Science.gov

Sample records for regeneration facility safety

  1. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  2. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  3. a Low Temperature Regenerator Test Facility

    NASA Astrophysics Data System (ADS)

    Kashani, A.; Helvensteijn, B. P. M.; Feller, J. R.; Salerno, L. J.; Kittel, P.

    2008-03-01

    Testing regenerators presents an interesting challenge. When incorporated into a cryocooler, a regenerator is intimately coupled to the other components: expander, heat exchangers, and compressor. It is difficult to isolate the performance of any single component. We have developed a low temperature test facility that will allow us to separate the performance of the regenerator from the rest of the cryocooler. The purpose of the facility is the characterization of test regenerators using novel materials and/or geometries in temperature ranges down to 15 K. It consists of the following elements: The test column has two regenerators stacked in series. The coldest stage regenerator is the device under test. The warmer stage regenerator contains a stack of stainless steel screen, a well-characterized material. A commercial cryocooler is used to fix the temperatures at both ends of the test regenerator, cooling both heat exchangers flanging the regenerator stack. Heaters allow varying the temperatures and allow measurement of the remaining cooling power, and thus, regenerator effectiveness. A linear compressor delivers an oscillating pressure to the regenerator assembly. An inertance tube and reservoir provide the proper phase difference between mass flow and pressure. This phase shift, along with the imposed temperature differential, simulates the conditions of the test regenerator when used in an actual pulse tube cryocooler. This paper presents development details of the regenerator test facility, and test results on a second stage, stainless steel screen test regenerator.

  4. Calibration facility safety plan

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1971-01-01

    A set of requirements is presented to insure the highest practical standard of safety for the Apollo 17 Calibration Facility in terms of identifying all critical or catastrophic type hazard areas. Plans for either counteracting or eliminating these areas are presented. All functional operations in calibrating the ultraviolet spectrometer and the testing of its components are described.

  5. 340 waste handling facility interim safety basis

    SciTech Connect

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  6. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  7. Safety of magnetic fusion facilities: Requirements

    SciTech Connect

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

  8. Organizational culture, safety culture, and safety performance at research facilities

    SciTech Connect

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  9. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  10. Construction Safety for the National Ignition Facility

    SciTech Connect

    Predmore, R

    2000-09-01

    This Construction Safety Program (CSP) for the National Ignition Facility (NIF) presents safety protocols and guidelines that management and workers shall follow to assure a safe and healthful work environment. Appendix A, a separate companion document, includes further applicable environmental, safety, and health requirements for the NIF Project. Specifically this document: {sm_bullet} Defines the fundamental site safety philosophy, {sm_bullet} Identifies management roles and responsibilities, {sm_bullet} Defines core safety management processes, {sm_bullet} Identifies LLNL institutional requirements, and {sm_bullet} Defines the functional areas and facilities accrued by the program and the process for transition of facilities, functional areas, and/or systems from construction to activation. Anyone willfully or thoughtlessly disregarding standards will be subject to immediate removal from the site. Thorough job planning will help ensure that these standards are met.

  11. Occupational Safety Review of High Technology Facilities

    SciTech Connect

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  12. Safety of magnetic fusion facilities: Guidance

    SciTech Connect

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  13. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Moses, E

    2001-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during the construction, equipment installation, and commissioning activities. As the NIF Project transitions from a conventional facility construction activity to one of equipment installation, commissioning, initial laser operations, and other more routine-like operations, new safety requirements are needed. The NIF Project Site Safety Program (NPSSP) requires that all activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'', and the augmented set of controls and processes described in this NIF Project Site Safety Program. More specific requirements for construction activities under the Integration Management and Installation (IMI) contract are provided in the ''NIF Infrastructure Health and Safety Plan'', subtier to this program. Specifically this document: Defines the fundamental NIF site safety philosophy, Defines the areas covered by this safety program (see Appendix B), Identifies management roles and responsibilities, Defines core safety management processes, and Identifies NIF site-specific safety requirements.

  14. Chemical process safety at fuel cycle facilities

    SciTech Connect

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

  15. Mechanistic facility safety and source term analysis

    SciTech Connect

    PLYS, M.G.

    1999-06-09

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

  16. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Dun, C

    2003-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

  17. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  18. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  19. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  20. Hydrogen isotope separation installation for the regeneration of tritium from gas mixtures in tritium facilities

    SciTech Connect

    Andrew, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.

    1994-12-31

    The advantages and disadvantages of different methods for hydrogen isotope separation are considered in terms of their applicability for tritium regeneration in a tritium facility. Due to low inventory, simplicity of operation, flexibility, and safety the methods of separation using solid phases are preferable for tritium facility. The detail consideration of the separation processes with a solid phase reveals that highest efficiency of separation should be achieved in a counter-current separation column, which allow multiplying the thermodynamic isotopic effect. Because of difficulties of the organization of a solid phase motion in a separation column this method did not found practical application for separation of hydrogen isotopic mixtures. The main efforts of a few researches groups were devoted to improve the chromatographic separation process and equipment. The detail comparison of the separation in sectioned column with that in chromatographic as well as in cryodistillation columns show that counter-current separation in a sectioned column is more effective and has other advantages when middle throughput is required. Complete regeneration of an isotopic mixture with separation into three practically pure isotopes independently from isotopic composition of feed can be provided using two sectioned separation columns. Separation installation can operate continuously as well as periodically.

  1. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  2. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect

    Rule, K.; King, M.; Takase, Y.; Oshima, Y.; Nishimura, K.; Sukegawa, A.

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  3. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect

    Rule, Keith

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  4. Operational safety at the fast flux test facility

    SciTech Connect

    Bennett, C.L.; Baird, Q.L.; Franz, G.R.

    1986-01-01

    The safety organization within Westinghouse Hanford Company (WHC) provides the independent review and appraisal of reactor facilities at the Hanford Engineering Development Laboratory (HEDL) in accordance with US Department of Energy (DOE) Order 5480.1A, Chapter V. The safety organization functions primarily in an advisory capacity to the line organization and reports through a management organization independent of all reactor operations to the president of WHC. However, safety is a line responsibility, and neither review nor subsequent approval by the safety staff releases line management from its responsibility for the safety of people and equipment. The purpose of this paper is to describe the operational safety program at HEDL associated with the operation of the Fast Flux Test Facility (FFTF). These activities include: (1) operational reactor safety surveillance; (2) change review of safety documentation; (3) cycle readiness assessments; (4) FFTF technical specification upgrade; (5) interim examination and maintenance cell and fuel storage facility safety review.

  5. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6

  6. Environmental protection facilities safety study: Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1982-05-01

    The purpose of this Safety Study is to examine the existing facilities at the Portsmouth Gaseous Diffusion Plant that are dedicated to environmental protection. Seven separate, numbered facilities and five unnumbered continuous air sampling stations are identified as the fixed facilities to protect the environment. Each is examined from the standpoint of hazardous materials, monitoring and protection systems, confinement systems, ventilation systems, criticality control systems, fire protection systems, waste disposal systems, and safety systems.

  7. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  8. Developing operational safety requirements for non-nuclear facilities

    SciTech Connect

    Mahn, J.A.

    1997-11-01

    Little guidance has been provided by the DOE for developing appropriate Operational Safety Requirements (OSR) for non-nuclear facility safety documents. For a period of time, Chapter 2 of DOE/AL Supplemental Order 5481.lB provided format guidance for non-reactor nuclear facility OSRs when this supplemental order applied to both nuclear and non-nuclear facilities. Thus, DOE Albuquerque Operations Office personnel still want to see non-nuclear facility OSRs in accordance with the supplemental order (i.e., in terms of Safety Limits, Limiting Conditions for Operation, and Administrative Controls). Furthermore, they want to see a clear correlation between the OSRs and the results of a facility safety analysis. This paper demonstrates how OSRs can be rather simply derived from the results of a risk assessment performed using the ``binning`` methodology of SAND95-0320.

  9. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  10. Operational Safety Requirements Neutron Multiplier Facility in 329 Building

    SciTech Connect

    EA. Lepel

    1992-10-01

    The operational safety requirements (OSRs) presented in this report define the conditions, safe boundaries and management control needed for safely operating the Neutron Multiplier Facility in the 329 Building Annex.

  11. Recent Upgrades at the Safety and Tritium Applied Research Facility

    SciTech Connect

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew; Loftus, Larry Shayne

    2016-03-01

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety at the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.

  12. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    SciTech Connect

    Batandjieva, B.; Torres-Vidal, C.

    2002-02-26

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators.

  13. A security/safety survey of long term care facilities.

    PubMed

    Acorn, Jonathan R

    2010-01-01

    What are the major security/safety problems of long term care facilities? What steps are being taken by some facilities to mitigate such problems? Answers to these questions can be found in a survey of IAHSS members involved in long term care security conducted for the IAHSS Long Term Care Security Task Force. The survey, the author points out, focuses primarily on long term care facilities operated by hospitals and health systems. However, he believes, it does accurately reflect the security problems most long term facilities face, and presents valuable information on security systems and practices which should be also considered by independent and chain operated facilities.

  14. Safety of magnetic fusion facilities: Volume 2, Guidance

    SciTech Connect

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  15. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    SciTech Connect

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  16. CP-50 calibration facility radiological safety assessment document

    SciTech Connect

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described.

  17. Technical Safety Requirements for the Waste Storage Facilities May 2014

    SciTech Connect

    Laycak, D. T.

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  18. Water safety in healthcare facilities. The Vieste Charter.

    PubMed

    Bonadonna, L; Cannarozzi de Grazia, M; Capolongo, S; Casini, B; Cristina, M L; Daniele, G; D'Alessandro, D; De Giglio, O; Di Benedetto, A; Di Vittorio, G; Ferretti, E; Frascolla, B; La Rosa, G; La Sala, L; Lopuzzo, M G; Lucentini, L; Montagna, M T; Moscato, U; Pasquarella, C; Prencipe, R; Ricci, M L; Romano Spica, V; Signorelli, C; Veschetti, E

    2017-01-01

    The Study Group on Hospital Hygiene of the Italian Society of Hygiene, Preventive Medicine and Public Health (GISIO-SItI) and the Local Health Authority of Foggia, Apulia, Italy, after the National Convention "Safe water in healthcare facilities" held in Vieste-Pugnochiuso on 27-28 May 2016, present the "Vieste Charter", drawn up in collaboration with experts from the National Institute of Health and the Ministry of Health. This paper considers the risk factors that may affect the water safety in healthcare facilities and reports the current regulatory frameworks governing the management of installations and the quality of the water. The Authors promote a careful analysis of the risks that characterize the health facilities, for the control of which specific actions are recommended in various areas, including water safety plans; approval of treatments; healthcare facilities responsibility, installation and maintenance of facilities; multidisciplinary approach; education and research; regional and national coordination; communication.

  19. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety Culture at the..., concerning Safety Culture at the Waste Treatment and Immobilization Plant, to the Department of Energy. In...) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board) Recommendation 2011-1, Safety...

  20. Facility Safety Plan B360 Complex CMLS-411r0

    SciTech Connect

    Cooper, G

    2007-01-08

    Lawrence Livermore National Laboratory's (LLNL) Environmental, Safety and Health (ES&H) policy is that all operations must be planned and performed safely for the protection of workers, the public, the environment, and limit possible loss to property, facilities and equipment assigned to this directorate. In addition to observing LLNL policies contained in the ''Environment, Safety, and Health (ES&H) Manual'', LLNL workers will comply with applicable federal, state, and local regulations when conducting any activity that the Chemistry, Materials and Life Sciences (CMLS) Directorate has managerial control or oversight. Management has determined that the safety controls specified within this Facility Safety Plan (FSP) must also be followed to ensure that the operation is successfully performed efficiently and safely within this facility. Any operations conducted in this Complex that involve activities not commonly performed by the public require an Integration Work Sheet (IWS) or IWS/Safety Plan (IWS/SP) that specifically assesses the responsibilities, hazards and controls to conduct the operation safely. Everyone who enters this area (including students, workers, visitors, and consultants) must follow the applicable requirements in this FSP. Each person is expected to protect himself/herself and others from injury or illness. Regular facility occupants are expected to guide and govern visitors and assist new or temporary occupants in understanding and following this plan. When there are any doubts regarding the safety of any phase of work, workers and others will check with the facility manager. Changes to this FSP will be approved by the Facility Associate Director (AD). This will undergo triennial review to establish, at a minimum, that its contents are appropriate and adequate for current operations. The Hazards Control ES&H Team assists management in instituting and maintaining a minimum-risk and environmentally sound work environment. Any Laboratory worker has

  1. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    SciTech Connect

    Bowman, B.R.

    1994-09-30

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design.

  2. Safety assessment for the rf Test Facility

    SciTech Connect

    Nagy, A.; Beane, F.

    1984-08-01

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF.

  3. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  4. A HIGH TEMPERATURE TEST FACILITY FOR STUDYING ASH PARTICLE CHARACTERISTICS OF CANDLE FILTER DURING SURFACE REGENERATION

    SciTech Connect

    Kang, B.S-J.; Johnson, E.K.; Rincon, J.

    2002-09-19

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure back pulse cleaning jet. After this cleaning process has been done there may be some residual ash on the filter surface. This residual ash may grow and this may lead to mechanical failure of the filter. A High Temperature Test Facility (HTTF) was built to investigate the ash characteristics during surface regeneration at high temperatures. The system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. Details of the HTTF apparatus as well as some preliminary test results are presented in this paper. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time.

  5. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    2000-08-08

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  6. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    SciTech Connect

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assembly is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and

  7. Transuranic waste storage and assay facility (TRUSAF) interim safety basis

    SciTech Connect

    Gibson, K.D.

    1995-09-01

    The TRUSAF ISB is based upon current facility configuration and procedures. The purpose of the document is to provide the basis for interim operation or restrictions on interim operations and the authorization basis for the TRUSAF at the Hanford Site. The previous safety analysis document TRUSAF hazards Identification and Evaluation (WHC 1977) is superseded by this document.

  8. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  9. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  10. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  11. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge or other structure on or in the navigable waters of the United States, or any land structure or shore... from harm resulting from vessel or structure damage, destruction, or loss, each District Commander...

  12. Fact Sheet - Final Air Toxics Rule for Steel Pickling and HCI Process Facilities and Hydrochloric Acid Regeneration Plants

    EPA Pesticide Factsheets

    Fact Sheet summarizing the main points of the national emssions standard for hazaradous air pollutants (NESHAP) for Steel Pickling— HCl Process Facilities and Hydrochloric Acid Regeneration Plants as promulgated on June 22, 1999.

  13. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  14. Management concepts and safety applications for nuclear fuel facilities

    SciTech Connect

    Eisner, H.; Scotti, R.S.; Delicate, W.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  15. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT... operators should contact the appropriate state pipeline safety authority. A list of state pipeline...

  16. NIF conventional facilities construction health and safety plan

    SciTech Connect

    Benjamin, D W

    1998-05-14

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply.

  17. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  18. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  19. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  20. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility

    SciTech Connect

    Rathbun, R.

    1993-10-01

    Separate review of NMP-NCS-930058, {open_quotes}Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility (U), August 17, 1993,{close_quotes} was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility`s Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2{times}2{times}1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion.

  1. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2010-03-05

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  2. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  3. Explosive safety criteria at a Department of Energy contractor facility

    NASA Astrophysics Data System (ADS)

    Krach, F.

    1984-08-01

    Monsanto Research Corporation (MRC) operates the Mound facility in Miamisburg, Ohio, for the Department of Energy. Small explosive components are manufactured at MRC, and stringent explosive safety criteria have been developed for their manufacturing. The goals of these standards are to reduce employee injuries and eliminate fenceline impacts resulting from accidental detonations. The manner in which these criteria were developed and what DOD standards were incorporated into MRC's own design criteria are described. These design requirements are applicable to all new construction at MRC. An example of the development of the design of a Component Test Facility is presented to illustrate the application of the criteria.

  4. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  5. First experimental data of the cryogenic safety test facility PICARD

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Henriques, A.; Stamm, M.; Grohmann, S.

    2017-02-01

    The test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been designed and constructed for cryogenic safety experiments. With a cryogenic liquid volume of 100 L, a nominal design pressure of 16 bar(g) and the capacity of measuring helium mass flow rates through safety relief devices up to 4 kg/s, the test facility allows the systematic investigation of hazardous incidents in cryostats under realistic conditions. In the course of experiments, the insulating vacuum is vented with atmospheric air or gaseous nitrogen at ambient temperature under variation of the venting diameter, the thermal insulation, the cryogenic fluid, the liquid level and the set pressure in order to analyze the impact on the heat flux and hence on the process dynamics. A special focus will be on the occurrence and implications of two-phase flow during expansion and on measuring the flow coefficients of safety devices at cryogenic temperatures. This paper describes the commissioning and the general performance of the test facility at liquid helium temperatures. Furthermore, the results of first venting experiments are presented.

  6. 77 FR 7139 - Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... From the Federal Register Online via the Government Publishing Office DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract Inventory Analysis/FY 2011 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board...

  7. 78 FR 12042 - Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... From the Federal Register Online via the Government Publishing Office DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory Analysis/FY 2012 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board...

  8. National Ignition Facility Project Site Safety Program Appendix A

    SciTech Connect

    Moses, E

    2001-09-30

    These rules apply to all National Ignition Facility (NIF) workers (workers), which include Lawrence Livermore National Laboratory (LLNL) employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other national laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules and NIF Code of Safe Practices shall be used by management to promote the prevention of incidents through indoctrination, safety and health training, and on-the-job application. As a condition for contract award, all employers shall conduct an orientation for all newly hired and rehired employees before those workers will be permitted to start work in this facility. This orientation shall include a discussion of the following information. The General Rules and NIF Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory worker who shall have it readily available. Copies of the General Rules and NIF Code of Safe Practices can also be included in employee safety pamphlets. The Environmental, Safety, and Health (ES&H) rules at the NIF Project site are based upon compliance with the most stringent of Department of Energy (DOE), LLNL, Federal Occupational Safety and Health Administration (OSHA), California (Cal)/OSHA, and federal and state environmental requirements.

  9. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    SciTech Connect

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  10. 77 FR 45417 - Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Inspection and Protection of Pipeline Facilities After Railway Accidents AGENCY: Pipeline and Hazardous Materials Safety...

  11. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  12. NASA to begin construction of aviation-safety test facility

    NASA Astrophysics Data System (ADS)

    Construction of a $7.5-million facility to research aviation safety will begin in April at NASA's Ames Research Center in Mountain View, California. Scheduled for completion in 1983, the facility will give scientists their first opportunity to identify and study psychological factors involved in the relationship between pilots, crew members, and modern aircraft.The center will have two simulators. One will be a replica of a current transport airplane cockpit, complete with flight engineer's station, flight display, and control systems. The second will represent transport aircraft of the future. With advanced technology flight controls, displays, and other flight deck systems to accommodate a flight crew and observer, the advanced simulator will be designed to test human responses to the newest aviation technologies.

  13. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  14. 76 FR 14590 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Regulation Supplement; Safety of Facilities, Infrastructure, and Equipment for Military Operations (DFARS... Authorization Act for Fiscal Year 2010. Section 807 requires that facilities, infrastructure, and equipment that.... Facilities, infrastructure, and equipment shall be inspected prior to use to ensure safety and...

  15. 75 FR 66683 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Regulation Supplement; Safety of Facilities, Infrastructure, and Equipment for Military Operations (DFARS... Authorization Act of 2010. Section 807 requires that facilities, infrastructure, and equipment that are intended... Requirements, to add section 246.270, Safety of Facilities, Infrastructure, and Equipment for...

  16. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS Facility safety zone. 147.815 Section 147.815 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone....

  17. 62 FR 46525 - Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-09-03

    ... COMMISSION Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG AGENCY: Nuclear Regulatory... completion and availability of NUREG-1601, ``Chemical Process Safety at Fuel Cycle Facilities,'' dated July.... SUPPLEMENTARY INFORMATION: NRC is announcing the availability of NUREG-1601, ``Chemical Process Safety at...

  18. 71 FR 56344 - Facility Change Process Involving Items Relied on for Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-09-27

    ... COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety AGENCY... facility change process involving items relied on for safety. Additionally, the 10 CFR part 70 subpart H...) is amending its regulations to clarify a requirement pertaining to items relied on for safety...

  19. Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles.

    PubMed

    Adsul, Mukund; Soni, Sarvesh K; Bhargava, Suresh K; Bansal, Vipul

    2012-09-10

    This study reports a facile method to disperse cellulose in deionized water, wherein a critical condition of regenerated cellulose is discovered, where it completely disperses up to a maximum of 5 g L(-1) concentration in deionized water with the help of ultrasonication. The dispersed cellulose is characterized by TEM and DLS, the latter among which shows 200 nm hydrodynamic radii of cellulose nanoparticles dispersed in deionized water. FTIR analysis of dispersed cellulose reveals that dispersed cellulose losses its crystallinity during regeneration and dispersion step employed in this study. The dispersed cellulose reported in this study is able to form free-standing, transparent films, which were characterized by SEM, XRD, TGA, EDX, and FTIR spectroscopy and show resistance against dissolution in water. Additionally, the dispersed cellulose is able to undergo at least three times faster enzymatic hydrolysis in comparison to pristine microcrystalline cellulose under similar reaction conditions. The dispersed cellulose reported here could be a better material for reinforcement, preparation of hydrogels, and drug delivery applications under physiological environment.

  20. Safety analysis of the 700-horsepower combustion test facility

    SciTech Connect

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  1. Commissioning of the cryogenic safety test facility PICARD

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Schön, H.; Stamm, M.; Grohmann, S.

    2015-12-01

    The sizing of cryogenic safety relief devices requires detailed knowledge on the evolution of the pressure increase in cryostats following hazardous incidents such as the venting of the insulating vacuum with atmospheric air. Based on typical design and operating conditions in liquid helium cryostats, the new test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been constructed. The vacuum-insulated test stand has a cryogenic liquid volume of 100 liters and a nominal design pressure of 16 bar(g). This allows a broad range of experimental conditions with cryogenic fluids. In case of helium, mass flow rates through safety valves and rupture disks up to about 4kg/s can be measured. Beside flow rate measurements under various conditions (venting diameter, insulation, working fluid, liquid level, set pressure), the test stand will be used for studies on the impact of two-phase flow and for the measurement of flow coefficients of safety devices at low temperature. This paper describes the operating range, layout and instrumentation of the test stand and presents the status of the commissioning phase.

  2. The Safety and Tritium Applied Research (STAR) Facility: Status-2004*

    SciTech Connect

    R. A. Anderl; G. R. Longhurst; R. J. Pawelko; J. P. Sharpe; S. T. Schuetz; D. A. Petti

    2004-09-01

    The purpose of this paper is to present the current status of the development of the Safety and Tritium Applied Research (STAR) Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). Designated a National User Facility by the US DOE, the primary mission of STAR is to provide laboratory infrastructure to study tritium science and technology issues associated with the development of safe and environmentally friendly fusion energy. Both tritium and non-tritium fusion safety research is pursued along three key thrust areas: (1) plasma-material interactions of plasma-facing component (PFC) materials exposed to energetic tritium and deuterium ions, (2) fusion safety concerns related to PFC material chemical reactivity and dust/debris generation, activation product mobilization, and tritium behavior in fusion systems, and (3) molten salts and fusion liquids for tritium breeder and coolant applications. STAR comprises a multi-room complex with operations segregated to permit both tritium and non-tritium activities in separately ventilated rooms. Tritium inventory in STAR is limited to 15,000 Ci to maintain its classification as a Radiological Facility. Experiments with tritium are typically conducted in glovebox environments. Key components of the tritium infrastructure have been installed and tested. This includes the following subsystems: (1) a tritium Storage and Assay System (SAS) that uses two 50-g depleted uranium beds for tritium storage and PVT/beta-scintillation analyses for tritium accountability measurements, (2) a Tritium Cleanup System (TCS) that uses catalytic oxidation and molecular sieve water absorption to remove tritiated species from glovebox atmosphere gases and gaseous effluents from experiment and process systems, and (3) tritium monitoring instrumentation for room air, glovebox atmosphere and stack effluent tritium concentration measurements. Integration of the tritium infrastructure subsystems with the experimental and

  3. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect

    Not Available

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  4. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  5. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  6. Nuclear space power safety and facility guidelines study

    SciTech Connect

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  7. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  8. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  9. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  10. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What environmental and safety requirements...) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations § 3275.12 What environmental and safety requirements apply to facility operations? (a) You must perform all utilization facility operations in a...

  11. 33 CFR 165.837 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas. 165.837 Section 165.837 Navigation and Navigable Waters... Guard District § 165.837 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria,...

  12. Medicare and Medicaid Programs; Fire Safety Requirements for Certain Health Care Facilities. Final rule.

    PubMed

    2016-05-04

    This final rule will amend the fire safety standards for Medicare and Medicaid participating hospitals, critical access hospitals (CAHs), long-term care facilities, intermediate care facilities for individuals with intellectual disabilities (ICF-IID), ambulatory surgery centers (ASCs), hospices which provide inpatient services, religious non-medical health care institutions (RNHCIs), and programs of all-inclusive care for the elderly (PACE) facilities. Further, this final rule will adopt the 2012 edition of the Life Safety Code (LSC) and eliminate references in our regulations to all earlier editions of the Life Safety Code. It will also adopt the 2012 edition of the Health Care Facilities Code, with some exceptions.

  13. Make safety awareness a priority: Use a login software in your research facility

    DOE PAGES

    Camino, Fernando E.

    2017-01-21

    We report on a facility login software, whose objective is to improve safety in multi-user research facilities. Its most important safety features are: 1) blocks users from entering the lab after being absent for more than a predetermined number of days; 2) gives users a random safety quiz question, which they need to answer satisfactorily in order to use the facility; 3) blocks unauthorized users from using the facility afterhours; and 4) displays the current users in the facility. Besides restricting access to unauthorized users, the software keeps users mindful of key safety concepts. In addition, integration of the softwaremore » with a door controller system can convert it into an effective physical safety mechanism. Depending on DOE approval, the code may be available as open source.« less

  14. Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities

    SciTech Connect

    Not Available

    1994-06-01

    The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

  15. Fast Flux Test Facility final safety analysis report. Amendment 72

    SciTech Connect

    Gantt, D. A.

    1992-08-01

    This document provides the Final Safety Analysis Report (FSAR) Amendment 72 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set. This amendment change incorporates Engineering Change Notices issued subsequent to Amendment 71 and approved for incorporation before June 24, 1992. These include changes in: Chapter 2, Site Characteristics; Chapter 3, Design Criteria Structures, Equipment, and Systems; Chapter 5B, Reactor Coolant System; Chapter 7, Instrumentation and Control Systems; Chapter 8, Electrical Systems - The description of the Class 1E, 125 Vdc systems is updated for the higher capacity of the newly installed, replacement batteries; Chapter 9, Auxiliary Systems - The description of the inert cell NASA systems is corrected to list the correct number of spare sample points; Chapter 11, Reactor Refueling System; Chapter 12, Radiation Protection and Waste Management; Chapter 13, Conduct of Operations; Chapter 16, Quality Assurance; Chapter 17, Technical Specifications; Chapter 19, FFTF Fire Specifications for Fire Detection, Alarm, and Protection Systems; Chapter 20, FFTF Criticality Specifications; and Appendix B, Primary Piping Integrity Evaluation.

  16. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  17. Improving the regulation of safety at DOE nuclear facilities. Final report

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  18. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    SciTech Connect

    Sharirli, M.; Rand, J.L.; Sasser, M.K.; Gallegos, F.R.

    1992-12-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief review of the studies involved in Phases I and II of the program.

  19. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ...] [FR Doc No: 2011-19029] DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0177] Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT....

  20. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  1. 75 FR 17644 - Update to NFPA 101, Life Safety Code, for State Home Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... AFFAIRS 38 CFR Part 51 RIN 2900-AN59 Update to NFPA 101, Life Safety Code, for State Home Facilities... of the 2009 edition of the National Fire Protection Association's NFPA 101, Life Safety Code. This... are submitted in response to ``RIN 2900-AN59--Update to NFPA 101, Life Safety Code, for State...

  2. 76 FR 11339 - Update to NFPA 101, Life Safety Code, for State Home Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... AFFAIRS 38 CFR Part 51 RIN 2900-AN59 Update to NFPA 101, Life Safety Code, for State Home Facilities... of the 2009 edition of the National Fire Protection Association's NFPA 101, Life Safety Code. The... Association's NFPA 101, Life Safety Code (2009 edition) (NFPA 101), and proposed to incorporate that...

  3. 71 FR 69430 - Facility Change Process Involving Items Relied on for Safety: Confirmation of Effective Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-12-01

    ... COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety... requirement pertaining to items relied on for safety (IROFS). This rulemaking corrected an inconsistency in... for safety (IROFS). In the direct final rule, NRC stated that if no significant adverse comments...

  4. SLSF local fault safety experiment P4: summary and conclusions. [Sodium Loop Safety Facility

    SciTech Connect

    Thompson, D.H.; Ragland, W.A.; Holland, J.W.; Dever, D.J.; Braid, T.H.; Baldwin, R.D.; Anderson, T.T.

    1985-01-01

    Sodium Loop Safety Facility (SLSF) experiment P4 in ETR was performed to investigate the consequences of an upper-bound or worse-than-worst case local fault configuration. P4 was intended to bound the consequences of credible subassembly faults by ejecting molten fuel into a 37-pin bundle of full-length Fast Test Reactor (FTR)-type pins and failing fuel with the potential for further cladding and fuel-pin damage. In addition to ejecting a large amount of molten fuel at or near full power, experiment objectives were to evaluate the severity of molten fuel-coolant interactions (MFCIs) and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors in time to prevent significant fuel failure propagation.

  5. Design of a limited-access facility and safety program for a genetic toxicology laboratory.

    PubMed

    Inmon, J; Vaughan, T; Morris, J

    1985-06-01

    A limited-access facility has been designed as a result of the need for laboratories for testing hazardous materials found in the environment. The facility design features include room air flow and filtration, hood types, sink design and placement, design of countertops, type of flooring and wall sealant, and traffic flow within the laboratories. These laboratories required the diversity to handle weighing of stock hazardous materials, preparation and handling of aliquots, maintenance of dosed animals as well as sterile conditions required for tissue culture and continuous cell culture methods. A safety and health program was also developed which included specific dress (e.g., scrub suit, TYVEK jumpsuit, gloves, safety glasses and safety shoes), safety advisory group, safety response group, medical monitoring program and training of current and new staff members. The design and use of the facility are continuously reevaluated and changes are made as necessitated by either research needs or improved safety methods.

  6. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry.

  7. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  8. Interim Safety Basis for Fuel Supply Shutdown Facility

    SciTech Connect

    BENECKE, M.W.

    2000-09-07

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines.

  9. 78 FR 69433 - Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... SECURITY Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions AGENCY: National Protection and Programs Directorate, DHS. ACTION: Notice of public listening sessions. SUMMARY... Environmental Protection Agency (EPA), is announcing a series of public listening sessions and webinars...

  10. Overview of the Preliminary Safety Analysis of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Brereton, S.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.; Yatabe, J.

    1997-06-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 individual laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a low hazard, radiological facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis report be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A Preliminary Safety Analysis Report (PSAR) has been approved, which documents and evaluates the safety issues associated with the construction, operation, and decommissioning of the NIF.

  11. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    SciTech Connect

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  12. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    .... Comments may be sent to the address above. The text of the document is below. It may also be viewed at... (LANL), the first major upgrade to the Plutonium Facility's Safety Basis since 1996. The...

  13. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  14. Facility Safety Plan B360 Complex Biohazardous Operations CMLS-412r0

    SciTech Connect

    Cooper, G

    2007-01-08

    This Addendum to the Facility Safety Plan (FSP) 360 Complex describes the safety requirements for the safe conduct of all biohazardous research operations in all buildings within the 360 complex program areas. These requirements include all the responsibilities and authorities of building personnel, operational hazards, and environmental concerns and their controls. In addition, this Addendum prescribes facility-specific training requirements and emergency controls, as well as maintenance and quality assurance requirements for ES&H-related building systems.

  15. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ..., chemical facility owners and operators, and local and tribal communities to work together to improve..., local, and tribal governments and private sector partners, where joint collaborative programs can be... information sharing and collaborative planning between chemical facility owners and operators, TEPCs,...

  16. Construction safety program for the National Ignition Facility, Appendix B

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  17. Technical Support Section Instrument Support Program for Nuclear and Nonnuclear Facilities with Safety Requirements

    SciTech Connect

    Adkisson, B.P.

    1995-01-01

    This document describes the requirements, procedures, and responsibilities of the Instrumentation and Controls (I and C) Division's Technical Support Section (TSS) for instruments identified in nonreactor nuclear and nonnuclear facilities at Oak Ridge National Laboratory (ORNL) with Operational Safety Requirements (OSRs) or Limiting Conditions Documents (LCDs). As a result of DOE order 5480.22 Technical Safety Requirements (TSRs), OSRs, and LCDs for nuclear facilities will be eventually replaced by TSRs. OSRs or LCDs will continue to be required for high-, moderate-, or low-level radiological nonnuclear facilities. The objective of this document is to present an instrument surveillance plan for nonreactor nuclear and nonnuclear facility-identified instruments or systems as specified in the facility's OSR, LCD, or TSR. The instrument surveillance plan is a collaborative effort between the facility manager and the I and C Division TSS staff, thereby ensuring that the surveillance requirements stated in the OSR, LCD, or TSR are fulfilled within the required time frame.

  18. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility... Eagle Rock Enrichment Facility (EREF)--in Bonneville County, Idaho; and (2) the receipt, possession,...

  19. Industrial Sanitation and Personal Facilities. Module SH-13. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on industrial sanitation and personal facilities is one of 50 modules concerned with job safety and health. This module deals wth many facets of industrial sanitation and the facilities industries should provide so that proper health procedures may be followed. Following the introduction, 14 objectives (each keyed to a page in…

  20. Safety and environmental process for the design and construction of the National Ignition Facility

    SciTech Connect

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  1. 75 FR 52996 - Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and...

  2. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation & Control System Design Description

    SciTech Connect

    WHITEHURST, R.

    1999-12-01

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  3. 71 FR 56413 - Facility Change Process Involving Items Relied on for Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-09-27

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety AGENCY: Nuclear Regulatory Commission. ACTION: Proposed rule. SUMMARY: The Nuclear... on for safety (IROFS). This rulemaking corrects an inconsistency in the regulations pertaining...

  4. 75 FR 13433 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, TX AGENCY: Coast Guard, DHS. ACTION: Interim final rule with request for comments. SUMMARY: The Coast Guard is establishing a safety zone for a partial blockage of the Victoria Barge...

  5. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7. Revision 1

    SciTech Connect

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included.

  6. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  7. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    SciTech Connect

    VINCENT, Andrew

    2005-07-14

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the

  8. Construction safety program for the National Ignition Facility

    SciTech Connect

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF`s management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES&H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES&H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES&H support organizations and administrative groups, and describes their interactions with the NIF Program.

  9. Safety team assessments at NRC (Nuclear Regulatory Commission)-licensed fuel facilities

    SciTech Connect

    Sjoblom, G.L.

    1988-01-01

    Following the hydraulic rupture of a UF cylinder at the Sequoyah Fuels Facility on January 4, 1986, the US Nuclear Regulatory Commission's (NRC's) executive director for operations (EDO) established an augmented inspection team to investigate the accident. The investigation is reported in NUREG-1179. The EDO then formed a lessons-learned group to report on the action NRC might reasonably take to prevent similar accidents. The group's recommendations are reported in NUREG-1198. In addition, the EDO formed an independent materials safety regulation review study group (MSRRSG) to review the licensing and inspection program for NRC-licensed fuel cycle and materials facilities. During the same period of time that the MSRRSG report was being prepared and evaluated, the staff undertook an independent action to assess operational safety at each of the 12 major fuel facilities licensed by the NRC. The facilities included the 2 facilities producing uranium hexafluoride, the 7 facilities producing commercial nuclear reactor fuel, and the 3 facilities producing naval reactor fuel. The most important safety issues identified as needing attention by licensees were in the areas of fire protection, chemical hazards identification and mitigation, management controls or quality assurance, safety-related instrumentation and maintenance, and emergency preparedness.

  10. An approach to radiation safety department benchmarking in academic and medical facilities.

    PubMed

    Harvey, Richard P

    2015-02-01

    Based on anecdotal evidence and networking with colleagues at other facilities, it has become evident that some radiation safety departments are not adequately staffed and radiation safety professionals need to increase their staffing levels. Discussions with management regarding radiation safety department staffing often lead to similar conclusions. Management acknowledges the Radiation Safety Officer (RSO) or Director of Radiation Safety's concern but asks the RSO to provide benchmarking and justification for additional full-time equivalents (FTEs). The RSO must determine a method to benchmark and justify additional staffing needs while struggling to maintain a safe and compliant radiation safety program. Benchmarking and justification are extremely important tools that are commonly used to demonstrate the need for increased staffing in other disciplines and are tools that can be used by radiation safety professionals. Parameters that most RSOs would expect to be positive predictors of radiation safety staff size generally are and can be emphasized in benchmarking and justification report summaries. Facilities with large radiation safety departments tend to have large numbers of authorized users, be broad-scope programs, be subject to increased controls regulations, have large clinical operations, have significant numbers of academic radiation-producing machines, and have laser safety responsibilities.

  11. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  12. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  13. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  14. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  15. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies' responsibilities concerning seismic safety in Federal facilities? 102-80.45 Section 102-80.45... Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning seismic safety in Federal facilities? Federal agencies must follow the standards issued by the...

  16. Construction safety program for the National Ignition Facility

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF.

  17. Safety Factors in Educational Facilities. An Annotated Reference List.

    ERIC Educational Resources Information Center

    Wakefield, Howard E.

    Abstracts and descriptor terms are presented for 26 selected references with safety orientation. Included in addition to several general planning handbooks are topics related to--(1) stairways, (2) air structures, (3) site planning, (4) lighting, (5) bidding practice, (6) physically handicapped, (7) laboratory design, (8) mobile classrooms, (9)…

  18. Application of total uncertainty theory in radioactive waste disposal facilities safety assessment

    SciTech Connect

    Lemos, Francisco Luiz de; Ross, Timothy; Sullivan, Terry

    2007-07-01

    Safety assessment requires the interaction of a large number of disciplines to model the environmental phenomena necessary to evaluate the safety of the disposal system. In this complex process, the identification and quantification of both types of uncertainties, random and epistemic, plays a very important role for confidence building. In this work an application of the concept of total uncertainty to radioactive waste disposal facilities safety assessment is proposed. By combining both types of uncertainty, aleatory and epistemic, in the same framework, this approach ultimately aims to assess the confidence one can pose in the safety-assessment decisions. (authors)

  19. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    SciTech Connect

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insider who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.

  20. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    SciTech Connect

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  1. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  2. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    SciTech Connect

    Darby, John L.; Horak, Karl Emanuel; LaChance, Jeffrey L.; Tolk, Keith Michael; Whitehead, Donnie Wayne

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  3. Running to Safety: Analysis of Disaster Susceptibility of Neighborhoods and Proximity of Safety Facilities in Silay City, Philippines

    NASA Astrophysics Data System (ADS)

    Patiño, C. L.; Saripada, N. A.; Olavides, R. D.; Sinogaya, J.

    2016-06-01

    Going on foot is the most viable option when emergency responders fail to show up in disaster zones at the quickest and most reasonable time. In the Philippines, the efficacy of disaster management offices is hampered by factors such as, but not limited to, lack of equipment and personnel, distance, and/or poor road networks and traffic systems. In several instances, emergency response times exceed acceptable norms. This study explores the hazard susceptibility, particularly to fire, flood, and landslides, of neighborhoods vis-à-vis their proximity to safety facilities in Silay City, Philippines. Imbang River exposes communities in the city to flooding while the mountainous terrain makes the city landslide prone. Building extraction was done to get the possible human settlements in the city. The building structures were extracted through image processing using a ruleset-based approach in the process of segmentation and classification of LiDAR derivatives and ortho-photos. Neighborhoods were then identified whether they have low to high susceptibility to disaster risks in terms of floods and landslides based on the hazards maps obtained from the Philippines' Mines and Geosciences Bureau (MGB). Service area analyses were performed to determine the safety facilities available to different neighborhoods at varying running times. Locations which are inaccessible or are difficult to run to because of distance and corresponding hazards were determined. Recommendations are given in the form of infrastructure installation, relocation of facilities, safety equipment and vehicle procurement, and policy changes for specific areas in Silay City.

  4. Safety analysis of the MYRRHA facility with different core configurations

    SciTech Connect

    Arien, B.; Heusdains, S.; Alt Abderrahim, H.; Malambu, E.

    2006-07-01

    In the framework of the IAEA Coordinated Research Project on 'Studies of Innovative Reactor Technology Options for Effective Incineration of Radioactive Waste', a benchmark exercise was undertaken to analyse the behaviour of the MYRRHA facility in various accidental conditions. The transients were simulated by means of the RELAP and SITHER codes and the following set of accident scenarios was considered: loss of flow, loss of heat sink, overpower transient, overcooling and partial blockage of a subassembly. In addition, those accidents were simulated in two different situations depending on whether the proton beam is cut off (protected case) or not (unprotected case). In the IAEA benchmark two subcritical core configurations are considered: a typical core configuration composed only of (U-Pu)O{sub 2} MOX fuel assemblies and another one including additional U-free minor actinides fuel assemblies. The present paper summarized the main results obtained with the first core configuration. (authors)

  5. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  6. Preliminary Evaluation of Thermal Systems for Regenerating Explosives-Contaminated Carbon: Safety, Cost, and Technical Feasibility

    DTIC Science & Technology

    1988-07-01

    personnel estimate that experienced boiler operators can be trained to operate the mobile regenerator in only 1-2 d. They routinely hire operators from...Ash 5.60 7.06 Freundlich adsorption parameters X/M = a Cfb X/M = adsorbate loading on carbon, mg/gC Cf = aqueous concentration of adsorbate, ppm

  7. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    SciTech Connect

    IRWIN, J.J.

    1999-02-24

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

  8. 78 FR 46966 - Food Safety Modernization Act Domestic and Foreign Facility Reinspection, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... HUMAN SERVICES Food and Drug Administration Food Safety Modernization Act Domestic and Foreign Facility Reinspection, Recall, and Importer Reinspection Fee Rates for Fiscal Year 2014 AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the...

  9. 76 FR 45820 - Food Safety Modernization Act Domestic and Foreign Facility Reinspections, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... HUMAN SERVICES Food and Drug Administration Food Safety Modernization Act Domestic and Foreign Facility Reinspections, Recall, and Importer Reinspection User Fee Rates for Fiscal Year 2012 AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the...

  10. Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety

    NASA Technical Reports Server (NTRS)

    Stradling, J. S.; Pippen, D. L.; Frye, G. W.

    1983-01-01

    Methods of ascertaining the safety and suitability of a variety of oxygen system components are discussed. Additionally, qualification and batch control requirements for soft goods in oxygen systems are presented. Current oxygen system component qualification test activities in progress at White Sands Test Facility are described.

  11. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    SciTech Connect

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public.

  12. Perceptions of Power Mobility Use and Safety within Residential Facilities

    PubMed Central

    Mortenson, William B; Miller, William C.; Boily, Jeanette; Steele, Barbara; Crawford, Erin M.; Desharnais, Guylaine

    2014-01-01

    Power wheelchairs enhance quality of life by enabling occupation, improving self-esteem and facilitating social interaction. Despite these benefits, there are risks associated with power mobility use; and accidents, which may occur, are a serious concern. As there is no gold standard to assess when a client is unsafe with power mobility, therapists generally rely on their clinical reasoning to make a decision. This paper presents the findings of the first phase of a two-part study to develop client-centred guidelines for power mobility. In the first phase of the study, 18 in-depth, qualitative interviews were conducted with a variety of stakeholders, including power mobility users, other residents, staff and family members. A thematic analysis of the interviews revealed four main themes: 1) “the meaning of power mobility,” 2) “learning the rules of the road,” 3) “red flags: concerns about safety,” and 4) “solutions.” The findings of this study have important implications for the safe use of power mobility. PMID:15988961

  13. Effects of health and safety problem recognition on small business facility investment

    PubMed Central

    2013-01-01

    Objectives This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. Methods An individual survey of businesses’ present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Results Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was “very important”. Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Conclusions Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety

  14. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described.

  15. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  16. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  17. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  18. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  19. Preparing a metal-ion chelated immobilized enzyme reactor based on the polyacrylamide monolith grafted with polyethylenimine for a facile regeneration and high throughput tryptic digestion in proteomics.

    PubMed

    Wu, Shuaibin; Zhang, Lei; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-01-01

    Initially, a poly (glycidyl methacrylate-co-acrylamide-co-methylenebisacrylamide) monolith was prepared in the 100 μm i.d. capillary, and then was grafted with polyethylenimine (Mw, ~25,000) for adsorbing Cu(2+), followed by chelating trypsin. As a result, efficient digestion for BSA (100 ng/μL) was completed within 50 s via such immobilized enzyme reactor (IMER); yielding 47% sequence coverage by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Compared with the conventional method for preparing the metal-ion chelated IMER, the regeneration of such IMER can be achieved facilely by the respective 30 min desorption and re-adsorption of trypsin, and 51% sequence coverage was obtained for 50 s BSA digestion after regeneration. BSA down to femtomole was also efficiently digested by the prepared regenerable IMER. Meanwhile, after the consecutive digestion of myoglobin and BSA, there was not any mutual interference for both during MALDI-TOF MS identification, indicating the low nonspecific adsorption of such regenerable IMER. To test the applicability of regenerable IMER for complex sample profiling, proteins (150 ng) extracted from Escherichia coli were digested within 80 s by the regenerable IMER and further analyzed by nanoreversed phase liquid chromatography-electrospray ionization-mass spectrometry successfully, showing its practicability for the high throughput analysis of complex samples.

  20. An empirical investigation of the influence of safety climate on organizational citizenship behavior in Taiwan's facilities.

    PubMed

    Lee, Tzai-Zang; Wu, Chien-Hsing; Hong, Chih-Wei

    2007-01-01

    Although the social exchange relationships between employers and employees are increasingly important to the performance of safety management systems, the psychological effects of work attitudes on this relationship have been less studied. Using a sample of first-line operators and their supervisors from 188 facilities in Taiwan which had Occupational Health and Safety Assessment Series 18000 (OHSAS 18000) certification, the current research conducted an empirical investigation of the influence of safety climate on organizational citizenship behavior (OCB). Work attitude was used to disclose the psychological effect. Research results indicated that (a) safety climate was a significant predicator of OCB, (b) the psychological effect significantly influenced social exchange relationships, and (c) job satisfaction showed a stronger mediating influence than organizational commitment due to the frequent top management turnover. Discussions and implications are also addressed.

  1. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  2. 78 FR 4404 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Flammable Gas Safety Strategy AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On September 28, 2012... Farms Flammable Gas Safety Strategy, to the Department of Energy. In accordance with section 315(b) of... Nuclear Facilities Safety Board (Board) Recommendation 2012-2, Hanford Tank Farms Flammable Gas...

  3. National Ignition Facility start-up/operations engineering and special equipment construction health and safety plan

    SciTech Connect

    Huddleston, P C

    1998-05-08

    This document sets forth the responsibilities, interfaces, guidelines, rules, policy, and regulations for all workers involved in the S/O and SE construction, installation, and acceptance testing. This document is enforced from the first day that S/O and SE workers set foot on the NIF construction site until the end of the Project at Critical Decision 4. This document is applicable only to site activities, which are defined as those that occur within the perimeter of the fenced-off NIF construction zone and the Target Chamber Assembly Area (Helipad). The associated Special Equipment laydown and construction support areas listed in Appendix B are not under this plan; their safety provisions are discussed in the Appendix. Prototype and other support activities, such as the Amplifier Laboratory and Frame Assembly Unit assembly area, are not included in this plan. After completion of the Operational Readiness Review, the Facility Safety Procedure, Operational Safety Requirements, and Operational Safety Procedures are the governing safety documents for the operating facility. The S/O and SE project elements are required to implement measures that create a universal awareness of and promote safe job practices at the site. This includes all Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester, supplement labor organization, and subcontractor employees; visitors; and guests serving the S/O and SE effort.

  4. Prevention by Design: Construction and Renovation of Health Care Facilities for Patient Safety and Infection Prevention.

    PubMed

    Olmsted, Russell N

    2016-09-01

    The built environment supports the safe care of patients in health care facilities. Infection preventionists and health care epidemiologists have expertise in prevention and control of health care-associated infections (HAIs) and assist with designing and constructing facilities to prevent HAIs. However, design elements are often missing from initial concepts. In addition, there is a large body of evidence that implicates construction and renovation as being associated with clusters of HAIs, many of which are life threatening for select patient populations. This article summarizes known risks and prevention strategies within a framework for patient safety.

  5. The dual axis radiographic hydrodynamic test (DARHT) facility personnel safety system (PSS) control system

    SciTech Connect

    Jacquez, Edward B

    2008-01-01

    The mission of the Dual Axis Radiograph Hydrodynamic Test (DARHT) Facility is to conduct experiments on dynamic events of extremely dense materials. The PSS control system is designed specifically to prevent personnel from becoming exposed to radiation and explosive hazards during machine operations and/or the firing site operation. This paper will outline the Radiation Safety System (RSS) and the High Explosive Safety System (HESS) which are computer-controlled sets of positive interlocks, warning devices, and other exclusion mechanisms that together form the PSS.

  6. Moving a hospital: simulation - a way to co-produce safety healthcare facilities.

    PubMed

    Gignon, Maxime; Amsallem, Carole; Ammirati, Christine

    2017-04-10

    Moving a hospital is a critical period for quality and safety of healthcare. Change is very stressful for professionals. Workers who have experienced relocation of their place of work report deterioration in health status. Building a new hospital or restructuring a unit could provide an opportunity for improving safety and value in healthcare and for ensuring better quality of worklife for the staff. We used in situ simulation to promote experiential learning by training healthcare workers in the workplace in which they are expected to use their skills. In situ simulation was a way to design, plan, assess and implement a new healthcare environment before opening its doors for patient care. We can envisage that simulation will soon be used formally to identify potential problems in healthcare delivery and in staff quality of worklife in new healthcare facilities. Simulation is a way to co-produce a safe and valuable healthcare facility.

  7. Preclosure radiological safety analysis for the exploratory shaft facilities; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ma, C.W.; Miller, D.D.; Jardine, L.J.

    1992-06-01

    This study assesses which structures, systems, and components of the exploratory shaft facility (ESF) are important to safety when the ESF is converted to become part of the operating waste repository. The assessment follows the methodology required by DOE Procedure AP-6.10Q. Failures of the converted ESF during the preclosure period have been evaluated, along with other underground accidents, to determine the potential offsite radiation doses and associated probabilities. The assessment indicates that failures of the ESF will not result in radiation doses greater than 0.5 rem at the nearest unrestricted area boundary. Furthermore, credible accidents in other underground facilities will not result in radiation doses larger than 0.5 rem, even if any structure, system, or component of the converted ESF fails at the same time. Therefore, no structure, system, or component of the converted ESF is important to safety.

  8. Technical Support Section Instrument Support Program for nuclear and nonnuclear facilities with safety requirements

    SciTech Connect

    Adkisson, B.P.; Allison, K.L.

    1995-01-01

    This document describes requirements, procedures, and supervisory responsibilities of the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I&C) Division`s Technical Support Section (TSS) for instrument surveillance and maintenance in nonreactor nuclear facilities having identified Operational Safety Requirements (OSRs) or Limiting Conditions Document (LCDs). Implementation of requirements comply with the requirements of U.S. Department of Energy (DOE) Orders 5480.5, 5480.22, and 5481.1B; Martin Marietta Energy Systems, Inc. (Energy Systems), Policy Procedure ESS-FS-201; and ORNL SPP X-ESH-15. OSRs and LCDs constitute an agreement or contract between DOE and the facility operating management regarding the safe operation of the facility. One basic difference between OSRs and LCDs is that violation of an OSR is considered a Category II occurrence, whereas violation of an LCD requirement is considered a Category III occurrence (see Energy Systems Standard ESS-OP-301 and ORNL SPP X-GP-13). OSRs are required for high- and moderate-hazard nuclear facilities, whereas the less-rigorous LCDs are required for low-hazard nuclear facilities and selected {open_quotes}generally accepted{close_quotes} operations. Hazard classifications are determined through a hazard screening process, which each division conducts for its facilities.

  9. Needs and opportunities for improving the health, safety, and productivity of medical research facilities.

    PubMed Central

    Hodgson, M; Brodt, W; Henderson, D; Loftness, V; Rosenfeld, A; Woods, J; Wright, R

    2000-01-01

    Medical research facilities, indeed all the nation's constructed facilities, must be designed, operated, and maintained in a manner that supports the health, safety, and productivity of the occupants. The National Construction Goals, established by the National Science and Technology Council, envision substantial improvements in occupant health and worker productivity. The existing research and best practices case studies support this conclusion, but too frequently building industry professionals lack the knowledge to design, construct, operate, and maintain facilities at these optimum levels. There is a need for more research and more collaborative efforts between medical and facilities engineering researchers and practitioners in order to attain the National Construction Goals. Such collaborative efforts will simultaneously support attainment of the National Health Goals. This article is the summary report of the Healthy Buildings Committee for the Leadership Conference: Biomedical Facilities and the Environment sponsored by the National Institutes of Health, the National Association of Physicians for the Environment, and the Association of Higher Education Facilities Officers on 1--2 November 1999 in Bethesda, Maryland, USA. PMID:11124125

  10. Health Facilities Safety in Natural Disasters: Experiences and Challenges from South East Europe

    PubMed Central

    Radovic, Vesela; Vitale, Ksenija; Tchounwou, Paul B.

    2012-01-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations. PMID:22754465

  11. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  12. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  13. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  14. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  15. Control of Listeria species food safety at a poultry food production facility.

    PubMed

    Fox, Edward M; Wall, Patrick G; Fanning, Séamus

    2015-10-01

    Surveillance and control of food-borne human pathogens, such as Listeria monocytogenes, is a critical aspect of modern food safety programs at food production facilities. This study evaluated contamination patterns of Listeria species at a poultry food production facility, and evaluated the efficacy of procedures to control the contamination and transfer of the bacteria throughout the plant. The presence of Listeria species was studied along the production chain, including raw ingredients, food-contact, non-food-contact surfaces, and finished product. All isolates were sub-typed by pulsed-field gel electrophoresis (PFGE) to identify possible entry points for Listeria species into the production chain, as well as identifying possible transfer routes through the facility. The efficacy of selected in-house sanitizers against a sub-set of the isolates was evaluated. Of the 77 different PFGE-types identified, 10 were found among two or more of the five categories/areas (ingredients, food preparation, cooking and packing, bulk packing, and product), indicating potential transfer routes at the facility. One of the six sanitizers used was identified as unsuitable for control of Listeria species. Combining PFGE data, together with information on isolate location and timeframe, facilitated identification of a persistent Listeria species contamination that had colonized the facility, along with others that were transient.

  16. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    SciTech Connect

    Liu, James C.; Rokni, Sayed H.; Asano, Yoshihiro; Casey, William R.; Donahue, Richard J.; /LBL, Berkeley

    2005-06-29

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  17. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  18. Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell

    SciTech Connect

    Williamson, T.G.

    1994-10-17

    The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

  19. Preliminary Authorization Basis Documentation for the Proposed Bio Safety Level 3 (BSl-3) Facility

    SciTech Connect

    Altenbach, T J; Nguyen, S N

    2003-09-20

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct a biosafety level (BSL-3) facility at Site 200 in Livermore, California. Biosafety level 3 (BSL-3) is a designation assigned by the Centers for Disease Control and Prevention (CDC) and National Institutes Health (NIH) for handling infectious organisms based on the specific microorganisms and associated operations. Biosafety levels range from BSL-1 (lowest hazard) to BSL-4 (highest hazard). Details about the BSL-3 criteria are described in the Center of Disease Control and Prevention (CDC)/National Institutes of Health (NIH)'s publication ''Biosafety Microbiological and Biomedical Laboratories'' (BMBL), 4th edition (CDC 1999): The BSL-3 facility will be built in accordance with the required BMBL guidelines. This Preliminary Authorization Basis Documentation (PABD) for the proposed BSL-3 facility has been prepared in accordance with the current contractual requirements at LLNL. This includes the LLNL Environment, Safety, and Health Manual (ES&H Manual) and applicable Work Smart Standards, including the biosafety standards, such as the aforementioned BMBL and the NIH Guidelines for Research Involving Recombinant DNA Molecules: The proposed BSL-3 facility is a 1,100 ft{sup 2}, one-story permanent prefabricated facility, which will have three individual BSL-3 laboratory rooms (one of which is an animal biosafety level-3 [ABSL-3] laboratory to handle rodents), a mechanical room, clothes-change and shower rooms, and small storage space (Figure 3.1). The BSL-3 facility will be designed and operated accordance with guidelines for BSL-3 laboratories established by the CDC and the NIH. No radiological, high explosives, fissile, or propellant material will be used or stored in the proposed BSL-3 facility. The BSL-3 facility will be used to develop scientific tools to identify and understand the pathogens of medical, environmental, and forensic importance. Microorganisms that are to be handled in this

  20. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance.

  1. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Facilities Caused by the Passage of Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration... to pipeline facilities caused by the passage of Hurricanes. ADDRESSES: This document can be viewed on...-related issues that can result from the passage of hurricanes. That includes the potential for damage...

  2. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation and Control System Design Description SYS 93-2

    SciTech Connect

    WHITEHURST, R.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  3. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and...

  4. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms..., Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in that notice....

  5. "Defense-in-Depth" Laser Safety and the National Ignition Facility

    SciTech Connect

    King, J J

    2010-12-02

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential

  6. Medicare and Medicaid programs; fire safety requirements for certain health care facilities; amendment. Final rule.

    PubMed

    2006-09-22

    This final rule adopts the substance of the April 15, 2004 tentative interim amendment (TIA) 00-1 (101), Alcohol Based Hand Rub Solutions, an amendment to the 2000 edition of the Life Safety Code, published by the National Fire Protection Association (NFPA). This amendment allows certain health care facilities to place alcohol-based hand rub dispensers in egress corridors under specified conditions. This final rule also requires that nursing facilities at least install battery-operated single station smoke alarms in resident rooms and common areas if they are not fully sprinklered or they do not have system-based smoke detectors in those areas. Finally, this final rule confirms as final the provisions of the March 25, 2005 interim final rule with changes and responds to public comments on that rule.

  7. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  8. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The

  9. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  10. Style, content and format guide for writing safety analysis documents: Volume 2, Safety assessment reports for DOE non-nuclear facilities

    SciTech Connect

    Mahn, J.A.; Silver, R.C.; Balas, Y.; Gilmore, W.

    1995-07-01

    The purpose of Volume 2 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Assessment Reports (SAs) for DOE non-nuclear facilities at Sandia National Laboratories. The scope of Volume 2 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SAs for DOE non-nuclear facilities.

  11. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standards Revision 1

    SciTech Connect

    Beach, R; Brereton, S; Failor, R; Hildum, S; Spagnolo, S; Van Warmerdam, C

    2003-02-24

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A. This standard provides information on: Objectives; Applicability; Safety analysis requirements; Control selection and maintenance; Documentation requirements; Safety basis review, approval, and renewal; and Safety basis implementation.

  12. Designing for explosive safety'': The Explosive Components Facility at Sandia National Laboratories

    SciTech Connect

    Couch, W.A.

    1990-12-01

    The Explosive Components Facility (ECF) is to be a new major facility in the Sandia National Laboratories (SNL) Weapons Program. The ECF is a self-contained, secure site on SNL property and is surrounded by Kirtland Air Force Base which is located 6-1/2 miles east of downtown Albuquerque, New Mexico. The ECF will be dedicated to research, development, and testing of detonators, neutron generators, batteries, explosives, and other weapon components. It will have capabilities for conducting explosive test fires, gas gun testing, physical analyses, chemical analyses, electrical testing and ancillary explosive storage in magazines. The ECF complex is composed of a building covering an area of approximately 91,000 square feet, six exterior explosive service magazines and a remote test cell. Approximately 50% of the building space will be devoted to highly specialized laboratory and test areas, the other 50% of the building is considered nonhazardous. Critical to the laboratory and test areas are the blast-structural design consideration and operational considerations, particularly those concerning personnel access control, safety and environmental protection. This area will be decoupled from the rest of the building to the extent that routine tests will not be heard or felt in the administrative area of the building. While the ECF is designed in accordance with the DOE Explosives Safety Manual to mitigate any off-site blast effects, potential injuries or death to the ECF staff may result from an accidental detonation of explosive material within the facility. Therefore, reducing the risk of exposing operation personnel to hazardous and energetic material is paramount in the design of the ECF.

  13. Preclosure radiological safety evaluation: Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect

    Schelling, F.J.; Smith, J.D.

    1993-07-01

    A radiological safety evaluation is performed to determine the impacts of Exploratory Studies Facility (ESF) design changes on the preclosure public radiological safety for a potential nuclear waste repository at Yucca Mountain, Nevada. Although the ESF design has undergone significant modification, incorporation of the modified design requires only modest changes to the conceptual repository configuration. To the extent feasible, the results of earlier safety evaluations presented in SAND84-2641, SAND88-7061, and SAND89-7024, which were based on the original ESF configuration, are compared with the results for the modified configuration. This comparison provides an estimate of the range of analysis uncertainty. This preliminary analysis indicates that there are no Q-scenarios, which are defined as those scenarios with a net occurrence probability of greater than 10{sup {minus}6}/yr and produce a radiological dose at the 5-km controlled area boundary of greater than 0.5 rem. The analysis yielded estimates for an underground accident of a probability of 3.8 {times} 10{sup {minus}15}/yr and a dose of 1.5 rem. For a surface-initiated accident, a probability of 1.5 {times} 10{sup {minus}12}/yr and a dose of 0.6 rem was estimated.

  14. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    SciTech Connect

    Biurrun, E.; Haverkamp, B.; Lazaro, A.; Miralles, A.; Stefanova, I.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

  15. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP

  16. [Hydraulic simulation and safety assessment of secondary water supply system with anti-negative pressure facility].

    PubMed

    Wang, Huan-Huan; Liu, Shu-Ming; Jiang, Shuaiz; Meng, Fan-Lin; Bai, Lu

    2013-01-01

    In the last few decades, anti-negative pressure facility (ANPF) has been emerged as a revolutionary approach for sloving the pollution in the Second Water Supply System (SWSS) in China. This study analyzed implications of the safety in SWSS with ANPF, utilizing the water distribution network hydraulic model. A method of hydraulic simulation and security assessment was presented which was able to reflect the number and location of nodes that can be installed in ANPF. Benchmark results through two instance networks showed that 67% and 89% of nodes in each network did not fit the ANPFs for installation. The simple and pratical algorithm was recommended in the water distribution network design and planing in order to increase the security of SWSS.

  17. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  18. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  19. Characterizing W-2 SLSF experiment temperature oscillations using computer graphics. [Sodium Loop Safety Facility

    SciTech Connect

    Smith, D.E.

    1983-06-23

    The W-2 SLSF (Sodium Loop Safety Facility) experiment was an instrumented in-reactor test performed to characterize the failure response of full-length, preconditioned LMFBR prototypic fuel pins to slow transient overpower (TOP) conditions. Although the test results were expected to confirm analytical predictions of upper level failure and fuel expulsion, an axial midplane failure was experienced. Extensive post-test analyses were conducted to understand all of the unexpected behavior in the experiment. (1) The initial post-test effort focused on the temperature oscillations recorded by the 54 thermocouples used in the experiment. In order to synthesize the extensive data records and identify patterns of behavior in the data records, a computer-generated film was used to present the temperature data recorded during the experiment.

  20. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and mixed

  1. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    SciTech Connect

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  2. Research of Pedestrian Crossing Safety Facilities Based on the Video Detection

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Zhen; Xie, Quan-Long; Zang, Xiao-Dong; Tang, Guo-Jun

    Since that the pedestrian crossing facilities at present is not perfect, pedestrian crossing is in chaos and pedestrians from opposite direction conflict and congest with each other, which severely affects the pedestrian traffic efficiency, obstructs the vehicle and bringing about some potential security problems. To solve these problems, based on video identification, a pedestrian crossing guidance system was researched and designed. It uses the camera to monitor the pedestrians in real time and sums up the number of pedestrians through video detection program, and a group of pedestrian's induction lamp array is installed at the interval of crosswalk, which adjusts color display according to the proportion of pedestrians from both sides to guide pedestrians from both opposite directions processing separately. The emulation analysis result from cellular automaton shows that the system reduces the pedestrian crossing conflict, shortens the time of pedestrian crossing and improves the safety of pedestrians crossing.

  3. Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company

    SciTech Connect

    Not Available

    1989-04-01

    This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

  4. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  5. The safety improvement of Romanian radioactive waste facilities as an example for human and environmental protection

    SciTech Connect

    Barariu, Gheorghe

    2013-07-01

    According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompanied by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)

  6. Building a World-Class Safety Culture: The National Ignition Facility and the Control of Human and Organizational Error

    SciTech Connect

    Bennett, C T; Stalnaker, G

    2002-12-06

    Accidents in complex systems send us signals. They may be harbingers of a catastrophe. Some even argue that a ''normal'' consequence of operations in a complex organization may not only be the goods it produces, but also accidents and--inevitably--catastrophes. We would like to tell you the story of a large, complex organization, whose history questions the argument ''that accidents just happen.'' Starting from a less than enviable safety record, the National Ignition Facility (NIF) has accumulated over 2.5 million safe hours. The story of NIF is still unfolding. The facility is still being constructed and commissioned. But the steps NIF has taken in achieving its safety record provide a principled blueprint that may be of value to others. Describing that principled blueprint is the purpose of this paper. The first part of this paper is a case study of NIF and its effort to achieve a world-class safety record. This case study will include a description of (1) NIF's complex systems, (2) NIF's early safety history, (3) factors that may have initiated its safety culture change, and (4) the evolution of its safety blueprint. In the last part of the paper, we will compare NIF's safety culture to what safety industry experts, psychologists, and sociologists say about how to shape a culture and control organizational error.

  7. Application of FEPs analysis to identify research priorities relevant to the safety case for an Australian radioactive waste facility

    SciTech Connect

    Payne, T.E.; McGlinn, P.J.

    2007-07-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has established a project to undertake research relevant to the safety case for the proposed Australian radioactive waste facility. This facility will comprise a store for intermediate level radioactive waste, and either a store or a near-surface repository for low-level waste. In order to identify the research priorities for this project, a structured analysis of the features, events and processes (FEPs) relevant to the performance of the facility was undertaken. This analysis was based on the list of 137 FEPs developed by the IAEA project on 'Safety Assessment Methodologies for Near Surface Disposal Facilities' (ISAM). A number of key research issues were identified, and some factors which differ in significance for the store, compared to the repository concept, were highlighted. For example, FEPs related to long-term groundwater transport of radionuclides are considered to be of less significance for a store than a repository. On the other hand, structural damage from severe weather, accident or human interference is more likely for a store. The FEPs analysis has enabled the scientific research skills required for the inter-disciplinary project team to be specified. The outcomes of the research will eventually be utilised in developing the design, and assessing the performance, of the future facility. It is anticipated that a more detailed application of the FEPs methodology will be undertaken to develop the safety case for the proposed radioactive waste management facility. (authors)

  8. Construction safety program for the National Ignition Facility, July 30, 1999 (NIF-0001374-OC)

    SciTech Connect

    Benjamin, D W

    1999-07-30

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules-Code of Safe Practices shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S and H A-l that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Rules-Code of Safe Practices. (An interpreter must brief those employees who do not speak or read English fluently.) In addition, all contractors and subcontractors shall adopt a written General Rules-Code of Safe Practices that relates to their operations. The General Rules-Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory employee who shall have it readily available. Copies of the General Rules-Code of Safe Practices can also be included in employee safety pamphlets.

  9. Efficacy and safety of donepezil in patients with Alzheimer's disease in assisted living facilities.

    PubMed

    Rosenblatt, Adam; Gao, Jeff; Mackell, Joan; Richardson, Sharon

    2010-09-01

    The aim of this 12-week, open-label study was to determine the safety and efficacy of donepezil in participants with Alzheimer's disease (AD) residing in assisted living facilities (ALFs). Participants received 5 mg donepezil daily for 6 weeks followed by 10 mg daily for 6 weeks. Primary and secondary outcomes were change from baseline in Mini-Mental State Examination (MMSE) and Neuropsychiatric Inventory 8 (NPI-8) scores, respectively. Safety was assessed by adverse events (AEs) and laboratory tests. Of the 97 participants, 76 completed the study. Mean MMSE score (18.7 at baseline) improved 1.8 points (P < .0001) at study end. Total NPI-8 score improved 1.8 points (P = .043). The most frequent AEs were nausea and diarrhea. Donepezil improved cognition and behavior and was safe and well tolerated. The results suggest a need for proactive screening and diagnosis of AD and support the value of treatment and use of donepezil in participants residing in ALFs.

  10. [A questionnaire about radiation safety management of the draining-water system at nuclear medicine facilities].

    PubMed

    Shizukuishi, Kazuya; Watanabe, Hiroshi; Narita, Hiroto; Kanaya, Shinichi; Kobayashi, Kazumi; Yamamoto, Tetsuo; Tsukada, Masaru; Iwanaga, Tetsuo; Ikebuchi, Shuji; Kusama, Keiji; Tanaka, Mamoru; Namiki, Norio; Fuiimura, Youko; Horikoshi, Akiko; Inoue, Tomio; Kusakabe, Kiyoko

    2004-05-01

    We conducted a questionnaire survey about radiation-safety management condition in Japanese nuclear medicine facilities to make materials of proposition for more reasonable management of medical radioactive waste. We distributed a questionnaire to institutions equipped with Nuclear Medicine facilities. Of 1,125 institutions, 642 institutes (52.8%) returned effective answers. The questionnaire covered the following areas: 1) scale of an institution, 2) presence of enforcement of radiotherapy, 3) system of a tank, 4) size and number of each tank, 5) a form of draining-water system, 6) a displacement in a radioactive rays management area, 7) a measurement method of the concentration of medical radioactive waste in draining water system, 8) planned and used quantity of radioisotopes for medical examination and treatment, 9) an average displacement of hospital for one month. In most institutions, a ratio of dose limitation of radioisotope in draining-water system was less than 1.0, defined as an upper limitation in ordinance. In 499 hospitals without facilities of hospitalization for unsealed radioisotope therapy, 473 hospitals reported that sum of ratios of dose limits in a draining-water system was less than 1.0. It was calculated by used dose of radioisotope and monthly displacement from hospital, on the premise that all used radioisotope entered in the general draining-water system. When a drainage including radioactivity from a controlled area join with that from other area before it flows out of a institution, it may be diluted and its radioactive concentration should be less than its upper limitation defined in the rule. Especially, in all institutions with a monthly displacement of more than 25,000 m3, the sum of ratio of the concentration of each radionuclide to the concentration limit dose calculated by used dose of radioisotope, indicated less than 1.0.

  11. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    SciTech Connect

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.; Turski, R.B.; Fujita, E.K.

    1993-09-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutonium products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.

  12. Medicare and Medicaid programs; fire safety requirements for certain health care facilities; amendment. Interim final rule with comment period.

    PubMed

    2005-03-25

    This interim final rule with comment period adopts the substance of the April 15, 2004 temporary interim amendment (TIA) 00-1 (101), Alcohol Based Hand Rub Solutions, an amendment to the 2000 edition of the Life Safety Code, published by the National Fire Protection Association (NFPA). This amendment will allow certain health care facilities to place alcohol-based hand rub dispensers in egress corridors under specified conditions. This interim final rule with comment period also requires that nursing facilities install smoke detectors in resident rooms and public areas if they do not have a sprinkler system installed throughout the facility or a hard-wired smoke detection system in those areas.

  13. 75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Light of the Deepwater Horizon Oil Spill AGENCY: Pipeline and Hazardous Materials Safety Administration... response plan under 49 CFR part 194. In light of the Deepwater Horizon oil spill in the Gulf of Mexico... Pipeline Systems. Subject: Updating Facility Response Plans in Light of the Deepwater Horizon Oil...

  14. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone... United States Government from the PMRF, Barking Sands, Kauai, Hawaii. (d) The general...

  15. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone... United States Government from the PMRF, Barking Sands, Kauai, Hawaii. (d) The general...

  16. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone... United States Government from the PMRF, Barking Sands, Kauai, Hawaii. (d) The general...

  17. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone... United States Government from the PMRF, Barking Sands, Kauai, Hawaii. (d) The general...

  18. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety zone... United States Government from the PMRF, Barking Sands, Kauai, Hawaii. (d) The general...

  19. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  20. 76 FR 37799 - DOE Final Decision in Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Public and the Workers, to the Department of Energy. In accordance with section 315(b) of the Atomic... approving Documented Safety Analyses for nuclear facilities. The Recommendation identified six specific sub... provided clarifications regarding the purposes for each sub- recommendation and stated that there...

  1. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    SciTech Connect

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  2. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  3. Evolution of area access safety training required for gaining access to Space Shuttle launch and landing facilities

    NASA Technical Reports Server (NTRS)

    Willams, M. C.

    1985-01-01

    Assuring personnel and equipment are fully protected during the Space Shuttle launch and landing operations has been a primary concern of NASA and its associated contractors since the inception of the program. A key factor in support of this policy has been the area access safety training requirements for badging of employees assigned to work on Space Shuttle Launch and Facilities. This requirement was targeted for possible cost savings and the transition of physical on-site walkdowns to the use of television tapes has realized program cost savings while continuing to fully satisfy the area access safety training requirements.

  4. Transparent tools for uncertainty analysis in high level waste disposal facilities safety

    SciTech Connect

    Lemos, Francisco Luiz de; Helmuth, Karl-Heinz; Sullivan, Terry

    2007-07-01

    In this paper some results of a further development of a technical cooperation project, initiated in 2004, between the CDTN/CNEN, The Brazilian National Nuclear Energy Commission, and the STUK, The Finnish Radiation and Nuclear Safety Authority, are presented. The objective of this project is to study applications of fuzzy logic, and artificial intelligence methods, on uncertainty analysis of high level waste disposal facilities safety assessment. Uncertainty analysis is an essential part of the study of the complex interactions of the features, events and processes, which will affect the performance of the HLW disposal system over the thousands of years in the future. Very often the development of conceptual and computational models requires simplifications and selection of over conservative parameters that can lead to unrealistic results. These results can mask the existing uncertainties which, consequently, can be an obstacle to a better understanding of the natural processes. A correct evaluation of uncertainties and their rule on data interpretation is an important step for the improvement of the confidence in the calculations and public acceptance. This study focuses on dissolution (source), solubility and sorption (sink) as key processes for determination of release and migration of radionuclides. These factors are affected by a number of parameters that characterize the near and far fields such as pH; temperature; redox conditions; and other groundwater properties. On the other hand, these parameters are also consequence of other processes and conditions such as water rock interaction; pH and redox buffering. Fuzzy logic tools have been proved to be suited for dealing with interpretation of complex, and some times conflicting, data. For example, although some parameters, such as pH and carbonate, are treated as independent, they have influence in each other and on the solubility. It is used the technique of fuzzy cognitive mapping is used for analysis of

  5. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  6. State policies for the residency of offenders in long-term care facilities: balancing right to care with safety.

    PubMed

    Cohen, Donna; Hays, Teresa; Molinari, Victor

    2011-09-01

    The presence of residents in long-term care facilities who are registered sex offenders, other predatory offenders, parolees, or inmates transferred by correctional authorities is controversial and has raised concerns about how to care for this potentially dangerous population who may jeopardize the safety of others. Although the present offender population appears to be small, it is likely that demographic and economic pressures will increase its size. Since 2004, 14 states have passed legislation about placement of sex and other offenders in facilities and 5 have implemented non-law policies. Because legislation is relatively recent, it is not possible to evaluate best practices at this time. Research should be a priority to determine best policies and practices to balance the right to care with safety.

  7. State Regulatory Authority (SRA) Coordination of Safety, Security, and Safeguards of Nuclear Facilities: A Framework for Analysis

    SciTech Connect

    Mladineo, Stephen V.; Frazar, Sarah L.; Kurzrok, Andrew J.; Martikka, Elina; Hack, Tapani; Wiander, Timo

    2013-05-30

    This paper will explore the development of a framework for conducting an assessment of safety-security-safeguards integration within a State. The goal is to examine State regulatory structures to identify conflicts and gaps that hinder management of the three disciplines at nuclear facilities. Such an analysis could be performed by a State Regulatory Authority (SRA) to provide a self-assessment or as part of technical cooperation with either a newcomer State, or to a State with a fully developed SRA.

  8. 77 FR 45636 - Food Safety Modernization Act Domestic and Foreign Facility Reinspection, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Cosmetic Act (the FD&C Act), as amended by the FDA Food Safety Modernization Act (FSMA). These fees are... Safety and Applied Nutrition (CFSAN) and the Center for Veterinary Medicine (CVM). Thus, as the...

  9. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott F

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  10. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    SciTech Connect

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF/sub 6/ production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described.

  11. 76 FR 61350 - DOE Response to Defense Nuclear Facilities Safety Board's Request for Clarification on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ..., Safety Culture at the Waste Treatment and Immobilization Plant AGENCY: Department of Energy. ACTION... clarification on DOE's response to Recommendation 2011-1, Safety Culture at the Waste Treatment and..., response to your Recommendation 2011-1, Safety Culture at the Waste Treatment and Immobilization Plant...

  12. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  13. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    SciTech Connect

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A.

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  14. Effect of Community Engagement Interventions on Patient Safety and Risk Reduction Efforts in Primary Health Facilities: Evidence from Ghana

    PubMed Central

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Spieker, Nicole; Arhinful, Daniel Kojo; Ogink, Alice; van Ostenberg, Paul; Rinke de Wit, Tobias F.

    2015-01-01

    Background Patient safety and quality care remain major challenges to Ghana’s healthcare system. Like many health systems in Africa, this is largely because demand for healthcare is outstripping available human and material resource capacity of healthcare facilities and new investment is insufficient. In the light of these demand and supply constraints, systematic community engagement (SCE) in healthcare quality assessment can be a feasible and cost effective option to augment existing quality improvement interventions. SCE entails structured use of existing community groups to assess healthcare quality in health facilities. Identified quality gaps are discussed with healthcare providers, improvements identified and rewards provided if the quality gaps are closed. Purpose This paper evaluates whether or not SCE, through the assessment of health service quality, improves patient safety and risk reduction efforts by staff in healthcare facilities. Methods A randomized control trail was conducted in 64 primary healthcare facilities in the Greater Accra and Western regions of Ghana. Patient risk assessments were conducted in 32 randomly assigned intervention and control facilities. Multivariate multiple regression test was used to determine effect of the SCE interventions on staff efforts towards reducing patient risk. Spearman correlation test was used to ascertain associations between types of community groups engaged and risk assessment scores of healthcare facilities. Findings Clinic staff efforts towards increasing patient safety and reducing risk improved significantly in intervention facilities especially in the areas of leadership/accountability (Coef. = 10.4, p<0.05) and staff competencies (Coef. = 7.1, p<0.05). Improvement in service utilization and health resources could not be attributed to the interventions because these were outside the control of the study and might have been influenced by institutional or national level developments between the

  15. Health and safety plan for characterization sampling of ETR and MTR facilities

    SciTech Connect

    Baxter, D.E.

    1994-10-01

    This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site.

  16. NRC confirmatory AP600 safety system phase I testing in the ROSA/AP600 test facility

    SciTech Connect

    Rhee, G.S.; Kukita, Yutaka; Schultz, R.R.

    1996-03-01

    The NRC confirmatory phase I testing for the AP600 safety systems has been completed in the modified ROSA (Rig of Safety Assessment) test facility located at the Japan Atomic Energy Research Institute (JAERI) campus in Tokai, Japan. The test matrix included a variety of accident scenarios covering both design and beyond-design basis accidents. The test results indicate the AP600 safety systems as reflected in ROSA appear to perform as designed and there is no danger of core heatup for the accident scenarios investigated. In addition, no detrimental system interactions nor adverse effects of non-safety systems on the safety system functions were identified. However, three phenomena of interest have been identified for further examination to determine whether they are relevant to the AP600 plant. Those three phenomena are: (1) a potential for water hammer caused by rapid condensation which may occur following the actuation of the automatic depressurization system (ADS), (2) a large thermal gradient in the cold leg pipe where cooled water returns from the passive residual heat removal system and forms a thermally stratified layer, and (3) system-wide oscillations initiating following the ADS stage 4 actuation and persisting until the liquid in the pressurizer drains and steam generation in the core becomes insignificant.

  17. The Pain in Storage: Work Safety in a High-Density Shelving Facility

    ERIC Educational Resources Information Center

    Atkins, Stephanie A.

    2005-01-01

    An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…

  18. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and...

  19. 76 FR 11523 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ..., ID, 76 FR 9054 (Feb. 16, 2011). In accord with Atomic Energy Act (AEA) section 274l, 42 U.S.C. Sec... Rock Enrichment Facility), 74 FR 38,052, 38,055 (Jul. 30, 2009) (CLI-09- 15, 70 NRC 1, 10-11 (2009... of Enrichment Facility Licensing Proceeding), 75 FR 63,213 (Oct. 14, 2010), which was the subject...

  20. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    SciTech Connect

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L.; Upadhyaya, B.R.; Rowan, W.J.

    1994-10-01

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  1. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  2. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect

    Johnson, A.E.; Harbour, J.L.

    1993-06-01

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  3. Relationship between the Quality of Educational Facilities, School Climate, and School Safety of High School Tenth Graders in the United States

    ERIC Educational Resources Information Center

    Bell, Darnell Brushawn

    2011-01-01

    The purpose of the study was to understand the relationships among facility conditions, school climate, and school safety of high school tenth graders in the United States. Previous research on the quality of educational facilities influence on student achievement has varied. Recent research has suggested that the quality of educational facilities…

  4. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  5. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  6. Safety and feasibility for pediatric cardiac regeneration using epicardial delivery of autologous umbilical cord blood-derived mononuclear cells established in a porcine model system.

    PubMed

    Cantero Peral, Susana; Burkhart, Harold M; Oommen, Saji; Yamada, Satsuki; Nyberg, Scott L; Li, Xing; O'Leary, Patrick W; Terzic, Andre; Cannon, Bryan C; Nelson, Timothy J

    2015-02-01

    Congenital heart diseases (CHDs) requiring surgical palliation mandate new treatment strategies to optimize long-term outcomes. Despite the mounting evidence of cardiac regeneration, there are no long-term safety studies of autologous cell-based transplantation in the pediatric setting. We aimed to establish a porcine pipeline to evaluate the feasibility and long-term safety of autologous umbilical cord blood mononuclear cells (UCB-MNCs) transplanted into the right ventricle (RV) of juvenile porcine hearts. Piglets were born by caesarean section to enable UCB collection. Upon meeting release criteria, 12 animals were randomized in a double-blinded fashion prior to surgical delivery of test article (n=6) or placebo (n=6). The UCB-MNC (3×10(6) cells per kilogram) or control (dimethyl sulfoxide, 10%) products were injected intramyocardially into the RV under direct visualization. The cohorts were monitored for 3 months after product delivery with assessments of cardiac performance, rhythm, and serial cardiac biochemical markers, followed by terminal necropsy. No mortalities were associated with intramyocardial delivery of UCB-MNCs or placebo. Two animals from the placebo group developed local skin infection after surgery that responded to antibiotic treatment. Electrophysiological assessments revealed no arrhythmias in either group throughout the 3-month study. Two animals in the cell-therapy group had transient, subclinical dysrhythmia in the perioperative period, likely because of an exaggerated response to anesthesia. Overall, this study demonstrated that autologous UCB-MNCs can be safely collected and surgically delivered in a pediatric setting. The safety profile establishes the foundation for cell-based therapy directed at the RV of juvenile hearts and aims to accelerate cell-based therapies toward clinical trials for CHD.

  7. Factors Of Environmental Safety And Environmentally Efficient Technologies Transportation Facilities Gas Transportation Industry

    NASA Astrophysics Data System (ADS)

    Vasiliev, Bogdan U.

    2017-01-01

    The stable development of the European countries depends on a reliable and efficient operation of the gas transportation system (GTS). With high reliability of GTS it is necessary to ensure its industrial and environmental safety. In this article the major factors influencing on an industrial and ecological safety of GTS are analyzed, sources of GTS safety decreasing is revealed, measures for providing safety are proposed. The article shows that use of gas-turbine engines of gas-compressor units (GCU) results in the following phenomena: emissions of harmful substances in the atmosphere; pollution by toxic waste; harmful noise and vibration; thermal impact on environment; decrease in energy efficiency. It is shown that for the radical problem resolution of an industrial and ecological safety of gas-transmission system it is reasonable to use gas-compressor units driven by electric motors. Their advantages are shown. Perspective technologies of these units and experience of their use in Europe and the USA are given in this article.

  8. Construction safety program for the National Ignition Facility, July 30, 1999

    SciTech Connect

    Benjamin, D W

    1999-07-30

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and start-up of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF's management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner that prevents job-related disabling injuries and illnesses. Integrated Safety Management (ISM) is practiced in the execution of all activities associated with the NIF Project. The seven Principles of ISM are: (1) Line management is responsible for safety. (2) Clear roles and responsibilities are established and maintained. (3) Personnel possess competence commensurate with responsibilities. (4) Resource allocations are balanced, making ES and H a priority in project planning and execution. (5) Safety requirements are identified and implemented. (6) Hazard controls are tailored to the project work. (7) Operations are authorized before work begins.

  9. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  10. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    SciTech Connect

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

  11. Applying the OSHA Process Safety Management Standard to Manufacturing Explosives at U.S. Government Facilities

    DTIC Science & Technology

    2010-07-01

    employee participation. Employee participation should begin at the inception of PSM implementation. Such participation not only improves employee commitment to...should begin at the inception of PSM implementation. Such participation not only improves employee commitment to PSM, but a facility will end up

  12. 78 FR 70858 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... zones extend approximately between the navigable channel and the shoreline of the facility described... River Captain of the Port Zone enclosed by three lines and the shoreline: line one starting on the shoreline at 45-38'34'' N/122-46'11'' W then heading 150 yards offshore to 45- 38'37'' N/122-46'16'' W...

  13. 33 CFR 146.104 - Safety and Security notice of arrival for foreign floating facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... foreign floating facility at the time the NOA is reported; (2) The area designation, block number or lease... the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted NOA. Unless otherwise specified in this section, whenever the most recently submitted NOA information becomes inaccurate,...

  14. 33 CFR 146.104 - Safety and Security notice of arrival for foreign floating facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... foreign floating facility at the time the NOA is reported; (2) The area designation, block number or lease... the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted NOA. Unless otherwise specified in this section, whenever the most recently submitted NOA information becomes inaccurate,...

  15. 33 CFR 146.104 - Safety and Security notice of arrival for foreign floating facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... foreign floating facility at the time the NOA is reported; (2) The area designation, block number or lease... the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted NOA. Unless otherwise specified in this section, whenever the most recently submitted NOA information becomes inaccurate,...

  16. 33 CFR 146.104 - Safety and Security notice of arrival for foreign floating facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... foreign floating facility at the time the NOA is reported; (2) The area designation, block number or lease... the NVMC's Web site at http://www.nvmc.uscg.gov/. (c) Updates to a submitted NOA. Unless otherwise specified in this section, whenever the most recently submitted NOA information becomes inaccurate,...

  17. Radiation safety during remediation of the SevRAO facilities: 10 years of regulatory experience.

    PubMed

    Sneve, M K; Shandala, N; Kiselev, S; Simakov, A; Titov, A; Seregin, V; Kryuchkov, V; Shcheblanov, V; Bogdanova, L; Grachev, M; Smith, G M

    2015-09-01

    In compliance with the fundamentals of the government's policy in the field of nuclear and radiation safety approved by the President of the Russian Federation, Russia has developed a national program for decommissioning of its nuclear legacy. Under this program, the State Atomic Energy Corporation 'Rosatom' is carrying out remediation of a Site for Temporary Storage of spent nuclear fuel (SNF) and radioactive waste (RW) at Andreeva Bay located in Northwest Russia. The short term plan includes implementation of the most critical stage of remediation, which involves the recovery of SNF from what have historically been poorly maintained storage facilities. SNF and RW are stored in non-standard conditions in tanks designed in some cases for other purposes. It is planned to transport recovered SNF to PA 'Mayak' in the southern Urals. This article analyses the current state of the radiation safety supervision of workers and the public in terms of the regulatory preparedness to implement effective supervision of radiation safety during radiation-hazardous operations. It presents the results of long-term radiation monitoring, which serve as informative indicators of the effectiveness of the site remediation and describes the evolving radiation situation. The state of radiation protection and health care service support for emergency preparedness is characterized by the need to further study the issues of the regulator-operator interactions to prevent and mitigate consequences of a radiological accident at the facility. Having in mind the continuing intensification of practical management activities related to SNF and RW in the whole of northwest Russia, it is reasonable to coordinate the activities of the supervision bodies within a strategic master plan. Arrangements for this master plan are discussed, including a proposed programme of actions to enhance the regulatory supervision in order to support accelerated mitigation of threats related to the nuclear legacy in the

  18. San Jose Unified School District Health & Safety Guide for Facilities and Construction.

    ERIC Educational Resources Information Center

    2001

    This guide from the San Jose Unified School District describes recommended procedures to promote and maintain a healthy and safe school environment during maintenance, modernization, or construction. Guidelines are presented in the following areas: (1) construction safety; (2) communication; (3) material selection; (4) heating, ventilation, and…

  19. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.

  20. Nuclear criticality safety assessment of the Consolidated Edison Uranium-Solidification Program Facility

    SciTech Connect

    Thomas, J.T.

    1984-01-01

    A nuclear criticality assessment of the Consolidated Edison Uranium-Solidification Program facility confirms that all operations involved in the process may be conducted with an acceptable margin of subcriticality. Normal operation presents no concern since subcriticality is maintained by design. Several recommendations are presented to prevent, or mitigate the consequences of, any abnormal events that might occur in the various portions of the process. These measures would also serve to reduce to a minimum the administrative controls required to prevent criticality.

  1. 78 FR 47567 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... concern that the safety zones unnecessarily burden the International Longshore and Warehouse Union's... yards offshore to 45-38'37'' N/122- 46'16'' W then heading up river 380 yards to 45-38'30'' N/122-46'28...: line one starting on the shoreline at 45-37'52'' N/122-41'46'' W then heading 150 yards offshore to...

  2. Risk-based process safety assessment and control measures design for offshore process facilities.

    PubMed

    Khan, Faisal I; Sadiq, Rehan; Husain, Tahir

    2002-09-02

    Process operation is the most hazardous activity next to the transportation and drilling operation on an offshore oil and gas (OOG) platform. Past experiences of onshore and offshore oil and gas activities have revealed that a small mis-happening in the process operation might escalate to a catastrophe. This is of especial concern in the OOG platform due to the limited space and compact geometry of the process area, less ventilation, and difficult escape routes. On an OOG platform, each extra control measure, which is implemented, not only occupies space on the platform and increases congestion but also adds extra load to the platform. Eventualities in the OOG platform process operation can be avoided through incorporating the appropriate control measures at the early design stage. In this paper, the authors describe a methodology for risk-based process safety decision making for OOG activities. The methodology is applied to various offshore process units, that is, the compressor, separators, flash drum and driers of an OOG platform. Based on the risk potential, appropriate safety measures are designed for each unit. This paper also illustrates that implementation of the designed safety measures reduces the high Fatal accident rate (FAR) values to an acceptable level.

  3. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  4. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect

    Elder, H.K.

    1986-05-01

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  5. Linkage Between Post-Closure Safety Case Review and the Authorization Process for Radioactive Waste Disposal Facilities

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.; Bennett, D. G.

    2003-02-27

    The Environment Agency (the Agency) has responsibilities under the Radioactive Substances Act of 1993 for regulating the disposal and storage of radioactive wastes in England and Wales, including regulation of the disposal site for UK solid low-level waste (LLW) at Drigg in Cumbria, NW England. To help inform the next review of the Drigg disposal authorization, the Agency has required the operator, British Nuclear Fuels plc to submit a Post-Closure Safety Case which will assess the potential long-term impacts from the site. With the aim of using best practice to determine authorization conditions, the Agency contracted Galson Sciences, Ltd to undertake an international survey of authorization procedures for comparable facilities in other countries. This paper provides an overview of the findings from the international survey.

  6. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  7. How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

    PubMed Central

    Kim, Jeong-Won; Ju, Se-Young; Go, Eun-Sun

    2012-01-01

    In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices. PMID:22977692

  8. How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

    PubMed

    Chang, Hye-Ja; Kim, Jeong-Won; Ju, Se-Young; Go, Eun-Sun

    2012-08-01

    In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices.

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  10. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  11. Final safety analysis report for the Fifth Calcined Solids Storage Facility

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Radioactive aqueous wastes generated by the solvent extraction of uranium from expended fuels at ICPP will be calcined in the New Waste Calcining Facility (NWCF). The calcined solids are pneumatically transferred to stainless steel bins enclosed in concrete vaults for interim storage of up to 500 years. The Fifth Calcined Solids Storage Facility (CSSF) provides 1000 cu m of storage and consists of seven annular stainless steel bins inside a reinforced concrete vault set on bedrock. Storage of calcined solids is essentially a passive operation with very little opportunity for release of radionuclides and with no potential for criticality. There will be no potential for fire or explosion. Shielding has been designed to assure that the radiation levels at the vault exterior surfaces will be limited to less than 0.5 mRem/h. A sump in the vault floor will collect any in-leakage that may occur. Any water that collects in the sump will be sampled then removed with the sump jet. There will be an extremely small chance of release of radioactive particulates into the atmosphere as a result of a bin leak. The Design Basis Accident (DBA) postulates the spill of solids from an eroded fill line into the vault coupled with a failure of the vault cooling air radiation monitor.

  12. Calculational framework for safety analyses of non-reactor nuclear facilities

    SciTech Connect

    Coleman, J.R.

    1994-06-01

    A calculational framework for the consequences analysis of non-reactor nuclear facilities is presented. The analysis framework starts with accident scenarios which are developed through a traditional hazard analysis and continues with a probabilistic framework for the consequences analysis. The framework encourages the use of response continua derived from engineering judgment and traditional deterministic engineering analyses. The general approach consists of dividing the overall problem into a series of interrelated analysis cells and then devising Markov chain like probability transition matrices for each of the cells. An advantage of this division of the problem is that intermediate output (as probability state vectors) are generated at each calculational interface. The series of analyses when combined yield risk analysis output. The analysis approach is illustrated through application to two non-reactor nuclear analyses: the Ulysses Space Mission, and a hydrogen burn in the Hanford waste storage tanks.

  13. Environment, safety, health at DOE Facilities. Annual report, Fiscal Year 1980

    SciTech Connect

    Not Available

    1981-07-01

    The Department of Energy's occupational safety and property protection performance in fiscal year 1980 was excellent in all reported categories with loss rates generally less than one-third of comparable industry figures. The Department of Energy's fiscal year 1980 incidence rate per 200,000 work hours was 1.1 lost workday cases and 18.2 lost workdays compared to 1.1 lost workday cases and 17.2 lost workdays during fiscal year 1979. The recorded occupational illness rate, based on only 70 cases, was 0.05 cases per 200,000 work hours compared to 0.06 cases per 200,000 work hours for fiscal year 1979. Ten fatalities involving Federal or contractor employees occurred in fiscal year 1980 compared to nine for fiscal year 1979. Four of those in fiscal year 1980 resulted from two aircraft accidents. Total reported property loss during fiscal year 1980 was $7.1 million with $3.5 million attributable to earthquake damage sustained by the Lawrence Livermore and Sandia National Laboratories on January 24, 1980. A total of 131 million vehicle miles of official vehicular travel during fiscal year 1980 resulted in 768 accidents and $535,145 in property damages. The 104,986 monitored Department of Energy and Department of Energy contractor employees received a total dose of 9040 REM in calendar year 1979. Both the total dose and the 1748 employees receiving radiation exposures greater than 1 REM in 1979 represent a continuing downward trend from the calendar year 1978 total dose of 9380 REM and the 1826 employees who received radiation exposures greater than 1 REM. The fifty-nine appraisals conducted indicate that generally adequate plans have been developed and effective organizational structures have been established to carry out the Department of Energy's Environmental Protection, Safety, and Health Protection (ES and H) Program.

  14. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    SciTech Connect

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  15. 70 FR 35461 - Safety Evaluation Report for the Proposed National Enrichment Facility in Lea County, NM, NUREG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2005-06-20

    ... ISA Summary, radiation protection, nuclear criticality safety, chemical process safety, fire safety... Doc No: E5-3174] NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103] Safety Evaluation Report for the... States Nuclear Regulatory Commission. ACTION: Notice of availability of Safety Evaluation Report....

  16. Axial compression behavior and partial composite action of SC walls in safety-related nuclear facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Steel-plate reinforced concrete (SC) composite walls typically consist of thick concrete walls with two exterior steel faceplates. The concrete core is sandwiched between the two steel faceplates, and the faceplates are attached to the concrete core using shear connectors, for example, ASTM A108 steel headed shear studs. The shear connectors and the concrete infill enhance the stability of the steel faceplates, and the faceplates serve as permanent formwork for concrete placement. SC composite walls were first introduced in the 1980's in Japan for nuclear power plant (NPP) structures. They are used in the new generation of nuclear power plants (GIII+) and being considered for small modular reactors (SMR) due to their structural efficiency, economy, safety, and construction speed. Steel faceplates can potentially undergo local buckling at certain locations of NPP structures where compressive forces are significant. The steel faceplates are usually thin (0.25 to 1.50 inches in Customary units, or 6.5 to 38 mm in SI units) to maintain economical and constructional efficiency, the geometric imperfections and locked-in stresses induced during construction make them more vulnerable to local buckling. Accidental thermal loading may also reduce the compressive strength and exacerbate the local buckling potential of SC composite walls. This dissertation presents the results from experimental and numerical investigations of the compressive behavior of SC composite walls at ambient and elevated temperatures. The results are used to establish a slenderness limit to prevent local buckling before yielding of the steel faceplates and to develop a design approach for calculating the compressive strength of SC composite walls with non-slender and slender steel faceplates at ambient and elevated temperatures. Composite action in SC walls is achieved by the embedment of shear connectors into the concrete core. The strength and stiffness of shear connectors govern the level of

  17. Medicare and Medicaid programs; fire safety requirements for long term care facilities, automatic sprinkler systems. Final rule.

    PubMed

    2008-08-13

    This final rule requires all long term care facilities to be equipped with sprinkler systems by August 13, 2013. Additionally, this final rule requires affected facilities to maintain their automatic sprinkler systems once they are installed.

  18. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  19. Design Considerations for the Construction and Operation of Flour Milling Facilities. Part I: Planning, Structural, and Life Safety Considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flour milling facilities have been the cornerstone of agricultural processing for centuries. Like most agri-industrial production facilities, flour milling facilities have a number of unique design requirements. Design information, to date, has been limited. In an effort to summarize state of the ...

  20. School Siting Near Industrial Chemical Facilities: Findings from the U.S. Chemical Safety Board’s Investigation of the West Fertilizer Explosion

    PubMed Central

    Tinney, Veronica A.; Denton, Jerad M.; Sciallo-Tyler, Lucy; Paulson, Jerome A.

    2016-01-01

    Background: The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigated the 17 April 2013 explosion at the West Fertilizer Company (WFC) that resulted in 15 fatalities, more than 260 injuries, and damage to more than 150 buildings. Among these structures were four nearby school buildings cumulatively housing children in grades kindergarten–12, a nursing care facility, and an apartment complex. The incident occurred during the evening when school was not in session, which reduced the number of injuries. Objectives: The goal of this commentary is to illustrate the consequences of siting schools near facilities that store or use hazardous chemicals, and highlight the need for additional regulations to prevent future siting of schools near these facilities. Discussion: We summarize the findings of the CSB’s investigation related to the damaged school buildings and the lack of regulation surrounding the siting of schools near facilities that store hazardous chemicals. Conclusions: In light of the current lack of federal authority for oversight of land use near educational institutions, state and local governments should take a proactive role in promulgating state regulations that prohibit the siting of public receptors, such as buildings occupied by children, near facilities that store hazardous chemicals. Citation: Tinney VA, Denton JM, Sciallo-Tyler L, Paulson JA. 2016. School siting near industrial chemical facilities: findings from the U.S. Chemical Safety Board’s investigation of the West Fertilizer Explosion. Environ Health Perspect 124:1493–1496; http://dx.doi.org/10.1289/EHP132 PMID:27483496

  1. Additional guidance for including nuclear safety equivalency in the Canister Storage Building and Cold Vacuum Drying Facility final safety analysis report

    SciTech Connect

    Garvin, L.J.

    1997-05-20

    This document provides guidance for the production of safety analysis reports that must meet both DOE Order 5480.23 and STD 3009, and be in compliance with the DOE regulatory policy that imposes certain NRC requirements.

  2. Safety analysis report for the National Low-Temperature Neutron Irradiation Facility (NLTNIF) at the ORNL Bulk Shielding Reactor (BSR)

    SciTech Connect

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Richardson, S.A.

    1986-06-01

    This report provides information concerning: the experiment facility; experiment assembly; instrumentation and controls; materials; radioactivity; shielding; thermodynamics; estimated or measured reactivity effects; procedures; hazards; and quality assurance. (JDB)

  3. New Applications of Gamma Spectroscopy: Characterization Tools for D&D Process Development, Inventory Reduction Planning & Shipping, Safety Analysis & Facility Management During the Heavy Element Facility Risk Reduction Program

    SciTech Connect

    Mitchell, M; Anderson, B; Gray, L; Vellinger, R; West, M; Gaylord, R; Larson, J; Jones, G; Shingleton, J; Harris, L; Harward, N

    2006-01-23

    Novel applications of gamma ray spectroscopy for D&D process development, inventory reduction, safety analysis and facility management are discussed in this paper. These applications of gamma spectroscopy were developed and implemented during the Risk Reduction Program (RPP) to successfully downgrade the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL) from a Category II Nuclear Facility to a Radiological Facility. Non-destructive assay in general, gamma spectroscopy in particular, were found to be important tools in project management, work planning, and work control (''Expect the unexpected and confirm the expected''), minimizing worker dose, and resulted in significant safety improvements and operational efficiencies. Inventory reduction activities utilized gamma spectroscopy to identify and confirm isotopics of legacy inventory, ingrowth of daughter products and the presence of process impurities; quantify inventory; prioritize work activities for project management; and to supply information to satisfy shipper/receiver documentation requirements. D&D activities utilize in-situ gamma spectroscopy to identify and confirm isotopics of legacy contamination; quantify contamination levels and monitor the progress of decontamination efforts; and determine the point of diminishing returns in decontaminating enclosures and glove boxes containing high specific activity isotopes such as {sup 244}Cm and {sup 238}Pu. In-situ gamma spectroscopy provided quantitative comparisons of several decontamination techniques (e.g. TLC-free Stripcoat{trademark}, Radiac{trademark} wash, acid wash, scrubbing) and was used as a part of an iterative process to determine the appropriate level of decontamination and optimal cost to benefit ratio. Facility management followed a formal, rigorous process utilizing an independent, state certified, peer-reviewed gamma spectroscopy program, in conjunction with other characterization techniques, process knowledge, and

  4. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... and electrical ignition sources. Operability and safety basis related concerns on fire detection and... in conducting drills necessary to demonstrate the overall effectiveness. DOE is committed to the...

  5. 33 CFR 165.T13-240 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zones; Pacific Northwest... Limited Access Areas Thirteenth Coast Guard District § 165.T13-240 Safety Zones; Pacific Northwest Grain... passage in accordance with the Navigation Rules; and (ii) Permit commercial vessels anchored in...

  6. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  7. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  8. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-02-26

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

  9. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume 1, Chapters 6 through 10

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

    1999-09-01

    Operations at the Neutron Generator Facility include fabrication of war reserve neutron generators and prototype switch tubes. Neutron generators initiate nuclear fission in a nuclear weapon by providing a flux of neutrons at the proper time. The mission of the Neutron Generator Facility is to support U.S. nuclear deterrent capabilities by fabricating war reserves of the following: Neutron generators (external initiators for nuclear weapons); Neutron tubes; and Prototype switch tubes (expanded scenario only).

  10. Periodontal regeneration.

    PubMed

    Wang, Hom-Lay; Greenwell, Henry; Fiorellini, Joseph; Giannobile, William; Offenbacher, Steven; Salkin, Leslie; Townsend, Cheryl; Sheridan, Phillip; Genco, Robert J

    2005-09-01

    Untreated periodontal disease leads to tooth loss through destruction of the attachment apparatus and tooth-supporting structures. The goals of periodontal therapy include not only the arrest of periodontal disease progression,but also the regeneration of structures lost to disease where appropriate. Conventional surgical approaches (e.g., flap debridement) continue to offer time-tested and reliable methods to access root surfaces,reduce periodontal pockets, and attain improved periodontal form/architecture. However, these techniques offer only limited potential towards recovering tissues destroyed during earlier disease phases. Recently, surgical procedures aimed at greater and more predictable regeneration of periodontal tissues and functional attachment close to their original level have been developed, analyzed, and employed in clinical practice. This paper provides a review of the current understanding of the mechanisms, cells, and factors required for regeneration of the periodontium and of procedures used to restore periodontal tissues around natural teeth. Targeted audiences for this paper are periodontists and/or researchers with an interest in improving the predictability of regenerative procedures. This paper replaces the version published in 1993.

  11. Periodontal regeneration.

    PubMed

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  12. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    SciTech Connect

    Rabin, M.S.

    1992-08-01

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

  13. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  14. Generic safety documentation model

    SciTech Connect

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.

  15. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and any testing or modeling or other sources used in the design. (b) All interior walls separating...-hour fire barrier walls. A records storage facility may not store more than 250,000 cubic feet total of... barrier walls that meet the following specifications must be provided: (1) For existing records...

  16. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection engineer, the review requirement is met by furnishing a report under the seal of a licensed fire...

  17. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection engineer, the review requirement is met by furnishing a report under the seal of a licensed fire...

  18. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection engineer, the review requirement is met by furnishing a report under the seal of a licensed fire...

  19. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection engineer, the review requirement is met by furnishing a report under the seal of a licensed fire...

  20. Study of Occupational Safety and Health Audit on Facilities at Ungku Omar College, Universiti Kebangsaan Malaysia (UKM): A Preliminary Analysis

    ERIC Educational Resources Information Center

    Ariffin, Kadir; Ahmad, Shaharuddin; Aiyub, Kadaruddin; Awang, Azhan; Aziz, Azmi; Mohamad, Lukman Z.; Mamat, Samsu Adabi

    2010-01-01

    Occupational safety and health (OSH) in Universiti Kebangsaan Malaysia (UKM) is being considered as an important program to measure employee and student welfare and well-being. During academic session, apart from attending lectures, laboratory works, tutorial and library search, majority of students spend most of their time in residential…

  1. Regenerator seal

    DOEpatents

    Davis, Leonard C.; Pacala, Theodore; Sippel, George R.

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  2. Mechanisms of Cardiac Regeneration

    PubMed Central

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  3. Walkdown procedure: Seismic adequacy review of safety class 3 & 4 commodities in 2736-Z & ZB buildings at PFP facility

    SciTech Connect

    Ocoma, E.C.

    1995-03-29

    Seismic evaluation of existing safety class (SC) 3 and non-SC 4 commodities at the Plutonium Finishing Plant (PFP) is integrated into an area walkdown program. Field walkdowns of potential PFP seismic deficiencies associated with structural failure and falling will be performed using the DOE SQUG/EPRI methodology. Potential proximity interactions are also addressed. Objective of the walkdown is to qualify as much of the equipment as practical and to identify candidates for further evaluation.

  4. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  5. H. R. 4121: A Bill to establish an independent safety board to oversee Department of Energy nuclear facilities. Introduced in the House of Representatives, One Hundredth Congress, Second Session, March 9, 1988

    SciTech Connect

    Not Available

    1988-01-01

    The bill H.R. 4121 if enacted would establish an independent safety board to oversee the Department of Energy nuclear facilities. This board would be a part of the executive branch and would be known as the Federal Facilities Nuclear Safety Board. The structure, functions, and powers of the Board as well as the responsibilities of the Secretary of Energy in full cooperation with the board, the format of board recommendations, the method of board reporting, and authorization for funding for the board are presented in detail. The bill was referred to the Committees on Energy and Commerce and Armed Services.

  6. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  7. A macro-ergonomic work system analysis of the diagnostic testing process in an outpatient health care facility for process improvement and patient safety.

    PubMed

    Hallock, M L; Alper, S J; Karsh, B

    The diagnosis of illness is important for quality patient care and patient safety and is greatly aided by diagnostic testing. For diagnostic tests, such as pathology and radiology, to positively impact patient care, the tests must be processed and the physician and patient must be notified of the results in a timely fashion. There are many steps in the diagnostic testing process, from ordering to result dissemination, where the process can break down and therefore delay patient care and reduce patient safety. This study was carried out to examine the diagnostic testing process (i.e. from ordering to result notification) and used a macro-ergonomic work system analysis to uncover system design flaws that contributed to delayed physician and patient notification of results. The study was carried out in a large urban outpatient health-care facility made up of 30 outpatient clinics. Results indicated a number of variances that contributed to delays, the majority of which occurred across the boundaries of different systems and were related to poor or absent feedback structures. Recommendations for improvements are discussed.

  8. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection.

    PubMed

    Xie, Yunxuan; Qiu, Ning; Wang, Guangyi

    2017-02-16

    Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens.

  9. Safety and the Human Factor.

    ERIC Educational Resources Information Center

    Smith, Ann

    1982-01-01

    Discusses four elements of safety programs: (1) safety training; (2) safety inspections; (3) accident investigations; and (4) protective safety equipment. Also discusses safety considerations in water/wastewater treatment facilities focusing on falls, drowning hazards, trickling filters, confined space entry, collection/distribution system safety,…

  10. Cartilage Regeneration in Osteoarthritic Patients by a Composite of Allogeneic Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronate Hydrogel: Results From a Clinical Trial for Safety and Proof-of-Concept With 7 Years of Extended Follow-Up.

    PubMed

    Park, Yong-Beom; Ha, Chul-Won; Lee, Choong-Hee; Yoon, Young Cheol; Park, Yong-Geun

    2016-09-09

    : Few methods are available to regenerate articular cartilage defects in patients with osteoarthritis. We aimed to assess the safety and efficacy of articular cartilage regeneration by a novel medicinal product composed of allogeneic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Patients with Kellgren-Lawrence grade 3 osteoarthritis and International Cartilage Repair Society (ICRS) grade 4 cartilage defects were enrolled in this clinical trial. The stem cell-based medicinal product (a composite of culture-expanded allogeneic hUCB-MSCs and hyaluronic acid hydrogel [Cartistem]) was applied to the lesion site. Safety was assessed by the World Health Organization common toxicity criteria. The primary efficacy outcome was ICRS cartilage repair assessed by arthroscopy at 12 weeks. The secondary efficacy outcome was visual analog scale (VAS) score for pain on walking. During a 7-year extended follow-up, we evaluated safety, VAS score, International Knee Documentation Committee (IKDC) subjective score, magnetic resonance imaging (MRI) findings, and histological evaluations. Seven participants were enrolled. Maturing repair tissue was observed at the 12-week arthroscopic evaluation. The VAS and IKDC scores were improved at 24 weeks. The improved clinical outcomes were stable over 7 years of follow-up. The histological findings at 1 year showed hyaline-like cartilage. MRI at 3 years showed persistence of the regenerated cartilage. Only five mild to moderate treatment-emergent adverse events were observed. There were no cases of osteogenesis or tumorigenesis over 7 years. The application of this novel stem cell-based medicinal product appears to be safe and effective for the regeneration of durable articular cartilage in osteoarthritic knees.

  11. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  12. Missing Concepts in De Novo Pulp Regeneration

    PubMed Central

    Huang, G.T.-J.; Garcia-Godoy, F.

    2014-01-01

    Regenerative endodontics has gained much attention in the past decade because it offers an alternative approach in treating endodontically involved teeth. Instead of filling the canal space with artificial materials, it attempts to fill the canal with vital tissues. The objective of regeneration is to regain the tissue and restore its function to the original state. In terms of pulp regeneration, a clinical protocol that intends to reestablish pulp/dentin tissues in the canal space has been developed—termed revitalization or revascularization. Histologic studies from animal and human teeth receiving revitalization have shown that pulp regeneration is difficult to achieve. In tissue engineering, there are 2 approaches to regeneration tissues: cell based and cell free. The former involves transplanting exogenous cells into the host, and the latter does not. Revitalization belongs to the latter approach. A number of crucial concepts have not been well discussed, noted, or understood in the field of regenerative endodontics in terms of pulp/dentin regeneration: (1) critical size defect of dentin and pulp, (2) cell lineage commitment to odontoblasts, (3) regeneration vs. repair, and (4) hurdles of cell-based pulp regeneration for clinical applications. This review article elaborates on these missing concepts and analyzes them at their cellular and molecular levels, which will in part explain why the non-cell-based revitalization procedure is difficult to establish pulp/dentin regeneration. Although the cell-based approach has been proven to regenerate pulp/dentin, such an approach will face barriers—with the key hurdle being the shortage of the current good manufacturing practice facilities, discussed herein. PMID:24879576

  13. Regeneration of periodontal tissues: guided tissue regeneration.

    PubMed

    Villar, Cristina C; Cochran, David L

    2010-01-01

    The concept that only fibroblasts from the periodontal ligament or undifferentiated mesenchymal cells have the potential to re-create the original periodontal attachment has been long recognized. Based on this concept, guided tissue regeneration has been applied with variable success to regenerate periodontal defects. Quantitative analysis of clinical outcomes after guided tissue regeneration suggests that this therapy is a successful and predictable procedure to treat narrow intrabony defects and class II mandibular furcations, but offers limited benefits in the treatment of other types of periodontal defects.

  14. Explosives Safety Training

    DTIC Science & Technology

    2010-07-13

    Safety Awareness in NATO and Multi- National Operations *Explosives Safety “ Rosetta Stone ” *under development Distance Learning/ Instructor-Led Training...and Multi- National Operations *Explosives Safety “ Rosetta Stone ” Ammo-18 (Basics of Naval Explosives Hazard Control) Ammo-29 (Electrical Explosives...National Operations *Explosives Safety “ Rosetta Stone ” Ammo-47 (Lightning Protection for Air Force Facilities) *Explosives Safety Awareness in NATO and

  15. Safe design of healthcare facilities

    PubMed Central

    Reiling, J

    2006-01-01

    The physical environment has a significant impact on health and safety; however, hospitals have not been designed with the explicit goal of enhancing patient safety through facility design. In April 2002, St Joseph's Community Hospital of West Bend, a member of SynergyHealth, brought together leaders in healthcare and systems engineering to develop a set of safety‐driven facility design recommendations and principles that would guide the design of a new hospital facility focused on patient safety. By introducing safety‐driven innovations into the facility design process, environmental designers and healthcare leaders will be able to make significant contributions to patient safety. PMID:17142606

  16. Hand Safety

    MedlinePlus

    ... Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring ... Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring ...

  17. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  18. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  19. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Building 221-H, B-Line, Scrap Recovery Facility (Supplement 2A): Revision 1

    SciTech Connect

    1991-07-01

    The now HB-Line is located an top of the 221-H Building on the fifth and sixth levels and is designed to replace the aging existing HB-Line production facility. The new HB-Line consists of three separate facilities: the Scrap Recovery Facility, Neptunium Facility, and Plutonium Oxide Facility. The Scrap Recovery Facility is designed to routinely generate nitrate solutions of {sup 235}U{sup 239}Pu and Pu-238 fromscrap for purification by anion exchange or by solvent extraction in the canyon. The now facility incorporates improvements in: (1) engineered controls for nuclear criticality, (2) cabinet integrity and engineered barriers to contain contamination and minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

  20. [Resources of regeneration in planarians].

    PubMed

    Sheĭman, I M; Sedel'nikov, Z V; Kreshchenko, N D

    2006-01-01

    We studied the intensity of blastema growth in operated planarians at an early stage of regeneration as a function of the following factors: area of regenerate and its function and number of regeneration foci (volume of regeneration). There was no direct dependence between the intensity of regeneration and the size of regenerating fragment, as well as the volume of regeneration. Some specific features of the early stage of regeneration have been described, which suggest its determinate character. The behavior of neoblasts during formation of blastemas with different localization is discussed.

  1. Specialized progenitors and regeneration.

    PubMed

    Reddien, Peter W

    2013-03-01

    Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells.

  2. [Pharynx regeneration in planarians].

    PubMed

    Kreshchenko, N D

    2009-01-01

    The obtained and published data on pharynx regeneration in planarians have been reviewed. Planarians can regenerate from a small body fragment and restore all missing organs including the pharynx. The pharynx is a relatively autonomous organ with a differentiated structure and specialized function. Pharynx regeneration has specific features, and its studies are of considerable theoretical interest. Pharynx regeneration can also be a convenient model to study the molecular mechanisms of regeneration that remain undisclosed. In addition, this model can be used to test biologically active compounds in order to elucidate their effect on morphogenesis. This subject of investigation benefits by a simpler and more adequate analysis as well as a possibility to use large numbers of animals and small quantities of analyzed substances.

  3. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  4. Electrical safety guidelines

    SciTech Connect

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  5. Safety analysts training

    SciTech Connect

    Bolton, P.

    2000-10-01

    The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.

  6. DOE handbook electrical safety

    SciTech Connect

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  7. Notch Signaling Inhibits Axon Regeneration

    PubMed Central

    Bejjani, Rachid El; Hammarlund, Marc

    2013-01-01

    Summary Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian CNS do not regenerate, and even neurons in the PNS often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C. elegans neurons. Notch signaling suppresses regeneration by acting autonomously in the injured cell to prevent growth cone formation. The metalloprotease and gamma-secretase cleavage events that lead to Notch activation during development are also required for its activity in regeneration. Furthermore, blocking Notch activation immediately after injury improves regeneration. Our results define a novel, post-developmental role for the Notch pathway as a repressor of axon regeneration in vivo. PMID:22284182

  8. Range Safety Systems

    NASA Technical Reports Server (NTRS)

    Schrock, Kenneth W.; Humphries, Ricky H. (Technical Monitor)

    2002-01-01

    The high kinetic and potential energy of a launch vehicle mandates there be a mechanism to minimize possible damage to provide adequate safety for the launch facilities, range, and, most importantly, the general public. The Range Safety System, sometimes called the Flight Termination System or Flight Safety System, provides the required level of safety. The Range Safety System section of the Avionics chapter will attempt to describe how adequate safety is provided, the system's design, operation, and it's interface with the rest of the launch vehicle.

  9. Seismic Safety Guide

    SciTech Connect

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  10. RTF glovebox stripper regeneration development

    SciTech Connect

    Birchenall, A.K.

    1992-10-31

    Currently, the Replacement Tritium Facility (RTF) glovebox stripper system consists of a catalytic oxidation front end where trace tritium which may escape from the primary tritium process into the glovebox nitrogen system is oxidized to tritiated water. The tritiated water, along with normal water which may leak into the glovebox from the surrounding atmosphere, is then captured on a zeolite bed. Eventually, the zeolite bed becomes saturated with water and must be regenerated to remain effective as a stripper. This is accomplished by heating the zeolite and evolving the trapped water which is then passed over an elevated temperature uranium bed. A waste minimization program was instituted to address this issue. The program has two parallel paths. One path investigates replacing the entire glovebox stripper system with a system of getters to scavenge trace tritium. This report concentrates on the second path, retaining the catalytic oxidation front end but replacing the uranium bed water cracking with alternative technologies.

  11. TWRS safety program plan

    SciTech Connect

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their

  12. Chemical Safety Programs.

    ERIC Educational Resources Information Center

    Shaw, Richard

    2000-01-01

    Discusses the need to enhance understanding of chemical safety in educational facilities that includes adequate staff training and drilling requirements. The question of what is considered proper training is addressed. (GR)

  13. Safety study application guide. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly {open_quotes}low{close_quotes}) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, {open_quotes}Technical Safety Requirements,{close_quotes} and 5480.23, {open_quotes}Nuclear Safety Analysis Reports.{close_quotes} A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis.

  14. Nanomaterials and bone regeneration

    PubMed Central

    Gong, Tao; Xie, Jing; Liao, Jinfeng; Zhang, Tao; Lin, Shiyu; Lin, Yunfeng

    2015-01-01

    The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part. PMID:26558141

  15. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  16. Investigations and Recommendations on the Use of Existing Experiments in Criticality Safety Analysis of Nuclear Fuel Cycle Facilities for Weapons-Grade Plutonium

    SciTech Connect

    Rearden, B.T.

    2002-05-29

    report is given in Sect. 2. This report pertains to two of the five AOAs identified by the licensee [Duke, Cogema, Stone and Webster (DCS)] for the validation of criticality codes in the design of the Mixed-Oxide Fuel Fabrication Facility (MFFF). The five AOAs are as follows: (1) Pu-nitrate aqueous solutions (homogeneous systems), (2) Mixed-oxide (MOX) pellets, fuel rods and fuel assemblies (heterogeneous systems), (3) PuO{sub 2} powders, (4) MOX powders, and (5) Aqueous solutions of Pu compounds (Pu-oxalate solutions). This report addresses a S/U analysis pertaining to AOA 3, PuO{sub 2} powders, and AOA 4, MOX powders. AOA 3 and AOA 4 are the subject of this report since the other AOAs (solutions and heterogeneous systems) appear to be well represented in the documented benchmark experiments used in the criticality safety community. Prior to this work, DCS used traditional criticality validation techniques to identify numerous experimental benchmarks that are applicable to AOAs 3 and 4. Traditional techniques for selection of applicable benchmark experiments essentially consist of evaluating the area of applicability for important design parameters (e.g., Pu content or average neutron energy) and ensuring experiments have similar characteristics that bound or nearly bound the range of conditions requiring design analysis. DCS provided ORNL with compositions and dimensions for critical systems used to establish preliminary mass limits for facility powder and fuel pellet handling areas corresponding to AOAs 3 and 4. ORNL has reviewed existing critical experiments to identify those, which, in addition to those provided by DCS, may be applicable to the criticality code validation for AOAs 3 and 4. A S/U analysis was then performed to calculate the integral parameters used to determine the similarity of each critical experiment to each design system provided by DCS. This report contains a review of the S/U theory, a description of the design systems, a brief description of

  17. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  18. Safety of Department of Energy accelerators

    SciTech Connect

    Evans, A.E.

    1994-12-31

    In keeping with the enhancement of environmental, safety, and health programs which has occurred in DOE over the past six years, a Safety Order, DOE Order 5480.25, {open_quotes}Safety of Accelertor Facilities,{close_quotes} was issued on November 3, 1992. This order applies to all DOE-owned accelerators capable of creating a radiation area except for commercial radiation-generating equipment. It is the intent of the Order to provide a level of safety comparable to that required of reactors and nuclear processing facilities, without imposing the rigidity of the DOE Nuclear Facility Safety Orders. Key requirements for each facility are: (1) a hazard classification approved by DOE; (2) a design-stage safety review of new large facilities; (3) readiness reviews before commissioning and before routine operation; (4) a safety envelope specifying limits for operation; (5) a Safety Assessment Document; and (6) a documented training program. This Order does not supersede other DOE safety requirements.

  19. LAB STUDY ON REGENERATION OF SPENT DOWEX 21K 16-20 MESH ION EXCHANGE RESIN

    SciTech Connect

    DUNCAN, J.B.

    2007-01-24

    Currently the effort to remove chromate from groundwater in the 100K and 100H Areas uses DOWEX 21K 16-20. This report addresses the procedure and results of a laboratory study for regeneration of the spent resin by sodium hydroxide, sulfuric acid, or sodium sulfate to determine if onsite regeneration by the Effluent Treatment Facility is a feasible option.

  20. School Safety and Security.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This document offers additional guidelines for school facilities in California in the areas of safety and security, lighting, and cleanliness. It also offers a description of technology resources available on the World Wide Web. On the topic of safety and security, the document offers guidelines in the areas of entrances, doors, and controlled…

  1. Design and Testing of BACRA, a Web-Based Tool for Middle Managers at Health Care Facilities to Lead the Search for Solutions to Patient Safety Incidents

    PubMed Central

    Mira, José Joaquín; Vicente, Maria Asuncion; Fernandez, Cesar; Guilabert, Mercedes; Ferrús, Lena; Zavala, Elena; Silvestre, Carmen; Pérez-Pérez, Pastora

    2016-01-01

    Background Lack of time, lack of familiarity with root cause analysis, or suspicion that the reporting may result in negative consequences hinder involvement in the analysis of safety incidents and the search for preventive actions that can improve patient safety. Objective The aim was develop a tool that enables hospitals and primary care professionals to immediately analyze the causes of incidents and to propose and implement measures intended to prevent their recurrence. Methods The design of the Web-based tool (BACRA) considered research on the barriers for reporting, review of incident analysis tools, and the experience of eight managers from the field of patient safety. BACRA’s design was improved in successive versions (BACRA v1.1 and BACRA v1.2) based on feedback from 86 middle managers. BACRA v1.1 was used by 13 frontline professionals to analyze incidents of safety; 59 professionals used BACRA v1.2 and assessed the respective usefulness and ease of use of both versions. Results BACRA contains seven tabs that guide the user through the process of analyzing a safety incident and proposing preventive actions for similar future incidents. BACRA does not identify the person completing each analysis since the password introduced to hide said analysis only is linked to the information concerning the incident and not to any personal data. The tool was used by 72 professionals from hospitals and primary care centers. BACRA v1.2 was assessed more favorably than BACRA v1.1, both in terms of its usefulness (z=2.2, P=.03) and its ease of use (z=3.0, P=.003). Conclusions BACRA helps to analyze incidents of safety and to propose preventive actions. BACRA guarantees anonymity of the analysis and reduces the reluctance of professionals to carry out this task. BACRA is useful and easy to use. PMID:27678308

  2. Facility effluent monitoring plan for the fast flux test facility

    SciTech Connect

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  3. HSE's safety assessment principles for criticality safety.

    PubMed

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-06-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf).

  4. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety...

  5. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  6. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  7. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  8. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  9. 41 CFR 102-80.60 - Are Federal agencies responsible for performing facility assessments?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must evaluate facilities to comply with GSA's safety and environmental program and applicable Federal, State and local environmental laws and regulations. Federal agencies should conduct these evaluations in... PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Facility...

  10. Bioelectricity and epimorphic regeneration.

    PubMed

    Stewart, Scott; Rojas-Muñoz, Agustin; Izpisúa Belmonte, Juan Carlos

    2007-11-01

    All cells have electric potentials across their membranes, but is there really compelling evidence to think that such potentials are used as instructional cues in developmental biology? Numerous reports indicate that, in fact, steady, weak bioelectric fields are observed throughout biology and function during diverse biological processes, including development. Bioelectric fields, generated upon amputation, are also likely to play a key role during vertebrate regeneration by providing the instructive cues needed to direct migrating cells to form a wound epithelium, a structure unique to regenerating animals. However, mechanistic insight is still sorely lacking in the field. What are the genes required for bioelectric-dependent cell migration during regeneration? The power of genetics combined with the use of zebrafish offers the best opportunity for unbiased identification of the molecular players in bioelectricity.

  11. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  12. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  13. Neighbourhood walking and regeneration in deprived communities.

    PubMed

    Mason, Phil; Kearns, Ade; Bond, Lyndal

    2011-05-01

    More frequent neighbourhood walking is a realistic goal for improving physical activity in deprived areas. We address regeneration activity by examining associations of residents' circumstances and perceptions of their local environment with frequent (5+ days/week) local walking (NW5) in 32 deprived neighbourhoods (Glasgow, UK), based on interview responses from a random stratified cross-sectional sample of 5657 residents. Associations were investigated by bivariate and multilevel, multivariate logistic regression. People living in low-rise flats or houses reported greater NW5 than those in multi-storey flats. Physical and social aspects of the neighbourhood were more strongly related to walking than perceptions of housing and neighbourhood, especially the neighbourhood's external reputation, and feelings of safety and belonging. Amenity use, especially of parks, play areas and general shops (mainly in the neighbourhood), was associated with more walking. Multidimensional regeneration of the physical, service, social and psychosocial environments of deprived communities therefore seems an appropriate strategy to boost walking.

  14. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  15. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  16. An Investigation of the Relative Safety of Alternative Navigational System Designs for the New Sunshine Skyway Bridge: A CAORF (Computer Aided Operations Research Facility) Simulation.

    DTIC Science & Technology

    1985-09-01

    characteristics. Pilots were required to provided no added margin of safety beyond the bridge - use greater crab angles during thunderstorm scenarios...electronic navigation aids may would combine dolphins, complete island and horseshoe . "provide significantly improved navigational data" to island stuctures...The next two bridge piers on should not be so close to bridges that the success of navigat- either side would be protected by a horseshoe shaped ing

  17. 33 CFR 154.735 - Safety requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety requirements. 154.735...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.735 Safety requirements. Each operator of a facility to which this part applies shall ensure that the following...

  18. Regenerator seal design

    DOEpatents

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  19. Regenerated Fe is tasty!

    NASA Astrophysics Data System (ADS)

    Nuester, J.; Twining, B. S.

    2012-12-01

    Bioavailability of nutrients is an essential factor controlling primary productivity in the ocean. In addition to macronutrients such as nitrogen and phosphorous, availability of the trace element iron unequivocally affects growth rates and community structure of phytoplankton and thereby primary productivity in many ocean regions. External sources of iron such as Aeolian dust, upwelling of Fe-rich waters, and hydrothermal are reduced in high-nutrient low-chlorophyll regions, and most Fe used by phytoplankton has been regenerated by zooplankton. While zooplankton regeneration of Fe was first shown two decades ago, major factors controlling this process such as chemical composition of prey and grazer taxonomy are not well constrained. As pH varies significantly in digestive systems between protozoa and mesozooplankton, we hypothesize that the extent and the bioavailability of regenerated Fe is a function of the digestive physiology. Furthermore, major element components such as silica for diatoms and calcium carbonate for cocolithophores may be able to buffer the pH of digestive systems of different grazer taxa. Such effects may further influence the magnitude and bioavailability of regenerated Fe. In order to constrain the effect of grazer taxonomy and chemical composition of prey on Fe bioavailability, 55Fe-labeled phytoplankton were fed to different grazers and unlabeled phytoplankton were subsequently inoculated to the filtrate of the grazing experiment in the regrowth phase of the experiment, and the uptake of 55Fe into the phytoplankton biomass was monitored over time. A parallel uptake experiment using inorganic 55Fe was used to compare the bioavailability of regenerated and inorganic Fe to the same phytoplankton species. Furthermore, some samples of the inorganic and the regenerated uptake experiments were treated with an oxalate rinse to remove any adsorbed Fe. This allowed us to estimate the adsorption of 55Fe from either source to the cell walls of

  20. Administering the Preschool Facility.

    ERIC Educational Resources Information Center

    Coonrod, Debbie

    Securing the right environment for a preschool program requires planning and research. Administrators or searching parties are advised to study zoning codes to become acquainted with state sanitation and safety regulations and laws, to involve teachers in cooperative planning, to design facilities which discourage vandalism, facilitate…

  1. Aid for Facilities

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2009-01-01

    Even before the state fire marshal ordered the Somersworth (N.H.) School District in 2007 to abandon the top two floors of Hilltop Elementary School because of safety concerns, folks in the city of 12,000 had been debating whether the aging facility should be replaced--and how to pay for it. Finally, in February 2009, the city council approved…

  2. Limb regeneration: a new development?

    PubMed

    Nacu, Eugen; Tanaka, Elly M

    2011-01-01

    Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.

  3. An outbreak of Trixacarus caviae infestation in guinea pigs at an animal petting facility and an evaluation of the safety and suitable dose of selamectin treatment.

    PubMed

    Honda, M; Namikawa, K; Hirata, H; Neo, S; Maruo, T; Lynch, J; Chida, A; Morita, T

    2011-08-01

    In June 2009, 27 guinea pigs kept at an animal petting facility at a zoo in Kanagawa Prefecture, Japan, were observed to scratch intensely, weaken, and develop lesions. Three sarcoptiform mites were found in skin scrapings taken from affected areas of 2 guinea pigs, and they were identified as Trixacarus caviae by morphological examination. This result confirmed the presence of T. caviae in Japan. For treatment, doses of 13.6-18.75 mg/head of selamectin were administered in a topical preparation applied to a single spot on the skin on the back of the neck, and no side effects were observed. In April 2010, a second outbreak of mange occurred at the zoo, and, following investigation, 2 mite eggs were observed. It was, therefore, thought probable that the mites had survived during the winter within nonclinical carriers. Accordingly, doses of 5.0-7.5 mg/head of selamectin were applied on days 0 and 28, after which clinical symptoms disappeared and general condition improved. This dose of selamectin was thus shown to be a suitable and economical treatment for guinea pigs infested with the mites. Because the mite is not always easily observed in infested guinea pigs and the potential for human infestation exists, clinicians should not hesitate to treat when the clinical presentation suggests infestation, particularly in a setting such as an animal petting facility, where large numbers of children and adults have direct contact with the animals.

  4. Development of an ACP facility

    SciTech Connect

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  5. Accreditation for Indoor Climbing Facilities.

    ERIC Educational Resources Information Center

    Mayfield, Peter

    To ensure that the rapidly growing climbing gym industry maintains the excellent safety record established so far, the Climbing Gym Association (CGA) has developed the Peer Review and Accreditation Program, a process of review between qualified and experienced CGA reviewers and a climbing facility operator to assess the facility's risk management…

  6. Facility effluent monitoring plan for the tank farm facility

    SciTech Connect

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  7. MHD seed recovery/regeneration

    NASA Astrophysics Data System (ADS)

    Task 1 calls for the design, procurement, construction, and installation of the Seed Regeneration Proof-of-Concept Facility (SRPF) that will produce tonnage quantities of recyclable potassium formate seed at a design rate of 250 lb/hr for testing in the channel at the CDIF while collecting data that will be used to upgrade the design of a 300 MW(sub t) system. Approximately 12 tons of KCOOH (dry basis) as 70-75 wt percent solution were produced. The front end of the plant (potassium sulfate reaction and solids separation/washing units) was operated for five days in March. Most of the operations were conducted at a spent seed feed rate of 250 pounds/hour. A total of 8,500 gallons of dilute KCOOH solution was generated containing approximately 2.6 tons of potassium formate (dry basis). The average KCOOH content of this solution was 7 wt percent. The design KCOOH solution concentration for the front end of the plant is 8.5 wt percent. The evaporation unit was operated for a total of six days during March. Approximately 2.5 tons of potassium formate (dry basis) were processed through the evaporator and concentrated to greater then 7 wt percent.

  8. Incorporating safety concerns into design and construction.

    PubMed

    Gardner, T W

    1990-08-01

    The nursing facility industry has provided a high level of fire safety according to statistics from the NFPA. To keep and improve this record, fire safety in the design and construction of nursing facilities must be a priority. Since the ground work of fire safety is laid in the design phase and finalized in the construction phase, such a priority will help lower initial and operating costs, improve the function of the facility, and provide a fire safe environment for residents and staff.

  9. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  10. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  11. [Periodontitis and tissue regeneration].

    PubMed

    Yamazaki, Kazuhisa

    2005-08-01

    Chronic periodontitis is a destructive disease that affects the supporting structures of the teeth including periodontal ligament, cementum, and alveolar bone. If left untreated, patients may lose multiple teeth and extensive prosthetic treatment will be required. In order to re-engineer lost tooth-supporting tissues, various therapeutic modalities have been used clinically. Periodontal regeneration procedures including guided tissue regeneration have achieved substantial effects. However, there are several issues to be solved. They are highly technique-sensitive, applicable to limited cases which are susceptible to treatment, and supposed to have relatively low predictability. Therefore, it is necessary to develop new approaches to improve the predictability and effectiveness of regenerative therapies for periodontal tissues. Recently, the concept of tissue engineering has been introduced to restore lost tissues more effectively where the biological process of healing is mimicked. To achieve this, integration of three key elements is required: progenitor/stem cells, growth factors and the extracellular matrix scaffold. Although it has been shown that implantation of bone marrow-derived mesenchymal stem cells into periodontal osseous defects induced regeneration of cementum, periodontal ligament and alveolar bone in dogs, further extensive preclinical studies are required. On the other hand, application of growth factors, particularly basic fibroblast growth factor in the treatment of human periodontitis, is promising and is now in clinical trial. Furthermore, the rate of release of growth factor from the scaffold also can profoundly affect the results of tissue engineering strategies and the development of new materials is expected. In addition, as tissue regenerative potential is negatively regulated by aging, the effects of aging have to be clarified to gain complete regeneration.

  12. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information that may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.

  13. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  14. 33 CFR 154.735 - Safety requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.735 Safety... requirements are met at the facility: (a) Access to the facility by firefighting personnel, fire trucks, or..., or other similar structure. (d) A sufficient number of fire extinguishers approved by an...

  15. 33 CFR 154.735 - Safety requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.735 Safety... requirements are met at the facility: (a) Access to the facility by firefighting personnel, fire trucks, or..., or other similar structure. (d) A sufficient number of fire extinguishers approved by an...

  16. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear safety. 923.7001... Efficiency, Renewable Energy Technologies, and Occupational Safety Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its own statutory authority derived from...

  17. Safety in Academic Chemistry Laboratories. Fourth Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This booklet provides guidelines for safety in the chemical laboratory. Part I, "Guides for Instructors and Administrators," includes safety rules, safety practices and facilities, preparation for emergencies, safety committees, accident reporting, fire insurance, and listings of some hazardous chemicals. Part II, "Student Guide to…

  18. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  19. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY...-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change... bathing facilities, change rooms, and sanitary flush toilet facilities. (a) All bathing facilities,...

  20. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY...-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change... bathing facilities, change rooms, and sanitary flush toilet facilities. (a) All bathing facilities,...

  1. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY...-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change... bathing facilities, change rooms, and sanitary flush toilet facilities. (a) All bathing facilities,...

  2. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY...-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change... bathing facilities, change rooms, and sanitary flush toilet facilities. (a) All bathing facilities,...

  3. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY...-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change... bathing facilities, change rooms, and sanitary flush toilet facilities. (a) All bathing facilities,...

  4. Shared safety management

    SciTech Connect

    Hanna, L.; Stumpf, C.

    1995-11-01

    In the past 18 months, American Ref-Fuel, a Houston-based waste-to-energy company, has had three of its plants designated as Star facilities under the Voluntary Protection Program (VPP) administered by OSHA. The VPP Star participants are a select group of facilities that have designed and implemented exemplary health and safety programs. They must show performance consistent with the VPP goal of aligning labor, management and OSHA into a cooperative relationship. Having a safe work environment has always been one of the core culture issues at American Ref-Fuel. They have learned the best way to maintain excellence is to listen to how each employee is affected in daily activities by safety issues and take actions to constantly reinforce the message that safety concerns never fall on deaf ears. The VPP process encourages identification of potential safety problems before they occur. The program promotes ongoing integration of safety into all facility activities, with the overall objective of eliminating employee injuries and improving plant performance; two important considerations for plant owners and facility managers searching for new tools to improve their overall bottom line.

  5. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  6. Criticality safety training

    SciTech Connect

    Woodruff, S.K.

    1997-06-01

    Criticality safety training is an important element of the Plutonium Facility safety program at Los Alamos National Laboratory. Training consists of student self-study handbooks and hands-on performance-based training in a mock-up laboratory containing gloveboxes, trolley conveyor system, and self-monitoring instruments. A 10-minute video tape and lecture was presented to describe how training in this area is conducted.

  7. Brain regeneration in anuran amphibians.

    PubMed

    Endo, Tetsuya; Yoshino, Jun; Kado, Koji; Tochinai, Shin

    2007-02-01

    Urodele amphibians are highly regenerative animals. After partial removal of the brain in urodeles, ependymal cells around the wound surface proliferate, differentiate into neurons and glias and finally regenerate the lost tissue. In contrast to urodeles, this type of brain regeneration is restricted only to the larval stages in anuran amphibians (frogs). In adult frogs, whereas ependymal cells proliferate in response to brain injury, they cannot migrate and close the wound surface, resulting in the failure of regeneration. Therefore frogs, in particular Xenopus, provide us with at least two modes to study brain regeneration. One is to study normal regeneration by using regenerative larvae. In this type of study, the requirement of reconnection between a regenerating brain and sensory neurons was demonstrated. Functional restoration of a regenerated telencephalon was also easily evaluated because Xenopus shows simple responses to the stimulus of a food odor. The other mode is to compare regenerative larvae and non-regenerative adults. By using this mode, it is suggested that there are regeneration-competent cells even in the non-regenerative adult brain, and that immobility of those cells might cause the failure of regeneration. Here we review studies that have led to these conclusions.

  8. Regeneration therapy for diabetes mellitus.

    PubMed

    Yamaoka, Takashi

    2003-06-01

    Regeneration therapy can be classified into three categories. The first category, in vitro regeneration therapy, makes use of transplanted cultured cells, including embryonic stem (ES) cells, pancreatic precursor cells and beta-cell lines, in conjunction with immunosuppressive therapy or immunoisolation for the treatment of patients with Type 1 diabetes. In the second type of regeneration therapy, ex vivo regeneration therapy, a patient's own cells, such as bone marrow stem cells, are transiently removed and induced to differentiate into beta-cells in vitro. However, at the present time, insulin-producing cells cannot be generated from bone marrow stem cells. In vivo regeneration therapy, the third type of regeneration therapy, enables impaired tissue to regenerate from a patient's own cells in vivo. beta-Cell neogenesis from non-beta-cells, and beta-cell proliferation in vivo have been considered in particular as regeneration therapies for patients with Type 2 diabetes. Regeneration therapy for pancreatic beta-cells can be combined with various other therapeutic strategies, including islet transplantation, cell-based therapy, gene therapy and drug therapy, to promote beta-cell proliferation and neogenesis; it is hoped that these strategies will, in the future, provide a cure for diabetes.

  9. Understanding Urban Regeneration in Turkey

    NASA Astrophysics Data System (ADS)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  10. Safety, efficacy and acceptability of outpatient mifepristone-misoprostol medical abortion through 70 days since last menstrual period in public sector facilities in Mexico City.

    PubMed

    Sanhueza Smith, Patricio; Peña, Melanie; Dzuba, Ilana G; García Martinez, María Laura; Aranguré Peraza, Ana Gabriela; Bousiéguez, Manuel; Shochet, Tara; Winikoff, Beverly

    2015-02-01

    Extensive evidence exists regarding the efficacy and acceptability of medical abortion through 63 days since last menstrual period (LMP). In Mexico City's Secretariat of Health (SSDF) outpatient facilities, mifepristone-misoprostol medical abortion is the first-line approach for abortion care in this pregnancy range. Recent research demonstrates continued high rates of complete abortion through 70 days LMP. To expand access to legal abortion services in Mexico City (where abortion is legal through 12 weeks LMP), this study sought to assess the efficacy and acceptability of the standard outpatient approach through 70 days in two SSDF points of service. One thousand and one women seeking pregnancy termination were enrolled and given 200 mg mifepristone followed by 800 μg misoprostol 24-48 hours later. Women were asked to return to the clinic one week later for evaluation. The great majority of women (93.3%; 95% CI: 91.6-94.8) had complete abortions. Women with pregnancies ≤ 8 weeks LMP had significantly higher success rates than women in the 9th or 10th weeks (94.9% vs. 90.5%; p = 0.01). The difference in success rates between the 9th and 10th weeks was not significant (90.0% vs. 91.2%; p = 0.71). The majority of women found the side effects (82.9%) and the use of misoprostol (84.4%) to be very acceptable or acceptable. This study provides additional evidence supporting an extended outpatient medical abortion regimen through 10 weeks LMP.

  11. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  12. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  13. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  14. State Requirements for Educational Facilities, 1997.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document updates Florida's deregulation of construction of educational facilities guidelines, while keeping as the primary focus the safety of the students in pre-K through community college facilities. Organized by the sequence of steps required in the facilities procurement process, it covers general definitions, property…

  15. 7 CFR 210.13 - Facilities management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Facilities management. 210.13 Section 210.13... Participation § 210.13 Facilities management. Link to an amendment published at 74 FR 66216, Dec. 15, 2009. (a..., the added text is set forth as follows: § 210.13 Facilities management. (c) Food safety program....

  16. Hydrogel based injectable scaffolds for cardiac tissue regeneration.

    PubMed

    Radhakrishnan, Janani; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2014-01-01

    Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured. Various strategies involving acellular scaffolds, stem cells, and combinations of stem cells, scaffolds and growth factors have been investigated for effective cardiac tissue regeneration. Recently, injectable hydrogels have emerged as a potential candidate among various categories of biomaterials for cardiac tissue regeneration due to improved patient compliance and facile administration via minimal invasive mode that treats complex infarction. This review discusses in detail on the advances made in the field of injectable materials for cardiac tissue engineering highlighting their merits over their preformed counterparts.

  17. Mechanobiology of skeletal regeneration.

    PubMed

    Carter, D R; Beaupré, G S; Giori, N J; Helms, J A

    1998-10-01

    Skeletal regeneration is accomplished by a cascade of biologic processes that may include differentiation of pluripotential tissue, endochondral ossification, and bone remodeling. It has been shown that all these processes are influenced strongly by the local tissue mechanical loading history. This article reviews some of the mechanobiologic principles that are thought to guide the differentiation of mesenchymal tissue into bone, cartilage, or fibrous tissue during the initial phase of regeneration. Cyclic motion and the associated shear stresses cause cell proliferation and the production of a large callus in the early phases of fracture healing. For intermittently imposed loading in the regenerating tissue: (1) direct intramembranous bone formation is permitted in areas of low stress and strain; (2) low to moderate magnitudes of tensile strain and hydrostatic tensile stress may stimulate intramembranous ossification; (3) poor vascularity can promote chondrogenesis in an otherwise osteogenic environment; (4) hydrostatic compressive stress is a stimulus for chondrogenesis; (5) high tensile strain is a stimulus for the net production of fibrous tissue; and (6) tensile strain with a superimposed hydrostatic compressive stress will stimulate the development of fibrocartilage. Finite element models are used to show that the patterns of tissue differentiation observed in fracture healing and distraction osteogenesis can be predicted from these fundamental mechanobiologic concepts. In areas of cartilage formation, subsequent endochondral ossification normally will proceed, but it can be inhibited by intermittent hydrostatic compressive stress and accelerated by octahedral shear stress (or strain). Later, bone remodeling at these sites can be expected to follow the same mechanobiologic adaptation rules as normal bone.

  18. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  19. Closed end regeneration method

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2006-06-27

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  20. Performance and safety assessment of the co-location of the near surface radioactive waste disposal facilities and borehole disposal concept in the Philippines

    SciTech Connect

    Vargas, Edmundo; Reyes, Rolando; Palattao, Maria Visitacion; Nohay, Carl; Singayan, Alfonso; Aurelio, Mario; Gedeon, Matej; Luna, Roy Anthony C.

    2013-07-01

    The Philippine Nuclear Research Institute (PNRI) in collaboration with the interagency technical committee on radioactive waste has been undertaking a national project to find a final solution to the country's low to intermediate level radioactive waste. The strategy adopted was to co-locate 2 disposal concepts that will address the types of radioactive waste generated from the use of radioactive materials. This strategy is expected to compensate for the small volumes of waste generated in the Philippines as compared to countries with big nuclear energy programs. It will also take advantage of the benefits of a shared infrastructure and R and D work that accompany such project. The preferred site selected from previous site selection and investigations is underlain by highly fractured 'andesitic volcaniclastics' mantled by residual clayey soil which act as the aquifer or water bearing layer. Results of investigation show that the groundwater in the area is relatively dilute and acidic. Springs at the lower elevations of the footprint also indicate acidic waters. The relatively acidic water is attributed to the formation of sulfuric acid by the oxidation of the pyrite in the andesite. A preliminary post closure safety assessment was carried out using the GMS MODFLOW and HYDRUS softwares purchased through the International Atomic Energy Agency (IAEA) technical assistance. Results from MODFLOW modeling show that the radionuclide transport follows the natural gradient from the top of the hill down to the natural discharge zones. The vault dispersion model shows a circular direction from the vaults towards the faults and eventually to the creeks. The contaminant transport from borehole shows at least one confined plume from the borehole towards the creek designated as Repo1 and eventually follows downstream. The influx of surface water and rainfall to the disposal vault was modeled using the HYDRUS software. The pressure head and water content at the base of the

  1. Making of the NSTX Facility

    SciTech Connect

    C. Neumeyer; M. Ono; S.M. Kaye; Y.-K.M. Peng; et al

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  2. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  3. Hanford Generic Interim Safety Basis

    SciTech Connect

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  4. Patient Safety: What You Can Do to Be a Safe Patient

    MedlinePlus

    ... HICPAC Injection Safety Medication Safety Program MRSA NHSN Nursing Homes and Assisted Living (Long-term Care Facilities) Sepsis ... Safety One & Only Campaign Medication Safety MRSA Information Nursing Homes and Assisted Living: Resident Information Speak Up Initiatives ...

  5. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  6. 30 CFR 75.1712-2 - Location of surface facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of surface facilities. 75.1712-2... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a...

  7. Nanobiomaterials for neural regeneration.

    PubMed

    Chen, Nuan; Tian, Lingling; He, Liumin; Ramakrishna, Seeram

    2016-09-01

    Diseases and disorders associated with nervous system such as injuries by trauma and neurodegeneration are shown to be one of the most serious problems in medicine, requiring innovative strategies to trigger and enhance the nerve regeneration. Tissue engineering aims to provide a highly biomimetic environment by using a combination of cells, materials and suitable biological cues, by which the lost body part may be regenerated or even fully rebuilt. Electrospinning, being able to produce extracellular matrix (ECM)-like nanostructures with great flexibility in design and choice of materials, have demonstrated their great potential for fabrication of nerve tissue engineered scaffolds. The review here begins with a brief description of the anatomy of native nervous system, which provides basic knowledge and ideas for the design of nerve tissue scaffolds, followed by five main parts in the design of electrospun nerve tissue engineered scaffolds including materials selection, structural design, in vitro bioreactor, functionalization and cellular support. Performances of biomimetic electrospun nanofibrous nerve implant devices are also reviewed. Finally, future directions for advanced electrospun nerve tissue engineered scaffolds are discussed.

  8. Nanobiomaterials for neural regeneration

    PubMed Central

    Chen, Nuan; Tian, Lingling; He, Liumin; Ramakrishna, Seeram

    2016-01-01

    Diseases and disorders associated with nervous system such as injuries by trauma and neurodegeneration are shown to be one of the most serious problems in medicine, requiring innovative strategies to trigger and enhance the nerve regeneration. Tissue engineering aims to provide a highly biomimetic environment by using a combination of cells, materials and suitable biological cues, by which the lost body part may be regenerated or even fully rebuilt. Electrospinning, being able to produce extracellular matrix (ECM)-like nanostructures with great flexibility in design and choice of materials, have demonstrated their great potential for fabrication of nerve tissue engineered scaffolds. The review here begins with a brief description of the anatomy of native nervous system, which provides basic knowledge and ideas for the design of nerve tissue scaffolds, followed by five main parts in the design of electrospun nerve tissue engineered scaffolds including materials selection, structural design, in vitro bioreactor, functionalization and cellular support. Performances of biomimetic electrospun nanofibrous nerve implant devices are also reviewed. Finally, future directions for advanced electrospun nerve tissue engineered scaffolds are discussed. PMID:27857724

  9. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  10. Analysis of environment, safety, and health (ES{ampersand}H) management systems for Department of Energy (DOE) Defense Programs (DP) facilities

    SciTech Connect

    Neglia, A. V., LLNL

    1998-03-01

    The purpose of this paper is to provide a summary analysis and comparison of various environment, safety, and health (ES&H) management systems required of, or suggested for use by, the Departrnent of Energy Defense Programs` sites. The summary analysis is provided by means of a comparison matrix, a set of Vean diagrams that highlights the focus of the systems, and an `End Gate` filter diagram that integrates the three Vean diagrams. It is intended that this paper will act as a starting point for implementing a particular system or in establishing a comprehensive site-wide integrated ES&H management system. Obviously, the source documents for each system would need to be reviewed to assure proper implementation of a particular system. The matrix compares nine ES&H management systems against a list of elements generated by identifying the unique elements of all the systems. To simplify the matrix, the elements are listed by means of a brief title. An explanation of the matrix elements is provided in Attachment 2 entitled, `Description of System Elements.` The elements are categorized under the Total Quality Management (TQM) `Plan, Do, Check, Act` framework with the added category of `Policy`. (The TQM concept is explained in the `DOE Quality Management implementation Guidelines,` July 1997 (DOE/QM- 0008)). The matrix provides a series of columns and rows to compare the unique elements found in each of the management systems. A `V` is marked if the element is explicitly identified as part of the particular ES&H management system. An `X` is marked if the element is not found in the particular ES&H management system, or if it is considered to be inadequately addressed. A `?` is marked if incorporation of the element is not clear. Attachment I provides additional background information which explains the justification for the marks in the matrix cells. Through the Vean diagrams and the `End Gate` filter in Section 3, the paper attempts to pictorially display the focus of

  11. System Safety Analysis Application Guide. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1993-05-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Safety analyses are performed to identify hazards and potential accidents; to analyze the adequacy of measures taken to eliminate, control, or mitigate hazards; and to evaluate potential accidents and determine associated risks. Safety Analysis Reports (SARs) are prepared to document the safety analysis to ensure facilities can be operated safely and in accordance with regulations. SARs include Technical Safety Requirements (TSRs), which are specific technical and administrative requirements that prescribe limits and controls to ensure safe operation of DOE facilities. These documented descriptions and analyses contribute to the authorization basis for facility operation. Energy Systems has established a process to perform Unreviewed Safety Question Determinations (USQDs) for planned changes and as-found conditions that are not described and analyzed in existing safety analyses. The process evaluates changes and as-found conditions to determine whether revisions to the authorization basis must be reviewed and approved by DOE. There is an Unreviewed Safety Question (USQ) if a change introduces conditions not bounded by the facility authorization basis. When it is necessary to request DOE approval to revise the authorization basis, preparation of a System Safety Analysis (SSA) is recommended. This application guide describes the process of preparing an SSA and the desired contents of an SSA. Guidance is provided on how to identify items and practices which are important to safety; how to determine the credibility and significance of consequences of proposed accident scenarios; how to evaluate accident prevention and mitigation features of the planned change; and how to establish special requirements to ensure that a change can be implemented with adequate safety.

  12. Molecular approach to echinoderm regeneration.

    PubMed

    Thorndyke, M C; Chen, W C; Beesley, P W; Patruno, M

    2001-12-15

    Until very recently echinoderm regeneration research and indeed echinoderm research in general has suffered because of the lack of critical mass. In terms of molecular studies of regeneration, echinoderms in particular have lagged behind other groups in this respect. This is in sharp contrast to the major advances achieved with molecular and genetic techniques in the study of embryonic development in echinoderms. The aim of our studies has been to identify genes involved in the process of regeneration and in particular neural regeneration in different echinoderm species. Our survey included the asteroid Asterias rubens and provided evidence for the expression of Hox gene homologues in regenerating radial nerve cords. Present evidence suggests: 1) ArHox1 expression is maintained in intact radial nerve cord and may be upregulated during regeneration. 2) ArHox1 expression may contribute to the dedifferentiation and/or cell proliferation process during epimorphic regeneration. From the crinoid Antedon bifida, we have been successful in cloning a fragment of a BMP2/4 homologue (AnBMP2/4) and analysing its expression during arm regeneration. Here, we discuss the importance of this family of growth factors in several regulatory spheres, including maintaining the identity of pluripotent blastemal cells or as a classic skeletal morphogenic regulator. There is clearly substantial scope for future echinoderm research in the area of molecular biology and certain aspects are discussed in this review.

  13. Safety in Aquatic Activities. Sports Safety Series. Monograph No. 5.

    ERIC Educational Resources Information Center

    Borozne, Joseph, Ed.; And Others

    The prevention of injuries and control of hazards in aquatic activities is outlined. Discussions include the causes and prevention of aquatic accidents, aquatic safety in the basic instructional program, the design of public swimming facilities, and safety considerations in pool operation and administration. A chapter is devoted to each of the…

  14. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  15. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  16. K Basin safety analysis

    SciTech Connect

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  17. ORNL calibrations facility

    SciTech Connect

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL.

  18. Industrial Education Safety Guide.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    California is one of the few states in which school districts have a legal responsibility for accidents involving students while they are participating in assigned school activities. This guide was prepared to help school administrators and teachers evaluate their safety instruction programs and industrial education facilities in accordance with…

  19. Planning for Campus Safety

    ERIC Educational Resources Information Center

    Dessoff, Alan

    2009-01-01

    From natural disasters to criminal violence, facilities officers are often called on to address campus safety and security issues beyond their usual responsibilities. Their experiences in coping with unanticipated events have produced a catalogue of lessons learned that can help them and their peers at other institutions who might face the same…

  20. Auditing Schools for Safety.

    ERIC Educational Resources Information Center

    Butterfield, Eric,

    2000-01-01

    Explores the issues involved in conducting effective safety audits for educational facilities. Areas covered include auditing for site characteristics, access control, lighting, building exterior, door types and locking mechanisms, key control, alarm system controls, security monitors, and vision panels in the doors. (GR)

  1. The Multistage Compressor Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie

    2004-01-01

    Research and developments of new aerospace technologies is one of Glenn Research Center's specialties. One facility that deals with the research of aerospace technologies is the High-speed Multistage Compressor Facility. This facility will be testing the performance and efficiency of an Ultra Efficient Engine Technology (UEET) two-stage compressor. There is a lot of preparation involved with testing something of this caliber. Before the test article can be installed into the test rig, the facility must be fully operational and ready to run. Meaning all the necessary instrumentation must be calibrated and installed in the facility. The test rig should also be in safe operating condition, and the proper safety permits obtained. In preparation for the test, the Multistage Compressor Facility went through a few changes. For instance the facility will now be utilizing slip rings, the gearbox went through some maintenance, new lubrications systems replaced the old ones, and special instrumentation needs to be fine tuned to achieve the maximum amount of accurate data. Slips rings help gather information off of a rotating device - in this case from a shaft - onto stationary contacts. The contacts (or brushes) need to be cooled to reduce the amount of frictional heat produced between the slip ring and brushes. The coolant being run through the slip ring is AK-225, a material hazardous to the ozone. To abide by the safety regulations the coolant must be run through a closed chiller system. A new chiller system was purchased but the reservoir that holds the coolant was ventilated which doesn t make the system truly closed and sealed. My task was to design and have a new reservoir built for the chiller system that complies with the safety guidelines. The gearbox had some safety issues also. Located in the back of the gearbox an inching drive was set up. When the inching drive is in use the gears and chain are bare and someone can easily get caught up in it. So to prevent

  2. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    SciTech Connect

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  3. Implication of two different regeneration systems in limb regeneration

    PubMed Central

    Makanae, Aki; Mitogawa, Kazumasa

    2014-01-01

    Abstract Limb regeneration is a representative phenomenon of organ regeneration in urodele amphibians, such as an axolotl. An amputated limb starts regenerating from a remaining stump (proximal) to lost finger tips (distal). In the present case, proximal−distal (PD) reorganization takes place in a regenerating tissue, called a blastema. It has been a mystery how an induced blastema recognizes its position and restores an exact replica of missing parts. Recently, a new experimental system called the accessory limb model (ALM) has been established. The gained ALM phenotypes are demanding to reconsider the reorganization PD positional values. Based on the ALM phenotype, it is reasonable to hypothesize that reorganization of positional values has a certain discontinuity and that two different regeneration systems cooperatively reorganize the PD axis to restore an original structure. In this review, PD axis reestablishments are focused on limb regeneration. Knowledge from ALM studies in axolotls and Xenopus is providing a novel concept of PD axis reorganization in limb regeneration. PMID:27499860

  4. Safety Education Handbook. Volume 1.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Education, Topeka.

    This is the first of three volumes of a safety guide developed to assist Kansas administrators and teachers in organizing, evaluating, and maintaining safety programs. It provides information to help them identify, assess, and correct unsafe conditions relating to equipment and facilities and ensure a safe and healthy environment for themselves…

  5. Safety Equipment in the Lab.

    ERIC Educational Resources Information Center

    Denham, Willard A.S.

    1964-01-01

    Findings of two recent surveys on safety equipment in laboratory facilities are presented. The first survey was a pilot study of emergency shower and eye wash equipment. This study was followed by a more comprehensive random survey of safety equipment in 2,820 labs. Among other findings, the surveys indicate that many plants are underequipped, or…

  6. Safety Education Handbook. Volume 2.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Education, Topeka.

    This is the second of three volumes of a safety guide developed to assist Kansas administrators and teachers in organizing, evaluating, and maintaining safety programs. It provides information to help them identify, assess, and correct unsafe conditions relating to equipment and facilities and ensure a safe and healthy environment for themselves…

  7. Safety Education Handbook. Volume 3.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Education, Topeka.

    This is the third of three volumes of a safety guide developed to assist Kansas administrators and teachers in organizing, evaluating, and maintaining safety programs. It provides information to help them identify, assess, and correct unsafe conditions relating to equipment and facilities and ensure a safe and healthy environment for themselves…

  8. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.

    PubMed

    Ballestero, D; Gómez-Giménez, C; García-Díez, E; Juan, R; Rubio, B; Izquierdo, M T

    2013-09-15

    The objective of this work is to evaluate a novel regenerable sorbent for mercury capture based on gold nanoparticles supported on a honeycomb structured carbon monolith. A new methodology for gold nanoparticles deposition onto carbon monolith support has been developed to obtain an Au sorbent based on the direct reduction of a gold salt onto the carbon material. For comparison purposes, colloidal gold method was also used to obtain Au/C sorbents. Both types of sorbents were characterized by different techniques in order to obtain the bulk gold content, the particle size distribution and the chemical states of gold after deposition. The mercury capture capacity and mercury capture efficiency of sorbents were tested in a bench scale facility at different experimental conditions. The regenerability of the sorbents was tested along several cycles of Hg capture-regeneration. High retention efficiencies are found for both types of sorbents comparing their gold content. Moreover, the high retention efficiency is maintained along several cycles of Hg capture-regeneration. The study of the fresh sorbent, the sorbent after Hg exposition and after regeneration by XPS and XRD gives insight to explain those results.

  9. 77 FR 40891 - Towing Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... ``Recommendations for Safety Standards of Portable Facility Vapor Control Systems'' and to discuss the progress of...) Issuance of new Task Statement ``Recommendations for Safety Standards of Portable Facility Vapor Control Systems.'' (4) Period for public comment. Minutes Minutes from the meeting will be available for...

  10. Bone regeneration in dentistry

    PubMed Central

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  11. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Jolly, Clifford D.; Sauer, Richard L.

    1991-01-01

    The Microbial Check Valve (MCV) is used on the Space Shuttle to impart an iodine residual to the drinking water to maintain microbial control. Approximately twenty MCV locations have been identified in the Space Station Freedom design, each with a 90-day life. This translates to 2400 replacement units in 30 years of operation. An in situ regeneration concept has been demonstrated that will reduce this replacement requirement to less than 300 units based on data to date. A totally automated system will result in significant savings in crew time, resupply requirements, and replacement costs. An additional feature of the device is the ability to provide a concentrated biocide source (200 mg/liter of I2) that can be used to superiodinate systems routinely or after a microbial upset.

  12. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  13. Facility Effluent Monitoring Plan for the uranium trioxide facility

    SciTech Connect

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  14. Facility effluent monitoring plan for the plutonium uranium extraction facility

    SciTech Connect

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  15. Augmenter of liver regeneration.

    PubMed

    Gandhi, Chandrashekhar R

    2012-07-09

    'Augmenter of liver regeneration' (ALR) (also known as hepatic stimulatory substance or hepatopoietin) was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability) protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa), but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa) found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa) of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule.

  16. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  17. Cardiac Regeneration and Stem Cells

    PubMed Central

    Zhang, Yiqiang; Mignone, John; MacLellan, W. Robb

    2015-01-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  18. A probabilistic risk assessment of the LLNL Plutonium facility`s evaluation basis fire operational accident

    SciTech Connect

    Brumburgh, G.

    1994-08-31

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility.

  19. Bone Regeneration Using Gene-Activated Matrices.

    PubMed

    D'Mello, Sheetal; Atluri, Keerthi; Geary, Sean M; Hong, Liu; Elangovan, Satheesh; Salem, Aliasger K

    2017-01-01

    Gene delivery to bone is a potential therapeutic strategy for directed, sustained, and regulated protein expression. Tissue engineering strategies for bone regeneration include delivery of proteins, genes (viral and non-viral-mediated delivery), and/or cells to the bone defect site. In addition, biomimetic scaffolds and scaffolds incorporating bone anabolic agents greatly enhance the bone repair process. Regional gene therapy has the potential of enhancing bone defect healing and bone regeneration by delivering osteogenic genes locally to the osseous lesions, thereby reducing systemic toxicity and the need for using supraphysiological dosages of therapeutic proteins. By implanting gene-activated matrices (GAMs), sustained gene expression and continuous osteogenic protein production in situ can be achieved in a way that stimulates osteogenesis and bone repair within osseous defects. Critical parameters substantially affecting the therapeutic efficacy of gene therapy include the choice of osteogenic transgene(s), selection of non-viral or viral vectors, the wound environment, and the selection of ex vivo and in vivo gene delivery strategies, such as GAMs. It is critical for gene therapy applications that clinically beneficial amounts of proteins are synthesized endogenously within and around the lesion in a sustained manner. It is therefore necessary that reliable and reproducible methods of gene delivery be developed and tested for their efficacy and safety before translating into clinical practice. Practical considerations such as the age, gender, and systemic health of patients and the nature of the disease process also need to be taken into account in order to personalize the treatments and progress towards developing a clinically applicable gene therapy for healing bone defects. This review discusses tissue engineering strategies to regenerate bone with specific focus on non-viral gene delivery systems.

  20. Coculture in musculoskeletal tissue regeneration.

    PubMed

    Im, Gun-Il

    2014-10-01

    Most tissues in the body are made up of more than one cell type. For successful tissue regeneration, it is essential to simulate the natural conditions of the cellular environment as much as possible. In a coculture system, two or more cell types are brought together, interact, and communicate in the same culture environment. The coculture system provides a powerful in vitro tool in research on cell-to-cell communications, repair, and regeneration. This review provides an overview on recent studies on general platforms and applications of coculture systems to enhance musculoskeletal regeneration, with a particular focus on osteogenesis, chondrogensis, and angiogenesis.

  1. Safety Basis Report

    SciTech Connect

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  2. Unreviewed safety question determination application guide

    SciTech Connect

    Not Available

    1991-09-01

    The basic purpose of the Unreviewed Safety Question Determination (USQD) process is to ascertain if a change to a facility can be made without a prior safety review and approval by the original approving body. The USQD process judges whether the change could result in the facility being outside its authorization basis. If the change could result in the facility being outside its authorization basis, the change involves an Unreviewed Safety Question (USQ). The authorization basis consists of those aspects of the facility design basis relied upon by the original approving body to authorize operation. The authorization basis would typically include the facility Safety Analysis Report, Technical Safety Requirements (TSRs), Operational Safety Requirements (OSRs), Technical Specifications, DOE-issued Safety Evaluation Reports, Safety Analysis Report Update Program documents, Safety Studies, Safety Assessments, Risk Assessments, Facility Safety Evaluations, and any applicable commitments made to comply with Department of Energy (DOE) orders or policies. Steps in the USQD process include defining the changes being evaluated; evaluating the process by which the change is accomplished; then the potential effects of the change are compared to the authorization basis for the facility to determine if the change could result in the facility being outside is authorization basis. The USQD will provide input to the change control board for facilities placed under configuration management to aid their understanding of the extent of a proposed change and whether or not the change should be authorized. The USQD will also provide input to the categorization of reportable occurrences under DOE Order 5000.3A, Occurrence Reporting and Processing of Operations Information. This report provides an overview of the steps in the USQD process and detailed instructions and examples intended primarily for use by the personnel who perform, review, and approve the USQDs. 3 refs., 3 figs.

  3. Drug Safety

    MedlinePlus

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  4. Vaccine Safety

    MedlinePlus

    ... FAQs about Vaccine Safety Research Publications HDM Reports ISO Scientific Agenda Ensuring Safety History Understanding Side Effects ... Datalink Publications Emergency Preparedness Vaccine Safety Partners About ISO File Formats Help: How do I view different ...

  5. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  6. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  7. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  8. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  9. 49 CFR 193.2019 - Mobile and temporary LNG facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Mobile and temporary LNG facilities. 193.2019... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS General § 193.2019 Mobile and temporary LNG facilities. (a) Mobile and temporary LNG facilities for peakshaving application, for service...

  10. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  11. A numerical method of regenerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Matsubara, Yoichi

    2004-02-01

    A numerical method for regenerators is introduced in this paper. It is not only suitable for the regenerators in cryocoolers and Stirling engines, but also suitable for the stacks in acoustic engines and the pulse tubes in pulse tube refrigerators. The numerical model is one dimensional periodic unsteady flow model. The numerical method is based on the control volume concept with the implicitly solve method. The iteration acceleration method, which considers the one-dimensional periodic unsteady problem as the steady two-dimensional problem, is used for decreasing the calculation time. By this method, the regenerator in an inertance tube pulse tube refrigerator was simulated. The result is useful for understanding how the inefficiency of the regenerator changes with the inertance effect.

  12. Imaginal disc regeneration takes flight.

    PubMed

    Hariharan, Iswar K; Serras, Florenci

    2017-04-01

    Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.

  13. Pulp-dentin Regeneration: Current State and Future Prospects.

    PubMed

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  14. CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)

    SciTech Connect

    TOFFER, H.

    2005-05-02

    The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

  15. Tissue engineering for periodontal regeneration.

    PubMed

    Kao, Richard T; Conte, Greg; Nishimine, Dee; Dault, Scott

    2005-03-01

    As a result of periodontal regeneration research, a series of clinical techniques have emerged that permit tissue engineering to be performed for more efficient regeneration and repair of periodontal defects and improved implant site development. Historically, periodontal regeneration research has focused on a quest for "magic filler" material. This search has led to the development of techniques utilizing autologous bone and bone marrow, allografts, xenografts, and various man-made bone substitutes. Though these techniques have had limited success, the desire for a more effective regenerative approach has resulted in the development of tissue engineering techniques. Tissue engineering is a relatively new field of reconstructive biology which utilizes mechanical, cellular, or biologic mediators to facilitate reconstruction/regeneration of a particular tissue. In periodontology, the concept of tissue engineering had its beginnings with guided tissue regeneration, a mechanical approach utilizing nonresorbable membranes to obtain regeneration in defects. In dental implantology, guided bone regeneration membranes +/- mechanical support are used for bone augmentation of proposed implant placement sites. With the availability of partially purified protein mixture from developing teeth and growth factors from recombinant technology, a new era of tissue engineering whereby biologic mediators can be used for periodontal regeneration. The advantage of recombinant growth factors is this tissue engineering device is consistent in its regenerative capacity, and variations in regenerative response are due to individual healing response and/or poor surgical techniques. In this article, the authors review how tissue engineering has advanced and discuss its impact on the clinical management of both periodontal and osseous defects in preparation for implant placement. An understanding of these new tissue engineering techniques is essential for comprehending today's ever

  16. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  17. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  18. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  19. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear safety. 923.7001 Section 923.7001 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS... Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under...

  20. Chemical Safety Vulnerability Working Group Report

    SciTech Connect

    Not Available

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  1. 77 FR 51943 - Procedures for Safety Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... SAFETY BOARD 10 CFR Part 1708 Procedures for Safety Investigations AGENCY: Defense Nuclear Facilities... Investigations, which published July 27, 2012 in the Federal Register, 77 FR 44174. The comment period expires... Board is extending the comment period on the proposed rule, Procedures for Safety...

  2. Radiological safety training for uranium facilities

    SciTech Connect

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  3. Approaches towards endogenous pancreatic regeneration.

    PubMed

    Banerjee, Meenal; Kanitkar, Meghana; Bhonde, Ramesh R

    2005-01-01

    The phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity. Since deficiency in beta-cell mass is the hallmark of most forms of diabetes, it is worthwhile understanding pancreatic regeneration in the context of this disease. With this view in mind, this article aims to discuss the potential use in clinical strategies of knowledge that we obtained from studies carried out in animal models of diabetes. Approaches to achieve this goal involve the use of biomolecules, adult stem cells and gene therapy. Various molecules, such as glucagon-like peptide-1, beta-cellulin, nicotinamide, gastrin, epidermal growth factor-1 and thyroid hormone, play major roles in the initiation of endogenous islet regeneration in diabetes. The most accepted hypothesis is that these molecules stimulate islet precursor cells to undergo neogenesis or to induce replication of existing beta-cells, emphasizing the importance of pancreas-resident stem/progenitor cells in islet regeneration. Moreover, the potential of adult stem cell population from bone marrow, umbilical cord blood, liver, spleen, or amniotic membrane, is also discussed with regard to their potential to induce pancreatic regeneration.

  4. Report of the Task Group on operation Department of Energy tritium facilities

    SciTech Connect

    Not Available

    1991-10-01

    This report discusses the following topics on the operation of DOE Tritium facilities: Environment, Safety, and Health Aspects of Tritium; Management of Operations and Maintenance Functions; Safe Shutdown of Tritium Facilities; Management of the Facility Safety Envelope; Maintenance of Qualified Tritium Handling Personnel; DOE Tritium Management Strategy; Radiological Control Philosophy; Implementation of DOE Requirements; Management of Tritium Residues; Inconsistent Application of Requirements for Measurement of Tritium Effluents; Interdependence of Tritium Facilities; Technical Communication among Facilities; Incorporation of Confinement Technologies into New Facilities; Operation/Management Requirements for New Tritium Facilities; and Safety Management Issues at Department of Energy Tritium Facilities.

  5. Biomaterials for periodontal regeneration

    PubMed Central

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891

  6. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)

    1993-01-01

    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.

  7. Optimizing atoh1 induced vestibular hair cell regeneration

    PubMed Central

    Staecker, Hinrich; Schlecker, Christina; Kraft, Shannon; Praetorius, Mark; Hsu, Chi; Brough, Douglas E.

    2016-01-01

    Objectives/Hypothesis Determine the optimal design characteristics of an adenoviral vector to deliver atoh1 and induce regeneration of vestibular hair cells. Study Design Evaluation of a mouse model of intra-labyrinthine gene delivery. Tissue culture of mouse and human macular organs. Methods Macular organs from adult C57Bl/6 mice were treated with binding modified and alternate adenovectors expressing green fluorescent protein (gfp) or luciferase (L). Expression of marker genes was determined over time to determine vector transfection efficiency. The inner ear of adult mice was then injected with modified vectors. Expression of gfp and distribution of vector DNA was followed. Hearing and balance function was evaluated in normal animals to ensure safety of the novel vector designs. An optimized vector was identified and tested for its ability to induce hair cell regeneration in a mouse vestibulopathy model. Finally this vector was tested for its ability to induce hair cell regeneration in human tissue. Results Ad5 serotype based vectors were identified as having a variety of different binding capacities for inner ear tissue. This makes it difficult to limit the dose of vector due to entry into non-targeted cells. Screening of rare adenovector serotypes demonstrated that Ad28 based vectors were ideally suited for delivery to supporting cells and therefore useful for hair cell regeneration studies. Utilization of an Ad28 based vector to deliver atoh1 to a mouse model of vestibular loss resulted significant functional recovery of balance. This vector was also capable of transfecting human macular organs and inducing regeneration of human vestibular hair cells in vitro. Conclusions Improvement in vector design can lead to more specific cell based delivery and reduction of non specific delivery of the trans gene leading to the development of optimized molecular therapeutics to induce hair cell regeneration. Level of Evidence N/A Controlled basic science study. PMID

  8. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Pipeline and Hazardous Materials Safety Administration Liquefied Natural Gas Facilities: Obtaining Approval... Safety Administration (PHMSA) issues federal safety standards for siting liquefied natural gas (LNG...) NFPA 59A: Standard for the Production, Storage, and Handling of Liquefied Natural Gas. That...

  9. Designing Effective Safety Signs, Based on a Study of Recall for Safety Signs.

    ERIC Educational Resources Information Center

    Berry, Dennis W.

    Aside from direct supervision at a recreational facility, safety signs, if designed properly, are the most effective approach to facility safety. This study was conducted to investigate the effectiveness of various sign designs: (l) multiple concepts with text; (2) single concept with text; and (3) single concept with graphics. A discussion of…

  10. Laser Safety Inspection Criteria

    SciTech Connect

    Barat, K

    2005-02-11

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  11. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Raghubir P. Gupta

    2005-10-01

    This report describes research conducted between July 1, 2005, and September 30, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A new batch of supported sorbent containing 10% sodium carbonate (Na{sub 2}CO{sub 3}) was obtained and characterized. Thermogravimetric analysis (TGA) testing confirmed that the Na{sub 2}CO{sub 3} sorbent reacted with sulfur dioxide (SO{sub 2}) at temperatures between 40 and 160 C. Although the rate of reaction was more rapid at lower temperatures, these data suggest that SO{sub 2} will not be released from the sorbent under expected sorbent-regeneration conditions. Preliminary work has been conducted to establish the design specifications for a laboratory screw-conveyor sorbent regeneration/cooling apparatus. A plan for a scheduled pilot-scale test of a heated hollow-screw conveyor was developed. This test will be conducted at facilities of the screw conveyor fabricator. This test will confirm the extent of sorbent regeneration and will provide data to evaluate multi-cycle sorbent attrition rates associated with this type of processing.

  12. Radiation Safety System

    SciTech Connect

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  13. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  14. Cementum and Periodontal Ligament Regeneration.

    PubMed

    Menicanin, Danijela; Hynes, K; Han, J; Gronthos, S; Bartold, P M

    2015-01-01

    The unique anatomy and composition of the periodontium make periodontal tissue healing and regeneration a complex process. Periodontal regeneration aims to recapitulate the crucial stages of wound healing associated with periodontal development in order to restore lost tissues to their original form and function and for regeneration to occur, healing events must progress in an ordered and programmed sequence both temporally and spatially, replicating key developmental events. A number of procedures have been employed to promote true and predictable regeneration of the periodontium. Principally, the approaches are based on the use of graft materials to compensate for the bone loss incurred as a result of periodontal disease, use of barrier membranes for guided tissue regeneration and use of bioactive molecules. More recently, the concept of tissue engineering has been integrated into research and applications of regenerative dentistry, including periodontics, to aim to manage damaged and lost oral tissues, through reconstruction and regeneration of the periodontium and alleviate the shortcomings of more conventional therapeutic options. The essential components for generating effective cellular based therapeutic strategies include a population of multi-potential progenitor cells, presence of signalling molecules/inductive morphogenic signals and a conductive extracellular matrix scaffold or appropriate delivery system. Mesenchymal stem cells are considered suitable candidates for cell-based tissue engineering strategies owing to their extensive expansion rate and potential to differentiate into cells of multiple organs and systems. Mesenchymal stem cells derived from multiple tissue sources have been investigated in pre-clinical animal studies and clinical settings for the treatment and regeneration of the periodontium.

  15. Facility effluent monitoring plan for the tank farms facilities

    SciTech Connect

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  16. Weapons engineering tritium facility overview

    SciTech Connect

    Najera, Larry

    2011-01-20

    Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

  17. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  18. Cell Therapy for Cardiovascular Regeneration

    PubMed Central

    2013-01-01

    A great numbers of cardiovascular disease patients all over the world are suffering in the poor outcomes. Under this situation, cardiac regeneration therapy to reorganize the postnatal heart that is defined as a terminal differentiated-organ is a very important theme and mission for human beings. However, the temporary success of several clinical trials using usual cell types with uncertain cell numbers has provided the transient effect of cell therapy to these patients. We therefore should redevelop the evidence of cell-based cardiovascular regeneration therapy, focusing on targets (disease, patient’s status, cardiac function), materials (cells, cytokines, genes), and methodology (transplantation route, implantation technology, tissue engineering). Meanwhile, establishment of the induced pluripotent stem (iPS) cells is an extremely innovative technology which should be proposed as embryonic stem (ES) cellularization of post natal somatic cells, and this application have also showed the milestones of the direct conversion to reconstruct cardiomyocyte from the various somatic cells, which does not need the acquisition of the re-pluripotency. This review discusses the new advance in cardiovascular regeneration therapy from cardiac regeneration to cardiac re-organization, which is involved in recent progress of on-going clinical trials, basic research in cardiovascular regeneration, and the possibility of tissue engineering technology. PMID:23825492

  19. Bone Morphogenetic Proteins: Periodontal Regeneration

    PubMed Central

    Rao, Subramaniam M; Ugale, Gauri M; Warad, Shivaraj B

    2013-01-01

    Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search). All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP. PMID:23626951

  20. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  1. Cell cycle regulation and regeneration.

    PubMed

    Heber-Katz, Ellen; Zhang, Yong; Bedelbaeva, Khamila; Song, Fengyu; Chen, Xiaoping; Stocum, David L

    2013-01-01

    Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.

  2. Facility effluent monitoring plan for 242-A evaporator facility

    SciTech Connect

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  3. 49 CFR 228.321 - Showering facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES; RECORDKEEPING AND REPORTING; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.321 Showering facilities. (a) Number. Each individual camp car that provides sleeping facilities must contain...

  4. 9 CFR 149.6 - Slaughter facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... slaughter facilities that are under continuous inspection by the Food Safety and Inspection Service or under State inspection that the Food Safety and Inspection Service has recognized as equivalent to Federal... Technology Programs, Technical Services Branch, 1400 Independence Ave., SW., Mail Stop 0272, Washington,...

  5. High-Explosives Applications Facility (HEAF)

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  6. DOE standard: Firearms safety

    SciTech Connect

    1996-02-01

    Information in this document is applicable to all DOE facilities, elements, and contractors engaged in work that requires the use of firearms as provided by law or contract. The standard in this document provides principles and practices for implementing a safe and effective firearms safety program for protective forces and for non-security use of firearms. This document describes acceptable interpretations and methods for meeting Order requirements.

  7. Regenerator cross arm seal assembly

    DOEpatents

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  8. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  9. Bone regeneration during distraction osteogenesis.

    PubMed

    Amir, Lisa R; Everts, Vincent; Bronckers, Antonius L J J

    2009-07-01

    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connective tissues in the gap area between two separated bone segments. This procedure has received much clinical attention as a way to correct congenital growth retardation of bone tissue or to generate bone to fill skeletal defects. The process of bone regeneration involves a complex system of biological changes whereby mechanical stress is converted into a cascade of signals that activate cellular behavior resulting in (enhanced) formation of bone. Over the last decade, significant progress has been made in understanding the bone regeneration process during distraction osteogenesis. The mechanical and biological factors that are important for the success of the distraction treatment have been partially characterized and are discussed in this review.

  10. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  11. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  12. Self-regenerating column chromatography

    DOEpatents

    Park, W.K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  13. Some principles of regeneration in mammalian systems.

    PubMed

    Carlson, Bruce M

    2005-11-01

    This article presents some general principles underlying regenerative phenomena in vertebrates, starting with the epimorphic regeneration of the amphibian limb and continuing with tissue and organ regeneration in mammals. Epimorphic regeneration following limb amputation involves wound healing, followed shortly by a phase of dedifferentiation that leads to the formation of a regeneration blastema. Up to the point of blastema formation, dedifferentiation is guided by unique regenerative pathways, but the overall developmental controls underlying limb formation from the blastema generally recapitulate those of embryonic limb development. Damaged mammalian tissues do not form a blastema. At the cellular level, differentiation follows a pattern close to that seen in the embryo, but at the level of the tissue and organ, regeneration is strongly influenced by conditions inherent in the local environment. In some mammalian systems, such as the liver, parenchymal cells contribute progeny to the regenerate. In others, e.g., skeletal muscle and bone, tissue-specific progenitor cells constitute the main source of regenerating cells. The substrate on which regeneration occurs plays a very important role in determining the course of regeneration. Epimorphic regeneration usually produces an exact replica of the structure that was lost, but in mammalian tissue regeneration the form of the regenerate is largely determined by the mechanical environment acting on the regenerating tissue, and it is normally an imperfect replica of the original. In organ hypertophy, such as that occurring after hepatic resection, the remaining liver mass enlarges, but there is no attempt to restore the original form.

  14. Nuclear Safety Information Center, Its Products and Services

    ERIC Educational Resources Information Center

    Buchanan, J. R.

    1970-01-01

    The Nuclear Safety Information Center (NSIC) serves as a focal point for the collection, analysis and dissemination of information related to safety problems encountered in the design, analysis, and operation of nuclear facilities. (Author/AB)

  15. Tank Farms Technical Safety Requirements [VOL 1 and 2

    SciTech Connect

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  16. 78 FR 59906 - Pipeline Safety: Class Location Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 Pipeline Safety: Class Location... Register on ``Class Location Requirements,'' seeking comments on whether integrity management program (IMP... gas transmission pipeline facilities, whether applying IMP requirements to additional areas...

  17. Overview of Energy Systems' safety analysis report programs

    SciTech Connect

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information that may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.

  18. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  19. 23 CFR 752.5 - Safety rest areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Safety rest areas. 752.5 Section 752.5 Highways FEDERAL... DEVELOPMENT § 752.5 Safety rest areas. (a) Safety rest areas should provide facilities reasonably necessary... may be provided in conjunction with a safety rest area at such locations where accommodations...

  20. 10 CFR 830.206 - Preliminary documented safety analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Preliminary documented safety analysis. 830.206 Section 830.206 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.206... category 1, 2, or 3 DOE nuclear facility must: (a) Prepare a preliminary documented safety analysis for...