Science.gov

Sample records for regeneration facility safety

  1. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  2. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  3. a Low Temperature Regenerator Test Facility

    NASA Astrophysics Data System (ADS)

    Kashani, A.; Helvensteijn, B. P. M.; Feller, J. R.; Salerno, L. J.; Kittel, P.

    2008-03-01

    Testing regenerators presents an interesting challenge. When incorporated into a cryocooler, a regenerator is intimately coupled to the other components: expander, heat exchangers, and compressor. It is difficult to isolate the performance of any single component. We have developed a low temperature test facility that will allow us to separate the performance of the regenerator from the rest of the cryocooler. The purpose of the facility is the characterization of test regenerators using novel materials and/or geometries in temperature ranges down to 15 K. It consists of the following elements: The test column has two regenerators stacked in series. The coldest stage regenerator is the device under test. The warmer stage regenerator contains a stack of stainless steel screen, a well-characterized material. A commercial cryocooler is used to fix the temperatures at both ends of the test regenerator, cooling both heat exchangers flanging the regenerator stack. Heaters allow varying the temperatures and allow measurement of the remaining cooling power, and thus, regenerator effectiveness. A linear compressor delivers an oscillating pressure to the regenerator assembly. An inertance tube and reservoir provide the proper phase difference between mass flow and pressure. This phase shift, along with the imposed temperature differential, simulates the conditions of the test regenerator when used in an actual pulse tube cryocooler. This paper presents development details of the regenerator test facility, and test results on a second stage, stainless steel screen test regenerator.

  4. Calibration facility safety plan

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1971-01-01

    A set of requirements is presented to insure the highest practical standard of safety for the Apollo 17 Calibration Facility in terms of identifying all critical or catastrophic type hazard areas. Plans for either counteracting or eliminating these areas are presented. All functional operations in calibrating the ultraviolet spectrometer and the testing of its components are described.

  5. 340 waste handling facility interim safety basis

    SciTech Connect

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  6. 340 Waste handling facility interim safety basis

    SciTech Connect

    Stordeur, R.T.

    1996-10-04

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  7. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  8. Safety of magnetic fusion facilities: Requirements

    SciTech Connect

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

  9. Organizational culture, safety culture, and safety performance at research facilities

    SciTech Connect

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  10. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  11. Safety management of a modern tritium facility

    SciTech Connect

    Grief, D.

    1995-10-01

    This paper sets out some of the important elements of the Safety Management system in place for the Tritium Facility at AWE. It does not intend to cover all aspects; it gives some brief background information on the overall safety objectives, but concentrates more on local management issues and systems used to control the operation at the Facility level. Any modern Safety system for a Facility using a potentially hazardous and mobile species such as tritium must be designed to minimise its impact on the environment and to provide a safe working regime for its staff. 7 refs., 1 fig.

  12. Construction Safety for the National Ignition Facility

    SciTech Connect

    Predmore, R

    2000-09-01

    This Construction Safety Program (CSP) for the National Ignition Facility (NIF) presents safety protocols and guidelines that management and workers shall follow to assure a safe and healthful work environment. Appendix A, a separate companion document, includes further applicable environmental, safety, and health requirements for the NIF Project. Specifically this document: {sm_bullet} Defines the fundamental site safety philosophy, {sm_bullet} Identifies management roles and responsibilities, {sm_bullet} Defines core safety management processes, {sm_bullet} Identifies LLNL institutional requirements, and {sm_bullet} Defines the functional areas and facilities accrued by the program and the process for transition of facilities, functional areas, and/or systems from construction to activation. Anyone willfully or thoughtlessly disregarding standards will be subject to immediate removal from the site. Thorough job planning will help ensure that these standards are met.

  13. Fire Safety in Nursing Facilities: Participant's Coursebook.

    ERIC Educational Resources Information Center

    Walker (Bonnie) and Associates, Inc., Crofton, MD.

    Fewer people die in nursing facility fires than in fires occurring in other places where older people live. Fire remains, however, a significant threat in nursing facilities. This book is centered around six "modules" that present a fire safety training program for managers and staff in nursing homes. These modules present the following…

  14. Occupational Safety Review of High Technology Facilities

    SciTech Connect

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  15. Preliminary evaluation of thermal systems for regenerating explosives-contaminated carbon: Safety, cost, and technical feasibility: Final report

    SciTech Connect

    Daw, C.S.; Fox, E.C.; Lackey, M.E.; Taylor, M.J.; Young, J.M.; Ho, P.C.

    1988-07-01

    A preliminary evaluation of the thermal regeneration of nitrobody- contaminated carbon is made with special attention to safety, cost, and technical feasibility. A comparison of the multiple-hearth, rotary-kiln, electric-belt-furnace, and fluidized-bed technologies indicates that the rotary kiln and electric belt furnace are more appropriate for nitrobody contaminated carbon at the current low production rates. Of these two, the electric belt furnace is probably best for Army applications, particularly with regard to safety concerns and cost involved in pilot-scale testing at an Army facility. Cost estimates for production-scale regeneration and/or treatment at three Army facilities reveal that the economics strongly depend on the individual plant circumstances and the assumed production rates of contaminated carbon. At lower production rates, thermal treatment and disposal is cheaper than regeneration. For the regeneration cases considered, a fixed centrally-located regeneration facility appears to be the least expensive alternative. Recommendations for future work include lab-scale thermal-regeneration and thermal-treatment testing of spent carbon, continued characterization of the explosive properties of the spent carbon, and consideration of additional regeneration strategies including solvent extraction with subsequent co-fired solvent combustion. 23 refs., 15 figs., 10 tabs.

  16. Safety of magnetic fusion facilities: Guidance

    SciTech Connect

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  17. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Moses, E

    2001-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during the construction, equipment installation, and commissioning activities. As the NIF Project transitions from a conventional facility construction activity to one of equipment installation, commissioning, initial laser operations, and other more routine-like operations, new safety requirements are needed. The NIF Project Site Safety Program (NPSSP) requires that all activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'', and the augmented set of controls and processes described in this NIF Project Site Safety Program. More specific requirements for construction activities under the Integration Management and Installation (IMI) contract are provided in the ''NIF Infrastructure Health and Safety Plan'', subtier to this program. Specifically this document: Defines the fundamental NIF site safety philosophy, Defines the areas covered by this safety program (see Appendix B), Identifies management roles and responsibilities, Defines core safety management processes, and Identifies NIF site-specific safety requirements.

  18. Chemical process safety at fuel cycle facilities

    SciTech Connect

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

  19. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect

    Batandjieva, B.; Warnecke, E.; Coates, R.

    2008-01-15

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  20. Mechanistic facility safety and source term analysis

    SciTech Connect

    PLYS, M.G.

    1999-06-09

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

  1. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Dun, C

    2003-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

  2. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  3. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  4. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  5. Dialysis Facility Safety: Processes and Opportunities.

    PubMed

    Garrick, Renee; Morey, Rishikesh

    2015-01-01

    Unintentional human errors are the source of most safety breaches in complex, high-risk environments. The environment of dialysis care is extremely complex. Dialysis patients have unique and changing physiology, and the processes required for their routine care involve numerous open-ended interfaces between providers and an assortment of technologically advanced equipment. Communication errors, both within the dialysis facility and during care transitions, and lapses in compliance with policies and procedures are frequent areas of safety risk. Some events, such as air emboli and needle dislodgments occur infrequently, but are serious risks. Other adverse events include medication errors, patient falls, catheter and access-related infections, access infiltrations and prolonged bleeding. A robust safety system should evaluate how multiple, sequential errors might align to cause harm. Systems of care can be improved by sharing the results of root cause analyses, and "good catches." Failure mode effects and analyses can be used to proactively identify and mitigate areas of highest risk, and methods drawn from cognitive psychology, simulation training, and human factor engineering can be used to advance facility safety. © 2015 Wiley Periodicals, Inc.

  6. Hydrogen isotope separation installation for the regeneration of tritium from gas mixtures in tritium facilities

    SciTech Connect

    Andrew, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.

    1994-12-31

    The advantages and disadvantages of different methods for hydrogen isotope separation are considered in terms of their applicability for tritium regeneration in a tritium facility. Due to low inventory, simplicity of operation, flexibility, and safety the methods of separation using solid phases are preferable for tritium facility. The detail consideration of the separation processes with a solid phase reveals that highest efficiency of separation should be achieved in a counter-current separation column, which allow multiplying the thermodynamic isotopic effect. Because of difficulties of the organization of a solid phase motion in a separation column this method did not found practical application for separation of hydrogen isotopic mixtures. The main efforts of a few researches groups were devoted to improve the chromatographic separation process and equipment. The detail comparison of the separation in sectioned column with that in chromatographic as well as in cryodistillation columns show that counter-current separation in a sectioned column is more effective and has other advantages when middle throughput is required. Complete regeneration of an isotopic mixture with separation into three practically pure isotopes independently from isotopic composition of feed can be provided using two sectioned separation columns. Separation installation can operate continuously as well as periodically.

  7. Hazards assessment document for receiving basin for offsite fuel (244-H) and resin regeneration facility (245-H) (RBOF/RRF)

    SciTech Connect

    Miner, A.N.; Ortaldo, S.F.

    1994-07-01

    The Hazard Assessment Document (HAD) for the Receiving Basin for Offsite Fuels (RBOF), Building 244-H, and the Resin Regeneration Facility (RRF), Building 245-H, was prepared in accordance with Department of Energy (DOE) Order 5480.23, DOE-STD-1 027-92, and WSRC-MS-92-206. The HAD provides hazards categorizations based on the radiological and chemical hazards associated with the facility. The hazard category is used to provide the input data for a graded approach to the development of the facility Safety Analysis Report (SAR) in accordance with DOE Order 5480.23. The RBOF/RRF was assumed to be a one segment facility. The accident consequences are calculated without consideration for any mitigative systems or administrative controls This facility is categorized as Hazard Category 2 as a result of the analysis of the radiological inventory conducted in accordance with Reference 2 and the chemical inventory in accordance with Reference 3.

  8. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  9. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    SciTech Connect

    BENECKE, M.W.

    2000-09-06

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility.

  10. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect

    Rule, Keith

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  11. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect

    Rule, K.; King, M.; Takase, Y.; Oshima, Y.; Nishimura, K.; Sukegawa, A.

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  12. Operational safety at the fast flux test facility

    SciTech Connect

    Bennett, C.L.; Baird, Q.L.; Franz, G.R.

    1986-01-01

    The safety organization within Westinghouse Hanford Company (WHC) provides the independent review and appraisal of reactor facilities at the Hanford Engineering Development Laboratory (HEDL) in accordance with US Department of Energy (DOE) Order 5480.1A, Chapter V. The safety organization functions primarily in an advisory capacity to the line organization and reports through a management organization independent of all reactor operations to the president of WHC. However, safety is a line responsibility, and neither review nor subsequent approval by the safety staff releases line management from its responsibility for the safety of people and equipment. The purpose of this paper is to describe the operational safety program at HEDL associated with the operation of the Fast Flux Test Facility (FFTF). These activities include: (1) operational reactor safety surveillance; (2) change review of safety documentation; (3) cycle readiness assessments; (4) FFTF technical specification upgrade; (5) interim examination and maintenance cell and fuel storage facility safety review.

  13. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6

  14. Environmental protection facilities safety study: Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1982-05-01

    The purpose of this Safety Study is to examine the existing facilities at the Portsmouth Gaseous Diffusion Plant that are dedicated to environmental protection. Seven separate, numbered facilities and five unnumbered continuous air sampling stations are identified as the fixed facilities to protect the environment. Each is examined from the standpoint of hazardous materials, monitoring and protection systems, confinement systems, ventilation systems, criticality control systems, fire protection systems, waste disposal systems, and safety systems.

  15. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  16. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    1999-12-16

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  17. Developing operational safety requirements for non-nuclear facilities

    SciTech Connect

    Mahn, J.A.

    1997-11-01

    Little guidance has been provided by the DOE for developing appropriate Operational Safety Requirements (OSR) for non-nuclear facility safety documents. For a period of time, Chapter 2 of DOE/AL Supplemental Order 5481.lB provided format guidance for non-reactor nuclear facility OSRs when this supplemental order applied to both nuclear and non-nuclear facilities. Thus, DOE Albuquerque Operations Office personnel still want to see non-nuclear facility OSRs in accordance with the supplemental order (i.e., in terms of Safety Limits, Limiting Conditions for Operation, and Administrative Controls). Furthermore, they want to see a clear correlation between the OSRs and the results of a facility safety analysis. This paper demonstrates how OSRs can be rather simply derived from the results of a risk assessment performed using the ``binning`` methodology of SAND95-0320.

  18. DEVELOPMENT AND UTILIZATION OF TEST FACILITY FOR THE STUDY OF CANDLE FILTER SURFACE REGENERATION

    SciTech Connect

    Bruce S. Kang; Eric K. Johnson

    2003-07-14

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  19. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  20. Operational Safety Requirements Neutron Multiplier Facility in 329 Building

    SciTech Connect

    EA. Lepel

    1992-10-01

    The operational safety requirements (OSRs) presented in this report define the conditions, safe boundaries and management control needed for safely operating the Neutron Multiplier Facility in the 329 Building Annex.

  1. Recent Upgrades at the Safety and Tritium Applied Research Facility

    SciTech Connect

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew; Loftus, Larry Shayne

    2016-03-01

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety at the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.

  2. A security/safety survey of long term care facilities.

    PubMed

    Acorn, Jonathan R

    2010-01-01

    What are the major security/safety problems of long term care facilities? What steps are being taken by some facilities to mitigate such problems? Answers to these questions can be found in a survey of IAHSS members involved in long term care security conducted for the IAHSS Long Term Care Security Task Force. The survey, the author points out, focuses primarily on long term care facilities operated by hospitals and health systems. However, he believes, it does accurately reflect the security problems most long term facilities face, and presents valuable information on security systems and practices which should be also considered by independent and chain operated facilities.

  3. Safety of magnetic fusion facilities: Volume 2, Guidance

    SciTech Connect

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  4. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    SciTech Connect

    Batandjieva, B.; Torres-Vidal, C.

    2002-02-26

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators.

  5. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    SciTech Connect

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  6. Transuranic storage and assay facility interim safety basis

    SciTech Connect

    Porten, D.R., Fluor Daniel Hanford

    1997-02-12

    The Transuranic Waste Storage and Assay Facility (TRUSAF) Interim Safety Basis document provides the authorization basis for the interim operation and restriction on interim operations for the TRUSAF. The TRUSAF ISB demonstrates that the TRUSAF can be operated safely, protecting the workers, the public, and the environment. The previous safety analysis document TRUSAF Hazards Identification and Evaluation (WHC 1987) is superseded by this document.

  7. CP-50 calibration facility radiological safety assessment document

    SciTech Connect

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described.

  8. Technical Safety Requirements for the Waste Storage Facilities May 2014

    SciTech Connect

    Laycak, D. T.

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  9. Maintaining Safety in the Dialysis Facility

    PubMed Central

    2015-01-01

    Errors in dialysis care can cause harm and death. While dialysis machines are rarely a major cause of morbidity, human factors at the machine interface and suboptimal communication among caregivers are common sources of error. Major causes of potentially reversible adverse outcomes include medication errors, infections, hyperkalemia, access-related errors, and patient falls. Root cause analysis of adverse events and "near misses" can illuminate care processes and show system changes to improve safety. Human factors engineering and simulation exercises have strong potential to define common clinical team purpose, and improve processes of care. Patient observations and their participation in error reduction increase the effectiveness of patient safety efforts. PMID:25376767

  10. Water safety in healthcare facilities. The Vieste Charter.

    PubMed

    Bonadonna, L; Cannarozzi de Grazia, M; Capolongo, S; Casini, B; Cristina, M L; Daniele, G; D'Alessandro, D; De Giglio, O; Di Benedetto, A; Di Vittorio, G; Ferretti, E; Frascolla, B; La Rosa, G; La Sala, L; Lopuzzo, M G; Lucentini, L; Montagna, M T; Moscato, U; Pasquarella, C; Prencipe, R; Ricci, M L; Romano Spica, V; Signorelli, C; Veschetti, E

    2017-01-01

    The Study Group on Hospital Hygiene of the Italian Society of Hygiene, Preventive Medicine and Public Health (GISIO-SItI) and the Local Health Authority of Foggia, Apulia, Italy, after the National Convention "Safe water in healthcare facilities" held in Vieste-Pugnochiuso on 27-28 May 2016, present the "Vieste Charter", drawn up in collaboration with experts from the National Institute of Health and the Ministry of Health. This paper considers the risk factors that may affect the water safety in healthcare facilities and reports the current regulatory frameworks governing the management of installations and the quality of the water. The Authors promote a careful analysis of the risks that characterize the health facilities, for the control of which specific actions are recommended in various areas, including water safety plans; approval of treatments; healthcare facilities responsibility, installation and maintenance of facilities; multidisciplinary approach; education and research; regional and national coordination; communication.

  11. Fire Safety. Managing School Facilities, Guide 6.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  12. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    SciTech Connect

    Bowman, B.R.

    1994-09-30

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design.

  13. Facility Safety Plan B360 Complex CMLS-411r0

    SciTech Connect

    Cooper, G

    2007-01-08

    Lawrence Livermore National Laboratory's (LLNL) Environmental, Safety and Health (ES&H) policy is that all operations must be planned and performed safely for the protection of workers, the public, the environment, and limit possible loss to property, facilities and equipment assigned to this directorate. In addition to observing LLNL policies contained in the ''Environment, Safety, and Health (ES&H) Manual'', LLNL workers will comply with applicable federal, state, and local regulations when conducting any activity that the Chemistry, Materials and Life Sciences (CMLS) Directorate has managerial control or oversight. Management has determined that the safety controls specified within this Facility Safety Plan (FSP) must also be followed to ensure that the operation is successfully performed efficiently and safely within this facility. Any operations conducted in this Complex that involve activities not commonly performed by the public require an Integration Work Sheet (IWS) or IWS/Safety Plan (IWS/SP) that specifically assesses the responsibilities, hazards and controls to conduct the operation safely. Everyone who enters this area (including students, workers, visitors, and consultants) must follow the applicable requirements in this FSP. Each person is expected to protect himself/herself and others from injury or illness. Regular facility occupants are expected to guide and govern visitors and assist new or temporary occupants in understanding and following this plan. When there are any doubts regarding the safety of any phase of work, workers and others will check with the facility manager. Changes to this FSP will be approved by the Facility Associate Director (AD). This will undergo triennial review to establish, at a minimum, that its contents are appropriate and adequate for current operations. The Hazards Control ES&H Team assists management in instituting and maintaining a minimum-risk and environmentally sound work environment. Any Laboratory worker has

  14. Safety assessment for the rf Test Facility

    SciTech Connect

    Nagy, A.; Beane, F.

    1984-08-01

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF.

  15. A HIGH TEMPERATURE TEST FACILITY FOR STUDYING ASH PARTICLE CHARACTERISTICS OF CANDLE FILTER DURING SURFACE REGENERATION

    SciTech Connect

    Kang, B.S-J.; Johnson, E.K.; Rincon, J.

    2002-09-19

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure back pulse cleaning jet. After this cleaning process has been done there may be some residual ash on the filter surface. This residual ash may grow and this may lead to mechanical failure of the filter. A High Temperature Test Facility (HTTF) was built to investigate the ash characteristics during surface regeneration at high temperatures. The system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. Details of the HTTF apparatus as well as some preliminary test results are presented in this paper. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time.

  16. Regeneration

    Treesearch

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  17. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  18. Fact Sheet - Final Air Toxics Rule for Steel Pickling and HCI Process Facilities and Hydrochloric Acid Regeneration Plants

    EPA Pesticide Factsheets

    Fact Sheet summarizing the main points of the national emssions standard for hazaradous air pollutants (NESHAP) for Steel Pickling— HCl Process Facilities and Hydrochloric Acid Regeneration Plants as promulgated on June 22, 1999.

  19. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    2000-08-08

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  20. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    SciTech Connect

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assembly is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and

  1. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  2. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  3. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  4. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  5. Transuranic waste storage and assay facility (TRUSAF) interim safety basis

    SciTech Connect

    Gibson, K.D.

    1995-09-01

    The TRUSAF ISB is based upon current facility configuration and procedures. The purpose of the document is to provide the basis for interim operation or restrictions on interim operations and the authorization basis for the TRUSAF at the Hanford Site. The previous safety analysis document TRUSAF hazards Identification and Evaluation (WHC 1977) is superseded by this document.

  6. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  7. Management concepts and safety applications for nuclear fuel facilities

    SciTech Connect

    Eisner, H.; Scotti, R.S.; Delicate, W.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  8. NIF conventional facilities construction health and safety plan

    SciTech Connect

    Benjamin, D W

    1998-05-14

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply.

  9. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  10. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  11. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility

    SciTech Connect

    Rathbun, R.

    1993-10-01

    Separate review of NMP-NCS-930058, {open_quotes}Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility (U), August 17, 1993,{close_quotes} was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility`s Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2{times}2{times}1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion.

  12. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  13. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    SciTech Connect

    MELOY, R.T.

    2003-05-01

    The Waste Sampling and Characterization Facility (WSCF) is an analytical laboratory complex on the Hanford Site that was constructed to perform chemical and low-level radiological analyses on a variety of sample media in support of Hanford Site customer needs. The complex is located in the 600 area of the Hanford Site, east of the 200 West Area. Customers include effluent treatment facilities, waste disposal and storage facilities, and remediation projects. Customers primarily need analysis results for process control and to comply with federal, Washington State, and US. Department of Energy (DOE) environmental or industrial hygiene requirements. This document was prepared to analyze the facility for safety consequences and includes the following steps: Determine radionuclide and highly hazardous chemical inventories; Compare these inventories to the appropriate regulatory limits; Document the compliance status with respect to these limits; and Identify the administrative controls necessary to maintain this status.

  14. Design of a Regenerable Air Revitalization Control System for the ABRS Plant Growth Facility

    NASA Astrophysics Data System (ADS)

    Monje, Oscar; Monje, Oscar; Shellack, James; Mortenson, Todd; Wells, Howard

    Design of a Regenerable Air Revitalization Control System for the ABRS Plant Growth Facility. O. Monje Space Life Sciences Laboratory, Dynamac Corp., DYN-3, Kennedy Space Center, FL 32899, USA J.L. Shellack, T.E. Mortenson, and H.W. Wells. Bionetics Corporation, BIO-1, Kennedy Space Center, FL 32899, USA The Advanced Biological Research System (ABRS) is a rear-breathing, single middeck locker equivalent plant growth system. ABRS is composed of two independently controlled growth chambers (each with 330 cm2 of growth area). The air revitalization system in each chamber is composed of two subsystems: CO2 Control and a Ethylene/VOC Control. The CO2 Control subsystem must control chamber [CO2] within a range of 300-2000 ppm, with a nominal setpoint of 1500 ppm. The Ethylene/VOC Control subsystem is required to maintain chamber ethylene concentration at ¡50 ppb. Previous spaceflight plant payloads have used non-regenerable cartridges for CO2 control and photocatalytic scrubbers for controlling concentrations of volatile organic compounds (VOCs). Non-regenerable systems have used LiOH cartridges for [CO2] control with a combination of Purafil (KMnO4)/Activated charcoal for scrubbing VOCs. Regenerable air revitalization systems offer the potential for reducing the mass and volume of consumables used during spaceflight plant experiments. A system utilizing technologies employing regenerable adsorbents: zeolites 13X and 5A for CO2 control and Carbosieve SIII (C molecular sieve) for VOC control has been designed for ABRS. The filter cartridges were sized using expected chamber leak rates, measurements of adsorptive capacities, and measured CO2 consumption and VOC generation rates.

  15. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  16. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2010-03-05

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  17. Explosive safety criteria at a Department of Energy contractor facility

    SciTech Connect

    Krach, F.

    1984-08-01

    Monsanto Research Corporation (MRC) operates the Mound facility in Miamisburg, Ohio, for the Department of Energy. Small explosive components are manufactured at MRC, and stringent explosive safety criteria have been developed for their manufacturing. The goals of these standards are to reduce employee injuries and eliminate fenceline impacts resulting from accidental detonations. This paper will describe the manner in which these criteria were developed and what DOD standards were incorporated into MRC's own design criteria. These design requirements are applicable to all new construction at MRC. An example of the development of the design of a Component Test Facility will be presented to illustrate the application of the criteria.

  18. Explosive safety criteria at a Department of Energy contractor facility

    NASA Astrophysics Data System (ADS)

    Krach, F.

    1984-08-01

    Monsanto Research Corporation (MRC) operates the Mound facility in Miamisburg, Ohio, for the Department of Energy. Small explosive components are manufactured at MRC, and stringent explosive safety criteria have been developed for their manufacturing. The goals of these standards are to reduce employee injuries and eliminate fenceline impacts resulting from accidental detonations. The manner in which these criteria were developed and what DOD standards were incorporated into MRC's own design criteria are described. These design requirements are applicable to all new construction at MRC. An example of the development of the design of a Component Test Facility is presented to illustrate the application of the criteria.

  19. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    SciTech Connect

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  20. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  1. First experimental data of the cryogenic safety test facility PICARD

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Henriques, A.; Stamm, M.; Grohmann, S.

    2017-02-01

    The test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been designed and constructed for cryogenic safety experiments. With a cryogenic liquid volume of 100 L, a nominal design pressure of 16 bar(g) and the capacity of measuring helium mass flow rates through safety relief devices up to 4 kg/s, the test facility allows the systematic investigation of hazardous incidents in cryostats under realistic conditions. In the course of experiments, the insulating vacuum is vented with atmospheric air or gaseous nitrogen at ambient temperature under variation of the venting diameter, the thermal insulation, the cryogenic fluid, the liquid level and the set pressure in order to analyze the impact on the heat flux and hence on the process dynamics. A special focus will be on the occurrence and implications of two-phase flow during expansion and on measuring the flow coefficients of safety devices at cryogenic temperatures. This paper describes the commissioning and the general performance of the test facility at liquid helium temperatures. Furthermore, the results of first venting experiments are presented.

  2. National Ignition Facility Project Site Safety Program Appendix A

    SciTech Connect

    Moses, E

    2001-09-30

    These rules apply to all National Ignition Facility (NIF) workers (workers), which include Lawrence Livermore National Laboratory (LLNL) employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other national laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules and NIF Code of Safe Practices shall be used by management to promote the prevention of incidents through indoctrination, safety and health training, and on-the-job application. As a condition for contract award, all employers shall conduct an orientation for all newly hired and rehired employees before those workers will be permitted to start work in this facility. This orientation shall include a discussion of the following information. The General Rules and NIF Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory worker who shall have it readily available. Copies of the General Rules and NIF Code of Safe Practices can also be included in employee safety pamphlets. The Environmental, Safety, and Health (ES&H) rules at the NIF Project site are based upon compliance with the most stringent of Department of Energy (DOE), LLNL, Federal Occupational Safety and Health Administration (OSHA), California (Cal)/OSHA, and federal and state environmental requirements.

  3. Confined space manure storage and facilities safety assessment.

    PubMed

    Murphy, D J; Manbeck, H B

    2014-07-01

    A mail survey of 1,200 farms across 16 states was conducted to identify the number, type, and size of manure storages per farm, as well as safety-related behaviors or actions related to entry into confined-space manure storage and handling facilities. Respondents provided data on 297 storage units and facilities, with approximately 75% reporting up to three storages per farm operation. Dimensions were provided for 254 manure pits: nearly 66% were less than or equal to 100 feet long, 75% were less than or equal to 40 feet wide, and 75% were less than or equal to 10 feet deep. Almost 14% of the reported storages were over 300 feet long, seven were wider than 100 feet, and 17 were more than 20 feet deep. Survey results suggest that most farm operations with confined-space manure storages do not follow best safety practices regarding their manure storages, including using gas detection equipment before entering a manure pit, using rescue lines when entering storages, or developing a written confined-space safety policy or plan. Survey results also suggest that few farmers post warning signs around their storages, post recommended ventilation times before entry, or conduct training for workers who enter confined-space manure storages. This article provides a benchmark against which the effectiveness of educational programs and design tools for confined-space manure pit ventilation systems and other confined-space manure pit safety interventions can be measured.

  4. TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS

    SciTech Connect

    C.E. Sanders

    2005-04-26

    The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions

  5. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    SciTech Connect

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  6. NASA to begin construction of aviation-safety test facility

    NASA Astrophysics Data System (ADS)

    Construction of a $7.5-million facility to research aviation safety will begin in April at NASA's Ames Research Center in Mountain View, California. Scheduled for completion in 1983, the facility will give scientists their first opportunity to identify and study psychological factors involved in the relationship between pilots, crew members, and modern aircraft.The center will have two simulators. One will be a replica of a current transport airplane cockpit, complete with flight engineer's station, flight display, and control systems. The second will represent transport aircraft of the future. With advanced technology flight controls, displays, and other flight deck systems to accommodate a flight crew and observer, the advanced simulator will be designed to test human responses to the newest aviation technologies.

  7. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  8. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  9. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    SciTech Connect

    Tomberlin, Terry Alan

    2002-06-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to "major modifications" and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

  10. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    SciTech Connect

    Tomberlin, T.A.

    2002-06-19

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

  11. Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles.

    PubMed

    Adsul, Mukund; Soni, Sarvesh K; Bhargava, Suresh K; Bansal, Vipul

    2012-09-10

    This study reports a facile method to disperse cellulose in deionized water, wherein a critical condition of regenerated cellulose is discovered, where it completely disperses up to a maximum of 5 g L(-1) concentration in deionized water with the help of ultrasonication. The dispersed cellulose is characterized by TEM and DLS, the latter among which shows 200 nm hydrodynamic radii of cellulose nanoparticles dispersed in deionized water. FTIR analysis of dispersed cellulose reveals that dispersed cellulose losses its crystallinity during regeneration and dispersion step employed in this study. The dispersed cellulose reported in this study is able to form free-standing, transparent films, which were characterized by SEM, XRD, TGA, EDX, and FTIR spectroscopy and show resistance against dissolution in water. Additionally, the dispersed cellulose is able to undergo at least three times faster enzymatic hydrolysis in comparison to pristine microcrystalline cellulose under similar reaction conditions. The dispersed cellulose reported here could be a better material for reinforcement, preparation of hydrogels, and drug delivery applications under physiological environment.

  12. Fire safety of ground-based space facilities on the spaceport ;Vostochny;

    NASA Astrophysics Data System (ADS)

    Artamonov, Vladimir S.; Gordienko, Denis M.; Melikhov, Anatoly S.

    2017-06-01

    The facilities of the spaceport ;Vostochny; and the innovative technologies for fire safety to be implemented are considered. The planned approaches and prospects for fire safety ensuring at the facilities of the spaceport ;Vostochny; are presented herein, based on the study of emergency situations having resulted in fire accidents and explosion cases at the facilities supporting space vehicles operation.

  13. 76 FR 14590 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Regulation Supplement; Safety of Facilities, Infrastructure, and Equipment for Military Operations (DFARS... Authorization Act for Fiscal Year 2010. Section 807 requires that facilities, infrastructure, and equipment that.... Facilities, infrastructure, and equipment shall be inspected prior to use to ensure safety and...

  14. 75 FR 66683 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Regulation Supplement; Safety of Facilities, Infrastructure, and Equipment for Military Operations (DFARS... Authorization Act of 2010. Section 807 requires that facilities, infrastructure, and equipment that are intended... Requirements, to add section 246.270, Safety of Facilities, Infrastructure, and Equipment for...

  15. Safety analysis of the 700-horsepower combustion test facility

    SciTech Connect

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  16. 62 FR 46525 - Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-09-03

    ... COMMISSION Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG AGENCY: Nuclear Regulatory... completion and availability of NUREG-1601, ``Chemical Process Safety at Fuel Cycle Facilities,'' dated July.... SUPPLEMENTARY INFORMATION: NRC is announcing the availability of NUREG-1601, ``Chemical Process Safety at...

  17. 71 FR 56344 - Facility Change Process Involving Items Relied on for Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-09-27

    ... COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety AGENCY... facility change process involving items relied on for safety. Additionally, the 10 CFR part 70 subpart H...) is amending its regulations to clarify a requirement pertaining to items relied on for safety...

  18. Commissioning of the cryogenic safety test facility PICARD

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Schön, H.; Stamm, M.; Grohmann, S.

    2015-12-01

    The sizing of cryogenic safety relief devices requires detailed knowledge on the evolution of the pressure increase in cryostats following hazardous incidents such as the venting of the insulating vacuum with atmospheric air. Based on typical design and operating conditions in liquid helium cryostats, the new test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been constructed. The vacuum-insulated test stand has a cryogenic liquid volume of 100 liters and a nominal design pressure of 16 bar(g). This allows a broad range of experimental conditions with cryogenic fluids. In case of helium, mass flow rates through safety valves and rupture disks up to about 4kg/s can be measured. Beside flow rate measurements under various conditions (venting diameter, insulation, working fluid, liquid level, set pressure), the test stand will be used for studies on the impact of two-phase flow and for the measurement of flow coefficients of safety devices at low temperature. This paper describes the operating range, layout and instrumentation of the test stand and presents the status of the commissioning phase.

  19. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  20. The Safety and Tritium Applied Research (STAR) Facility: Status-2004*

    SciTech Connect

    R. A. Anderl; G. R. Longhurst; R. J. Pawelko; J. P. Sharpe; S. T. Schuetz; D. A. Petti

    2004-09-01

    The purpose of this paper is to present the current status of the development of the Safety and Tritium Applied Research (STAR) Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). Designated a National User Facility by the US DOE, the primary mission of STAR is to provide laboratory infrastructure to study tritium science and technology issues associated with the development of safe and environmentally friendly fusion energy. Both tritium and non-tritium fusion safety research is pursued along three key thrust areas: (1) plasma-material interactions of plasma-facing component (PFC) materials exposed to energetic tritium and deuterium ions, (2) fusion safety concerns related to PFC material chemical reactivity and dust/debris generation, activation product mobilization, and tritium behavior in fusion systems, and (3) molten salts and fusion liquids for tritium breeder and coolant applications. STAR comprises a multi-room complex with operations segregated to permit both tritium and non-tritium activities in separately ventilated rooms. Tritium inventory in STAR is limited to 15,000 Ci to maintain its classification as a Radiological Facility. Experiments with tritium are typically conducted in glovebox environments. Key components of the tritium infrastructure have been installed and tested. This includes the following subsystems: (1) a tritium Storage and Assay System (SAS) that uses two 50-g depleted uranium beds for tritium storage and PVT/beta-scintillation analyses for tritium accountability measurements, (2) a Tritium Cleanup System (TCS) that uses catalytic oxidation and molecular sieve water absorption to remove tritiated species from glovebox atmosphere gases and gaseous effluents from experiment and process systems, and (3) tritium monitoring instrumentation for room air, glovebox atmosphere and stack effluent tritium concentration measurements. Integration of the tritium infrastructure subsystems with the experimental and

  1. Environment, safety, and health considerations for a new accelerator facility

    SciTech Connect

    J. Donald Cossairt

    2001-04-23

    A study of siting considerations for possible future accelerators at Fermilab is underway. Each candidate presents important challenges in environment, safety, and health (ES&H) that are reviewed generically in this paper. Some of these considerations are similar to those that have been encountered and solved during the construction and operation of other accelerator facilities. Others have not been encountered previously on the same scale. The novel issues will require particular attention coincident with project design efforts to assure their timely cost-effective resolution. It is concluded that with adequate planning, the issues can be addressed in a manner that merits the support of the Laboratory, the US Department of Energy (DOE), and the public.

  2. 77 FR 63437 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities, Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... issues and structural design as they relate to seismic and other natural hazards impact on the safety of... seismic, natural hazards, and fire safety issues that are particularly relevant to facilities owned and...

  3. 76 FR 21108 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... issues and structural design as they relate to seismic and other natural hazards impact on the safety of..., natural hazards, and fire safety issues that are particularly relevant to facilities owned and leased by...

  4. 75 FR 33899 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... and structural design as they relate to impact of natural and manmade hazards on the safety of..., natural hazards, and fire safety issues that are particularly relevant to facilities owned and leased by...

  5. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect

    Not Available

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  6. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  7. Nuclear space power safety and facility guidelines study

    SciTech Connect

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  8. Process safety and risk management: Is your facility under control?

    SciTech Connect

    Sulkowski, J.

    1997-08-01

    By 1990, the US Congress had passed two significant pieces of legislation dealing with the prevention of accidents involving hazardous chemical substances--Section 112(r) of the 1990 Clean Air Act Amendments, and legislation that required the Occupational Safety and Health Administration to issue its Process Safety Management regulations. On June 20, 1996, the final Rule on Risk Management Plans (RMP) for Chemical Accident Prevention was published by the Environmental Protection Agency (EPA). The final RMP Rule requires facilities with covered processes to be in full compliance with EPA`s Risk Management and Certification requirements by June 21, 1999. Meanwhile, the OSHA regulations, issued in final form in February 1992 (29CFR1910.119), provided a five-year compliance phase-in. One principal difference between the EPA and OSHA Rules arises from EPA`s position on exemptions: there are none under EPA`s Rule. With the RMP Rule, only the presence of a process containing a regulated substance above its threshold quantity determines applicability; the nature of the business is not considered in determining specific compliance requirements. Compliance of these regulations is discussed.

  9. Flight safety programs and enhancements for sounding rockets at Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Balach, Dean

    1995-01-01

    Sounding rocket programs are becoming larger and more complex, thus range safety personnel are required to be central to vehicle and mission design and operations planning. In response to this, the Wallops Flight Facility (VA), is upgrading range facilities, tracking systems, mobile systems and real-time safety systems. These enhancements will improve safety and reliability while augmenting mission success. Flight safety requirements and responsibilities are summarized, and the range safety's future upgrades for wind weighting, real-time analysis and displays, and the mobile safety systems for rocket programs, are considered.

  10. Climate change in safety assessment of a surface disposal facility

    NASA Astrophysics Data System (ADS)

    Leterme, B.

    2012-04-01

    The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The

  11. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  12. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  13. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  14. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  15. 33 CFR 165.837 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas. 165.837 Section 165.837 Navigation and Navigable Waters... Guard District § 165.837 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas...

  16. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  17. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  18. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  19. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  20. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...

  1. Medicare and Medicaid Programs; Fire Safety Requirements for Certain Health Care Facilities. Final rule.

    PubMed

    2016-05-04

    This final rule will amend the fire safety standards for Medicare and Medicaid participating hospitals, critical access hospitals (CAHs), long-term care facilities, intermediate care facilities for individuals with intellectual disabilities (ICF-IID), ambulatory surgery centers (ASCs), hospices which provide inpatient services, religious non-medical health care institutions (RNHCIs), and programs of all-inclusive care for the elderly (PACE) facilities. Further, this final rule will adopt the 2012 edition of the Life Safety Code (LSC) and eliminate references in our regulations to all earlier editions of the Life Safety Code. It will also adopt the 2012 edition of the Health Care Facilities Code, with some exceptions.

  2. Make safety awareness a priority: Use a login software in your research facility

    DOE PAGES

    Camino, Fernando E.

    2017-01-21

    We report on a facility login software, whose objective is to improve safety in multi-user research facilities. Its most important safety features are: 1) blocks users from entering the lab after being absent for more than a predetermined number of days; 2) gives users a random safety quiz question, which they need to answer satisfactorily in order to use the facility; 3) blocks unauthorized users from using the facility afterhours; and 4) displays the current users in the facility. Besides restricting access to unauthorized users, the software keeps users mindful of key safety concepts. In addition, integration of the softwaremore » with a door controller system can convert it into an effective physical safety mechanism. Depending on DOE approval, the code may be available as open source.« less

  3. Fast Flux Test Facility final safety analysis report. Amendment 72

    SciTech Connect

    Gantt, D. A.

    1992-08-01

    This document provides the Final Safety Analysis Report (FSAR) Amendment 72 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set. This amendment change incorporates Engineering Change Notices issued subsequent to Amendment 71 and approved for incorporation before June 24, 1992. These include changes in: Chapter 2, Site Characteristics; Chapter 3, Design Criteria Structures, Equipment, and Systems; Chapter 5B, Reactor Coolant System; Chapter 7, Instrumentation and Control Systems; Chapter 8, Electrical Systems - The description of the Class 1E, 125 Vdc systems is updated for the higher capacity of the newly installed, replacement batteries; Chapter 9, Auxiliary Systems - The description of the inert cell NASA systems is corrected to list the correct number of spare sample points; Chapter 11, Reactor Refueling System; Chapter 12, Radiation Protection and Waste Management; Chapter 13, Conduct of Operations; Chapter 16, Quality Assurance; Chapter 17, Technical Specifications; Chapter 19, FFTF Fire Specifications for Fire Detection, Alarm, and Protection Systems; Chapter 20, FFTF Criticality Specifications; and Appendix B, Primary Piping Integrity Evaluation.

  4. Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities

    SciTech Connect

    Not Available

    1994-06-01

    The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

  5. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  6. Improving the regulation of safety at DOE nuclear facilities. Final report

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  7. 78 FR 70858 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... Association Facilities; Columbia and Willamette Rivers AGENCY: Coast Guard, DHS. ACTION: Temporary final rule... Grain Handlers Association facilities: The Columbia Grain facility on the Willamette River in Portland... interim rule and request for comments titled, ``Safety Zones; Pacific Northwest Grain Handlers Association...

  8. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and areas; construction and safety precautions. (a) Permanent underground diesel fuel storage facilities must be— (1...

  9. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    SciTech Connect

    Sharirli, M.; Rand, J.L.; Sasser, M.K.; Gallegos, F.R.

    1992-12-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief review of the studies involved in Phases I and II of the program.

  10. 71 FR 69430 - Facility Change Process Involving Items Relied on for Safety: Confirmation of Effective Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-12-01

    ... COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety... requirement pertaining to items relied on for safety (IROFS). This rulemaking corrected an inconsistency in... for safety (IROFS). In the direct final rule, NRC stated that if no significant adverse comments...

  11. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  12. Addendum to preliminary safety analysis report, Centrifuge Plant Demonstration Facility, Building K-1220

    SciTech Connect

    Not Available

    1987-04-01

    This report supplements the Preliminary Safety Analysis Report: Centrifuge Plant Demonstration Facility, Building K-1220, K/D-3924 (Draft), by (1) replying to detailed comments from Oak Ridge Operations (ORO) of the Department of Energy (DOE), (2) incorporating additional information, (3) reproducing a revised version of an earlier memo that addresses several important safety issues, and (4) including a revised list of general and specific safety criteria, safety definitions, and safety systems. The last item, and this supplement as a whole, reflects a revised view of which elements of a facility should be emphasized in a preliminary safety analysis report (PSAR). The original PSAR for the Centrifuge Plant Demonstration Facility (CPDF) was written to include capital equipment loss as a safety concern; this supplement views capital equipment loss as a safety concern only when such loss could affect the health and safety of the public or employees. Several of the detailed comments are answered by a reference to K/O-4036. The more important safety information, besides that given in the memo in Appendix A, is to be found in the replies to comments. It should be emphasized that this supplement, like the original CPDF PSAR, is a preliminary report prepared before the design was complete. In the judgment of the CPDF operating contractor, the conclusion stated in the summary chapter of the PSAR is still valid - the facility can be operated with no significant impact on the health and safety of the public and employees.

  13. Criticality safety evaluation of the fuel cycle facility electrorefiner

    SciTech Connect

    Lell, R.M.; Mariani, R.D.; Fujita, E.K.; Benedict, R.W.; Turski, R.B.

    1993-09-01

    The integral Fast Reactor (IFR) being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal cooled reactors and a closed-loop fuel cycle. Some of the primary advantages are passive safety for the reactor and resistance to diversion for the heavy metal in the fuel cycle. in addition, the IFR pyroprocess recycles all the long-lived actinide activation products for casting into new fuel pins so that they may be burned in the reactor. A key component in the Fuel Cycle Facility (FCF) recycling process is the electrorefiner (ER) in which the actinides are separated from the fission products. In the process, the metal fuel is electrochemically dissolved into a high-temperature molten salt, and electrorefined uranium or uranium/plutonium products are deposited at cathodes. This report addresses the new and innovative aspects of the criticality analysis ensuing from processing metallic fuel, rather than metal oxide fuel, and from processing the spent fuel in batch operations. in particular, the criticality analysis employed a mechanistic approach as opposed to a probabilistic one. A probabilistic approach was unsuitable because of a lack of operational experience with some of the processes, rendering the estimation of accident event risk factors difficult. The criticality analysis also incorporated the uncertainties in heavy metal content attending the process items by defining normal operations envelopes (NOES) for key process parameters. The goal was to show that reasonable process uncertainties would be demonstrably safe toward criticality for continuous batch operations provided the key process parameters stayed within their NOES. Consequently the NOEs became the point of departure for accident events in the criticality analysis.

  14. SLSF local fault safety experiment P4: summary and conclusions. [Sodium Loop Safety Facility

    SciTech Connect

    Thompson, D.H.; Ragland, W.A.; Holland, J.W.; Dever, D.J.; Braid, T.H.; Baldwin, R.D.; Anderson, T.T.

    1985-01-01

    Sodium Loop Safety Facility (SLSF) experiment P4 in ETR was performed to investigate the consequences of an upper-bound or worse-than-worst case local fault configuration. P4 was intended to bound the consequences of credible subassembly faults by ejecting molten fuel into a 37-pin bundle of full-length Fast Test Reactor (FTR)-type pins and failing fuel with the potential for further cladding and fuel-pin damage. In addition to ejecting a large amount of molten fuel at or near full power, experiment objectives were to evaluate the severity of molten fuel-coolant interactions (MFCIs) and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors in time to prevent significant fuel failure propagation.

  15. Design of a limited-access facility and safety program for a genetic toxicology laboratory.

    PubMed

    Inmon, J; Vaughan, T; Morris, J

    1985-06-01

    A limited-access facility has been designed as a result of the need for laboratories for testing hazardous materials found in the environment. The facility design features include room air flow and filtration, hood types, sink design and placement, design of countertops, type of flooring and wall sealant, and traffic flow within the laboratories. These laboratories required the diversity to handle weighing of stock hazardous materials, preparation and handling of aliquots, maintenance of dosed animals as well as sterile conditions required for tissue culture and continuous cell culture methods. A safety and health program was also developed which included specific dress (e.g., scrub suit, TYVEK jumpsuit, gloves, safety glasses and safety shoes), safety advisory group, safety response group, medical monitoring program and training of current and new staff members. The design and use of the facility are continuously reevaluated and changes are made as necessitated by either research needs or improved safety methods.

  16. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry.

  17. Interim Safety Basis for Fuel Supply Shutdown Facility

    SciTech Connect

    BENECKE, M.W.

    2000-09-07

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines.

  18. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  19. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  20. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    SciTech Connect

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  1. Overview of the Preliminary Safety Analysis of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Brereton, S.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.; Yatabe, J.

    1997-06-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 individual laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a low hazard, radiological facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis report be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A Preliminary Safety Analysis Report (PSAR) has been approved, which documents and evaluates the safety issues associated with the construction, operation, and decommissioning of the NIF.

  2. Facility Safety Plan B360 Complex Biohazardous Operations CMLS-412r0

    SciTech Connect

    Cooper, G

    2007-01-08

    This Addendum to the Facility Safety Plan (FSP) 360 Complex describes the safety requirements for the safe conduct of all biohazardous research operations in all buildings within the 360 complex program areas. These requirements include all the responsibilities and authorities of building personnel, operational hazards, and environmental concerns and their controls. In addition, this Addendum prescribes facility-specific training requirements and emergency controls, as well as maintenance and quality assurance requirements for ES&H-related building systems.

  3. Construction safety program for the National Ignition Facility, Appendix B

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  4. Technical Support Section Instrument Support Program for Nuclear and Nonnuclear Facilities with Safety Requirements

    SciTech Connect

    Adkisson, B.P.

    1995-01-01

    This document describes the requirements, procedures, and responsibilities of the Instrumentation and Controls (I and C) Division's Technical Support Section (TSS) for instruments identified in nonreactor nuclear and nonnuclear facilities at Oak Ridge National Laboratory (ORNL) with Operational Safety Requirements (OSRs) or Limiting Conditions Documents (LCDs). As a result of DOE order 5480.22 Technical Safety Requirements (TSRs), OSRs, and LCDs for nuclear facilities will be eventually replaced by TSRs. OSRs or LCDs will continue to be required for high-, moderate-, or low-level radiological nonnuclear facilities. The objective of this document is to present an instrument surveillance plan for nonreactor nuclear and nonnuclear facility-identified instruments or systems as specified in the facility's OSR, LCD, or TSR. The instrument surveillance plan is a collaborative effort between the facility manager and the I and C Division TSS staff, thereby ensuring that the surveillance requirements stated in the OSR, LCD, or TSR are fulfilled within the required time frame.

  5. Safety and environmental process for the design and construction of the National Ignition Facility

    SciTech Connect

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  6. Industrial Sanitation and Personal Facilities. Module SH-13. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on industrial sanitation and personal facilities is one of 50 modules concerned with job safety and health. This module deals wth many facets of industrial sanitation and the facilities industries should provide so that proper health procedures may be followed. Following the introduction, 14 objectives (each keyed to a page in…

  7. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility... Eagle Rock Enrichment Facility (EREF)--in Bonneville County, Idaho; and (2) the receipt, possession, use...

  8. 71 FR 56413 - Facility Change Process Involving Items Relied on for Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-09-27

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety AGENCY: Nuclear Regulatory Commission. ACTION: Proposed rule. SUMMARY: The Nuclear... on for safety (IROFS). This rulemaking corrects an inconsistency in the regulations pertaining...

  9. 75 FR 13433 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX AGENCY: Coast Guard, DHS. ACTION: Interim final rule with request for comments. SUMMARY: The Coast Guard is establishing a safety zone for a partial blockage of the Victoria Barge...

  10. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation & Control System Design Description

    SciTech Connect

    WHITEHURST, R.

    1999-12-01

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  11. 75 FR 52996 - Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing...

  12. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7. Revision 1

    SciTech Connect

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included.

  13. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  14. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    SciTech Connect

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  15. Construction safety program for the National Ignition Facility

    SciTech Connect

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF`s management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES&H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES&H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES&H support organizations and administrative groups, and describes their interactions with the NIF Program.

  16. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    SciTech Connect

    VINCENT, Andrew

    2005-07-14

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the

  17. Systems engineering applied to integrated safety management for high consequence facilities

    SciTech Connect

    Barter, R; Morais, B

    1998-11-10

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design.

  18. Safety in the design and use of gamma and electron irradiation facilities: A great britain view

    NASA Astrophysics Data System (ADS)

    Forster, S.; Ross, B. C.

    1995-09-01

    The Health and Safety Executive is the main enforcing authority for health and safety legislation in industrial premises in Great Britain Adequate standards of ionising radiation protection in such workplaces should be achieved by compliance with the Ionising Radiations Regulations 1985 and the associated Approved Code of Practice. The Health and Safety Executive has published guidance on safety in the design and use of gamma and electron irradiation facilities A survey has been undertaken to assess current standards of radiation protection within a sample of industrial irradiation facilities in Great Britain. Compliance with the Regulations and the impact of the new guidance has been assessed. The findings of this survey are described and are being used to develop technical strategies for future inspection and enforcement of the Regulations in such facilities.

  19. Safety team assessments at NRC (Nuclear Regulatory Commission)-licensed fuel facilities

    SciTech Connect

    Sjoblom, G.L.

    1988-01-01

    Following the hydraulic rupture of a UF cylinder at the Sequoyah Fuels Facility on January 4, 1986, the US Nuclear Regulatory Commission's (NRC's) executive director for operations (EDO) established an augmented inspection team to investigate the accident. The investigation is reported in NUREG-1179. The EDO then formed a lessons-learned group to report on the action NRC might reasonably take to prevent similar accidents. The group's recommendations are reported in NUREG-1198. In addition, the EDO formed an independent materials safety regulation review study group (MSRRSG) to review the licensing and inspection program for NRC-licensed fuel cycle and materials facilities. During the same period of time that the MSRRSG report was being prepared and evaluated, the staff undertook an independent action to assess operational safety at each of the 12 major fuel facilities licensed by the NRC. The facilities included the 2 facilities producing uranium hexafluoride, the 7 facilities producing commercial nuclear reactor fuel, and the 3 facilities producing naval reactor fuel. The most important safety issues identified as needing attention by licensees were in the areas of fire protection, chemical hazards identification and mitigation, management controls or quality assurance, safety-related instrumentation and maintenance, and emergency preparedness.

  20. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Sharp, G.L.; McCracken, R.T.

    2003-05-13

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  1. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Gregg L. Sharp; R. T. McCracken

    2003-06-01

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  2. An approach to radiation safety department benchmarking in academic and medical facilities.

    PubMed

    Harvey, Richard P

    2015-02-01

    Based on anecdotal evidence and networking with colleagues at other facilities, it has become evident that some radiation safety departments are not adequately staffed and radiation safety professionals need to increase their staffing levels. Discussions with management regarding radiation safety department staffing often lead to similar conclusions. Management acknowledges the Radiation Safety Officer (RSO) or Director of Radiation Safety's concern but asks the RSO to provide benchmarking and justification for additional full-time equivalents (FTEs). The RSO must determine a method to benchmark and justify additional staffing needs while struggling to maintain a safe and compliant radiation safety program. Benchmarking and justification are extremely important tools that are commonly used to demonstrate the need for increased staffing in other disciplines and are tools that can be used by radiation safety professionals. Parameters that most RSOs would expect to be positive predictors of radiation safety staff size generally are and can be emphasized in benchmarking and justification report summaries. Facilities with large radiation safety departments tend to have large numbers of authorized users, be broad-scope programs, be subject to increased controls regulations, have large clinical operations, have significant numbers of academic radiation-producing machines, and have laser safety responsibilities.

  3. Construction safety program for the National Ignition Facility

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF.

  4. Safety Factors in Educational Facilities. An Annotated Reference List.

    ERIC Educational Resources Information Center

    Wakefield, Howard E.

    Abstracts and descriptor terms are presented for 26 selected references with safety orientation. Included in addition to several general planning handbooks are topics related to--(1) stairways, (2) air structures, (3) site planning, (4) lighting, (5) bidding practice, (6) physically handicapped, (7) laboratory design, (8) mobile classrooms, (9)…

  5. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  6. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  7. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  8. Application of total uncertainty theory in radioactive waste disposal facilities safety assessment

    SciTech Connect

    Lemos, Francisco Luiz de; Ross, Timothy; Sullivan, Terry

    2007-07-01

    Safety assessment requires the interaction of a large number of disciplines to model the environmental phenomena necessary to evaluate the safety of the disposal system. In this complex process, the identification and quantification of both types of uncertainties, random and epistemic, plays a very important role for confidence building. In this work an application of the concept of total uncertainty to radioactive waste disposal facilities safety assessment is proposed. By combining both types of uncertainty, aleatory and epistemic, in the same framework, this approach ultimately aims to assess the confidence one can pose in the safety-assessment decisions. (authors)

  9. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    SciTech Connect

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insider who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.

  10. Food safety practices and readiness to implement HACCP programs in assisted-living facilities in Iowa.

    PubMed

    Sneed, Jeannie; Strohbehn, Catherine; Gilmore, Shirley A

    2004-11-01

    To evaluate current food-handling practices and employee food safety knowledge and attitudes and to provide baseline data for implementing the Hazard Analysis and Critical Control Point (HACCP) program in assisted-living foodservices for elderly persons. Food-handling practices were observed at each assisted-living facility using a structured observation form. A validated questionnaire was used to determine demographic information and employees' attitudes and knowledge about food safety. A convenience sample of 40 assisted-living facilities in Iowa was recruited from a list obtained from the Iowa Department of Elder Affairs. Descriptive statistics were used to summarize data. One-way analysis of variance was used to assess differences in attitudes and food safety knowledge among the managers, cooks, and other foodservice employees. Multiple linear regression determined the relationship between manager and facility demographics and the food safety practice score. Proper food-handling practices were followed in many assisted-living facilities, but areas in need of improvement were identified. Some HACCP prerequisite programs were found to be inadequate, including a lack of written standard operating procedures, documentation of food safety practices, and training. Temperatures and chemical concentrations need to be checked routinely. Foodservice employees had a significant amount of food safety knowledge (14.6+/-3.0 out of 20 possible points), and employees with food safety certification scored higher than those with no certification (15.6+/-2.6 and 13.9+/-3.1, respectively; P safety and the HACCP program, will support improvement of safe food-handling practices and implementation of prerequisite programs and the HACCP program. Developing prerequisite programs, including sanitation standard operating procedures, will aid assisted-living facilities in moving toward HACCP program implementation.

  11. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    SciTech Connect

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  12. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  13. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    SciTech Connect

    Darby, John L.; Horak, Karl Emanuel; LaChance, Jeffrey L.; Tolk, Keith Michael; Whitehead, Donnie Wayne

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  14. Safety analysis of the MYRRHA facility with different core configurations

    SciTech Connect

    Arien, B.; Heusdains, S.; Alt Abderrahim, H.; Malambu, E.

    2006-07-01

    In the framework of the IAEA Coordinated Research Project on 'Studies of Innovative Reactor Technology Options for Effective Incineration of Radioactive Waste', a benchmark exercise was undertaken to analyse the behaviour of the MYRRHA facility in various accidental conditions. The transients were simulated by means of the RELAP and SITHER codes and the following set of accident scenarios was considered: loss of flow, loss of heat sink, overpower transient, overcooling and partial blockage of a subassembly. In addition, those accidents were simulated in two different situations depending on whether the proton beam is cut off (protected case) or not (unprotected case). In the IAEA benchmark two subcritical core configurations are considered: a typical core configuration composed only of (U-Pu)O{sub 2} MOX fuel assemblies and another one including additional U-free minor actinides fuel assemblies. The present paper summarized the main results obtained with the first core configuration. (authors)

  15. Running to Safety: Analysis of Disaster Susceptibility of Neighborhoods and Proximity of Safety Facilities in Silay City, Philippines

    NASA Astrophysics Data System (ADS)

    Patiño, C. L.; Saripada, N. A.; Olavides, R. D.; Sinogaya, J.

    2016-06-01

    Going on foot is the most viable option when emergency responders fail to show up in disaster zones at the quickest and most reasonable time. In the Philippines, the efficacy of disaster management offices is hampered by factors such as, but not limited to, lack of equipment and personnel, distance, and/or poor road networks and traffic systems. In several instances, emergency response times exceed acceptable norms. This study explores the hazard susceptibility, particularly to fire, flood, and landslides, of neighborhoods vis-à-vis their proximity to safety facilities in Silay City, Philippines. Imbang River exposes communities in the city to flooding while the mountainous terrain makes the city landslide prone. Building extraction was done to get the possible human settlements in the city. The building structures were extracted through image processing using a ruleset-based approach in the process of segmentation and classification of LiDAR derivatives and ortho-photos. Neighborhoods were then identified whether they have low to high susceptibility to disaster risks in terms of floods and landslides based on the hazards maps obtained from the Philippines' Mines and Geosciences Bureau (MGB). Service area analyses were performed to determine the safety facilities available to different neighborhoods at varying running times. Locations which are inaccessible or are difficult to run to because of distance and corresponding hazards were determined. Recommendations are given in the form of infrastructure installation, relocation of facilities, safety equipment and vehicle procurement, and policy changes for specific areas in Silay City.

  16. Assessing patient safety in Canadian ambulatory surgery facilities: A national survey

    PubMed Central

    Ahmad, Jamil; Ho, Olivia A; Carman, Wayne W; Thoma, Achilles; Lalonde, Donald H; Lista, Frank

    2014-01-01

    BACKGROUND: There has been increased interest regarding patient safety and standards of care in Canadian ambulatory surgery facilities where surgical procedures are performed. The Canadian Association for Accreditation of Ambulatory Surgical Facilities (CAAASF) is a national organization formed to establish and maintain standards to ensure that surgical procedures conducted outside of public hospitals are performed safely. OBJECTIVE: To determine how many procedures are performed annually at CAAASF member sites, and to examine complication rates and several key patient safety practices. METHODS: All 69 facilities accredited by the CAAASF were surveyed. The survey focused on procedural data, complication rates and patient safety interventions. RESULTS: In 2010, 40,240 estimated procedures were performed. A total of 263 (0.007%) complications were reported. Sixteen (0.0004%) patients required reoperations in hospital and 19 (0.0004%) patients required transfer to hospital on the day of surgery. There were only two mortalities within 30 days of surgery reported in the past five years. With regard to patient safety practices, 93% used antimicrobial prophylaxis, 100% used strategies to maintain normothermia and 82% used measures for venous thromboembolism prevention. CONCLUSION: The present study is the first to report on the Canadian experience in ambulatory surgery facilities and provides insight into current practices at these facilities. Appropriate accreditation of ambulatory surgery facilities, well-established patient safety-related standards of care, careful patient selection and procedures performed by qualified health care professionals with appropriate certification practicing within the scope of their practice form the basis for safe and effective ambulatory surgery. PMID:25152645

  17. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  18. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    SciTech Connect

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

  19. Preliminary Evaluation of Thermal Systems for Regenerating Explosives-Contaminated Carbon: Safety, Cost, and Technical Feasibility

    DTIC Science & Technology

    1988-07-01

    personnel estimate that experienced boiler operators can be trained to operate the mobile regenerator in only 1-2 d. They routinely hire operators from...Ash 5.60 7.06 Freundlich adsorption parameters X/M = a Cfb X/M = adsorbate loading on carbon, mg/gC Cf = aqueous concentration of adsorbate, ppm

  20. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    SciTech Connect

    IRWIN, J.J.

    1999-02-24

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

  1. Perceptions of Power Mobility Use and Safety within Residential Facilities

    PubMed Central

    Mortenson, William B; Miller, William C.; Boily, Jeanette; Steele, Barbara; Crawford, Erin M.; Desharnais, Guylaine

    2014-01-01

    Power wheelchairs enhance quality of life by enabling occupation, improving self-esteem and facilitating social interaction. Despite these benefits, there are risks associated with power mobility use; and accidents, which may occur, are a serious concern. As there is no gold standard to assess when a client is unsafe with power mobility, therapists generally rely on their clinical reasoning to make a decision. This paper presents the findings of the first phase of a two-part study to develop client-centred guidelines for power mobility. In the first phase of the study, 18 in-depth, qualitative interviews were conducted with a variety of stakeholders, including power mobility users, other residents, staff and family members. A thematic analysis of the interviews revealed four main themes: 1) “the meaning of power mobility,” 2) “learning the rules of the road,” 3) “red flags: concerns about safety,” and 4) “solutions.” The findings of this study have important implications for the safe use of power mobility. PMID:15988961

  2. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... sources; Develop conceptual designs for potential seismic upgrades to key active confinement ventilation... the enclosure to this letter. As noted above, the changes to the DSA currently under review would... DOE directs changes to the nuclear safety posture of its facilities. DOE is expediting its review...

  3. Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety

    NASA Technical Reports Server (NTRS)

    Stradling, J. S.; Pippen, D. L.; Frye, G. W.

    1983-01-01

    Methods of ascertaining the safety and suitability of a variety of oxygen system components are discussed. Additionally, qualification and batch control requirements for soft goods in oxygen systems are presented. Current oxygen system component qualification test activities in progress at White Sands Test Facility are described.

  4. 76 FR 11523 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... COMMISSION Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility.... Craig M. White. In this 10 CFR part 70 proceeding regarding the request of applicant AREVA Enrichment... Bonneville County, Idaho, on February 10, 2011, the NRC staff issued a notice of the availability of...

  5. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT QUALITY...

  6. 76 FR 53478 - Food Safety Modernization Act Domestic and Foreign Facility Reinspections, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Food Safety Modernization Act Domestic and Foreign Facility... Modernization Act (FSMA). The document was published with two typographical errors. This document corrects those...

  7. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    SciTech Connect

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public.

  8. Extreme Storm Event Assessments for Nuclear Facilities and Dam Safety

    NASA Astrophysics Data System (ADS)

    England, J. F.; Nicholson, T. J.; Prasad, R.

    2008-12-01

    Extreme storm events over the last 35 years are being assessed to evaluate flood estimates for safety assessments of dams, nuclear power plants, and other high-hazard structures in the U.S. The current storm rainfall design standard for evaluating the flood potential at dams and non-coastal nuclear power plants is the Probable Maximum Precipitation (PMP). PMP methods and estimates are published in the National Weather Service generalized hydrometeorological reports (HMRs). A new Federal Interagency cooperative effort is reviewing hydrometeorologic data from large storms which have occurred in the last 20 to 40 years and were not included in the database used in the development of many of the HMRs. Extreme storm data, such as the January 1996 storm in Pennsylvania, June 2008 Iowa storms, and Hurricanes Andrew (1992), Floyd (1999), Isabel (2003), Katrina (2005), need to be systematically assembled and analyzed for use in these regional extreme storm studies. Storm maximization, transposition, envelopment, and depth-area duration procedures will incorporate recent advances in hydrometeorology, including radar precipitation data and stochastic storm techniques. We describe new cooperative efforts to develop a database of extreme storms and to examine the potential impacts of recent extreme storms on PMP estimates. These efforts will be coordinated with Federal agencies, universities, and the private sector through an Extreme Storm Events Work Group under the Federal Subcommittee on Hydrology. This work group is chartered to coordinate studies and develop databases for reviewing and improving methodologies and data collection techniques used to estimate design precipitation up to and including the PMP. The initial effort focuses on collecting and reviewing extreme storm event data in the Southeastern U.S. that have occurred since Tropical Storm Agnes (1972). Uncertainties and exceedance probability estimates of PMP are being explored. Potential effects of climate

  9. Effects of health and safety problem recognition on small business facility investment

    PubMed Central

    2013-01-01

    Objectives This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. Methods An individual survey of businesses’ present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Results Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was “very important”. Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Conclusions Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety

  10. Effects of health and safety problem recognition on small business facility investment.

    PubMed

    Park, Jisu; Jeong, Harin; Hong, Sujin; Park, Jong-Tae; Kim, Dae-Sung; Kim, Jongseo; Kim, Hae-Joon

    2013-10-23

    This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. An individual survey of businesses' present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was "very important". Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety issues in terms of business management and

  11. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  12. Preparing a metal-ion chelated immobilized enzyme reactor based on the polyacrylamide monolith grafted with polyethylenimine for a facile regeneration and high throughput tryptic digestion in proteomics.

    PubMed

    Wu, Shuaibin; Zhang, Lei; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-01-01

    Initially, a poly (glycidyl methacrylate-co-acrylamide-co-methylenebisacrylamide) monolith was prepared in the 100 μm i.d. capillary, and then was grafted with polyethylenimine (Mw, ~25,000) for adsorbing Cu(2+), followed by chelating trypsin. As a result, efficient digestion for BSA (100 ng/μL) was completed within 50 s via such immobilized enzyme reactor (IMER); yielding 47% sequence coverage by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Compared with the conventional method for preparing the metal-ion chelated IMER, the regeneration of such IMER can be achieved facilely by the respective 30 min desorption and re-adsorption of trypsin, and 51% sequence coverage was obtained for 50 s BSA digestion after regeneration. BSA down to femtomole was also efficiently digested by the prepared regenerable IMER. Meanwhile, after the consecutive digestion of myoglobin and BSA, there was not any mutual interference for both during MALDI-TOF MS identification, indicating the low nonspecific adsorption of such regenerable IMER. To test the applicability of regenerable IMER for complex sample profiling, proteins (150 ng) extracted from Escherichia coli were digested within 80 s by the regenerable IMER and further analyzed by nanoreversed phase liquid chromatography-electrospray ionization-mass spectrometry successfully, showing its practicability for the high throughput analysis of complex samples.

  13. 76 FR 13397 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet Mixing at the... Defense Nuclear Facilities Safety Board Recommendation 2010-2, concerning Pulse Jet Mixing at the Waste... Board (Board) Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant...

  14. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  15. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  16. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  17. IMPLEMENTATION OF DEFENSE NUCLEAR FACILITY SAFETY BOARD RECOMMENDATION 2000-2 AT WIPP

    SciTech Connect

    Jackson, K.; Wu, C.

    2002-02-26

    The Defense Nuclear Safeties Board (DNFSB) issued Recommendation 2000-2 on March 8, 2000, concerning the degrading conditions of vital safety systems, or systems important to nuclear safety, at DOE sites across the nation. The Board recommended that the DOE take action to assess the condition of its nuclear systems to ensure continued operational readiness of vital safety systems that are important for safely accomplishing the DOE's mission. To verify the readiness of vital safety systems, a two-phased approach was established. Phase I consisted of a qualitative assessment to approved criteria of the defined vital safety systems by operating contractor personnel, overseen by Federal field office personnel. Based on Phase I Assessment results, vital safety systems with significant deficiencies would be further assessed in Phase II, a more extensive quantitative assessment, by a contractor and Federal team, using a second set of criteria. In addition, Defense Nuclear Facility Safety Board Recommendation 2000-2 concluded that the degradation of confinement ventilation systems was of major concern, and issued a separate set of criteria to perform a Phase II Assessment on confinement ventilation systems.

  18. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  19. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  20. An empirical investigation of the influence of safety climate on organizational citizenship behavior in Taiwan's facilities.

    PubMed

    Lee, Tzai-Zang; Wu, Chien-Hsing; Hong, Chih-Wei

    2007-01-01

    Although the social exchange relationships between employers and employees are increasingly important to the performance of safety management systems, the psychological effects of work attitudes on this relationship have been less studied. Using a sample of first-line operators and their supervisors from 188 facilities in Taiwan which had Occupational Health and Safety Assessment Series 18000 (OHSAS 18000) certification, the current research conducted an empirical investigation of the influence of safety climate on organizational citizenship behavior (OCB). Work attitude was used to disclose the psychological effect. Research results indicated that (a) safety climate was a significant predicator of OCB, (b) the psychological effect significantly influenced social exchange relationships, and (c) job satisfaction showed a stronger mediating influence than organizational commitment due to the frequent top management turnover. Discussions and implications are also addressed.

  1. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    SciTech Connect

    Rathbun, R.

    1994-04-26

    Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

  2. Report of the Task Group on Electrical Safety of Department of Energy facilities

    SciTech Connect

    1993-01-01

    The Task Group on Electrical Safety at DOE Facilities (Task Group), which was formally established on October 27, 1992. The Task Group reviewed the electrical safety-related occurrence history of, and conducted field visits to, seven DOE sites chosen to represent a cross section of the Department`s electrical safety activities. The purpose of the field visits was to review, firsthand, electrical safety programs and practices and to gain greater insight to the root causes and corrective actions taken for recently reported incidents. The electrical safety environment of the DOE complex is extremely varied, ranging from common office and industrial electrical systems to large high-voltage power distribution systems (commercial transmission line systems). It includes high-voltage/high-power systems associated with research programs such as linear accelerators and experimental fusion confinement systems. Age, condition, and magnitude of the facilities also varies, with facilities dating from the Manhattan Project, during World War II, to the most modem complexes. The complex is populated by Federal (DOE and other agencies) and contractor employees engaged in a wide variety of occupations and activities in office, research and development, and industrial settings. The sites visited included all of these variations and are considered by the Task Group to offer a valid representation of the Department`s electrical safety issues. The sites visited were Oak Ridge National Laboratory (ORNL), Stanford Linear Accelerator Center (SLAC), Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Savannah River Site (SRS), Hanford Reservation (Hanford), and the Uranium Mill Tailings Remedial Action Project (UMTRA) located at Grand Junction, Colorado.

  3. National Ignition Facility start-up/operations engineering and special equipment construction health and safety plan

    SciTech Connect

    Huddleston, P C

    1998-05-08

    This document sets forth the responsibilities, interfaces, guidelines, rules, policy, and regulations for all workers involved in the S/O and SE construction, installation, and acceptance testing. This document is enforced from the first day that S/O and SE workers set foot on the NIF construction site until the end of the Project at Critical Decision 4. This document is applicable only to site activities, which are defined as those that occur within the perimeter of the fenced-off NIF construction zone and the Target Chamber Assembly Area (Helipad). The associated Special Equipment laydown and construction support areas listed in Appendix B are not under this plan; their safety provisions are discussed in the Appendix. Prototype and other support activities, such as the Amplifier Laboratory and Frame Assembly Unit assembly area, are not included in this plan. After completion of the Operational Readiness Review, the Facility Safety Procedure, Operational Safety Requirements, and Operational Safety Procedures are the governing safety documents for the operating facility. The S/O and SE project elements are required to implement measures that create a universal awareness of and promote safe job practices at the site. This includes all Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester, supplement labor organization, and subcontractor employees; visitors; and guests serving the S/O and SE effort.

  4. Prevention by Design: Construction and Renovation of Health Care Facilities for Patient Safety and Infection Prevention.

    PubMed

    Olmsted, Russell N

    2016-09-01

    The built environment supports the safe care of patients in health care facilities. Infection preventionists and health care epidemiologists have expertise in prevention and control of health care-associated infections (HAIs) and assist with designing and constructing facilities to prevent HAIs. However, design elements are often missing from initial concepts. In addition, there is a large body of evidence that implicates construction and renovation as being associated with clusters of HAIs, many of which are life threatening for select patient populations. This article summarizes known risks and prevention strategies within a framework for patient safety.

  5. The dual axis radiographic hydrodynamic test (DARHT) facility personnel safety system (PSS) control system

    SciTech Connect

    Jacquez, Edward B

    2008-01-01

    The mission of the Dual Axis Radiograph Hydrodynamic Test (DARHT) Facility is to conduct experiments on dynamic events of extremely dense materials. The PSS control system is designed specifically to prevent personnel from becoming exposed to radiation and explosive hazards during machine operations and/or the firing site operation. This paper will outline the Radiation Safety System (RSS) and the High Explosive Safety System (HESS) which are computer-controlled sets of positive interlocks, warning devices, and other exclusion mechanisms that together form the PSS.

  6. Safety Analysis (SA) of the decontamination facility, Building 419, at the Lawrence Livermore National Laboratory

    SciTech Connect

    Odell, B.N.

    1980-06-17

    This safety analysis was performed for the Manager, Plant Services at LLNL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the maximum quantities of radioactive materials that safety procedures allow to be handled in this building do not pose undue risks on- or off-site even in postulated severe accidents. Risk from the various hazards at this facility vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for improvements that will reduce risks even further.

  7. DESIGN SAFETY FEATURES OF THE BNL HIGH-TEMPERATURE COMBUSTION FACILITY

    SciTech Connect

    GINSBERG,T.; CICCARELLI,G.; BOCCIO,J.

    2000-06-11

    The Brookhaven National Laboratory (BNL) High-Temperature Combustion Facility (HTCF) was used to perform hydrogen deflagration and detonation experiments at temperatures to 650 K. Safety features that were designed to ensure safe and reliable operation of the experimental program are described. Deflagration and detonation experiments have been conducted using mixtures of hydrogen, air, and steam. Detonation cell size measurements were made as a function of mixture composition and thermodynamic gas conditions. Deflagration-to-detonation transition experiments were also conducted. Results of the experimental program are presented, and implications with respect to hydrogen safety are discussed.

  8. Preclosure radiological safety analysis for the exploratory shaft facilities; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ma, C.W.; Miller, D.D.; Jardine, L.J.

    1992-06-01

    This study assesses which structures, systems, and components of the exploratory shaft facility (ESF) are important to safety when the ESF is converted to become part of the operating waste repository. The assessment follows the methodology required by DOE Procedure AP-6.10Q. Failures of the converted ESF during the preclosure period have been evaluated, along with other underground accidents, to determine the potential offsite radiation doses and associated probabilities. The assessment indicates that failures of the ESF will not result in radiation doses greater than 0.5 rem at the nearest unrestricted area boundary. Furthermore, credible accidents in other underground facilities will not result in radiation doses larger than 0.5 rem, even if any structure, system, or component of the converted ESF fails at the same time. Therefore, no structure, system, or component of the converted ESF is important to safety.

  9. Moving a hospital: simulation - a way to co-produce safety healthcare facilities.

    PubMed

    Gignon, Maxime; Amsallem, Carole; Ammirati, Christine

    2017-04-10

    Moving a hospital is a critical period for quality and safety of healthcare. Change is very stressful for professionals. Workers who have experienced relocation of their place of work report deterioration in health status. Building a new hospital or restructuring a unit could provide an opportunity for improving safety and value in healthcare and for ensuring better quality of worklife for the staff. We used in situ simulation to promote experiential learning by training healthcare workers in the workplace in which they are expected to use their skills. In situ simulation was a way to design, plan, assess and implement a new healthcare environment before opening its doors for patient care. We can envisage that simulation will soon be used formally to identify potential problems in healthcare delivery and in staff quality of worklife in new healthcare facilities. Simulation is a way to co-produce a safe and valuable healthcare facility.

  10. Safety analysis report for the Heavy-Element Facility (Building 251), Lawrence Livermore National Laboratory

    SciTech Connect

    Kvam, D.J.

    1982-10-11

    A comprehensive safety analysis was performed on the Lawrence Livermore National Laboratory's Heavy Element Facility, Building 251. The purpose of the analysis was to evaluate the building and its operations in order to inform LLNL and the Department of Energy of the risks they assume at Building 251. This was done by examining all of the energy sources and matching them with the physical and administrative barriers that control, prevent, or mitigate their hazards. Risk was evaluated for each source under both normal and catastrophic circumstances such as fire, flood, high wind, lighting, earthquake, and criticality. No significant safety deficiencies were found; it is concluded that the operation of the facility presents no unacceptable risk.

  11. Criticality safety evaluation report for the Cold Vacuum Drying Facility`s process water handling system

    SciTech Connect

    Roblyer, S.D.

    1998-02-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO`s interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck.

  12. Animal-assisted interventions: A national survey of health and safety policies in hospitals, eldercare facilities, and therapy animal organizations.

    PubMed

    Linder, Deborah E; Siebens, Hannah C; Mueller, Megan K; Gibbs, Debra M; Freeman, Lisa M

    2017-08-01

    Animal-assisted intervention (AAI) programs are increasing in popularity, but it is unknown to what extent therapy animal organizations that provide AAI and the hospitals and eldercare facilities they work with implement effective animal health and safety policies to ensure safety of both animals and humans. Our study objective was to survey hospitals, eldercare facilities, and therapy animal organizations on their AAI policies and procedures. A survey of United States hospitals, eldercare facilities, and therapy animal organizations was administered to assess existing health and safety policies related to AAI programs. Forty-five eldercare facilities, 45 hospitals, and 27 therapy animal organizations were surveyed. Health and safety policies varied widely and potentially compromised human and animal safety. For example, 70% of therapy animal organizations potentially put patients at risk by allowing therapy animals eating raw meat diets to visit facilities. In general, hospitals had stricter requirements than eldercare facilities. This information suggests that there are gaps between the policies of facilities and therapy animal organizations compared with recent guidelines for animal visitation in hospitals. Facilities with AAI programs need to review their policies to address recent AAI guidelines to ensure the safety of animals and humans involved. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Technical Support Section Instrument Support Program for nuclear and nonnuclear facilities with safety requirements

    SciTech Connect

    Adkisson, B.P.; Allison, K.L.

    1995-01-01

    This document describes requirements, procedures, and supervisory responsibilities of the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I&C) Division`s Technical Support Section (TSS) for instrument surveillance and maintenance in nonreactor nuclear facilities having identified Operational Safety Requirements (OSRs) or Limiting Conditions Document (LCDs). Implementation of requirements comply with the requirements of U.S. Department of Energy (DOE) Orders 5480.5, 5480.22, and 5481.1B; Martin Marietta Energy Systems, Inc. (Energy Systems), Policy Procedure ESS-FS-201; and ORNL SPP X-ESH-15. OSRs and LCDs constitute an agreement or contract between DOE and the facility operating management regarding the safe operation of the facility. One basic difference between OSRs and LCDs is that violation of an OSR is considered a Category II occurrence, whereas violation of an LCD requirement is considered a Category III occurrence (see Energy Systems Standard ESS-OP-301 and ORNL SPP X-GP-13). OSRs are required for high- and moderate-hazard nuclear facilities, whereas the less-rigorous LCDs are required for low-hazard nuclear facilities and selected {open_quotes}generally accepted{close_quotes} operations. Hazard classifications are determined through a hazard screening process, which each division conducts for its facilities.

  14. Needs and opportunities for improving the health, safety, and productivity of medical research facilities.

    PubMed Central

    Hodgson, M; Brodt, W; Henderson, D; Loftness, V; Rosenfeld, A; Woods, J; Wright, R

    2000-01-01

    Medical research facilities, indeed all the nation's constructed facilities, must be designed, operated, and maintained in a manner that supports the health, safety, and productivity of the occupants. The National Construction Goals, established by the National Science and Technology Council, envision substantial improvements in occupant health and worker productivity. The existing research and best practices case studies support this conclusion, but too frequently building industry professionals lack the knowledge to design, construct, operate, and maintain facilities at these optimum levels. There is a need for more research and more collaborative efforts between medical and facilities engineering researchers and practitioners in order to attain the National Construction Goals. Such collaborative efforts will simultaneously support attainment of the National Health Goals. This article is the summary report of the Healthy Buildings Committee for the Leadership Conference: Biomedical Facilities and the Environment sponsored by the National Institutes of Health, the National Association of Physicians for the Environment, and the Association of Higher Education Facilities Officers on 1--2 November 1999 in Bethesda, Maryland, USA. PMID:11124125

  15. Health Facilities Safety in Natural Disasters: Experiences and Challenges from South East Europe

    PubMed Central

    Radovic, Vesela; Vitale, Ksenija; Tchounwou, Paul B.

    2012-01-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations. PMID:22754465

  16. Health facilities safety in natural disasters: experiences and challenges from South East Europe.

    PubMed

    Radovic, Vesela; Vitale, Ksenija; Tchounwou, Paul B

    2012-05-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations.

  17. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  18. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  19. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  20. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  1. Development of an Environmental Safety Case for a Geological Disposal Facility in the UK

    NASA Astrophysics Data System (ADS)

    Bailey, L.; Clark, H.; Wellstead, M.

    2012-04-01

    Geological disposal is the UK policy for the long-term management of higher activity radioactive waste. The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal. The implementation process is founded on the principles of voluntarism and partnership and the UK Government has set in place a process that encourages communities to participate in the siting process. Developing an environmental safety case (ESC) that gives confidence that a geological disposal facility (GDF) for higher activity radioactive wastes will remain passively safe for hundreds of thousands of years after the facility has been closed, and is no longer actively maintained, is an important and challenging part of the programme to implement geological disposal. Our approach for building confidence in long-term safety is to use multiple barriers to isolate and contain the wastes and to explain our confidence in the performance of these barriers by developing a multi-factor safety case. We will develop a safety case based on varied and different lines of reasoning, including both quantitative aspects and qualitative arguments. We will use a range of safety arguments to support the ESC, drawing on underpinning science and engineering. We have published a generic ESC (that is not specific to any site or disposal facility design) that considers the long-term safety of illustrative generic disposal facility design examples in stylised geological environments. This generic ESC explains how engineered and natural barriers can work together to isolate and contain the radioactivity in the wastes. The safety arguments in the generic ESC are supported by calculations using a simple model that is illustrative of a broad range of disposal facility designs and geological environments. The generic ESC provides a benchmark enabling us to undertake disposability assessments for waste packages, without

  2. Control of Listeria species food safety at a poultry food production facility.

    PubMed

    Fox, Edward M; Wall, Patrick G; Fanning, Séamus

    2015-10-01

    Surveillance and control of food-borne human pathogens, such as Listeria monocytogenes, is a critical aspect of modern food safety programs at food production facilities. This study evaluated contamination patterns of Listeria species at a poultry food production facility, and evaluated the efficacy of procedures to control the contamination and transfer of the bacteria throughout the plant. The presence of Listeria species was studied along the production chain, including raw ingredients, food-contact, non-food-contact surfaces, and finished product. All isolates were sub-typed by pulsed-field gel electrophoresis (PFGE) to identify possible entry points for Listeria species into the production chain, as well as identifying possible transfer routes through the facility. The efficacy of selected in-house sanitizers against a sub-set of the isolates was evaluated. Of the 77 different PFGE-types identified, 10 were found among two or more of the five categories/areas (ingredients, food preparation, cooking and packing, bulk packing, and product), indicating potential transfer routes at the facility. One of the six sanitizers used was identified as unsuitable for control of Listeria species. Combining PFGE data, together with information on isolate location and timeframe, facilitated identification of a persistent Listeria species contamination that had colonized the facility, along with others that were transient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A graded approach to safety analysis for Rover Processing Facility deactivation

    SciTech Connect

    Henrikson, D.J.

    1997-08-01

    The Rover Fuels Processing Facility operated in the early 1980`s, recovering uranium from graphite fuels. In 1996 clean-out began of uranium bearing material remaining in the Rover cells where combustion processes had occurred. Success of the Rover Deactivation Project depends on the safe, timely, and cost-effective repackaging and removal of the uranium bearing material. Due to a number of issues which could not be resolved prior to clean-out, and consideration of cost and schedule objectives, a graded approach was taken to projected design and criticality safety analysis. The safety authorization basis was upgraded primarily by a specific Deactivation addendum, instead of being completely rewritten to current format and content standards. In place of having all design activities completed prior to the start of the Deactivation, the project design and accompanying safety documentation evolved as the project progressed. The Unreviewed Safety Question determination process was used to ensure that new project activities were within the safety envelope. This graded approach allowed operational flexibility while maintaining a critically safe work environment.

  4. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    SciTech Connect

    Liu, James C.; Rokni, Sayed H.; Asano, Yoshihiro; Casey, William R.; Donahue, Richard J.; /LBL, Berkeley

    2005-06-29

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  5. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  6. Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell

    SciTech Connect

    Williamson, T.G.

    1994-10-17

    The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

  7. Preliminary Authorization Basis Documentation for the Proposed Bio Safety Level 3 (BSl-3) Facility

    SciTech Connect

    Altenbach, T J; Nguyen, S N

    2003-09-20

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct a biosafety level (BSL-3) facility at Site 200 in Livermore, California. Biosafety level 3 (BSL-3) is a designation assigned by the Centers for Disease Control and Prevention (CDC) and National Institutes Health (NIH) for handling infectious organisms based on the specific microorganisms and associated operations. Biosafety levels range from BSL-1 (lowest hazard) to BSL-4 (highest hazard). Details about the BSL-3 criteria are described in the Center of Disease Control and Prevention (CDC)/National Institutes of Health (NIH)'s publication ''Biosafety Microbiological and Biomedical Laboratories'' (BMBL), 4th edition (CDC 1999): The BSL-3 facility will be built in accordance with the required BMBL guidelines. This Preliminary Authorization Basis Documentation (PABD) for the proposed BSL-3 facility has been prepared in accordance with the current contractual requirements at LLNL. This includes the LLNL Environment, Safety, and Health Manual (ES&H Manual) and applicable Work Smart Standards, including the biosafety standards, such as the aforementioned BMBL and the NIH Guidelines for Research Involving Recombinant DNA Molecules: The proposed BSL-3 facility is a 1,100 ft{sup 2}, one-story permanent prefabricated facility, which will have three individual BSL-3 laboratory rooms (one of which is an animal biosafety level-3 [ABSL-3] laboratory to handle rodents), a mechanical room, clothes-change and shower rooms, and small storage space (Figure 3.1). The BSL-3 facility will be designed and operated accordance with guidelines for BSL-3 laboratories established by the CDC and the NIH. No radiological, high explosives, fissile, or propellant material will be used or stored in the proposed BSL-3 facility. The BSL-3 facility will be used to develop scientific tools to identify and understand the pathogens of medical, environmental, and forensic importance. Microorganisms that are to be handled in this

  8. Operating Experiences from Existing Fusion Facilities in View of ITER Safety and Reliability

    SciTech Connect

    T. Pinna; L. Cadwallader

    2010-12-01

    The objective of this ongoing activity is to develop a fusion specific component failure rate database useful to quantify probabilistic safety assessment, support traditional safety analysis, quantify reliability, availability, maintainability, and inspectability (RAMI) analyses, and support any other uses where field experience can provide feedback to fusion facility design and operation. The activity supported by European, American, and Japanese programs is established in the context of the International Energy Agency Agreement on the Environmental, Safety and Economic Aspects of Fusion Power (IEA ESE). The data collection began in 1989. At first, it was to "harvest" already-published data from high-technology industries that can be readily applied to fusion components. Several years later, attention was also directed to collecting and analyzing operating experience data from existing tokamaks and other fusion experiments. For some fusion facilities, the investigations on causes and effects of failures of components and systems have also interested worker exposures and radiological releases induced by maintenance activities on failed components.

  9. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance.

  10. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Facilities Caused by the Passage of Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration... to pipeline facilities caused by the passage of Hurricanes. ADDRESSES: This document can be viewed on...-related issues that can result from the passage of hurricanes. That includes the potential for damage...

  11. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation and Control System Design Description SYS 93-2

    SciTech Connect

    WHITEHURST, R.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  12. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and...

  13. 76 FR 37798 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet Mixing at the..., concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant, to the Department of Energy. In... Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing (PJM) at the Waste Treatment and...

  14. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms..., Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in that notice....

  15. "Defense-in-Depth" Laser Safety and the National Ignition Facility

    SciTech Connect

    King, J J

    2010-12-02

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential

  16. Medicare and Medicaid programs; fire safety requirements for certain health care facilities; amendment. Final rule.

    PubMed

    2006-09-22

    This final rule adopts the substance of the April 15, 2004 tentative interim amendment (TIA) 00-1 (101), Alcohol Based Hand Rub Solutions, an amendment to the 2000 edition of the Life Safety Code, published by the National Fire Protection Association (NFPA). This amendment allows certain health care facilities to place alcohol-based hand rub dispensers in egress corridors under specified conditions. This final rule also requires that nursing facilities at least install battery-operated single station smoke alarms in resident rooms and common areas if they are not fully sprinklered or they do not have system-based smoke detectors in those areas. Finally, this final rule confirms as final the provisions of the March 25, 2005 interim final rule with changes and responds to public comments on that rule.

  17. Fire safety knowledge and practices among residents of an assisted living facility.

    PubMed

    Jaslow, David; Ufberg, Jacob; Yoon, Russell; McQueen, Clay; Zecher, Derek; Jakubowski, Greg

    2005-01-01

    Assisted living facilities (ALFs) pose unique fire risks to the elderly that may be linked to specific fire safety (FS) practices. To evaluate self-reported FS practices among ALF residents. All residents of a small ALF were surveyed regarding actual and hypothetical FS behaviors, self-perceived fire risk, and FS preparedness. Fifty-eight ALF residents completed the survey. Thirty-three (58%) individuals reported one or more disabilities. Seven (12%) residents ignored the fire alarm and 21 (35%) could not hear it clearly. Sixteen (28%) residents would attempt to locate the source of a fire rather than escape from the building. Only 24 (42%) residents were familiar with the building fire plan. Twenty-three (40%) people surveyed believed that they were not at risk of fire in the study facility. Residents of an ALF may be at increased fire injury risk due to their FS practices and disabilities.

  18. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  19. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    SciTech Connect

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  20. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  1. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The

  2. 76 FR 16758 - DOE Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ...: Ms. Amanda Anderson, Nuclear Engineer, Departmental Representative to the Defense Nuclear Facilities... Security. February 28, 2011 The Honorable Peter S. Winokur Chairman, Defense Nuclear Facilities...

  3. Safety Grounding Approach for the National Ignition Facility Power Conditioning System

    SciTech Connect

    Hammon, J; Fulkerson S E; Gagnon, B; Anderson, R

    2001-06-14

    This paper describes a set of analyses and tests performed to evaluate approaches to provide a safe and robust grounding approach for the main Power Conditioning System (PCS) in the National Ignition Facility (NIF) facility presently under construction at the Lawrence Livermore National Laboratory (LLNL). The Power Conditioning System consists of up to 192 capacitor bank modules, each storing 2.2 MJ and capable of producing a peak current over 500 kA. The grounding system must minimize touch potentials associated with operation of the Power Conditioning System. In the event of severe faults, the system must assure that the energy delivered to a person through contact with ''grounded'' structures is very low. Based on computer modeling and low-voltage, low-current tests, we have concluded that the most effective approach is a set of metal enclosures around the output cables (effectively heavy-wall closed cable trays) extending from the capacitor bank modules to their flashlamp loads. This paper will discuss the safety standards identified for this application, the approach to meeting the standards, and the predicted performance of the safety system.

  4. Style, content and format guide for writing safety analysis documents: Volume 2, Safety assessment reports for DOE non-nuclear facilities

    SciTech Connect

    Mahn, J.A.; Silver, R.C.; Balas, Y.; Gilmore, W.

    1995-07-01

    The purpose of Volume 2 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Assessment Reports (SAs) for DOE non-nuclear facilities at Sandia National Laboratories. The scope of Volume 2 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SAs for DOE non-nuclear facilities.

  5. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standards Revision 1

    SciTech Connect

    Beach, R; Brereton, S; Failor, R; Hildum, S; Spagnolo, S; Van Warmerdam, C

    2003-02-24

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A. This standard provides information on: Objectives; Applicability; Safety analysis requirements; Control selection and maintenance; Documentation requirements; Safety basis review, approval, and renewal; and Safety basis implementation.

  6. Designing for explosive safety'': The Explosive Components Facility at Sandia National Laboratories

    SciTech Connect

    Couch, W.A.

    1990-12-01

    The Explosive Components Facility (ECF) is to be a new major facility in the Sandia National Laboratories (SNL) Weapons Program. The ECF is a self-contained, secure site on SNL property and is surrounded by Kirtland Air Force Base which is located 6-1/2 miles east of downtown Albuquerque, New Mexico. The ECF will be dedicated to research, development, and testing of detonators, neutron generators, batteries, explosives, and other weapon components. It will have capabilities for conducting explosive test fires, gas gun testing, physical analyses, chemical analyses, electrical testing and ancillary explosive storage in magazines. The ECF complex is composed of a building covering an area of approximately 91,000 square feet, six exterior explosive service magazines and a remote test cell. Approximately 50% of the building space will be devoted to highly specialized laboratory and test areas, the other 50% of the building is considered nonhazardous. Critical to the laboratory and test areas are the blast-structural design consideration and operational considerations, particularly those concerning personnel access control, safety and environmental protection. This area will be decoupled from the rest of the building to the extent that routine tests will not be heard or felt in the administrative area of the building. While the ECF is designed in accordance with the DOE Explosives Safety Manual to mitigate any off-site blast effects, potential injuries or death to the ECF staff may result from an accidental detonation of explosive material within the facility. Therefore, reducing the risk of exposing operation personnel to hazardous and energetic material is paramount in the design of the ECF.

  7. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    SciTech Connect

    Biurrun, E.; Haverkamp, B.; Lazaro, A.; Miralles, A.; Stefanova, I.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

  8. Preclosure radiological safety evaluation: Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect

    Schelling, F.J.; Smith, J.D.

    1993-07-01

    A radiological safety evaluation is performed to determine the impacts of Exploratory Studies Facility (ESF) design changes on the preclosure public radiological safety for a potential nuclear waste repository at Yucca Mountain, Nevada. Although the ESF design has undergone significant modification, incorporation of the modified design requires only modest changes to the conceptual repository configuration. To the extent feasible, the results of earlier safety evaluations presented in SAND84-2641, SAND88-7061, and SAND89-7024, which were based on the original ESF configuration, are compared with the results for the modified configuration. This comparison provides an estimate of the range of analysis uncertainty. This preliminary analysis indicates that there are no Q-scenarios, which are defined as those scenarios with a net occurrence probability of greater than 10{sup {minus}6}/yr and produce a radiological dose at the 5-km controlled area boundary of greater than 0.5 rem. The analysis yielded estimates for an underground accident of a probability of 3.8 {times} 10{sup {minus}15}/yr and a dose of 1.5 rem. For a surface-initiated accident, a probability of 1.5 {times} 10{sup {minus}12}/yr and a dose of 0.6 rem was estimated.

  9. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP

  10. Development and perceived effects of an educational programme on quality and safety in medication handling in residential facilities.

    PubMed

    Mygind, Anna; El-Souri, Mira; Rossing, Charlotte; Thomsen, Linda Aagaard

    2017-03-27

    To develop and test an educational programme on quality and safety in medication handling for staff in residential facilities for the disabled. The continuing pharmacy education instructional design model was used to develop the programme with 22 learning objectives on disease and medicines, quality and safety, communication and coordination. The programme was a flexible, modular seven + two days' course addressing quality and safety in medication handling, disease and medicines, and medication supervision and reconciliation. The programme was tested in five Danish municipalities. Municipalities were selected based on their application for participation; each independently selected a facility for residents with mental and intellectual disabilities, and a facility for residents with severe mental illnesses. Perceived effects were measured based on a questionnaire completed by participants before and after the programme. Effects on motivation and confidence as well as perceived effects on knowledge, skills and competences related to medication handling, patient empowerment, communication, role clarification and safety culture were analysed conducting bivariate, stratified analyses and test for independence. Of the 114 participants completing the programme, 75 participants returned both questionnaires (response rate = 66%). Motivation and confidence regarding quality and safety in medication handling significantly improved, as did perceived knowledge, skills and competences on 20 learning objectives on role clarification, safety culture, medication handling, patient empowerment and communication. The programme improved staffs' motivation and confidence and their perceived ability to handle residents' medication safely through improved role clarification, safety culture, medication handling and patient empowerment and communication skills. © 2017 Royal Pharmaceutical Society.

  11. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and mixed

  12. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    SciTech Connect

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  13. [Hydraulic simulation and safety assessment of secondary water supply system with anti-negative pressure facility].

    PubMed

    Wang, Huan-Huan; Liu, Shu-Ming; Jiang, Shuaiz; Meng, Fan-Lin; Bai, Lu

    2013-01-01

    In the last few decades, anti-negative pressure facility (ANPF) has been emerged as a revolutionary approach for sloving the pollution in the Second Water Supply System (SWSS) in China. This study analyzed implications of the safety in SWSS with ANPF, utilizing the water distribution network hydraulic model. A method of hydraulic simulation and security assessment was presented which was able to reflect the number and location of nodes that can be installed in ANPF. Benchmark results through two instance networks showed that 67% and 89% of nodes in each network did not fit the ANPFs for installation. The simple and pratical algorithm was recommended in the water distribution network design and planing in order to increase the security of SWSS.

  14. Characterizing W-2 SLSF experiment temperature oscillations using computer graphics. [Sodium Loop Safety Facility

    SciTech Connect

    Smith, D.E.

    1983-06-23

    The W-2 SLSF (Sodium Loop Safety Facility) experiment was an instrumented in-reactor test performed to characterize the failure response of full-length, preconditioned LMFBR prototypic fuel pins to slow transient overpower (TOP) conditions. Although the test results were expected to confirm analytical predictions of upper level failure and fuel expulsion, an axial midplane failure was experienced. Extensive post-test analyses were conducted to understand all of the unexpected behavior in the experiment. (1) The initial post-test effort focused on the temperature oscillations recorded by the 54 thermocouples used in the experiment. In order to synthesize the extensive data records and identify patterns of behavior in the data records, a computer-generated film was used to present the temperature data recorded during the experiment.

  15. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system. [LMFBR

    SciTech Connect

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin.

  16. Research of Pedestrian Crossing Safety Facilities Based on the Video Detection

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Zhen; Xie, Quan-Long; Zang, Xiao-Dong; Tang, Guo-Jun

    Since that the pedestrian crossing facilities at present is not perfect, pedestrian crossing is in chaos and pedestrians from opposite direction conflict and congest with each other, which severely affects the pedestrian traffic efficiency, obstructs the vehicle and bringing about some potential security problems. To solve these problems, based on video identification, a pedestrian crossing guidance system was researched and designed. It uses the camera to monitor the pedestrians in real time and sums up the number of pedestrians through video detection program, and a group of pedestrian's induction lamp array is installed at the interval of crosswalk, which adjusts color display according to the proportion of pedestrians from both sides to guide pedestrians from both opposite directions processing separately. The emulation analysis result from cellular automaton shows that the system reduces the pedestrian crossing conflict, shortens the time of pedestrian crossing and improves the safety of pedestrians crossing.

  17. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  18. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  19. The safety improvement of Romanian radioactive waste facilities as an example for human and environmental protection

    SciTech Connect

    Barariu, Gheorghe

    2013-07-01

    According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompanied by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)

  20. Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company

    SciTech Connect

    Not Available

    1989-04-01

    This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

  1. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  2. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1992

    SciTech Connect

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.

    1993-03-01

    This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285{degrees}C (545{degrees}F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed.

  3. Building a World-Class Safety Culture: The National Ignition Facility and the Control of Human and Organizational Error

    SciTech Connect

    Bennett, C T; Stalnaker, G

    2002-12-06

    Accidents in complex systems send us signals. They may be harbingers of a catastrophe. Some even argue that a ''normal'' consequence of operations in a complex organization may not only be the goods it produces, but also accidents and--inevitably--catastrophes. We would like to tell you the story of a large, complex organization, whose history questions the argument ''that accidents just happen.'' Starting from a less than enviable safety record, the National Ignition Facility (NIF) has accumulated over 2.5 million safe hours. The story of NIF is still unfolding. The facility is still being constructed and commissioned. But the steps NIF has taken in achieving its safety record provide a principled blueprint that may be of value to others. Describing that principled blueprint is the purpose of this paper. The first part of this paper is a case study of NIF and its effort to achieve a world-class safety record. This case study will include a description of (1) NIF's complex systems, (2) NIF's early safety history, (3) factors that may have initiated its safety culture change, and (4) the evolution of its safety blueprint. In the last part of the paper, we will compare NIF's safety culture to what safety industry experts, psychologists, and sociologists say about how to shape a culture and control organizational error.

  4. Application of FEPs analysis to identify research priorities relevant to the safety case for an Australian radioactive waste facility

    SciTech Connect

    Payne, T.E.; McGlinn, P.J.

    2007-07-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has established a project to undertake research relevant to the safety case for the proposed Australian radioactive waste facility. This facility will comprise a store for intermediate level radioactive waste, and either a store or a near-surface repository for low-level waste. In order to identify the research priorities for this project, a structured analysis of the features, events and processes (FEPs) relevant to the performance of the facility was undertaken. This analysis was based on the list of 137 FEPs developed by the IAEA project on 'Safety Assessment Methodologies for Near Surface Disposal Facilities' (ISAM). A number of key research issues were identified, and some factors which differ in significance for the store, compared to the repository concept, were highlighted. For example, FEPs related to long-term groundwater transport of radionuclides are considered to be of less significance for a store than a repository. On the other hand, structural damage from severe weather, accident or human interference is more likely for a store. The FEPs analysis has enabled the scientific research skills required for the inter-disciplinary project team to be specified. The outcomes of the research will eventually be utilised in developing the design, and assessing the performance, of the future facility. It is anticipated that a more detailed application of the FEPs methodology will be undertaken to develop the safety case for the proposed radioactive waste management facility. (authors)

  5. Efficacy and safety of donepezil in patients with Alzheimer's disease in assisted living facilities.

    PubMed

    Rosenblatt, Adam; Gao, Jeff; Mackell, Joan; Richardson, Sharon

    2010-09-01

    The aim of this 12-week, open-label study was to determine the safety and efficacy of donepezil in participants with Alzheimer's disease (AD) residing in assisted living facilities (ALFs). Participants received 5 mg donepezil daily for 6 weeks followed by 10 mg daily for 6 weeks. Primary and secondary outcomes were change from baseline in Mini-Mental State Examination (MMSE) and Neuropsychiatric Inventory 8 (NPI-8) scores, respectively. Safety was assessed by adverse events (AEs) and laboratory tests. Of the 97 participants, 76 completed the study. Mean MMSE score (18.7 at baseline) improved 1.8 points (P < .0001) at study end. Total NPI-8 score improved 1.8 points (P = .043). The most frequent AEs were nausea and diarrhea. Donepezil improved cognition and behavior and was safe and well tolerated. The results suggest a need for proactive screening and diagnosis of AD and support the value of treatment and use of donepezil in participants residing in ALFs.

  6. Construction safety program for the National Ignition Facility, July 30, 1999 (NIF-0001374-OC)

    SciTech Connect

    Benjamin, D W

    1999-07-30

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules-Code of Safe Practices shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S and H A-l that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Rules-Code of Safe Practices. (An interpreter must brief those employees who do not speak or read English fluently.) In addition, all contractors and subcontractors shall adopt a written General Rules-Code of Safe Practices that relates to their operations. The General Rules-Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory employee who shall have it readily available. Copies of the General Rules-Code of Safe Practices can also be included in employee safety pamphlets.

  7. [A questionnaire about radiation safety management of the draining-water system at nuclear medicine facilities].

    PubMed

    Shizukuishi, Kazuya; Watanabe, Hiroshi; Narita, Hiroto; Kanaya, Shinichi; Kobayashi, Kazumi; Yamamoto, Tetsuo; Tsukada, Masaru; Iwanaga, Tetsuo; Ikebuchi, Shuji; Kusama, Keiji; Tanaka, Mamoru; Namiki, Norio; Fuiimura, Youko; Horikoshi, Akiko; Inoue, Tomio; Kusakabe, Kiyoko

    2004-05-01

    We conducted a questionnaire survey about radiation-safety management condition in Japanese nuclear medicine facilities to make materials of proposition for more reasonable management of medical radioactive waste. We distributed a questionnaire to institutions equipped with Nuclear Medicine facilities. Of 1,125 institutions, 642 institutes (52.8%) returned effective answers. The questionnaire covered the following areas: 1) scale of an institution, 2) presence of enforcement of radiotherapy, 3) system of a tank, 4) size and number of each tank, 5) a form of draining-water system, 6) a displacement in a radioactive rays management area, 7) a measurement method of the concentration of medical radioactive waste in draining water system, 8) planned and used quantity of radioisotopes for medical examination and treatment, 9) an average displacement of hospital for one month. In most institutions, a ratio of dose limitation of radioisotope in draining-water system was less than 1.0, defined as an upper limitation in ordinance. In 499 hospitals without facilities of hospitalization for unsealed radioisotope therapy, 473 hospitals reported that sum of ratios of dose limits in a draining-water system was less than 1.0. It was calculated by used dose of radioisotope and monthly displacement from hospital, on the premise that all used radioisotope entered in the general draining-water system. When a drainage including radioactivity from a controlled area join with that from other area before it flows out of a institution, it may be diluted and its radioactive concentration should be less than its upper limitation defined in the rule. Especially, in all institutions with a monthly displacement of more than 25,000 m3, the sum of ratio of the concentration of each radionuclide to the concentration limit dose calculated by used dose of radioisotope, indicated less than 1.0.

  8. Safety of sports facilities and training of graduates in physical education.

    PubMed

    Romano Spica, V; Giampaoli, S; Di Onofrio, V; Liguori, G

    2015-01-01

    Post-industrial societies have to face the problem of physical inactivity and inappropriate lifestyles. Programs to promote physical activity are strongly supported by supranational, national and local institutions and organizations. These programs can be developed in sport facilities but also in places that are not institutionally dedicated to sport. The use of urban and working sites has the advantage of better reach the various segments of the population, but at the same time requires coordination between various professionals in structuring an effective intervention. Bibliographical research in the historical archives of the library of the University of Rome Foro Italico, online databases, paleoigiene (wikigiene), documents archives (GSMS-SItI, WHO, ISS, OsEPi, INAIL, ISTAT, national laws). Several guidelines and regulations face the problem of safety in sport environments. The context is in rapid evolution and directions are provided by public health authorities. Graduates in Sport and Physical Activity, represent an additional resource in terms of: prevention and safety in the workplace, health education, application of preventive and adapted physical activities in the territory. These tasks can be integrated in all prevention stages: e.g. childhood and primary prevention programs in school, adapted physical activity for the elderly. The contribution of public health specialists is strategic in the surveillance and coordination of integrated projects. At the same time, graduates in Physical Education appear to be pivots for health promotion and qualified resources for institutions in the territory. Their training should always include contents related to prevention and safety, regulations on sport and working environments, along with bases of preventive medicine related to the context of physical activity.

  9. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    SciTech Connect

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.; Turski, R.B.; Fujita, E.K.

    1993-09-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutonium products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.

  10. Medication incident reporting in residential aged care facilities: Limitations and risks to residents’ safety

    PubMed Central

    2012-01-01

    Background Medication incident reporting (MIR) is a key safety critical care process in residential aged care facilities (RACFs). Retrospective studies of medication incident reports in aged care have identified the inability of existing MIR processes to generate information that can be used to enhance residents’ safety. However, there is little existing research that investigates the limitations of the existing information exchange process that underpins MIR, despite the considerable resources that RACFs’ devote to the MIR process. The aim of this study was to undertake an in-depth exploration of the information exchange process involved in MIR and identify factors that inhibit the collection of meaningful information in RACFs. Methods The study was undertaken in three RACFs (part of a large non-profit organisation) in NSW, Australia. A total of 23 semi-structured interviews and 62 hours of observation sessions were conducted between May to July 2011. The qualitative data was iteratively analysed using a grounded theory approach. Results The findings highlight significant gaps in the design of the MIR artefacts as well as information exchange issues in MIR process execution. Study results emphasized the need to: a) design MIR artefacts that facilitate identification of the root causes of medication incidents, b) integrate the MIR process within existing information systems to overcome key gaps in information exchange execution, and c) support exchange of information that can facilitate a multi-disciplinary approach to medication incident management in RACFs. Conclusions This study highlights the advantages of viewing MIR process holistically rather than as segregated tasks, as a means to identify gaps in information exchange that need to be addressed in practice to improve safety critical processes. PMID:23122411

  11. A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid.

    PubMed

    Mahmoudian, Shaya; Wahit, Mat Uzir; Imran, Muhammad; Ismail, A F; Balakrishnan, Harintharavimal

    2012-07-01

    This study presents the preparation of regenerated cellulose (RC)/graphene nanoplatelets (GNPs) nanocomposites via room temperature ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) using solution casting method. The thermal stability, gas permeability, water absorption and mechanical properties of the films were studied. The synthesized nanocomposite films were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The T20 decomposition temperature of regenerated cellulose improved with the addition of graphene nanoplatelets up to 5 wt%. The tensile strength and Young's modulus of RC films improved by 34 and 56%, respectively with the addition of 3 wt% GNPs. The nanocomposite films exhibited improved oxygen and carbon dioxide gas barrier properties and water absorption resistance compared to RC. XRD and SEM results showed good interaction between RC and GNPs and well dispersion of graphene nanoplatelets in regenerated cellulose. The FTIR spectra showed that the addition of GNPs in RC did not result in any noticeable change in its chemical structure.

  12. Medicare and Medicaid programs; fire safety requirements for certain health care facilities; amendment. Interim final rule with comment period.

    PubMed

    2005-03-25

    This interim final rule with comment period adopts the substance of the April 15, 2004 temporary interim amendment (TIA) 00-1 (101), Alcohol Based Hand Rub Solutions, an amendment to the 2000 edition of the Life Safety Code, published by the National Fire Protection Association (NFPA). This amendment will allow certain health care facilities to place alcohol-based hand rub dispensers in egress corridors under specified conditions. This interim final rule with comment period also requires that nursing facilities install smoke detectors in resident rooms and public areas if they do not have a sprinkler system installed throughout the facility or a hard-wired smoke detection system in those areas.

  13. Safety and feasibility of intramyocardial versus intracoronary delivery of autologous cell therapy in advanced heart failure: the REGENERATE-IHD pilot study.

    PubMed

    Mozid, Abdul; Yeo, Chia; Arnous, Samer; Ako, Emmanuel; Saunders, Natalie; Locca, Didier; Brookman, Pat; Archbold, R Andrew; Rothman, Martin; Mills, Peter; Agrawal, Samir; Martin, John; Mathur, Anthony

    2014-05-01

    This study presents an interim safety and feasibility analysis of the REGENERATE-IHD randomized controlled trial, which is examining the safety and efficacy of three different delivery routes of bone marrow-derived stem cells (BMSCs) in patients with ischemic heart failure. The first 58 patients recruited to the REGENERATE-IHD study are included in this interim analysis (pilot). Symptomatic patients with ischemic heart failure were randomized to receive subcutaneous granulocyte colony-stimulating factor or saline injections only; or subcutaneous granulocyte colony-stimulating factor injections followed by intracoronary or intramyocardial injections of BMSCs or serum (control). No significant differences were found in terms of safety and feasibility between the different delivery routes, with no significant difference in procedural complications or major adverse cardiac events. There was a signal towards improved heart failure symptoms in the patients treated with intramyocardial injection of mobilized BMSCs. Peripheral mobilization of BMSCs with or without subsequent direct myocardial delivery appears safe and feasible in patients with chronic ischemic heart failure.

  14. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  15. 75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Light of the Deepwater Horizon Oil Spill AGENCY: Pipeline and Hazardous Materials Safety Administration... response plan under 49 CFR part 194. In light of the Deepwater Horizon oil spill in the Gulf of Mexico... Pipeline Systems. Subject: Updating Facility Response Plans in Light of the Deepwater Horizon Oil...

  16. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  17. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  18. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  19. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  20. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone during launch operations at PMRF, Kauai, Hawaii: The waters bounded by the following coordinates: (22°01...

  1. 76 FR 37799 - DOE Final Decision in Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Indiana Avenue NW., Suite 700, Washington, DC 20004. FOR FURTHER INFORMATION CONTACT: Ms. Amanda Anderson... analysis. Attachment 1 February 28, 2011 The Honorable Peter S. Winokur, Chairman, Defense Nuclear... 2 May 27, 2011 The Honorable Peter S. Winokur, Chairman, Defense Nuclear Facilities Safety...

  2. Safety assessment in primary Mycobacterium tuberculosis smear microscopy centres in Blantyre Malawi: a facility based cross sectional survey.

    PubMed

    Majamanda, J; Ndhlovu, P; Shawa, I T

    2013-12-01

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is transmitted mainly through aerosolization of infected sputum which puts laboratory workers at risk in spite of the laboratory workers' risk of infection being at 3 to 9 times higher than the general public. Laboratory safety should therefore be prioritized and optimized to provide sufficient safety to laboratory workers. To assess the safety for the laboratory workers in TB primary microscopy centres in Blantyre urban. TB primary microscopy centers in Blantyre urban were assessed in aspects of equipment availability, facility layout, and work practice, using a standardized WHO/AFRO ISO 15189 checklist for the developing countries which sets the minimum safety score at ≥80%. Each center was graded according to the score it earned upon assessment. Only one (1) microscopy center out nine (9) reached the minimum safety requirement. Four (4) centers were awarded 1 star level, four (4) centers were awarded 2 star level and only one (1) center was awarded 3 star level. In Blantyre urban, 89% of the Tuberculosis microscopy centers are failing to provide the minimum safety to the laboratory workers. Government and other stake holders should be committed in addressing the safety challenges of TB microscopy centres in the country to ensure safety for the laboratory workers. It is recommended that the study be conducted at the regional or national level for both public and private laboratories in order to have a general picture of safety in Tb microscopy centres possibly across the country.

  3. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    SciTech Connect

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  4. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... workers, the public, and the environment. DOE line management is both responsible and accountable for.... We hold our contractors to the same standard. A strong nuclear safety and quality culture is the... Environmental Management (EM) requested that HSS conduct a comprehensive analysis of the safety culture at...

  5. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  6. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  7. Preliminary Authorization Basis Document For the Proposed Biological Safety Level 3 (BSL-3) Facility (B368) at Lawrence Livermore National Laboratory Revision 2

    SciTech Connect

    Altenbach, T; Nguyen, S

    2005-01-04

    The Lawrence Livermore National Laboratory Integrated Safety Management (ISM) System Description (LLNL 2002) and the Task Plan for the Preparation of Authorization Basis Documentation for the proposed Biosafety Level 3 Laboratory at Lawrence Livermore National Laboratory (DOE 2002a) require a PABD be prepared for the proposed BSL-3 Facility. NNSA-OAK approval is required prior to its construction. This Preliminary Authorization Basis Documentation (PABD) formalizes and documents the hazard evaluation and its results for the Biosafety level 3 (BSL-3) facility. The PABD for the proposed BSL-3 facility provides the following information: (1) BSL-3 facility's site description; (2) general description of the BSL-3 facility and its operations; (3) identification of facility hazards; (4) generic hazard analysis; (5) identification of controls important to safety; and (6) safety management programs. The PABD characterizes the level of intrinsic potential hazard associated with a facility and provides the basis for its hazard classification. The hazard classification determines the level of safety documentation required and the level of review and approval for the safety analysis. The hazards of primary concern associated with the BSL-3 facility are biological. The hazard classification is determined by comparing facility inventories of biological materials and activities with the BSL-3 threshold established by the Centers for Disease Control and Prevention (CDC) and the National Institutes of Health (NIH) for BSL-3 facilities.

  8. Evolution of area access safety training required for gaining access to Space Shuttle launch and landing facilities

    NASA Technical Reports Server (NTRS)

    Willams, M. C.

    1985-01-01

    Assuring personnel and equipment are fully protected during the Space Shuttle launch and landing operations has been a primary concern of NASA and its associated contractors since the inception of the program. A key factor in support of this policy has been the area access safety training requirements for badging of employees assigned to work on Space Shuttle Launch and Facilities. This requirement was targeted for possible cost savings and the transition of physical on-site walkdowns to the use of television tapes has realized program cost savings while continuing to fully satisfy the area access safety training requirements.

  9. Transparent tools for uncertainty analysis in high level waste disposal facilities safety

    SciTech Connect

    Lemos, Francisco Luiz de; Helmuth, Karl-Heinz; Sullivan, Terry

    2007-07-01

    In this paper some results of a further development of a technical cooperation project, initiated in 2004, between the CDTN/CNEN, The Brazilian National Nuclear Energy Commission, and the STUK, The Finnish Radiation and Nuclear Safety Authority, are presented. The objective of this project is to study applications of fuzzy logic, and artificial intelligence methods, on uncertainty analysis of high level waste disposal facilities safety assessment. Uncertainty analysis is an essential part of the study of the complex interactions of the features, events and processes, which will affect the performance of the HLW disposal system over the thousands of years in the future. Very often the development of conceptual and computational models requires simplifications and selection of over conservative parameters that can lead to unrealistic results. These results can mask the existing uncertainties which, consequently, can be an obstacle to a better understanding of the natural processes. A correct evaluation of uncertainties and their rule on data interpretation is an important step for the improvement of the confidence in the calculations and public acceptance. This study focuses on dissolution (source), solubility and sorption (sink) as key processes for determination of release and migration of radionuclides. These factors are affected by a number of parameters that characterize the near and far fields such as pH; temperature; redox conditions; and other groundwater properties. On the other hand, these parameters are also consequence of other processes and conditions such as water rock interaction; pH and redox buffering. Fuzzy logic tools have been proved to be suited for dealing with interpretation of complex, and some times conflicting, data. For example, although some parameters, such as pH and carbonate, are treated as independent, they have influence in each other and on the solubility. It is used the technique of fuzzy cognitive mapping is used for analysis of

  10. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  11. State policies for the residency of offenders in long-term care facilities: balancing right to care with safety.

    PubMed

    Cohen, Donna; Hays, Teresa; Molinari, Victor

    2011-09-01

    The presence of residents in long-term care facilities who are registered sex offenders, other predatory offenders, parolees, or inmates transferred by correctional authorities is controversial and has raised concerns about how to care for this potentially dangerous population who may jeopardize the safety of others. Although the present offender population appears to be small, it is likely that demographic and economic pressures will increase its size. Since 2004, 14 states have passed legislation about placement of sex and other offenders in facilities and 5 have implemented non-law policies. Because legislation is relatively recent, it is not possible to evaluate best practices at this time. Research should be a priority to determine best policies and practices to balance the right to care with safety.

  12. 78 FR 7665 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Association Facilities; Columbia and Willamette Rivers AGENCY: Coast Guard, DHS. ACTION: Temporary interim... the following Pacific Northwest Grain Handlers Association facilities: the Columbia Grain facility on... association, business, labor union, etc.). You may review a Privacy Act notice regarding our public dockets in...

  13. 78 FR 47567 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Association Facilities; Columbia and Willamette Rivers AGENCY: Coast Guard, DHS. ACTION: Temporary interim... the following Pacific Northwest Grain Handlers Association facilities: the Columbia Grain facility on... association, business, labor union, etc.). You may review a Privacy Act notice regarding our public dockets in...

  14. 78 FR 21197 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities, Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... seismic and other natural hazards impact on the safety of buildings. On April 26, the Committee will receive appropriate briefings and presentations on current seismic, natural hazards, and fire safety...

  15. 78 FR 21198 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... seismic and other natural hazards impact on the safety of buildings. On April 26, the Committee will receive appropriate briefings and presentations on current seismic, natural hazards, and fire safety...

  16. 77 FR 45636 - Food Safety Modernization Act Domestic and Foreign Facility Reinspection, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Cosmetic Act (the FD&C Act), as amended by the FDA Food Safety Modernization Act (FSMA). These fees are... Safety and Applied Nutrition (CFSAN) and the Center for Veterinary Medicine (CVM). Thus, as the...

  17. State Regulatory Authority (SRA) Coordination of Safety, Security, and Safeguards of Nuclear Facilities: A Framework for Analysis

    SciTech Connect

    Mladineo, Stephen V.; Frazar, Sarah L.; Kurzrok, Andrew J.; Martikka, Elina; Hack, Tapani; Wiander, Timo

    2013-05-30

    This paper will explore the development of a framework for conducting an assessment of safety-security-safeguards integration within a State. The goal is to examine State regulatory structures to identify conflicts and gaps that hinder management of the three disciplines at nuclear facilities. Such an analysis could be performed by a State Regulatory Authority (SRA) to provide a self-assessment or as part of technical cooperation with either a newcomer State, or to a State with a fully developed SRA.

  18. An Analysis of Several Dimensions of Patient Safety in Ambulatory-Care Facilities

    DTIC Science & Technology

    2008-04-09

    office it is difficult to discuss errors 13 Briefing other personnel before procedure (e.g. biopsy) is important for patient safety . 16...48 Patient safety is constantly reinforced as the priority in this office. 49 I feel burned out from work. 50 Important issues are well... safety , 5.loint Commissionlournal on Quality and Patient Safety , 29, 598-609. ACKNOLWEDGEMENTS: They say that travel is critically important in

  19. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    SciTech Connect

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF/sub 6/ production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described.

  20. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott F

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  1. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  2. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    SciTech Connect

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A.

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  3. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  4. Effect of Community Engagement Interventions on Patient Safety and Risk Reduction Efforts in Primary Health Facilities: Evidence from Ghana

    PubMed Central

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Spieker, Nicole; Arhinful, Daniel Kojo; Ogink, Alice; van Ostenberg, Paul; Rinke de Wit, Tobias F.

    2015-01-01

    Background Patient safety and quality care remain major challenges to Ghana’s healthcare system. Like many health systems in Africa, this is largely because demand for healthcare is outstripping available human and material resource capacity of healthcare facilities and new investment is insufficient. In the light of these demand and supply constraints, systematic community engagement (SCE) in healthcare quality assessment can be a feasible and cost effective option to augment existing quality improvement interventions. SCE entails structured use of existing community groups to assess healthcare quality in health facilities. Identified quality gaps are discussed with healthcare providers, improvements identified and rewards provided if the quality gaps are closed. Purpose This paper evaluates whether or not SCE, through the assessment of health service quality, improves patient safety and risk reduction efforts by staff in healthcare facilities. Methods A randomized control trail was conducted in 64 primary healthcare facilities in the Greater Accra and Western regions of Ghana. Patient risk assessments were conducted in 32 randomly assigned intervention and control facilities. Multivariate multiple regression test was used to determine effect of the SCE interventions on staff efforts towards reducing patient risk. Spearman correlation test was used to ascertain associations between types of community groups engaged and risk assessment scores of healthcare facilities. Findings Clinic staff efforts towards increasing patient safety and reducing risk improved significantly in intervention facilities especially in the areas of leadership/accountability (Coef. = 10.4, p<0.05) and staff competencies (Coef. = 7.1, p<0.05). Improvement in service utilization and health resources could not be attributed to the interventions because these were outside the control of the study and might have been influenced by institutional or national level developments between the

  5. Effect of Community Engagement Interventions on Patient Safety and Risk Reduction Efforts in Primary Health Facilities: Evidence from Ghana.

    PubMed

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Spieker, Nicole; Arhinful, Daniel Kojo; Ogink, Alice; van Ostenberg, Paul; Rinke de Wit, Tobias F

    2015-01-01

    Patient safety and quality care remain major challenges to Ghana's healthcare system. Like many health systems in Africa, this is largely because demand for healthcare is outstripping available human and material resource capacity of healthcare facilities and new investment is insufficient. In the light of these demand and supply constraints, systematic community engagement (SCE) in healthcare quality assessment can be a feasible and cost effective option to augment existing quality improvement interventions. SCE entails structured use of existing community groups to assess healthcare quality in health facilities. Identified quality gaps are discussed with healthcare providers, improvements identified and rewards provided if the quality gaps are closed. This paper evaluates whether or not SCE, through the assessment of health service quality, improves patient safety and risk reduction efforts by staff in healthcare facilities. A randomized control trail was conducted in 64 primary healthcare facilities in the Greater Accra and Western regions of Ghana. Patient risk assessments were conducted in 32 randomly assigned intervention and control facilities. Multivariate multiple regression test was used to determine effect of the SCE interventions on staff efforts towards reducing patient risk. Spearman correlation test was used to ascertain associations between types of community groups engaged and risk assessment scores of healthcare facilities. Clinic staff efforts towards increasing patient safety and reducing risk improved significantly in intervention facilities especially in the areas of leadership/accountability (Coef. = 10.4, p<0.05) and staff competencies (Coef. = 7.1, p<0.05). Improvement in service utilization and health resources could not be attributed to the interventions because these were outside the control of the study and might have been influenced by institutional or national level developments between the baseline and follow-up period. Community

  6. Health and safety plan for characterization sampling of ETR and MTR facilities

    SciTech Connect

    Baxter, D.E.

    1994-10-01

    This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site.

  7. NRC confirmatory AP600 safety system phase I testing in the ROSA/AP600 test facility

    SciTech Connect

    Rhee, G.S.; Kukita, Yutaka; Schultz, R.R.

    1996-03-01

    The NRC confirmatory phase I testing for the AP600 safety systems has been completed in the modified ROSA (Rig of Safety Assessment) test facility located at the Japan Atomic Energy Research Institute (JAERI) campus in Tokai, Japan. The test matrix included a variety of accident scenarios covering both design and beyond-design basis accidents. The test results indicate the AP600 safety systems as reflected in ROSA appear to perform as designed and there is no danger of core heatup for the accident scenarios investigated. In addition, no detrimental system interactions nor adverse effects of non-safety systems on the safety system functions were identified. However, three phenomena of interest have been identified for further examination to determine whether they are relevant to the AP600 plant. Those three phenomena are: (1) a potential for water hammer caused by rapid condensation which may occur following the actuation of the automatic depressurization system (ADS), (2) a large thermal gradient in the cold leg pipe where cooled water returns from the passive residual heat removal system and forms a thermally stratified layer, and (3) system-wide oscillations initiating following the ADS stage 4 actuation and persisting until the liquid in the pressurizer drains and steam generation in the core becomes insignificant.

  8. USP <800> Adds Significant Safety Standards: Facility Upgrades Needed to Protect Employees From Hazardous Drugs.

    PubMed

    Beans, Bruce E

    2017-05-01

    The new USP standard for handling hazardous drugs (HDs) will require millions of dollars in capital outlays for facility and equipment upgrades and also requires in-depth assessments of each HD that facilities handle, significant workflow and work practice changes, and thorough staff training.

  9. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and...

  10. The Pain in Storage: Work Safety in a High-Density Shelving Facility

    ERIC Educational Resources Information Center

    Atkins, Stephanie A.

    2005-01-01

    An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…

  11. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... floor or equivalent to prevent fuel spills from saturating the mine floor. (b) Permanent underground... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and areas...

  12. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    SciTech Connect

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L.; Upadhyaya, B.R.; Rowan, W.J.

    1994-10-01

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  13. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect

    Johnson, A.E.; Harbour, J.L.

    1993-06-01

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  14. Relationship between the Quality of Educational Facilities, School Climate, and School Safety of High School Tenth Graders in the United States

    ERIC Educational Resources Information Center

    Bell, Darnell Brushawn

    2011-01-01

    The purpose of the study was to understand the relationships among facility conditions, school climate, and school safety of high school tenth graders in the United States. Previous research on the quality of educational facilities influence on student achievement has varied. Recent research has suggested that the quality of educational facilities…

  15. Relationship between the Quality of Educational Facilities, School Climate, and School Safety of High School Tenth Graders in the United States

    ERIC Educational Resources Information Center

    Bell, Darnell Brushawn

    2011-01-01

    The purpose of the study was to understand the relationships among facility conditions, school climate, and school safety of high school tenth graders in the United States. Previous research on the quality of educational facilities influence on student achievement has varied. Recent research has suggested that the quality of educational facilities…

  16. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  17. Associations Among Healthcare Workplace Safety, Resident Satisfaction, and Quality of Care in Long Term Care Facilities.

    PubMed

    Boakye-Dankwa, Ernest; Teeple, Erin; Gore, Rebecca; Punnett, Laura

    2017-09-22

    We performed an integrated cross-sectional analysis of relationships between long term care work environments, employee and resident satisfaction, and quality of patient care. Facility-level data came from a network of 203 skilled nursing facilities in 13 states in the eastern United States owned or managed by one company. K-means cluster analysis was applied to investigate clustered associations between safe resident handling program (SRHP) performance, resident care outcomes, employee satisfaction, rates of workers' compensation claims, and resident satisfaction. Facilities in the better-performing cluster were found to have better patient care outcomes and resident satisfaction; lower rates of workers compensation claims; better SRHP performance; higher employee retention; and greater worker job satisfaction and engagement. The observed clustered relationships support the utility of integrated performance assessment in long term care facilities.

  18. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  19. Preliminary safety analysis report for the Decontamination and Decommissioning of the ARVFS (Army Reentry Vehicle Facility Site) NaK

    SciTech Connect

    Mobley, E.V.

    1987-09-01

    This document presents the safety analysis for the Decontamination and Decommissioning (D and D) of the contaminated NaK (sodium-potassium) eutectic solution stored at the Army Reentry Vehicle Facility Site (ARVFS). The D and D activity of processing NaK has been planned and designed to meet appropriate safety standards. A plan to process four containers of contaminated NaK eutectic solution (180 gallons of liquid metal), including transuranics, into a waste form acceptable for disposal has been developed. The NaK is stored in two 55-gallon drums and two vessels fabricated from pipe sections. The containers have been stored in an underground bunker at the ARVFS located near the center of the Idaho National Engineering Laboratory (INEL). 9 refs., 7 figs., 5 tabs.

  20. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  1. National Ignition Facility sub-system design requirements integrated safety systems SSDR 1.5.4

    SciTech Connect

    Reed, R.; VanArsdall, P.; Bliss, E.

    1996-09-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Safety System, which is part of the NIF Integrated Computer Control System (ICCS).

  2. 76 FR 61350 - DOE Response to Defense Nuclear Facilities Safety Board's Request for Clarification on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... help improve our safety culture. In our previous correspondence, the Department conveyed its acceptance of the Recommendation 2011-1 and now offers the following clarification in the areas requested:...

  3. Materials-related issues in the safety and licensing of nuclear fusion facilities

    NASA Astrophysics Data System (ADS)

    Taylor, N.; Merrill, B.; Cadwallader, L.; Di Pace, L.; El-Guebaly, L.; Humrickhouse, P.; Panayotov, D.; Pinna, T.; Porfiri, M.-T.; Reyes, S.; Shimada, M.; Willms, S.

    2017-09-01

    Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.

  4. Safety and feasibility for pediatric cardiac regeneration using epicardial delivery of autologous umbilical cord blood-derived mononuclear cells established in a porcine model system.

    PubMed

    Cantero Peral, Susana; Burkhart, Harold M; Oommen, Saji; Yamada, Satsuki; Nyberg, Scott L; Li, Xing; O'Leary, Patrick W; Terzic, Andre; Cannon, Bryan C; Nelson, Timothy J

    2015-02-01

    Congenital heart diseases (CHDs) requiring surgical palliation mandate new treatment strategies to optimize long-term outcomes. Despite the mounting evidence of cardiac regeneration, there are no long-term safety studies of autologous cell-based transplantation in the pediatric setting. We aimed to establish a porcine pipeline to evaluate the feasibility and long-term safety of autologous umbilical cord blood mononuclear cells (UCB-MNCs) transplanted into the right ventricle (RV) of juvenile porcine hearts. Piglets were born by caesarean section to enable UCB collection. Upon meeting release criteria, 12 animals were randomized in a double-blinded fashion prior to surgical delivery of test article (n=6) or placebo (n=6). The UCB-MNC (3×10(6) cells per kilogram) or control (dimethyl sulfoxide, 10%) products were injected intramyocardially into the RV under direct visualization. The cohorts were monitored for 3 months after product delivery with assessments of cardiac performance, rhythm, and serial cardiac biochemical markers, followed by terminal necropsy. No mortalities were associated with intramyocardial delivery of UCB-MNCs or placebo. Two animals from the placebo group developed local skin infection after surgery that responded to antibiotic treatment. Electrophysiological assessments revealed no arrhythmias in either group throughout the 3-month study. Two animals in the cell-therapy group had transient, subclinical dysrhythmia in the perioperative period, likely because of an exaggerated response to anesthesia. Overall, this study demonstrated that autologous UCB-MNCs can be safely collected and surgically delivered in a pediatric setting. The safety profile establishes the foundation for cell-based therapy directed at the RV of juvenile hearts and aims to accelerate cell-based therapies toward clinical trials for CHD. ©AlphaMed Press.

  5. Safety and Feasibility for Pediatric Cardiac Regeneration Using Epicardial Delivery of Autologous Umbilical Cord Blood-Derived Mononuclear Cells Established in a Porcine Model System

    PubMed Central

    Cantero Peral, Susana; Burkhart, Harold M.; Oommen, Saji; Yamada, Satsuki; Nyberg, Scott L.; Li, Xing; O’Leary, Patrick W.; Terzic, Andre; Cannon, Bryan C.; Edgerton, Sarah L.; Suddendorf, Scott H.; Krage, Steve; Rice, Mindy; Rysavy, Joseph A.; Powers, Joanna M.; Rasmussen, Boyd W.; Miller, Jennifer M.; Paulson, Traci L.; Lindquist, Rebecca K.; Reece, Chelsea L.; Miller, Angela R.; Padley, Douglas J.; Wentworth, Mark A.; Greene, Alexander C.; Andrews, Amy G.; O’Leary, Patrick W.; Olson, Timothy M.; Terzic, Andre

    2015-01-01

    Congenital heart diseases (CHDs) requiring surgical palliation mandate new treatment strategies to optimize long-term outcomes. Despite the mounting evidence of cardiac regeneration, there are no long-term safety studies of autologous cell-based transplantation in the pediatric setting. We aimed to establish a porcine pipeline to evaluate the feasibility and long-term safety of autologous umbilical cord blood mononuclear cells (UCB-MNCs) transplanted into the right ventricle (RV) of juvenile porcine hearts. Piglets were born by caesarean section to enable UCB collection. Upon meeting release criteria, 12 animals were randomized in a double-blinded fashion prior to surgical delivery of test article (n = 6) or placebo (n = 6). The UCB-MNC (3 × 106 cells per kilogram) or control (dimethyl sulfoxide, 10%) products were injected intramyocardially into the RV under direct visualization. The cohorts were monitored for 3 months after product delivery with assessments of cardiac performance, rhythm, and serial cardiac biochemical markers, followed by terminal necropsy. No mortalities were associated with intramyocardial delivery of UCB-MNCs or placebo. Two animals from the placebo group developed local skin infection after surgery that responded to antibiotic treatment. Electrophysiological assessments revealed no arrhythmias in either group throughout the 3-month study. Two animals in the cell-therapy group had transient, subclinical dysrhythmia in the perioperative period, likely because of an exaggerated response to anesthesia. Overall, this study demonstrated that autologous UCB-MNCs can be safely collected and surgically delivered in a pediatric setting. The safety profile establishes the foundation for cell-based therapy directed at the RV of juvenile hearts and aims to accelerate cell-based therapies toward clinical trials for CHD. PMID:25561683

  6. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume I, Chapter 1

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

    1999-09-01

    Sandia National Laboratories (SNL) began in 1945 as the ''Z'' Division of what was then Los Alamos Scientific Laboratory on Oxnard Field, which was owned by the Air Technical Service Command, as a base of operations to store materials and house personnel. Oxnard Field was transferred to the U.S. Engineers, Manhattan District, on July 21, 1945, who converted several wood frame structures to serve functions that were transferred from Los Alamos. Development of the SNL/New Mexico (SNL/NM) site began in 1946 and 1947 with construction of the first four buildings in what is now Tech Area I. Construction of another 14 permanent buildings in Tech Area I began in 1948. SNL constructed a high-explosive assembly area in Tech Area II, a half mile south of Tech Area I, and started plans for several outdoor testing facilities for Tech Area III, about seven miles to the south of Tech Area I, in 1952. By 1953, SNL completed and put into operation the first group of Tech Area III facilities, which included a rocket sled track, a large centrifuge, a vibration facility, and an instrument control center. Tech Area IV and Tech Area V were developed later to provide facilities for pulsed power and high-energy experiments. As the need developed for outdoor testing facilities remote from the public and other work areas, SNL added many facilities on U.S. Air Force and other federal property in the area known as Coyote Test Field (Sandia National Laboratories, 1997b). Most recently, DOE leased U.S. Air Force facilities in the Manzano Area for SNL to use for storage of low-level radioactive waste, mixed waste (a combination of radioactive and hazardous waste), and transuranic waste (Sandia National Laboratories, 1997a).

  7. Observation challenges in a glovebox environment : behavior based safety at a plutonium facility.

    SciTech Connect

    Montalvo, M. L.

    2002-01-01

    Los Alamos National Laboratory (LANL) is one of the Nation's leading scientific and defense laboratories, owned by the Department of Energy and managed by the University of California. LANL is one of the original weapons complex labs dating back to the days of the Manhattan Project during World War II. Since then, radioactive materials research has continued at LANLs Plutonium Facility, and remains a primary responsibility of the Laboratory. The Nuclear Materials Technology Division (NMT) is a multidisciplinary organization responsible for daily operations of the Plutonium Facility and the Chemistry Research Metallurgy Facility. NMT Division is responsible for the saence, engineering and technology of plutonium and other actinides in support of the Nation's nuclear weapons stockpile, nuclear materials disposition, and nuclear energy programs. A wide amy of activities are performed within NMT Division, such as analytical chemistry, metallurgical operations, actinide processes, waste operations, radioactive materials research and related administrative tasks.

  8. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  9. Factors Of Environmental Safety And Environmentally Efficient Technologies Transportation Facilities Gas Transportation Industry

    NASA Astrophysics Data System (ADS)

    Vasiliev, Bogdan U.

    2017-01-01

    The stable development of the European countries depends on a reliable and efficient operation of the gas transportation system (GTS). With high reliability of GTS it is necessary to ensure its industrial and environmental safety. In this article the major factors influencing on an industrial and ecological safety of GTS are analyzed, sources of GTS safety decreasing is revealed, measures for providing safety are proposed. The article shows that use of gas-turbine engines of gas-compressor units (GCU) results in the following phenomena: emissions of harmful substances in the atmosphere; pollution by toxic waste; harmful noise and vibration; thermal impact on environment; decrease in energy efficiency. It is shown that for the radical problem resolution of an industrial and ecological safety of gas-transmission system it is reasonable to use gas-compressor units driven by electric motors. Their advantages are shown. Perspective technologies of these units and experience of their use in Europe and the USA are given in this article.

  10. Construction safety program for the National Ignition Facility, July 30, 1999

    SciTech Connect

    Benjamin, D W

    1999-07-30

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and start-up of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF's management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner that prevents job-related disabling injuries and illnesses. Integrated Safety Management (ISM) is practiced in the execution of all activities associated with the NIF Project. The seven Principles of ISM are: (1) Line management is responsible for safety. (2) Clear roles and responsibilities are established and maintained. (3) Personnel possess competence commensurate with responsibilities. (4) Resource allocations are balanced, making ES and H a priority in project planning and execution. (5) Safety requirements are identified and implemented. (6) Hazard controls are tailored to the project work. (7) Operations are authorized before work begins.

  11. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    SciTech Connect

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

  12. 75 FR 17644 - Update to NFPA 101, Life Safety Code, for State Home Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... the physical environment of facilities for which VA pays per diem to a State for providing nursing... available at the National Archives and Records Administration (NARA). For information on the availability of... professions, health records, mental health programs, nursing homes, reporting and recordkeeping...

  13. 78 FR 46966 - Food Safety Modernization Act Domestic and Foreign Facility Reinspection, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... Reinspection, Recall, and Importer Reinspection Fee Rates for Fiscal Year 2014 AGENCY: Food and Drug... with a recall order, and importer reinspections that are authorized by the Federal Food, Drug, and... domestic facility and an importer who does not comply with a recall order, to cover food \\1\\ recall...

  14. 77 FR 74781 - Safety Zones; Columbia Grain and United Grain Corporation Facilities; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ...) Oregon Law Enforcement Officer means any Oregon Peace Officer as defined in Oregon Revised Statutes... this section, any Federal Law Enforcement Officer, Oregon Law Enforcement Officer, or Washington Law... facilities, and law enforcement personnel from protest activities that could occur prior to conclusion of a...

  15. 78 FR 263 - Safety Zones; TEMCO Grain Facilities; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ..., chartered, or operated by the United States, or by a State or political subdivision thereof. (6) Oregon Law... this section, any Federal Law Enforcement Officer, Oregon Law Enforcement Officer, or Washington Law... damage to the maritime public, vessel crews, the vessels themselves, the facilities, and law enforcement...

  16. Applying the OSHA Process Safety Management Standard to Manufacturing Explosives at U.S. Government Facilities

    DTIC Science & Technology

    2010-07-01

    employee participation. Employee participation should begin at the inception of PSM implementation. Such participation not only improves employee commitment to...should begin at the inception of PSM implementation. Such participation not only improves employee commitment to PSM, but a facility will end up

  17. 33 CFR 146.104 - Safety and Security notice of arrival for foreign floating facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... foreign floating facility at the time the NOA is reported; (2) The area designation, block number or lease... the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted NOA. Unless otherwise specified in this section, whenever the most recently submitted NOA information becomes inaccurate,...

  18. San Jose Unified School District Health & Safety Guide for Facilities and Construction.

    ERIC Educational Resources Information Center

    2001

    This guide from the San Jose Unified School District describes recommended procedures to promote and maintain a healthy and safe school environment during maintenance, modernization, or construction. Guidelines are presented in the following areas: (1) construction safety; (2) communication; (3) material selection; (4) heating, ventilation, and…

  19. Barriers and solutions in implementing occupational health and safety services at a large nuclear weapons facility.

    PubMed

    Takaro, T K; Ertell, K; Salazar, M K; Beaudet, N; Stover, B; Hagopian, A; Omenn, G; Barnhart, S

    2000-01-01

    The Hanford Nuclear Reservation is one of the U.S. Department of Energy's largest nuclear weapons sites. The enormous changes experienced by Hanford over the last several years, as its mission has shifted from weapons production to cleanup, has profoundly affected its occupational health and safety services. Innovative programs and new initiatives hold promise for a safer workplace for the thousands of workers at Hanford and other DOE sites. However, occupational health and safety professionals continue to face multiple organizational, economic, and cultural challenges. A major problem identified during this review was the lack of coordination of onsite services. Because each health and safety program operates independently (albeit with the guidance of the Richland field operations office), many services are duplicative and the health and safety system is fragmented. The fragmentation is compounded by the lack of centralized data repositories for demographic and exposure data. Innovative measures such as a questionnaire-driven Employee Job Task Analysis linked to medical examinations has allowed the site to move from the inefficient and potentially dangerous administrative medical monitoring assignment to defensible risk-based assignments and could serve as a framework for improving centralized data management and service delivery.

  20. 76 FR 20588 - FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... animal food and feed (including pet food). DATES: See ``How to Participate in the Meeting'' in the... examine and update current good manufacturing practice requirements and to develop an animal feed safety... request for an opportunity to make an oral presentation. It is only necessary to send one set of comments...

  1. Radiation safety during remediation of the SevRAO facilities: 10 years of regulatory experience.

    PubMed

    Sneve, M K; Shandala, N; Kiselev, S; Simakov, A; Titov, A; Seregin, V; Kryuchkov, V; Shcheblanov, V; Bogdanova, L; Grachev, M; Smith, G M

    2015-09-01

    In compliance with the fundamentals of the government's policy in the field of nuclear and radiation safety approved by the President of the Russian Federation, Russia has developed a national program for decommissioning of its nuclear legacy. Under this program, the State Atomic Energy Corporation 'Rosatom' is carrying out remediation of a Site for Temporary Storage of spent nuclear fuel (SNF) and radioactive waste (RW) at Andreeva Bay located in Northwest Russia. The short term plan includes implementation of the most critical stage of remediation, which involves the recovery of SNF from what have historically been poorly maintained storage facilities. SNF and RW are stored in non-standard conditions in tanks designed in some cases for other purposes. It is planned to transport recovered SNF to PA 'Mayak' in the southern Urals. This article analyses the current state of the radiation safety supervision of workers and the public in terms of the regulatory preparedness to implement effective supervision of radiation safety during radiation-hazardous operations. It presents the results of long-term radiation monitoring, which serve as informative indicators of the effectiveness of the site remediation and describes the evolving radiation situation. The state of radiation protection and health care service support for emergency preparedness is characterized by the need to further study the issues of the regulator-operator interactions to prevent and mitigate consequences of a radiological accident at the facility. Having in mind the continuing intensification of practical management activities related to SNF and RW in the whole of northwest Russia, it is reasonable to coordinate the activities of the supervision bodies within a strategic master plan. Arrangements for this master plan are discussed, including a proposed programme of actions to enhance the regulatory supervision in order to support accelerated mitigation of threats related to the nuclear legacy in the

  2. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.

  3. Nuclear criticality safety assessment of the Consolidated Edison Uranium-Solidification Program Facility

    SciTech Connect

    Thomas, J.T.

    1984-01-01

    A nuclear criticality assessment of the Consolidated Edison Uranium-Solidification Program facility confirms that all operations involved in the process may be conducted with an acceptable margin of subcriticality. Normal operation presents no concern since subcriticality is maintained by design. Several recommendations are presented to prevent, or mitigate the consequences of, any abnormal events that might occur in the various portions of the process. These measures would also serve to reduce to a minimum the administrative controls required to prevent criticality.

  4. Safety aspects related to the operation of the Cabril L/ILW disposal facility

    SciTech Connect

    Ruiz, M.C.; Alonso, J.A.

    1993-12-31

    In October 1992 the Spanish Ministry of Industry granted the operating permit to the Centro de Almacenamiento de El Cabril (C.A. El Cabril). The Annex 1 to this permit contains the limits and conditions related to safety and to radiological health protection, set by nuclear regulatory authority, the Consejo de Seguridad Nuclear (CSN). The main aspects of the operation regulated in the permit as well as their technical basis and practical meaning are discussed in this paper.

  5. Risk-based process safety assessment and control measures design for offshore process facilities.

    PubMed

    Khan, Faisal I; Sadiq, Rehan; Husain, Tahir

    2002-09-02

    Process operation is the most hazardous activity next to the transportation and drilling operation on an offshore oil and gas (OOG) platform. Past experiences of onshore and offshore oil and gas activities have revealed that a small mis-happening in the process operation might escalate to a catastrophe. This is of especial concern in the OOG platform due to the limited space and compact geometry of the process area, less ventilation, and difficult escape routes. On an OOG platform, each extra control measure, which is implemented, not only occupies space on the platform and increases congestion but also adds extra load to the platform. Eventualities in the OOG platform process operation can be avoided through incorporating the appropriate control measures at the early design stage. In this paper, the authors describe a methodology for risk-based process safety decision making for OOG activities. The methodology is applied to various offshore process units, that is, the compressor, separators, flash drum and driers of an OOG platform. Based on the risk potential, appropriate safety measures are designed for each unit. This paper also illustrates that implementation of the designed safety measures reduces the high Fatal accident rate (FAR) values to an acceptable level.

  6. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  7. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume II, Chapter 12

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.

    1999-08-01

    Operations in Tech Area IV commenced in 1980 with the construction of Buildings 980 and 981 and the Electron Beam Fusion Accelerator, which at the time was a major facility in SNL's Inertial Confinement Fusion Program. The Electron Beam Fusion Accelerator was a third-generation fusion accelerator that followed Proto I and Proto II, which were operated in Tech Area V. Another accelerator, the Particle Beam Fusion Accelerator I, was constructed in Tech Area IV because there was not enough room in Tech Area V, a highly restricted area that contains SNL's reactor facilities. In the early 1980s, more fusion-related facilities were constructed in Tech Area IV. Building 983 was built to house a fourth-generation fusion accelerator, the Particle Beam Fusion Accelerator II, now called Z Machine, and Buildings 960 and 961 were built to house office space, electrical and mechanical laboratories, and highbay space for pulsed power research and development. In the mid 1980s, Building 970 was constructed to house the Simulation Technology Laboratory. The main facility in the Simulation Technology Laboratory is the High-Energy Radiation Megavolt Electron Source (HERMES) III, a third-generation gamma ray accelerator that is used primarily for the simulation of gamma rays produced by nuclear weapons. The previous generations, HERMES I and HERMES II, had been located in Tech Area V. In the late 1980s, Proto II was moved from Tech Area V to the Simulation Technology Laboratory and modified to function as an x-ray simulation accelerator, and construction of Buildings 962 and 963 began. These buildings comprised the Strategic Defense Facility, which was initially intended to support the nation's Strategic Defense Initiative or ''Star Wars'' program. It was to house a variety of pulsed power-related facilities to conduct research in such areas as directed-energy weapons (electron beams, lasers, and microwaves) and an earth-to-orbit launcher. With the reduction of the Strategic Defense

  8. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect

    Elder, H.K.

    1986-05-01

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  9. DOE, 2013. A Report to the Secretary of Energy: Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities

    SciTech Connect

    None, None

    2013-02-01

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made. These actions and recommendations were addressed in an August 2011 report to the Secretary of Energy, Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events. Based on recommendations in the August 2011 report, DOE embarked on a project to develop and refine guidance that supports improvements in DOE’s processes for analyzing and mitigating beyond design basis events (BDBEs), i.e., events such as earthquakes that are more severe than the events that formed the basis of the design for DOE’s nuclear facilities. The results of this BDBE project and recommendations for further DOE actions are provided in this follow-on report. The main activity of the BDBE project was the pilot application of guidance for evaluation of BDBE analysis and mitigation features at four DOE nuclear facilities representing a range of DOE sites, nuclear facility types/activities, and responsible program offices. The pilot evaluations focused on: (1) BDBE evaluations as documented in the facility Documented Safety Analysis (DSA); (2) potential BDBE vulnerabilities and margins to failure for facility safety features as obtained from general area and specific system walkdowns and design document reviews; and, (3) preparations made in facility and site emergency management programs to respond to severe accidents. The BDBE project also evaluated whether draft BDBE guidance on safety analysis and emergency management could be used to improve the analysis of, and preparations for, mitigating severe accidents and BDBEs. The pilot evaluation team paid close attention to related actions being pursued by the U.S. Nuclear Regulatory Commission, the U.S. commercial nuclear industry, and the

  10. Linkage Between Post-Closure Safety Case Review and the Authorization Process for Radioactive Waste Disposal Facilities

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.; Bennett, D. G.

    2003-02-27

    The Environment Agency (the Agency) has responsibilities under the Radioactive Substances Act of 1993 for regulating the disposal and storage of radioactive wastes in England and Wales, including regulation of the disposal site for UK solid low-level waste (LLW) at Drigg in Cumbria, NW England. To help inform the next review of the Drigg disposal authorization, the Agency has required the operator, British Nuclear Fuels plc to submit a Post-Closure Safety Case which will assess the potential long-term impacts from the site. With the aim of using best practice to determine authorization conditions, the Agency contracted Galson Sciences, Ltd to undertake an international survey of authorization procedures for comparable facilities in other countries. This paper provides an overview of the findings from the international survey.

  11. Final safety analysis report for the Fifth Calcined Solids Storage Facility

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Radioactive aqueous wastes generated by the solvent extraction of uranium from expended fuels at ICPP will be calcined in the New Waste Calcining Facility (NWCF). The calcined solids are pneumatically transferred to stainless steel bins enclosed in concrete vaults for interim storage of up to 500 years. The Fifth Calcined Solids Storage Facility (CSSF) provides 1000 cu m of storage and consists of seven annular stainless steel bins inside a reinforced concrete vault set on bedrock. Storage of calcined solids is essentially a passive operation with very little opportunity for release of radionuclides and with no potential for criticality. There will be no potential for fire or explosion. Shielding has been designed to assure that the radiation levels at the vault exterior surfaces will be limited to less than 0.5 mRem/h. A sump in the vault floor will collect any in-leakage that may occur. Any water that collects in the sump will be sampled then removed with the sump jet. There will be an extremely small chance of release of radioactive particulates into the atmosphere as a result of a bin leak. The Design Basis Accident (DBA) postulates the spill of solids from an eroded fill line into the vault coupled with a failure of the vault cooling air radiation monitor.

  12. How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

    PubMed

    Chang, Hye-Ja; Kim, Jeong-Won; Ju, Se-Young; Go, Eun-Sun

    2012-08-01

    In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices.

  13. How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

    PubMed Central

    Kim, Jeong-Won; Ju, Se-Young; Go, Eun-Sun

    2012-01-01

    In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices. PMID:22977692

  14. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  15. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  16. Calculational framework for safety analyses of non-reactor nuclear facilities

    SciTech Connect

    Coleman, J.R.

    1994-06-01

    A calculational framework for the consequences analysis of non-reactor nuclear facilities is presented. The analysis framework starts with accident scenarios which are developed through a traditional hazard analysis and continues with a probabilistic framework for the consequences analysis. The framework encourages the use of response continua derived from engineering judgment and traditional deterministic engineering analyses. The general approach consists of dividing the overall problem into a series of interrelated analysis cells and then devising Markov chain like probability transition matrices for each of the cells. An advantage of this division of the problem is that intermediate output (as probability state vectors) are generated at each calculational interface. The series of analyses when combined yield risk analysis output. The analysis approach is illustrated through application to two non-reactor nuclear analyses: the Ulysses Space Mission, and a hydrogen burn in the Hanford waste storage tanks.

  17. Environment, safety, health at DOE Facilities. Annual report, Fiscal Year 1980

    SciTech Connect

    Not Available

    1981-07-01

    The Department of Energy's occupational safety and property protection performance in fiscal year 1980 was excellent in all reported categories with loss rates generally less than one-third of comparable industry figures. The Department of Energy's fiscal year 1980 incidence rate per 200,000 work hours was 1.1 lost workday cases and 18.2 lost workdays compared to 1.1 lost workday cases and 17.2 lost workdays during fiscal year 1979. The recorded occupational illness rate, based on only 70 cases, was 0.05 cases per 200,000 work hours compared to 0.06 cases per 200,000 work hours for fiscal year 1979. Ten fatalities involving Federal or contractor employees occurred in fiscal year 1980 compared to nine for fiscal year 1979. Four of those in fiscal year 1980 resulted from two aircraft accidents. Total reported property loss during fiscal year 1980 was $7.1 million with $3.5 million attributable to earthquake damage sustained by the Lawrence Livermore and Sandia National Laboratories on January 24, 1980. A total of 131 million vehicle miles of official vehicular travel during fiscal year 1980 resulted in 768 accidents and $535,145 in property damages. The 104,986 monitored Department of Energy and Department of Energy contractor employees received a total dose of 9040 REM in calendar year 1979. Both the total dose and the 1748 employees receiving radiation exposures greater than 1 REM in 1979 represent a continuing downward trend from the calendar year 1978 total dose of 9380 REM and the 1826 employees who received radiation exposures greater than 1 REM. The fifty-nine appraisals conducted indicate that generally adequate plans have been developed and effective organizational structures have been established to carry out the Department of Energy's Environmental Protection, Safety, and Health Protection (ES and H) Program.

  18. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    SciTech Connect

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  19. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  20. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  1. Preventing in-facility pressure ulcers as a patient safety strategy: a systematic review.

    PubMed

    Sullivan, Nancy; Schoelles, Karen M

    2013-03-05

    Complications from hospital-acquired pressure ulcers cause 60,000 deaths and significant morbidity annually in the United States. The objective of this systematic review is to review evidence regarding multicomponent strategies for preventing pressure ulcers and to examine the importance of contextual aspects of programs that aim to reduce facility-acquired pressure ulcers. CINAHL, the Cochrane Library, EMBASE, MEDLINE, and PreMEDLINE were searched for articles published from 2000 to 2012. Studies (any design) that implemented multicomponent initiatives to prevent pressure ulcers in adults in U.S. acute and long-term care settings and that reported pressure ulcer rates at least 6 months after implementation were selected. Two reviewers extracted study data and rated quality of evidence. Findings from 26 implementation studies (moderate strength of evidence) suggested that the integration of several core components improved processes of care and reduced pressure ulcer rates. Key components included the simplification and standardization of pressure ulcer-specific interventions and documentation, involvement of multidisciplinary teams and leadership, use of designated skin champions, ongoing staff education, and sustained audit and feedback.

  2. Update of Environmental and Safety Analyses for the National Ignition Facility: Using a New Model to Track Target Material Usage

    SciTech Connect

    Gillich, D; Tobin, M; Singh, M; Kalantar, D; Brereton, S; MacGowan, B

    2001-08-03

    The purpose of this paper is to report the methodology and assumptions, data, and results of calculations concerning safety and environmental issues related to excursions to currently planned NIF operations. Many possible uses of NIF have been suggested over the years. While some of these possible uses have been adopted into the baseline plans for NIF, many others have not. While we do not yet know all of the possible approved uses for NIF, one of the items that would bear on whether a certain course use might be adopted or not would be its environmental and safety impact. Here we examine certain excursions from the existing planned operations to determine their environmental and safety impacts. These excursions are related to the use of ''cocktail'' hohlraums as the baseline target for ignition experiments in the National Ignition Facility (NIF) as well as possible increased utilization of beryllium and uranium. This paper also addresses the fission products produced from cocktail hohlraum use for high yield experiments. Again, this analyses does not imply an authorization to proceed with such modes of operation, or any intent to proceed beyond this analyses. A detailed analysis of a range of postulated experiments for NIF was conducted for the years 2003 through 2011. The goal was to quantify the amount of target material introduced into the target bay per year. The assumptions outlined in this paper are based on the worst-case scenario from an environmental perspective. A spreadsheet was developed to integrate all the gathered information and to calculate the total amount of materials per year. The spreadsheet was also designed as a tool for future analyses. The total amount of material was used to justify and establish a proposed upper bound for the amount of beryllium and uranium introduced into the target bay in a given year. The cocktail hohlraum and associated appendages were modeled with the neutron transport code TART98 to determine neutron fluxes within

  3. Vegetative regeneration

    Treesearch

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  4. Regeneration methods

    Treesearch

    James P. Barnett; James B. Baker

    1991-01-01

    Southern pines can be regenerated naturally, by clearcutting, seedtree, shelterwood, or selection reproduction culling methods, or artificially, by direct seeding or by planting either container or bareroot seedlings. All regeneration methods have inherent advantages: and disadvantages; thus, land managers must consider many factors before deciding on a specific method...

  5. 70 FR 35461 - Safety Evaluation Report for the Proposed National Enrichment Facility in Lea County, NM, NUREG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2005-06-20

    ... ISA Summary, radiation protection, nuclear criticality safety, chemical process safety, fire safety... Doc No: E5-3174] NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103] Safety Evaluation Report for the... States Nuclear Regulatory Commission. ACTION: Notice of availability of Safety Evaluation Report....

  6. ORNL results for Test Case 1 of the International Atomic Energy Agency`s research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    SciTech Connect

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A.; Roemer, E.K.

    1993-07-01

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled ```The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.`` The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault.

  7. Axial compression behavior and partial composite action of SC walls in safety-related nuclear facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Steel-plate reinforced concrete (SC) composite walls typically consist of thick concrete walls with two exterior steel faceplates. The concrete core is sandwiched between the two steel faceplates, and the faceplates are attached to the concrete core using shear connectors, for example, ASTM A108 steel headed shear studs. The shear connectors and the concrete infill enhance the stability of the steel faceplates, and the faceplates serve as permanent formwork for concrete placement. SC composite walls were first introduced in the 1980's in Japan for nuclear power plant (NPP) structures. They are used in the new generation of nuclear power plants (GIII+) and being considered for small modular reactors (SMR) due to their structural efficiency, economy, safety, and construction speed. Steel faceplates can potentially undergo local buckling at certain locations of NPP structures where compressive forces are significant. The steel faceplates are usually thin (0.25 to 1.50 inches in Customary units, or 6.5 to 38 mm in SI units) to maintain economical and constructional efficiency, the geometric imperfections and locked-in stresses induced during construction make them more vulnerable to local buckling. Accidental thermal loading may also reduce the compressive strength and exacerbate the local buckling potential of SC composite walls. This dissertation presents the results from experimental and numerical investigations of the compressive behavior of SC composite walls at ambient and elevated temperatures. The results are used to establish a slenderness limit to prevent local buckling before yielding of the steel faceplates and to develop a design approach for calculating the compressive strength of SC composite walls with non-slender and slender steel faceplates at ambient and elevated temperatures. Composite action in SC walls is achieved by the embedment of shear connectors into the concrete core. The strength and stiffness of shear connectors govern the level of

  8. Skateboard Safety.

    ERIC Educational Resources Information Center

    Della-Giustina, Daniel

    1979-01-01

    The growing number of skateboard injuries clearly indicates a need for both recreational facilities designed exclusively for skateboarders, and for accident- prevention-oriented safety education programs. (LH)

  9. Medicare and Medicaid programs; fire safety requirements for long term care facilities, automatic sprinkler systems. Final rule.

    PubMed

    2008-08-13

    This final rule requires all long term care facilities to be equipped with sprinkler systems by August 13, 2013. Additionally, this final rule requires affected facilities to maintain their automatic sprinkler systems once they are installed.

  10. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  11. Design Considerations for the Construction and Operation of Flour Milling Facilities. Part I: Planning, Structural, and Life Safety Considerations

    USDA-ARS?s Scientific Manuscript database

    Flour milling facilities have been the cornerstone of agricultural processing for centuries. Like most agri-industrial production facilities, flour milling facilities have a number of unique design requirements. Design information, to date, has been limited. In an effort to summarize state of the ...

  12. Unreviewed Safety Question Determination for TOPAZ II uranium fuel pellet production at the Plutonium Handling Facility (PF-4), Technical Area 55, Los Alamos National Laboratory

    SciTech Connect

    Gordon, D.J.P.

    1993-09-29

    Enriched uranium oxide, nitride, and carbide fuel pellets have been produced at PF-4 since the facility became operational in the late 1970s. The TOPAZ II reactors require fuel enriched to 97% uranium-235. Approximately 75 kilograms (kgs) of uranium will be processed per year in support of this program. The amount of fuel processed per year at PF-4 will not be increased for these programs, but the batch size will be increased to approximately 3 kgs of uranium. The current DOE-approved Final Safety Analysis Report (FSAR) calls for batches containing 45 grams (gms) of plutonium-239 and 172 gms of uranium-235. The impact of increasing the uranium batch size on the facility authorization basis is analyzed in the attached Safety Evaluation Worksheet. In addition, the structural modification for the transformer and vacuum pump installation, required to support the operation, is evaluated. Based on the attached Safety Evaluation, it has been determined that the change in uranium batch size does not constitute an Unreviewed Safety Question (USQ), the increase in uranium batch size does not increase the probability or consequences of any accidents previously analyzed and does not create the possibility for a new type of accident or reduce the margin of safety in the Operational Safety Requirements (OSRs). Similarly, the structural modifications required for the transformer and vacuum pump installation do not increase the probability or consequence of any accident previously analyzed and do not create the possibility for a new type of accident or reduce any margin of safety in the OSRS.

  13. PWR-related integral safety experiments in the PKL 111 test facility SBLOCA under beyond-design-basis accident conditions

    SciTech Connect

    Weber, P.; Umminger, K.J.; Schoen, B.

    1995-09-01

    The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where the decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).

  14. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are Federal...

  15. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What are Federal...

  16. School Siting Near Industrial Chemical Facilities: Findings from the U.S. Chemical Safety Board’s Investigation of the West Fertilizer Explosion

    PubMed Central

    Tinney, Veronica A.; Denton, Jerad M.; Sciallo-Tyler, Lucy; Paulson, Jerome A.

    2016-01-01

    Background: The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigated the 17 April 2013 explosion at the West Fertilizer Company (WFC) that resulted in 15 fatalities, more than 260 injuries, and damage to more than 150 buildings. Among these structures were four nearby school buildings cumulatively housing children in grades kindergarten–12, a nursing care facility, and an apartment complex. The incident occurred during the evening when school was not in session, which reduced the number of injuries. Objectives: The goal of this commentary is to illustrate the consequences of siting schools near facilities that store or use hazardous chemicals, and highlight the need for additional regulations to prevent future siting of schools near these facilities. Discussion: We summarize the findings of the CSB’s investigation related to the damaged school buildings and the lack of regulation surrounding the siting of schools near facilities that store hazardous chemicals. Conclusions: In light of the current lack of federal authority for oversight of land use near educational institutions, state and local governments should take a proactive role in promulgating state regulations that prohibit the siting of public receptors, such as buildings occupied by children, near facilities that store hazardous chemicals. Citation: Tinney VA, Denton JM, Sciallo-Tyler L, Paulson JA. 2016. School siting near industrial chemical facilities: findings from the U.S. Chemical Safety Board’s investigation of the West Fertilizer Explosion. Environ Health Perspect 124:1493–1496; http://dx.doi.org/10.1289/EHP132 PMID:27483496

  17. Process safety management in the pipeline industry: parallels and differences between the pipeline integrity management (IMP) rule of the Office of Pipeline Safety and the PSM/RMP approach for process facilities.

    PubMed

    DeWolf, Glenn B

    2003-11-14

    In 2001, the Federal Office of Pipeline Safety promulgated its pipeline integrity management rule for hazardous liquid pipelines. A notice of proposed rule making for a similar rule for gas pipelines was issued in January 2003. A final rule must be in place by the end of 2003. These rules derive from formal risk management initiatives of both the pipeline industry and the regulators beginning in the early to mid-1990s. The initiatives and resulting rules built on many of the process safety and risk management concepts and frameworks of the process industries, as modified for pipelines. Looking closely at the parallels and the differences is an interesting study of how the technical, public and industry-specific requirements affect the types of regulations, supporting management system frameworks and the technical activities for improving hazardous materials process safety. This paper is based on the experience of the author in project work with federal and state regulators and with industry groups and companies, in both the process and pipeline industries over the last 17 years. It provides insights into various alternative pathways for communicating process safety concepts and improving process safety as the concepts are translated into specific company and even individual employee actions. It specifically highlights how the commonalities and differences in the types and configurations of physical assets and operating practices of the pipeline companies and process facilities affect respective cultures, language and actions for process safety management.

  18. Additional guidance for including nuclear safety equivalency in the Canister Storage Building and Cold Vacuum Drying Facility final safety analysis report

    SciTech Connect

    Garvin, L.J.

    1997-05-20

    This document provides guidance for the production of safety analysis reports that must meet both DOE Order 5480.23 and STD 3009, and be in compliance with the DOE regulatory policy that imposes certain NRC requirements.

  19. Safety analysis report for the National Low-Temperature Neutron Irradiation Facility (NLTNIF) at the ORNL Bulk Shielding Reactor (BSR)

    SciTech Connect

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Richardson, S.A.

    1986-06-01

    This report provides information concerning: the experiment facility; experiment assembly; instrumentation and controls; materials; radioactivity; shielding; thermodynamics; estimated or measured reactivity effects; procedures; hazards; and quality assurance. (JDB)

  20. New Applications of Gamma Spectroscopy: Characterization Tools for D&D Process Development, Inventory Reduction Planning & Shipping, Safety Analysis & Facility Management During the Heavy Element Facility Risk Reduction Program

    SciTech Connect

    Mitchell, M; Anderson, B; Gray, L; Vellinger, R; West, M; Gaylord, R; Larson, J; Jones, G; Shingleton, J; Harris, L; Harward, N

    2006-01-23

    Novel applications of gamma ray spectroscopy for D&D process development, inventory reduction, safety analysis and facility management are discussed in this paper. These applications of gamma spectroscopy were developed and implemented during the Risk Reduction Program (RPP) to successfully downgrade the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL) from a Category II Nuclear Facility to a Radiological Facility. Non-destructive assay in general, gamma spectroscopy in particular, were found to be important tools in project management, work planning, and work control (''Expect the unexpected and confirm the expected''), minimizing worker dose, and resulted in significant safety improvements and operational efficiencies. Inventory reduction activities utilized gamma spectroscopy to identify and confirm isotopics of legacy inventory, ingrowth of daughter products and the presence of process impurities; quantify inventory; prioritize work activities for project management; and to supply information to satisfy shipper/receiver documentation requirements. D&D activities utilize in-situ gamma spectroscopy to identify and confirm isotopics of legacy contamination; quantify contamination levels and monitor the progress of decontamination efforts; and determine the point of diminishing returns in decontaminating enclosures and glove boxes containing high specific activity isotopes such as {sup 244}Cm and {sup 238}Pu. In-situ gamma spectroscopy provided quantitative comparisons of several decontamination techniques (e.g. TLC-free Stripcoat{trademark}, Radiac{trademark} wash, acid wash, scrubbing) and was used as a part of an iterative process to determine the appropriate level of decontamination and optimal cost to benefit ratio. Facility management followed a formal, rigorous process utilizing an independent, state certified, peer-reviewed gamma spectroscopy program, in conjunction with other characterization techniques, process knowledge, and

  1. Cartilage Regeneration

    PubMed Central

    Tuan, Rocky S.; Chen, Antonia F.; Klatt, Brian A.

    2016-01-01

    Cartilage damaged by trauma has a limited capacity to regenerate. Current methods for treating small chondral defects include palliative treatment with arthroscopic debridement and lavage, reparative treatment with marrow stimulation techniques (e.g. microfracture), and restorative treatment, including osteochondral grafting and autologous chondrocyte implantation. Larger defects are treated by osteochondral allografting or total joint replacements. However, the future of treating cartilage defects lies in providing biologic solutions through cartilage regeneration. Laboratory and clinical studies have examined the treatment of larger lesions using tissue engineered cartilage. Regenerated cartilage can be derived from various cell types, including chondrocytes, mesenchymal stem cells, and pluripotent stem cells. Common scaffolding materials include proteins, carbohydrates, synthetic materials, and composite polymers. Scaffolds may be woven, spun into nanofibers, or configured as hydrogels. Chondrogenesis may be enhanced with the application of chondroinductive growth factors. Finally, bioreactors are being developed to enhance nutrient delivery and provide mechanical stimulation to tissue-engineered cartilage ex vivo. The multi-disciplinary approaches currently being developed to produce cartilage promise to bring the dream of cartilage regeneration in clinical use to reality. PMID:23637149

  2. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... and electrical ignition sources. Operability and safety basis related concerns on fire detection and... in conducting drills necessary to demonstrate the overall effectiveness. DOE is committed to the...

  3. 33 CFR 165.T13-240 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zones; Pacific Northwest... Limited Access Areas Thirteenth Coast Guard District § 165.T13-240 Safety Zones; Pacific Northwest Grain... passage in accordance with the Navigation Rules; and (ii) Permit commercial vessels anchored in...

  4. Periodontal regeneration.

    PubMed

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  5. Periodontal regeneration.

    PubMed

    Wang, Hom-Lay; Greenwell, Henry; Fiorellini, Joseph; Giannobile, William; Offenbacher, Steven; Salkin, Leslie; Townsend, Cheryl; Sheridan, Phillip; Genco, Robert J

    2005-09-01

    Untreated periodontal disease leads to tooth loss through destruction of the attachment apparatus and tooth-supporting structures. The goals of periodontal therapy include not only the arrest of periodontal disease progression,but also the regeneration of structures lost to disease where appropriate. Conventional surgical approaches (e.g., flap debridement) continue to offer time-tested and reliable methods to access root surfaces,reduce periodontal pockets, and attain improved periodontal form/architecture. However, these techniques offer only limited potential towards recovering tissues destroyed during earlier disease phases. Recently, surgical procedures aimed at greater and more predictable regeneration of periodontal tissues and functional attachment close to their original level have been developed, analyzed, and employed in clinical practice. This paper provides a review of the current understanding of the mechanisms, cells, and factors required for regeneration of the periodontium and of procedures used to restore periodontal tissues around natural teeth. Targeted audiences for this paper are periodontists and/or researchers with an interest in improving the predictability of regenerative procedures. This paper replaces the version published in 1993.

  6. 33 CFR 146.103 - Safety and Security notice of arrival for U.S. floating facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Full name; (ii) Date of birth; (iii) Nationality; (iv) Passport number or marine documentation number.... (f) Towing vessels. When a towing vessel controls a U.S. floating facility required to submit an NOA...

  7. 33 CFR 146.103 - Safety and Security notice of arrival for U.S. floating facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Full name; (ii) Date of birth; (iii) Nationality; (iv) Passport number or marine documentation number.... (f) Towing vessels. When a towing vessel controls a U.S. floating facility required to submit an NOA...

  8. 33 CFR 146.103 - Safety and Security notice of arrival for U.S. floating facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Full name; (ii) Date of birth; (iii) Nationality; (iv) Passport number or marine documentation number.... (f) Towing vessels. When a towing vessel controls a U.S. floating facility required to submit an NOA...

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  10. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  11. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume 1, Chapters 6 through 10

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

    1999-09-01

    Operations at the Neutron Generator Facility include fabrication of war reserve neutron generators and prototype switch tubes. Neutron generators initiate nuclear fission in a nuclear weapon by providing a flux of neutrons at the proper time. The mission of the Neutron Generator Facility is to support U.S. nuclear deterrent capabilities by fabricating war reserves of the following: Neutron generators (external initiators for nuclear weapons); Neutron tubes; and Prototype switch tubes (expanded scenario only).

  12. The design methodology and the safety concept of the surface disposal facility for the Belgian category A waste at Dessel

    SciTech Connect

    Wacquier, William; Bastiaens, Wim; Cool, Wim

    2013-07-01

    The paper describes the design methodology that ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, has developed and applied in the framework of the surface disposal facility for category A waste, i.e. solid conditioned low level radioactive waste that contains a limited amount of long lived radionuclides, at Dessel. The proposed disposal facility supporting the submitted construction and operation license application [1, 2] is also presented. (authors)

  13. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-02-26

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

  14. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    SciTech Connect

    Rabin, M.S.

    1992-08-01

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

  15. Regenerator seal

    DOEpatents

    Davis, Leonard C.; Pacala, Theodore; Sippel, George R.

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  16. Regenerator seal

    NASA Technical Reports Server (NTRS)

    Davis, Leonard C. (Inventor); Pacala, Theodore (Inventor); Sippel, George R. (Inventor)

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  17. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume I, Chapters 2 through 5

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

    1999-09-01

    The Facilities Business Unit, which includes the Operations and Engineering Center (7800) and the Facilities Management Center (7900), coordinates decisions about the management of facilities, infrastructure, and sites. These decisions include the following: New construction, including siting; Rehabilitation, and renovation; Relocation; Mothballing; Decontamination and decommissioning; and Demolition. Decisions on these matters flow from a corporate decision process in which SNL directors and vice presidents identify the facility and infrastructure requirements for carrying out work for DOE and other customers. DOE and any non-DOE owners of real estate that is leased or permitted to DOE for SNL/NM use must concur with this identification of requirements. Decision-making follows procedures required by DOE and requirements defined by SNL/NM program executives. See Sandia National Laboratories (1997e), Part II, ''Desired Future State and Strategy,'' and appendices to Sandia National Laboratories (1997e) for more information about planning and decision processes. Decisions on siting take surrounding land uses into account and draw on environmental baseline information maintained at SNL/NM. For environmental baseline and land use information, see Sandia National Laboratories (1999).

  18. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and any testing or modeling or other sources used in the design. (b) All interior walls separating...-hour fire barrier walls. A records storage facility may not store more than 250,000 cubic feet total of... barrier walls that meet the following specifications must be provided: (1) For existing records storage...

  19. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection engineer, the review requirement is met by furnishing a report under the seal of a licensed fire...

  20. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection engineer, the review requirement is met by furnishing a report under the seal of a licensed fire...

  1. Study of Occupational Safety and Health Audit on Facilities at Ungku Omar College, Universiti Kebangsaan Malaysia (UKM): A Preliminary Analysis

    ERIC Educational Resources Information Center

    Ariffin, Kadir; Ahmad, Shaharuddin; Aiyub, Kadaruddin; Awang, Azhan; Aziz, Azmi; Mohamad, Lukman Z.; Mamat, Samsu Adabi

    2010-01-01

    Occupational safety and health (OSH) in Universiti Kebangsaan Malaysia (UKM) is being considered as an important program to measure employee and student welfare and well-being. During academic session, apart from attending lectures, laboratory works, tutorial and library search, majority of students spend most of their time in residential…

  2. Study of Occupational Safety and Health Audit on Facilities at Ungku Omar College, Universiti Kebangsaan Malaysia (UKM): A Preliminary Analysis

    ERIC Educational Resources Information Center

    Ariffin, Kadir; Ahmad, Shaharuddin; Aiyub, Kadaruddin; Awang, Azhan; Aziz, Azmi; Mohamad, Lukman Z.; Mamat, Samsu Adabi

    2010-01-01

    Occupational safety and health (OSH) in Universiti Kebangsaan Malaysia (UKM) is being considered as an important program to measure employee and student welfare and well-being. During academic session, apart from attending lectures, laboratory works, tutorial and library search, majority of students spend most of their time in residential…

  3. Mechanisms of Cardiac Regeneration

    PubMed Central

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  4. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  5. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  6. How to treat climate evolution in the assessment of the long-term safety of disposal facilities for radioactive waste: examples from Belgium

    NASA Astrophysics Data System (ADS)

    van Geet, M.; de Craen, M.; Mallants, D.; Wemaere, I.; Wouters, L.; Cool, W.

    2009-02-01

    In order to protect man and the environment, long-lasting, passive solutions are needed for the different categories of radioactive waste. In Belgium, three main categories of conditioned radioactive waste (termed A, B and C) are defined by radiological and thermal power criteria. It is expected that Category A waste - low and intermediate level short-lived waste - will be disposed in a near-surface facility, whereas Category B and C wastes - high-level and other long-lived radioactive waste - will be disposed in a deep geological repository. In both cases, the long-term safety of a given disposal facility is evaluated. Different scenarios and assessment cases are developed illustrating the range of possibilities for the evolution and performance of a disposal system without trying to predict its precise behaviour. Within these scenarios, the evolution of the climate will play a major role as the time scales of the evaluation and long term climate evolution overlap. In case of a near-surface facility (Category A waste), ONDRAF/NIRAS is considering the conclusions of the IPCC, demonstrating that a global warming is nearly unavoidable. The consequences of such a global warming and the longer term evolutions on the evolution of the near-surface facility are considered. In case of a geological repository, in which much longer time frames are considered, even larger uncertainties exist in the various climate models. Therefore, the robustness of the geological disposal system towards the possible results of a spectrum of potential climate changes and their time of occurrence will be evaluated. The results of climate modelling and knowledge of past climate changes will merely be used as guidance of the extremes of climate changes to be considered and their consequences.

  7. Generic safety documentation model

    SciTech Connect

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.

  8. Walkdown procedure: Seismic adequacy review of safety class 3 & 4 commodities in 2736-Z & ZB buildings at PFP facility

    SciTech Connect

    Ocoma, E.C.

    1995-03-29

    Seismic evaluation of existing safety class (SC) 3 and non-SC 4 commodities at the Plutonium Finishing Plant (PFP) is integrated into an area walkdown program. Field walkdowns of potential PFP seismic deficiencies associated with structural failure and falling will be performed using the DOE SQUG/EPRI methodology. Potential proximity interactions are also addressed. Objective of the walkdown is to qualify as much of the equipment as practical and to identify candidates for further evaluation.

  9. Assessing regeneration potential

    Treesearch

    Ivan L. Sander

    1989-01-01

    When a regeneration harvest cut is planned for even-aged stands or it is time to make another cut in uneven-aged stands, the first thing to do is assess the regeneration potential. Regeneration potential is the likelihood of being successful in reproducing desired species. You need an assessment to be reasonably sure that regeneration and management objectives can be...

  10. Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)

    SciTech Connect

    KESSLER, S.F.

    1999-10-20

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.

  11. The safety of early fresh, whole blood transfusion among severely battle injured at US Marine Corps forward surgical care facilities in Afghanistan.

    PubMed

    Auten, Jonathan D; Lunceford, Nicole L; Horton, Jaime L; Galarneau, Mike R; Galindo, Roger M; Shepps, Craig D; Zieber, Tara J; Dewing, Chris B

    2015-11-01

    In Afghanistan, care of the acutely injured trauma patient commonly occurred in facilities with limited blood banking capabilities. Apheresis platelets were often not available. Component therapy consisted of 1:1 packed red blood cells and fresh frozen plasma. Fresh, whole blood transfusion often augmented therapy in the severely injured patient. This study analyzed the safety of fresh, whole blood use in a resource-limited setting. A retrospective analysis was performed on a prospectively collected data set of US battle injuries presenting to three US Marine Corps (USMC) expeditionary surgical care facilities in Helmand Province, Afghanistan, between January 2010 and July 2012. Included in the review were patients with Injury Severity Scores (ISSs) of 15 or higher receiving blood transfusions. Univariate analyses were performed, followed by multivariable logistic regression to describe the relationship between the treatment group and posttreatment complications such as trauma-induced coagulopathy, infection, mortality, venous thromboembolism, and transfusion reaction. Propensity scores were calculated and included in multivariable models to adjust for potential bias in treatment selection. A total of 61 patients were identified; all were male marines with a mean (SD) age of 23.5 (3.6) years. The group receiving fresh, whole blood was noted to have higher ISSs and lower blood pressure, pH, and base deficits on arrival. Traumatic coagulopathy was significantly less common in the group receiving fresh, whole blood (odds ratio, 0.01; 95% confidence interval, 0.00-0.18). Multivariable models found no other significant differences between the treatment groups. The early use of fresh, whole blood in a resource-limited setting seems to confer a benefit in reducing traumatic coagulopathy. This study's small sample size precludes further statement on the overall safety of fresh, whole blood use. Therapy study, level IV.

  12. H. R. 4121: A Bill to establish an independent safety board to oversee Department of Energy nuclear facilities. Introduced in the House of Representatives, One Hundredth Congress, Second Session, March 9, 1988

    SciTech Connect

    Not Available

    1988-01-01

    The bill H.R. 4121 if enacted would establish an independent safety board to oversee the Department of Energy nuclear facilities. This board would be a part of the executive branch and would be known as the Federal Facilities Nuclear Safety Board. The structure, functions, and powers of the Board as well as the responsibilities of the Secretary of Energy in full cooperation with the board, the format of board recommendations, the method of board reporting, and authorization for funding for the board are presented in detail. The bill was referred to the Committees on Energy and Commerce and Armed Services.

  13. Safety of transport and hyperbaric oxygen treatment in critically-ill patients from Padua hospitals into a centrally-located, stand-alone hyperbaric facility.

    PubMed

    Bosco, Gerardo; Garetto, Giacomo; Rubini, Alessandro; Paoli, Antonio; Dalvi, Prachiti; Mangar, Devanand; Camporesi, Enrico M

    2016-09-01

    Some patients admitted to the intensive care unit (ICU) might require repetitive hyperbaric oxygen treatment (HBOT) while receiving critical care. In such cases, the presence of a hyperbaric chamber located inside or near an ICU is preferable; however, this set-up is not always possible. In Padua, the "Associazione Tecnici IPerbarici" hyperbaric centre is a stand-alone facility outside of a hospital. Despite this, selected ICU patients receive HBOT at this facility. We retrospectively reviewed the medical records from 2003 to 2013 of 75 consecutive, critically-ill patients, 28 of whom were initially intubated and mechanically ventilated whilst undergoing HBOT. We evaluated the methods adopted in Padua to guarantee the safety and continuity of care during transfer for and during HBOT in this specially-equipped multiplace chamber. The 75 patients collectively received 315 HBOT sessions, 192 of which were with the patients intubated and mechanically ventilated. The diagnoses ranged from necrotizing fasciitis to post-surgical sepsis and intracranial abscess. We obtained full recovery for 73 patients. Two deaths were recorded not in close time relation to HBOT. With meticulous monitoring, efficient transport and well-trained personnel, the risks associated with transportation and HBOT can be acceptable for the referring physician.

  14. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection.

    PubMed

    Xie, Yunxuan; Qiu, Ning; Wang, Guangyi

    2017-02-16

    Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens.

  15. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  16. A macro-ergonomic work system analysis of the diagnostic testing process in an outpatient health care facility for process improvement and patient safety.

    PubMed

    Hallock, M L; Alper, S J; Karsh, B

    The diagnosis of illness is important for quality patient care and patient safety and is greatly aided by diagnostic testing. For diagnostic tests, such as pathology and radiology, to positively impact patient care, the tests must be processed and the physician and patient must be notified of the results in a timely fashion. There are many steps in the diagnostic testing process, from ordering to result dissemination, where the process can break down and therefore delay patient care and reduce patient safety. This study was carried out to examine the diagnostic testing process (i.e. from ordering to result notification) and used a macro-ergonomic work system analysis to uncover system design flaws that contributed to delayed physician and patient notification of results. The study was carried out in a large urban outpatient health-care facility made up of 30 outpatient clinics. Results indicated a number of variances that contributed to delays, the majority of which occurred across the boundaries of different systems and were related to poor or absent feedback structures. Recommendations for improvements are discussed.

  17. Promotion of hand hygiene strengthening initiative in a Nigerian teaching hospital: implication for improved patient safety in low-income health facilities.

    PubMed

    Uneke, Chigozie Jesse; Ndukwe, Chinwendu Daniel; Oyibo, Patrick Gold; Nwakpu, Kingsley Onuoha; Nnabu, Richard Chukwuka; Prasopa-Plaizier, Nittita

    2014-01-01

    Health care-associated infection remains a significant hazard for hospitalized patients. Hand hygiene is a fundamental action for ensuring patient safety. To promote adoption of World Health Organization Hand Hygiene Guidelines to enhance compliance among doctors and nurses and improve patient safety. The study design was a cross sectional intervention in a Federal Teaching Hospital South-eastern Nigeria. Interventions involved training/education; introduction of hand rub; and hand hygiene reminders. The impact of interventions and hand hygiene compliance were evaluated using World Health Organization direct observation technique. The post-intervention hand hygiene compliance rate was 65.3%. Hand hygiene indications showed highest compliance rate 'after body fluid exposure' (75.3%) and 'after touching a patient' (73.6%) while the least compliance rate was recorded 'before touching a patient' (58.0%). Hand hygiene compliance rate was significantly higher among nurses (72.9%) compared to doctors (59.7%) (χ(2)=23.8, p<0.05). Hand hygiene indication with significantly higher compliance rate was "before clean/aseptic procedure" (84.4%) (χ(2)=80.74, p<0.05). Out of the 815 hand hygiene practices recorded 550 (67.5%) were hand rub action. hand hygiene campaigns using the World Health Organization tools and methodology can be successfully executed in a tertiary health facility of a low-income setting with far reaching improvements in compliance. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  18. Final results of a phase I-II trial using ex vivo expanded autologous Mesenchymal Stromal Cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration.

    PubMed

    Soler, Robert; Orozco, Lluis; Munar, Ana; Huguet, Marina; López, Ramon; Vives, Joaquim; Coll, Ruth; Codinach, Margarita; Garcia-Lopez, Joan

    2016-08-01

    Cellular therapies have shown encouraging results in the treatment of chronic osteoarthritis (OA). Herein, we present the final results of a phase I-II clinical trial assessing the feasibility, safety and efficacy of ex vivo expanded autologous bone marrow Mesenchymal Stromal Cells (MSC, XCEL-M-ALPHA), infused intra-articularly, in patients with knee OA. Fifteen patients (median age=52years) with grade II(9) or III(6) gonarthrosis (Kellgren & Lawrence classification) and chronic pain were treated with an intra-articular infusion of 40.9×10(6)±0.4×10(6) MSCin a phase I-II prospective, open-label, single-dose, single-arm clinical trial. Endpoints were safety and tolerability. Efficacy was measured by the Visual Analogue Scale for pain, algofunctional Health Assessment Questionnaire, Quality of Life (QoL) SF-36 questionnaire, Lequesne functional index and WOMAC score. Cartilage integrity was assessed by Magnetic Resonance Imaging and quantitative T2-mapping at 0, 6 and 12months. The cell-based product was well tolerated with few reported Adverse Events (mild arthralgia and low back pain). There was a relevant decrease in the intensity of pain since day 8 after the infusion, that was maintained after 12months. The SF-36 QoL test showed improvement of parameters including bodily pain, role physical and physical functioning at month 12. The health assessment questionnaire revealed a significant decrease of incapacity. Moreover, T2 mapping showed signs of cartilage regeneration in all patients at 12months post-treatment. Single intra-articular infusion of XCEL-M-ALPHA is a safe and well-tolerated cell-based product, associated with a long-lasting amelioration of pain, improvement of QoL (up to four years), and signs of cartilage repair. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  20. Safety and the Human Factor.

    ERIC Educational Resources Information Center

    Smith, Ann

    1982-01-01

    Discusses four elements of safety programs: (1) safety training; (2) safety inspections; (3) accident investigations; and (4) protective safety equipment. Also discusses safety considerations in water/wastewater treatment facilities focusing on falls, drowning hazards, trickling filters, confined space entry, collection/distribution system safety,…

  1. Safety and the Human Factor.

    ERIC Educational Resources Information Center

    Smith, Ann

    1982-01-01

    Discusses four elements of safety programs: (1) safety training; (2) safety inspections; (3) accident investigations; and (4) protective safety equipment. Also discusses safety considerations in water/wastewater treatment facilities focusing on falls, drowning hazards, trickling filters, confined space entry, collection/distribution system safety,…

  2. Principles of natural regeneration

    Treesearch

    Paul S. Johnson

    1989-01-01

    To maximize chances of successful regeneration, carefully consider the following regeneration principles. Harvesting alone does not guarantee that the desired species will be established. The conditions required for the initial establishment and early growth of the desired species largely determine what regeneration method you should use and any supplemental treatments...

  3. Cartilage Regeneration in Osteoarthritic Patients by a Composite of Allogeneic Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronate Hydrogel: Results From a Clinical Trial for Safety and Proof-of-Concept With 7 Years of Extended Follow-Up.

    PubMed

    Park, Yong-Beom; Ha, Chul-Won; Lee, Choong-Hee; Yoon, Young Cheol; Park, Yong-Geun

    2016-09-09

    : Few methods are available to regenerate articular cartilage defects in patients with osteoarthritis. We aimed to assess the safety and efficacy of articular cartilage regeneration by a novel medicinal product composed of allogeneic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Patients with Kellgren-Lawrence grade 3 osteoarthritis and International Cartilage Repair Society (ICRS) grade 4 cartilage defects were enrolled in this clinical trial. The stem cell-based medicinal product (a composite of culture-expanded allogeneic hUCB-MSCs and hyaluronic acid hydrogel [Cartistem]) was applied to the lesion site. Safety was assessed by the World Health Organization common toxicity criteria. The primary efficacy outcome was ICRS cartilage repair assessed by arthroscopy at 12 weeks. The secondary efficacy outcome was visual analog scale (VAS) score for pain on walking. During a 7-year extended follow-up, we evaluated safety, VAS score, International Knee Documentation Committee (IKDC) subjective score, magnetic resonance imaging (MRI) findings, and histological evaluations. Seven participants were enrolled. Maturing repair tissue was observed at the 12-week arthroscopic evaluation. The VAS and IKDC scores were improved at 24 weeks. The improved clinical outcomes were stable over 7 years of follow-up. The histological findings at 1 year showed hyaline-like cartilage. MRI at 3 years showed persistence of the regenerated cartilage. Only five mild to moderate treatment-emergent adverse events were observed. There were no cases of osteogenesis or tumorigenesis over 7 years. The application of this novel stem cell-based medicinal product appears to be safe and effective for the regeneration of durable articular cartilage in osteoarthritic knees.

  4. Missing Concepts in De Novo Pulp Regeneration.

    PubMed

    Huang, G T-J; Garcia-Godoy, F

    2014-08-01

    Regenerative endodontics has gained much attention in the past decade because it offers an alternative approach in treating endodontically involved teeth. Instead of filling the canal space with artificial materials, it attempts to fill the canal with vital tissues. The objective of regeneration is to regain the tissue and restore its function to the original state. In terms of pulp regeneration, a clinical protocol that intends to reestablish pulp/dentin tissues in the canal space has been developed--termed revitalization or revascularization. Histologic studies from animal and human teeth receiving revitalization have shown that pulp regeneration is difficult to achieve. In tissue engineering, there are 2 approaches to regeneration tissues: cell based and cell free. The former involves transplanting exogenous cells into the host, and the latter does not. Revitalization belongs to the latter approach. A number of crucial concepts have not been well discussed, noted, or understood in the field of regenerative endodontics in terms of pulp/dentin regeneration: (1) critical size defect of dentin and pulp, (2) cell lineage commitment to odontoblasts, (3) regeneration vs. repair, and (4) hurdles of cell-based pulp regeneration for clinical applications. This review article elaborates on these missing concepts and analyzes them at their cellular and molecular levels, which will in part explain why the non-cell-based revitalization procedure is difficult to establish pulp/dentin regeneration. Although the cell-based approach has been proven to regenerate pulp/dentin, such an approach will face barriers--with the key hurdle being the shortage of the current good manufacturing practice facilities, discussed herein. © International & American Associations for Dental Research.

  5. Missing Concepts in De Novo Pulp Regeneration

    PubMed Central

    Huang, G.T.-J.; Garcia-Godoy, F.

    2014-01-01

    Regenerative endodontics has gained much attention in the past decade because it offers an alternative approach in treating endodontically involved teeth. Instead of filling the canal space with artificial materials, it attempts to fill the canal with vital tissues. The objective of regeneration is to regain the tissue and restore its function to the original state. In terms of pulp regeneration, a clinical protocol that intends to reestablish pulp/dentin tissues in the canal space has been developed—termed revitalization or revascularization. Histologic studies from animal and human teeth receiving revitalization have shown that pulp regeneration is difficult to achieve. In tissue engineering, there are 2 approaches to regeneration tissues: cell based and cell free. The former involves transplanting exogenous cells into the host, and the latter does not. Revitalization belongs to the latter approach. A number of crucial concepts have not been well discussed, noted, or understood in the field of regenerative endodontics in terms of pulp/dentin regeneration: (1) critical size defect of dentin and pulp, (2) cell lineage commitment to odontoblasts, (3) regeneration vs. repair, and (4) hurdles of cell-based pulp regeneration for clinical applications. This review article elaborates on these missing concepts and analyzes them at their cellular and molecular levels, which will in part explain why the non-cell-based revitalization procedure is difficult to establish pulp/dentin regeneration. Although the cell-based approach has been proven to regenerate pulp/dentin, such an approach will face barriers—with the key hurdle being the shortage of the current good manufacturing practice facilities, discussed herein. PMID:24879576

  6. Reinforcing the Military in Military Medicine: Driving a Cultural Change in Investigating, Tracking and Training to Prevent Patient Safety Events in Military Facilities

    DTIC Science & Technology

    2011-04-01

    We Already Know About Patient Safety (Background) The importance of patient safety cannot be understated. Medics are charged with the most... mistake accountability & error prevention 1 Trend Analysis 1 Implement other measures to emphasize leadership commitment to patient safety 1 IV...the importance of senior leaders requiring a culture of safe, quality patient care and consistently emphasizing it. Roll calls and safety meetings

  7. Regeneration of periodontal tissues: guided tissue regeneration.

    PubMed

    Villar, Cristina C; Cochran, David L

    2010-01-01

    The concept that only fibroblasts from the periodontal ligament or undifferentiated mesenchymal cells have the potential to re-create the original periodontal attachment has been long recognized. Based on this concept, guided tissue regeneration has been applied with variable success to regenerate periodontal defects. Quantitative analysis of clinical outcomes after guided tissue regeneration suggests that this therapy is a successful and predictable procedure to treat narrow intrabony defects and class II mandibular furcations, but offers limited benefits in the treatment of other types of periodontal defects.

  8. Safe design of healthcare facilities

    PubMed Central

    Reiling, J

    2006-01-01

    The physical environment has a significant impact on health and safety; however, hospitals have not been designed with the explicit goal of enhancing patient safety through facility design. In April 2002, St Joseph's Community Hospital of West Bend, a member of SynergyHealth, brought together leaders in healthcare and systems engineering to develop a set of safety‐driven facility design recommendations and principles that would guide the design of a new hospital facility focused on patient safety. By introducing safety‐driven innovations into the facility design process, environmental designers and healthcare leaders will be able to make significant contributions to patient safety. PMID:17142606

  9. Treatment outcomes in a safety observational study of dihydroartemisinin/piperaquine (Eurartesim(®)) in the treatment of uncomplicated malaria at public health facilities in four African countries.

    PubMed

    Adjei, Alexander; Narh-Bana, Solomon; Amu, Alberta; Kukula, Vida; Nagai, Richard Afedi; Owusu-Agyei, Seth; Oduro, Abraham; Macete, Eusebio; Abdulla, Salim; Halidou, Tinto; Sie, Ali; Osei, Isaac; Sevene, Esperance; Asante, Kwaku-Poku; Mulokozi, Abdunoor; Compaore, Guillaume; Valea, Innocent; Adjuik, Martin; Baiden, Rita; Ogutu, Bernhards; Binka, Fred; Gyapong, Margaret

    2016-01-27

    Dihydroartemisinin-piperaquine (DHA-PQ) is one of five WHO recommended artemisinin combination therapy (ACT) for the treatment of uncomplicated malaria. However, little was known on its post-registration safety and effectiveness in sub-Saharan Africa. DHA-PQ provides a long post-treatment prophylactic effect against re-infection; however, new infections have been reported within a few weeks of treatment, especially in children. This paper reports the clinical outcomes following administration of DHQ-PQ in real-life conditions in public health facilities in Burkina Faso, Ghana, Mozambique, and Tanzania for the treatment of confirmed uncomplicated malaria. An observational, non-comparative, longitudinal study was conducted on 10,591 patients with confirmed uncomplicated malaria visiting public health facilities within seven health and demographic surveillance system sites in four African countries (Ghana, Tanzania, Burkina Faso, Mozambique) between September 2013 and April 2014. Patients were treated with DHA-PQ based on body weight and followed up for 28 days to assess the clinical outcome. A nested cohort of 1002 was intensely followed up. Clinical outcome was assessed using the proportion of patients who reported signs and symptoms of malaria after completing 3 days of treatment. A total of 11,097 patients were screened with 11,017 enrolled, 94 were lost to follow-up, 332 withdrew and 10,591 (96.1%) patients aged 6 months-85 years met protocol requirements for analysis. Females were 52.8 and 48.5% were <5 years of age. Malaria was diagnosed by microscopy and rapid diagnostic test in 69.8% and 29.9%, respectively. At day 28, the unadjusted risk of recurrent symptomatic parasitaemia was 0.5% (51/10,591). Most of the recurrent symptomatic malaria patients (76%) were children <5 years. The mean haemoglobin level decreased from 10.6 g/dl on day 1 to 10.2 g/dl on day 7. There was no significant renal impairment in the nested cohort during the first 7 days of follow

  10. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  11. Explosives Safety Training

    DTIC Science & Technology

    2010-07-13

    Safety Awareness in NATO and Multi- National Operations *Explosives Safety “ Rosetta Stone ” *under development Distance Learning/ Instructor-Led Training...and Multi- National Operations *Explosives Safety “ Rosetta Stone ” Ammo-18 (Basics of Naval Explosives Hazard Control) Ammo-29 (Electrical Explosives...National Operations *Explosives Safety “ Rosetta Stone ” Ammo-47 (Lightning Protection for Air Force Facilities) *Explosives Safety Awareness in NATO and

  12. Regeneration Heat Exchange

    SciTech Connect

    J. Lin

    2003-07-30

    The original project goals were to establish the viability of the proposed gas turbine regenerator concept by performing the following tasks: (1) Perform detailed design of a working model of the regenerator concept. (2) Construct a ''bench-top'' model of the regenerator concept based upon the detail design. (3) Test the bench-top model and gather data to support the concept's viability. The project funding was used to acquire the tools and material to perform the aforementioned tasks.

  13. 77 FR 51943 - Procedures for Safety Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... SAFETY BOARD 10 CFR Part 1708 Procedures for Safety Investigations AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Proposed rule; extension of comment period. SUMMARY: The Defense Nuclear Facilities Safety Board is extending the time for comments on its proposed rule, Procedures for Safety...

  14. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Building 221-H, B-Line, Scrap Recovery Facility (Supplement 2A): Revision 1

    SciTech Connect

    1991-07-01

    The now HB-Line is located an top of the 221-H Building on the fifth and sixth levels and is designed to replace the aging existing HB-Line production facility. The new HB-Line consists of three separate facilities: the Scrap Recovery Facility, Neptunium Facility, and Plutonium Oxide Facility. The Scrap Recovery Facility is designed to routinely generate nitrate solutions of {sup 235}U{sup 239}Pu and Pu-238 fromscrap for purification by anion exchange or by solvent extraction in the canyon. The now facility incorporates improvements in: (1) engineered controls for nuclear criticality, (2) cabinet integrity and engineered barriers to contain contamination and minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

  15. Science Facilities Bibliography.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A bibliographic collection on science buildings and facilities is cited with many different reference sources for those concerned with the design, planning, and layout of science facilities. References are given covering a broad scope of information on--(1) physical plant planning, (2) management and safety, (3) building type studies, (4) design…

  16. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  17. A new regenerator theory

    NASA Astrophysics Data System (ADS)

    Jones, J. D.

    The performance of a Stirling Engine regenerator having finite mass and operated under realistic conditions of pressure and flow cycling is analysed. It is shown that cyclic variations in the matrix temperature due to its finite mass cause an increase in the apparent regenerator effectiveness, but a decrease in engine power. Approximate closed-form expressions for both of these effects are deduced.

  18. [Resources of regeneration in planarians].

    PubMed

    Sheĭman, I M; Sedel'nikov, Z V; Kreshchenko, N D

    2006-01-01

    We studied the intensity of blastema growth in operated planarians at an early stage of regeneration as a function of the following factors: area of regenerate and its function and number of regeneration foci (volume of regeneration). There was no direct dependence between the intensity of regeneration and the size of regenerating fragment, as well as the volume of regeneration. Some specific features of the early stage of regeneration have been described, which suggest its determinate character. The behavior of neoblasts during formation of blastemas with different localization is discussed.

  19. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  20. Specialized progenitors and regeneration.

    PubMed

    Reddien, Peter W

    2013-03-01

    Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells.

  1. [Pharynx regeneration in planarians].

    PubMed

    Kreshchenko, N D

    2009-01-01

    The obtained and published data on pharynx regeneration in planarians have been reviewed. Planarians can regenerate from a small body fragment and restore all missing organs including the pharynx. The pharynx is a relatively autonomous organ with a differentiated structure and specialized function. Pharynx regeneration has specific features, and its studies are of considerable theoretical interest. Pharynx regeneration can also be a convenient model to study the molecular mechanisms of regeneration that remain undisclosed. In addition, this model can be used to test biologically active compounds in order to elucidate their effect on morphogenesis. This subject of investigation benefits by a simpler and more adequate analysis as well as a possibility to use large numbers of animals and small quantities of analyzed substances.

  2. Notch Signaling Inhibits Axon Regeneration

    PubMed Central

    Bejjani, Rachid El; Hammarlund, Marc

    2013-01-01

    Summary Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian CNS do not regenerate, and even neurons in the PNS often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C. elegans neurons. Notch signaling suppresses regeneration by acting autonomously in the injured cell to prevent growth cone formation. The metalloprotease and gamma-secretase cleavage events that lead to Notch activation during development are also required for its activity in regeneration. Furthermore, blocking Notch activation immediately after injury improves regeneration. Our results define a novel, post-developmental role for the Notch pathway as a repressor of axon regeneration in vivo. PMID:22284182

  3. DOE handbook electrical safety

    SciTech Connect

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  4. Electrical safety guidelines

    SciTech Connect

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  5. Safety analysts training

    SciTech Connect

    Bolton, P.

    2000-10-01

    The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.

  6. RTF glovebox stripper regeneration development

    SciTech Connect

    Birchenall, A.K.

    1992-10-31

    Currently, the Replacement Tritium Facility (RTF) glovebox stripper system consists of a catalytic oxidation front end where trace tritium which may escape from the primary tritium process into the glovebox nitrogen system is oxidized to tritiated water. The tritiated water, along with normal water which may leak into the glovebox from the surrounding atmosphere, is then captured on a zeolite bed. Eventually, the zeolite bed becomes saturated with water and must be regenerated to remain effective as a stripper. This is accomplished by heating the zeolite and evolving the trapped water which is then passed over an elevated temperature uranium bed. A waste minimization program was instituted to address this issue. The program has two parallel paths. One path investigates replacing the entire glovebox stripper system with a system of getters to scavenge trace tritium. This report concentrates on the second path, retaining the catalytic oxidation front end but replacing the uranium bed water cracking with alternative technologies.

  7. Nanomaterials and bone regeneration

    PubMed Central

    Gong, Tao; Xie, Jing; Liao, Jinfeng; Zhang, Tao; Lin, Shiyu; Lin, Yunfeng

    2015-01-01

    The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part. PMID:26558141

  8. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  9. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  10. Seismic Safety Guide

    SciTech Connect

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  11. Range Safety Systems

    NASA Technical Reports Server (NTRS)

    Schrock, Kenneth W.; Humphries, Ricky H. (Technical Monitor)

    2002-01-01

    The high kinetic and potential energy of a launch vehicle mandates there be a mechanism to minimize possible damage to provide adequate safety for the launch facilities, range, and, most importantly, the general public. The Range Safety System, sometimes called the Flight Termination System or Flight Safety System, provides the required level of safety. The Range Safety System section of the Avionics chapter will attempt to describe how adequate safety is provided, the system's design, operation, and it's interface with the rest of the launch vehicle.

  12. Investigations and Recommendations on the Use of Existing Experiments in Criticality Safety Analysis of Nuclear Fuel Cycle Facilities for Weapons-Grade Plutonium

    SciTech Connect

    Rearden, B.T.

    2002-05-29

    report is given in Sect. 2. This report pertains to two of the five AOAs identified by the licensee [Duke, Cogema, Stone and Webster (DCS)] for the validation of criticality codes in the design of the Mixed-Oxide Fuel Fabrication Facility (MFFF). The five AOAs are as follows: (1) Pu-nitrate aqueous solutions (homogeneous systems), (2) Mixed-oxide (MOX) pellets, fuel rods and fuel assemblies (heterogeneous systems), (3) PuO{sub 2} powders, (4) MOX powders, and (5) Aqueous solutions of Pu compounds (Pu-oxalate solutions). This report addresses a S/U analysis pertaining to AOA 3, PuO{sub 2} powders, and AOA 4, MOX powders. AOA 3 and AOA 4 are the subject of this report since the other AOAs (solutions and heterogeneous systems) appear to be well represented in the documented benchmark experiments used in the criticality safety community. Prior to this work, DCS used traditional criticality validation techniques to identify numerous experimental benchmarks that are applicable to AOAs 3 and 4. Traditional techniques for selection of applicable benchmark experiments essentially consist of evaluating the area of applicability for important design parameters (e.g., Pu content or average neutron energy) and ensuring experiments have similar characteristics that bound or nearly bound the range of conditions requiring design analysis. DCS provided ORNL with compositions and dimensions for critical systems used to establish preliminary mass limits for facility powder and fuel pellet handling areas corresponding to AOAs 3 and 4. ORNL has reviewed existing critical experiments to identify those, which, in addition to those provided by DCS, may be applicable to the criticality code validation for AOAs 3 and 4. A S/U analysis was then performed to calculate the integral parameters used to determine the similarity of each critical experiment to each design system provided by DCS. This report contains a review of the S/U theory, a description of the design systems, a brief description of

  13. Machine safety evaluation in small metal working facilities: an evaluation of inter-rater reliability in the quantification of machine-related hazards.

    PubMed

    Munshi, Kaizad; Parker, David; Samant, Yogindra; Brosseau, Lisa; Pan, Wei; Xi, Min

    2005-11-01

    Each year there are an estimated 4.2-6.7 amputations per 10,000 workers in the metal fabrication trades in the United States. The Minnesota Machine Guarding Study evaluates the effectiveness of a peer-based technical and educational intervention designed to reduce exposure to amputation hazards among workers in small machining/metal working shops. The study reported here involved the development and evaluation of methods for measuring machine safety, which will be used in the intervention study. Using OSHA regulations, ANSI standards, and industry best practices, we developed 23 machine-safety scorecards. The safety scores were dependent on the presence or absence of guards, other safety devices and implements, and the presence or absence of acceptable administrative programs. Inter-rater reliability was assessed for the evaluation of eight types of commonly used metal fabrication machines. Of the 23 most common types of machines, there were a sufficient number of machines to evaluate inter-rater reliability for eight types. Three raters in four shops assessed fifty-nine machines. Overall, the kappa statistic ranged from 0.57 to 0.84, indicating good to very good concordance between raters. In general, machines did not fare well with regard to compliance with current standards. The ability to assess machine-related hazards is important in industries where it is difficult to identify and count injuries in a timely fashion. Machinists and safety professionals may use this scoring system as a means of reproducible assessment of machine safety.

  14. TWRS safety program plan

    SciTech Connect

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their

  15. Chemical Safety Programs.

    ERIC Educational Resources Information Center

    Shaw, Richard

    2000-01-01

    Discusses the need to enhance understanding of chemical safety in educational facilities that includes adequate staff training and drilling requirements. The question of what is considered proper training is addressed. (GR)

  16. Chemistry Laboratory Safety Check

    ERIC Educational Resources Information Center

    Patnoe, Richard L.

    1976-01-01

    An accident prevention/safety check list for chemistry laboratories is printed. Included are checks of equipment, facilities, storage and handling of chemicals, laboratory procedures, instruction procedures, and items to be excluded from chemical laboratories. (SL)

  17. Chemical Safety Programs.

    ERIC Educational Resources Information Center

    Shaw, Richard

    2000-01-01

    Discusses the need to enhance understanding of chemical safety in educational facilities that includes adequate staff training and drilling requirements. The question of what is considered proper training is addressed. (GR)

  18. Safety study application guide. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly {open_quotes}low{close_quotes}) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, {open_quotes}Technical Safety Requirements,{close_quotes} and 5480.23, {open_quotes}Nuclear Safety Analysis Reports.{close_quotes} A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis.

  19. LAB STUDY ON REGENERATION OF SPENT DOWEX 21K 16-20 MESH ION EXCHANGE RESIN

    SciTech Connect

    DUNCAN, J.B.

    2007-01-24

    Currently the effort to remove chromate from groundwater in the 100K and 100H Areas uses DOWEX 21K 16-20. This report addresses the procedure and results of a laboratory study for regeneration of the spent resin by sodium hydroxide, sulfuric acid, or sodium sulfate to determine if onsite regeneration by the Effluent Treatment Facility is a feasible option.

  20. Facility effluent monitoring plan for the fast flux test facility

    SciTech Connect

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  1. Design and Testing of BACRA, a Web-Based Tool for Middle Managers at Health Care Facilities to Lead the Search for Solutions to Patient Safety Incidents

    PubMed Central

    Mira, José Joaquín; Vicente, Maria Asuncion; Fernandez, Cesar; Guilabert, Mercedes; Ferrús, Lena; Zavala, Elena; Silvestre, Carmen; Pérez-Pérez, Pastora

    2016-01-01

    Background Lack of time, lack of familiarity with root cause analysis, or suspicion that the reporting may result in negative consequences hinder involvement in the analysis of safety incidents and the search for preventive actions that can improve patient safety. Objective The aim was develop a tool that enables hospitals and primary care professionals to immediately analyze the causes of incidents and to propose and implement measures intended to prevent their recurrence. Methods The design of the Web-based tool (BACRA) considered research on the barriers for reporting, review of incident analysis tools, and the experience of eight managers from the field of patient safety. BACRA’s design was improved in successive versions (BACRA v1.1 and BACRA v1.2) based on feedback from 86 middle managers. BACRA v1.1 was used by 13 frontline professionals to analyze incidents of safety; 59 professionals used BACRA v1.2 and assessed the respective usefulness and ease of use of both versions. Results BACRA contains seven tabs that guide the user through the process of analyzing a safety incident and proposing preventive actions for similar future incidents. BACRA does not identify the person completing each analysis since the password introduced to hide said analysis only is linked to the information concerning the incident and not to any personal data. The tool was used by 72 professionals from hospitals and primary care centers. BACRA v1.2 was assessed more favorably than BACRA v1.1, both in terms of its usefulness (z=2.2, P=.03) and its ease of use (z=3.0, P=.003). Conclusions BACRA helps to analyze incidents of safety and to propose preventive actions. BACRA guarantees anonymity of the analysis and reduces the reluctance of professionals to carry out this task. BACRA is useful and easy to use. PMID:27678308

  2. Design and Testing of BACRA, a Web-Based Tool for Middle Managers at Health Care Facilities to Lead the Search for Solutions to Patient Safety Incidents.

    PubMed

    Carrillo, Irene; Mira, José Joaquín; Vicente, Maria Asuncion; Fernandez, Cesar; Guilabert, Mercedes; Ferrús, Lena; Zavala, Elena; Silvestre, Carmen; Pérez-Pérez, Pastora

    2016-09-27

    Lack of time, lack of familiarity with root cause analysis, or suspicion that the reporting may result in negative consequences hinder involvement in the analysis of safety incidents and the search for preventive actions that can improve patient safety. The aim was develop a tool that enables hospitals and primary care professionals to immediately analyze the causes of incidents and to propose and implement measures intended to prevent their recurrence. The design of the Web-based tool (BACRA) considered research on the barriers for reporting, review of incident analysis tools, and the experience of eight managers from the field of patient safety. BACRA's design was improved in successive versions (BACRA v1.1 and BACRA v1.2) based on feedback from 86 middle managers. BACRA v1.1 was used by 13 frontline professionals to analyze incidents of safety; 59 professionals used BACRA v1.2 and assessed the respective usefulness and ease of use of both versions. BACRA contains seven tabs that guide the user through the process of analyzing a safety incident and proposing preventive actions for similar future incidents. BACRA does not identify the person completing each analysis since the password introduced to hide said analysis only is linked to the information concerning the incident and not to any personal data. The tool was used by 72 professionals from hospitals and primary care centers. BACRA v1.2 was assessed more favorably than BACRA v1.1, both in terms of its usefulness (z=2.2, P=.03) and its ease of use (z=3.0, P=.003). BACRA helps to analyze incidents of safety and to propose preventive actions. BACRA guarantees anonymity of the analysis and reduces the reluctance of professionals to carry out this task. BACRA is useful and easy to use.

  3. Atlas Regeneration, Inc.

    PubMed

    Makarev, Eugene; Isayev, Olexandr; Atala, Anthony

    2016-03-01

    Atlas Regeneration is dedicated to the development of novel data-driven solutions for regenerative medicine, adapting proven technologies, and analysis strategies to take a multiomics-wide view of stem cell quality and cell fate design. Our core offering is a global comprehensive map of stem cell differentiation, Universal Signalome Atlas for Regenerative Medicine, reflecting the pathway activation states across all characterized stem cells and their differentiated products. Key applications of Universal Signalome Atlas for Regenerative Medicine will include quality assurance for engineered cell products, and directed regeneration pharmacology, where we will screen and identify compounds that can efficiently convert pluripotent cells into desired subtypes. Another marketable piece of IP is development of specialized signaling pathway analysis systems Regeneration Intelligence which supposed to target the unmet needs of determination and prediction of stem cell signaling pathway activation to govern cell differentiation in specific directions.

  4. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  5. Bioelectricity and epimorphic regeneration.

    PubMed

    Stewart, Scott; Rojas-Muñoz, Agustin; Izpisúa Belmonte, Juan Carlos

    2007-11-01

    All cells have electric potentials across their membranes, but is there really compelling evidence to think that such potentials are used as instructional cues in developmental biology? Numerous reports indicate that, in fact, steady, weak bioelectric fields are observed throughout biology and function during diverse biological processes, including development. Bioelectric fields, generated upon amputation, are also likely to play a key role during vertebrate regeneration by providing the instructive cues needed to direct migrating cells to form a wound epithelium, a structure unique to regenerating animals. However, mechanistic insight is still sorely lacking in the field. What are the genes required for bioelectric-dependent cell migration during regeneration? The power of genetics combined with the use of zebrafish offers the best opportunity for unbiased identification of the molecular players in bioelectricity.

  6. Molecular and Phenotypic Characterization of Listeria monocytogenes from U.S. Department of Agriculture Food Safety Inspection Service Surveillance of Ready-to-Eat Foods and Processing Facilities

    USDA-ARS?s Scientific Manuscript database

    A panel of 501 Listeria monocytogenes obtained from Food Safety and Inspection Service monitoring of ready-to-eat (RTE) foods were subtyped by multilocus genotyping (MLGT) and by sequencing the virulence gene inlA. MLGT analyses confirmed that clonal lineages associated with previous epidemic outbr...

  7. Safety of Department of Energy accelerators

    SciTech Connect

    Evans, A.E.

    1994-12-31

    In keeping with the enhancement of environmental, safety, and health programs which has occurred in DOE over the past six years, a Safety Order, DOE Order 5480.25, {open_quotes}Safety of Accelertor Facilities,{close_quotes} was issued on November 3, 1992. This order applies to all DOE-owned accelerators capable of creating a radiation area except for commercial radiation-generating equipment. It is the intent of the Order to provide a level of safety comparable to that required of reactors and nuclear processing facilities, without imposing the rigidity of the DOE Nuclear Facility Safety Orders. Key requirements for each facility are: (1) a hazard classification approved by DOE; (2) a design-stage safety review of new large facilities; (3) readiness reviews before commissioning and before routine operation; (4) a safety envelope specifying limits for operation; (5) a Safety Assessment Document; and (6) a documented training program. This Order does not supersede other DOE safety requirements.

  8. [Regeneration of airway epithelium].

    PubMed

    Adam, D; Perotin, J-M; Lebargy, F; Birembaut, P; Deslée, G; Coraux, C

    2014-04-01

    Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  9. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  10. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  11. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  12. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  13. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  14. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  15. Neighbourhood walking and regeneration in deprived communities.

    PubMed

    Mason, Phil; Kearns, Ade; Bond, Lyndal

    2011-05-01

    More frequent neighbourhood walking is a realistic goal for improving physical activity in deprived areas. We address regeneration activity by examining associations of residents' circumstances and perceptions of their local environment with frequent (5+ days/week) local walking (NW5) in 32 deprived neighbourhoods (Glasgow, UK), based on interview responses from a random stratified cross-sectional sample of 5657 residents. Associations were investigated by bivariate and multilevel, multivariate logistic regression. People living in low-rise flats or houses reported greater NW5 than those in multi-storey flats. Physical and social aspects of the neighbourhood were more strongly related to walking than perceptions of housing and neighbourhood, especially the neighbourhood's external reputation, and feelings of safety and belonging. Amenity use, especially of parks, play areas and general shops (mainly in the neighbourhood), was associated with more walking. Multidimensional regeneration of the physical, service, social and psychosocial environments of deprived communities therefore seems an appropriate strategy to boost walking.

  16. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  17. School Safety and Security.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This document offers additional guidelines for school facilities in California in the areas of safety and security, lighting, and cleanliness. It also offers a description of technology resources available on the World Wide Web. On the topic of safety and security, the document offers guidelines in the areas of entrances, doors, and controlled…

  18. School Safety and Security.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This document offers additional guidelines for school facilities in California in the areas of safety and security, lighting, and cleanliness. It also offers a description of technology resources available on the World Wide Web. On the topic of safety and security, the document offers guidelines in the areas of entrances, doors, and controlled…

  19. HSE's safety assessment principles for criticality safety.

    PubMed

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-06-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf).

  20. Upland Oak Regeneration and Management

    Treesearch

    David L. Loftis

    2004-01-01

    In oak-dominated plant communities and in other communities where oaks are important, the keys to natural regeneration of upland oak components are (1) to ensure presence of competitive regeneration sources, and (2) to provide timely, sufficient release of these sources. Regeneration sources vary significantly among different types of plant communities and disturbance...

  1. Natural Regeneration of Longleaf Pine

    Treesearch

    William D. Boyer

    1979-01-01

    Natural regeneration is now a reliable alternative for existing longleaf pine forests. The shelterwood system, or modifications of it, has been used experimentally to regenerate longleaf pine for over 20 years, and regional tests have confirmed its value for a wide range of site conditions. Natural regeneration, because of its low cost when compared to other...

  2. An Investigation of the Relative Safety of Alternative Navigational System Designs for the New Sunshine Skyway Bridge: A CAORF (Computer Aided Operations Research Facility) Simulation.

    DTIC Science & Technology

    1985-09-01

    characteristics. Pilots were required to provided no added margin of safety beyond the bridge - use greater crab angles during thunderstorm scenarios...electronic navigation aids may would combine dolphins, complete island and horseshoe . "provide significantly improved navigational data" to island stuctures...The next two bridge piers on should not be so close to bridges that the success of navigat- either side would be protected by a horseshoe shaped ing

  3. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety...

  4. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  5. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  6. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  7. Regenerator seal design

    DOEpatents

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  8. Regenerating Longleaf Pine Naturally

    Treesearch

    Thomas C. Croker; William D. Boyer

    1975-01-01

    Research has developed guides for consistent natural regeneration of longleaf pine by a shelterwood system. Key measures include hardwood control by fire and other means, timely preparatory and seed cuts, seed crop monitoring, seedbed preparation, protection of established seedlings, prompt removal of parent trees when reproduction is adequate, and control of...

  9. Regenerated Fe is tasty!

    NASA Astrophysics Data System (ADS)

    Nuester, J.; Twining, B. S.

    2012-12-01

    Bioavailability of nutrients is an essential factor controlling primary productivity in the ocean. In addition to macronutrients such as nitrogen and phosphorous, availability of the trace element iron unequivocally affects growth rates and community structure of phytoplankton and thereby primary productivity in many ocean regions. External sources of iron such as Aeolian dust, upwelling of Fe-rich waters, and hydrothermal are reduced in high-nutrient low-chlorophyll regions, and most Fe used by phytoplankton has been regenerated by zooplankton. While zooplankton regeneration of Fe was first shown two decades ago, major factors controlling this process such as chemical composition of prey and grazer taxonomy are not well constrained. As pH varies significantly in digestive systems between protozoa and mesozooplankton, we hypothesize that the extent and the bioavailability of regenerated Fe is a function of the digestive physiology. Furthermore, major element components such as silica for diatoms and calcium carbonate for cocolithophores may be able to buffer the pH of digestive systems of different grazer taxa. Such effects may further influence the magnitude and bioavailability of regenerated Fe. In order to constrain the effect of grazer taxonomy and chemical composition of prey on Fe bioavailability, 55Fe-labeled phytoplankton were fed to different grazers and unlabeled phytoplankton were subsequently inoculated to the filtrate of the grazing experiment in the regrowth phase of the experiment, and the uptake of 55Fe into the phytoplankton biomass was monitored over time. A parallel uptake experiment using inorganic 55Fe was used to compare the bioavailability of regenerated and inorganic Fe to the same phytoplankton species. Furthermore, some samples of the inorganic and the regenerated uptake experiments were treated with an oxalate rinse to remove any adsorbed Fe. This allowed us to estimate the adsorption of 55Fe from either source to the cell walls of

  10. Administering the Preschool Facility.

    ERIC Educational Resources Information Center

    Coonrod, Debbie

    Securing the right environment for a preschool program requires planning and research. Administrators or searching parties are advised to study zoning codes to become acquainted with state sanitation and safety regulations and laws, to involve teachers in cooperative planning, to design facilities which discourage vandalism, facilitate…

  11. PLANNING VOCATIONAL AGRICULTURAL FACILITIES.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    INFORMATION ON PLANNING AND DEVELOPING ADEQUATE AND ECONOMICAL VOCATIONAL AGRICULTURE FACILITIES IS PRESENTED FOR ADMINISTRATORS, ARCHITECTS, AND OTHERS. IT INCLUDES (1) GENERAL CONSIDERATIONS, (2) RECOMMENDATIONS FOR CLASSROOM, LABORATORY, AND LIBRARY, (3) RECOMMENDATIONS FOR FARM MECHANICS SHOP, SHOP STORAGE, AND SAFETY DEVICES, (4) EXAMPLES OF…

  12. Aid for Facilities

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2009-01-01

    Even before the state fire marshal ordered the Somersworth (N.H.) School District in 2007 to abandon the top two floors of Hilltop Elementary School because of safety concerns, folks in the city of 12,000 had been debating whether the aging facility should be replaced--and how to pay for it. Finally, in February 2009, the city council approved…

  13. Administering the Preschool Facility.

    ERIC Educational Resources Information Center

    Coonrod, Debbie

    Securing the right environment for a preschool program requires planning and research. Administrators or searching parties are advised to study zoning codes to become acquainted with state sanitation and safety regulations and laws, to involve teachers in cooperative planning, to design facilities which discourage vandalism, facilitate…

  14. Aid for Facilities

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2009-01-01

    Even before the state fire marshal ordered the Somersworth (N.H.) School District in 2007 to abandon the top two floors of Hilltop Elementary School because of safety concerns, folks in the city of 12,000 had been debating whether the aging facility should be replaced--and how to pay for it. Finally, in February 2009, the city council approved…

  15. Limb regeneration: a new development?

    PubMed

    Nacu, Eugen; Tanaka, Elly M

    2011-01-01

    Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.

  16. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  17. 33 CFR 154.735 - Safety requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety requirements. 154.735...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.735 Safety requirements. Each operator of a facility to which this part applies shall ensure that the following...

  18. An outbreak of Trixacarus caviae infestation in guinea pigs at an animal petting facility and an evaluation of the safety and suitable dose of selamectin treatment.

    PubMed

    Honda, M; Namikawa, K; Hirata, H; Neo, S; Maruo, T; Lynch, J; Chida, A; Morita, T

    2011-08-01

    In June 2009, 27 guinea pigs kept at an animal petting facility at a zoo in Kanagawa Prefecture, Japan, were observed to scratch intensely, weaken, and develop lesions. Three sarcoptiform mites were found in skin scrapings taken from affected areas of 2 guinea pigs, and they were identified as Trixacarus caviae by morphological examination. This result confirmed the presence of T. caviae in Japan. For treatment, doses of 13.6-18.75 mg/head of selamectin were administered in a topical preparation applied to a single spot on the skin on the back of the neck, and no side effects were observed. In April 2010, a second outbreak of mange occurred at the zoo, and, following investigation, 2 mite eggs were observed. It was, therefore, thought probable that the mites had survived during the winter within nonclinical carriers. Accordingly, doses of 5.0-7.5 mg/head of selamectin were applied on days 0 and 28, after which clinical symptoms disappeared and general condition improved. This dose of selamectin was thus shown to be a suitable and economical treatment for guinea pigs infested with the mites. Because the mite is not always easily observed in infested guinea pigs and the potential for human infestation exists, clinicians should not hesitate to treat when the clinical presentation suggests infestation, particularly in a setting such as an animal petting facility, where large numbers of children and adults have direct contact with the animals.

  19. Development of an ACP facility

    SciTech Connect

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  20. Accreditation for Indoor Climbing Facilities.

    ERIC Educational Resources Information Center

    Mayfield, Peter

    To ensure that the rapidly growing climbing gym industry maintains the excellent safety record established so far, the Climbing Gym Association (CGA) has developed the Peer Review and Accreditation Program, a process of review between qualified and experienced CGA reviewers and a climbing facility operator to assess the facility's risk management…