuroradiological examination showed cerebral deposits in three, in whom rapid symptomatic relief was obtained with radiotherapy. In two of these patients who developed solid intracranial deposits haematological remission could be reinduced or maintained; they were still alive 86 and 134 weeks later. When patients presented with spread to the CNS complicating generalised uncontrolled leukaemia they had short survivals. CNS infiltration may respond dramatically to appropriate treatment provided that it is not associated with generalised uncontrolled leukaemia, which has a poor prognosis. In view of this, routine "prophylaxis" of the CNS in adult acute myeloid leukaemia does not seem justified at present. Images FIG 1 FIG 2 FIG 3 PMID:283873

  20. Protective and Pathological Immunity during Central Nervous System Infections.

    PubMed

    Klein, Robyn S; Hunter, Christopher A

    2017-06-20

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. Copyright © 2017. Published by Elsevier Inc.

  1. Therapeutic approaches of magnetic nanoparticles for the central nervous system.

    PubMed

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2015-10-01

    The diseases of the central nervous system (CNS) represent one of the fastest growing areas of concern requiring urgent medical attention. Treatment of CNS ailments is hindered owing to different physiological barriers including the blood-brain barrier (BBB), which limits the accessibility of potential drugs. With the assistance of a nanotechnology-based drug delivery strategy, the problems could be overcome. Recently, magnetic nanoparticles (MNPs) have proven immensely useful as drug carriers for site-specific delivery and as contrast agents owing to their magnetic susceptibility and biocompatibility. By utilizing MNPs, diagnosis and treatment of CNS diseases have progressed by overcoming the hurdles of the BBB. In this review, the therapeutic aspect and the future prospects related to the theranostic approach of MNPs are discussed.

  2. Implication of coumarins towards central nervous system disorders.

    PubMed

    Skalicka-Woźniak, Krystyna; Orhan, Ilkay Erdogan; Cordell, Geoffrey A; Nabavi, Seyed Mohammad; Budzyńska, Barbara

    2016-01-01

    Coumarins are widely distributed, plant-derived, 2H-1-benzopyran-2-one derivatives which have attracted intense interest in recent years as a result of their diverse and potent pharmacological properties. Particularly, their effects on the central nervous system (CNS) have been established. The present review discusses the most important pharmacological effects of natural and synthetic coumarins on the CNS, including their interactions with benzodiazepine receptors, their dopaminergic and serotonergic affinity, and their ability to inhibit cholinesterases and monoamine oxidases. The structure-activity relationships pertaining to these effects are also discussed. This review posits that natural or synthetic coumarins have the potential for development in the therapy of psychiatric and neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, schizophrenia, anxiety, epilepsy, and depression.

  3. Central nervous system lymphoma: magnetic resonance imaging features at presentation.

    PubMed

    Schwingel, Ricardo; Reis, Fabiano; Zanardi, Veronica A; Queiroz, Luciano S; França, Marcondes C

    2012-02-01

    This paper aimed at studying presentations of the central nervous system (CNS) lymphoma using structural images obtained by magnetic resonance imaging (MRI). The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  4. Therapeutics Targeting the Inflammasome After Central Nervous System Injury

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Dietrich, W. Dalton; Keane, Robert W.

    2015-01-01

    Innate immunity is part of the early response of the body to deal with tissue damage and infections. Due to the early nature of the innate immune inflammatory response, this inflammatory reaction represents an attractive option as a therapeutic target. The inflammasome is a component of the innate immune response involved in the activation of caspase-1 and the processing of pro-interleukin-1β. In this article we discuss the therapeutic potential of the inflammasome after central nervous system (CNS) injury and stoke, as well as the basic knowledge we have gained so far regarding inflammasome activation in the CNS. In addition, we discuss some of the therapies available or under investigation for the treatment of brain injury, spinal cord injury and stroke. PMID:26024799

  5. MicroRNAs in central nervous system development.

    PubMed

    Díaz, Néstor F; Cruz-Reséndiz, Mónica S; Flores-Herrera, Héctor; García-López, Guadalupe; Molina-Hernández, Anayansi

    2014-01-01

    During early and late embryo neurodevelopment, a large number of molecules work together in a spatial and temporal manner to ensure the adequate formation of an organism. Diverse signals participate in embryo patterning and organization synchronized by time and space. Among the molecules that are expressed in a temporal and spatial manner, and that are considered essential in several developmental processes, are the microRNAs (miRNAs). In this review, we highlight some important aspects of the biogenesis and function of miRNAs as well as their participation in ectoderm commitment and their role in central nervous system (CNS) development. Instead of giving an extensive list of miRNAs involved in these processes, we only mention those miRNAs that are the most studied during the development of the CNS as well as the most likely mRNA targets for each miRNA and its protein functions.

  6. Are astrocytes executive cells within the central nervous system?

    PubMed

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  7. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  8. Interferons, Signal Transduction Pathways, and the Central Nervous System

    PubMed Central

    Nallar, Shreeram C.

    2014-01-01

    The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS. PMID:25084173

  9. Zinc in the central nervous system: From molecules to behavior

    PubMed Central

    Gower-Winter, Shannon D.; Levenson, Cathy W.

    2012-01-01

    The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer’s disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders. PMID:22473811

  10. [Histoplasmosis of the central nervous system in an immunocompetent patient].

    PubMed

    Osorio, Natalia; López, Yúrika; Jaramillo, Juan Camilo

    2014-01-01

    Histoplasmosis is a multifaceted condition caused by the dimorphic fungi Histoplasma capsulatum whose infective spores are inhaled and reach the lungs, the primary organ of infection. The meningeal form, considered one of the most serious manifestations of this mycosis, is usually seen in individuals with impaired cellular immunity such as patients with acquired immunodeficiency syndrome, systemic lupus erythematous or solid organ transplantation, and infants given their immunological immaturity. The most common presentation is self-limited and occurs in immunocompetent individuals who have been exposed to high concentrations of conidia and mycelia fragments of the fungi. In those people, the condition is manifested by pulmonary disorders and late dissemination to other organs and systems. We report a case of central nervous system histoplasmosis in an immunocompetent child.

  11. Xenacoelomorpha: a case of independent nervous system centralization?

    PubMed Central

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-01

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather ‘simple’ NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains). PMID:26598722

  12. Control of cutaneous blood flow by central nervous system

    PubMed Central

    Ootsuka, Youichirou; Tanaka, Mutsumi

    2015-01-01

    Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we ‘go pale with fright’. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control. PMID:27227053

  13. Preliminary evaluation of operational oak regeneration methods in central Missouri

    Treesearch

    Carrie Steen; Gus Raeker; David. Gwaze

    2011-01-01

    Oak regeneration on mesic upland sites continues to be a major challenge throughout the hardwood forests of eastern North America. Oak forests across northern and central Missouri have been historically maintained through natural and anthropogenic disturbance regimes. This cycle has been interrupted in many areas through fire suppression, high-grading, and intensive...

  14. Temozolomide and radiation for aggressive pediatric central nervous system malignancies.

    PubMed

    Loh, Kenneth C; Willert, Jennifer; Meltzer, Hal; Roberts, William; Kerlin, Bryce; Kadota, Richard; Levy, Michael; White, Greg; Geddis, Amy; Schiff, Deborah; Martin, Laura; Yu, Alice; Kung, Faith; Spear, Matthew A

    2005-05-01

    This study describes the outcomes of children treated with combinations of temozolomide and radiation therapy for various aggressive central nervous system malignancies. Their age at diagnosis ranged from 1 to 15 years. Patients with focal disease were treated with concomitant temozolomide (daily 75 mg/m) and three-dimensional conformal radiotherapy in a dose that ranged from 50 to 54 Gy, followed by temozolomide (200 mg/m/d x 5 days/month in three patients, 150 mg/m x 5 days/ month in one patient). Patients with disseminated disease were treated with craniospinal radiation (39.6 Gy) before conformal boost. One patient received temozolomide (200 mg/m x 5 days/month) before craniospinal radiation, and one patient received temozolomide (daily 95 mg/m) concomitant with craniospinal radiation and a radiosurgical boost, followed by temozolomide (200 mg/m x 5 days/month). Three patients achieved a partial response during treatment, with two of these patients dying of progressive disease after treatment. One patient has no evidence of disease. Three patients achieved stable disease, with one of these patients dying of progressive disease after treatment. Toxicities observed included low-grade neutropenia, thrombocytopenia, and lymphopenia. The combination of temozolomide and radiotherapy appears to be well tolerated in a variety of treatment schemas for aggressive pediatric central nervous system malignancies. This information is of particular use in designing future studies, given the recent positive results in a randomized study examining the use of temozolomide concomitant with radiation in the treatment of adult glioblastoma.

  15. Central Nervous System Vasculitis: Still More Questions than Answers

    PubMed Central

    Alba, Marco A; Espígol-Frigolé, Georgina; Prieto-González, Sergio; Tavera-Bahillo, Itziar; García-Martínez, Ana; Butjosa, Montserrat; Hernández-Rodríguez, José; Cid, Maria C

    2011-01-01

    The central nervous system (CNS) may be involved by a variety of inflammatory diseases of blood vessels. These include primary angiitis of the central nervous system (PACNS), a rare disorder specifically targeting the CNS vasculature, and the systemic vasculitides which may affect the CNS among other organs and systems. Both situations are severe and convey a guarded prognosis. PACNS usually presents with headache and cognitive impairment. Focal symptoms are infrequent at disease onset but are common in more advanced stages. The diagnosis of PACNS is difficult because, although magnetic resonance imaging is almost invariably abnormal, findings are non specific. Angiography has limited sensitivity and specificity. Brain and leptomeningeal biopsy may provide a definitive diagnosis when disclosing blood vessel inflammation and are also useful to exclude other conditions presenting with similar findings. However, since lesions are segmental, a normal biopsy does not completely exclude PACNS. Secondary CNS involvement by systemic vasculitis occurs in less than one fifth of patients but may be devastating. A prompt recognition and aggressive treatment is crucial to avoid permanent damage and dysfunction. Glucocorticoids and cyclophosphamide are recommended for patients with PACNS and for patients with secondary CNS involvement by small-medium-sized systemic vasculitis. CNS involvement in large-vessel vasculitis is usually managed with high-dose glucocorticoids (giant-cell arteritis) or glucocorticoids and immunosuppressive agents (Takayasu’s disease). However, in large vessel vasculitis, where CNS symptoms are usually due to involvement of extracranial arteries (Takayasu’s disease) or proximal portions of intracranial arteries (giant-cell arteritis), revascularization procedures may also have an important role. PMID:22379458

  16. Metronidazole-induced central nervous system toxicity: a systematic review.

    PubMed

    Kuriyama, Akira; Jackson, Jeffrey L; Doi, Asako; Kamiya, Toru

    2011-01-01

    To assess patient and medication factors that contribute to metronidazole toxicity. We searched PUBMED from 1965 through April 7, 2011, and performed a hand search of bibliographies. Case reports or case series reporting metronidazole-induced central nervous toxicity. Two authors independently abstracted demographics, metronidazole indication, dose and duration, neurological manifestations, and outcomes as well as brain imaging findings. Among 64 patients, 48 (77%) had cerebellar dysfunction, 21 (33%) had altered mental status, and 8 (15%) had seizures. Patients' ages averaged 53.3 years (range, 12-87 years), and 64% were male. The median duration of metronidazole was 54 days, although 26% had taken it less than a week and 11% had taken it less than 72 hours. Among cases with outcome data, most patients either improved (n = 18 [29%]) or had complete resolution of their symptoms with discontinuation of metronidazole (n = 41 [65%]). There was no difference in resolution of symptom by age (P = 0.71) or sex (P = 0.34). The patients with cerebellar dysfunction were less likely to experience complete resolution than those with mental status changes or seizures (relative risk, 0.67; 95% confidence interval (CI), 0.49-0.92). Nearly all patients (n = 55 [86%]) underwent imaging of the brain: 44 (69%) underwent magnetic resonance imaging (MRI) and 12 (19%) underwent computed tomographic studies. All patients with cerebellar dysfunction had abnormalities on imaging: 93% (n = 39) had a cerebellar lesion, although numerous areas in the brain were affected. On follow-up MRIs, 25 patients (83%) had complete resolution of abnormalities. Metronidazole can rarely cause central nervous system toxicity; it does not seem to be a dose- or duration-related phenomenon. Most patients will have MRI abnormalities. Prognosis is excellent with metronidazole cessation.

  17. Chromosomal Imbalances in Primary Lymphomas of the Central Nervous System

    PubMed Central

    Rickert, Christian H.; Dockhorn-Dworniczak, Barbara; Simon, Ronald; Paulus, Werner

    1999-01-01

    Twenty-two primary central nervous system lymphomas of immunocompetent adults were studied by comparative genomic hybridization. All were high-grade diffuse large B cell lymphomas. Comparative genomic hybridization revealed an average of 5.5 chromosomal changes per tumor, with gains being more common than losses (3.5 vs. 2.0). The most frequent DNA copy number changes were gains on chromosomes 1, 12, 18 (41% each), 7 (23%), and 11 (18%) and losses involving chromosomes 6 (59%), 18, and 20 (18% each). Commonly involved regions were +12q (41%), +18q (36%), +1q (32%), and +7q (23%), as well as −6q (50%), −6p (18%), −17p, and −18p (14% each). High-level gains were found on 7 chromosomes, mainly involving chromosomes 18q (23%), 12q (18%), and 1q (14%). Minimal common regions of over- and underrepresentation were found on +1q25–31, −6q16–21, +7q11.2, +12p11.2–13, +12q12–14, +12q22–24.1, and +18q12.2–21.3. A significant correlation between loss of DNA copy numbers on chromosome 6q and shorter survival could be established (10.2 vs. 22.3 months; P < 0.05). Our findings suggest that chromosomal imbalances of primary central nervous system lymphomas are similar to those of diffuse large B cell lymphomas at other locations and are probably not related to cerebral presentation; however, they may be prognostically relevant. PMID:10550299

  18. The renin-angiotensin system and the central nervous system.

    PubMed

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  19. [Cell and ex vivo gene therapy: advances in the treatment of central nervous system disorders].

    PubMed

    Mejía-Toiber, J; Castillo, C G; Giordano, M

    The direct application of different types of cells to the central nervous system (CNS) by means of transplants, so-called cell therapy, is an experimental approach that promotes the characterisation of the cell and molecular mechanisms involved in the development, plasticity and regeneration of damage to the CNS. Knowledge of the pathology and aetiology of neurodegenerative diseases, which are frequently related to the neurodegeneration of selected types of cells and/or deficiency of particular neurotransmitters, has led to research on means to obtain cell lines with specific characteristics. In some cases these cells become genetically transformed to produce large amounts of neurotransmitters or neurotrophic factors, the well-known ex vivo gene therapy, so that they can be used as therapeutic alternatives in pathologies affecting the CNS. For example, reports have been published of the beneficial effects of these therapies in studies with humans and in different models of neurodegenerative diseases, such as Huntington's disease and Parkinson's disease, and in epilepsy. The aim of this work is to review the different studies in which transplants of neuronal and non-neuronal cells have been used and which have served to further our knowledge of the CNS, of diseases that affect it and of possible therapeutic alternatives. Ex vivo cell therapy and gene therapy have helped to expand our knowledge about plasticity and the mechanisms and factors that promote cell integration within the central nervous system. Although behavioural improvements have been reported in animal and human models, further work is still required on these studies to clear up a number of dubious points. Ex vivo cell therapy and gene therapy in the nervous system constitute an important methodological tool with therapeutic possibilities that deserve further study.

  20. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments.

    PubMed

    Kiba, Takayoshi

    2004-08-01

    Substantial new information has accumulated on the mechanisms of secretion, the development, and regulation of the gene expression, and the role of growth factors in the differentiation, growth, and regeneration of the pancreas. Many genes that are required for pancreas formation are active after birth and participate in endocrine and exocrine cell functions. Although the factors that normally regulate the proliferation of the pancreas largely remain elusive, several factors to influence the growth have been identified. It was also reported that the pancreas was sensitive to a number of apoptotic stimuli. The autonomic nervous system influences many of the functions of the body, including the pancreas. In fact, the parasympathetic nervous system and the sympathetic nervous system have opposing effects on insulin secretion from islet beta cells; feeding-induced parasympathetic neural activity to the pancreas stimulates insulin secretion, whereas stress-induced sympathetic neural activity to the pancreas inhibits insulin secretion. Moreover, it has been reported that the autonomic nervous system is one of the important factors that regulate pancreatic regeneration and stimulate the carcinogenesis. The present review focuses on the relationships between the autonomic nervous system and the pancreas, and furthermore, presents evidence of the autonomic nervous system-related pancreatic regeneration and carcinogenesis.

  1. The role of microbiome in central nervous system disorders.

    PubMed

    Wang, Yan; Kasper, Lloyd H

    2014-05-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.

  2. The role of microbiome in central nervous system disorders

    PubMed Central

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  3. Fast food, central nervous system insulin resistance, and obesity.

    PubMed

    Isganaitis, Elvira; Lustig, Robert H

    2005-12-01

    Rates of obesity and insulin resistance have climbed sharply over the past 30 years. These epidemics are temporally related to a dramatic rise in consumption of fast food; until recently, it was not known whether the fast food was driving the obesity, or vice versa. We review the unique properties of fast food that make it the ideal obesigenic foodstuff, and elucidate the mechanisms by which fast food intake contributes to obesity, emphasizing its effects on energy metabolism and on the central regulation of appetite. After examining the epidemiology of fast food consumption, obesity, and insulin resistance, we review insulin's role in the central nervous system's (CNS) regulation of energy balance, and demonstrate the role of CNS insulin resistance as a cause of leptin resistance and in the promotion of the pleasurable or "hedonic" responses to food. Finally, we analyze the characteristics of fast food, including high-energy density, high fat, high fructose, low fiber, and low dairy intake, which favor the development of CNS insulin resistance and obesity.

  4. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    PubMed

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  5. Experimental concepts for toxicity prevention and tissue restoration after central nervous system irradiation

    PubMed Central

    Nieder, Carsten; Andratschke, Nicolaus; Astner, Sabrina T

    2007-01-01

    Several experimental strategies of radiation-induced central nervous system toxicity prevention have recently resulted in encouraging data. The present review summarizes the background for this research and the treatment results. It extends to the perspectives of tissue regeneration strategies, based for example on stem and progenitor cells. Preliminary data suggest a scenario with individually tailored strategies where patients with certain types of comorbidity, resulting in impaired regeneration reserve capacity, might be considered for toxicity prevention, while others might be "salvaged" by delayed interventions that circumvent the problem of normal tissue specificity. Given the complexity of radiation-induced changes, single target interventions might not suffice. Future interventions might vary with patient age, elapsed time from radiotherapy and toxicity type. Potential components include several drugs that interact with neurodegeneration, cell transplantation (into the CNS itself, the blood stream, or both) and creation of reparative signals and a permissive microenvironment, e.g., for cell homing. Without manipulation of the stem cell niche either by cell transfection or addition of appropriate chemokines and growth factors and by providing normal perfusion of the affected region, durable success of such cell-based approaches is hard to imagine. PMID:17603905

  6. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system

    PubMed Central

    Gonzalez, Ginez A.; Hofer, Matthias P.; Syed, Yasir A.; Amaral, Ana I.; Rundle, Jon; Rahman, Saifur; Zhao, Chao; Kotter, Mark R. N.

    2016-01-01

    Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERβ, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models. PMID:27554391

  7. Glial kon/NG2 gene network for central nervous system repair.

    PubMed

    Losada-Perez, Maria; Harrison, Neale; Hidalgo, Alicia

    2017-01-01

    The glial regenerative response to central nervous system (CNS) injury, although limited, can be harnessed to promote regeneration and repair. Injury provokes the proliferation of ensheathing glial cells, which can differentiate to remyelinate axons, and partially restore function. This response is evolutionarily conserved, strongly implying an underlying genetic mechanism. In mammals, it is elicited by NG2 glia, but most often newly generated cells fail to differentiate. Thus an important goal had been to find out how to promote glial differentiation following the proliferative response. A gene network involving Notch and prospero (pros) controls the balance between glial proliferation and differentiation in flies and mice, and promotes CNS repair at least in fruit-flies. A key missing link had been how to relate the function of NG2 to this gene network. Recent findings by Losada-Perez et al., published in JCB, demonstrated that the Drosophila NG2 homologue kon-tiki (kon) is functionally linked to Notch and pros in glia. By engaging in two feedback loops with Notch and Pros, in response to injury, Kon can regulate both glial cell number and glial shape homeostasis, essential for repair. Drosophila offers powerful genetics to unravel the control of stem and progenitor cells for regeneration and repair.

  8. Glial kon/NG2 gene network for central nervous system repair

    PubMed Central

    Losada-Perez, Maria; Harrison, Neale; Hidalgo, Alicia

    2017-01-01

    The glial regenerative response to central nervous system (CNS) injury, although limited, can be harnessed to promote regeneration and repair. Injury provokes the proliferation of ensheathing glial cells, which can differentiate to remyelinate axons, and partially restore function. This response is evolutionarily conserved, strongly implying an underlying genetic mechanism. In mammals, it is elicited by NG2 glia, but most often newly generated cells fail to differentiate. Thus an important goal had been to find out how to promote glial differentiation following the proliferative response. A gene network involving Notch and prospero (pros) controls the balance between glial proliferation and differentiation in flies and mice, and promotes CNS repair at least in fruit-flies. A key missing link had been how to relate the function of NG2 to this gene network. Recent findings by Losada-Perez et al., published in JCB, demonstrated that the Drosophila NG2 homologue kon-tiki (kon) is functionally linked to Notch and pros in glia. By engaging in two feedback loops with Notch and Pros, in response to injury, Kon can regulate both glial cell number and glial shape homeostasis, essential for repair. Drosophila offers powerful genetics to unravel the control of stem and progenitor cells for regeneration and repair. PMID:28250735

  9. Connexin32 expression in central and peripheral nervous systems

    SciTech Connect

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H.

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  10. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system

    PubMed Central

    Mueller, Bernhard K; Yamashita, Toshihide; Schaffar, Gregor; Mueller, Reinhold

    2006-01-01

    During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues. PMID:16939972

  11. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    PubMed

    Buchser, William J; Smith, Robin P; Pardinas, Jose R; Haddox, Candace L; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R; Bixby, John L; Lemmon, Vance P

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  12. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    PubMed Central

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  13. Evolution of bilaterian central nervous systems: a single origin?

    PubMed

    Holland, Linda Z; Carvalho, João E; Escriva, Hector; Laudet, Vincent; Schubert, Michael; Shimeld, Sebastian M; Yu, Jr-Kai

    2013-10-07

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates

  14. Evolution of bilaterian central nervous systems: a single origin?

    PubMed Central

    2013-01-01

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once – in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position – either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates

  15. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons.

    PubMed

    Simpson, Matthew T; Venkatesh, Ishwariya; Callif, Ben L; Thiel, Laura K; Coley, Denise M; Winsor, Kristen N; Wang, Zimei; Kramer, Audra A; Lerch, Jessica K; Blackmore, Murray G

    2015-09-01

    Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons

    PubMed Central

    Simpson, Matthew T; Venkatesh, Ishwariya; Callif, Ben L; Thiel, Laura K; Coley, Denise M; Winsor, Kristen N; Wang, Zimei; Kramer, Audra A; Lerch, Jessica K; Blackmore, Murray G

    2015-01-01

    Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present in only trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension. PMID:26306672

  17. Palmitoylethanolamide in homeostatic and traumatic central nervous system injuries.

    PubMed

    Esposito, Emanuela; Cuzzocrea, Salvatore

    2013-02-01

    The role of palmitoylethanolamide (PEA) in the regulation of complex systems involved in the inflammatory response, pruritus, neurogenic and neuropathic pain is well understood. Growing evidence indicates that this Nacylethanolamine also exerts neuroprotective effects within the central nervous system (CNS), i.e. in spinal cord and traumatic brain injuries and in age-related pathological processes. PEA is abundant in the CNS, and is produced by glial cells. Several studies show that administering PEA during the first few hours after injury significantly limits CNS damage, reduces loss of neuronal tissue and improves functional recovery. PEA appears to exert its protective effect by decreasing the development of cerebral edema, down-regulating the inflammatory cascade, and limiting cellular necrosis and apoptosis. All these are plausible mechanisms of neuroprotection. This review provides an overview of current knowledge of PEA effect on glial functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders. The diverse signaling mechanisms are also summarized.

  18. Central Nervous System Histoplasmosis in Acquired Immunodeficiency Syndrome.

    PubMed

    Nyalakonda, Harita; Albuerne, Marisol; Suazo Hernandez, Lia Patricia; Sarria, Juan C

    2016-02-01

    Involvement of the central nervous system (CNS) by Histoplasma capsulatum in AIDS is uncommon and not easily recognized. CNS histoplasmosis cases from our institution were identified by a retrospective chart review from 2004-2014. A thorough literature search was performed for additional cases and their characteristics were compared. Clinical findings, treatment and outcomes are discussed. A total of 5 cases from our institution were identified. They had a clinical presentation that included classic signs of meningitis, often with evidence of disseminated involvement, and was typically severe with important neurological impairment. These cases were treated with antifungal agents, including a lipid amphotericin B formulation and azole drugs, but eventually 3 experienced nonresolution of their disease likely because of lack of adherence to therapy and died from their infection. The clinical presentation, treatment and outcome of these cases did not significantly differ from cases found in the review of the literature. Clinicians practicing in endemic areas should be aware of this rare but serious form of histoplasmosis. The recognition of 5 cases of CNS histoplasmosis in AIDS patients from a single institution suggests that histoplasmosis should be included in the differential diagnosis of the CNS complications of AIDS. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  19. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    PubMed Central

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O’Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2016-01-01

    Purpose To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P = .02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement. PMID:25539370

  20. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    SciTech Connect

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O'Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  1. Mouse model for central nervous system Neospora caninum infections.

    PubMed

    Lindsay, D S; Lenz, S D; Cole, R A; Dubey, J P; Blagburn, B L

    1995-04-01

    Neospora caninum is a protozoan parasite that causes severe disease in transplacentally infected dogs and abortions in domestic ruminants. Rodent models of neosporosis rely on treatment of hosts with methylprednisolone acetate (MPA) to enhance infections. The present study reports the development of an inbred BALB/c mouse model that results in central nervous system neosporosis in the absence of MPA treatment. Seven of 12 BALB/c mice died 26-70 days after subcutaneous (s.c.) inoculation with tachyzoites of the NC-1 strain of N. caninum, and none of 12 BALB/c mice died after s.c. inoculation with tachyzoites of the NC-3 strain. None of 8 HSD:ICR mice (4 mice, NC-1 strain; 4 mice, NC-3 strain) developed clinical neosporosis or died after s.c. inoculation with tachyzoites. Control BALB/c (2) and HSD:ICR (2) mice s.c. inoculated with Hanks' balanced salt solution did not develop clinical signs of disease. Some mice in all N. caninum-inoculated groups had brain lesions, but significantly (P < 0.05) more BALB/c mice inoculated with the NC-1 strain had brain lesions.

  2. Imaging of opioid receptors in the central nervous system

    PubMed Central

    Henriksen, Gjermund

    2008-01-01

    In vivo functional imaging by means of positron emission tomography (PET) is the sole method for providing a quantitative measurement of μ-, κ and δ-opioid receptor-mediated signalling in the central nervous system. During the last two decades, measurements of changes to the regional brain opioidergic neuronal activation—mediated by endogenously produced opioid peptides, or exogenously administered opioid drugs—have been conducted in numerous chronic pain conditions, in epilepsy, as well as by stimulant- and opioidergic drugs. Although several PET-tracers have been used clinically for depiction and quantification of the opioid receptors changes, the underlying mechanisms for regulation of changes to the availability of opioid receptors are still unclear. After a presentation of the general signalling mechanisms of the opioid receptor system relevant for PET, a critical survey of the pharmacological properties of some currently available PET-tracers is presented. Clinical studies performed with different PET ligands are also reviewed and the compound-dependent findings are summarized. An outlook is given concluding with the tailoring of tracer properties, in order to facilitate for a selective addressment of dynamic changes to the availability of a single subclass, in combination with an optimization of the quantification framework are essentials for further progress in the field of in vivo opioid receptor imaging. PMID:18048446

  3. Building an RNA Sequencing Transcriptome of the Central Nervous System

    PubMed Central

    Dong, Xiaomin; You, Yanan; Wu, Jia Qian

    2015-01-01

    The composition and function of the central nervous system (CNS) is extremely complex. In addition to hundreds of subtypes of neurons, other cell types, including glia (astrocytes, oligodendrocytes, and microglia) and vascular cells (endothelial cells and pericytes) also play important roles in CNS function. Such heterogeneity makes the study of gene transcription in CNS challenging. Transcriptomic studies, namely the analyses of the expression levels and structures of all genes, are essential for interpreting the functional elements and understanding the molecular constituents of the CNS. Microarray has been a predominant method for large-scale gene expression profiling in the past. However, RNA-sequencing (RNA-Seq) technology developed in recent years has many advantages over microarrays, and has enabled building more quantitative, accurate, and comprehensive transcriptomes of the CNS and other systems. The discovery of novel genes, diverse alternative splicing events, and noncoding RNAs has remarkably expanded the complexity of gene expression profiles and will help us to understand intricate neural circuits. Here, we discuss the procedures and advantages of RNA-Seq technology in mammalian CNS transcriptome construction, and review the approaches of sample collection as well as recent progress in building RNA-Seq-based transcriptomes from tissue samples and specific cell types. PMID:26463470

  4. Primary central nervous system lymphoma mimicking pituitary apoplexy: case report.

    PubMed

    Quintero Wolfe, Stacey; Hood, Brian; Barker, Jennifer; Benveniste, Ronald J

    2009-01-01

    Lymphoma involving the pituitary gland is very rare and usually results from metastatic spread of systemic lymphoma. We present a case of primary central nervous system (CNS) large B cell lymphoma that manifested as pituitary apoplexy. A 45-year-old woman presented with headache, and then rapidly developed a third nerve palsy and bitemporal hemianopsia. Imaging suggested a pituitary macroadenoma, with spontaneous necrosis, extending into the suprasellar region, compressing the optic chiasm and invading the right cavernous sinus. The patient underwent transsphenoidal resection which revealed a vascular, firm tumor. An aggressive decompression of the optic chiasm was performed with complete resolution of both visual fields and third nerve palsy. Final pathology showed B cell lymphoma. Systemic work-up including bone marrow aspiration and CSF studies showed no other foci of lymphoma, and the patient was HIV-negative. Chemotherapy with methotrexate, vincristine, procarbazine, and dexamethasone was administered for primary CNS lymphoma. This is an uncommon diagnosis of which the clinician should be aware in order to tailor surgical intervention and provide early institution of proper therapy.

  5. Arginase and autoimmune inflammation in the central nervous system.

    PubMed

    Xu, Lingyun; Hilliard, Brendan; Carmody, Ruaidhrí J; Tsabary, Galit; Shin, Hyunshun; Christianson, David W; Chen, Youhai H

    2003-09-01

    Using a high throughput gene microarray technology that detects approximately 22 000 genes, we found that arginase I was the most significantly up-regulated gene in the murine spinal cord during experimental autoimmune encephalomyelitis (EAE). By Northern blot and arginase enzyme assay, we detected high levels of arginase I mRNA and protein, respectively, in the spinal cord of EAE mice, but not in the spinal cord of normal mice or mice that had recovered from EAE. In vitro, both microglia and astrocytes produced arginase and nitric oxide synthase, two enzymes that are involved in arginine metabolism. To explore the roles of arginase in EAE, we injected the arginase inhibitor amino-6-boronohexanoic acid (ABH) into mice during the inductive and effector phases of the disease. Compared with mice that received vehicle control, mice treated with ABH developed milder EAE with delayed onset, reduced disease score and expedited recovery. Spleen mononuclear cells from ABH-treated mice produced more nitric oxide and secreted less interferon-gamma and tumour necrosis factor-alpha as compared to control mice. These results indicate that arginase plays important roles in autoimmune inflammation in the central nervous system.

  6. Whole-central nervous system functional imaging in larval Drosophila.

    PubMed

    Lemon, William C; Pulver, Stefan R; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J

    2015-08-11

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.

  7. Central nervous system-specific knockout of steroidogenic factor 1.

    PubMed

    Kim, Ki Woo; Zhao, Liping; Parker, Keith L

    2009-03-05

    Steroidogenic factor 1 (SF-1) is a nuclear receptor that plays important roles in the hypothalamus-pituitary-steroidogenic organ axis. Global knockout studies in mice revealed the essential in vivo roles of SF-1 in the ventromedial hypothalamic (VMH) nucleus, adrenal glands, and gonads. One limitation of global SF-1 knockout mice is their early postnatal death from adrenocortical insufficiency. To overcome limitations of the global knockout mice and to delineate the roles of SF-1 in the brain, we used Cre/loxP recombination technology to genetically ablate SF-1 specifically in the central nervous system (CNS). Mice with CNS-specific knockout of SF-1 mediated by nestin-Cre showed increased anxiety-like behavior, revealing a crucial role of SF-1 in a complex behavioral phenotype. Our studies with CNS-specific SF-1 KO mice also defined roles of SF-1 in regulating the VMH expression of target genes implicated in anxiety and energy homeostasis. Therefore, this review will focus on our recent studies defining the functional roles of SF-1 in the VMH linked to anxiety and energy homeostasis.

  8. 3D in vitro modeling of the central nervous system.

    PubMed

    Hopkins, Amy M; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L

    2015-02-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.

  9. Prolactin: Friend or Foe in Central Nervous System Autoimmune Inflammation?

    PubMed Central

    Costanza, Massimo; Pedotti, Rosetta

    2016-01-01

    The higher prevalence of multiple sclerosis (MS) in females, along with the modulation of disease activity observed during pregnancy and the post-partum period, has suggested a hormonal influence in MS. Even if prolactin (PRL) does not belong to the sex hormones family, its crucial role in female reproduction and lactation has prompted great efforts to understand if PRL could represent a gender factor in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), the animal model for this disease. Extensive literature has documented a remarkable immune-stimulating potential for this hormone, indicating PRL as a disease-promoting factor in MS and EAE. However, recent work has pointed out that PRL is endowed with important neuroprotective and remyelinating properties and has encouraged a reinterpretation of the involvement of this hormone in MS. In this review we summarize both the protective functions that PRL exerts in central nervous system tissue as well as the inflammatory activity of this hormone in the context of autoimmune responses against myelin. Last, we draw future lines of research that might help to better clarify the impact of PRL on MS pathology. PMID:27918427

  10. Pathway analysis of primary central nervous system lymphoma.

    PubMed

    Tun, Han W; Personett, David; Baskerville, Karen A; Menke, David M; Jaeckle, Kurt A; Kreinest, Pamela; Edenfield, Brandy; Zubair, Abba C; O'Neill, Brian P; Lai, Weil R; Park, Peter J; McKinney, Michael

    2008-03-15

    Primary central nervous system (CNS) lymphoma (PCNSL) is a diffuse large B-cell lymphoma (DLBCL) confined to the CNS. A genome-wide gene expression comparison between PCNSL and non-CNS DLBCL was performed, the latter consisting of both nodal and extranodal DLBCL (nDLBCL and enDLBCL), to identify a "CNS signature." Pathway analysis with the program SigPathway revealed that PCNSL is characterized notably by significant differential expression of multiple extracellular matrix (ECM) and adhesion-related pathways. The most significantly up-regulated gene is the ECM-related osteopontin (SPP1). Expression at the protein level of ECM-related SPP1 and CHI3L1 in PCNSL cells was demonstrated by immunohistochemistry. The alterations in gene expression can be interpreted within several biologic contexts with implications for PCNSL, including CNS tropism (ECM and adhesion-related pathways, SPP1, DDR1), B-cell migration (CXCL13, SPP1), activated B-cell subtype (MUM1), lymphoproliferation (SPP1, TCL1A, CHI3L1), aggressive clinical behavior (SPP1, CHI3L1, MUM1), and aggressive metastatic cancer phenotype (SPP1, CHI3L1). The gene expression signature discovered in our study may represent a true "CNS signature" because we contrasted PCNSL with wide-spectrum non-CNS DLBCL on a genomic scale and performed an in-depth bioinformatic analysis.

  11. Liposomal Conjugates for Drug Delivery to the Central Nervous System

    PubMed Central

    Helm, Frieder; Fricker, Gert

    2015-01-01

    Treatments of central nervous system (CNS) diseases often fail due to the blood–brain barrier. Circumvention of this obstacle is crucial for any systemic treatment of such diseases to be effective. One approach to transfer drugs into the brain is the use of colloidal carrier systems—amongst others, liposomes. A prerequisite for successful drug delivery by colloidal carriers to the brain is the modification of their surface, making them invisible to the reticuloendothelial system (RES) and to target them to specific surface epitopes at the blood–brain barrier. This study characterizes liposomes conjugated with cationized bovine serum albumin (cBSA) as transport vectors in vitro in porcine brain capillary endothelial cells (PBCEC) and in vivo in rats using fluorescently labelled liposomes. Experiments with PBCEC showed that sterically stabilized (PEGylated) liposomes without protein as well as liposomes conjugated to native bovine serum albumin (BSA) were not taken up. In contrast, cBSA-liposomes were taken up and appeared to be concentrated in intracellular vesicles. Uptake occurred in a concentration and time dependent manner. Free BSA and free cBSA inhibited uptake. After intravenous application of cBSA-liposomes, confocal fluorescence microscopy of brain cryosections from male Wistar rats showed fluorescence associated with liposomes in brain capillary surrounding tissue after 3, 6 and 24 h, for liposomes with a diameter between 120 and 150 nm, suggesting successful brain delivery of cationized-albumin coupled liposomes. PMID:25835091

  12. Excitation of central nervous system neurons by nonuniform electric fields.

    PubMed Central

    McIntyre, C C; Grill, W M

    1999-01-01

    The goal of this study was to determine which neural elements are excited by microstimulation of the central nervous system. A cable model of a neuron including an axon, initial segment, axon hillock, soma, and simplified dendritic tree was used to study excitation with an extracellular point source electrode. The model reproduced a wide range of experimentally documented extracellular excitation patterns. The site of action potential initiation (API) was a function of the electrode position, stimulus duration, and stimulus polarity. The axon or initial segment was always the site of API at threshold. When the electrode was positioned near the cell body, the site of excitation was dependent on the stimulus amplitude. With the electrode in close proximity to the neuron, short-duration cathodic pulses produced lower thresholds with the electrode positioned over the axon than over the cell body, and long-duration stimuli produced opposite relative thresholds. This result was robust to alterations in either the maximum conductances or the intracellular resistivities of the model. The site of maximum depolarization was not always an accurate predictor of the site of API, and the temporal evolution of the changes in membrane potential played a strong role in determining the site of excitation. PMID:9929489

  13. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.

    PubMed

    Wager, Travis T; Hou, Xinjun; Verhoest, Patrick R; Villalobos, Anabella

    2016-06-15

    Significant progress has been made in prospectively designing molecules using the central nervous system multiparameter optimization (CNS MPO) desirability tool, as evidenced by the analysis reported herein of a second wave of drug candidates that originated after the development and implementation of this tool. This simple-to-use design algorithm has expanded design space for CNS candidates and has further demonstrated the advantages of utilizing a flexible, multiparameter approach in drug discovery rather than individual parameters and hard cutoffs of physicochemical properties. The CNS MPO tool has helped to increase the percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood-brain barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through regulatory toxicology into First in Human studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of design ideas and the quality of the compounds nominated for clinical development.

  14. Two rare cases of central nervous system opportunistic mycoses.

    PubMed

    Mlinarić Missoni, Emilija; Baršić, Bruno

    2012-12-01

    This article presents two cases of opportunistic mycoses (OMs) of the central nervous system (CNS) caused by Cryptococcus neoformans and Aspergillus nidulans, respectively. The patients were hospitalised in local hospitals between 2009 and 2011 because of unspecific symptoms (fever, headache, and/or weight lost). Duration of symptoms varied from 4 days to over 2 weeks. The patients were treated with antibiotics and symptomatically. OM was not suspected in any of them. The patients became critically ill with symptoms of CNS involvement and were transferred to the Intensive Care Unit (ICU) of the University Hospital for Infectious diseases (UHID) in Zagreb. None of the patients belonged to the high-risk population for developing OMs. They were not HIV-infected, had no transplantation of bone marrow or solid organ, and were not on severe immunosuppressive chemotherapy. Fungi were isolated from cerebrospinal fluid (CSF) samples and, in one patient, from aspirate of cerebral abscess. Isolation and mycological identification of all fungal isolates and in vitro antifungal susceptibility testing of these isolates were done at the Reference Centre for Mycological Diagnostics of Systemic and Disseminated Infections (RCMDSDI) in Zagreb. The patient with cryptococcal meningitis was treated with amphotericin B and fluconazole and the patient with cerebral aspergilloma with voriconazole.

  15. [Dementia in Patients with Central Nervous System Mycosis].

    PubMed

    Morita, Akihiko; Ishihara, Masaki; Konno, Michiko

    2016-04-01

    Central nervous system (CNS) mycosis is a potentially life-threatening but treatable neurological emergency. CNS mycoses progress slowly and are sometimes difficult to distinguish from dementia. Though most patients with CNS mycosis have an underlying disease, such as human immunodeficiency virus (HIV) infection, cancer, diabetes mellitus, and/or use of immunosuppressants, cryptococcosis can occur in non-immunosuppressed persons. One of the major difficulties in accurate diagnosis is to detect the pathogen in patients' cerebrospinal fluid (CSF) cultures. Thus, the clinical diagnosis is often made by combining circumstantial evidence, including mononuclear cell-dominant pleocytosis with low glucose and protein elevation in the CSF, as well as positive results from an antigen-based assay and a (1-3)-beta-D-glucan assay using plasma and/or CSF. Polymerase chain reaction (PCR)-based diagnostics, which are not performed as routine examinations and are mostly performed as part of academic research in Japan, are sensitive tools for the early diagnosis of CNS mycosis. Mognetic resonance imaging (MRI) is useful to assess the complications of fungal meningitis, such as abscess, infarction, and hydrocephalus. Clinicians should realize the advantages and disadvantages of these diagnostic tools. Early and accurate diagnosis, including identification of the particular fungal species, enables optimal antifungal treatment that produces good outcomes in patients with CNS mycosis.

  16. Central nervous system and cervical spine abnormalities in Apert syndrome.

    PubMed

    Breik, Omar; Mahindu, Antony; Moore, Mark H; Molloy, Cindy J; Santoreneos, Stephen; David, David J

    2016-05-01

    Apert syndrome characterized by acrocephalosyndactyly is a rare autosomal dominant congenital malformation with a prevalence of 1/65,000 births. With an extensive range of phenotypic and developmental manifestations, its management requires a multidisciplinary approach. A variety of craniofacial, central nervous system (CNS), and cervical spine abnormalities have been reported in these patients. This study aimed to determine the incidence of these CNS abnormalities in our case series. Retrospective review of Australian Craniofacial Unit (ACFU) database for Apert patients was performed. Data collected that included demographics, place of origin, age at presentation, imaging performed, and images were reviewed and recorded. Where available, developmental data was also recorded. Ninety-four patients seen and managed at the ACFU had their CNS and cervical spine abnormalities documented. The main CNS abnormalities were prominent convolutional markings (67 %), ventriculomegaly (48 %), crowded foramen magnum (36 %), deficient septum pellucidum (13 %), and corpus callosum agenesis in 11 %. Major C-spine findings were present in 50.8 % of patients and included fusion of posterior elements of C5/C6 (50 %) and C3/4 (27 %). Multilevel fusion was seen in 20 %. Other abnormalities were C1 spina bifida occulta (7 %) and atlanto-axial subluxation (7 %). Multiple CNS and cervical spine (c-spine) abnormalities are common in Apert syndrome. The significance of these abnormalities remains largely unknown. Further research is needed to better understand the impact of these findings on growth, development, and treatment outcomes.

  17. Benzodiazepine Pharmacology and Central Nervous System–Mediated Effects

    PubMed Central

    Griffin, Charles E.; Kaye, Adam M.; Bueno, Franklin Rivera; Kaye, Alan D.

    2013-01-01

    Background Owing to the low therapeutic index of barbiturates, benzodiazepines (BZDs) became popular in this country and worldwide many decades ago for a wide range of conditions. Because of an increased understanding of pharmacology and physiology, the mechanisms of action of many BZDs are now largely understood, and BZDs of varying potency and duration of action have been developed and marketed. Although BZDs have many therapeutic roles and BZD-mediated effects are typically well tolerated in the general population, side effects and toxicity can result in morbidity and mortality for some patients. The elderly; certain subpopulations of patients with lung, liver, or kidney dysfunction; and patients on other classes of medication are especially prone to toxicity. Methods This review details the present knowledge about BZD mechanisms of action, drug profiles, clinical actions, and potential side effects. In addition, this review describes numerous types of BZD-mediated central nervous system effects. Conclusion For any patient taking a BZD, the prescribing physician must carefully evaluate the risks and benefits, and higher-risk patients require careful considerations. Clinically appropriate use of BZDs requires prudence and the understanding of pharmacology. PMID:23789008

  18. Microglioma, a histiocytic neoplasm of the central nervous system.

    PubMed

    Hulette, C M

    1996-03-01

    Neuropathologists have long suspected the existence of a tumor derived from the microglia, which are the resident immunocompetent cells of the central nervous system. Previously, definitive characterization of this rare putative tumor was hampered by the lack of precise immunohistochemical reagents. We herein report on a patient with microglioma, and we define the immunohistochemical characteristics of the tumor. The patient was a 50-year-old white woman who presented with a 1-year history of progressive paresthesia, visual difficulties, and cranial nerve abnormalities. The patient died in June 1972. At autopsy, the brain weighed 1540 grams and was remarkable for a diffusely infiltrating periventricular tumor, which extended from the rostral tip of the lateral ventricles through the spinal cord. Microscopically, the tumor cells had extremely long, slender, twisted nuclei, and the cells diffusely infiltrated the brain parenchyma so that the extent of the tumor was difficult to determine. Formalin-fixed, paraffin-embedded tissue blocks from the neuropathology archives were studied. The neoplastic cells stained intensely with CD68 (KP1) and Ricinus communis agglutinin-120 markers for microglia and also with HAM-56, a marker for macrophages. The tumor cells stained negative for glial fibrillary acidic protein. The recent availability of precise immunohistochemical reagents has clearly defined this rare neoplasm and has facilitated reliable distinction from lymphoma and gliomatosis cerebri.

  19. 3D in vitro modeling of the central nervous system

    PubMed Central

    Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.

    2015-01-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688

  20. Neurocognitive impairment in Whipple disease with central nervous system involvement.

    PubMed

    Christidi, Foteini; Kararizou, Evangelia; Potagas, Constantin; Triantafyllou, Nikolaos I; Stamboulis, Eleftherios; Zalonis, Ioannis

    2014-03-01

    Young-onset dementias pose a major challenge to both clinicians and researchers. Cognitive decline may be accompanied by systemic features, leading to a diagnosis of "dementia plus" syndromes. Whipple disease is a rare systemic illness characterized by arthralgias, chronic diarrhea, weight loss, fever, and abdominal pain. Central nervous system involvement, including severe cognitive deterioration, may precede systemic manifestations, appear during the course of the disease, or even be the only symptom. We report a previously highly functional 48-year-old man whom we first suspected of having early-onset neurodegenerative dementia but then diagnosed with Whipple disease based on a detailed clinical and laboratory evaluation. Initial neuropsychological evaluation revealed marked impairment in the patient's fluid intelligence and severe cognitive deficits in his information processing speed, complex attention, memory, visuomotor and construction dexterities, problem solving, and executive functions. At neuropsychological follow-up 21 months later, his information processing speed had improved only slightly and deficits persisted in his other cognitive functions. Repeat brain magnetic resonance imaging at that time showed that he had responded to antibiotic treatment. Because Whipple disease can cause young-onset "dementia plus" syndromes that may leave patients with neurocognitive deficits even after apparently successful treatment, we recommend comprehensive neuropsychological assessment for early detection of residual and reversible cognitive processes and evaluation of treatment response.

  1. Mutational analysis of primary central nervous system lymphoma.

    PubMed

    Bruno, Aurélie; Boisselier, Blandine; Labreche, Karim; Marie, Yannick; Polivka, Marc; Jouvet, Anne; Adam, Clovis; Figarella-Branger, Dominique; Miquel, Catherine; Eimer, Sandrine; Houillier, Caroline; Soussain, Carole; Mokhtari, Karima; Daveau, Romain; Hoang-Xuan, Khê

    2014-07-15

    Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies.

  2. Medulloblastomas and central nervous system primitive neuroectodermal tumors.

    PubMed

    McLean, Thomas W

    2003-12-01

    Significant advances in the treatment of medulloblastoma and primitive neuroectodermal tumors have been made in the past three decades. Maximal surgical resection is a mainstay of therapy. However, unlike many other central nervous system neoplasms, medulloblastoma and primitive neuroectodermal tumors are radiation and chemotherapy responsive. Despite this response, the prognosis for patients with these tumors remains variable and is relatively poor in infants and patients with metastatic disease. These tumors most commonly arise in children, thus most clinical trials emphasize the reduction of long-term sequelae, in addition to improving survival. All newly diagnosed patients who are eligible should be offered participation in a clinical trial. If a patient is ineligible or declines consent/assent for a clinical trial, the best current treatment approach is surgical resection, followed by radiation therapy (except for children younger than 3 years) with weekly vincristine. For high-risk patients, 36 Gy of craniospinal irradiation should be delivered plus a boost of 19.8 Gy to the posterior fossa/primary tumor bed and sites of bulk metastatic disease. For average-risk patients, the craniospinal irradiation dose may be lowered to 23.4 Gy plus 32.4 Gy to the posterior fossa/tumor bed. After radiation therapy, intensive multimodal chemotherapy should be used for all patients.

  3. Emerging Viral Infections of the Central Nervous System

    PubMed Central

    Tyler, Kenneth L.

    2010-01-01

    In this 2-part review, I will focus on emerging virus infections of the central nervous system (CNS). Part 1 will introduce the basic features of emerging infections, including their definition, epidemiology, and the frequency of CNS involvement. Important mechanisms of emergence will be reviewed, including viruses spreading into new host ranges as exemplified by West Nile virus (WNV), Japanese encephalitis (JE) virus, Toscana virus, and enterovirus 71 (EV71). Emerging infections also result from opportunistic spread of viruses into known niches, often resulting from attenuated host resistance to infection. This process is exemplified by transplant-associated cases of viral CNS infection caused by WNV, rabies virus, lymphocytic choriomeningitis, and lymphocytic choriomeningitis–like viruses and by the syndrome of human herpesvirus 6 (HHV6)–associated posttransplantation acute limbic encephalitis. The second part of this review begins with a discussion of JC virus and the occurrence of progressive multifocal leukoencephalopathy in association with novel immunomodulatory therapies and then continues with an overview of the risk of infection introduced by imported animals (eg, monkeypox virus) and examples of emerging diseases caused by enhanced competence of viruses for vectors and the spread of vectors (eg, chikungunya virus) and then concludes with examples of novel viruses causing CNS infection as exemplified by Nipah and Hendra viruses and bat lyssaviruses. PMID:19667214

  4. Anticholinergics for overactive bladder therapy: central nervous system effects.

    PubMed

    Chancellor, Michael; Boone, Timothy

    2012-02-01

    The mainstay of pharmacological treatment of overactive bladder (OAB) is anticholinergic therapy using muscarinic receptor antagonists (tertiary or quaternary amines). Muscarinic receptors in the brain play an important role in cognitive function, and there is growing awareness that antimuscarinic OAB drugs may have adverse central nervous system (CNS) effects, ranging from headache to cognitive impairment and episodes of psychosis. This review discusses the physicochemical and pharmacokinetic properties of OAB antimuscarinics that affect their propensity to cause adverse CNS effects, as observed in phase III clinical trials and in specific investigations on cognitive function and sleep architecture. PubMed/MEDLINE was searched for "OAB" plus "muscarinic antagonists" or "anticholinergic drug." Additional relevant literature was identified by examining the reference lists of papers identified through the search. Preclinical and clinical trials in adults were assessed, focusing on the OAB antimuscarinics approved in the United States. The blood-brain barrier (BBB) plays a key role in protecting the CNS, but it is penetrable. The lipophilic tertiary amines, particularly oxybutynin, are more likely to cross the BBB than the hydrophilic quaternary amine trospium chloride, for which there are very few reports of adverse CNS effects. In fact, in 2008 the US product labels for oral oxybutynin were modified to include the potential for anticholinergic CNS events and a warning to monitor patients for adverse CNS effects. Even modest cognitive impairment in the elderly may negatively affect independence; therefore, selection of an antimuscarinic OAB drug with reduced potential for CNS effects is advisable. © 2011 Blackwell Publishing Ltd.

  5. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy.

  6. The Role of Central Nervous System Plasticity in Tinnitus

    PubMed Central

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The “neurophysiogical” model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions. The model assumes that plastic changes in the primary and non-primary auditory pathways contribute to tinnitus with the former perhaps sustaining them, and the latter contributing to perceived severity and emotionality. These plastic changes are triggered by peripheral injury, which results in new patterns of brain activity due to anatomic alterations in the connectivity of CNS neurons. These alterations may change the balance between excitatory and inhibitory brain processes, perhaps producing cascades of new neural activity flowing between brainstem and cortex in a self-sustaining manner that produces persistent perceptions of tinnitus. The bases of this model are explored with an attempt to distinguish phenomenological from mechanistic explanations. Learning outcomes (1) Readers will learn that the variables associated with the behavioral experience of tinnitus are as complex as the biological variables. (2) Readers will understand what the concept of neuroplastic brain change means, and how it is associated with tinnitus. (3) Readers will learn that there may be no one brain location associated with tinnitus, and it may result from interactions between multiple brain areas. (4) Readers will learn how disinhibition, spontaneous activity, neural synchronization, and tonotopic reorganization may contribute to tinnitus. PMID:17418230

  7. HCV-related central and peripheral nervous system demyelinating disorders.

    PubMed

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered.

  8. Central nervous system imaging and congenital melanocytic naevi

    PubMed Central

    Kinsler, V; Aylett, S; Coley, S; Chong, W; Atherton, D

    2001-01-01

    AIM—To establish the prevalence of central nervous system (CNS) abnormalities on magnetic resonance imaging (MRI) in a population of children with congenital melanocytic naevi (CMN) over the head and/or spine, and to compare this with clinical findings.
METHODS—Forty three patients identified from outpatient clinics underwent MRI of the brain and/or spine. These were reported by a paediatric radiologist and findings compared with the clinical picture.
RESULTS—Nine patients had abnormal clinical neurology, seven had abnormal findings on MRI, and six had both abnormal clinical and radiological findings. Only three of the abnormal MRIs showed features of intracranial melanosis. Three others showed structural brain abnormalities: one choroid plexus papilloma, one cerebellar astrocytoma, and one posterior fossa arachnoid cyst; the first two of these have not previously been described in association with CMN. The last abnormal MRI showed equivocal changes requiring reimaging.
CONCLUSIONS—The prevalence of radiological CNS abnormality in this group of children was 7/43. Six of these developed abnormal clinical neurological signs within the first 18 months of life, but two did not do so until after the MRI. Two of the CNS lesions were operable; for this reason we support the routine use of early MRI in this group.

 PMID:11159293

  9. Central nervous system depressant action of flavonoid glycosides.

    PubMed

    Fernández, Sebastián P; Wasowski, Cristina; Loscalzo, Leonardo M; Granger, Renee E; Johnston, Graham A R; Paladini, Alejandro C; Marder, Mariel

    2006-06-13

    The pharmacological effects on the central nervous system (CNS) of a range of available flavonoid glycosides were explored and compared to those of the glycosides 2S-hesperidin and linarin, recently isolated from valeriana. The glycosides 2S-neohesperidin, 2S-naringin, diosmin, gossipyn and rutin exerted a depressant action on the CNS of mice following i.p. injection, similar to that found with 2S-hesperidin and linarin. We demonstrate in this work that these behavioural actions, as measured in the hole board, thiopental induced sleeping time and locomotor activity tests, are unlikely to involve a direct action on gamma-aminobutyric acid type A (GABA(A)) receptors. The corresponding aglycones were inactive, pointing to the importance of the sugar moieties in the glycosides in their CNS depressant action following systemic administration. The pharmacological properties of the flavonoid glycosides studied here, in addition to our previous results with hesperidin and linarin, opens a promising new avenue of research in the field.

  10. ABNORMALITIES PRODUCED IN THE CENTRAL NERVOUS SYSTEM BY ELECTRICAL INJURIES.

    PubMed

    Langworthy, O R

    1930-05-31

    The alternating and continuous circuits produced different types of lesions in the central nervous system. Hemorrhages were common after alternating current shocks and few hemorrhages were observed in the continuous circuit group. With both types of circuits at 1000 and 500 volts potential, severe abnormalities in the nerve cells were observed. These were more marked in the continuous circuit group. A uniformly staining, shrunken, pyknotic nucleus was taken as a criterion of nerve cell death. The Purkinje cells of the cerebellum were most susceptible to the current. Injured cells were studied in the dorsal nucleus of the vagus, in the somatic motor group, among the primary sensory neurones and in the olives. Changes in the histological structure of the cells in reference to recovery have been discussed. Injury to the cerebral and cerebellar cortices occurred on the dorsal surface close to the head electrode. Small cavities were produced, particularly in the cerebral cortex, as the result of the circuit contact. With the continuous and alternating circuits at 110 and 220 volts potential less severe changes were observed in the nerve cells although hemorrhages were common in the alternating circuit group. It must be assumed in these cases that death was due to respiratory block rather than actual death of the cells.

  11. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    PubMed Central

    Mitsdoerffer, Meike; Peters, Anneli

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS), which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease; however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines, and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs) were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function, and clinical significance. Mechanistic studies in patients are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE) recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation, and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs. PMID:27826298

  12. Current Management of Primary Central Nervous System Lymphoma

    SciTech Connect

    Schultz, Christopher J.; Bovi, Joseph

    2010-03-01

    Primary central nervous cell lymphoma (PCNSL) is an uncommon neoplasm of the brain, leptomeninges, and rarely the spinal cord. Initially thought to be characteristically associated with congenital, iatrogenic, or acquired immunosuppression, PCNSL is now recognized with increasing frequency in immunocompetent individuals. The role of surgery is limited to establishing diagnosis, as PCNSL is often multifocal with a propensity to involve the subarachnoid space. A whole-brain radiation volume has empirically been used to adequately address the multifocal tumor frequently encountered at the time of PCNSL diagnosis. Despite high rates of response after whole-brain radiotherapy (WBRT), rapid recurrence is common and long-term survival is the exception. Chemotherapy alone or in combination with WBRT has more recently become the treatment of choice. Most effective regimens contain high-dose methotrexate and or other agents that are capable of penetrating the blood-brain barrier. High response rates and improved survival with the use of chemotherapy has led to treatment strategies that defer or eliminate WBRT in hopes of lessening the risk of neurotoxicity attributed to WBRT. Unfortunately, elimination of WBRT is also associated with a higher rate of relapse. Combined chemotherapy and WBRT regimens are now being explored that use lower total doses of radiation and altered fractionation schedules with the aim of maintaining high rates of tumor control while minimizing neurotoxicity. Pretreatment, multifactor prognostic indices have recently been described that may allow selection of treatment regimens that strike an appropriate balance of risk and benefit for the individual PCNSL patient.

  13. Cerebrospinal fluid flow dynamics in the central nervous system.

    PubMed

    Sweetman, Brian; Linninger, Andreas A

    2011-01-01

    Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image reconstruction and grid generation tools were then used to develop a three-dimensional fluid-structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized using the finite-element method and the constitutive equations for fluid and solid motion solved in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes were computed in all regions of the CNS. The computed pressure gradients and amplitudes closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and the lumbar region of the spinal canal did not exceed 132 Pa (~1 mmHg) at any time during the cardiac cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with values previously reported in the literature. Finally, the forward and backward motion of the CSF in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The mathematical model presented in this article is a prerequisite for developing a mechanistic understanding of the relationships among vasculature pulsations, CSF flow, and CSF pressure waves in the CNS.

  14. Scar-modulating treatments for central nervous system injury.

    PubMed

    Shen, Dingding; Wang, Xiaodong; Gu, Xiaosong

    2014-12-01

    Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.

  15. Central Nervous System Control of Voice and Swallowing

    PubMed Central

    Ludlow, Christy L.

    2015-01-01

    This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238

  16. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  17. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  18. Central nervous system disease in Langerhans cell histiocytosis.

    PubMed Central

    Grois, N.; Tsunematsu, Y.; Barkovich, A. J.; Favara, B. E.

    1994-01-01

    Diabetes insipidus and anterior pituitary dysfunction, are familiar central nervous system (CNS) complications of Langerhans cell histiocytosis (LCH) but the pathophysiology and biological behaviour of other forms of CNS involvement in LCH are poorly understood. In an attempt to improve our understanding of these rare complications, we studied 23 patients with LCH in whom neuroradiological abnormalities, with or without neurological dysfunction other than diabetes insipidus, developed during the course of disease. Neuroradiological abnormalities were of three basic types (a) poorly-defined changes in white matter, (b) well-defined changes in white and grey matter and (c) extra-parenchymal "tumoural" masses. There was a profusion of associated neurological signs and symptoms in most cases but some patients were asymptomatic. The neuropathological features were complex but infiltration of the CNS by histiocytes with xanthomatous change, particularly prominent in mass lesions, was common in the 13 cases in which biopsies were done. Patients with lytic lesions of the skull and diabetes insipidus are evidently most at risk of developing these rare manifestations of LCH. Therapeutic questions could not be answered from this study because no standard treatment had been given and outcome varied widely. Images Figure 7 Figure 1 Figure 2 Figure 3 PMID:8075002

  19. Neuronal central nervous system syndromes probably mediated by autoantibodies

    PubMed Central

    Chefdeville, Aude; Honnorat, Jérôme; Hampe, Christiane S.; Desestret, Virginie

    2016-01-01

    In the last few years, a rapidly growing number of autoantibodies targeting neuronal cell-surface antigens have been identified in patients presenting with neurological symptoms. Targeted antigens include ionotropic receptors such as N-methyl-D-aspartate receptor or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, metabotropic receptors such as mGluR1 and mGluR5, and other synaptic proteins, some of them belonging to the voltage-gated potassium channel complex. Importantly, the cell-surface location of these antigens makes them vulnerable to direct antibody-mediated modulation. Some of these autoantibodies, generally targeting ionotropic channels or their partner proteins, define clinical syndromes resembling models of pharmacological or genetic disruption of the corresponding antigen, suggesting a direct pathogenic role of the associated autoantibodies. Moreover, the associated neurological symptoms are usually immunotherapy-responsive, further arguing for a pathogenic effect of the antibodies. Some studies have shown that some patients’ antibodies may have structural and functional in vitro effects on the targeted antigens. Definite proof of the pathogenicity of these autoantibodies has been obtained for just a few through passive transfer experiments in animal models. In this review we present existing and converging evidence suggesting a pathogenic role of some autoantibodies directed against neuronal cell-surface antigens observed in patients with central nervous system disorders. We describe the main clinical symptoms characterizing the patients and discuss conflicting arguments regarding the pathogenicity of these antibodies. PMID:26918657

  20. Central nervous system infections in patients with severe burns.

    PubMed

    Calvano, Tatjana P; Hospenthal, Duane R; Renz, Evan M; Wolf, Steven E; Murray, Clinton K

    2010-08-01

    Central nervous system (CNS) infections develop in 3-9% of neurosurgical ICU patients and 0.4-2% of all patients hospitalized with head trauma. CNS infection incidence in burn patients is unknown and this study sets out to identify the incidence and risk factors associated with CNS infections. A retrospective electronic chart review was performed from 1 July 2003 to 30 June 2008 evaluating inpatient medical records along with cerebrospinal fluid (CSF) microbiological results for the presence of CNS infection. The presence of facial and head injuries and burns, along with intracranial interventions were reviewed for association with CNS infections. There were 1964 admissions with 2 patients (0.1%) found to have CNS infection; 1 each with MRSA and Acinetobacter baumannii. Both patients had facial burns and trauma to their head that required intracranial surgery. Of note, both patients had bacteremia with the same microorganisms isolated from their CSF and both survived. Of all patients, 29% had head or neck trauma and burns; 0.35% of those had a CNS infection. Scalp harvest for grafts or debridement of burned scalp was performed on 125 patients of which 9 had an invasive surgical procedure that involved penetration of the skull. The 2 infected patients were from these 9 intracranial surgical patients revealing a 22% infection rate. The incidence of CNS infections in patients with severe burns is extremely low at 0.1%. This rate was low even with head and face burns with trauma unless the patient underwent an intracranial procedure.

  1. Occupational exposure and risk of central nervous system demyelination.

    PubMed

    Valery, P C; Lucas, R M; Williams, D B; Pender, M P; Chapman, C; Coulthard, A; Dear, K; Dwyer, T; Kilpatrick, T J; McMichael, A J; van der Mei, I; Taylor, B V; Ponsonby, A-L

    2013-05-01

    Inconsistent evidence exists regarding the association between work-related factors and risk of multiple sclerosis (MS). We examined the association between occupational exposures and risk of a first clinical diagnosis of central nervous system demyelination (FCD), which is strongly associated with progression to MS, in a matched case-control study of 276 FCD cases and 538 controls conducted in Australia (2003-2006). Using a personal residence and work calendar, information on occupational history and exposure to chemicals and animals was collected through face-to-face interviews. Few case-control differences were noted. Fewer cases had worked as professionals (≥6 years) than controls (adjusted odds ratio (AOR) = 0.60, 95% confidence interval (CI): 0.37, 0.96). After further adjustment for number of children, cases were more likely to have ever been exposed to livestock than controls (AOR = 1.54, 95% CI: 1.03, 2.29). Among women, there was an increase in FCD risk associated with 10 or more years of exposure to livestock (AOR = 2.78, 95% CI: 1.22, 6.33) or 6 or more years of farming (AOR = 2.00, 95% CI: 1.23, 3.25; also adjusted for number of children). Similar findings were not evident among men. Thus, farming and exposure to livestock may be important factors in the development of FCD among women, with this finding further revealed after the confounding effect of parity or number of children is considered.

  2. Invasion of the Central Nervous System by Intracellular Bacteria

    PubMed Central

    Drevets, Douglas A.; Leenen, Pieter J. M.; Greenfield, Ronald A.

    2004-01-01

    Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens. PMID:15084504

  3. Venous endothelial injury in central nervous system diseases

    PubMed Central

    2013-01-01

    The role of the venous system in the pathogenesis of inflammatory neurological/neurodegenerative diseases remains largely unknown and underinvestigated. Aside from cerebral venous infarcts, thromboembolic events, and cerebrovascular bleeding, several inflammatory central nervous system (CNS) diseases, such as multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), and optic neuritis, appear to be associated with venous vascular dysfunction, and the neuropathologic hallmark of these diseases is a perivenous, rather than arterial, lesion. Such findings raise fundamental questions about the nature of these diseases, such as the reasons why their pathognomonic lesions do not develop around the arteries and what exactly are the roles of cerebral venous inflammation in their pathogenesis. Apart from this inflammatory-based view, a new hypothesis with more focus on the hemodynamic features of the cerebral and extracerebral venous system suggests that MS pathophysiology might be associated with the venous system that drains the CNS. Such a hypothesis, if proven correct, opens new therapeutic windows in MS and other neuroinflammatory diseases. Here, we present a comprehensive review of the pathophysiology of MS, ADEM, pseudotumor cerebri, and optic neuritis, with an emphasis on the roles of venous vascular system programming and dysfunction in their pathogenesis. We consider the fundamental differences between arterial and venous endothelium, their dissimilar responses to inflammation, and the potential theoretical contributions of venous insufficiency in the pathogenesis of neurovascular diseases. PMID:24228622

  4. Evolution of centralized nervous systems: Two schools of evolutionary thought

    PubMed Central

    Northcutt, R. Glenn

    2012-01-01

    Understanding the evolution of centralized nervous systems requires an understanding of metazoan phylogenetic interrelationships, their fossil record, the variation in their cephalic neural characters, and the development of these characters. Each of these topics involves comparative approaches, and both cladistic and phenetic methodologies have been applied. Our understanding of metazoan phylogeny has increased greatly with the cladistic analysis of molecular data, and relaxed molecular clocks generally date the origin of bilaterians at 600–700 Mya (during the Ediacaran). Although the taxonomic affinities of the Ediacaran biota remain uncertain, a conservative interpretation suggests that a number of these taxa form clades that are closely related, if not stem clades of bilaterian crown clades. Analysis of brain–body complexity among extant bilaterians indicates that diffuse nerve nets and possibly, ganglionated cephalic neural systems existed in Ediacaran organisms. An outgroup analysis of cephalic neural characters among extant metazoans also indicates that the last common bilaterian ancestor possessed a diffuse nerve plexus and that brains evolved independently at least four times. In contrast, the hypothesis of a tripartite brain, based primarily on phenetic analysis of developmental genetic data, indicates that the brain arose in the last common bilaterian ancestor. Hopefully, this debate will be resolved by cladistic analysis of the genomes of additional taxa and an increased understanding of character identity genetic networks. PMID:22723354

  5. Herpes Simplex Virus Infections of the Central Nervous System.

    PubMed

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  6. [Chronic central nervous system histoplasmosis in an immunocompetent patient].

    PubMed

    Carod-Artal, F J; Venturini, M; Gomes, E; de Mello, M T

    2008-05-01

    Histoplasma capsulatum is an endemic fungus in America that may present as a lung self-limiting infection or be asymptomatic. Disseminated histoplasmosis can occur in cell-mediated immunity disorders and acquired immunodeficiency syndrome. Isolated central nervous system (CNS) histoplasmosis is uncommon, furthermore in immunocompetent patients. A 34 year old inmunocompetent male is reported. He presented with several pathogenic forms of neurohistoplasmosis: chronic meningitis, meningovascular histoplasmosis with stroke, acute myelopathy and chronic recurrent hydrocephalus. Other causes of chronic infectious meningitis were ruled out. Cerebrospinal flow (CSF) analysis showed an increased white cell count, hyperproteinorraquia and decrease of glucose levels. Brain magnetic resonance imaging (MRI) showed hydrocephalus and gadolinium enhancement of the meninges; a spinal cord MRI detected a cervical and thoracic myelopathy. A chronic unspecific inflammatory process and absence of granulomata were observed in a meninge biopsy. Electronic microscopy showed the presence of yeasts in the CSF. Histoplasma capsulatum was isolated in a specific culture from two consecutive CSF samples. The patient was treated with ev amphotericin B and fluconazol, plus 6 months of oral itraconazole. Isolated chronic CNS histoplasmosis may present as recurrent episodes of stroke, meningitis, myelopathy and hydrocephalus. CSF specific culture can help in the diagnosis.

  7. Maternal drug histories and central nervous system anomalies.

    PubMed Central

    Winship, K A; Cahal, D A; Weber, J C; Griffin, J P

    1984-01-01

    Prescription data for the three months before the last menstrual period and for the first trimester of pregnancy were obtained for 764 mothers whose children had a defect of the central nervous system and for an equal number of mothers of control babies born from the same doctors' practices. There was a statistically significant difference overall between the numbers of mothers who were prescribed drugs in the study and control groups during the trimester before the last menstrual period but no such difference was found for the first pregnancy trimester, nor was there a significant difference for any specific group of drugs. For a composite group of non-steroid anti-inflammatory drugs, salicylates, and sulphasalazine there was a significant difference for the trimester before the last menstrual period. There are arguments against such an artificial grouping, however, and when the individual drugs were considered the comparisons were no longer significant. The odds ratios for all medicines containing folic acid taken in the trimester before the last menstrual period were considerably less than unity, in contrast with nearly all other comparisons. This supports a suggested protective effect against neural tube defects of folic acid supplements begun before the onset of pregnancy but the odds ratios of these comparisons were not statistically significant. PMID:6150687

  8. Primary Central Nervous System Anaplastic Large T-cell Lymphoma

    PubMed Central

    Splavski, Bruno; Muzevic, Dario; Ladenhauser-Palijan, Tatjana; Jr, Brano Splavski

    2016-01-01

    Introduction: Primary central nervous system lymphoma (PCNSL) of T-cell origin is an exceptionally rare, highly malignant intracranial neoplasm. Although such a tumor typically presents with a focal mass lesion. Case report: Past medical history of a 26-year-old male patient with a PCNS lymphoma of T-cell origin was not suggestive of intracranial pathology or any disorder of other organs and organic systems. To achieve a gross total tumor resection, surgery was performed via osteoplastic craniotomy using the left frontal transcortical transventricular approach. Histological and immunohistochemical analyses of the tissue removed described tumor as anaplastic large cell lymphoma of T-cells (T-ALCL). Postoperative and neurological recovery was complete, while control imaging of the brain showed no signs of residual tumor at a six-month follow-up. The patient, who did not appear immunocompromized, was referred to a hematologist and an oncologist where corticosteroids, the particular chemotherapeutic protocol and irradiation therapy were applied. Conclusion: Since PCNS lymphoma is a potentially curable brain tumor, we believe that proper selection of the management options, including early radical tumor resection for solitary PCNS lymphoma, may be proposed as a major treatment of such a tumor in selected patients, resulting in a satisfactory outcome. PMID:27703297

  9. A case of disseminated central nervous system sparganosis

    PubMed Central

    Noiphithak, Raywat; Doungprasert, Gahn

    2016-01-01

    Background: Sparganosis is a very rare parasitic infection in various organs caused by the larvae of tapeworms called spargana. The larva usually lodges in the central nervous system (CNS) and the orbit. However, lumbar spinal canal involvement, as noted in the present case, is extremely rare. We report a rare case of disseminated CNS sparganosis involving the brain and spinal canal and review the literature. Case Description: A 54-year-old man presented with progressive low back pain and neurological deficit at the lumbosacral level for 2 months. Imaging indicated arachnoiditis and an abnormal lesion at the L4-5 vertebral level. The patient underwent laminectomy of the L4-5 with lesionectomy and lysis of adhesions between the nerve roots. Microscopic examination indicated sparganum infection. Further brain imaging revealed evidence of chronic inflammation in the left parieto-occipital area without evidence of live parasites. In addition, an ophthalmologist reported a nonactive lesion in the right conjunctiva. The patient recovered well after surgery, although he had residual back pain and bladder dysfunction probably due to severe adhesion of the lumbosacral nerve roots. Conclusion: CNS sparganosis can cause various neurological symptoms similar to those of other CNS infections. A preoperative enzyme-linked immunosorbent assay is helpful for diagnosis, especially in endemic areas. Surgical removal of the worm remains the treatment of choice. PMID:28031991

  10. Transcriptome analysis of the Octopus vulgaris central nervous system.

    PubMed

    Zhang, Xiang; Mao, Yong; Huang, Zixia; Qu, Meng; Chen, Jun; Ding, Shaoxiong; Hong, Jingni; Sun, Tiantian

    2012-01-01

    Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e(-5). The comparison between the Octopus vulgaris central nervous system (CNS) library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e(-5)) using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%-46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology.

  11. Central Nervous System Agents for Ischemic Stroke: Neuroprotection Mechanisms

    PubMed Central

    Pandya, Rachna S.; Mao, Lijuan; Zhou, Hua; Zhou, Shuanhu; Zeng, Jiang; Popp, A. John; Wang, Xin

    2011-01-01

    Stroke is the third leading cause of mortality and disability in the United States. Ischemic stroke constitutes 85% of all stroke cases. However, no effective treatment has been found to prevent damage to the brain in such cases except tissue plasminogen activator with narrow therapeutic window, and there is an unmet need to develop therapeutics for neuroprotection from ischemic stroke. Studies have shown that mechanisms including apoptosis, necrosis, inflammation, immune modulation, and oxidative stress and mediators such as excitatory amino acids, nitric oxide, inflammatory mediators, neurotransmitters, reactive oxygen species, and withdrawal of trophic factors may lead to the development of the ischemic cascade. Hence, it is essential to develop neuroprotective agents targeting either the mechanisms or the mediators leading to development of ischemic stroke. This review focuses on central nervous system agents targeting these biochemical pathways and mediators of ischemic stroke, mainly those that counteract apoptosis, inflammation, and oxidation, and well as glutamate inhibitors which have been shown to provide neuroprotection in experimental animals. All these agents have been shown to improve neurological outcome after ischemic insult in experimental animals in vivo, organotypic brain slice/acute slice ex vivo, and cell cultures in vitro and may therefore aid in preventing long-term morbidity and mortality associated with ischemic stroke. PMID:21521165

  12. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system.

    PubMed

    Calcagno, Andrea; Di Perri, Giovanni; Bonora, Stefano

    2014-10-01

    HIV-positive patients may be effectively treated with highly active antiretroviral therapy and such a strategy is associated with striking immune recovery and viral load reduction to very low levels. Despite undeniable results, the central nervous system (CNS) is commonly affected during the course of HIV infection, with neurocognitive disorders being as prevalent as 20-50 % of treated subjects. This review discusses the pathophysiology of CNS infection by HIV and the barriers to efficacious control of such a mechanism, including the available data on compartmental drug penetration and on pharmacokinetic/pharmacodynamic relationships. In the reviewed articles, a high variability in drug transfer to the CNS is highlighted with several mechanisms as well as methodological issues potentially influencing the observed results. Nevirapine and zidovudine showed the highest cerebrospinal fluid (CSF) to plasma ratios, although target concentrations are currently unknown for the CNS. The use of the composite CSF concentration effectiveness score has been associated with better virological outcomes (lower HIV RNA) but has been inconsistently associated with neurocognitive outcomes. These findings support the CNS effectiveness of commonly used highly antiretroviral therapies. The use of antiretroviral drugs with increased CSF penetration and/or effectiveness in treating or preventing neurocognitive disorders however needs to be assessed in well-designed prospective studies.

  13. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  14. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    PubMed Central

    Orth, Matthias; Bellosta, Stefano

    2012-01-01

    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions. PMID:23119149

  15. Treatment of central nervous system manifestations in mitochondrial disorders.

    PubMed

    Finsterer, J

    2011-01-01

    Central nervous system (CNS) manifestations of mitochondrial disorders (MIDs) are accessible to therapy. Therapy of CNS abnormalities may be categorized as acting on the pathogenic cascade or on the genetic level, which is experimental. Treatment acting on the pathogenic cascade may be classified as non-specific, including antioxidants, electron donors/acceptors, lactate-lowering agents, alternative energy providers, cofactors, avoidance of mitochondrion-toxic drugs, and physiotherapy, or as specific, including drugs against epilepsy, movement disorders, migraine, spasticity, psychiatric abnormalities, hypopituitarism, or bulbar manifestations, ketogenic diet, deep brain stimulation, or artificial ventilation. Stroke-like episodes need to be delineated from ischaemic stroke and require special management. Potentially, mitochondrion-toxic drugs and drug cocktails need to be avoided, seizures should be consequently treated even with mitochondrion-toxic drugs if necessary, and as few drugs as possible should be given. Effective treatment acting on the pathogenic cascade may increase the quality of life and outcome in patients with MID and may prevent a therapeutic nihilism occasionally upcoming with MIDs.

  16. Neurological complications of chemotherapy to the central nervous system.

    PubMed

    Newton, Herbert B

    2012-01-01

    One of the most common complications of chemotherapeutic drugs is toxicity to the central nervous system (CNS). This toxicity can manifest in many ways, including encephalopathy syndromes and confusional states, seizure activity, headache, cerebrovascular complications and stroke, visual loss, cerebellar dysfunction, and spinal cord damage with myelopathy. For many drugs, the toxicity is related to route of administration and cumulative dose, and can vary from brief, transient episodes to more severe, chronic sequelae. However, the neurotoxicity can be idiosyncratic and unpredictable in some cases. Among the antimetabolite drugs, methotrexate, 5-fluorouracil, and cytosine arabinoside are most likely to cause CNS toxicity. Of the alkylating agent chemotherapeutic drugs, the nitrosoureas (e.g., BCNU) and cisplatin most frequently cause toxicity to the CNS, especially when given via the intra-arterial route. Ifosfamide is also likely to cause neurotoxicity at high intravenous doses. Other alkylating agents, such as busulfan, cyclophosphamide, procarbazine, and temozolomide, are better tolerated by the CNS at moderate doses. The retinoid drugs are known to cause severe headaches at high doses. l-Asparaginase can induce an encephalopathy syndrome, as well as cerebrovascular complications such as stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Nanotechnologies for the study of the central nervous system.

    PubMed

    Ajetunmobi, A; Prina-Mello, A; Volkov, Y; Corvin, A; Tropea, D

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Role of Microglia in Central Nervous System Infections

    PubMed Central

    Rock, R. Bryan; Gekker, Genya; Hu, Shuxian; Sheng, Wen S.; Cheeran, Maxim; Lokensgard, James R.; Peterson, Phillip K.

    2004-01-01

    The nature of microglia fascinated many prominent researchers in the 19th and early 20th centuries, and in a classic treatise in 1932, Pio del Rio-Hortega formulated a number of concepts regarding the function of these resident macrophages of the brain parenchyma that remain relevant to this day. However, a renaissance of interest in microglia occurred toward the end of the 20th century, fueled by the recognition of their role in neuropathogenesis of infectious agents, such as human immunodeficiency virus type 1, and by what appears to be their participation in other neurodegenerative and neuroinflammatory disorders. During the same period, insights into the physiological and pathological properties of microglia were gained from in vivo and in vitro studies of neurotropic viruses, bacteria, fungi, parasites, and prions, which are reviewed in this article. New concepts that have emerged from these studies include the importance of cytokines and chemokines produced by activated microglia in neurodegenerative and neuroprotective processes and the elegant but astonishingly complex interactions between microglia, astrocytes, lymphocytes, and neurons that underlie these processes. It is proposed that an enhanced understanding of microglia will yield improved therapies of central nervous system infections, since such therapies are, by and large, sorely needed. PMID:15489356

  19. Clinical Proton MR Spectroscopy in Central Nervous System Disorders

    PubMed Central

    Alger, Jeffry R.; Barker, Peter B.; Bartha, Robert; Bizzi, Alberto; Boesch, Chris; Bolan, Patrick J.; Brindle, Kevin M.; Cudalbu, Cristina; Dinçer, Alp; Dydak, Ulrike; Emir, Uzay E.; Frahm, Jens; González, Ramón Gilberto; Gruber, Stephan; Gruetter, Rolf; Gupta, Rakesh K.; Heerschap, Arend; Henning, Anke; Hetherington, Hoby P.; Howe, Franklyn A.; Hüppi, Petra S.; Hurd, Ralph E.; Kantarci, Kejal; Klomp, Dennis W. J.; Kreis, Roland; Kruiskamp, Marijn J.; Leach, Martin O.; Lin, Alexander P.; Luijten, Peter R.; Marjańska, Małgorzata; Maudsley, Andrew A.; Meyerhoff, Dieter J.; Mountford, Carolyn E.; Nelson, Sarah J.; Pamir, M. Necmettin; Pan, Jullie W.; Peet, Andrew C.; Poptani, Harish; Posse, Stefan; Pouwels, Petra J. W.; Ratai, Eva-Maria; Ross, Brian D.; Scheenen, Tom W. J.; Schuster, Christian; Smith, Ian C. P.; Soher, Brian J.; Tkáč, Ivan; Vigneron, Daniel B.; Kauppinen, Risto A.

    2014-01-01

    A large body of published work shows that proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of 1H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which 1H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article. PMID:24568703

  20. HCV-Related Central and Peripheral Nervous System Demyelinating Disorders

    PubMed Central

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered. PMID:25198705

  1. Superficial siderosis of the central nervous system: A case report

    PubMed Central

    GAO, JI-GUO; ZHOU, CHUN-KUI; LIU, JING-YAO

    2015-01-01

    Superficial siderosis of the central nervous system (SSCNS) is a rare syndrome resulting from hemosiderin deposits in neuronal tissues close to the cerebrospinal fluid. SSCNS is characterized by sensorineural deafness, cerebellar ataxia and signs of pyramidal tract dysfunction. The present study describes a patient with SSCNS that did not suffer from hearing loss, which is the most common symptom of SSCNS. The patient was a 48-year-old male, presenting with dizziness, ataxia and slurred speech. The patient’s ataxia was characterized by dizziness, nystagmus, dysarthria, abnormal finger-nose pointing and heel-knee-shin tests and a positive Chaddock sign. The patient had suffered from a pontine hemorrhage two years prior to the study. Audiometric tests showed normal hearing during the hospital stay and at the two-month follow-up examination. The diagnosis of SSCNS was made based on magnetic resonance images, which showed areas of linear hypointensity on the surface of the pons with mild cerebellar atrophy. However, a long-term follow-up is required to monitor the hearing of the patient. Improved understanding of SSCNS is important for clinicians to identify SSCNS patients who present without typical clinical symptoms. PMID:25780438

  2. Chemotherapy in newly diagnosed primary central nervous system lymphoma

    PubMed Central

    Hashemi-Sadraei, Nooshin; Peereboom, David M.

    2010-01-01

    Primary central nervous system lymphoma (PCNSL) accounts for only 3% of brain tumors. It can involve the brain parenchyma, leptomeninges, eyes and the spinal cord. Unlike systemic lymphoma, durable remissions remain uncommon. Although phase III trials in this rare disease are difficult to perform, many phase II trials have attempted to define standards of care. Treatment modalities for patients with newly diagnosed PCNSL include radiation and/or chemotherapy. While the role of radiation therapy for initial management of PCNSL is controversial, clinical trials will attempt to improve the therapeutic index of this modality. Routes of chemotherapy administration include intravenous, intraocular, intraventricular or intra-arterial. Multiple trials have outlined different methotrexate-based chemotherapy regimens and have used local techniques to improve drug delivery. A major challenge in the management of patients with PCNSL remains the delivery of aggressive treatment with preservation of neurocognitive function. Because PCNSL is rare, it is important to perform multicenter clinical trials and to incorporate detailed measurements of long-term toxicities. In this review we focus on different chemotherapeutic approaches for immunocompetent patients with newly diagnosed PCNSL and discuss the role of local drug delivery in addition to systemic therapy. We also address the neurocognitive toxicity of treatment. PMID:21789140

  3. Survival of European patients with central nervous system tumors.

    PubMed

    Sant, Milena; Minicozzi, Pamela; Lagorio, Susanna; Børge Johannesen, Tom; Marcos-Gragera, Rafael; Francisci, Silvia

    2012-07-01

    We present estimates of population-based 5-year relative survival for adult Europeans diagnosed with central nervous system tumors, by morphology (14 categories based on cell lineage and malignancy grade), sex, age at diagnosis and region (UK and Ireland, Northern, Central, Eastern and Southern Europe) for the most recent period with available data (2000-2002). Sources were 39 EUROCARE cancer registries with continuous data from 1996 to 2002. Survival time trends (1988 to 2002) were estimated from 24 cancer registries with continuous data from 1988. Overall 5-year relative survival was 85.0% for benign, 19.9% for malignant tumors. Benign tumor survival ranged from 90.6% (Northern Europe) to 77.4% (UK and Ireland); for malignant tumors the range was 25.1% (Northern Europe) to 15.6% (UK and Ireland). Survival decreased with age at diagnosis and was slightly better for women (malignant tumors only). For glial tumors, survival varied from 83.5% (ependymoma and choroid plexus) to 2.7% (glioblastoma); and for non-glioma tumors from 96.5% (neurinoma) to 44.9% (primitive neuroectoderm tumor/medulloblastoma). Survival differences between regions narrowed after adjustment for morphology and age, and were mainly attributable to differences in morphology mix; however UK and Ireland and Eastern Europe patients still had 40% and 30% higher excess risk of death, respectively, than Northern Europe patients (reference). Survival for benign tumors increased from 69.3% (1988-1990) to 77.1% (2000-2002); but survival for malignant tumors did not improve indicating no useful advances in treatment over the 14-year study period, notwithstanding major improvement in the diagnosis and treatment of other solid cancers. Copyright © 2011 UICC.

  4. Effects of Petroleum Ether Extract of Amorphophallus paeoniifolius Tuber on Central Nervous System in Mice

    PubMed Central

    Das, S. S.; Sen, Malini; Dey, Y. N.; De, S.; Ghosh, A. K.

    2009-01-01

    The central nervous system activity of the petroleum ether extract of Amorphophallus paeoniifolius tuber was examined in mice, fed normal as well as healthy conditions. The petroleum ether extract of Amorphophallus paeoniifolius tuber at the doses of 100, 300 and 1000 mg/kg showed significant central nervous system activity in mice. PMID:20376218

  5. Central Nervous System Blastomycosis in Children: A Case Report and Review of the Literature.

    PubMed

    Madigan, Theresa; Fatemi, Yasaman; Theel, Elitza S; Moodley, Amaran; Boyce, Thomas G

    2017-07-01

    We present a 7-year-old boy with chronic meningitis caused by Blastomyces dermatitidis. A review of the literature revealed 32 cases of central nervous system blastomycosis in children between 1983 and 2016, of which 18 represented parenchymal disease of the brain or spinal cord. Blastomycosis affecting the central nervous system is rare but should be considered in children with chronic meningitis.

  6. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  7. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  8. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  9. Childhood primary angiitis of the central nervous system: two biopsy-proven cases.

    PubMed

    Yaari, Roy; Anselm, Irina A; Szer, Ilona S; Malicki, Denise M; Nespeca, Mark P; Gleeson, Joseph G

    2004-11-01

    Primary angiitis of the central nervous system is a rare idiopathic vasculitis predominantly affecting the central nervous system. The literature includes 10 histologically confirmed cases in childhood. We identify two additional cases, one presenting with both uveitis and cerebrospinal fluid neutrophilic pleocytosis, which has not been reported previously, and demonstrate the importance of biopsy in suspected cases.

  10. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration

    NASA Astrophysics Data System (ADS)

    Raspa, A.; Marchini, A.; Pugliese, R.; Mauri, M.; Maleki, M.; Vasita, R.; Gelain, F.

    2015-12-01

    The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine.The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an

  11. Autoantibodies in traumatic brain injury and central nervous system trauma.

    PubMed

    Raad, M; Nohra, E; Chams, N; Itani, M; Talih, F; Mondello, S; Kobeissy, F

    2014-12-05

    Despite the debilitating consequences and the widespread prevalence of brain trauma insults including spinal cord injury (SCI) and traumatic brain injury (TBI), there are currently few effective therapies for most of brain trauma sequelae. As a consequence, there has been a major quest for identifying better diagnostic tools, predictive models, and directed neurotherapeutic strategies in assessing brain trauma. Among the hallmark features of brain injury pathology is the central nervous systems' (CNS) abnormal activation of the immune response post-injury. Of interest, is the occurrence of autoantibodies which are produced following CNS trauma-induced disruption of the blood-brain barrier (BBB) and released into peripheral circulation mounted against self-brain-specific proteins acting as autoantigens. Recently, autoantibodies have been proposed as the new generation class of biomarkers due to their long-term presence in serum compared to their counterpart antigens. The diagnostic and prognostic value of several existing autoantibodies is currently being actively studied. Furthermore, the degree of direct and latent contribution of autoantibodies to CNS insult is still not fully characterized. It is being suggested that there may be an analogy of CNS autoantibodies secretion with the pathophysiology of autoimmune diseases, in which case, understanding and defining the role of autoantibodies in brain injury paradigm (SCI and TBI) may provide a realistic prospect for the development of effective neurotherapy. In this work, we will discuss the accumulating evidence about the appearance of autoantibodies following brain injury insults. Furthermore, we will provide perspectives on their potential roles as pathological components and as candidate markers for detecting and assessing CNS injury.

  12. Staphylococcus aureus Central Nervous System Infections in Children.

    PubMed

    Vallejo, Jesus G; Cain, Alexandra N; Mason, Edward O; Kaplan, Sheldon L; Hultén, Kristina G

    2017-10-01

    Central nervous system (CNS) infections caused by Staphylococcus aureus are uncommon in pediatric patients. We review the epidemiology, clinical features and treatment in 68 patients with a S. aureus CNS infection evaluated at Texas Children's Hospital. Cases of CNS infection in children with positive cerebrospinal fluid cultures or spinal epidural abscess (SEA) for S. aureus at Texas Children's Hospital from 2001 to 2013 were reviewed. Seventy cases of S. aureus CNS infection occurred in 68 patients. Forty-nine cases (70%) were secondary to a CNS device, 5 (7.1%) were postoperative meningitis, 9 (12.8%) were hematogenous meningitis and 7 (10%) were SEAs. Forty-seven (67.2%) were caused by methicillin-sensitive S. aureus (MSSA) and 23 (32.8%) by methicillin-resistant S. aureus (MRSA). Community-acquired infections were more often caused by MRSA that was clone USA300/pvl. Most patients were treated with nafcillin (MSSA) or vancomycin (MRSA) with or without rifampin. Among patients with MRSA infection, 50% had a serum vancomycin trough obtained with the median level being 10.6 μg/mL (range: 5.4-15.7 μg/mL). Only 1 death was associated with S. aureus infection. The epidemiology of invasive of S. aureus infections continues to evolve with MSSA accounting for most of the infections in this series. The majority of cases were associated with neurosurgical procedures; however, hematogenous S. aureus meningitis and SEA occurred as community-acquired infections in patients without predisposing factors. Patients with MRSA CNS infections had a favorable response to vancomycin, but the beneficial effect of combination therapy or targeting vancomycin trough concentrations of 15-20 μg/mL remains unclear.

  13. Congenital malformations of the central nervous system: clinical approach.

    PubMed

    Hadzagić-Catibusić, Feriha; Maksić, Hajrija; Uzicanin, Sajra; Heljić, Suada; Zubcević, Smail; Merhemić, Zulejha; Cengić, Adisa; Kulenović, Edina

    2008-11-01

    Central nervous system (CNS) malformations represent important factor of morbidity and mortality in children. The aim of the study was to determine the incidence, type and clinical features of CNS malformations in children who were admitted at the Neonatal and Child Neurology Department, Neonatal Intensive Care Unit and Paediatric Intensive Care Unit of Paediatric Clinic, University of Sarajevo Clinics Centre, from January 1st, 2002 to December 31st, 2006. There were total of 16520 admissions at the Paediatric Clinic over the studied period. CNS malformations, solitary or multiple, have been diagnosed in 100 patients (0,61%). The total number of various CNS malformations was 127. Lethal outcome was established in 9/100 cases (9%). The most frequent CNS malformations were neural tube defects 49/127 (38,6%). Hydrocephalus was seen in 34/127 (26,8%), microcephaly in 24/127 (18,9%), agenesis of corpus callosum in 10/127 (7,9%), Dandy Walker malformation in 6/127 (4,7%) and other CNS malformations in 4/127 (3,1%). In 20/100 of patients neural tube defect was associated with hydrocephalus (20%). CNS malformations were prenatally diagnosed in 13/100 of patients (13%). Primary prevention of CNS malformations can be improved in our country by better implementation of preconceptional folic acid therapy for all women of childbearing age. Secondary prevention by prenatal diagnosis requires advanced technical equipment and adequate education of physicians in the field of foetal ultrasonography. In our circumstances, prenatal diagnostics of CNS malformations is still not developed enough.

  14. Central Nervous System Effects of Ginkgo Biloba, a Plant Extract.

    PubMed

    Itil, Turan M.; Eralp, Emin; Tsambis, Elias; Itil, Kurt Z.; Stein, Ulrich

    1996-01-01

    Extracts of Ginkgo biloba (EGb) are among the most prescribed drugs in France and Germany. EGb is claimed to be effective in peripheral arterial disorders and in "cerebral insufficiency." The mechanism of action is not yet well understood. Three of the ingredients of the extract have been isolated and found to be pharmacologically active, but which one alone or in combination is responsible for clinical effects is unknown. The recommended daily dose (3 x 40 mg extract) is based more on empirical data than on clinical dose-findings studies. However, despite these, according to double-blind, placebo-controlled clinical trials, EGb has therapeutic effects, at least, on the diagnostic entity of "cerebral insufficiency," which is used in Europe as synonymous with early dementia. To determine whether EGb has significant pharmacological effects on the human brain, a pharmacodynamic study was conducted using the Quantitative Pharmacoelectroencephalogram (QPEEG(R)) method. It was established that the pharmacological effects (based on a predetermined 7.5--13.0-Hz alpha frequency band in a computer-analyzed electroencephalogram = CEEG(R)) of EGb on the central nervous system (CNS) are significantly different than placebo, and the high and low doses could be discriminated from each other. The 120-mg, but particularly the 240-mg, single doses showed the most consistent CNS effects with an earlier onset (1 h) and longer duration (7 h). Furthermore, it was established that the electrophysiological effects of EGb in CNS are similar to those of well-known cognitive activators such as "nootropics" as well as tacrine, the only marketed "antidementia" drug currently available in the United States.

  15. The mechanical importance of myelination in the central nervous system.

    PubMed

    Weickenmeier, Johannes; de Rooij, Rijk; Budday, Silvia; Ovaert, Timothy C; Kuhl, Ellen

    2017-04-19

    Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of myelination in immature, pre-natal brains and mature, post-natal brains. We found that both gray and white matter tissue stiffened significantly (p≪0.001) upon maturation: the gray matter stiffness doubled from 0.31±0.20kPa pre-natally to 0.68±0.20kPa post-natally; the white matter stiffness tripled from 0.45±0.18kPa pre-natally to 1.33±0.64kPa post-natally. At the same time, the white matter myelin content increased significantly (p≪0.001) from 58±2% to 74±9%. White matter stiffness and myelin content were correlated with a Pearson correlation coefficient of ρ=0.92 (p≪0.001). Our study suggests that myelin is not only important to ensure smooth electrical signal propagation in neurons, but also to protect neurons against physical forces and provide a strong microstructural network that stiffens the white matter tissue as a whole. Our results suggest that brain tissue stiffness could serve as a biomarker for multiple sclerosis and other forms of demyelinating disorders. Understanding how tissue maturation translates into changes in mechanical properties and knowing the precise brain stiffness at different stages of life has important medical implications in development, aging, and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Space radiation risks to the central nervous system

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  17. Central nervous system activity of Illicium verum fruit extracts.

    PubMed

    Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S

    2013-11-01

    To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. TH1/TH2 cytokines in the central nervous system.

    PubMed

    Sredni-Kenigsbuch, Dvora

    2002-06-01

    For the past 20 years it has become increasingly evident that cytokines play an important role in both the normal development of the brain, acting as neurotrophic factors, and in brain injuries. Although cytokines and their receptors are synthesized and expressed in the brain (normally at low levels), increased cytokine production levels are now associated with various neurological disorders. T lymphocytes are the cells responsible for coordinating the immune response and a major source of cytokines. Different cytokines induce different subsets of T cells or have different effects on proliferation within a particular subset. Recent studies suggest that the immune response is in fact regulated by the balance between Th1 and Th2 cytokines. These two pathways are often mutually exclusive, the one resulting in protection and the other in progression of disease. Various studies describe the function and production of proinflammatory cytokines in the central nervous system (CNS) and their role in health and disease. Inflammation is upregulated following activation of Th1 cells, whereas Th2 cells may play a significant role in downregulating Th1 proinflammatory responses in those instances in which there is overproduction of Th2 cytokines. Although both Th1 and Th2 cytokines may influence CNS functioning, most studies have so far dealt with proinflammatory cytokines, probably because they directly affect CNS cells and are thought to be implicated in CNS pathology. It is of interest that endogenous glucocorticoids also control Th1-Th2 balance, favoring Th2 cell development. This review presents the evidence that cytokines have important functions in the CNS, both during development and as a part of brain pathology. In particular, the author highlighted recent work that supports a major role for the so-called inflammatory cytokines, Th1, and the anti-inflammatory Th2 cytokines.

  19. Interaction of Plant Extracts with Central Nervous System Receptors

    PubMed Central

    Lundstrom, Kenneth; Pham, Huyen Thanh; Dinh, Long Doan

    2017-01-01

    Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort) targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the application of medicinal

  20. Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation

    PubMed Central

    Papp, Stefanie; Moderzynski, Kristin; Kuehl, Svenja; Richardt, Ulricke; Fleischer, Bernhard

    2016-01-01

    Rickettsioses are emerging febrile diseases caused by obligate intracellular bacteria belonging to the family Rickettsiaceae. Rickettsia typhi belongs to the typhus group (TG) of this family and is the causative agent of endemic typhus, a disease that can be fatal. In the present study, we analyzed the course of R. typhi infection in C57BL/6 RAG1−/− mice. Although these mice lack adaptive immunity, they developed only mild and temporary symptoms of disease and survived R. typhi infection for a long period of time. To our surprise, 3 to 4 months after infection, C57BL/6 RAG1−/− mice suddenly developed lethal neurological disorders. Analysis of these mice at the time of death revealed high bacterial loads, predominantly in the brain. This was accompanied by a massive expansion of microglia and by neuronal cell death. Furthermore, high numbers of infiltrating CD11b+ macrophages were detectable in the brain. In contrast to the microglia, these cells harbored R. typhi and showed an inflammatory phenotype, as indicated by inducible nitric oxide synthase (iNOS) expression, which was not observed in the periphery. Having shown that R. typhi persists in immunocompromised mice, we finally asked whether the bacteria are also able to persist in resistant C57BL/6 and BALB/c wild-type mice. Indeed, R. typhi could be recultivated from lung, spleen, and brain tissues from both strains even up to 1 year after infection. This is the first report demonstrating persistence and reappearance of R. typhi, mainly restricted to the central nervous system in immunocompromised mice. PMID:26975992

  1. Idiopathic inflammatory-demyelinating diseases of the central nervous system.

    PubMed

    Cañellas, A Rovira; Gols, A Rovira; Izquierdo, J Río; Subirana, M Tintoré; Gairin, X Montalban

    2007-05-01

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Baló's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures.

  2. Canine Central Nervous System Neoplasm Phenotyping Using Tissue Microarray Technique.

    PubMed

    Spitzbarth, I; Heinrich, F; Herder, V; Recker, T; Wohlsein, P; Baumgärtner, W

    2017-05-01

    Tissue microarrays (TMAs) represent a useful technique for the simultaneous phenotyping of large sample numbers and are particularly suitable for histopathologic tumor research. In this study, TMAs were used to evaluate semiquantitatively the expression of multiple antigens in various canine central nervous system (CNS) neoplasms and to identify markers with potential discriminative diagnostic relevance. Ninety-seven canine CNS neoplasms, previously diagnosed on hematoxylin and eosin sections according to the World Health Organization classification, were investigated on TMAs, with each tumor consisting of 2 cylindrical samples from the center and the periphery of the neoplasm. Tumor cells were phenotyped using a panel of 28 monoclonal and polyclonal antibodies, and hierarchical clustering analysis was applied to group neoplasms according to similarities in their expression profiles. Hierarchical clustering generally grouped cases with similar histologic diagnoses; however, gliomas especially exhibited a considerable heterogeneity in their positivity scores. Multiple tumor groups, such as astrocytomas and oligodendrogliomas, significantly differed in the proportion of positive immunoreaction for certain markers such as p75(NTR), AQP4, GFAP, and S100 protein. The study highlights AQP4 and p75(NTR) as novel markers, helping to discriminate between canine astrocytoma and oligodendroglioma. Furthermore, the results suggest that p75(NTR) and proteolipid protein may represent useful markers, whose expression inversely correlates with malignant transformation in canine astrocytomas and oligodendrogliomas, respectively. Tissue microarray was demonstrated to be a useful and time-saving tool for the simultaneous immunohistochemical characterization of multiple canine CNS neoplasms. The present study provides a detailed overview of the expression patterns of different types of canine CNS neoplasms.

  3. Craniospinal irradiation using helical tomotherapy for central nervous system tumors.

    PubMed

    Schiopu, Sanziana R I; Habl, Gregor; Häfner, Matthias; Katayama, Sonja; Herfarth, Klaus; Debus, Juergen; Sterzing, Florian

    2017-01-17

    The aim of this study was to describe early and late toxicity, survival and local control in 45 patients with primary brain tumors treated with helical tomotherapy craniospinal irradiation (HT-CSI). From 2006 to 2014, 45 patients with central nervous system malignancies were treated with HT-CSI. The most common tumors were medulloblastoma in 20 patients, ependymoma in 10 patients, intracranial germinoma (ICG) in 7 patients, and primitive neuroectodermal tumor in 4 patients. Hematological toxicity during treatment included leukopenia Grades 1-4 (6.7%, 33.3%, 37.8% and 17.8%, respectively), anemia Grades 1-4 (44.4%, 22.2%, 22.2% and 0%, respectively) and thrombocytopenia Grades 1-4 (51.1%, 15.6%, 15.6% and 6.7%, respectively). The most common acute toxicities were nausea, vomiting, fatigue, loss of appetite, alopecia and neurotoxicity. No Grade 3 or higher late toxicity occurred. The overall 3- and 5-year survival rates were 80% and 70%, respectively. Survival for the main tumor entities included 3- and 5-year survival rates of 80% and 70%, respectively, for patients with medulloblastoma, 70% for both in patients with ependymoma, and 100% for both in patients with ICG. Relapse occurred in 11 patients (24.4%): 10 with local and 1 with multifocal relapse. One patient experienced a secondary cancer. M-status and the results of the re-evaluation at the end of treatment were significantly related to survival. Survival after HT-CSI was in line with the existing literature, and acute treatment-induced toxicity resolved quickly. Compared with conventional radiotherapy, HT offers benefits such as avoiding gaps and junctions, sparing organs, and better and more homogeneous dose distribution and coverage of the target volume.

  4. New Insights on NOX Enzymes in the Central Nervous System

    PubMed Central

    Nayernia, Zeynab; Jaquet, Vincent

    2014-01-01

    Abstract Significance: There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. Recent Advances: NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. Critical Issues: The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. Future Directions: Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications. Antioxid. Redox Signal. 20: 2815–2837. PMID:24206089

  5. EXOSOME-MEDIATED INFLAMMASOME SIGNALING AFTER CENTRAL NERVOUS SYSTEM INJURY

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Brand, Frank; Adamczak, Stephanie; Lee, Stephanie W.; Barcena, Jon Perez; Wang, Michael Y.; Bullock, M. Ross; Dietrich, W. Dalton; Keane, Robert W.

    2015-01-01

    Neuroinflammation is a response against harmful effects of diverse stimuli and participates in the pathogenesis of brain and spinal cord injury (SCI). The innate immune response plays a role in neuroinflammation following central nervous system (CNS) injury via activation of multi-protein complexes termed inflammasomes that regulate the activation of caspase-1 and the processing of the pro-inflammatory cytokines IL-1β and IL-18. We report here that the expression of components of the nucleotide-binding-and-oligomerization domain (NOD)-like receptor protein-1 (NLRP-1) inflammasome, apoptosis speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 are significantly elevated in spinal cord motor neurons and cortical neurons after CNS trauma. Moreover, NLRP1 inflammasome proteins are present in exosomes derived from cerebrospinal fluid (CSF) of SCI and traumatic brain-injured patients following trauma. To investigate whether exosomes could be used to therapeutically block inflammasome activation in the CNS, exosomes were isolated from embryonic cortical neuronal cultures and loaded with short-interfering RNA (siRNA) against ASC and administered to spinal cord-injured animals. Neuronal-derived exosomes crossed the injured blood-spinal cord barrier, and delivered their cargo in vivo, resulting in knock down of ASC protein levels by approximately 76% when compared to SCI rats treated with scrambled siRNA. Surprisingly, siRNA silencing of ASC also led to a significant decrease in caspase-1 activation and processing of IL-1β after SCI. These findings indicate that exosome-mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury. PMID:25628216

  6. Transcriptome Analysis of the Octopus vulgaris Central Nervous System

    PubMed Central

    Zhang, Xiang; Mao, Yong; Huang, Zixia; Qu, Meng; Chen, Jun; Ding, Shaoxiong; Hong, Jingni; Sun, Tiantian

    2012-01-01

    Background Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. Results With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e−5. The comparison between the Octopus vulgaris central nervous system (CNS) library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e−5) using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%–46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. Conclusion This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology. PMID:22768275

  7. Citation classics in central nervous system inflammatory demyelinating disease.

    PubMed

    Kim, Jee-Eun; Park, Kang M; Kim, Yerim; Yoon, Dae Y; Bae, Jong S

    2017-06-01

    To identify and analyze the characteristics of the most influential articles about central nervous system (CNS) inflammatory demyelinating disease. The Institute for Scientific Information (ISI) Web of Science database and the 2014 Journal Citation Reports Science Edition were used to retrieve the top 100 cited articles on CNS inflammatory demyelinating disease. The citation numbers, journals, years of publication, authorships, article types, subjects and main issues were analyzed. For neuromyelitis optica (NMO), articles that were cited more than 100 times were regarded as a citation classic and described separately. The top 100 cited articles were published between 1972 and 2011 in 13 journals. The highest number of articles (n = 24) was published in Brain, followed by The New England Journal of Medicine (n = 21). The average number of citations was 664 (range 330-3,897), and 64% of the articles were from the United States and the United Kingdom. The majority of the top 100 cited articles were related to multiple sclerosis (n = 87), and only a few articles reported on other topics such as NMO (n = 9), acute disseminated encephalomyelitis (n = 2) and optic neuritis (n = 2). Among the top 100 cited articles, 77% were original articles. Forty-one citation classics were found for NMO. Our study provides a historical perspective on the research progress on CNS inflammatory demyelinating disease and may serve as a guide for important advances and trends in the field for associated researchers.

  8. Central diabetes insipidus in a cat with central nervous system B cell lymphoma.

    PubMed

    Simpson, Christopher J; Mansfield, Caroline S; Milne, Marjorie E; Hodge, Priscilla J

    2011-10-01

    A 6-year-old male neutered cat presented with blindness, lethargy, polydipsia, hyposthenuria and severe hypernatraemia. Central diabetes insipidus was demonstrated by means of a low measured anti-diuretic hormone (ADH) concentration in the face of hypernatraemia, and clinical response to supplementation with desmopressin. Magnetic resonance imaging of the brain showed a discrete mass in the region of the hypothalamus. The cat was euthanased and post-mortem histological examination demonstrated B cell lymphoma involving the brain, optic nerves, urinary bladder wall and diaphragm. To the authors' knowledge, this case report is the first to describe central diabetes insipidus caused by central nervous system lymphoma in the cat. Copyright © 2011 ISFM and AAFP. All rights reserved.

  9. Systematic Review of Central Post Stroke Pain: What Is Happening in the Central Nervous System?

    PubMed

    Akyuz, Gulseren; Kuru, Pinar

    2016-08-01

    Central poststroke pain (CPSP) is one of the most common central neuropathic pain syndromes seen after stroke. It is mainly related with vascular damage at certain brain territory and pain related to corresponding body areas. In the past, it was described as one of the definitive symptoms of thalamic lesion. However, recent findings suggest that it is not only seen after thalamic lesions but also seen after vascular lesions in any part of the central nervous system. Although there are certain hypotheses to explain physiopathologic mechanisms of CPSP, further evidence is needed. The majority of the cases are intractable and unresponsive to analgesic treatment. Electrical stimulation such as deep brain stimulation and repetitive transcranial magnetic stimulation seems to be effective in certain cases. In this systematic review, recent advancements related to CPSP mechanisms have been evaluated. Further investigations are needed in order to reveal the mystery of the pathophysiologic mechanisms of CPSP.

  10. Clinical features of multiple myeloma invasion of the central nervous system in Chinese patients.

    PubMed

    Qu, Xiao-yan; Fu, Wei-jun; Xi, Hao; Zhou, Fan; Wei, Wei; Hou, Jian

    2010-06-01

    Although neurologic manifestations often complicate the course of patients with multiple myeloma, direct central nervous system invasion is rare. This study explored the neurologic symptoms, signs, clinical features, therapy and prognosis of Chinese patients with central nervous system myeloma invasion. The diagnosis, therapy and prognosis were analyzed retrospectively in 11 Chinese multiple myeloma patients with central nervous system infiltration from a total of 625 patients who have been treated at Changzheng Hospital (Shanghai, China) between January 1993 and May 2009. Survival curve was constructed with the use of Kaplan-Meier estimates. There were 11 patients with central nervous system involvement from 625 multiple myeloma patients. The occurrence rate was 1.8%. Ten of the 11 patients had other extramedullary diseases. Symptoms included cerebral symptoms, cranial nerve palsies, and spinal cord or spinal nerve roots symptoms. Cerebrospinal fluid was abnormal in 7 patients, usually exhibiting pleocytosis and elevated protein content, plus positive cytologic findings. Specific magnetic resonance imaging findings suggestive of central nervous system invasion were found in 9 patients. After a median follow-up of 19 months, 3 patients were alive. The median overall survival for all patients was 23 months, while the median overall survival for patients after central nervous system invasion was merely 6 months. It is exceedingly rare for there to be central nervous system infiltration in multiple myeloma patients. When it occurs, the prognosis is extremely poor despite the use of aggressive local and systemic treatment including stem cell transplantation.

  11. Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis.

    PubMed

    Be, Nicholas A; Bishai, William R; Jain, Sanjay K

    2012-01-13

    Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c) to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system), but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor) domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children.

  12. Role of Mycobacterium tuberculosis pknD in the Pathogenesis of central nervous system tuberculosis

    PubMed Central

    2012-01-01

    Background Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. Results We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c) to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system), but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor) domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. Conclusions Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children. PMID:22243650

  13. Central nervous system microangioarchitecture in the human foetus.

    PubMed

    Arisio, Riccardo; Bonissone, Mariagrazia; Piccoli, Ettore; Panzica, Giancarlo

    2002-01-01

    It is thought that arterioles penetrating the central nervous system behave as terminal arteries and lack for anastomosys. The purpose of our study was to define the angiogenesys in the fetal encephalon at different stages of development. To this purpose, we examinated 13 fetal and newborn encephalons between the 10th and 33rd week. To label blood vessels, we used an immunohistochemical procedure based on the detection of two antigens located within endothelial cells: CD31 and CD34. The cerebral vascularization modifies in quantity and in structure during pregnancy, with important topographic differences between cerebral cortex and striatal-limbic areas. We observed two microarchitectural patterns: 1. Rectangular mesh pattern, characterized by capillaries that join transversally to one or more branches that deepen orthogonally from the surface of the meninges; 2. Hexagonal mesh pattern, which surrounds small groups of neurons and develops with a honeycomb shape. The rectangular mesh pattern is mostly observed from the 13th to 26th week in the white matter, in the hippocampus and in the cortex. The hexagonal mesh pattern is typical of the basal nuclei, and of the cerebral cortex during the 10th-12th week and after the 26th-27th week. Until the 26th week the vascularization increases mainly in the hippocampus and in the basal nuclei. The cortex shows a vascularization increment, greater than in the limbic system, with a pattern prevalently hexagonal in areas were the neurons' number increases. Our data demonstrate that, in the human fetus, cerebral capillaries are not of terminal type. On the contrary, they show a rich anastomotic network that has different patterns in white matter (rectangular pattern) or in grey matter (hexagonal pattern). The functional meaning of this difference is unknown, but we can suppose that its role is to warrant availability of nutritional substances within regions where a high number of neurons is present. Recent findings in

  14. Development of a central nervous system axonal myelination assay for high throughput screening.

    PubMed

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-04-22

    Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.

  15. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis

    PubMed Central

    Spanos, Jonathan Paul; Hsu, Nai-Jen; Jacobs, Muazzam

    2015-01-01

    Mycobacterium tuberculosis (M. tuberculosis) infection of the central nervous system (CNS) is the most devastating manifestation of tuberculosis (TB), with both high mortality and morbidity. Although research has been fueled by the potential therapeutic target microglia offer against neurodegenerative inflammation, their part in TB infection of the CNS has not been fully evaluated nor elucidated. Yet, as both the preferential targets of M. tuberculosis and the immune-effector cells of the CNS, microglia are likely to be key determinants of disease severity and clinical outcomes. Following pathogen recognition, bacilli are internalized and capable of replicating within microglia. Cellular activation ensues, utilizing signaling molecules that may be neurotoxic. Central to initiating, orchestrating and modulating the tuberculous immune response is microglial secretion of cytokines and chemokines. However, the neurological environment is unique in that inflammatory signals, which appear to be damaging in the periphery, could be beneficial by governing neuronal survival, regeneration and differentiation. Furthermore, microglia are important in the recruitment of peripheral immune cells and central to defining the pro-inflammatory milieu of which neurotoxicity may result from many of the participating local or recruited cell types. Microglia are capable of both presenting antigen to infiltrating CD4+ T-lymphocytes and inducing their differentiation—a possible correlate of protection against M. tuberculosis infection. Clarifying the nature of the immune effector molecules secreted by microglia, and the means by which other CNS-specific cell types govern microglial activation or modulate their responses is critical if improved diagnostic and therapeutic strategies are to be attained. Therefore, this review evaluates the diverse roles microglia play in the neuro-immunity to M. tuberculosis infection of the CNS. PMID:26041993

  16. The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System

    PubMed Central

    Jarjour, Andrew A.; Boyd, Amanda; Dow, Lukas E.; Holloway, Rebecca K.; Goebbels, Sandra; Humbert, Patrick O.; Williams, Anna; ffrench-Constant, Charles

    2015-01-01

    The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination. PMID:25807062

  17. Krüpple-like factors in the central nervous system: novel mediators in Stroke

    PubMed Central

    Yin, Ke-Jie; Hamblin, Milton; Fan, Yanbo; Zhang, Jifeng; Chen, Y. Eugene

    2014-01-01

    Transcription factors play an important role in the pathophysiology of many neurological disorders, including stroke. In the past three decades, an increasing number of transcription factors and their related gene signaling networks have been identified, and have become a research focus in the stroke field. Krüppel-like factors (KLFs) are members of the zinc finger family of transcription factors with diverse regulatory functions in cell growth, differentiation, proliferation, migration, apoptosis, metabolism, and inflammation. KLFs are also abundantly expressed in the brain where they serve as critical regulators of neuronal development and regeneration to maintain normal brain function. Dysregulation of KLFs has been linked to various neurological disorders. Recently, there is emerging evidence that suggests KLFs have an important role in the pathogenesis of stroke and provide endogenous vaso- or neuro- protection in the brain’s response to ischemic stimuli. In this review, we summarize the basic knowledge and advancement of these transcriptional mediators in the central nervous system, highlighting the novel roles of KLFs in stroke. PMID:24338065

  18. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System

    PubMed Central

    Tan, James-Kevin Y.; Sellers, Drew L.; Pham, Binhan; Pun, Suzie H.; Horner, Philip J.

    2016-01-01

    With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application. PMID:27847462

  19. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system.

    PubMed

    Silva, Gabriel A

    2010-06-01

    Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.

  20. Neuroscience. Stout guards of the central nervous system.

    PubMed

    Mechoulam, R; Lichtman, A H

    2003-10-03

    Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy.

  1. Comparisons and homology in adult and developing vertebrate central nervous systems.

    PubMed

    Pritz, Michael B

    2005-01-01

    Comparisons of characters in both adult and developing vertebrate central nervous systems require an understanding of the concept of homology. This article begins with a definition of homology in adult animals and then discusses criteria and methodology used to make appropriate comparisons of characters at a variety of hierarchical levels. Crucial to such an analysis is the methodology employed by neurocladistics to ensure meaningful comparisons. Then, a similar approach is used to address these identical problems in embryos. Concerns unique to comparisons of developing central nervous systems are enumerated. In addition, a number of special features of central nervous system formation and organization in both adults and embryos are discussed within the framework of homology and neurocladistics. Lastly, the concept of field homology as applied to vertebrate central nervous system characters is addressed. Copyright (c) 2005 S. Karger AG, Basel.

  2. Sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus syndrome.

    PubMed

    Hsieh, Chih-Wei; Wu, Yu-Hung; Lin, Shuan-Pei; Peng, Chun-Chih; Ho, Che-Sheng

    2012-01-01

    SCALP syndrome is an acronym describing the coincidence of sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus (giant congenital melanocytic nevus). We present a fourth case of this syndrome.

  3. Securing the future of drug discovery for central nervous system disorders.

    PubMed

    Andersen, Peter Høngaard; Moscicki, Richard; Sahakian, Barbara; Quirion, Rémi; Krishnan, Ranga; Race, Tim; Phillips, Anthony

    2014-12-01

    Innovative partnerships among researchers, patients, regulators, payors and industry are needed to reinvigorate drug discovery for central nervous system disorders. Here, we summarize plans of the Collegium Internationale Neuro-Psychopharmacologicum (CINP) to achieve this goal.

  4. Associations between central nervous system serotonin, fasting glucose, and hostility in African American females.

    PubMed

    Boyle, Stephen H; Georgiades, Anastasia; Brummett, Beverly H; Barefoot, John C; Siegler, Ilene C; Matson, Wayne R; Kuhn, Cynthia M; Grichnik, Katherine; Stafford-Smith, Mark; Williams, Redford B; Kaddurah-Daouk, Rima; Surwit, Richard S

    2015-02-01

    Previous research has shown an association between hostility and fasting glucose in African American women. Central nervous system serotonin activity is implicated both in metabolic processes and in hostility related traits. The purpose of this study is to determine whether central nervous system serotonin influences the association between hostility and fasting glucose in African American women. The study consisted of 119 healthy volunteers (36 African American women, 27 White women, 21 White males, and 35 African American males, mean age 34 ± 8.5 years). Serotonin related compounds were measured in cerebrospinal fluid. Hostility was measured by the Cook-Medley Hostility Scale. Hostility was associated with fasting glucose and central nervous system serotonin related compounds in African American women only. Controlling for the serotonin related compounds significantly reduced the association of hostility to glucose. The positive correlation between hostility and fasting glucose in African American women can partly be explained by central nervous system serotonin function.

  5. Associations between Central Nervous System Serotonin, Fasting Glucose and Hostility in African American Females

    PubMed Central

    Boyle, Stephen H.; Georgiades, Anastasia; Brummett, Beverly H.; Barefoot, John C.; Siegler, Ilene C.; Matson, Wayne R.; Kuhn, Cynthia M.; Grichnik, Katherine; Stafford-Smith, Mark; Williams, Redford B.; Kaddurah-Daouk, Rima; Surwit, Richard S.

    2015-01-01

    Background Previous research has shown an association between hostility and fasting glucose in African American women. Central nervous system serotonin activity is implicated both in metabolic processes and in hostility related traits. Purpose To determine whether central nervous system serotonin influences the association between hostility and fasting glucose in African American women. Methods The study consisted of 119 healthy volunteers (36 African American women, 27 white women, 21 white males, and 35 African American males, mean age 34±8.5 years). Serotonin metabolites were measured in cerebrospinal fluid. Hostility was measured by the Cook-Medley Hostility Scale. Results Hostility was associated with fasting glucose and central nervous system serotonin metabolites in African American women only. Controlling for the serotonin metabolites significantly reduced the association of hostility to glucose. Conclusions The positive correlation between hostility and fasting glucose in African American women can partly be explained by central nervous system serotonin function. PMID:24806470

  6. Differences in cardiovascular and central nervous system responses to periods of mental work with a break.

    PubMed

    Liu, Xinxin; Iwakiri, Kazuyuki; Sotoyama, Midori; Iwanaga, Koichi

    2013-01-01

    The purpose of the present study was to examine how an inserted break influences the cardiovascular and central nervous system responses during periods of mental work. Twelve males conducted two 20-min periods of mental work with a 3-min break between them. Cardiovascular and central nervous system responses were measured continuously. In comparison to the baseline, cardiovascular responses increased continuously even after the inserted break, while, on the contrary, central nervous system activity did not significantly increase during the work periods but relaxed during the break. The work performance increased during the second work period. These results suggest that the inserted break proposed by VDT guidelines in Japan was effective in relaxing the central nervous system but was insufficient to prevent the increase in cardiovascular load. The results also imply that taking rests frequently is important not only to maintaining performance but also to preventing cumulative physiological workloads.

  7. Cerebral angiography as a guide for therapy in isolated central nervous system vasculitis

    SciTech Connect

    Stein, R.L.; Martino, C.R.; Weinert, D.M.; Hueftle, M.; Kammer, G.M.

    1987-04-24

    The authors present a case of isolated central nervous system vasculitis documented by cerebral arteriography in which remission, using a treatment regimen of prednisone and cyclophosphamide, was guided by serial arteriography during a 15-month period.

  8. Central nervous system herpes simplex virus infection in afebrile children with seizures.

    PubMed

    Majumdar, Indrajit; Hartley-McAndrew, Michelle E; Weinstock, Arie L

    2012-04-01

    Central nervous system herpes simplex virus infection is suspected in patients presenting with acute-onset seizures and lethargy. The potential neurologic sequelae from untreated herpes infection can prompt empirical acyclovir therapy, even in afebrile subjects. The objectives of this study were to determine the frequency of central nervous system herpes simplex virus infection in children presenting with afebrile seizures and to assess the need for empirical acyclovir therapy. Clinical and laboratory data of children with acute-onset afebrile seizures and children with central nervous system herpes simplex virus infection were compared. Polymerase chain reaction and viral cultures of the cerebrospinal fluid for herpes simplex virus infection were negative in all subjects with afebrile seizures; 32.7% of these subjects were empirically treated with acyclovir. In conclusion, central nervous system herpes simplex virus infection is uncommon in children presenting with afebrile seizures, and acyclovir therapy is rarely necessary in subjects with normal neurologic examination and cerebrospinal fluid analysis.

  9. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    PubMed

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  10. New model to determine the central nervous system reaction to peripheral trauma

    SciTech Connect

    Sjoelund, B.H.W.; Wallstedt, L.

    1988-01-01

    Monitoring the activity of the central nervous system with the /sup 14/C-2-deoxyglucose method of Sokoloff was utilized to explore the possibility to develop a model for the study of central nervous system reaction to peripheral trauma. Preliminary evidence indicates that the activation caused by tactile stimuli to one hindlimb nerve is that expected from earlier physiologic studies. However, an increase of stimulation intensity to recruit nociceptive (pain) fibers seems to abolish the changes, indicating that inhibitory systems have been activated.

  11. Superficial Siderosis of the Central Nervous System Originating from the Thoracic Spine: A Case Report

    PubMed Central

    Ryu, Sung Mo; Kim, Seung-Kook; Lee, Sun-Ho; Eoh, Whan

    2016-01-01

    Superficial siderosis of the central nervous system(SSCNS) is a rare disease characterized by hemosiderin deposition on the surface of the central nervous system. We report a case of SSCNS originating from the thoracic spine, presenting with neurological deficits including, sensorineuronal hearing loss, ataxia, and corticospinal and dorsal column tract signs. The patient underwent dural repair with an artificial dural patch. Clinical findings were elicited by neurological examination, imaging studies, and intraoperative findings, and these were addressed through literature review. PMID:27437021

  12. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia

    PubMed Central

    Strati, Paolo; Uhm, Joon H.; Kaufmann, Timothy J.; Nabhan, Chadi; Parikh, Sameer A.; Hanson, Curtis A.; Chaffee, Kari G.; Call, Timothy G.; Shanafelt, Tait D.

    2016-01-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  13. Magnetic Resonance Imaging of the Central Nervous System—An Update

    PubMed Central

    Brant-Zawadzki, Michael; Norman, David; Newton, T. Hans; Kucharczyk, Walter

    1985-01-01

    Magnetic resonance imaging has developed rapidly and now has superior ability to detect and to characterize disease in the central nervous system without any significant biologic hazard. It is becoming the screening method of choice in the diagnosis of neoplasm, ischemia, hemorrhage, infection and degenerative and demyelinating diseases involving the central nervous system. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8.Figure 9. PMID:3976220

  14. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    PubMed

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs.

  15. Central nervous system dysfunction in obesity-induced hypertension.

    PubMed

    Head, Geoffrey A; Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Davern, Pamela J

    2014-09-01

    The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin's sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow "neural adaptivity" within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

  16. Central nervous system recurrence of systemic lymphoma in the era of stem cell transplantation--an International Primary Central Nervous System Lymphoma Study Group project.

    PubMed

    Bromberg, Jacoline E; Doorduijn, Jeanette K; Illerhaus, Gerald; Jahnke, Kristoph; Korfel, Agniezka; Fischer, Lars; Fritsch, Kristina; Kuittinen, Outti; Issa, Samar; van Montfort, Cees; van den Bent, Martin J

    2013-05-01

    Autologous stem cell transplantation has greatly improved the prognosis of systemic recurrent non-Hodgkin's lymphoma. However, no prospective data are available concerning the feasibility and efficacy of this strategy for systemic lymphoma relapsing in the central nervous system. We, therefore, we performed an international multicenter retrospective study of patients with a central nervous system recurrence of systemic lymphoma to assess the outcome of these patients in the era of stem cell transplantation. We collected clinical and treatment data on patients with a first central nervous system recurrence of systemic lymphoma treated between 2000 and 2010 in one of five centers in four countries. Patient- and treatment-related factors were analyzed and compared descriptively. Primary outcome measures were overall survival and percentage of patients transplanted. We identified 92 patients, with a median age of 59 years and a median Eastern Cooperative Oncology Group/World Health Organization performance status of 2, of whom 76% had diffuse large B-cell histology. The majority (79%) of these patients were treated with systemic chemotherapy with or without intravenous rituximab. Twenty-seven patients (29%) were transplanted; age and insufficient response to induction chemotherapy were the main reasons for not being transplanted in the remaining 65 patients. The median overall survival was 7 months (95% confidence interval 2.6-11.4), being 8 months (95% confidence interval 3.8-5.2) for patients ≤ 65 years old. The 1-year survival rate was 34.8%; of the 27 transplanted patients 62% survived more than 1 year. The Memorial Sloan Kettering Prognostic Index for primary central nervous system lymphoma was prognostic for both undergoing transplantation and survival. In conclusion, despite the availability of autologous stem cell transplantation for patients with central nervous system progression or relapse of systemic lymphoma, prognosis is still poor. Long-term survival

  17. Muscle fibers in the central nervous system of nemerteans: spatial organization and functional role.

    PubMed

    Petrov, A A; Zaitseva, O V

    2012-08-01

    The system of muscle fibers associated with the brain and lateral nerve cords is present in all major groups of enoplan nemerteans. Unfortunately, very little is known about the functional role and spatial arrangement of these muscles of the central nervous system. This article examines the architecture of the musculature of the central nervous system in two species of monostiliferous nemerteans (Emplectonema gracile and Tetrastemma cf. candidum) using phalloidin staining and confocal microscopy. The article also briefly discusses the body-wall musculature and the muscles of the cephalic region. In both species, the lateral nerve cords possess two pairs of cardinal muscles that run the length of the nerve cords and pass through the ventral cerebral ganglia. A system of peripheral muscles forms a meshwork around the lateral nerve cords in E. gracile. The actin-rich processes that ramify within the nerve cords in E. gracile (transverse fibers) might represent a separate population of glia-like cells or sarcoplasmic projections of the peripheral muscles of the central nervous system. The lateral nerve cords in T. cf. candidum lack peripheral muscles but have muscles similar in their position and orientation to the transverse fibers. The musculature of the central nervous system is hypothesized to function as a support system for the lateral nerve cords and brain, preventing rupturing and herniation of the nervous tissue during locomotion. The occurrence of muscles of the central nervous system in nemerteans and other groups and their possible relevance in taxonomy are discussed.

  18. [Metastasis tumors of the central nervous system: molecular biology].

    PubMed

    Bello, M Josefa; González-Gómez, P; Rey, J A

    2004-12-01

    Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.

  19. A new possibility for repairing the anal dysfunction by promoting regeneration of the reflex pathways in the enteric nervous system.

    PubMed

    Katsui, Renta; Kojima, Yu; Kuniyasu, Hiroki; Shimizu, Juichiro; Koyama, Fumikazu; Fujii, Hisao; Nakajima, Yoshiyuki; Takaki, Miyako

    2008-04-01

    Moderate rectal distension elicits recto-rectal reflex contractions and simultaneous recto-internal anal sphincter reflex relaxations that together comprise the defecation reflex. Both reflexes are controlled by 1) pelvic nerves, 2) lumbar colonic nerves, and 3) enteric nervous system. The aim of the present study was to explore a novel approach to repairing the defecation reflex dysfunction by using the plasticity of enteric nervous pathways. Experiments were performed in anesthetized guinea pigs with ethyl carbamate. The rectum 30 mm oral from the anal verge was transected without damage to extrinsic nerves, and subsequent end-to-end one-layer anastomosis was performed. Recovery of the defecation reflex and associated reflex pathways were evaluated. Eight weeks after sectioning of intrinsic reflex nerve pathways in the rectum, the defecation reflex recovered to the control level, accompanied with regeneration of reflex pathways. The 5-HT(4)-receptor agonist mosapride (0.5 and 1.0 mg/kg) significantly (P < 0.01) enhanced the recovered defecation reflex 8 wk after surgery. Two weeks after local treatment with brain-derived neurotrophic factor (BDNF: 10(-6) g/ml) at the rectal anastomotic site, the recto-internal anal sphincter reflex relaxations recovered and some bundles of fine nerve fibers were shown to interconnect the oral and anal ends of the myenteric plexus. These results suggested a possibility for repairing the anal dysfunction by promoting regeneration of the reflex pathways in the enteric nervous system with local application of BDNF.

  20. [Clinical and neuroimaging features of central nervous system impairments in acute intermittent porphyria].

    PubMed

    Yuan, Jing; Peng, Bin; You, Hui; Zhang, Wei

    2011-10-25

    To analyze the clinical and neuroimaging features of central nervous system impairments in acute intermittent porphyria, and explore the possible mechanisms. Six cases with intracranial lesions at our hospital from 1991 to 2011 and 13 cases reported in literatures were retrospectively reviewed. The clinical manifestations of central nervous system impairments included seizures, unconsciousness and cortical blindness, etc. EEG (electroencephalogram) showed slow wave or normal. CSF (cerebrospinal fluid) test indicated slightly higher or normal level of CSF protein. Neuroimaging studies showed two types of intracranial lesions. One type (n = 4) mainly affected the cortex and subcortical white matter, especially involving white matter. Another type (n = 2) affected the deep nuclei such as caudate, putamen and thalamus symmetrically. The symptoms of 13 cases reported in literature with central nervous system impairments included unconsciousness, hallucinations, seizures and cortical blindness. Their neuroimaging manifestations were similar with those of the patients at our hospital. Two additional cases showed predominantly cerebral cortex lesions with no involvement of white matter. Acute intermittent porphyria can affect central nervous system, peripheral nervous system and autonomic nervous system. The neuroimaging features of brain may be lesions located in cortex, subcortical white matter and deep nuclei with different mechanisms. A correct diagnosis and a treatment decision should be made during an early stage.

  1. [Ultrastructural basis of trophic interactions in the central nervous system].

    PubMed

    Kositsyn, N S

    1978-05-01

    Cytological aspects of metabolic processes between capillaries and nerve cells, as well as between different elements of neurons were studied electron microscopically. The sensomotor cortex, hippocampus, anterior tubercles of corpora quadrigemina, geniculate body were studied in rats, adult cats and 4-day-old kittens. Metabolic ultrastructure was demonstrated by means of vesicles formed by micropinocytosis, in the endothelial wall of the capillary, in the synaptic plaques, in the growth cones. Coincidence of pinocytic processes with active synaptic zones, especially in the developing nervous system, was revealed. The phenomena of intraneuronal metabolism by means of cytoplasmic fragments (clasmatosis) in the area of synapses were described. Endogenic (formed in the zone of the lamellar apparatus) and exogenic (pinocytic) trophic vesicles were compared. In young animals the exchange of the trophic vesicles was demonstrated to precede the synaptic transmission, while in adult animals it seemed to supplement a short-lasting synaptic interconnection.

  2. Convection-enhanced delivery to the central nervous system.

    PubMed

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  3. Antibody staining of the central nervous system in adult Drosophila.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-02-01

    The Drosophila nervous system provides a valuable model for studying various aspects of brain development and function. The postembryonic Drosophila brain is especially useful, because specific neuron types derive from specific progenitors at specific times. Elucidating the means by which diverse neuron types derive from a limited number of progenitors can contribute significantly to our understanding of the genetic and molecular mechanisms involved in developmental neurobiology. Antibody-labeling techniques are particularly useful for examining the Drosophila brain. These methods generally use primary antibodies specific to a protein or a structure of interest and a fluorescently labeled or enzyme-coupled secondary antibody to detect the primary antibodies. Immunofluorescence methods allow for simultaneous probing for multiple antigens using different fluorophores, as well as high-resolution confocal examination of deep structures. This protocol describes general procedures for antibody labeling of neural tissue from Drosophila, as well as visualization techniques for fluorescent and enzyme-linked probes.

  4. Isolation and distribution of endomorphins in the central nervous system.

    PubMed

    Zadina, James E

    2002-07-01

    Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2, EM-1) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2, EM-2) have the highest affinity and selectivity for the mu-opioid receptor (MOP-R) of all known mammalian opioids. They were isolated from bovine and human brain, and are structurally distinct from the other endogenous opioids. Both EM-1 and EM-2 have potent antinociceptive activity in a variety of animal models of acute, neuropathic and allodynic pain. They regulate cellular signaling processes in a manner consistent with MOP-R-mediated effects. The EMs are implicated in the natural modulation of pain by extensive data localizing EM-like immunoreactivity (EM-LI) near MOP-Rs in several regions of the nervous system known to regulate pain. These include the primary afferents and their terminals in the spinal cord dorsal horn, where EM-2 is well-positioned to modulate pain in its earliest stages of perception. In a nerve-injury model of chronic pain, a loss of spinal EM2-LI occurs concomitant with the onset of chronic pain. The distribution of the EMs in other areas of the nervous system is consistent with a role in the modulation of diverse functions, including autonomic, neuroendocrine and reward functions as well as modulation of responses to pain and stress. Unlike several other mu opioids, the threshold dose of EM-1 for analgesia is well below that for respiratory depression. In addition, rewarding effects of EM-1 can be separated from analgesic effects. These results indicate a favorable therapeutic profile of EM-1 relative to other mu opioids. Thus, the pharmacology and distribution of EMs provide new avenues both for therapeutic development and for understanding the neurobiology of opioids.

  5. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system

    PubMed Central

    Desplan, Claude

    2016-01-01

    Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003

  6. Concise Review: Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair.

    PubMed

    Mead, Ben; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2017-01-01

    Dental pulp stem cells (DPSC) are neural crest-derived ecto-mesenchymal stem cells that can relatively easily and non-invasively be isolated from the dental pulp of extracted postnatal and adult teeth. Accumulating evidence suggests that DPSC have great promise as a cellular therapy for central nervous system (CNS) and retinal injury and disease. The mode of action by which DPSC confer therapeutic benefit may comprise multiple pathways, in particular, paracrine-mediated processes which involve a wide array of secreted trophic factors and is increasingly regarded as the principal predominant mechanism. In this concise review, we present the current evidence for the use of DPSC to repair CNS damage, including recent findings on retinal ganglion cell neuroprotection and regeneration in optic nerve injury and glaucoma. Stem Cells 2017;35:61-67. © 2016 AlphaMed Press.

  7. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system

    PubMed Central

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M.; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M.

    2017-01-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro. CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06–27.17; odds ratio=6.86, 95% confidence interval, 1.86–25.26, respectively). CCR7 expression in the upper fourth quartile correlated with

  8. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    PubMed

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  9. Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Franck, Sophia; Paterka, Magdalena; Birkenstock, Jerome; Zipp, Frauke; Siffrin, Volker; Witsch, Esther

    2016-11-10

    Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

  10. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model.

    PubMed

    Slavuljica, Irena; Kveštak, Daria; Huszthy, Peter Csaba; Kosmac, Kate; Britt, William J; Jonjić, Stipan

    2015-03-01

    Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8(+) T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed.

  11. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.

    PubMed

    Afshar, Maryam; Birnbaum, Daniel; Golden, Carla

    2014-06-01

    The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    PubMed

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  13. Descriptive epidemiology of brain and central nervous system cancers in Central and South America.

    PubMed

    Piñeros, Marion; Sierra, Mónica S; Izarzugaza, M Isabel; Forman, David

    2016-09-01

    Although malignant tumors of the brain and central nervous system (CNS) represent less than 3% of new cancer cases estimated worldwide, they cause significant morbidity and in the case of gliomas, the most common histological type, have a poor prognosis. We describe patterns and trends in brain and CNS incidence and mortality in Central and South America. We obtained regional- and national-level incidence data from 48 population-based cancer registries in 13 countries and cancer deaths from the WHO mortality database for 18 countries. We estimated world population age-standardized incidence rates (ASRs) and mortality rates (ASMRs) per 100,000 person-years, and present incidence by histological subtypes. In general, incidence rates were higher in males than in females. The highest incidence ASRs were observed for Cuba (5.1 males, 3.6 females) in Central America, and for Brazil (6.4 males, 4.8 females) and Uruguay (6.2 and 4.0) in South America. Mortality rates closely followed the pattern of incidence rates. Argentina, Brazil and Chile showed increasing mortality trends, although these were not statistically significant. Glioma and unspecified tumors were the most common histological types, accounting for 55.4% and 32.8%, respectively. The proportion of microscopically verified diagnoses was 47-70% in most countries. Although incidence and mortality rates in general were low, some countries displayed high- to intermediate-level incidence rates; under-reporting and under-ascertainment of cases could contribute to the geographic variations observed. There is a need to improve both the ascertainment of cases and the accuracy of histological diagnosis. Monitoring of brain and CNS cancers along with etiological research remain priorities. Copyright © 2016 International Agency for Research on Cancer. Published by Elsevier Ltd.. All rights reserved.

  14. Central nervous system tumors and related intracranial pathologies in radium dial workers

    SciTech Connect

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs.

  15. A thrombospondin in the anthozoan Nematostella vectensis is associated with the nervous system and upregulated during regeneration

    PubMed Central

    Tucker, Richard P.; Hess, John F.; Gong, Qizhi; Garvey, Katrina; Shibata, Bradley; Adams, Josephine C.

    2013-01-01

    Summary Thrombospondins are multimeric extracellular matrix glycoproteins that play important roles in development, synaptogenesis and wound healing in mammals. We previously identified four putative thrombospondins in the genome of the starlet sea anemone Nematostella vectensis. This study presents the first analysis of these thrombospondins, with the goals of understanding fundamental roles of thrombospondins in the Eumetazoa. Reverse transcriptase PCR showed that each of the N. vectensis thrombospondins (Nv85341, Nv22035, Nv168100 and Nv30790) is transcribed. Three of the four thrombospondins include an RGD or KGD motif in their thrombospondin type 3 repeats at sites equivalent to mammalian thrombospondins, suggesting ancient roles as RGD integrin ligands. Phylogenetic analysis based on the C-terminal regions demonstrated a high level of sequence diversity between N. vectensis thrombospondins. A full-length cDNA sequence was obtained for Nv168100 (NvTSP168100), which has an unusual domain organization. Immunohistochemistry with an antibody to NvTSP168100 revealed labeling of neuron-like cells in the mesoglea of the retractor muscles and the pharynx. In situ hybridization and quantitative PCR showed that NvTSP168100 is upregulated during regeneration. Immunohistochemistry of the area of regeneration identified strong immunostaining of the glycocalyx, the carbohydrate-rich matrix coating the epidermis, and electron microscopy identified changes in glycocalyx organization during regeneration. Thus, N. vectensis thrombospondins share structural features with thrombospondins from mammals and may have roles in the nervous system and in matrix reorganization during regeneration. PMID:23430283

  16. Adaptive immune response to viral infections in the central nervous system

    PubMed Central

    LIBBEY, JANE E.; FUJINAMI, ROBERT S.

    2015-01-01

    Historically, the central nervous system (CNS) has been considered to be an immunologically privileged site within the body (Bailey et al., 2006; Galea et al. 2007; Engelhardt, 2008; Prendergast and Anderton, 2009). By definition, immunologically privileged sites, to include the brain, cornea, testis, and pregnant uterus, have a reduced/delayed ability to reject foreign tissue grafts compared to conventional sites within the body, such as skin (Streilein, 2003; Bailey et al., 2006; Carson et al., 2006; Mrass and Weninger, 2006; Kaplan and Niederkorn, 2007). In addition and conversely, tissue grafts prepared from immunologically privileged sites have increased survival, compared to tissue grafts prepared from conventional sites, when implanted at conventional sites (Streilein, 2003). The imune privilege of the CNS has been shown to be confined to the parenchyma, whereas the immune reactivity of the meninges and the ventricles, containing the choroid plexus, cerebrospinal fluid (CSF), and the circumventricular organs, is similar to conventionalsites (Carson et al., 2006; Engelhardt, 2006; Galea et al., 2007). This confinement of the imm une privilege to the parenchyma has also been demonstrated for experimental influenza virus infection in which confinement of the infection to the brain parenchyma did not result in efficient immune system priming whereas infection of the CSF elicited a virus-specific immune response comparable to that of intranasal infection (Stevenson et al. 1997). An important functional aspect of immune privilege is that damage due to the immune response and inflammation is limited within sensitive organs containing cell types that regenerate poorly, such as neurons within the brain (Mrass and Weninger, 2006; Galea et al.. 2007; Kaplan and Niederkorn, 2007). PMID:25015488

  17. Novel, unifying mechanism for mescaline in the central nervous system

    PubMed Central

    Somanathan, Ratnasamy

    2009-01-01

    A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting. There is a discussion of receptor binding, electrical effects, cell signaling and other modes of action. Mescaline is a nonselective, seretonin receptor agonist. 5-HTP receptors are involved in the stimulus properties. Research addresses the aspect of stereochemical requirements. Receptor binding may involve the proposed quinone metabolite and/or the amino sidechain via protonation. Electroencephalographic studies were performed on the effects of mescaline on men. Spikes are elicited by stimulation of a cortical area. The potentials likely originate in nonsynaptic dendritic membranes. Receptor-mediated signaling pathways were examined which affect mescaline behavior. The hallucinogen belongs to the class of 2AR agonists which regulate pathways in cortical neurons. The research identifies neural and signaling mechanisms responsible for the biological effects. Recently, another hallucinogen, psilocybin, has been included within the unifying mechanistic framework. This mushroom constituent is hydrolyzed to the phenol psilocin, also active, which is subsequently oxidized to an ET o-quinone or iminoquinone. PMID:20716904

  18. Interleukin-6, a Major Cytokine in the Central Nervous System

    PubMed Central

    Erta, María; Quintana, Albert; Hidalgo, Juan

    2012-01-01

    Interleukin-6 (IL-6) is a cytokine originally identified almost 30 years ago as a B-cell differentiation factor, capable of inducing the maturation of B cells into antibody-producing cells. As with many other cytokines, it was soon realized that IL-6 was not a factor only involved in the immune response, but with many critical roles in major physiological systems including the nervous system. IL-6 is now known to participate in neurogenesis (influencing both neurons and glial cells), and in the response of mature neurons and glial cells in normal conditions and following a wide arrange of injury models. In many respects, IL-6 behaves in a neurotrophin-like fashion, and seemingly makes understandable why the cytokine family that it belongs to is known as neuropoietins. Its expression is affected in several of the main brain diseases, and animal models strongly suggest that IL-6 could have a role in the observed neuropathology and that therefore it is a clear target of strategic therapies. PMID:23136554

  19. Glial Biomarkers in Human Central Nervous System Disease

    PubMed Central

    Garden, Gwenn A.; Campbell, Brian M.

    2017-01-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. PMID:27228454

  20. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system

    PubMed Central

    Konradt, Christoph; Ueno, Norikiyo; Christian, David A.; Delong, Jonathan H.; Pritchard, Gretchen Harms; Herz, Jasmin; Bzik, David J.; Koshy, Anita A.; McGavern, Dorian B.; Lodoen, Melissa B.; Hunter, Christopher A.

    2016-01-01

    An important function of the blood–brain barrier is to exclude pathogens from the central nervous system, but some microorganisms benefit from the ability to enter this site. It has been proposed that Toxoplasma gondii can cross biological barriers as a motile extracellular form that uses transcellular or paracellular migration, or by infecting a host cell that then crosses the blood–brain barrier. Unexpectedly, analysis of acutely infected mice revealed significant numbers of free parasites in the blood and the presence of infected endothelial cells in the brain vasculature. The use of diverse transgenic parasites combined with reporter mice and intravital imaging demonstrated that replication in and lysis of endothelial cells precedes invasion of the central nervous system, and highlight a novel mechanism for parasite entry to the central nervous system. PMID:27572166

  1. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  2. Generation of a central nervous system catheter-associated infection in mice with Staphylococcus epidermidis.

    PubMed

    Snowden, Jessica N

    2014-01-01

    Animal models are valuable tools for investigating the in vivo pathogenesis of Staphylococcus epidermidis infections. Here, we present the procedure for generating a central nervous system catheter-associated infection in a mouse, to model the central nervous system shunt infections that frequently complicate the treatment of hydrocephalus in humans. This model uses stereotactic guidance to place silicone catheters, pre-coated with S. epidermidis, into the lateral ventricles of mice. This results in a catheter-associated infection in the brain, with concomitant illness and inflammation. This animal model is a valuable tool for evaluating the pathogenesis of bacterial infection in the central nervous system, the immune response to these infections and potential treatment options.

  3. [Primary malignant melanoma of the central nervous system: A diagnostic challenge].

    PubMed

    Quillo-Olvera, Javier; Uribe-Olalde, Juan Salvador; Alcántara-Gómez, Leopoldo Alberto; Rejón-Pérez, Jorge Dax; Palomera-Gómez, Héctor Guillermo

    2015-01-01

    The rare incidence of primary malignant melanoma of the central nervous system and its ability to mimic other melanocytic tumors on images makes it a diagnostic challenge for the neurosurgeon. A 51-year-old patient, with a tumor located in the right forniceal callosum area. Total surgical excision was performed. Histopathological result was consistent with the diagnosis of primary malignant melanoma of the central nervous system, after ruling out extra cranial and extra spinal melanocytic lesions. The primary malignant melanoma of the central nervous system is extremely rare. There are features in magnetic resonance imaging that increase the diagnostic suspicion; nevertheless there are other tumors with more prevalence that share some of these features through image. Since there is not an established therapeutic standard its prognosis is discouraging. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  4. Primary central nervous system lymphoma mimicking recurrent depressive disorder: A case report

    PubMed Central

    LIU, WEIBO; XUE, JING; YU, SHAOHUA; CHEN, QIAOZHEN; LI, XIUZHEN; YU, RISHENG

    2015-01-01

    Primary central nervous system lymphoma (PCNSL) is a rare subtype of extranodal non-Hodgkin lymphoma, which is limited to the central nervous system. Few studies are available reporting psychiatric symptoms as the initial and dominant presentation of PCNSL. The current study reports the case of a PCNSL patient with a history of major depressive disorder and coexisting rheumatoid arthritis (treated with methotrexate), who initially presented with recurrent depressive disorder that showed no response to antidepressant drug therapy. Magnetic resonance imaging revealed multiple mass lesions in the brain, and pathological examination of the biopsy confirmed the diagnosis of diffuse large B cell lymphoma of the central nervous system. The present case demonstrated that PCNSL may affect mood in the early stages of the disease and thus, clinicians must be aware of this manifestation in patients with depressive disorder co-existing with immunosuppressive conditions, as early detection and appropriate treatment are important prognostic factors for PCNSL. PMID:25789049

  5. [Hemangioblastomas of the central nervous system in Camagüey (Cuba)].

    PubMed

    Vega-Basulto, S; Silva-Adán, S; Peñones-Montero, R; Mosqueda-Betancourt, G

    Hemangioblastomas of the central nervous system are the most frequent vascular tumours. They are 1 2% of primary nervous system tumours and 8 12% of the posterior fossa neoplasms. The objective is to analize clinical behaviour and long term results of sporadic and Von Hippel Lindau linked hemangioblastomas. It was searched the vacular Neurosurgical Data Bank at Manuel Ascunce Dom nech Hospital between January 1981 and January 2001 to select patients harvoring central nervous system hemangioblastomas histological confirmed. Melmo and Rosen criteria were utilized in Von Hippel Lindau syndrome. We performed a twenty years follow up of this patients. There were 12 patients with central nervous system hemangioblastomas. Average age of presentation was 41 years old. The first case had twenty years since the operation and the last, eight months. 83% were cystic and 17% were solids. There was not surgical mortality. One patient died of renal carcinoma 15 years after the operation on craneal fossa. Central nervous system hemangioblastomas are a cluster of challenge tumours. They are intraxial benign tumours with potential good outcome. We observed sporadic and Von Hippel Lindau linked hemangioblastomas. Patients with this syndrome need clinico imagenological screening to identify new associated lesions.

  6. Central nervous system control of the laryngeal muscles in humans

    PubMed Central

    Ludlow, Christy L.

    2005-01-01

    Laryngeal muscle control may vary for different functions such as: voice for speech communication, emotional expression during laughter and cry, breathing, swallowing, and cough. This review discusses the control of the human laryngeal muscles for some of these different functions. Sensori-motor aspects of laryngeal control have been studied by eliciting various laryngeal reflexes. The role of audition in learning and monitoring ongoing voice production for speech is well known; while the role of somatosensory feedback is less well understood. Reflexive control systems involving central pattern generators may contribute to swallowing, breathing and cough with greater cortical control during volitional tasks such as voice production for speech. Volitional control is much less well understood for each of these functions and likely involves the integration of cortical and subcortical circuits. The new frontier is the study of the central control of the laryngeal musculature for voice, swallowing and breathing and how volitional and reflexive control systems may interact in humans. PMID:15927543

  7. [Opiate receptors and endorphins at the central nervous system level].

    PubMed

    Simon, E J

    1978-01-01

    Four years ago, sterospecific sites for the bending of opiates were discovered within the brain of animals and the human being. All of the properties of these sites are in conformity with the proposition that they are pharmacological receptors which have long been postulated for these drugs. The binding of morphine or of one of its derivatives to these sites should result in chemical or physical reactions leading to well known pharmacological responses. These reactions following the binding of drugs to the receptors are not yet known, but there is some evidence that cyclical nucleotides play a role. The affinity of a whole series of morphine derivatives, agonists and atagonists, is well correlated with their pharmacological effectiveness. In the presence of sodium salts, antagonists become more strongly bound and agonists less strongly than in the absence of sodium. The evidence is presented. This is explained by an equilibrium between two formations of the receptor: one characteristic of the absence of sodium and one of its presence. Receptors are found in the nervous system of all vertebrates and their distribution has been studied in the human brain. The regions with the highest concentration of receptors are those of the limbic system. A high level exists also in the "substantia gelatinosa" of the spinal cord, which is involved in the passage of painful messages. Study of the function of morphine receptors has led to the isolation, in animal brain, of a number of peptides with morphine properties named endorphines. The first two endorphines isolated were pentapeptides named encephalins. The properties of endorphines from the subject of several lecture in this course.

  8. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration

    PubMed Central

    Gentile, Luca; Cebrià, Francesc; Bartscherer, Kerstin

    2011-01-01

    Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine. PMID:21135057

  9. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration.

    PubMed

    Gentile, Luca; Cebrià, Francesc; Bartscherer, Kerstin

    2011-01-01

    Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

  10. The role of the central nervous system in osteoarthritis pain and implications for rehabilitation.

    PubMed

    Murphy, Susan L; Phillips, Kristine; Williams, David A; Clauw, Daniel J

    2012-12-01

    It has been known for some time that central nervous system (CNS) pain amplification is present in some individuals with osteoarthritis; the implications of this involvement, however, are just starting to be realized. In the past year, several research reviews have focused on evidence supporting shared mechanisms across chronic pain conditions for how pain is generated and maintained in the CNS, irrespective of the underlying structural pathology. This review article focuses on current literature describing CNS amplification in osteoarthritis by discussing peripheral sensitization, central sensitization, and central augmentation, and the clinical manifestation of central augmentation referred to as centralized pain, and offers considerations for rehabilitation treatment and future directions for research.

  11. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    NASA Astrophysics Data System (ADS)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  12. Immunological Barriers to Stem Cell Therapy in the Central Nervous System

    PubMed Central

    Tullis, Gregory E.; Kirk, Mark D.

    2014-01-01

    The central nervous system is vulnerable to many neurodegenerative disorders such as Alzheimer's disease that result in the extensive loss of neuronal cells. Stem cells have the ability to differentiate into many types of cells, which make them ideal for treating such disorders. Although stem cell therapy has shown some promising results in animal models for many brain disorders it has yet to translate into the clinic. A major hurdle to the translation of stem cell therapy into the clinic is the immune response faced by stem cell transplants. Here, we focus on immunological and related hurdles to stem cell therapies for central nervous system disorders. PMID:25165476

  13. Involvement of central nervous system in diabetes mellitus.

    PubMed Central

    Verma, A; Bisht, M S; Ahuja, G K

    1984-01-01

    Brainstem auditory evoked responses were recorded in 22 diabetic patients with a variable duration of illness (mean 5.8 years) and 14 normal healthy controls of comparable age. The initial 10 millisecond components, found to be most consistent and reproducible, were analysed. Variations in the form of individual wave latency, interpeak latencies and V wave amplitude were compared in both the groups. No difference was found in any of the parameters. It was concluded that central neural pathways are not involved at least initially in diabetes mellitus. PMID:6726270

  14. Exosome-mediated inflammasome signaling after central nervous system injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Brand, Frank; Adamczak, Stephanie; Lee, Stephanie W; Perez-Barcena, Jon; Wang, Michael Y; Bullock, M Ross; Dietrich, W Dalton; Keane, Robert W

    2016-01-01

    Neuroinflammation is a response against harmful effects of diverse stimuli and participates in the pathogenesis of brain and spinal cord injury (SCI). The innate immune response plays a role in neuroinflammation following CNS injury via activation of multiprotein complexes termed inflammasomes that regulate the activation of caspase 1 and the processing of the pro-inflammatory cytokines IL-1β and IL-18. We report here that the expression of components of the nucleotide-binding and oligomerization domain (NOD)-like receptor protein-1 (NLRP-1) inflammasome, apoptosis speck-like protein containing a caspase recruitment domain (ASC), and caspase 1 are significantly elevated in spinal cord motor neurons and cortical neurons after CNS trauma. Moreover, NLRP1 inflammasome proteins are present in exosomes derived from CSF of SCI and traumatic brain-injured patients following trauma. To investigate whether exosomes could be used to therapeutically block inflammasome activation in the CNS, exosomes were isolated from embryonic cortical neuronal cultures and loaded with short-interfering RNA (siRNA) against ASC and administered to spinal cord-injured animals. Neuronal-derived exosomes crossed the injured blood-spinal cord barrier, and delivered their cargo in vivo, resulting in knockdown of ASC protein levels by approximately 76% when compared to SCI rats treated with scrambled siRNA. Surprisingly, siRNA silencing of ASC also led to a significant decrease in caspase 1 activation and processing of IL-1β after SCI. These findings indicate that exosome-mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury. We propose the following signaling cascade for inflammasome activation in peripheral tissues after CNS injury: CNS trauma induces inflammasome activation in the nervous system and secretion of exosomes containing inflammasome protein cargo into cerebral spinal fluid. The inflammasome containing exosomes then fuse with target

  15. [Architectonics of the central nervous system in Acoela, Plathelminthes, and Rotifera].

    PubMed

    Kotikova, E A; Raĭĭkova, O I

    2008-01-01

    Based on the literature and own data, consecutive stages of development of the central nervous system (CNS) in the lower Bilateria are considered - separation of brain from parenchyma, formation of its own envelopes, and development of the stem and orthogonal nervous system. Results of histochemical (cholinergic and catecholaminergic) and immunocytochemical (5-HT- and FMRFamid immunoreactive) studies of the CNS in representatives of Acoela, free living and parasitizing Plathelminthes and Rotifera are considered. The comparative analysis makes it possible to describe development and complication of the initially primitive Bilateria plexus nervous system. A special attention will be paid to the Acoela phylogenesis, based on molecular-biology data and results of study of their nervous system.

  16. Central nervous system leukemia and lymphoma: computed tomographic manifestations

    SciTech Connect

    Pagani, J.J.; Libshitz, H.I.; Wallace, S.; Hayman, L.A.

    1981-12-01

    Computed tomographic (CT) abnormalities in the brain were identified in 31 of 405 patients with leukemia or lymphoma. Abnormalities included neoplastic masses (15), hemorrhage (nine), abscess (two), other brain tumors (four), and methotrexate leukoencephalopathy (one). CT was normal in 374 patients including 148 with meningeal disease diagnosed by cerebrospinal fluid cytologic examination. Prior to treatment, malignant masses were isodense or of greater density with varying amounts of edema. Increase in size or number of the masses indicated worsening. Response to radiation and chemotherapy was manifested by development of a central low density region with an enhancing rim. CT findings correlated with clinical and cerebrospinal fluid findings. The differential diagnosis of the various abnormalities is considered.

  17. Central nervous system administration of interleukin-6 produces splenic sympathoexcitation

    PubMed Central

    Helwig, Bryan G.; Craig, Robin A.; Fels, Richard J.; Blecha, Frank; Kenney, Michael J.

    2008-01-01

    Interleukin-6 (IL-6) is a multifunctional cytokine that has been shown to play a pivotal role in centrally-mediated physiological responses including activation of the hypothalamic-pituitary-adrenal axis. Cerebral spinal fluid (CSF) concentrations of IL-6 are elevated in multiple pathophysiological conditions including Alzheimer’s disease, autoimmune disease, and meningitis. Despite this, the effect of IL-6 on central regulation of sympathetic nerve discharge (SND) remains unknown which limits understanding of sympathetic-immune interactions in health and disease. In the present study we determined the effect of intracerebroventricular (icv, lateral ventricle) administration of IL-6 on splenic SND in urethane-chloralose-anesthetized rats. A second goal was to determine if icv injected IL-6 enters the brain parenchyma and acts as a volume transmission signal to access areas of the brain involved in regulation of sympathetic nerve outflow. Icv administration of IL-6 (10 ng, 100 ng, and 400 ng) significantly and progressively increased splenic SND from control levels in baroreceptor denervated Sprague-Dawley rats. Administration of 100 ng and 400 ng IL-6 resulted in significantly higher SND responses when compared to those elicited with a 10 ng dose. Sixty minutes following icv administration, fluorescently labeled IL-6 was not distributed throughout the parenchyma of the brain but was localized to the periventricular areas of the ventricular system. Brain sections counter-stained for the IL-6 receptor (IL-6R) revealed that IL-6 and the IL-6R were co-localized in periventricular areas adjoining the third ventricle. These results demonstrate that icv IL-6 administration increases splenic SND, an effect likely achieved via signaling mechanisms originating in the periventricular cells. PMID:18547874

  18. Role of the lesion scar in the response to damage and repair of the central nervous system.

    PubMed

    Kawano, Hitoshi; Kimura-Kuroda, Junko; Komuta, Yukari; Yoshioka, Nozomu; Li, Hong Peng; Kawamura, Koki; Li, Ying; Raisman, Geoffrey

    2012-07-01

    Traumatic damage to the central nervous system (CNS) destroys the blood-brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation.

  19. Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating the peripheral nervous system

    PubMed Central

    Griffin, Jeremy; Delgado-Rivera, Roberto; Meiners, Sally; Uhrich, Kathryn E.

    2011-01-01

    Continuous biomaterial advances and the regenerating potential of the adult human peripheral nervous system offer great promise for restoring full function to innervated tissue following traumatic injury via synthetic nerve guidance conduits. To most effectively facilitate nerve regeneration, a tissue engineering scaffold within a conduit must be similar to the linear microenvironment of the healthy nerve. To mimic the native nerve structure, aligned poly(lactic-co-glycolic acid)/bioactive polyanhydride fibrous substrates were fabricated through optimized electrospinning parameters with diameters of 600 ± 200 nm. Scanning electron microscopy images show fibers with a high degree of alignment. Schwann cells and dissociated rat dorsal root ganglia demonstrated elongated and healthy proliferation in a direction parallel to orientated electrospun fibers with significantly longer Schwann cell process length and neurite outgrowth when compared to randomly orientated fibers. Results suggest that an aligned polyanhydride fiber mat holds tremendous promise as a supplement scaffold for the interior of a degradable polymer nerve guidance conduit. Bioactive salicylic acid based polyanhydride fibers are not limited to nerve regeneration and offer exciting promise for a wide variety of biomedical applications. PMID:21442724

  20. [An autosomal recessive syndrome with myopathy and central and peripheral nervous system involvement (author's transl)].

    PubMed

    Warter, J M; Marescaux, C; Coquillat, G; Walter, P; Micheletti, G; Rohmer, F

    1981-01-01

    Three of 11 children, offspring of a consanguineous marriage, presented a progressive myopathy and seizures, associated with symptoms suggesting both central and peripheral nervous system involvement. The ultrastructural muscular lesions were not specific. The association of severe impairment of muscle tissue and of central nervous system is rare, being described in centronuclear myopathy, cerebromuscular dystrophy, Kearns-Sayre syndrome and in a few isolated cases. Clinically only these isolated observations and especially the Kearns-Sayre syndrome demonstrate analogies to our observations. These data lead us to the discussion of the specificity of ultrastructural lesions, especially mitochondrial abnormalities. Some authors consider these abnormalities to be the biochemical hallmark for ophthalmoplegia plus, whereas for others, especially Drachman, they are an inconstant and nonspecific finding, merely the consequence and not the cause of this disease. These observations argue for the relationship between muscular pathology and nervous system dysfunction.

  1. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  2. Assessing pine regeneration for the South Central United States

    Treesearch

    William H. McWilliams

    1990-01-01

    Poor regeneration of pine following harvest on nonindustrial timberland has been identified as a major cause for loss of pine forests and slowdown of softwood growth in the Southern United States.Developing a strategy for regeneration assessment requires clear definition of sampling objectives, sampling design, and analytical processes. It is important that...

  3. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... of anticonvulsant monotherapy for seizures of partial origin for antiepileptic drug products that are... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice...

  4. Serotonin-like immunoreactivity in the central nervous system of two Ixodid tick species

    USDA-ARS?s Scientific Manuscript database

    Immunocytochemistry was used to detect the presence of serotonin-like immunoreactive (5HT-IR) neurons and neuronal processes in the central nervous system (CNS), the synganglion, of two Ixodid tick species; the winter tick, Dermacentor albipictus and the lone star tick, Amblyomma americanum. Seroto...

  5. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  6. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  7. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  8. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  9. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of the...

  10. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module VII. Central Nervous System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the central nervous system is one of fifteen modules designed for use in the training of emergency medical technicians. Four units of study are presented: (1) anatomy and physiology; (2) assessment of patients with neurological problems; (3) pathophysiology and management of neurological problems; (4)…

  11. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    ERIC Educational Resources Information Center

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  12. Central nervous system infection due to Mycobacterium haemophilum in a patient with acquired immunodeficiency syndrome.

    PubMed

    Buppajarntham, Aubonphan; Apisarnthanarak, Anucha; Rutjanawech, Sasinuj; Khawcharoenporn, Thana

    2015-03-01

    Mycobacterium haemophilum is an environmental organism that rarely causes infections in humans. We report a patient with acquired immunodeficiency syndrome who had central nervous system infection due to M. haemophilum. The diagnosis required brain tissue procurement and molecular identification method while the treatment outcome was unfavourable.

  13. Prepubertal ontogeny of responsiveness to estradiol in female rat central nervous system.

    PubMed

    Dudley, S D

    1981-01-01

    The physiological response to systemic estrogens changes dramatically during the period from birth to puberty. With the onset of puberty, the rat reaches a critical developmental plateau with regard to endocrinological responsiveness to estradiol. Since the appearance of the pubertal response pattern appears to be less a consequence of some intrinsic "trigger' than the natural continuation of a developmental sequence that begins prenatally, its ontogeny should be examined in a broad context that will take account of the impact of each of the dynamic components influencing the interactions between estradiol and the central nervous system on the functional development of the organism as a whole. The prepubertal ontogeny of endocrinological responsiveness to estradiol in the central nervous system of the female rat is examined in the context of several of the important factors that are known to influence the functional development of the hypothalamo-pituitary-gonadal circuit:the rapidly changing hormonal environment of the morphologically and physiologically immature juvenile rat, the shifting predominance of alphafetoprotein and "adult" estradiol-binding protein, sexual differentiation of the neural substrate, and the development of mature pituitary-gonadal feedback mechanisms. The availability of ever more sensitive techniques for the measurement of the actions of estradiol in the central nervous system of the immature organism has necessitated a re-evaluation of existing data. This, in turn, suggests that new approaches should be applied to the examination of problems related to the development of reproductive maturity of the central nervous system.

  14. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA...

  15. Clinical trial aims to study immunotherapy for central nervous system tumors | Center for Cancer Research

    Cancer.gov

    A new clinical trial aims to determine whether nivolumab, an immune checkpoint inhibitor, can improve control of cancer for patients with several types of tumors of the central nervous system (CNS). The CNS is composed of the brain and spinal cord and the cause of most CNS tumors in adults is unknown. Learn more...

  16. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  17. In Vivo Piroxicam Metabolites: Possible Source for Synthesis of Central Nervous System (CNS) Acting Depressants.

    PubMed

    Saganuwan, Saganuwan Alhaji

    2016-11-10

    Piroxicam has been reported to be convertible to central nervous system (CNS) acting agents. It has serious depressant effects at high doses. In view of this structures of piroxicam metabolites were assessed for possible conversion to CNS depressants. Structural barbituric compounds, carboxamide, cyclohydrated, benzothiazone and carboxybenzothiazone metabolites which may act via dopamine and adrenergic receptors causing depression of CNS activities.

  18. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    ERIC Educational Resources Information Center

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  19. Disseminated Tuberculosis of Central Nervous System : Spinal Intramedullary and Intracranial Tuberculomas

    PubMed Central

    Lim, Yu Seok; Kim, Min Ki; Lim, Young Jin

    2013-01-01

    As a cause of spinal cord compression, intramedullary spinal tuberculoma with central nervous system (CNS) involvement is rare. Aurthors report a 66-year-old female presented with multiple CNS tuberculomas including spinal intramedullary tuberculoma manifesting paraparesis and urinary dysfunction. We review the clinical menifestation and experiences of previous reported literature. PMID:24044085

  20. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    ERIC Educational Resources Information Center

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  1. Diagnostic and Therapeutic Challenges in a Liver Transplant Recipient with Central Nervous System Invasive Aspergillosis

    PubMed Central

    Dionissios, Neofytos; Shmuel, Shoham; Kerry, Dierberg; Katharine, Le; Simon, Dufresne; Sean, Zhang X; Kieren, Marr A

    2012-01-01

    This is a case report of central nervous system (CNS) invasive aspergillosis (IA) in a liver transplant recipient, which illustrates the utility of enzyme-based diagnostic tools for the timely and accurate diagnosis of IA, the treatment challenges and poor outcomes associated with CNS IA in liver transplant recipients. PMID:22676861

  2. Space, Time, and Dyslexia: Central Nervous System Factors in Reading Disability.

    ERIC Educational Resources Information Center

    Krippner, Stanley

    Developmental and post-traumatic dyslexia are discussed in terms of a dysfunction of the central nervous system resulting in reading disabilities. The relationship of reading to other language functions is considered, with emphasis on the temporal aspects of speech and reading. An interdisciplinary approach is held necessary for the diagnosis of…

  3. Combination Antifungal Therapy in the Treatment of Scedosporium apiospermum Central Nervous System Infections

    PubMed Central

    Henao-Martínez, Andrés F.; Castillo-Mancilla, José R.; Barron, Michelle A.; Nichol, Aran Cunningham

    2013-01-01

    Treatment of Scedosporium apiospermum central nervous system (CNS) infection typically consists of an azole in combination with surgical debridement. This approach requires prolonged treatment and carries a high associated mortality. We present two cases of the successful treatment of S. apiospermum CNS infections with the combination of voriconazole and terbinafine. PMID:23738164

  4. Assessment of Visual Acuity in Relation to Central Nervous System Activation in Children with Mental Retardation.

    ERIC Educational Resources Information Center

    Jacobsen, Karl; Grottland, Havar; Flaten, Magne Arve

    2001-01-01

    Assessment of visual acuity, using Teller Acuity Cards, was combined with observations of behavioral state to indicate central nervous system activation in 24 individuals with mental retardation. Results indicate that forced-choice preferential-looking technique can be used to test visual acuity in this population unless the participant is drowsy.…

  5. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    ERIC Educational Resources Information Center

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  6. A case of central nervous system nocardiosis in a patient with lupus treated with belimumab

    PubMed Central

    Lai, Richard HC; Kim, Deborah; Constantinescu, Florina

    2016-01-01

    Belimumab was approved by the United States Food and Drug Administration in March 2011 as the first biological agent for treating active systemic lupus erythematosus (SLE). To the best of our knowledge, this is the first case report regarding a patient with SLE treated with belimumab who was diagnosed with central nervous system nocardiosis. PMID:28149666

  7. Hemichorea in a patient with HIV-associated central nervous system histoplasmosis.

    PubMed

    Estrada-Bellmann, Ingrid; Camara-Lemarroy, Carlos R; Flores-Cantu, Hazael; Calderon-Hernandez, Hector J; Villareal-Velazquez, Hector J

    2016-01-01

    Central nervous system histoplasmosis is a rare opportunistic infection with a heterogeneous clinical presentation. We describe the first case of human immunodeficiency virus-associated cerebral histoplasmosis presenting with hemichorea. The patient recovered after treatment with conventional amphotericin B and itraconazole.

  8. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training.

    PubMed

    Martins-Pinge, M C

    2011-09-01

    The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  9. Biofilm-Infected Intracerebroventricular Shunts Elicit Inflammation within the Central Nervous System

    PubMed Central

    Beaver, Matt; Smeltzer, Mark S.; Kielian, Tammy

    2012-01-01

    Central nervous system catheter infections are a serious complication in the treatment of hydrocephalus. These infections are commonly caused by Staphylococcus epidermidis and Staphylococcus aureus, both known to form biofilms on the catheter surface. Our objective was to generate a novel murine model of central nervous system catheter-associated biofilm infection using a clinical S. aureus isolate and characterize the nature of the inflammatory response during biofilm growth. Silicone catheters were precoated with S. aureus to facilitate bacterial attachment, whereupon infected or sterile catheters were stereotactically inserted into the lateral ventricle of the brain in C57BL/6 mice and evaluated at regular intervals through day 21 postinsertion. Animals tolerated the procedure well, with no clinical signs of illness or bacterial growth seen in the control group. Bacterial titers associated with central nervous system catheters were significantly elevated compared to those from the surrounding parenchyma, consistent with biofilm formation and minimal planktonic spread of infection. Catheter-associated bacterial burdens progressively increased, with maximal colonization achieved at day 7 postinfection. Analysis of inflammatory infiltrates by fluorescence-activated cell sorting (FACS) revealed significant macrophage and neutrophil influx, which peaked at days 3 and 5 to 7, respectively. In contrast, there were no detectable immune infiltrates associated with tissues surrounding sterile catheters. Biofilm infection led to significant increases in chemokine (CXCL1 and CCL2) and proinflammatory cytokine (interleukin 17 [IL-17]) expression in tissues surrounding infected central nervous system catheters. Based on these results, we propose this approach is a valid animal model for further investigations of catheter-associated central nervous system shunt infections. PMID:22753376

  10. Laminin promotes neuritic regeneration from cultured peripheral and central neurons

    PubMed Central

    1983-01-01

    The ability of axons to grow through tissue in vivo during development or regeneration may be regulated by the availability of specific neurite-promoting macromolecules located within the extracellular matrix. We have used tissue culture methods to examine the relative ability of various extracellular matrix components to elicit neurite outgrowth from dissociated chick embryo parasympathetic (ciliary ganglion) neurons in serum-free monolayer culture. Purified laminin from both mouse and rat sources, as well as a partially purified polyornithine-binding neurite promoting factor (PNPF-1) from rat Schwannoma cells all stimulate neurite production from these neurons. Laminin and PNPF-1 are also potent stimulators of neurite growth from cultured neurons obtained from other peripheral as well as central neural tissues, specifically avian sympathetic and sensory ganglia and spinal cord, optic tectum, neural retina, and telencephalon, as well as from sensory ganglia of the neonatal mouse and hippocampal, septal, and striatal tissues of the fetal rat. A quantitative in vitro bioassay method using ciliary neurons was used to (a) measure and compare the specific neurite-promoting activities of these agents, (b) confirm that during the purification of laminin, the neurite-promoting activity co- purifies with the laminin protein, and (c) compare the influences of antilaminin antibodies on the neurite-promoting activity of laminin and PNPF-1. We conclude that laminin and PNPF-1 are distinct macromolecules capable of expressing their neurite-promoting activities even when presented in nanogram amounts. This neurite-promoting bioassay currently represents the most sensitive test for the biological activity of laminin. PMID:6643580

  11. Primary breast lymphoma sequentially relapsed in the peripheral and central nervous system.

    PubMed

    Tang, Tzung-Chih; Chang, Hung; Chuang, Wen-Yu

    2012-09-01

    Primary breast lymphoma (PBL) is an uncommon extranodal type of lymphoma, exhibiting more aggressive behavior and poorer prognosis. Patients with PBL have a higher incidence to relapse in central nervous system (CNS), which is always leading to a dismal outcome even treating with high intensity chemotherapy plus radiotherapy. Lymphoma involving the peripheral nervous system (PNS), either primarily or secondarily, is also rare. But no PBL with PNS relapse has been reported before. Herein, we reported a case of PBL who presented with subsequent relapse in two discrete sites of the PNS followed by the CNS.

  12. Invasion of the central nervous system in a porcine host by nipah virus.

    PubMed

    Weingartl, Hana; Czub, Stefanie; Copps, John; Berhane, Yohannes; Middleton, Deborah; Marszal, Peter; Gren, Jason; Smith, Greg; Ganske, Shelley; Manning, Lisa; Czub, Markus

    2005-06-01

    Nipah virus, a newly emerged zoonotic paramyxovirus, infects a number of species. Human infections were linked to direct contact with pigs, specifically with their body fluids. Clinical signs in human cases indicated primarily involvement of the central nervous system, while in pigs the respiratory system was considered the primary virus target, with only rare involvement of the central nervous system. Eleven 5-week-old piglets were infected intranasally, orally, and ocularly with 2.5 x 10(5) PFU of Nipah virus per animal and euthanized between 3 and 8 days postinoculation. Nipah virus caused neurological signs in two out of eleven inoculated pigs. The rest of the pigs remained clinically healthy. Virus was detected in the respiratory system (turbinates, nasopharynx, trachea, bronchus, and lung in titers up to 10(5.3) PFU/g) and in the lymphoreticular system (endothelial cells of blood and lymphatic vessels, submandibular and bronchiolar lymph nodes, tonsil, and spleen with titers up to 10(6) PFU/g). Virus presence was confirmed in the nervous system of both sick and apparently healthy animals (cranial nerves, trigeminal ganglion, brain, and cerebrospinal fluid, with titers up to 10(7.7) PFU/g of tissue). Nipah virus distribution was confirmed by immunohistochemistry. The study presents novel findings indicating that Nipah virus invaded the central nervous system of the porcine host via cranial nerves as well as by crossing the blood-brain barrier after initial virus replication in the upper respiratory tract.

  13. Cyclic nucleotide-stimulable protein kinases in the central nervous sytem of Manduca sexta.

    PubMed

    Albin, E E; Newburgh, R W

    1975-02-19

    Cyclic nucleotide-stimulable protein kinase (EC 1.7.1.37) has been studied in crude extracts from the central nervous system of the tobacco hornworm Manduca sexta (Lepidoptera: Sphingidae). The insect kinase was fulfhydryl-sensitive and required Mg-2+ for optimal activity. Polyacrylamide gel electrophoresis of supernatants demonstrated the presence of multiple kinases in the larval nerve cord. At low concentrations, cyclic AMP was a much more potent activator of soluble and particulate activities than was cyclic GMP. The specific activity of coluble kinase and the magnitude of its activations by cyclic AMP were greater in the adult than in the larval central nervous system. The exogenous protein substrate specificity of the insect enzyme was similar to that of rat brain kinase with the sole exception that protamine was more readily phosphorylated than histone by nerve cord kinase. It was observed that cyclic AMP lowered the Km of Manduca sexta kinase for ATP, a phenomenon which is apparently nervous tissue=specific in mammals. An effective inhibitor of cyclic AMP-dependent protein kinase was prepared from the larval central nervous system.

  14. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    PubMed

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL.

  15. A Brain Unfixed: Unlimited Neurogenesis and Regeneration of the Adult Planarian Nervous System

    PubMed Central

    Brown, David D. R.; Pearson, Bret J.

    2017-01-01

    Powerful genetic tools in classical laboratory models have been fundamental to our understanding of how stem cells give rise to complex neural tissues during embryonic development. In contrast, adult neurogenesis in our model systems, if present, is typically constrained to one or a few zones of the adult brain to produce a limited subset of neurons leading to the dogma that the brain is primarily fixed post-development. The freshwater planarian (flatworm) is an invertebrate model system that challenges this dogma. The planarian possesses a brain containing several thousand neurons with very high rates of cell turnover (homeostasis), which can also be fully regenerated de novo from injury in just 7 days. Both homeostasis and regeneration depend on the activity of a large population of adult stem cells, called neoblasts, throughout the planarian body. Thus, much effort has been put forth to understand how the flatworm can continually give rise to the diversity of cell types found in the adult brain. Here we focus on work using single-cell genomics and functional analyses to unravel the cellular hierarchies from stem cell to neuron. In addition, we will review what is known about how planarians utilize developmental signaling to maintain proper tissue patterning, homeostasis, and cell-type diversity in their brains. Together, planarians are a powerful emerging model system to study the dynamics of adult neurogenesis and regeneration. PMID:28588444

  16. [Molecular genetics of familial tumour syndromes of the central nervous system].

    PubMed

    Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor

    2015-02-01

    Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.

  17. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  18. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis.

    PubMed

    Rodgers, Jean; Stone, Trevor W; Barrett, Michael P; Bradley, Barbara; Kennedy, Peter G E

    2009-05-01

    Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in

  19. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation

    PubMed Central

    Mayo, Lior; Cunha, Andre Pires Da; Madi, Asaf; Beynon, Vanessa; Yang, Zhiping; Alvarez, Jorge I.; Prat, Alexandre; Sobel, Raymond A.; Kobzik, Lester; Lassmann, Hans; Quintana, Francisco J.

    2016-01-01

    See Winger and Zamvil (doi:10.1093/brain/aww121) for a scientific commentary on this article. The innate immune system plays a central role in the chronic central nervous system inflammation that drives neurological disability in progressive forms of multiple sclerosis, for which there are no effective treatments. The mucosal immune system is a unique tolerogenic organ that provides a physiological approach for the induction of regulatory T cells. Here we report that nasal administration of CD3-specific antibody ameliorates disease in a progressive animal model of multiple sclerosis. This effect is IL-10-dependent and is mediated by the induction of regulatory T cells that share a similar transcriptional profile to Tr1 regulatory cells and that suppress the astrocyte inflammatory transcriptional program. Treatment results in an attenuated inflammatory milieu in the central nervous system, decreased microglia activation, reduced recruitment of peripheral monocytes, stabilization of the blood–brain barrier and less neurodegeneration. These findings suggest a new therapeutic approach for the treatment of progressive forms of multiple sclerosis and potentially other types of chronic central nervous system inflammation. PMID:27246324

  20. Does Acupuncture Alter Pain-related Functional Connectivity of the Central Nervous System? A Systematic Review.

    PubMed

    Villarreal Santiago, María; Tumilty, Steve; Mącznik, Aleksandra; Mani, Ramakrishnan

    2016-08-01

    Acupuncture has been studied for several decades to establish evidence-based clinical practice. This systematic review aims to evaluate evidence for the effectiveness of acupuncture in influencing the functional connectivity of the central nervous system in patients with musculoskeletal pain. A systematic search of the literature was conducted to identify studies in which the central response of acupuncture in patients with musculoskeletal pain was evaluated by neuroimaging techniques. Databases searched were AMED, CINAHL, Cochrane Library, EMBASE, MEDLINE, PEDro, Pubmed, SCOPUS, SPORTDiscuss, and Web of Science. Included studies were assessed by two independent reviewers for their methodological quality by using the Downs and Black questionnaire and for their levels of completeness and transparency in reporting acupuncture interventions by using Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) criteria. Seven studies met the inclusion criteria. Three studies were randomized controlled trials (RCTs) and four studies were nonrandomized controlled trials (NRCTs). The neuroimaging techniques used were functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Positive effects on the functional connectivity of the central nervous system more consistently occurred during long-term acupuncture treatment. The results were heterogeneous from a descriptive perspective; however, the key findings support acupuncture's ability to alter pain-related functional connectivity in the central nervous system in patients with musculoskeletal pain.