Science.gov

Sample records for regenerative medicine applications

  1. Regenerative medicine applications in combat casualty care.

    PubMed

    Fleming, Mark E; Bharmal, Husain; Valerio, Ian

    2014-03-01

    The purpose of this report is to describe regenerative medicine applications in the management of complex injuries sustained by service members injured in support of the wars in Afghanistan and Iraq. Improvements in body armor, resuscitative techniques and faster transport have translated into increased patient survivability and more complex wounds. Combat-related blast injuries have resulted in multiple extremity injuries, significant tissue loss and amputations. Due to the limited availability and morbidity associated with autologous tissue donor sites, the introduction of regenerative medicine has been critical in managing war extremity injuries with composite massive tissue loss. Through case reports and clinical images, this report reviews the application of regenerative medicine modalities employed to manage combat-related injuries. It illustrates that the novel use of hybrid reconstructions combining traditional and regenerative medicine approaches are an effective tool in managing wounds. Lessons learned can be adapted to civilian care. PMID:24750059

  2. Functionalized Nanostructures with Application in Regenerative Medicine

    PubMed Central

    Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.

    2012-01-01

    In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186

  3. Applications of regenerative medicine in organ transplantation

    PubMed Central

    Jain, Aditya; Bansal, Ramta

    2015-01-01

    A worldwide shortage of organs for clinical implantation establishes the need to bring forward and test new technologies that will help in solving the problem. The concepts of regenerative medicine hold the potential for augmenting organ function or repairing damaged organ or allowing regeneration of deteriorated organs and tissue. Researchers are exploring possible regenerative medicine applications in organ transplantation so that coming together of the two fields can benefit each other. The present review discusses the strategies that are being implemented to regenerate or bio-engineer human organs for clinical purposes. It also highlights the limitations of the regenerative medicine that needs to be addressed to explore full potential of the field. A web-based research on MEDLINE was done using keywords “regenerative medicine,” “tissue-engineering,” “bio-engineered organs,” “decellularized scaffold” and “three-dimensional printing.” This review screened about 170 articles to get the desired knowledge update. PMID:26229352

  4. Application of regenerative medicine for kidney diseases.

    PubMed

    Yokoo, Takashi; Fukui, Akira; Kobayashi, Eiji

    2007-01-01

    Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF).The kidney has the potential to regenerate itself provided that the damage is not too severe and the kidney's structure remains intact. Regenerative medicine for ARF should therefore aim to activate or support this potent. In cases of the irreversible damage to the kidney, which is most likely in patients with CRF undergoing long-term dialysis, self-renewal is totally lost. Thus, regenerative medicine for CRF will likely involve the establishment of a functional whole kidney de novo. This article reviews the challenges and recent advances in both approaches and discusses the potential approach of these novel strategies for clinical application. PMID:19279698

  5. Application of Regenerative Medicine for Kidney Diseases

    PubMed Central

    Fukui, Akira; Kobayashi, Eiji

    2007-01-01

    Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF). The kidney has the potential to regenerate itself provided that the damage is not too severe and the kidney's structure remains intact. Regenerative medicine for ARF should therefore aim to activate or support this potent. In cases of the irreversible damage to the kidney, which is most likely in patients with CRF undergoing long-term dialysis, self-renewal is totally lost. Thus, regenerative medicine for CRF will likely involve the establishment of a functional whole kidney de novo. This article reviews the challenges and recent advances in both approaches and discusses the potential approach of these novel strategies for clinical application. PMID:19279698

  6. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.

    PubMed

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

  7. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics

    PubMed Central

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  8. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.

    PubMed

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  9. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine.

  10. Human dental pulp stem cells: Applications in future regenerative medicine

    PubMed Central

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  11. Cytomics in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Pierzchalski, Arkadiusz

    2008-02-01

    Cytomics is the high-content analysis of cell-systems [6, 78]. The area of Cytomics and Systems Biology received great attention during the last years as it harbours the promise to substantially impact on various fields of biomedicine, drug discovery, predictive medicine [6] and may have major potential for regenerative medicine. In regenerative medicine Cytomics includes process control of cell preparation and culturing using non-invasive detection techniques, quality control and standardization for GMP and GLP conformity and even prediction of cell fate based on sophisticated data analysis. Cytomics requires quantitative and stoichiometric single cell analysis. In some areas the leading cytometric techniques represent the cutting edge today. Many different applications/variations of multicolour staining were developed for flow- or slide-based cytometry (SBC) analysis of suspensions and sections to whole animal analysis [78]. SBC has become an important analytical technology in drug discovery, diagnosis and research and is an emerging technology for systems analysis [78]. It enables high-content high-throughput measurement of cell suspensions, cell cultures and tissues. In the last years various commercial SBC instruments were launched principally enabling to perform similar tasks. Standardisation as well as comparability of different instruments is a major challenge. Hyperspectral optical imaging may be implemented in SBC analysis for label free cell detection based on cellular autofluorescence [3]. All of these developments push the systemic approach of the analysis of biological specimens to enhance the outcome of regenerative medicine.

  12. Will Regenerative Medicine Replace Transplantation?

    PubMed Central

    Orlando, Giuseppe; Soker, Shay; Stratta, Robert J.; Atala, Anthony

    2013-01-01

    Recent groundbreaking advances in organ bioengineering and regeneration have provided evidence that regenerative medicine holds promise to dramatically improve the approach to organ transplantation. The two fields, however, share a common heritage. Alexis Carrel can be considered the father of both regenerative medicine and organ transplantation, and it is now clear that his legacy is equally applicable for the present and future generations of transplant and regenerative medicine investigators. In this review, we will briefly illustrate the interplay that should be established between these two complementary disciplines of health sciences. Although regenerative medicine has shown to the transplant field its potential, transplantation is destined to align with regenerative medicine and foster further progress probably more than either discipline alone. Organ bioengineering and regeneration technologies hold the promise to meet at the same time the two most urgent needs in organ transplantation, namely, the identification of a new, potentially inexhaustible source of organs and immunosuppression-free transplantation of tissues and organs. PMID:23906883

  13. Will regenerative medicine replace transplantation?

    PubMed

    Orlando, Giuseppe; Soker, Shay; Stratta, Robert J; Atala, Anthony

    2013-08-01

    Recent groundbreaking advances in organ bioengineering and regeneration have provided evidence that regenerative medicine holds promise to dramatically improve the approach to organ transplantation. The two fields, however, share a common heritage. Alexis Carrel can be considered the father of both regenerative medicine and organ transplantation, and it is now clear that his legacy is equally applicable for the present and future generations of transplant and regenerative medicine investigators. In this review, we will briefly illustrate the interplay that should be established between these two complementary disciplines of health sciences. Although regenerative medicine has shown to the transplant field its potential, transplantation is destined to align with regenerative medicine and foster further progress probably more than either discipline alone. Organ bioengineering and regeneration technologies hold the promise to meet at the same time the two most urgent needs in organ transplantation, namely, the identification of a new, potentially inexhaustible source of organs and immunosuppression-free transplantation of tissues and organs.

  14. Will regenerative medicine replace transplantation?

    PubMed

    Orlando, Giuseppe; Soker, Shay; Stratta, Robert J; Atala, Anthony

    2013-08-01

    Recent groundbreaking advances in organ bioengineering and regeneration have provided evidence that regenerative medicine holds promise to dramatically improve the approach to organ transplantation. The two fields, however, share a common heritage. Alexis Carrel can be considered the father of both regenerative medicine and organ transplantation, and it is now clear that his legacy is equally applicable for the present and future generations of transplant and regenerative medicine investigators. In this review, we will briefly illustrate the interplay that should be established between these two complementary disciplines of health sciences. Although regenerative medicine has shown to the transplant field its potential, transplantation is destined to align with regenerative medicine and foster further progress probably more than either discipline alone. Organ bioengineering and regeneration technologies hold the promise to meet at the same time the two most urgent needs in organ transplantation, namely, the identification of a new, potentially inexhaustible source of organs and immunosuppression-free transplantation of tissues and organs. PMID:23906883

  15. Regenerative Medicine Build-Out

    PubMed Central

    Pfenning, Michael A.; Gores, Gregory J.; Harper, C. Michel

    2015-01-01

    Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Significance Regenerative medicine is at the

  16. [Regenerative medicine: orthopaedical applications and medico legal questions].

    PubMed

    Ricci, S; Ricci, O; Tucci, C E; Massoni, F; Sarra, M V; Ricci, S

    2012-01-01

    Over the last decades, the increase in the global population's mean age has implied a corresponding increase in degenerative disease affecting various anatomical areas and tissues, including bones and cartilages, thus provoking a rising number of disabilities and a wider usage of drugs, mostly anti-inflammatory and cortisone. New developments in technologic and biomedical fields gave birth to new subjects, such as tissue engineering, cell therapy, gene therapy that, by and large, create a knowledge network falling under the concept of Regenerative Medicine. This science is essentially based on the usage of stem cells that can replicate and renovate themselves originating, if adequately stimulated, a number of cell types. Inter alia, in orthopaedic field a particular type of adult stem cells is used, the mesenchymal stem cells (MSCs). If combined with synthetic material produced in laboratories, the usage of these cells has provided inspiration for new study interests; today, it can be applied in various degenerative and post-traumatic pathologies, with great therapeutic benefits for the patient. Actually, many studies write about an improvement in patients' life quality. In this sense appear significant reflections on legal medicine, both in accidents and insurance, of this innovative therapeutic alternative and is hopefully an equally valid process of improvement of regulatory and case law.

  17. Nanotechnologies in regenerative medicine.

    PubMed

    Kubinová, Sárka; Syková, Eva

    2010-06-01

    Nanotechnology offers promising perspectives in biomedical research as well as in clinical practice. To cover some of the latest nanotechnology trends in regenerative medicine, this review will focus on the use of nanomaterials for tissue engineering and cell therapy. Nanofibrous materials that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue-engineered scaffolds for the skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell-adhesive ligands and bioactive molecules such as drugs, enzymes and cytokines. As a new approach, nanofibers prepared by using industrial scale needleless technology have been recently introduced, and their use as scaffolds to treat spinal cord injury or as cell carriers for the regeneration of the injured cornea is the subject of much current study. Cell therapy is a modern approach of regenerative medicine for the treatment of various diseases or injuries. To follow the migration and fate of transplanted cells, superparamagnetic iron oxide nanoparticles have been developed for cell labeling and non-invasive MRI monitoring of cells in the living organism, with successful applications in, e.g, the central nervous system, heart, liver and kidney and also in pancreatic islet and stem cell transplantation. PMID:20497067

  18. Hydrogels in Regenerative Medicine

    PubMed Central

    Slaughter, Brandon V.; Khurshid, Shahana S.; Fisher, Omar Z.; Khademhosseini, Ali

    2015-01-01

    Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field. PMID:20882499

  19. The Pharmacology of Regenerative Medicine

    PubMed Central

    Saul, Justin M.; Furth, Mark E.; Andersson, Karl-Erik

    2013-01-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase “regenerative pharmacology” to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is “the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues.” As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all. PMID:23818131

  20. Regenerative medicine: an insight.

    PubMed

    Muraca, M; Galbiati, G; Realdi, G; Vilei, M T; Fabricio, A Sueli Coelho; Caruso, M

    2007-01-01

    Regenerative Medicine is a rapidly evolving field of therapy integrating different scientific and technological areas, including cell biology, biomedical and computer engineering, and clinical medicine, thus creating an interdisciplinary exchange network of skill, ideas, materials and efforts between basic and clinical research. Even if significant achievements have been obtained particularly in Plastic Surgery, Ophthalmology and Orthopedics, the field is still experimental and so far has failed to meet the expectations. The present article reviews the major hurdles that are still hampering the translational "bench to bedside" process and limiting the availability of these innovative therapeutic tools.

  1. Application of Stem Cell Technology in Dental Regenerative Medicine

    PubMed Central

    Feng, Ruoxue; Lengner, Chistopher

    2013-01-01

    Significance In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Recent Advances Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. Critical Issues We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. Future Directions From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach. PMID:24527351

  2. Transforming healthcare through regenerative medicine.

    PubMed

    Jessop, Zita M; Al-Sabah, Ayesha; Francis, Wendy R; Whitaker, Iain S

    2016-08-10

    Regenerative medicine therapies, underpinned by the core principles of rejuvenation, regeneration and replacement, are shifting the paradigm in healthcare from symptomatic treatment in the 20th century to curative treatment in the 21st century. By addressing the reasons behind the rapid expansion of regenerative medicine research and presenting an overview of current clinical trials, we explore the potential of regenerative medicine to reshape modern healthcare.

  3. Shock Waves for Possible Application in Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Hosseini, S. H. R.; Nejad, S. Moosavi; Akiyama, H.

    The paper reports experimental study of underwater shock waves effects in modification and possible control of embryonic stem cell differentiation and proliferation. The study is motivated by its application in regenerativemedicine. Underwater shock waves have been of interest for various scientific, industrial, and medical applications.

  4. Esophagus and regenerative medicine

    PubMed Central

    Londono, Ricardo; Jobe, Blair A; Hoppo, Toshitaka; Badylak, Stephen F

    2012-01-01

    In addition to squamous cell carcinoma, the incidence of Barrett’s esophagus with high-grade dysplasia and esophageal adenocarcinoma is rapidly increasing worldwide. Unfortunately, the current standard of care for esophageal pathology involves resection of the affected tissue, sometimes involving radical esophagectomy. Without exception, these procedures are associated with a high morbidity, compromised quality of life, and unacceptable mortality rates. Regenerative medicine approaches to functional tissue replacement include the use of biological and synthetic scaffolds to promote tissue remodeling and growth. In the case of esophageal repair, extracellular matrix (ECM) scaffolds have proven to be effective for the reconstruction of small patch defects, anastomosis reinforcement, and the prevention of stricture formation after endomucosal resection (EMR). More so, esophageal cancer patients treated with ECM scaffolds have shown complete restoration of a normal, functional, and disease-free epithelium after EMR. These studies provide evidence that a regenerative medicine approach may enable aggressive resection of neoplastic tissue without the need for radical esophagectomy and its associated complications. PMID:23322986

  5. Electrospun Nanofibers for Regenerative Medicine**

    PubMed Central

    Liu, Wenying; Thomopoulos, Stavros

    2013-01-01

    This article reviews recent progress in applying electrospun nanofibers to the emerging field of regenerative medicine. We begin with a brief introduction to electrospinning and nanofibers, with a focus on issues related to the selection of materials, incorporation of bioactive molecules, degradation characteristics, control of mechanical properties, and facilitation of cell infiltration. We then discuss a number of approaches to fabrication of scaffolds from electrospun nanofibers, including techniques for controlling the alignment of nanofibers and for producing scaffolds with complex architectures. We also highlight applications of the nanofiber-based scaffolds in four areas of regenerative medicine that involve nerves, dural tissues, tendons, and the tendon-to-bone insertion site. We conclude this review with perspectives on challenges and future directions for design, fabrication, and utilization of scaffolds based on electrospun nanofibers. PMID:23184683

  6. Biodegradable elastomers for biomedical applications and regenerative medicine.

    PubMed

    Bat, Erhan; Zhang, Zheng; Feijen, Jan; Grijpma, Dirk W; Poot, André A

    2014-05-01

    Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After implantation in the body, biomedical devices may be subjected to degradation and erosion. Understanding the mechanisms of these processes is essential for the development of biomedical devices or implants with a specific function, for example, scaffolds for tissue-engineering applications. For the engineering and regeneration of soft tissues (e.g., blood vessels, cardiac muscle and peripheral nerves), biodegradable polymers are needed that are flexible and elastic. The scaffolds prepared from these polymers should have tuneable degradation properties and should perform well under long-term cyclic deformation conditions. The required polymers, which are either physically or chemically crosslinked biodegradable elastomers, are reviewed in this article.

  7. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    PubMed Central

    Camacho-Morales, Alberto

    2016-01-01

    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process. PMID:27725838

  8. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    PubMed Central

    Hinderer, Svenja; Brauchle, Eva

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  9. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

    PubMed

    Ireland, Ronald G; Simmons, Craig A

    2015-11-01

    A stem cell in its microenvironment is subjected to a myriad of soluble chemical cues and mechanical forces that act in concert to orchestrate cell fate. Intuitively, many of these soluble and biophysical factors have been the focus of intense study to successfully influence and direct cell differentiation in vitro. Human pluripotent stem cells (hPSCs) have been of considerable interest in these studies due to their great promise for regenerative medicine. Culturing and directing differentiation of hPSCs, however, is currently extremely labor-intensive and lacks the efficiency required to generate large populations of clinical-grade cells. Improved efficiency may come from efforts to understand how the cell biophysical signals can complement biochemical signals to regulate cell pluripotency and direct differentiation. In this concise review, we explore hPSC mechanobiology and how the hPSC biophysical microenvironment can be manipulated to maintain and differentiate hPSCs into functional cell types for regenerative medicine and tissue engineering applications.

  10. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.

    PubMed

    Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja

    2015-11-18

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  11. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016.

  12. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications.

    PubMed

    Forostyak, Serhiy; Jendelova, Pavla; Sykova, Eva

    2013-12-01

    Diseases of the central nervous system still remain among the most challenging pathologies known to mankind, having no or limited therapeutic possibilities and a very pessimistic prognosis. Advances in stem cell biology in the last decade have shown that stem cells might provide an inexhaustible source of neurons and glia as well as exerting a neuroprotective effect on the host tissue, thus opening new horizons for tissue engineering and regenerative medicine. Here, we discuss the progress made in the cell-based therapy of spinal cord injury. An emphasis has been placed on the application of adult mesenchymal stromal cells (MSCs). We then review the latest and most significant results from in vitro and in vivo research focusing on the regenerative/neuroprotective properties of MSCs. We also attempt to correlate the effect of MSCs with the pathological events that are taking place in the nervous tissue after SCI. Finally, we discuss the results from preclinical and clinical trials involving different routes of MSC application into patients with neurological disorders of the spinal cord.

  13. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    PubMed Central

    Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174

  14. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint

    PubMed Central

    Correia, S. I.; Pereira, H.; Silva-Correia, J.; Van Dijk, C. N.; Espregueira-Mendes, J.; Oliveira, J. M.; Reis, R. L.

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions. PMID:24352667

  15. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.

    2014-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life. PMID:24741694

  16. Regenerative medicine: Current therapies and future directions

    PubMed Central

    Mao, Angelo S.; Mooney, David J.

    2015-01-01

    Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies. PMID:26598661

  17. Concise Review: Tailoring Bioengineered Scaffolds for Stem Cell Applications in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Cosson, Steffen; Otte, Ellen A.; Hezaveh, Hadi

    2015-01-01

    The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine. PMID:25575526

  18. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.

    PubMed

    Cosson, Steffen; Otte, Ellen A; Hezaveh, Hadi; Cooper-White, Justin J

    2015-02-01

    The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine.

  19. Therapeutic potential of nanoceria in regenerative medicine

    SciTech Connect

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet; Munusamy, Prabhakaran; Baer, Donald R.; McGinnis, James F.; Mattson, Mark P.; Self, William; Seal, Sudipta

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  20. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.

    PubMed

    Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.

  1. Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications.

    PubMed

    Mull, Amber N; Zolekar, Ashwini; Wang, Yu-Chieh

    2015-01-01

    Melanocytes in the skin play an indispensable role in the pigmentation of skin and its appendages. It is well known that the embryonic origin of melanocytes is neural crest cells. In adult skin, functional melanocytes are continuously repopulated by the differentiation of melanocyte stem cells (McSCs) residing in the epidermis of the skin. Many preceding studies have led to significant discoveries regarding the cellular and molecular characteristics of this unique stem cell population. The alteration of McSCs has been also implicated in several skin abnormalities and disease conditions. To date, our knowledge of McSCs largely comes from studying the stem cell niche of mouse hair follicles. Suggested by several anatomical differences between mouse and human skin, there could be distinct features associated with mouse and human McSCs as well as their niches in the skin. Recent advances in human pluripotent stem cell (hPSC) research have provided us with useful tools to potentially acquire a substantial amount of human McSCs and functional melanocytes for research and regenerative medicine applications. This review highlights recent studies and progress involved in understanding the development of cutaneous melanocytes and the regulation of McSCs. PMID:26703580

  2. Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications

    PubMed Central

    Mull, Amber N.; Zolekar, Ashwini; Wang, Yu-Chieh

    2015-01-01

    Melanocytes in the skin play an indispensable role in the pigmentation of skin and its appendages. It is well known that the embryonic origin of melanocytes is neural crest cells. In adult skin, functional melanocytes are continuously repopulated by the differentiation of melanocyte stem cells (McSCs) residing in the epidermis of the skin. Many preceding studies have led to significant discoveries regarding the cellular and molecular characteristics of this unique stem cell population. The alteration of McSCs has been also implicated in several skin abnormalities and disease conditions. To date, our knowledge of McSCs largely comes from studying the stem cell niche of mouse hair follicles. Suggested by several anatomical differences between mouse and human skin, there could be distinct features associated with mouse and human McSCs as well as their niches in the skin. Recent advances in human pluripotent stem cell (hPSC) research have provided us with useful tools to potentially acquire a substantial amount of human McSCs and functional melanocytes for research and regenerative medicine applications. This review highlights recent studies and progress involved in understanding the development of cutaneous melanocytes and the regulation of McSCs. PMID:26703580

  3. Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications.

    PubMed

    Mull, Amber N; Zolekar, Ashwini; Wang, Yu-Chieh

    2015-12-21

    Melanocytes in the skin play an indispensable role in the pigmentation of skin and its appendages. It is well known that the embryonic origin of melanocytes is neural crest cells. In adult skin, functional melanocytes are continuously repopulated by the differentiation of melanocyte stem cells (McSCs) residing in the epidermis of the skin. Many preceding studies have led to significant discoveries regarding the cellular and molecular characteristics of this unique stem cell population. The alteration of McSCs has been also implicated in several skin abnormalities and disease conditions. To date, our knowledge of McSCs largely comes from studying the stem cell niche of mouse hair follicles. Suggested by several anatomical differences between mouse and human skin, there could be distinct features associated with mouse and human McSCs as well as their niches in the skin. Recent advances in human pluripotent stem cell (hPSC) research have provided us with useful tools to potentially acquire a substantial amount of human McSCs and functional melanocytes for research and regenerative medicine applications. This review highlights recent studies and progress involved in understanding the development of cutaneous melanocytes and the regulation of McSCs.

  4. Employment of the Triple Helix concept for development of regenerative medicine applications based on human pluripotent stem cells

    PubMed Central

    2014-01-01

    Using human pluripotent stem cells as a source to generate differentiated progenies for regenerative medicine applications has attracted substantial interest during recent years. Having the capability to produce large quantities of human cells that can replace damaged tissue due to disease or injury opens novel avenues for relieving symptoms and also potentially offers cures for many severe human diseases. Although tremendous advancements have been made, there is still much research and development left before human pluripotent stem cell derived products can be made available for cell therapy applications. In order to speed up the development processes, we argue strongly in favor of cross-disciplinary collaborative efforts which have many advantages, especially in a relatively new field such as regenerative medicine based on human pluripotent stem cells. In this review, we aim to illustrate how some of the hurdles for bringing human pluripotent stem cell derivatives from bench-to-bed can be effectively addressed through the establishment of collaborative programs involving academic institutions, biotech industries, and pharmaceutical companies. By taking advantage of the strengths from each organization, innovation and productivity can be maximized from a resource perspective and thus, the chances of successfully bringing novel regenerative medicine treatment options to patients increase. PMID:24872863

  5. CMD kinetics and regenerative medicine

    PubMed Central

    Anjamrooz, Seyed Hadi

    2016-01-01

    The author’s theory of the cell memory disc (CMD) offers a radical and holistic picture of the cell from both functional and structural perspectives. Despite all of the attention that has been focused on different regenerative strategies, several serious CMD-based obstacles still remain that make current cell therapies inherently unethical, harmful, and largely ineffective from a clinical viewpoint. Accordingly, unless there is a real breakthrough in finding an alternative or complementary approach to overcome these barriers, all of the discussion regarding cell-based therapies may be fruitless. Hence, this paper focuses on the issue of CMD kinetics in an attempt to provide a fresh perspective on regenerative medicine. PMID:27186287

  6. Fluorescent Cell Imaging in Regenerative Medicine

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Murphy, Sean V.; Soker, Shay

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. PMID:27158228

  7. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  8. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Jadalannagari, Sushma; Aljitawi, Omar S

    2015-06-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.

  9. Application of 3D biomimetic models in drug delivery and regenerative medicine.

    PubMed

    Xu, Yufan; Wang, Xiaohong

    2015-01-01

    Regenerative medicine holds much promise in assisting patients to recover from injured or lost tissues and organs through organism reconstruction. Three-dimensional (3D) biomimetic models via various approaches can be used by pharmaceutical industry for controlled drug delivery. With proper biomaterials and engineering technologies, drugs can be released in a rate-manipulated manner towards targeted regions with spatial and temporal effects. Much of the success is a result of a combination of growth factors, stem cells, biomaterials, nanotechnologies, electrospinning and 3D printing techniques mimicking in vivo angiogenesis, histogenesis and tumorigenesis processes. This interdisciplinary field on biomimetic drug delivery and regenerative medicine has already opened up a new avenue for medical progress and reformation. This article presents a comprehensive review of the 3D biomimetic models in the pertinent fields of tissue and organ manufacturing, cell-material mutual interactions, bioactive agent carrier systems and anti-cancer drug delivery methods. Particularly, the potential trends and challenges of tissue and organ manufacturing are discussed from different perspectives.

  10. Emerging Applications of Stem Cell and Regenerative Medicine to Sports Injuries

    PubMed Central

    Ajibade, David A.; Vance, Danica D.; Hare, Joshua M.; Kaplan, Lee D.; Lesniak, Bryson P.

    2014-01-01

    Background: The treatment of sports-related musculoskeletal injuries with stem cells has become more publicized because of recent reports of high-profile athletes undergoing stem cell procedures. There has been increased interest in defining the parameters of safety and efficacy and the indications for potential use of stem cells in clinical practice. Purpose: To review the role of regenerative medicine in the treatment of sports-related injuries. Study Design: Review. Method: Relevant studies were identified through a PubMed search combining the terms stem cells and cartilage, ligament, tendon, muscle, and bone from January 2000 to August 2013. Studies and works cited in these studies were also reviewed. Results: Treatment of sports-related injuries with stem cells shows potential for clinical efficacy from the data available from basic science and animal studies. Conclusion: Cell-based therapies and regenerative medicine offer safe and potentially efficacious treatment for sports-related musculoskeletal injuries. Basic science and preclinical studies that support the possibility of enhanced recovery from sports injuries using cell-based therapies are accumulating; however, more clinical evidence is necessary to define the indications and parameters for their use. Accordingly, exposing patients to cell-based therapies could confer an unacceptable risk profile with minimal or no benefit. Continued clinical testing with animal models and clinical trials is necessary to determine the relative risks and benefits as well as the indications and methodology of treatment. PMID:26535296

  11. Application of 3D biomimetic models in drug delivery and regenerative medicine.

    PubMed

    Xu, Yufan; Wang, Xiaohong

    2015-01-01

    Regenerative medicine holds much promise in assisting patients to recover from injured or lost tissues and organs through organism reconstruction. Three-dimensional (3D) biomimetic models via various approaches can be used by pharmaceutical industry for controlled drug delivery. With proper biomaterials and engineering technologies, drugs can be released in a rate-manipulated manner towards targeted regions with spatial and temporal effects. Much of the success is a result of a combination of growth factors, stem cells, biomaterials, nanotechnologies, electrospinning and 3D printing techniques mimicking in vivo angiogenesis, histogenesis and tumorigenesis processes. This interdisciplinary field on biomimetic drug delivery and regenerative medicine has already opened up a new avenue for medical progress and reformation. This article presents a comprehensive review of the 3D biomimetic models in the pertinent fields of tissue and organ manufacturing, cell-material mutual interactions, bioactive agent carrier systems and anti-cancer drug delivery methods. Particularly, the potential trends and challenges of tissue and organ manufacturing are discussed from different perspectives. PMID:25594404

  12. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-01-01

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  13. Induced Pluripotent Stem Cells for Regenerative Medicine

    PubMed Central

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine. PMID:24905879

  14. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  15. Graphene-Based Materials in Regenerative Medicine.

    PubMed

    Ding, Xili; Liu, Haifeng; Fan, Yubo

    2015-07-15

    Graphene possesses many unique properties such as two-dimensional planar structure, super conductivity, chemical and mechanical stability, large surface area, and good biocompatibility. In the past few years, graphene-based materials have risen as a shining star on the path of researchers seeking new materials for future regenerative medicine. Herein, the recent research advances made in graphene-based materials mostly utilizing the mechanical and electrical properties of graphene are described. The most exciting findings addressing the impact of graphene-based materials on regenerative medicine are highlighted, with particular emphasis on their applications including nerve, bone, cartilage, skeletal muscle, cardiac, skin, adipose tissue regeneration, and their effects on the induced pluripotent stem cells. Future perspectives and emerging challenges are also addressed in this Review article.

  16. Graphene-Based Materials in Regenerative Medicine.

    PubMed

    Ding, Xili; Liu, Haifeng; Fan, Yubo

    2015-07-15

    Graphene possesses many unique properties such as two-dimensional planar structure, super conductivity, chemical and mechanical stability, large surface area, and good biocompatibility. In the past few years, graphene-based materials have risen as a shining star on the path of researchers seeking new materials for future regenerative medicine. Herein, the recent research advances made in graphene-based materials mostly utilizing the mechanical and electrical properties of graphene are described. The most exciting findings addressing the impact of graphene-based materials on regenerative medicine are highlighted, with particular emphasis on their applications including nerve, bone, cartilage, skeletal muscle, cardiac, skin, adipose tissue regeneration, and their effects on the induced pluripotent stem cells. Future perspectives and emerging challenges are also addressed in this Review article. PMID:26037920

  17. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery

    PubMed Central

    Singh, Vimal K.; Kalsan, Manisha; Kumar, Neeraj; Saini, Abhishek; Chandra, Ramesh

    2015-01-01

    such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner. PMID:25699255

  18. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery.

    PubMed

    Singh, Vimal K; Kalsan, Manisha; Kumar, Neeraj; Saini, Abhishek; Chandra, Ramesh

    2015-01-01

    such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner.

  19. Osteoarthritis year in review 2014: highlighting innovations in basic research and clinical applications in regenerative medicine.

    PubMed

    van Osch, G J V M

    2014-12-01

    Regenerative medicine is an emerging area that will influence the treatment of joint diseases in the future. It involves the use of biomaterials, cell therapy, and bioactive factors such as growth factors, drugs and small molecules, to regenerate damaged tissues. This "year in review" highlights a personal selection of promising studies published between March 2013 and March 2014 that inform on the direction in which this field is moving. This multidisciplinary field has been very active, with rapid development of new technologies that emerge from basic sciences such as the possibility to generate pluripotent stem cells without genetic modification and genetic engineering of growth factors to enhance their capacity to induce tissue repair. The increasing knowledge of the interaction between all tissues in the joint, such as the effect of bone remodeling and synovial inflammation on cartilage repair, will eventually make tissue regeneration in a compromised joint environment possible.

  20. State of the art: stem cells in equine regenerative medicine.

    PubMed

    Lopez, M J; Jarazo, J

    2015-03-01

    According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine. PMID:24957845

  1. State of the art: stem cells in equine regenerative medicine.

    PubMed

    Lopez, M J; Jarazo, J

    2015-03-01

    According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.

  2. Stem cell platforms for regenerative medicine.

    PubMed

    Nelson, Timothy J; Behfar, Atta; Yamada, Satsuki; Martinez-Fernandez, Almudena; Terzic, Andre

    2009-06-01

    The pandemic of chronic degenerative diseases associated with aging demographics mandates development of effective approaches for tissue repair. As diverse stem cells directly contribute to innate healing, the capacity for de novo tissue reconstruction harbors a promising role for regenerative medicine. Indeed, a spectrum of natural stem cell sources ranging from embryonic to adult progenitors has been recently identified with unique characteristics for regeneration. The accessibility and applicability of the regenerative armamentarium has been further expanded with stem cells engineered by nuclear reprogramming. Through strategies of replacement to implant functional tissues, regeneration to transplant progenitor cells or rejuvenation to activate endogenous self-repair mechanisms, the overarching goal of regenerative medicine is to translate stem cell platforms into practice and achieve cures for diseases limited to palliative interventions. Harnessing the full potential of each platform will optimize matching stem cell-based biologics with the disease-specific niche environment of individual patients to maximize the quality of long-term management, while minimizing the needs for adjunctive therapy. Emerging discovery science with feedback from clinical translation is therefore poised to transform medicine offering safe and effective stem cell biotherapeutics to enable personalized solutions for incurable diseases. PMID:19779576

  3. Regenerative medicine in Alzheimer's disease.

    PubMed

    Felsenstein, Kevin M; Candelario, Kate M; Steindler, Dennis A; Borchelt, David R

    2014-04-01

    Identifying novel, effective therapeutics for Alzheimer's disease (AD) is one of the major unmet medical needs for the coming decade. Because the current paradigm for developing and testing disease-modifying AD therapies is protracted and likely to be even longer, with the shift toward earlier intervention in preclinical AD, it is an open issue whether we can develop, test, and widely deploy a novel therapy in time to help the current at-risk generation if we continue to follow the standard paradigms of discovery and drug development. There is an imperative need to find safe and effective preventive measures that can be distributed rapidly to stem the coming wave of AD that will potentially engulf the next generation. We can define regenerative medicine broadly as approaches that use stem cell-based therapies or approaches that seek to modulate inherent neurogenesis. Neurogenesis, although most active during prenatal development, has been shown to continue in several small parts of the brain, including the hippocampus and the subventricular zone, suggesting its potential to reverse cognitive deficits. If AD pathology affects neurogenesis, then it follows that conditions that stimulate endogenous neurogenesis (eg, environmental stimuli, physical activity, trophic factors, cytokines, and drugs) may help to promote the regenerative and recovery process. Herein, we review the complex logistics of potentially implementing neurogenesis-based therapeutic strategies for the treatment of AD. PMID:24286919

  4. Regenerative Medicine in Alzheimer's Disease

    PubMed Central

    Felsenstein, Kevin M.; Candelario, Kate M.; Steindler, Dennis A.; Borchelt, David R.

    2013-01-01

    Identifying novel, effective therapeutics for Alzheimer's disease (AD) is one of the major unmet medical needs for the coming decade. Because the current paradigm for developing and testing disease modifying AD therapies is protracted and likely to be even longer with the shift towards earlier intervention in pre-clinical AD, it is an open question whether we can develop, test, and widely deploy a novel therapy in time to help the current at-risk generation if we continue to follow the standard paradigms of discovery and drug development. There is an imperative need to find safe and effective preventative measures that can be rapidly deployed to stem the coming wave of AD that will potentially engulf the next generation. We can broadly define regenerative medicine as approaches that use stem-cell-based therapies or approaches that seek to modulate inherent neurogenesis. Neurogenesis, though most active during pre-natal development has been shown to continue in several small parts of the brain, which includes the hippocampus and the subventricular zone, suggesting its potential to reverse cognitive deficits. If AD pathology impacts neurogenesis then it follows that conditions that stimulate endogenous neurogenesis (e.g., environmental stimuli, physical activity, trophic factors, cytokines, and drugs) may help to promote the regenerative and recovery process. Herein, we review the complex logistics of potentially implementing neurogenesis-based therapeutic strategies for the treatment of AD. PMID:24286919

  5. Perivascular cells for regenerative medicine

    PubMed Central

    Crisan, Mihaela; Corselli, Mirko; Chen, William CW; Péault, Bruno; Moldovan, NI

    2012-01-01

    Mesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We and others recently described that MSC originate from two types of perivascular cells, namely pericytes and adventitial cells and contain the in situ counterpart of MSC in developing and adult human organs, which can be prospectively purified using well defined cell surface markers. Pericytes encircle endothelial cells of capillaries and microvessels and express the adhesion molecule CD146 and the PDGFRβ, but lack endothelial and haematopoietic markers such as CD34, CD31, vWF (von Willebrand factor), the ligand for Ulex europaeus 1 (UEA1) and CD45 respectively. The proteoglycan NG2 is a pericyte marker exclusively associated with the arterial system. Besides its expression in smooth muscle cells, smooth muscle actin (αSMA) is also detected in subsets of pericytes. Adventitial cells surround the largest vessels and, opposite to pericytes, are not closely associated to endothelial cells. Adventitial cells express CD34 and lack αSMA and all endothelial and haematopoietic cell markers, as for pericytes. Altogether, pericytes and adventitial perivascular cells express in situ and in culture markers of MSC and display capacities to differentiate towards osteogenic, adipogenic and chondrogenic cell lineages. Importantly, adventitial cells can differentiate into pericyte-like cells under inductive conditions in vitro. Altogether, using purified perivascular cells instead of MSC may bring higher benefits to regenerative medicine, including the possibility, for the first time, to use these cells uncultured. PMID:22882758

  6. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

    PubMed

    Bishop, Corey J; Kim, Jayoung; Green, Jordan J

    2014-07-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.

  7. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology.

    PubMed

    Maumus, Marie; Guérit, David; Toupet, Karine; Jorgensen, Christian; Noël, Danièle

    2011-01-01

    Growing knowledge on the biology of mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for rheumatologic disorders. Historically, their potential to differentiate into cells of the bone and cartilage lineages has led to a variety of experimental strategies to investigate whether MSCs can be used for tissue engineering approaches. Beyond this potential, MSCs also display immunosuppressive properties, which have prompted research on their capacity to suppress local inflammation and tissue damage in a variety of inflammatory autoimmune diseases and, in particular, in rheumatoid arthritis. Currently, an emerging field of research comes from the possibility that these cells, through their trophic/regenerative potential, may also influence the course of chronic degenerative disorders and prevent cartilage degradation in osteoarthritis. This review focuses on these advances, specifically on the biological properties of MSCs, including their immunoregulatory characteristics, differentiation capacity and trophic potential, as well as the relevance of MSC-based therapies for rheumatic diseases. PMID:21457518

  8. Engineering Novel Thermoreversible Hydrogels with Applications in Regenerative Medicine and Delivery Systems

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Divya; Mehandru, Nikhil; Nanda, Japbani; Sun, Yicheng; Rafailovch, Miriam

    2012-02-01

    A major concern in regenerative medicine is the increasing need for effective biomaterials for scaffolds, cell delivery vehicles, and drug delivery systems. In this study, we engineered a thermo reversible composite hydrogel of hard, medium and soft stiffness by blending Pluronic F127 (F127) with biocompatible hyaluronic acid (HA) and bioadhesive gelatin. Rheological analysis demonstrated that hard gel produced the highest elastic modulus in both HA-F127 and Gelatin-F127 hydrogels. It was found that increasing the concentration of HA and gelatin increased the critical solution temperature (CST) at which the solution gels. Glucose and sodium chloride, additives commonly found within the body, were analyzed to have minimal effect on the mechanical properties but caused a decrease in CST. Adult human dermal fibroblasts were plated on the composite hydrogels to demonstrate scaffolding and cell delivery. The highest growth was observed in hard Gelatin-F127 hydrogels. Cells also showed the best response to hard Gelatin-F127 gels in shear modulation force microscopy and were found to be homogenously distributed in the three-dimensional matrix of the gels. Our novel composite hydrogel displayed synergistic properties of its individual components and had the necessary characteristics for effective use in the medical setting: mechanical strength, cell adhesion and viability.

  9. Phosphorous-Containing Polymers for Regenerative Medicine

    PubMed Central

    Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855

  10. Phosphorous-containing polymers for regenerative medicine.

    PubMed

    Watson, Brendan M; Kasper, F Kurtis; Mikos, Antonios G

    2014-04-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications.

  11. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    PubMed

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-01-01

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury. PMID:27453276

  12. Global strategic partnerships in regenerative medicine.

    PubMed

    French, Anna; Suh, Jane Y; Suh, Carol Y; Rubin, Lee; Barker, Richard; Bure, Kim; Reeve, Brock; Brindley, David A

    2014-09-01

    The approach to research and development in biomedical science is changing. Increasingly, academia and industry seek to collaborate, and share resources and expertise, by establishing partnerships. Here, we explore the co-development partnership landscape in the field of regenerative medicine, focusing on agreements involving one or more private entities. A majority of the largest biopharmaceutical companies have announced strategic partnerships with a specific regenerative medicine focus, signifying the growth and widening appeal of this emerging sector.

  13. Global strategic partnerships in regenerative medicine.

    PubMed

    French, Anna; Suh, Jane Y; Suh, Carol Y; Rubin, Lee; Barker, Richard; Bure, Kim; Reeve, Brock; Brindley, David A

    2014-09-01

    The approach to research and development in biomedical science is changing. Increasingly, academia and industry seek to collaborate, and share resources and expertise, by establishing partnerships. Here, we explore the co-development partnership landscape in the field of regenerative medicine, focusing on agreements involving one or more private entities. A majority of the largest biopharmaceutical companies have announced strategic partnerships with a specific regenerative medicine focus, signifying the growth and widening appeal of this emerging sector. PMID:25150363

  14. Extracellular Vesicles: Potential Roles in Regenerative Medicine

    PubMed Central

    De Jong, Olivier G.; Van Balkom, Bas W. M.; Schiffelers, Raymond M.; Bouten, Carlijn V. C.; Verhaar, Marianne C.

    2014-01-01

    Extracellular vesicles (EV) consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell–cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell-based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering. PMID:25520717

  15. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine

    PubMed Central

    Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei

    2015-01-01

    The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. PMID:26283705

  16. Plastic Surgery Challenges in War Wounded II: Regenerative Medicine

    PubMed Central

    Valerio, Ian L.; Sabino, Jennifer M.; Dearth, Christopher L.

    2016-01-01

    Background: A large volume of service members have sustained complex injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). These injuries are complicated by contamination with particulate and foreign materials, have high rates of bacterial and/or fungal infections, are often composite-type defects with massive soft tissue wounds, and usually have multisystem involvement. While traditional treatment modalities remain a mainstay for optimal wound care, traditional reconstruction approaches alone may be inadequate to fully address the scope and magnitude of such massive complex wounds. As a result of these difficult clinical problems, the use of regenerative medicine therapies, such as autologous adipose tissue grafting, stem cell therapies, nerve allografts, and dermal regenerate templates/extracellular matrix scaffolds, is increased as adjuncts to traditional reconstructive measures. Basic and Clinical Science Advances: The beneficial applications of regenerative medicine therapies have been well characterized in both in vitro studies and in vivo animal studies. The use of these regenerative medicine techniques in the treatment of combat casualty injuries has been increasing throughout the recent war conflicts. Clinical Care Relevance: Military medicine has shown positive results when utilizing certain regenerative medicine modalities in treating complex war wounds. As a result, multi-institution clinical trials are underway to further evaluate these observations and reconstruction measures. Conclusion: Successful combat casualty wound care often requires a combination of traditional aspects of the reconstructive ladder/elevator with adoption of various regenerative medicine therapies. Due to the recent OIF/OEF conflicts, a high volume of combat casualties have benefited from adoption of regenerative medicine therapies and increased access to innovative clinical trials. Furthermore, many of these patients have had long-term follow-up to report

  17. Plastic Surgery Challenges in War Wounded II: Regenerative Medicine

    PubMed Central

    Valerio, Ian L.; Sabino, Jennifer M.; Dearth, Christopher L.

    2016-01-01

    Background: A large volume of service members have sustained complex injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). These injuries are complicated by contamination with particulate and foreign materials, have high rates of bacterial and/or fungal infections, are often composite-type defects with massive soft tissue wounds, and usually have multisystem involvement. While traditional treatment modalities remain a mainstay for optimal wound care, traditional reconstruction approaches alone may be inadequate to fully address the scope and magnitude of such massive complex wounds. As a result of these difficult clinical problems, the use of regenerative medicine therapies, such as autologous adipose tissue grafting, stem cell therapies, nerve allografts, and dermal regenerate templates/extracellular matrix scaffolds, is increased as adjuncts to traditional reconstructive measures. Basic and Clinical Science Advances: The beneficial applications of regenerative medicine therapies have been well characterized in both in vitro studies and in vivo animal studies. The use of these regenerative medicine techniques in the treatment of combat casualty injuries has been increasing throughout the recent war conflicts. Clinical Care Relevance: Military medicine has shown positive results when utilizing certain regenerative medicine modalities in treating complex war wounds. As a result, multi-institution clinical trials are underway to further evaluate these observations and reconstruction measures. Conclusion: Successful combat casualty wound care often requires a combination of traditional aspects of the reconstructive ladder/elevator with adoption of various regenerative medicine therapies. Due to the recent OIF/OEF conflicts, a high volume of combat casualties have benefited from adoption of regenerative medicine therapies and increased access to innovative clinical trials. Furthermore, many of these patients have had long-term follow-up to report

  18. Liposomes in tissue engineering and regenerative medicine

    PubMed Central

    Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.

    2014-01-01

    Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172

  19. Regenerative medicine's historical roots in regeneration, transplantation, and translation.

    PubMed

    Maienschein, Jane

    2011-10-15

    Regenerative medicine is not new; it has not sprung anew out of stem cell science as has often been suggested. There is a rich history of study of regeneration, of development, and of the ways in which understanding regeneration advances study of development and also has practical and medical applications. This paper explores the history of regenerative medicine, starting especially with T.H. Morgan in 1901 and carrying through the history of transplantation research in the 20th century, to an emphasis on translational medicine in the late 20th century.

  20. The continued promise of stem cell therapy in regenerative medicine.

    PubMed

    Eve, David J

    2011-12-01

    The use of stem cells is galvanizing regenerative medicine research. An analysis of recent trends as typified by articles published between 2009 and 2010 in the journals Cell Transplantation--The Regenerative Medicine Journal and Medical Science Monitor demonstrate the increasing importance of stem cell research as being on the cutting edge of regenerative medicine research. The analysis revealed an even split between transplantation and non-transplantation studies, showing that both the applicability and general research is being pursued. New methods and tissue engineering are also highly important components of regenerative medicine as demonstrated by a number of the stem cell studies being involved with either ex vivo manipulation, or cotransplantation with other cells or biomaterials. This suggests that the best results may be achieved with adjuvant therapies. The non-transplantation studies were more focused on manipulation of transplantable agents including cells and scaffold systems, as well as the use of medicines and dietary supplements. The further elucidation of disease mechanisms was a major contribution. This analysis suggests that regenerative medicine is proceeding at a rapid pace and the next few years should be of considerable interest with the initial results of pioneering stem cell therapies being announced.

  1. Epidermal Stem Cells in Orthopaedic Regenerative Medicine

    PubMed Central

    Li, Jin; Zhen, Gehua; Tsai, Shin-Yi; Jia, Xiaofeng

    2013-01-01

    In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling. PMID:23727934

  2. The Regenerative Medicine in Oral and Maxillofacial Surgery: The Most Important Innovations in the Clinical Application of Mesenchymal Stem Cells

    PubMed Central

    Tatullo, Marco; Marrelli, Massimo; Paduano, Francesco

    2015-01-01

    Regenerative medicine is an emerging field of biotechnology that combines various aspects of medicine, cell and molecular biology, materials science and bioengineering in order to regenerate, repair or replace tissues. The oral surgery and maxillofacial surgery have a role in the treatment of traumatic or degenerative diseases that lead to a tissue loss: frequently, to rehabilitate these minuses, you should use techniques that have been improved over time. Since 1990, we started with the use of growth factors and platelet concentrates in oral and maxillofacial surgery; in the following period we start to use biomaterials, as well as several type of scaffolds and autologous tissues. The frontier of regenerative medicine nowadays is represented by the mesenchymal stem cells (MSCs): overcoming the ethical problems thanks to the use of mesenchymal stem cells from adult patient, and with the increasingly sophisticated technology to support their manipulation, MSCs are undoubtedly the future of medicine regenerative and they are showing perspectives unimaginable just a few years ago. Most recent studies are aimed to tissues regeneration using MSCs taken from sites that are even more accessible and rich in stem cells: the oral cavity turned out to be an important source of MSCs with the advantage to be easily accessible to the surgeon, thus avoiding to increase the morbidity of the patient. The future is the regeneration of whole organs or biological systems consisting of many different tissues, starting from an initial stem cell line, perhaps using innovative scaffolds together with the nano-engineering of biological tissues. PMID:25552921

  3. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  4. Biomolecule Delivery to Engineer the Cellular Microenvironment for Regenerative Medicine

    PubMed Central

    Bishop, Corey J.; Kim, Jayoung; Green, Jordan J.

    2013-01-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing. PMID:24170072

  5. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future.

  6. Common ethical issues in regenerative medicine.

    PubMed

    Awaya, Tsuyoshi

    2005-01-01

    One of the common ethical issues in regenerative medicine is progress in 'componentation' (= being treated as parts) of the human body, and the enhancement of the view of such "human body parts." 'Componentation' of the human body represents a preliminary step toward commodification of the human body. The process of commodification of the human body follows the steps of 'materialization' (= being treated as a material object) [first step] -- 'componentation' [second step] -- 'resourcialization' (= being treated as resources) [third step] -- commodification [fourth step]. Transplantation medicine and artificial organ developments have dramatically exposed the potential of organs and tissues as parts, and regenerative medicine has a role in advancing 'componentation' of the human body and further enhancing the view of human body parts. The 'componentation' of the human body, regardless of the degree of regenerative medicine's contribution to it, is considered as a challenge to the traditional view of human bodies and the abstract value of "Human Dignity" in the same way or alongside the 'resourcialization' and commodification. However, in the future, a new perspective of human bodies that means "a perspective whereby human bodies, organs, tissues, and even the bodies themselves are perceived as disposable tools like disposable cameras, syringes, or contact lens" and therefore a new ethical view, suitable for a new reality, may emerge.

  7. Regenerative Medicine: Charting a New Course in Wound Healing

    PubMed Central

    Gurtner, Geoffrey C.; Chapman, Mary Ann

    2016-01-01

    Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation. Recent Advances: In wound healing, as in other areas of medicine, technologies that have the potential to regenerate as opposed to repair tissue are gaining ground. These include customizable nanofiber matrices incorporating novel materials; a variety of autologous and allogeneic cell types at various stages of differentiation (e.g., pluripotent, terminally differentiated); peptides; proteins; small molecules; RNA inhibitors; and gene therapies. Critical Issues: Wound healing is a logical target for regenerative medicine due to the accessibility and structure of skin, the regenerative nature of healing, the lack of good limb salvage treatments, and the current use of cell therapies. However, more extensive knowledge of pathophysiologic targets is needed to inform regenerative strategies, and new technologies must demonstrate value in terms of outcomes and related health economic measures to achieve successful market access and penetration. Future Directions: Due to similarities in cell pathways and developmental mechanisms, regenerative technologies developed in one therapeutic area may be applicable to others. Approaches that proceed from human genomic or other big data sources to models are becoming increasingly common and will likely suggest novel therapeutic avenues. To fully capitalize on the advances in regenerative medicine, studies must demonstrate the value of new therapies in identified patient populations, and sponsors must work with regulatory agencies to develop appropriate dossiers supporting timely approval. PMID:27366592

  8. 25th Anniversary Article: Supramolecular Materials for Regenerative Medicine

    PubMed Central

    Boekhoven, Job

    2014-01-01

    In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. PMID:24496667

  9. Translational strategies and challenges in regenerative medicine.

    PubMed

    Dimmeler, Stefanie; Ding, Sheng; Rando, Thomas A; Trounson, Alan

    2014-08-01

    The scientific community is currently witnessing substantial strides in understanding stem cell biology in humans; however, major disappointments in translating this knowledge into medical therapies are flooding the field as well. Despite these setbacks, investigators are determined to better understand the caveats of regeneration, so that major pathways of repair and regrowth can be exploited in treating aged and diseased tissues. Last year, in an effort to contribute to this burgeoning field, Nature Medicine, in collaboration with the Volkswagen Foundation, organized a meeting with a panel of experts in regenerative medicine to identify the most pressing challenges, as well as the crucial strategies and stem cell concepts that can best help advance the translational regenerative field. Here some experts who participated in the meeting provide an outlook at some of those key issues and concepts. PMID:25100527

  10. Researches on regenerative medicine-current state and prospect.

    PubMed

    Wang, Zheng-Guo; Xiao, Kai

    2012-01-01

    Since 1980s, the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD) for the research on regenerative medicine. In order to push the translation of regenerative medicine forward-from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue-Regenerative Medicine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years). PMID:23069095

  11. Trends in biomedical engineering: focus on Regenerative Medicine.

    PubMed

    Asnaghi, M Adelaide; Candiani, Gabriele; Farè, Silvia; Fiore, Gianfranco B; Petrini, Paola; Raimondi, Manuela T; Soncini, Monica; Mantero, Sara

    2011-01-01

    Regenerative medicine is a critical frontier in biomedical and clinical research. The major progresses in the last few years were driven by a strong clinical need which could benefit from regenerative medicine outcomes for the treatment of a large number of conditions including birth defects, degenerative and neoplastic diseases, and traumatic injuries. Regenerative medicine applies the principles of engineering and life sciences to enhance the comprehension of the fundamental biological mechanisms underlying the structure-function relationships in physiologic and pathologic tissues and to accomplish alternative strategies for developing in vitro biological substitutes which are able to restore, maintain, or improve tissue, and organ function. This paper reviews selected approaches currently being investigated at Politecnico di Milano in the field of regenerative medicine. Specific tissue-oriented topics are divided in three sections according to each developmental stage: in vitro study, pre-clinical study, and clinical application. In vitro studies investigate the basic phenomena related to gene delivery, stem cell behavior, tissue regeneration, and to explore dynamic culture potentiality in different applications: cardiac and skeletal muscle, cartilage, hematopoietic system, peripheral nerve, and gene delivery. Specific fields of regenerative medicine, i.e., bone, blood vessels, and ligaments engineering have already reached the preclinical stage providing promising insights for further research towards clinical applications. The translation of the results obtained during in vitro and preclinical steps into clinical organ replacement is a very challenging issue, which can offer a valid alternative to fight morbidity, organ shortage, and ethical-social problems associated with allotransplantation as shown in the clinical case reported in this review.

  12. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine

    PubMed Central

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given. PMID:27379231

  13. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine.

    PubMed

    Stoppel, Whitney L; Ghezzi, Chiara E; McNamara, Stephanie L; Black, Lauren D; Kaplan, David L

    2015-03-01

    Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.

  14. Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications.

    PubMed

    Kuwabara, Tomoko; Asashima, Makoto

    2012-06-01

    Neural stem cells (NSCs), which are responsible for continuous neurogenesis during the adult stage, are present in human adults. The typical neurogenic regions are the hippocampus and the subventricular zone; recent studies have revealed that NSCs also exist in the olfactory bulb. Olfactory bulb-derived neural stem cells (OB NSCs) have the potential to be used in therapeutic applications and can be easily harvested without harm to the patient. Through the combined influence of extrinsic cues and innate programming, adult neurogenesis is a finely regulated process occurring in a specialized cellular environment, a niche. Understanding the regulatory mechanisms of adult NSCs and their cellular niche is not only important to understand the physiological roles of neurogenesis in adulthood, but also to provide the knowledge necessary for developing new therapeutic applications using adult NSCs in other organs with similar regulatory environments. Diabetes is a devastating disease affecting more than 200 million people worldwide. Numerous diabetic patients suffer increased symptom severity after the onset, involving complications such as retinopathy and nephropathy. Therefore, the development of treatments for fundamental diabetes is important. The utilization of autologous cells from patients with diabetes may address challenges regarding the compatibility of donor tissues as well as provide the means to naturally and safely restore function, reducing future risks while also providing a long-term cure. Here, we review recent findings regarding the use of adult OB NSCs as a potential diabetes cure, and discuss the potential of OB NSC-based pharmaceutical applications for neuronal diseases and mental disorders.

  15. Introduction to stem cells and regenerative medicine.

    PubMed

    Kolios, George; Moodley, Yuben

    2013-01-01

    Stem cells are a population of undifferentiated cells characterized by the ability to extensively proliferate (self-renewal), usually arise from a single cell (clonal), and differentiate into different types of cells and tissue (potent). There are several sources of stem cells with varying potencies. Pluripotent cells are embryonic stem cells derived from the inner cell mass of the embryo and induced pluripotent cells are formed following reprogramming of somatic cells. Pluripotent cells can differentiate into tissue from all 3 germ layers (endoderm, mesoderm, and ectoderm). Multipotent stem cells may differentiate into tissue derived from a single germ layer such as mesenchymal stem cells which form adipose tissue, bone, and cartilage. Tissue-resident stem cells are oligopotent since they can form terminally differentiated cells of a specific tissue. Stem cells can be used in cellular therapy to replace damaged cells or to regenerate organs. In addition, stem cells have expanded our understanding of development as well as the pathogenesis of disease. Disease-specific cell lines can also be propagated and used in drug development. Despite the significant advances in stem cell biology, issues such as ethical controversies with embryonic stem cells, tumor formation, and rejection limit their utility. However, many of these limitations are being bypassed and this could lead to major advances in the management of disease. This review is an introduction to the world of stem cells and discusses their definition, origin, and classification, as well as applications of these cells in regenerative medicine.

  16. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.

    PubMed

    Dodel, M; Hemmati Nejad, N; Bahrami, S H; Soleimani, M; Hanaee-Ahvaz, H

    2016-01-01

    Tissue reconstruction is among the increasing applications of polymer nanofibers. Fibrous scaffolds (mats) can be easily produced using the electrospinning method with structure and biomechanical properties similar to those of a cellular matrix. Electrospinning is widely used in the production of nanofibers and the GAP-method electrospinning is one of the means of producing fully aligned nanofibers. In this research, using the GAP-method, knitted fibrous scaffolds were made of silk fibroin, which is a biocompatible and biodegradable polymer. To extract fibroin from cocoons, the sodium chloride solution as well as dialysis and freeze-drying techniques were employed. The molecular weight of the extracted fibroin was measured with the SDS-Page electrophoresis technique. Moreover, the pure fibroin structure was examined using the ATR-FTIR method, and the viscosity of the solution used for electrospinning was measured with the Brookfield rotational viscometer. The scaffolds were prepared through electrospinning of the silk fibroin in pure formic acid solution. The following three structures were electrospun: 1) a random structure; 2) a knitted structure with an interstitial angle of 60 degrees; 3) a knitted structure with an interstitial angle of 90 degrees. Morphology of the resulting fibers was studied with a SEM (scanning electron microscope). Fibroin scaffolds are degradable in water. Therefore, they were fixated through immersion in methanol to be prepared for assays. The mechanical properties of the scaffolds were also studied using a tensile strength test device. The effect of methanol on the strength properties of the samples was also assessed. The hydrophilic potential of the samples was measured via a contact angle test. To increase the hydrophilicity of the scaffold surfaces, the cold oxygen plasma technique was employed. Finally, the biocompatibility and cell adhesion of the resulting scaffolds were examined through a HEK 293 cell culture, and the results

  17. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.

    PubMed

    Dodel, M; Hemmati Nejad, N; Bahrami, S H; Soleimani, M; Hanaee-Ahvaz, H

    2016-01-01

    Tissue reconstruction is among the increasing applications of polymer nanofibers. Fibrous scaffolds (mats) can be easily produced using the electrospinning method with structure and biomechanical properties similar to those of a cellular matrix. Electrospinning is widely used in the production of nanofibers and the GAP-method electrospinning is one of the means of producing fully aligned nanofibers. In this research, using the GAP-method, knitted fibrous scaffolds were made of silk fibroin, which is a biocompatible and biodegradable polymer. To extract fibroin from cocoons, the sodium chloride solution as well as dialysis and freeze-drying techniques were employed. The molecular weight of the extracted fibroin was measured with the SDS-Page electrophoresis technique. Moreover, the pure fibroin structure was examined using the ATR-FTIR method, and the viscosity of the solution used for electrospinning was measured with the Brookfield rotational viscometer. The scaffolds were prepared through electrospinning of the silk fibroin in pure formic acid solution. The following three structures were electrospun: 1) a random structure; 2) a knitted structure with an interstitial angle of 60 degrees; 3) a knitted structure with an interstitial angle of 90 degrees. Morphology of the resulting fibers was studied with a SEM (scanning electron microscope). Fibroin scaffolds are degradable in water. Therefore, they were fixated through immersion in methanol to be prepared for assays. The mechanical properties of the scaffolds were also studied using a tensile strength test device. The effect of methanol on the strength properties of the samples was also assessed. The hydrophilic potential of the samples was measured via a contact angle test. To increase the hydrophilicity of the scaffold surfaces, the cold oxygen plasma technique was employed. Finally, the biocompatibility and cell adhesion of the resulting scaffolds were examined through a HEK 293 cell culture, and the results

  18. Advances in individualized and regenerative medicine.

    PubMed

    Blum, Hubert E

    2014-03-01

    Molecular and cell biology have resulted in major advances in our understanding of disease pathogenesis as well as in novel strategies for the diagnosis, therapy and prevention of human diseases. Based on modern molecular, genetic and biochemical methodologies it is on the one hand possible to identify for example disease-related point mutations and single nucleotide polymorphisms. On the other hand, using high throughput array and other technologies, it is for example possible to simultaneously analyze thousands of genes or gene products (RNA and proteins), resulting in an individual gene or gene expression profile ('signature'). Such data increasingly allow to define the individual disposition for a given disease and to predict disease prognosis as well as the efficacy of therapeutic strategies in the individual patient ('individualized medicine'). At the same time, the basic discoveries in cell biology, including embryonic and adult stem cells, induced pluripotent stem cells, genetically modified cells and others, have moved regenerative medicine into the center of biomedical research worldwide with a major translational impact on tissue engineering as well as transplantation medicine. All these aspects have greatly contributed to the recent advances in regenerative medicine and the development novel concepts for the treatment of many human diseases, including liver diseases.

  19. The international translational regenerative medicine center.

    PubMed

    Alexis, Mardi de Veuve; Grinnemo, Karl-Henrik; Jove, Richard

    2012-11-01

    The International Translational Regenerative Medicine Center, an organizing sponsor of the World Stem Cell Summit 2012, is a global initiative established in 2011 by founding partners Karolinska Institutet (Stockholm, Sweden) and Beckman Research Institute at City of Hope (CA, USA) with a mission to facilitate the acceleration of translational research and medicine on a global scale. Karolinska Institutet, home of the Nobel Prize in Medicine or Physiology, is one of the most prestigious medical research institutions in the world. The Beckman Research Institute/City of Hope is ranked among the leading NIH-designated comprehensive cancer research and treatment institutions in the USA, has the largest academic GMP facility and advanced drug discovery capability, and is a pioneer in diabetes research and treatment.

  20. The essential materials paradigms for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Williams, David

    2011-04-01

    Medical technology is changing rapidly. Several disease states can now be treated very effectively by implantable devices that restore mechanical and physical functionality, such as replacement of hip joints or restoration of heart rhythms by pacemakers. These techniques, however, are rather limited, and no biological functionality can be restored through the use of inert materials and devices. This paper explores the role of new types of biomaterials within the emerging area of regenerative medicine, where they are able to play a powerful role in persuading the human body to regenerate itself.

  1. Bioprinting is changing regenerative medicine forever.

    PubMed

    Collins, Scott Forrest

    2014-12-01

    3D printing, or solid freeform fabrication, applied to regenerative medicine brings technologies from several industries together to help solve unique challenges in both basic science and tissue engineering. By more finely organizing cells and supporting structures precisely in 3D space, we will gain critical knowledge of cell-cell communications and cell-environment interactions. As we increase the scale, we will move toward complex tissue and organ structures where several cell phenotypes will functionally and structurally interact, thus recapitulating the form and function of native tissues and organs. PMID:25457969

  2. On the Genealogy of Tissue Engineering and Regenerative Medicine

    PubMed Central

    2015-01-01

    In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed. PMID:25343302

  3. On the genealogy of tissue engineering and regenerative medicine.

    PubMed

    Kaul, Himanshu; Ventikos, Yiannis

    2015-04-01

    In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed. PMID:25343302

  4. Trends in the stem cell and regenerative medicine industry.

    PubMed

    Ilic, Dusko

    2012-09-01

    The World Stem Cell Regenerative Medicine Congress series, now in its 7th year, is organized annually in the USA, Europe and Asia by Terrapinn, a business media company with its head office in London, and has grown over the last several years into the largest and probably the most important strategic stem cell conference where regulators, investors, big pharma, and small and medium enterprises gather to share and create synergy in developing and commercializing stem cell applications. The conference, held in London on 21-23 May 2012, only confirmed that this series is the meeting to attend if you want to get a clear understanding of trends in the stem cell and regenerative medicine industry.

  5. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  6. Stem cells: intellectual property issues in regenerative medicine.

    PubMed

    Zachariades, Nicholas A

    2013-12-01

    The topic of stem cells for use in regenerative medicine, especially embryonic stem cells, inspires much debate, discussion, and outrage as it slices through the very core moral values of society. These social and moral issues have, in turn, resulted in government policies that have influenced the study of stem cells in regenerative medicine.

  7. Regenerative medicine: the emergence of an industry.

    PubMed

    Nerem, Robert M

    2010-12-01

    Over the last quarter of a century there has been an emergence of a tissue engineering industry, one that has now evolved into the broader area of regenerative medicine. There have been 'ups and downs' in this industry; however, it now appears to be on a track that may be described as 'back to the future'. The latest data indicate that for 2007 the private sector activity in the world for this industry is approaching $2.5 billion, with 167 companies/business units and more than 6000 employee full time equivalents. Although small compared with the medical device and also the pharmaceutical industries, these numbers are not insignificant. Thus, there is the indication that this industry, and the related technology, may still achieve its potential and address the needs of millions of patients worldwide, in particular those with needs that currently are unmet.

  8. Understanding regenerative medicine: a commissioner's viewpoint.

    PubMed

    Warren, Virginia

    2013-03-01

    Regenerative medicines (RMs) represent a relatively new mode of care. Commissioners of healthcare need a pragmatic method to identify RMs which are safe and that will, when delivered in the context of an appropriate care pathway, avoid premature death and reduce morbidity for patients. This article offers a way of distinguishing between those which are useful currently and those which are not, although they may be in the future. This information is set in the context of reflection on issues that experience has demonstrated to be relevant to funding RMs. This article is potentially useful to developers of RM products as well as to commissioners of care, as it demonstrates what information will be required for a key step towards the adoption of their product.

  9. Regenerative Medicine Strategies for Esophageal Repair

    PubMed Central

    Londono, Ricardo

    2015-01-01

    Pathologies that involve the structure and/or function of the esophagus can be life-threatening. The esophagus is a complex organ comprising nonredundant tissue that does not have the ability to regenerate. Currently available interventions for esophageal pathology have limited success and are typically associated with significant morbidity. Hence, there is currently an unmet clinical need for effective methods of esophageal repair. The present article presents a review of esophageal disease along with the anatomic and functional consequences of each pathologic process, the shortcomings associated with currently available therapies, and the latest advancements in the field of regenerative medicine with respect to strategies for esophageal repair from benchtop to bedside. PMID:25813694

  10. Genetic engineering for skeletal regenerative medicine.

    PubMed

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  11. [Use of adipose tissue in regenerative medicine].

    PubMed

    Casteilla, L; Planat-Benard, V; Bourin, P; Laharrague, P; Cousin, B

    2011-04-01

    Adipose tissue is abundant and well known for its involvement in obesity and associated metabolic disorders. Its uses in regenerative medicine recently attracted many investigators, as large amounts of this tissue can be easily obtained using liposuction and it contains several populations of immature cells. The largest pool of such cells corresponds to immature stromal cells, called adipose-derived stromal cells (ADSCs). These cells are purified after proteolytic digestion of adipose tissue and selection by an adherent step. ADSCs display many common features with mesenchymal stem cells derived from bone marrow, including paracrine activity, but with some specific features, among which a greater angiogenic potential. This potential is now investigating at clinical level to treat critical ischemic hindlimb by autologous cells. Other potentials are also investigated and the treatment of fistula associated or not with Crohn's disease is reaching now phase III level.

  12. Regenerative medicine: the emergence of an industry

    PubMed Central

    Nerem, Robert M.

    2010-01-01

    Over the last quarter of a century there has been an emergence of a tissue engineering industry, one that has now evolved into the broader area of regenerative medicine. There have been ‘ups and downs’ in this industry; however, it now appears to be on a track that may be described as ‘back to the future’. The latest data indicate that for 2007 the private sector activity in the world for this industry is approaching $2.5 billion, with 167 companies/business units and more than 6000 employee full time equivalents. Although small compared with the medical device and also the pharmaceutical industries, these numbers are not insignificant. Thus, there is the indication that this industry, and the related technology, may still achieve its potential and address the needs of millions of patients worldwide, in particular those with needs that currently are unmet. PMID:20843840

  13. Carbohydrate Engineered Cells for Regenerative Medicine

    PubMed Central

    Du, Jian; Yarema, Kevin J.

    2010-01-01

    Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a “sugar code” that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering – a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx – is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine. PMID:20117158

  14. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. PMID:25953554

  15. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells.

  16. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  17. REGENERATIVE MEDICINE AS APPLIED TO GENERAL SURGERY

    PubMed Central

    Orlando, Giuseppe; Wood, Kathryn J; De Coppi, Paolo; Baptista, Pedro M; Binder, Kyle W; Bitar, Khalil N; Breuer, Christopher; Burnett, Luke; Christ, George; Farney, Alan; Figliuzzi, Marina; Holmes, James H; Koch, Kenneth; Macchiarini, Paolo; Sani, Sayed-Hadi Mirmalek; Opara, Emmanuel; Remuzzi, Andrea; Rogers, Jeffrey; Saul, Justin M; Seliktar, Dror; Shapira-Schweitzer, Keren; Smith, Tom; Solomon, Daniel; Van Dyke, Mark; Yoo, James J; Zhang, Yuanyuan; Atala, Anthony; Stratta, Robert J; Soker, Shay

    2012-01-01

    The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues or organs in order to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate. PMID:22330032

  18. Regenerative medicine as applied to general surgery.

    PubMed

    Orlando, Giuseppe; Wood, Kathryn J; De Coppi, Paolo; Baptista, Pedro M; Binder, Kyle W; Bitar, Khalil N; Breuer, Christopher; Burnett, Luke; Christ, George; Farney, Alan; Figliuzzi, Marina; Holmes, James H; Koch, Kenneth; Macchiarini, Paolo; Mirmalek Sani, Sayed-Hadi; Opara, Emmanuel; Remuzzi, Andrea; Rogers, Jeffrey; Saul, Justin M; Seliktar, Dror; Shapira-Schweitzer, Keren; Smith, Tom; Solomon, Daniel; Van Dyke, Mark; Yoo, James J; Zhang, Yuanyuan; Atala, Anthony; Stratta, Robert J; Soker, Shay

    2012-05-01

    The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues, or organs to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues, and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate.

  19. Science and Ethics: Bridge to the Future for Regenerative Medicine

    PubMed Central

    Patricio, Ventura-Juncá

    2011-01-01

    The objective of this article is to reflect on the relationship between regenerative medicine and ethics, using as references the Aristotelian concept of what is ethical and that of Raessler Van Potter about bioethics. To do this, I will briefly describe the advances in regenerative medicine with stem cells, the strategies for producing pluripotential cells without destroying human embryos, and the great potential of stem cells to improve life for Humanity, noting that for this to be possible, it is necessary to locate the role of regenerative medicine in the context of human values and well being. In this way, this article has a real perspective of the role that regenerative medicine can play in benefitting human beings and engendering respect for human and natural environments. PMID:24298338

  20. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    PubMed

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.

  1. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  2. The regenerative medicine coalition. Interview with Frank-Roman Lauter.

    PubMed

    Lauter, Frank-Roman

    2012-11-01

    Frank-Roman Lauter, Secretary General of the recently launched Regenerative Medicine Coalition, explains how the coalition was formed and what they hope to achieve. Frank-Roman Lauter has served as Secretary General of the Regenerative Medicine Coalition since 2012, and as Head of Business Development at Berlin-Brandenburg Center for Regenerative Therapies since 2007. Frank-Roman Lauter's interest is the organization of academic infrastructures to promote efficient translation of research findings into new therapies. He co-organizes joined strategy development for regenerative medicine clusters from seven European countries (FP7-EU Project) and has initiated cooperation between the California Institute for Regenerative Medicine and the German Federal Ministry for Education & Research, resulting in a joined funding program. Recently, he cofounded the international consortium of Regenerative Medicine translational centers (RMC; www.the-rmc.org ). Trained as a molecular biologist at the Max-Planck Institute in Berlin-Dahlem and at Stanford, he has 16 years of experience as an entrepreneur and life science manager in Germany and the USA. PMID:23210813

  3. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    PubMed

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V

    2015-01-01

    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well

  4. miRNA Inhibition in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Beavers, Kelsey R.; Nelson, Christopher E.; Duvall, Craig L.

    2014-01-01

    MicroRNA (miRNA) are noncoding RNA that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has recently motivated expanding efforts toward development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair. PMID:25553957

  5. Physiological regeneration of skin appendages and implications for regenerative medicine

    PubMed Central

    Chuong, Cheng-Ming; Randall, Valerie A; Widelitz, Randall B.; Wu, Ping; Jiang, Ting-Xin

    2013-01-01

    The concept of regenerative medicine is relatively new, but animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. Here we focus on 1) how extra-follicular environments can regulate hair and feather stem cell activities and 2) how different configurations of stem cells can shape organ forms in different body regions to fulfil changing physiological needs. PMID:22505663

  6. Rethinking Regenerative Medicine: A Macrophage-Centered Approach

    PubMed Central

    Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.

    2014-01-01

    Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host–biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes. PMID:25408693

  7. Stem cells have the potential to rejuvenate regenerative medicine research.

    PubMed

    Eve, David J; Fillmore, Randolph; Borlongan, Cesar V; Sanberg, Paul R

    2010-10-01

    The increasing number of publications featuring the use of stem cells in regenerative processes supports the idea that they are revolutionizing regenerative medicine research. In an analysis of the articles published in the journal Cell Transplantation - The Regenerative Medicine Journal between 2008 and 2009, which reveals the topics and categories that are on the cutting edge of regenerative medicine research, stem cells are becoming increasingly relevant as the "runner-up" category to "neuroscience" related articles. The high volume of stem cell research casts a bright light on the hope for stem cells and their role in regenerative medicine as a number of reports deal with research using stem cells entering, or seeking approval for, clinical trials. The "methods and new technologies" and "tissue engineering" sections were almost equally as popular, and in part, reflect attempts to maximize the potential of stem cells and other treatments for the repair of damaged tissue. Transplantation studies were again more popular than non-transplantation, and the contribution of stem cell-related transplants was greater than other types of transplants. The non-transplantation articles were predominantly related to new methods for the preparation, isolation and manipulation of materials for transplant by specific culture media, gene therapy, medicines, dietary supplements, and co-culturing with other cells and further elucidation of disease mechanisms. A sizeable proportion of the transplantation articles reported on how previously new methods may have aided the ability of the cells or tissue to exert beneficial effects following transplantation.

  8. Nanotechnology-based approaches for regenerative medicine and biosensing

    NASA Astrophysics Data System (ADS)

    Solanki, Aniruddh P.

    The recent emergence of nanotechnology has set high expectations in many fields of science, especially in biology and medicine. Nanotechnology-based approaches are expected to solve key questions in the emerging field of regenerative medicine. Regenerative medicine essentially deals with regeneration of cells, ultimately leading to the formation of tissues and organs. For this purpose, stem cells, embryonic stem cells or adult stem cells, are thought to be ideal resources. However, many challenges need to be addressed before the full therapeutic potential of stem cells can be harnessed. Controlling the differentiation of stem cells into cells of a specific lineage is extremely vital and challenging. Addressing this challenge, in this work, novel nanotechnology-based approaches for controlling the differentiation of neural stem cells (NSCs) into neurons has been presented. Regeneration of damaged neurons, due to traumatic injuries or degenerative diseases, is extremely challenging. For this purpose, NSCs can be used as resources that can differentiate into neurons, thus having great potential in solving needs of many patients suffering from such conditions. For controlling the differentiation of stem cells, soluble cues (comprising of small molecules and biomolecules) and insoluble cues (cell-cell interactions and cell-microenvironment interactions) play a very important role. The delivery of soluble cues, such as genetic material, into stem cells is extremely challenging. The initial part of this work presents the use of nanomaterials for efficiently delivering soluble cues such as small molecules and small interfering RNA (siRNA) into NSCs for controlling their differentiation into neurons. However, for regenerative purposes, it is preferred that least amounts of the delivery vehicle be used. Thus, the following part of the thesis presents the development and applications of nanotechnology-based approaches for enhancing the differentiation of NSCs into neurons

  9. Translational Models for Musculoskeletal Tissue Engineering and Regenerative Medicine

    PubMed Central

    Ratcliffe, Anthony

    2010-01-01

    The National Institutes of Health–sponsored workshop “Translational Models for Musculoskeletal Tissue Engineering and Regenerative Medicine” was held to describe the utility of various translational models for engineered tissues and regenerative medicine therapies targeting intervertebral disc, cartilage, meniscus, ligament, tendon, muscle, and bone. Participants included leaders in the various topics, as well as National Institutes of Health and Food and Drug Administration. The Food and Drug Administration representatives provided perspectives and needs for studies supported by animal models. Researchers described animal models for specific tissues and addressed the following questions: (1) What are the unmet musculoskeletal clinical needs that may be addressed by tissue engineering and regenerative medicine? (2) Are there appropriate models available? (3) Are there needs to develop standardized animal models? (4) What are the translational pathways that lead to clinical trials and therapeutic development? The workshop provided an effective and succinct summary of the status of various animal models in musculoskeletal regenerative medicine. Although many models are available and serve well to answer a variety of questions, the general consensus was that there is a substantial need for improved and standardized animal models for tissue engineering and regenerative medicine of the musculoskeletal system, and that animal models, especially large animal models, are critical to the preclinical step of translating research from bench to bedside. PMID:19905871

  10. Induced pluripotent stem cells in regenerative medicine and disease modeling.

    PubMed

    Walmsley, Graham G; Hyun, Jeong; McArdle, Adrian; Senarath-Yapa, Kshemendra; Hu, Michael S; Chung, Michael T; Wong, Victor W; Longaker, Michael T; Wan, Derrick C

    2014-03-01

    In 2006, Dr. Yamanaka created the induced pluripotent stem cell (iPSC) by reprogramming adult fibroblasts back to an immature, pluripotent state. Effectively bypassing the ethical constraints of human embryonic stem cells, iPSCs have expanded the horizons of regenerative medicine by offering a means to derive autologous patient-matched cells and tissues for clinical transplantation. However, persisting safety concerns must be addressed prior to their widespread clinical application. In this review, we discuss the history of iPSCs, derivation strategies, and current research involving gene therapy and disease modeling. We review the potential of iPSCs for improving a range of cell-based therapies and obstacles to their clinical implementation.

  11. Toward a convergence of regenerative medicine, rehabilitation, and neuroprosthetics.

    PubMed

    Aravamudhan, Shyam; Bellamkonda, Ravi V

    2011-11-01

    No effective therapeutic interventions exist for severe neural pathologies, despite significant advances in regenerative medicine, rehabilitation, and neuroprosthetics. Our current hypothesis is that a specific combination of tissue engineering, pharmacology, cell replacement, drug delivery, and electrical stimulation, together with plasticity-promoting and locomotor training (neurorehabilitation) is necessary to interact synergistically in order to activate and enable all damaged circuits. We postulate that various convergent themes exist among the different therapeutic fields. Therefore, the objective of this review is to highlight the convergent themes, which we believe have a common goal of restoring function after neural damage. The convergent themes discussed in this review include modulation of inflammation and secondary damage, encouraging endogenous repair/regeneration (using scaffolds, cell transplantation, and drug delivery), application of electrical fields to modulate healing and/or activity, and finally modulation of plasticity.

  12. Regenerative medicine in China: demands, capacity, and regulation.

    PubMed

    Cheng, Biao; Lu, Shuliang; Fu, Xiaobing

    2016-01-01

    Regenerative medicine (RM) is an emerging interdisciplinary field of research. Its clinical application focuses on the repair, replacement, and regeneration of cells, tissues, and organs by approaches including cell reprogramming, stem cell transplantation, tissue engineering, activating factors, and clone treatment. RM has become a hot point of research in China and other countries. China's main and local governments have attached great importance to RM and given strong support in relevant policies and funding. About 3.5 billion RMB has been invested in this field. Since 1999, China has established about 30 RM centers and cooperates with many advanced countries in RM research and benefits from their cooperation. However, China needs to develop standards, regulations, and management practices suitable for the healthy development of RM. In this review, we focus on its great demand, capacity, and relative regulations. PMID:27574693

  13. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    PubMed Central

    Patel, Devang M.; Shah, Jainy; Srivastava, Anand S.

    2013-01-01

    Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases. PMID:23577036

  14. Regenerative medicine and stem cell based drug discovery.

    PubMed

    Sakurada, Kazuhiro; McDonald, Fiona M; Shimada, Fumiki

    2008-01-01

    As William Shakespeare beautifully described, increasing age often causes loss of tissue and organ function. The increase in average life expectancy in many countries is generating an aging society and an increase in age-related health problems. Regenerative medicine is expected to be a powerful actor in this drama, and stem cell technology may hold the key to the development of innovative treatments for acute and chronic degenerative conditions. This Review surveys the present situation and some future prospects for regenerative medicine and stem cell based drug discovery. PMID:18624353

  15. Turning Regenerative Medicine Breakthrough Ideas and Innovations into Commercial Products.

    PubMed

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Culme-Seymour, Emily; Mason, Chris; Stroemer, Paul; Najimi, Mustapha; Sokal, Etienne; Wilson, Clayton; Barone, Joe; Aras, Rahul; Chiesi, Andrea

    2015-12-01

    The TERMIS-Europe (EU) Industry committee intended to address the two main critical issues in the clinical/commercial translation of Advanced Therapeutic Medicine Products (ATMP): (1) entrepreneurial exploitation of breakthrough ideas and innovations, and (2) regulatory market approval. Since January 2012, more than 12,000 publications related to regenerative medicine and tissue engineering have been accepted for publications, reflecting the intense academic research activity in this field. The TERMIS-EU 2014 Industry Symposium provided a reflection on the management of innovation and technological breakthroughs in biotechnology first proposed to contextualize the key development milestones and constraints of allocation of financial resources, in the development life-cycle of radical innovation projects. This was illustrated with the biofuels story, sharing similarities with regenerative medicine. The transition was then ensured by an overview of the key identified challenges facing the commercialization of cell therapy products as ATMP examples. Real cases and testimonies were then provided by a palette of medical technologies and regenerative medicine companies from their commercial development of cell and gene therapy products. Although the commercial development of ATMP is still at the proof-of-concept stage due to technology risks, changing policies, changing markets, and management changes, the sector is highly dynamic with a number of explored therapeutic approaches, developed by using a large diversity of business models, both proposed by the experience, pitfalls, and successes of regenerative medicine pioneers, and adapted to the constraint resource allocation and environment in radical innovation projects.

  16. Particle assemblies: toward new tools for regenerative medicine.

    PubMed

    Roux, R; Ladavière, C; Montembault, A; Delair, T

    2013-04-01

    Regenerative medicine is a demanding field in terms of design and elaboration of materials able to meet the specifications that this application imposes. The regeneration of tissue is a multiscale issue, from the signaling molecule through cell expansion and finally tissue growth requiring a large variety of cues that should be delivered in place and time. Hence, the materials should be able to accommodate cells with respect to their phenotypes, to allow cell division to the right tissue, to maintain the integrity of the surrounding sane tissue, and eventually use their signaling machinery to serve the development of the appropriate neo-tissue. They should also present the ability to deliver growth factors and regulate tissue development, to be degraded into safe products, in order not to impede tissue development, and finally be easily implanted/injected into the patients. In this context, colloid-based materials represent a very promising family of products because one can take advantage of their high specific area, their capability to carry/deliver bio-active molecules, and their capacity of assembling (eventually in vivo) into materials featuring other mechanical, rheological, physicochemical properties. Other benefits of great interest would be their ease of production even via high through-put processes and their potential manufacturing from safe, biodegradable and biocompatible parent raw material. This review describes the state-of-the-art of processes leading to complex materials from the assembly of colloids meeting, at least partially, the above-described specifications for tissue engineering and regenerative medicine. PMID:23827536

  17. Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Wan, Ying; Li, Xing; Wang, Shenqi

    2016-07-01

    Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.

  18. Induced pluripotent stem cell technology in regenerative medicine and biology.

    PubMed

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A

    2010-01-01

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  19. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    NASA Astrophysics Data System (ADS)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  20. Systemically Administered, Target Organ-Specific Therapies for Regenerative Medicine

    PubMed Central

    Järvinen, Tero A. H.; May, Ulrike; Prince, Stuart

    2015-01-01

    Growth factors and other agents that could potentially enhance tissue regeneration have been identified, but their therapeutic value in clinical medicine has been limited for reasons such as difficulty to maintain bioactivity of locally applied therapeutics in the protease-rich environment of regenerating tissues. Although human diseases are treated with systemically administered drugs in general, all current efforts aimed at enhancing tissue repair with biological drugs have been based on their local application. The systemic administration of growth factors has been ruled out due to concerns about their safety. These concerns are warranted. In addition, only a small proportion of systemically administered drugs reach their intended target. Selective delivery of the drug to the target tissue and use of functional protein domains capable of penetrating cells and tissues could alleviate these problems in certain circumstances. We will present in this review a novel approach utilizing unique molecular fingerprints (“Zip/postal codes”) in the vasculature of regenerating tissues that allows target organ-specific delivery of systemically administered therapeutic molecules by affinity-based physical targeting (using peptides or antibodies as an “address tag”) to injured tissues undergoing repair. The desired outcome of targeted therapies is increased local accumulation and lower systemic concentration of the therapeutic payload. We believe that the physical targeting of systemically administered therapeutic molecules could be rapidly adapted in the field of regenerative medicine. PMID:26437400

  1. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Cui, Xiaofeng; Boland, Thomas; D’Lima, Darryl D.; Lotz, Martin K.

    2013-01-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting living systems and the bioprinting in tissue engineering field. PMID:22436025

  2. The generation of hybrid electrospun nanofiber layer with extracellular matrix derived from human pluripotent stem cells, for regenerative medicine applications.

    PubMed

    Shtrichman, Ronit; Zeevi-Levin, Naama; Zaid, Rinat; Barak, Efrat; Fishman, Bettina; Ziskind, Anna; Shulman, Rita; Novak, Atara; Avrahami, Ron; Livne, Erella; Lowenstein, Lior; Zussman, Eyal; Itskovitz-Eldor, Joseph

    2014-10-01

    Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs. Exploiting the advantages of electrospinning we generated two types of electrospun biodegradable nanofiber layers (NFLs), fabricated from polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), which provide mechanical support for cell seeding and ECM generation. Elucidating the optimized decellularization treatment we were able to generate an available "off-the-shelf" implantable product (NFL-ECM). Using rat subcutaneous transplantation model we demonstrate that this stem-cell-derived construct is biocompatible and biodegradable and holds great potential for tissue regeneration applications. PMID:25185111

  3. The generation of hybrid electrospun nanofiber layer with extracellular matrix derived from human pluripotent stem cells, for regenerative medicine applications.

    PubMed

    Shtrichman, Ronit; Zeevi-Levin, Naama; Zaid, Rinat; Barak, Efrat; Fishman, Bettina; Ziskind, Anna; Shulman, Rita; Novak, Atara; Avrahami, Ron; Livne, Erella; Lowenstein, Lior; Zussman, Eyal; Itskovitz-Eldor, Joseph

    2014-10-01

    Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs. Exploiting the advantages of electrospinning we generated two types of electrospun biodegradable nanofiber layers (NFLs), fabricated from polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), which provide mechanical support for cell seeding and ECM generation. Elucidating the optimized decellularization treatment we were able to generate an available "off-the-shelf" implantable product (NFL-ECM). Using rat subcutaneous transplantation model we demonstrate that this stem-cell-derived construct is biocompatible and biodegradable and holds great potential for tissue regeneration applications.

  4. Polymer-based microparticles in tissue engineering and regenerative medicine.

    PubMed

    Oliveira, Mariana B; Mano, João F

    2011-07-01

    Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self-assembly of hydrogel microblocks and the use of leachable particles in three-dimensional (3D) layer-by-layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed.

  5. Repairing quite swimmingly: advances in regenerative medicine using zebrafish

    PubMed Central

    Goessling, Wolfram; North, Trista E.

    2014-01-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. PMID:24973747

  6. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine.

    PubMed

    Mohandas, Gokhuldass; Oskolkov, Nikita; McMahon, Michael T; Walczak, Piotr; Janowski, Miroslaw

    2014-01-01

    For centuries, inflammatory/foreign body reactions have plagued the attempts of clinicians to use metals for tissue and bone reconstructions. Since corrosion contributes to the rejection of metal by the body, an extremely bioinert metal - tantalum - has been successfully used in medicine. The outstanding biocompatibility and flexibility of tantalum established the basis for a growing cadre of clinical applications. One important application which benefited from the introduction of powder (particle) metallurgy is use of tantalum as bone implants. Porous materials have re-shaped the landscape of bone implants, as they allow for bone ingrowth and biological fixation, and eliminate implant loosening and related treatment failures. The unique bone-mimicking properties of porous tantalum enabled the use of tantalum as a material for bulk implants, and not only for coatings, as is the case with other porous metals. Moreover, porous tantalum also facilitates the ingrowth of soft tissue, including the formation of blood vessels that were found to assemble on the surface and within the structure of the porous tantalum. Also, since tantalum is strongly radiopaque due its high atomic number, this property is widely employed for marking in orthopedics and in endovascular medical devices. Another important development was the production of nanoparticles based on tantalum. These particles have been shown to be superior to iodinated contrast agents for blood pool imaging applications due to their longer circulation time. Their properties are similar to gold nanoparticles, but are far more cost-effective, and thus, well-positioned to replace gold in regenerative medicine for labeling and tracking of cell grafts through x-ray-based imaging. However, the amount of tantalum nanoparticles that can be taken up by stem cells is not enough to make individual cells visible in x-ray images. Thus, alternative strategies are needed, such as hydrogel or nanofiber scaffolds, which can be loaded

  7. Stem cells from amniotic fluid--Potential for regenerative medicine.

    PubMed

    Loukogeorgakis, Stavros P; De Coppi, Paolo

    2016-02-01

    Regenerative medicine has recently been established as an emerging field focussing on repair, replacement or regeneration of cells, tissues and whole organs. The significant recent advances in the field have intensified the search for novel sources of stem cells with potential for therapy. Recently, researchers have identified the amniotic fluid as an untapped source of stem cells that are multipotent, possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. Stem cells from the amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumours, which make them an ideal candidate for tissue engineering applications. In addition, their ability to engraft in injured organs and modulate immune and repair responses of host tissues suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases affecting major tissues/organs. This review summarises the evidence on amniotic fluid cells over the past 15 years and explores the potential therapeutic applications of amniotic fluid stem cells and amniotic fluid mesenchymal stem cells.

  8. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.

    PubMed

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-10-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds' fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields.

  9. [Ethical, legal and social issues on regenerative medicine].

    PubMed

    Tsukata, Yukiyoshi

    2004-08-01

    There should have been it for the purpose of the severe handling opening meatus for done study after "The law concerning regulation relating to human cloning techniques and other similar techniques" paid its attention to medical utility of "specified embryo", and having forbidden transplantation to prenatal. There is a problem and asks a law and consistency with "The guidelines for handling of specified embryo" it and, despite the duration, does not get skill. If an ES cell, tissue stem cell and human clone embryo can cry in subject of study as the Trinity, it is not possible for those availability and evaluation of safety. Study of regenerative medicine does not consist last if does not use a cell having gamete, germ, an embryo and the specific character which said. We attention to utility of regenerative medicine and takes a national strategic part, correspondence supporting development of steady study is demanded. The result is reduced to its elements in the future by society.

  10. Achieving reimbursement for regenerative medicine products in the USA.

    PubMed

    Ginty, P J; Singh, P B; Smith, D; Hourd, P; Williams, D J

    2010-05-01

    Achieving reimbursement for regenerative medicine products is potentially a greater challenge than gaining US FDA approval, making it a decisive factor in the success or failure of small businesses. However, the mechanisms by which reimbursement is achieved are still seen as something of a 'black box', especially to those outside of the USA. This report aims to provide insights into the mechanisms of reimbursement and variety of payers in the USA, and to act as a starting point for a successful US reimbursement strategy. Fundamental concepts such as coverage, payment and coding are explained and linked with the factors that potentially determine the successful reimbursement of regenerative medicine products, including cost of goods and clinical study design. Finally, important considerations for the design of clinical studies that satisfy both the payers and the FDA are discussed and the key elements of a successful company strategy identified.

  11. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  12. Regenerative medicine in Europe: global competition and innovation governance.

    PubMed

    Hogarth, Stuart; Salter, Brian

    2010-11-01

    Leading European nations with strong biotech sectors, such as the UK and Germany, are investing heavily in regenerative medicine, seeking competitive advantage in this emerging sector. However, in the broader biopharmaceutical sector, the EU is outperformed by the USA on all metrics, reflecting longstanding problems: limited venture capital finance, a fragmented patent system, and relatively weak relations between academia and industry. The current global downturn has exacerbated these difficulties. The crisis comes at a time when the EU is reframing its approach to the governance of innovation and renewing its commitment to the goal of making Europe the leading player in the global knowledge economy. If the EU is to gain a competitive advantage in the regenerative medicine sector then it must coordinate a complex multilevel governance framework that encompasses the EU, member states and regional authorities. This article takes stock of Europe's current competitive position within the global bioeconomy, drawing on a variety of metrics in the three intersecting spheres of innovation governance: science, market and society. These data then provide a platform for reviewing the problems of innovation governance faced by the EU and the strategic choices that have to be confronted in the regenerative medicine sector.

  13. Regenerative medicine in Europe: global competition and innovation governance.

    PubMed

    Hogarth, Stuart; Salter, Brian

    2010-11-01

    Leading European nations with strong biotech sectors, such as the UK and Germany, are investing heavily in regenerative medicine, seeking competitive advantage in this emerging sector. However, in the broader biopharmaceutical sector, the EU is outperformed by the USA on all metrics, reflecting longstanding problems: limited venture capital finance, a fragmented patent system, and relatively weak relations between academia and industry. The current global downturn has exacerbated these difficulties. The crisis comes at a time when the EU is reframing its approach to the governance of innovation and renewing its commitment to the goal of making Europe the leading player in the global knowledge economy. If the EU is to gain a competitive advantage in the regenerative medicine sector then it must coordinate a complex multilevel governance framework that encompasses the EU, member states and regional authorities. This article takes stock of Europe's current competitive position within the global bioeconomy, drawing on a variety of metrics in the three intersecting spheres of innovation governance: science, market and society. These data then provide a platform for reviewing the problems of innovation governance faced by the EU and the strategic choices that have to be confronted in the regenerative medicine sector. PMID:21082895

  14. Planarians: an In Vivo Model for Regenerative Medicine.

    PubMed

    Karami, Ali; Tebyanian, Hamid; Goodarzi, Vahabodin; Shiri, Sajad

    2015-11-01

    The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×10(8) base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population.

  15. Planarians: an In Vivo Model for Regenerative Medicine

    PubMed Central

    Karami, Ali; Tebyanian, Hamid; Goodarzi, Vahabodin; Shiri, Sajad

    2015-01-01

    The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×108 base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population. PMID:26634061

  16. Dedifferentiated fat cells: A cell source for regenerative medicine

    PubMed Central

    Jumabay, Medet; Boström, Kristina I

    2015-01-01

    The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration. PMID:26640620

  17. Adipose tissue-derived stem cells in neural regenerative medicine.

    PubMed

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  18. Adipose tissue-derived stem cells in neural regenerative medicine.

    PubMed

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future. PMID:25647067

  19. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    PubMed

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  20. Dedifferentiated fat cells: A cell source for regenerative medicine.

    PubMed

    Jumabay, Medet; Boström, Kristina I

    2015-11-26

    The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.

  1. Tissue engineering and regenerative medicine: history, progress, and challenges.

    PubMed

    Berthiaume, François; Maguire, Timothy J; Yarmush, Martin L

    2011-01-01

    The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured tissues. A significant portion of this effort has been translated to actual therapies, especially in the areas of skin replacement and, to a lesser extent, cartilage repair. A good amount of thoughtful work has also yielded prototypes of other tissue substitutes such as nerve conduits, blood vessels, liver, and even heart. Forward movement to clinical product, however, has been slow. Another offshoot of these efforts has been the incorporation of some new exciting technologies (e.g., microfabrication, 3D printing) that may enable future breakthroughs. In this review we highlight the modest beginnings of the field and then describe three application examples that are in various stages of development, ranging from relatively mature (skin) to ongoing proof-of-concept (cartilage) to early stage (liver). We then discuss some of the major issues that limit the development of complex tissues, some of which are fundamentals-based, whereas others stem from the needs of the end users.

  2. Regenerative medicine in China: main progress in different fields.

    PubMed

    Cheng, Biao; Lu, Shu-Liang; Fu, Xiao-Bing

    2016-01-01

    Regenerative medicine (RM) is an emerging interdisciplinary field of research and China has developed the research quickly and impressed the world with numerous research findings in stem cells, tissue engineering, active molecules and gene therapy. Important directions are induced differentiation of induced pluripotent stem and embryo stem cells as well as somatic stem cell differentiation potential and their application in trauma, burns, diseases of aging and nerve regeneration. The products ActivSkin and bone repair scaffolds have been approved and are applied in the clinic, and similar products are being studied. About 10 engineered growth-factor drugs for repair and regeneration have been approved and are used in the clinic. Gene therapy, therapeutic cloning and xenotransplantation are some of the strategies being studied. However, China needs to develop standards, regulations and management practices suitable for the healthy development of RM. Aspects that should be strengthened include sound administrative systems, laws, and technical specifications and guidelines; conservation of stem cell resources; emphasis on training and retention of talented stem cell researchers; and reasonable allocation of resources, diversification of investment and breakthroughs in key areas. Finally, broad and deep international cooperation is necessary. PMID:27547444

  3. Regenerative medicine in China: main progress in different fields.

    PubMed

    Cheng, Biao; Lu, Shu-Liang; Fu, Xiao-Bing

    2016-01-01

    Regenerative medicine (RM) is an emerging interdisciplinary field of research and China has developed the research quickly and impressed the world with numerous research findings in stem cells, tissue engineering, active molecules and gene therapy. Important directions are induced differentiation of induced pluripotent stem and embryo stem cells as well as somatic stem cell differentiation potential and their application in trauma, burns, diseases of aging and nerve regeneration. The products ActivSkin and bone repair scaffolds have been approved and are applied in the clinic, and similar products are being studied. About 10 engineered growth-factor drugs for repair and regeneration have been approved and are used in the clinic. Gene therapy, therapeutic cloning and xenotransplantation are some of the strategies being studied. However, China needs to develop standards, regulations and management practices suitable for the healthy development of RM. Aspects that should be strengthened include sound administrative systems, laws, and technical specifications and guidelines; conservation of stem cell resources; emphasis on training and retention of talented stem cell researchers; and reasonable allocation of resources, diversification of investment and breakthroughs in key areas. Finally, broad and deep international cooperation is necessary.

  4. Organizational profile: UK regenerative medicine platform immunomodulation hub.

    PubMed

    Asante, Curtis O

    2015-01-01

    The UK Regenerative Medicine Platform was launched in 2013 as a jointly funded venture by the Biotechnology and Biological Sciences Research Council (BBSRC), Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council (EPSRC) and Medical Research Council (MRC) to address the technical and scientific challenges associated with translating promising scientific discoveries into the clinical setting. The first stage of the Platform involved the establishment of five interdisciplinary and cross-institutional research Hubs and the final Hub, the Immunomodulation Hub, was formed in 2014. The Immunomodulation Hub comprises scientists from diverse clinical and nonclinical research backgrounds. Collectively, they provide expertise in tissues for which there is an unmet clinical need for regenerative treatments, in innate and adaptive immunity and in whole organ transplantation. Their vision is that by working together to determine how regenerative medicine cell therapies in a laboratory setting are affected by the immune system, they will make a substantial contribution to long-term clinical deliverables that include improved efficacy of photoreceptor cell therapy to treat blindness; improved repair of damaged heart tissue; and improved survival and functionality of transplanted hepatocytes as an alternative to liver transplantation.

  5. Regenerative medicine: advances in new methods and technologies.

    PubMed

    Park, Dong-Hyuk; Eve, David J

    2009-11-01

    The articles published in the journal Cell Transplantation - The Regenerative Medicine Journal over the last two years reveal the recent and future cutting-edge research in the fields of regenerative and transplantation medicine. 437 articles were published from 2007 to 2008, a 17% increase compared to the 373 articles in 2006-2007. Neuroscience was still the most common section in both the number of articles and the percentage of all manuscripts published. The increasing interest and rapid advance in bioengineering technology is highlighted by tissue engineering and bioartificial organs being ranked second again. For a similar reason, the methods and new technologies section increased significantly compared to the last period. Articles focusing on the transplantation of stem cell lineages encompassed almost 20% of all articles published. By contrast, the non-stem cell transplantation group which is made up primarily of islet cells, followed by biomaterials and fetal neural tissue, etc. comprised less than 15%. Transplantation of cells pre-treated with medicine or gene transfection to prolong graft survival or promote differentiation into the needed phenotype, was prevalent in the transplantation articles regardless of the kind of cells used. Meanwhile, the majority of non-transplantation-based articles were related to new devices for various purposes, characterization of unknown cells, medicines, cell preparation and/or optimization for transplantation (e.g. isolation and culture), and disease pathology.

  6. Cell/tissue processing information system for regenerative medicine.

    PubMed

    Iwayama, Daisuke; Yamato, Masayuki; Tsubokura, Tetsuya; Takahashi, Minoru; Okano, Teruo

    2014-04-01

    When conducting clinical studies of regenerative medicine, compliance to good manufacturing practice (GMP) is mandatory, and thus much time is needed for manufacturing and quality management. It is therefore desired to introduce the manufacturing execution system (MES), which is being adopted by factories manufacturing pharmaceutical products. Meanwhile, in manufacturing human cell/tissue processing autologous products, it is necessary to protect patients' personal information, prevent patients from being identified and obtain information for cell/tissue identification. We therefore considered it difficult to adopt conventional MES to regenerative medicine-related clinical trials, and so developed novel software for production/quality management to be used in cell-processing centres (CPCs), conforming to GMP. Since this system satisfies the requirements of regulations in Japan and the USA for electronic records and electronic signatures (ER/ES), the use of ER/ES has been allowed, and the risk of contamination resulting from the use of recording paper has been eliminated, thanks to paperless operations within the CPC. Moreover, to reduce the risk of mix-up and cross-contamination due to contact during production, we developed a touchless input device with built-in radio frequency identification (RFID) reader-writer devices and optical sensors. The use of this system reduced the time to prepare and issue manufacturing instructions by 50% or more, compared to the conventional handwritten system. The system contributes to producing more large-scale production and to reducing production costs for cell and tissue products in regenerative medicine. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24700532

  7. Stem cells, regenerative medicine, and animal models of disease.

    PubMed

    Steindler, Dennis A

    2007-01-01

    The field of stem cell biology and regenerative medicine is rapidly moving toward translation to clinical practice, and in doing so has become even more dependent on animal donors and hosts for generating cellular reagents and assaying their potential therapeutic efficacy in models of human disease. Advances in cell culture technologies have revealed a remarkable plasticity of stem cells from embryonic and adult tissues, and transplantation models are now needed to test the ability of these cells to protect at-risk cells and replace cells lost to injury or disease. With such a mandate, issues related to acceptable sources and controversial (e.g., chimeric) models have challenged the field to provide justification of their potential efficacy before the passage of new restrictions that may curb anticipated breakthroughs. Progress from the use of both in vitro and in vivo regenerative medicine models already offers hope both for the facilitation of stem cell phenotyping in recursive gene expression profile models and for the use of stem cells as powerful new therapeutic reagents for cancer, stroke, Parkinson's, and other challenging human diseases that result in movement disorders. This article describes research in support of the following three objectives: (1) To discover the best stem or progenitor cell in vitro protocols for isolating, expanding, and priming these cells to facilitate their massive propagation into just the right type of neuronal precursor cell for protection or replacement protocols for brain injury or disease, including those that affect movement such as Parkinson's disease and stroke; (2) To discover biogenic factors--compounds that affect stem/progenitor cells (e.g., from high-throughput screening and other bioassay approaches)--that will encourage reactive cell genesis, survival, selected differentiation, and restoration of connectivity in central nervous system movement and other disorders; and (3) To establish the best animal models of human

  8. Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview

    PubMed Central

    Accomasso, Lisa; Gallina, Clara; Turinetto, Valentina; Giachino, Claudia

    2016-01-01

    Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies. Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting. PMID:26839568

  9. Direct Cardiomyocyte Reprogramming: A New Direction for Cardiovascular Regenerative Medicine

    PubMed Central

    Yi, B. Alexander; Mummery, Christine L.; Chien, Kenneth R.

    2013-01-01

    The past few years have seen unexpected new developments in direct cardiomyocyte reprogramming. Direct cardiomyocyte reprogramming potentially offers an entirely novel approach to cardiovascular regenerative medicine by converting cardiac fibroblasts into functional cardiomyocytes in situ. There is much to be learned, however, about the mechanisms of direct reprogramming in order that the process can be made more efficient. Early efforts have suggested that this new technology can be technically challenging. Moreover, new methods of inducing heart reprogramming will need to be developed before this approach can be translated to the bedside. Despite this, direct cardiomyocyte reprogramming may lead to new therapeutic options for sufferers of heart disease. PMID:24003244

  10. Precision manufacturing for clinical-quality regenerative medicines.

    PubMed

    Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard

    2012-08-28

    Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies. PMID:22802496

  11. Controlling life: from Jacques Loeb to regenerative medicine.

    PubMed

    Maienschein, Jane

    2009-01-01

    In his 1987 book Controlling Life: Jacques Loeb and the Engineering Ideal in Biology, Philip Pauly presented his readers with the biologist Jacques Loeb and his role in developing an emphasis on control of life processes. Loeb's work on artificial parthenogenesis, for example, provided an example of bioengineering at work. This paper revisits Pauly's study of Loeb and explores the way current research in regenerative medicine reflects the same tradition. A history of regeneration research reveals patterns of thinking and research methods that both echo Loeb's ideology and point the way to modern studies. Pauly's work revealed far more than we readers realized at the time of its publication.

  12. Precision manufacturing for clinical-quality regenerative medicines.

    PubMed

    Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard

    2012-08-28

    Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies.

  13. Bringing regenerative medicines to the clinic: the future for regulation and reimbursement.

    PubMed

    Bubela, Tania; McCabe, Christopher; Archibald, Peter; Atkins, Harold; Bradshaw, Steven E; Kefalas, Panos; Mujoomdar, Michelle; Packer, Claire; Piret, James; Raxworthy, Mike; Soares, Marta; Viswanathan, Sowmya

    2015-01-01

    Significant investments in regenerative medicine necessitate discussion to align evidentiary requirements and decision-making considerations from regulatory, health system payer and developer perspectives. Only with coordinated efforts will the potential of regenerative medicine be realized. We report on discussions from two workshops sponsored by NICE, University of Alberta, Cell Therapy Catapult and Centre for Commercialization of Regenerative Medicine. We discuss methods to support the assessment of value for regenerative medicine products and services and the synergies that exist between market authorization and reimbursement regulations and practices. We discuss the convergence in novel adaptive licensing practices that may promote the development and adoption of novel therapeutics that meet the needs of healthcare payers.

  14. Synthetic Biology: Rational Pathway Design for Regenerative Medicine.

    PubMed

    Davies, Jamie A

    2016-01-01

    Rational pathway design is the invention of an optimally efficient route from one state (e.g. chemical structure, state of differentiation, physiological state) to another, based on knowledge of biological processes: it contrasts with the use of natural pathways that have evolved by natural selection. Synthetic biology is a hybrid discipline of biology and engineering that offers a means for rationally designed pathways to be realized in living cells. Several areas of regenerative medicine could benefit from rational pathway design, including derivation of patient-specific stem cells, directed differentiation of stem cells, replicating physiological function in an alternative cell type, construction of custom interface tissues and building fail-safe systems into transplanted tissues. Synthetic biological approaches offer the potential for construction of these, for example controllable ex vivo stem cell niches, genetic networks for direct transdifferentiation from adult fibroblast to restricted stem cell without going via induced pluripotent stem cells, signalling pathways for realizing physiological regulation in alternative cell types, morphological modules for producing self-constructing novel 'tissues' and 'kill-switches' for therapeutically applied stem cells. Given the potential of this approach, a closer convergence of the regenerative medicine and synthetic biology research fields seems timely.

  15. Regenerative Medicine for Periodontal and Peri-implant Diseases.

    PubMed

    Larsson, L; Decker, A M; Nibali, L; Pilipchuk, S P; Berglundh, T; Giannobile, W V

    2016-03-01

    The balance between bone resorption and bone formation is vital for maintenance and regeneration of alveolar bone and supporting structures around teeth and dental implants. Tissue regeneration in the oral cavity is regulated by multiple cell types, signaling mechanisms, and matrix interactions. A goal for periodontal tissue engineering/regenerative medicine is to restore oral soft and hard tissues through cell, scaffold, and/or signaling approaches to functional and aesthetic oral tissues. Bony defects in the oral cavity can vary significantly, ranging from smaller intrabony lesions resulting from periodontal or peri-implant diseases to large osseous defects that extend through the jaws as a result of trauma, tumor resection, or congenital defects. The disparity in size and location of these alveolar defects is compounded further by patient-specific and environmental factors that contribute to the challenges in periodontal regeneration, peri-implant tissue regeneration, and alveolar ridge reconstruction. Efforts have been made over the last few decades to produce reliable and predictable methods to stimulate bone regeneration in alveolar bone defects. Tissue engineering/regenerative medicine provide new avenues to enhance tissue regeneration by introducing bioactive models or constructing patient-specific substitutes. This review presents an overview of therapies (e.g., protein, gene, and cell based) and biomaterials (e.g., resorbable, nonresorbable, and 3-dimensionally printed) used for alveolar bone engineering around teeth and implants and for implant site development, with emphasis on most recent findings and future directions. PMID:26608580

  16. Regenerative Medicine for Periodontal and Peri-implant Diseases.

    PubMed

    Larsson, L; Decker, A M; Nibali, L; Pilipchuk, S P; Berglundh, T; Giannobile, W V

    2016-03-01

    The balance between bone resorption and bone formation is vital for maintenance and regeneration of alveolar bone and supporting structures around teeth and dental implants. Tissue regeneration in the oral cavity is regulated by multiple cell types, signaling mechanisms, and matrix interactions. A goal for periodontal tissue engineering/regenerative medicine is to restore oral soft and hard tissues through cell, scaffold, and/or signaling approaches to functional and aesthetic oral tissues. Bony defects in the oral cavity can vary significantly, ranging from smaller intrabony lesions resulting from periodontal or peri-implant diseases to large osseous defects that extend through the jaws as a result of trauma, tumor resection, or congenital defects. The disparity in size and location of these alveolar defects is compounded further by patient-specific and environmental factors that contribute to the challenges in periodontal regeneration, peri-implant tissue regeneration, and alveolar ridge reconstruction. Efforts have been made over the last few decades to produce reliable and predictable methods to stimulate bone regeneration in alveolar bone defects. Tissue engineering/regenerative medicine provide new avenues to enhance tissue regeneration by introducing bioactive models or constructing patient-specific substitutes. This review presents an overview of therapies (e.g., protein, gene, and cell based) and biomaterials (e.g., resorbable, nonresorbable, and 3-dimensionally printed) used for alveolar bone engineering around teeth and implants and for implant site development, with emphasis on most recent findings and future directions.

  17. The potential role of regenerative medicine in the management of traumatic patients

    PubMed Central

    Moradi, Mahmoudreza; Hood, Brandy; Moradi, Marzieh; Atala, Anthony

    2015-01-01

    Abstract: Traumatic injury represents the most common cause of death in ages 1 to 44 years and a significant proportion of patients treated in hospital emergency wards each year. Unfortunately, for patients who survive their injuries, survival is not equal to complete recovery. Many traumatic injuries are difficult to treat with conventional therapy and result in permanent disability. In such situations, regenerative medicine has the potential to play an important role in recovery of function. Regenerative medicine is a field that seeks to maintain or restore function with the development of biological substitutes for diseased or damaged tissues. Several regenerative approaches are currently under investigation, with a few achieving clinical application. For example, engineered skin has gained FDA approval, and more than 20 tissue engineered skin substitutes are now commercially available. Other organ systems with promising animal models and small human series include the central and peripheral nervous systems, the musculoskeletal system, the respiratory and genitourinary tracts, and others. This paper will be a clinically oriented review of the regenerative approaches currently under investigation of special interest to those caring for traumatic patients. PMID:25618439

  18. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    PubMed

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  19. Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies

    PubMed Central

    2014-01-01

    New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials. PMID:24946932

  20. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine.

    PubMed

    Asuelime, Grace E; Shi, Yanhong

    2012-08-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting.

  1. Metabolomics: a valuable tool for stem cell monitoring in regenerative medicine

    PubMed Central

    McNamara, Laura E.; Sjöström, Terje; Meek, R. M. Dominic; Oreffo, Richard O. C.; Su, Bo; Dalby, Matthew J.; Burgess, Karl E. V.

    2012-01-01

    Metabolomics is a method for investigation of changes in the global metabolite profile of cells. This paper discusses the technical application of the approach, considering metabolite extraction, separation, mass spectrometry and data interpretation. A particular focus is on the application of metabolomics to the study of stem cell physiology in the context of biomaterials and regenerative medicine. Case studies are used to illustrate key points, focusing on the use of metabolomics in the examination of mesenchymal stem cell responses to titania-nanopillared substrata designed for orthopaedic applications. PMID:22628210

  2. Adipose tissue-derived cells: from physiology to regenerative medicine.

    PubMed

    Casteilla, L; Dani, C

    2006-11-01

    During the last past years, the importance and the role of adipose tissues have been greatly expanded. After finding that adipose tissues are metabolically very active, the discovery of leptin moved the status of adipose tissue towards an endocrine tissue able to interact with all major organs via secretion of adipokines. Some years ago, the presence of adipocyte precursors, termed preadipocytes, has been described in all adipose tissue depots from various species of different age. More recently, the discovery that different phenotypes can be obtained from stroma cells of adipose tissue has largely emphazised the concept of adipose tissue plasticity. Therefore, raising great hope in regenerative medicine as adipose tissue can be easily harvested in adults it could represent an abundant source of therapeutic cells. Thus, adipose tissue plays the dual role of Mr Obese Hyde as a main actor of obesity and of Dr Regenerative Jekyll as a source of therapeutic cells. Adipose tissue has not yet revealed all its mysteries although one facet could not be well understood without the other one. PMID:17110894

  3. Renal stem cell reprogramming: Prospects in regenerative medicine

    PubMed Central

    Morales, Elvin E; Wingert, Rebecca A

    2014-01-01

    Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of gene activity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease. PMID:25258667

  4. Tissue engineering and regenerative medicine in musculoskeletal oncology.

    PubMed

    Holzapfel, Boris Michael; Wagner, Ferdinand; Martine, Laure Christine; Reppenhagen, Stephan; Rudert, Maximilian; Schuetz, Michael; Denham, Jim; Schantz, Jan-Thorsten; Hutmacher, Dietmar Werner

    2016-09-01

    Currently used surgical techniques to reconstruct tissue defects after resection of musculoskeletal tumours are associated with high complication rates. This drives a strong demand for innovative therapeutic concepts that are able to improve the clinical outcomes of patients suffering from bone and soft tissue tumours. Tissue engineering and regenerative medicine (TE&RM) provides a technology platform based on biochemical, molecular, cellular and biomaterials modules to selectively direct tissue healing processes for improved defect regeneration. At the same time, precautionary measures have to be taken when these instruments are used in cancer patients to prevent any promotion of tumour growth or metastatic spread. On the other hand, several innovative TE&RM tools are being developed such as multi-functionalized biomaterials, drug-delivering nanomaterials or genetically engineered stem cells that per se have the potential to mediate anti-cancer effects, act synergistically with currently used chemotherapeutics and/or radiotherapy regimens and reduce their side effects. Recently, scientists became conscious that TE&RM strategies may not only be utilized to advance contemporary tissue reconstruction techniques but also to develop personalized diagnostic tools and clinically relevant disease models for cancer patients. Eventually, prospective randomized clinical trials combined with comparative outcome analyses are a conditio sine qua non to shape the benefits of personalized regenerative therapies for the standardized management of patients with musculoskeletal tumours. PMID:27566370

  5. Tissue engineering and regenerative medicine in musculoskeletal oncology.

    PubMed

    Holzapfel, Boris Michael; Wagner, Ferdinand; Martine, Laure Christine; Reppenhagen, Stephan; Rudert, Maximilian; Schuetz, Michael; Denham, Jim; Schantz, Jan-Thorsten; Hutmacher, Dietmar Werner

    2016-09-01

    Currently used surgical techniques to reconstruct tissue defects after resection of musculoskeletal tumours are associated with high complication rates. This drives a strong demand for innovative therapeutic concepts that are able to improve the clinical outcomes of patients suffering from bone and soft tissue tumours. Tissue engineering and regenerative medicine (TE&RM) provides a technology platform based on biochemical, molecular, cellular and biomaterials modules to selectively direct tissue healing processes for improved defect regeneration. At the same time, precautionary measures have to be taken when these instruments are used in cancer patients to prevent any promotion of tumour growth or metastatic spread. On the other hand, several innovative TE&RM tools are being developed such as multi-functionalized biomaterials, drug-delivering nanomaterials or genetically engineered stem cells that per se have the potential to mediate anti-cancer effects, act synergistically with currently used chemotherapeutics and/or radiotherapy regimens and reduce their side effects. Recently, scientists became conscious that TE&RM strategies may not only be utilized to advance contemporary tissue reconstruction techniques but also to develop personalized diagnostic tools and clinically relevant disease models for cancer patients. Eventually, prospective randomized clinical trials combined with comparative outcome analyses are a conditio sine qua non to shape the benefits of personalized regenerative therapies for the standardized management of patients with musculoskeletal tumours.

  6. Preserving human cells for regenerative, reproductive, and transfusion medicine

    PubMed Central

    Asghar, Waseem; Assal, Rami El; Shafiee, Hadi; Anchan, Raymond M.; Demirci, Utkan

    2014-01-01

    Cell cryopreservation enables maintaining cellular life at sub-zero temperatures by slowing down biochemical processes. Various cell types are routinely cryopreserved in modern reproductive, regenerative, and transfusion medicine. Current cell cryopreservation methods involve freezing (slow/rapid) or vitrifying cells in the presence of a cryoprotective agent (CPA). Although these methods are clinically utilized, cryo-injury due to ice crystals, osmotic shock, and CPA toxicity cause loss of cell viability and function. Recent approaches using minimum volume vitrification provide alternatives to the conventional cryopreservation methods. Minimum volume vitrification provides ultra-high cooling and rewarming rates that enable preserving cells without ice crystal formation. Herein, we review recent advances in cell cryopreservation technology and provide examples of techniques that are utilized in oocyte, stem cell, and red blood cell cryopreservation. PMID:24995723

  7. [The hopes of the mesenchymal stem cells in regenerative medicine].

    PubMed

    Bourin, P; Gadelorge, M

    2007-05-01

    The mesenchymal stem cells are a cell population of bone marrow, which have the capacity to differentiate towards all the cells from the locomotor apparatus. They also have immunomodulatory properties and can contribute to tissue repair, thanks to the secretion of many growth factors. Such cells are also found in the cord blood. In the same way, very close stem cells exist in great quantity in fat tissue. These cells are very good candidates in regenerative medicine. Besides, several clinical trials were carried out in order to highlight their effectiveness mainly in osseous repair and also during hematopoietic stem cells graft or cardiac repair after infarction. However, these trials will be able to develop fully only with the condition that culture techniques meeting the conditions of good manufacturing practice are set-up. This presentation gives a progress report on the whole of these subjects.

  8. Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine

    PubMed Central

    Lui, Kathy O.; Tandon, Nina

    2012-01-01

    The idea of extending the lifetime of our organs is as old as humankind, fueled by major advances in organ transplantation, novel drugs, and medical devices. However, true regeneration of human tissue has becoming increasingly plausible only in recent years. The human heart has always been a focus of such efforts, given its notorious inability to repair itself following injury or disease. We discuss here the emerging bioengineering approaches to regeneration of heart muscle as a paradigm for regenerative medicine. Our focus is on biologically inspired strategies for heart regeneration, knowledge gained thus far about how to make a “perfect” heart graft, and the challenges that remain to be addressed for tissue-engineered heart regeneration to become a clinical reality. We emphasize the need for interdisciplinary research and training, as recent progress in the field is largely being made at the interfaces between cardiology, stem cell science, and bioengineering. PMID:21568715

  9. Regenerative Medicine Approach to Reconstruction of the Equine Upper Airway

    PubMed Central

    Grevemeyer, Bernard; Bogdanovic, Lewis; Canton, Stephen; St. Jean, Guy; Cercone, Marta; Ducharme, Norm G.

    2014-01-01

    Airway obstruction is a common cause of poor performance in horses. Structural abnormalities (insufficient length, rigidity) can be a cause for the obstruction. Currently, there are a few effective clinical options for reconstruction of the equine larynx. A regenerative medicine approach to reconstruction may provide the capability to stabilize laryngeal structures and to encourage restoration of site-appropriate, functional, and host-derived tissue. The purpose of this study was the histopathological evaluation of (1) decellularization of equine (horse) laryngeal cartilages (epiglottis and arytenoids); (2) the host response to decellularized laryngeal cartilages implanted subcutaneously in a donkey model as a test of biocompatibility; and (3) the use of decellularized laryngeal cartilages in a clinically relevant pilot study in the horse larynx. Equine laryngeal cartilages were found to be sufficiently decellularized and were subsequently implanted subcutaneously in donkeys to test biocompatibility. After 4 weeks, the implanted cartilage was harvested. In the subcutaneous model, the samples did not elicit a rejection or foreign body type reaction and were judged suitable for implantation in a clinically relevant equine model. Implants were placed in the upper airway (arytenoids and epiglottis) of one horse. At 4 weeks, the implants were observed to remodel rapidly and were replaced by dense connective tissue with signs of new hyaline cartilage formation in the arytenoids and by connective tissue containing glandular structures and an epithelial covering in the epiglottis. The results of the present study demonstrate the feasibility of a scaffold-based regenerative medicine approach to reconstruction of the equine upper airway; however, further studies investigating long-term integration, formation of new cartilage, and mechanical properties are needed. PMID:24160675

  10. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    PubMed Central

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  11. Preclinical Models for Translating Regenerative Medicine Therapies for Rotator Cuff Repair

    PubMed Central

    Baker, Andrew Ryan; Iannotti, Joseph P.; McCarron, Jesse A.

    2010-01-01

    Despite improvements in the understanding of rotator cuff pathology and advances in surgical treatment options, repairs of chronic rotator cuff tears often re-tear or fail to heal after surgery. Hence, there is a critical need for new regenerative repair strategies that provide effective mechanical reinforcement of rotator cuff repair as well as stimulate and enhance the patient's intrinsic healing potential. This article will discuss and identify appropriate models for translating regenerative medicine therapies for rotator cuff repair. Animal models are an essential part of the research and development pathway; however, no one animal model reproduces all of the features of the human injury condition. The rat shoulder is considered the most appropriate model to investigate the initial safety, mechanism, and efficacy of biologic treatments aimed to enhance tendon-to-bone repair. Whereas large animal models are considered more appropriate to investigate the surgical methods, safety and efficacy of the mechanical—or combination biologic/mechanical—strategies are ultimately needed for treating human patients. The human cadaver shoulder model, performed using standard-of-care repair techniques, is considered the best for establishing the surgical techniques and mechanical efficacy of various repair strategies at time zero. While preclinical models provide a critical aspect of the translational pathway for engineered tissues, controlled clinical trials and postmarketing surveillance are also needed to define the efficacy, proper indications, and the method of application for each new regenerative medicine strategy. PMID:19663651

  12. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  13. Perspectives and challenges in regenerative medicine using plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Alkhraisat, Mohammad H; Orive, Gorka

    2012-01-10

    Plasma rich in growth factors (PRGF-Endoret) is an endogenous therapeutic technology that is gaining interest in regenerative medicine due to its potential to stimulate and accelerate tissue healing and bone regeneration. This autologous biotechnology is designed for the in situ delivery of multiple cellular modulators and the formation of a fibrin scaffold, thereby providing different formulations that can be widely used in numerous medical and scientific fields including dentistry, oral implantology, orthopedics, ulcer treatment and tissue engineering among others. Here we discuss the important progress that has been accomplished in this field. Furthermore, a comprehensive outlook of the intriguing therapeutic applications of this technology is presented.

  14. The potential role of telocytes in Tissue Engineering and Regenerative Medicine.

    PubMed

    Boos, Anja M; Weigand, Annika; Brodbeck, Rebekka; Beier, Justus P; Arkudas, Andreas; Horch, Raymund E

    2016-07-01

    Research and ideas for potential applications in the field of Tissue Engineering (TE) and Regenerative Medicine (RM) have been constantly increasing over recent years, basically driven by the fundamental human dream of repairing and regenerating lost tissue and organ functions. The basic idea of TE is to combine cells with putative stem cell properties with extracellular matrix components, growth factors and supporting matrices to achieve independently growing tissue. As a side effect, in the past years, more insights have been gained into cell-cell interaction and how to manipulate cell behavior. However, to date the ideal cell source has still to be found. Apart from commonly known various stem cell sources, telocytes (TC) have recently attracted increasing attention because they might play a potential role for TE and RM. It becomes increasingly evident that TC provide a regenerative potential and act in cellular communication through their network-forming telopodes. While TE in vitro experiments can be the first step, the key for elucidating their regenerative role will be the investigation of the interaction of TC with the surrounding tissue. For later clinical applications further steps have to include an upscaling process of vascularization of engineered tissue. Arteriovenous loop models to vascularize such constructs provide an ideal platform for preclinical testing of future therapeutic concepts in RM. The following review article should give an overview of what is known so far about the potential role of TC in TE and RM.

  15. Biomaterials and mesenchymal stem cells for regenerative medicine.

    PubMed

    Zippel, Nina; Schulze, Margit; Tobiasch, Edda

    2010-01-01

    The reconstruction of hard and soft tissues is a major challenge in regenerative medicine, since diseases or traumas are causing increasing numbers of tissue defects due to the aging of the population. Modern tissue engineering is increasingly using three-dimensional structured biomaterials in combination with stem cells as cell source, since mature cells are often not available in sufficient amounts or quality. Biomaterial scaffolds are developed that not only serve as cell carriers providing mechanical support, but actively influence cellular responses including cell attachment and proliferation. Chemical modifications such as the incorporation of chemotactic factors or cell adhesion molecules are examined for their ability to enhance tissue development successfully. E.g. growth factors have been investigated extensively as substances able to support cell growth, differentiation and angiogenesis. Thus, continuously new patents and studies are published, which are investigating the advantages and disadvantages of different biomaterials or cell types for the regeneration of specific tissues. This review focuses on biomaterials, including natural and synthetic polymers, ceramics and corresponding composites used as scaffold materials to support cell proliferation and differentiation for hard and soft tissues regeneration. In addition, the local delivery of drugs by scaffold biomaterials is discussed.

  16. Mechanical cues in orofacial tissue engineering and regenerative medicine.

    PubMed

    Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues.

  17. Tissue engineering and regenerative medicine: a year in review.

    PubMed

    Harrison, Rachael H; St-Pierre, Jean-Philippe; Stevens, Molly M

    2014-02-01

    It is an exciting time to be involved in tissue engineering and regenerative medicine (TERM) research. Despite its relative youth, the field is expanding fast and breaking new ground in both the laboratory and clinically. In this "Year in Review," we highlight some of the high-impact advances in the field. Building upon last year's article, we have identified the recent "hot topics" and the key publications pertaining to these themes as well as ideas that have high potential to direct the field. Based on a modified methodology grounded on last year's approach, we have identified and summarized some of the most impactful publications in five main themes: (1) pluripotent stem cells: efforts and hurdles to translation, (2) tissue engineering: complex scaffolds and advanced materials, (3) directing the cell phenotype: growth factor and biomolecule presentation, (4) characterization: imaging and beyond, and (5) translation: preclinical to clinical. We have complemented our review of the research directions highlighted within these trend-setting studies with a discussion of additional articles along the same themes that have recently been published and have yet to surface in citation analyses. We conclude with a discussion of some really interesting studies that provide a glimpse of the high potential for innovation of TERM research.

  18. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    PubMed Central

    Yamamoto, Kohei; Yanagiguchi, Kajiro

    2014-01-01

    Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861

  19. Computational immuno-biology for organ transplantation and regenerative medicine.

    PubMed

    Vásquez-Montoya, Gustavo A; Danobeitia, Juan S; Fernández, Luis A; Hernández-Ortiz, Juan P

    2016-10-01

    Organ transplantation and regenerative medicine are adopted platforms that provide replacement tissues and organs from natural or engineered sources. Acceptance, tolerance and rejection depend greatly on the proper control of the immune response against graft antigens, motivating the development of immunological and genetical therapies that prevent organ failure. They rely on a complete, or partial, understanding of the immune system. Ultimately, they are innovative technologies that ensure permanent graft tolerance and indefinite graft survival through the modulation of the immune system. Computational immunology has arisen as a tool towards a mechanistic understanding of the biological and physicochemical processes surrounding an immune response. It comprehends theoretical and computational frameworks that simulate immuno-biological systems. The challenge is centered on the multi-scale character of the immune system that spans from atomistic scales, during peptide-epitope and protein interactions, to macroscopic scales, for lymph transport and organ-organ reactions. In this paper, we discuss, from an engineering perspective, the biological processes that are involved during the immune response of organ transplantation. Previous computational efforts, including their characteristics and visible limitations, are described. Finally, future perspectives and challenges are listed to motivate further developments.

  20. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century

    PubMed Central

    Stoltz, J.-F.; de Isla, N.; Li, Y. P.; Bensoussan, D.; Zhang, L.; Huselstein, C.; Chen, Y.; Decot, V.; Magdalou, J.; Li, N.; Reppel, L.; He, Y.

    2015-01-01

    Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC. PMID:26300923

  1. Acellular approaches for regenerative medicine: on the verge of clinical trials with extracellular membrane vesicles?

    PubMed

    Fuster-Matanzo, Almudena; Gessler, Florian; Leonardi, Tommaso; Iraci, Nunzio; Pluchino, Stefano

    2015-01-01

    Extracellular vesicles (EVs) are a heterogeneous population of naturally occurring secreted small vesicles, with distinct biophysical properties and different functions both in physiology and under pathological conditions. In recent years, a number of studies have demonstrated that EVs might hold remarkable potential in regenerative medicine by acting as therapeutically promising nanodrugs. Understanding their final impact on the biology of specific target cells as well as clarification of their overall therapeutic impact remains a matter of intense debate. Here we review the key principles of EVs in physiological and pathological conditions with a specific highlight on the most recently described mechanisms regulating some of the EV-mediated effects. First, we describe the current debates and the upcoming research on EVs as potential novel therapeutics in regenerative medicine, either as unmodified agents or as functionalized small carriers for targeted drug delivery. Moreover, we address a number of safety aspects and regulatory limitations related to the novel nature of EV-mediated therapeutic applications. Despite the emerging possibilities of EV treatments, these issues need to be overcome in order to allow their safe and successful application in future explorative clinical studies. PMID:26631254

  2. Cell- and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine

    PubMed Central

    Rios, Hector F.; Lin, Zhao; Oh, BiNa; Park, Chan Ho; Giannobile, William V.

    2012-01-01

    Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology. PMID:21284553

  3. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

    PubMed

    Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu

    2015-12-01

    A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.

  4. Exploring innovation in stem cell and regenerative medicine in Japan: the power of the consortium-based approach.

    PubMed

    Munisi, Hawa Issa; Xie, Zhongquan; Sengoku, Shintaro

    2014-01-01

    This article describes a recent trend in Japanese research, development and commercialization toward the application of stem cell technologies. Japan is the world's third largest economy and has a significant national presence in the pharmaceutical and biotechnology businesses; as such, stem cell R&D is abundant in the country. As indicated by the second largest share of patent applications worldwide, Japan had been expected to assert significant added value in the commercialization and industrial application of stem cell technologies; however, difficulties have impeded clinical development in this area, particularly the very small number of clinical trials and approved products for regenerative medicine or cell therapy. To address this 'Japan paradox', this report provides an overview of approaches for the commercialization of stem cell technologies in areas such as drug discovery, cell therapy and regenerative medicine, by discussing representative case examples of listed firms.

  5. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine

    PubMed Central

    Murphy, Matthew B; Moncivais, Kathryn; Caplan, Arnold I

    2013-01-01

    Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications. PMID:24232253

  6. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine.

    PubMed

    Asuelime, Grace E; Shi, Yanhong

    2012-08-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting. PMID:22371436

  7. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    PubMed Central

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  8. The Social Framework Surrounding the Development of Regenerative Medicine in Japan.

    PubMed

    Nakazawa, Eisuke; Takimoto, Yoshiyuki; Akabayashi, Akira

    2016-07-01

    In 2014, the Japanese government amended the laws concerning regenerative medicine. This reform aimed to contribute to the appropriate promotion of regenerative medicine and new drug discovery for intractable diseases using stem cells. It also helped restrict stem cell tourism, that is, provision of stem cell therapy of unclear efficacy and safety to tourists from abroad, and its relaxed regulations may even lead to the resolution of the drug lag problem. Stem cell medicine is positioned as a part of a national growth strategy that requires cooperation among the industry, government, healthcare field, and academia. It can be characterized as a "mesoscopic strategy," in that it aims to achieve high-level technological developments that would allow results from human-induced pluripotent stem cell and traditional stem cell research to contribute to regenerative medicine and drug development for intractable diseases, while attempting to strike a balance with commercialization and improved access of citizens to cutting-edge medical care.

  9. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    SciTech Connect

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

  10. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

  11. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine.

    PubMed

    Lalwani, Gaurav; Patel, Sunny C; Sitharaman, Balaji

    2016-06-01

    Carbon nanomaterials such as carbon nanotubes and graphene have gained significant interest in the fields of materials science, electronics and biomedicine due to their interesting physiochemical properties. Typically these carbon nanomaterials have been dispersed in polymeric matrices at low concentrations to improve the functional properties of nanocomposites employed as two-dimensional (2D) substrates or three-dimensional (3D) porous scaffolds for tissue engineering applications. There has been a growing interest in the assembly of these nanomaterials into 2D and 3D architectures without the use of polymeric matrices, surfactants or binders. In this article, we review recent advances in the development of 2D or 3D all-carbon assemblies using carbon nanotubes or graphene as nanoscale building-block biomaterials for tissue engineering and regenerative medicine applications.

  12. Concepts in regenerative medicine: Past, present, and future in articular cartilage treatment.

    PubMed

    Anz, Adam W; Bapat, Asawari; Murrell, William D

    2016-01-01

    Regenerative medicine is emerging with great interest and hope from patients, industry, academia, and medical professionals. Cartilage regeneration, restoration, or repair is one of the prime targets that remains largely unsolved, and many believe that regenerative medicine can possibly deliver solutions that can be widely used to address the current gap(s) in treatment. In the United States, Europe, Australia, and India the regulation of regenerative based treatments has become a big debate. Although the rules and regulations remain unclear, clinicians that are interested should carry-on with the best available guidelines to ensure safety and compliance during delivery in clinical practice to avoid regulatory infraction. Many have made significant investment of time, resources, and facilities in recent years to provide new regenerative treatment options and advance medical care for patients. Instead of reinventing the wheel, it would be more efficient to adopt currently accepted standards and nomenclature borrowed from transplantation science, and cord blood storage industries. The purposes of this article are to provide some historical background to the field of regenerative medicine as it applies to cartilage, and how this field has developed. This will be followed by a separate discussion on regulatory oversight and input and how it has influenced access to care. Furthermore, we discuss current clinical techniques and progress, and ways to deliver these treatments to patients safely, effectively, and in a cost sensitive manner, concluding with an overview of some of the promising regenerative techniques specific to cartilage. PMID:27489407

  13. Reproductive biology, stem cells biotechnology and regenerative medicine: a 1-day national symposium held at Shahid Sadoughi University of Medical Sciences

    PubMed Central

    Akyash, Fatemeh; Tahajjodi, Somayyeh Sadat; Sadeghian-Nodoushan, Fatemeh; Aflatoonian, Abbas; Abdoli, Ali-Mohammad; Nikukar, Habib; Aflatoonian, Behrouz

    2016-01-01

    This paper summarizes the proceedings of a 1 day national symposium entitled “Reproductive biology, stem cells biotechnology and regenerative medicine” held at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 3rd March 2016. Here, we collected the papers that presented and discussed at this meeting by specialists that currently researched about the overlaps of the fields of reproductive biology and stem cells and their applications in regenerative medicine.

  14. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine.

    PubMed

    Harink, Björn; Le Gac, Séverine; Truckenmüller, Roman; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-09-21

    The aim of regenerative medicine is to restore or establish normal function of damaged tissues or organs. Tremendous efforts are placed into development of novel regenerative strategies, involving (stem) cells, soluble factors, biomaterials or combinations thereof, as a result of the growing need caused by continuous population aging. To satisfy this need, fast and reliable assessment of (biological) performance is sought, not only to select the potentially interesting candidates, but also to rule out poor ones at an early stage of development. Microfluidics may provide a new avenue to accelerate research and development in the field of regenerative medicine as it has proven its maturity for the realization of high-throughput screening platforms. In addition, microfluidic systems offer other advantages such as the possibility to create in vivo-like microenvironments. Besides the complexity of organs or tissues that need to be regenerated, regenerative medicine brings additional challenges of complex regeneration processes and strategies. The question therefore arises whether so much complexity can be integrated into microfluidic systems without compromising reliability and throughput of assays. With this review, we aim to investigate whether microfluidics can become widely applied in regenerative medicine research and/or strategies.

  15. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand?

    PubMed Central

    Ebert, Antje D; Diecke, Sebastian; Chen, Ian Y; Wu, Joseph C

    2015-01-01

    Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options. PMID:26183451

  16. Concise Review: Parthenote Stem Cells for Regenerative Medicine: Genetic, Epigenetic, and Developmental Features

    PubMed Central

    Daughtry, Brittany

    2014-01-01

    Embryonic stem cells (ESCs) have the potential to provide unlimited cells and tissues for regenerative medicine. ESCs derived from fertilized embryos, however, will most likely be rejected by a patient’s immune system unless appropriately immunomatched. Pluripotent stem cells (PSCs) genetically identical to a patient can now be established by reprogramming of somatic cells. However, practical applications of PSCs for personalized therapies are projected to be unfeasible because of the enormous cost and time required to produce clinical-grade cells for each patient. ESCs derived from parthenogenetic embryos (pESCs) that are homozygous for human leukocyte antigens may serve as an attractive alternative for immunomatched therapies for a large population of patients. In this study, we describe the biology and genetic nature of mammalian parthenogenesis and review potential advantages and limitations of pESCs for cell-based therapies. PMID:24443005

  17. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.

    PubMed

    Caplan, Arnold I

    2007-11-01

    Adult mesenchymal stem cells (MSCs) can be isolated from bone marrow or marrow aspirates and because they are culture-dish adherent, they can be expanded in culture while maintaining their multipotency. The MSCs have been used in preclinical models for tissue engineering of bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues. These tissue-engineered materials show considerable promise for use in rebuilding damaged or diseased mesenchymal tissues. Unanticipated is the realization that the MSCs secrete a large spectrum of bioactive molecules. These molecules are immunosuppressive, especially for T-cells and, thus, allogeneic MSCs can be considered for therapeutic use. In this context, the secreted bioactive molecules provide a regenerative microenvironment for a variety of injured adult tissues to limit the area of damage and to mount a self-regulated regenerative response. This regenerative microenvironment is referred to as trophic activity and, therefore, MSCs appear to be valuable mediators for tissue repair and regeneration. The natural titers of MSCs that are drawn to sites of tissue injury can be augmented by allogeneic MSCs delivered via the bloodstream. Indeed, human clinical trials are now under way to use allogeneic MSCs for treatment of myocardial infarcts, graft-versus-host disease, Crohn's Disease, cartilage and meniscus repair, stroke, and spinal cord injury. This review summarizes the biological basis for the in vivo functioning of MSCs through development and aging. PMID:17620285

  18. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    PubMed

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field.

  19. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure–function relationships of cell–material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  20. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed Central

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C.

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy. PMID:27721701

  1. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  2. [Translational/regulatory science researches of NIHS for regenerative medicine and cellular therapy products].

    PubMed

    Sato, Yoji

    2014-01-01

    In 2013, the Japanese Diet passed the Regenerative Medicine Promotion Act and the revisions to the Pharmaceutical Affairs Act, which was also renamed as the Therapeutic Products Act (TPA). One of the aims of the new/revised Acts is to promote the development and translation of and access to regenerative/cellular therapies. In the TPA, a product derived from processing cells is categorized as a subgroup of "regenerative medicine, cellular therapy and gene therapy products" (RCGPs), products distinct from pharmaceuticals and medical devices, allowing RCGPs to obtain a conditional and time- limited marketing authorization much earlier than that under the conventional system. To foster not only RCGPs, but also innovative pharmaceuticals and medical devices, the Ministry of Health, Labour and Welfare recently launched Translational Research Program for Innovative Pharmaceuticals, Medical Devices and RCGPs. This mini-review introduces contributions of the National Institute of Health Sciences (NIHS) to research projects on RCGPs in the Program. PMID:25707195

  3. Identification, characterization and biological significance of very small embryonic-like stem cells (VSELs) in regenerative medicine.

    PubMed

    Feng, Guowei; Cui, Jian; Zheng, Yizhou; Han, Zhongchao; Xu, Yong; Li, Zongjin

    2012-07-01

    The progress of stem cell research, along with technological innovation, has brought researchers to focus on the potential role of stem cells in regenerative medicine. Ethical and technological issues have limited the applications of human embryonic stem cells (hESCs) in this field. As a promising candidate, very small embryonic-like stem cells (VSELs) express a multitude of pluripotent stem cell markers and demonstrate the ability to differentiate into three germ-layer lineages in vitro. Optimized methods for isolation and expansion of VSELs have aroused the scientific community's interest in use of this kind of cells for regenerative purposes. In this review, we will focus on the biological characteristics, as well as the potentiality and remaining challenges in clinical application of VSELs. Moreover, a comparison among VSELs and the other pluripotent stem cells will be illustrated to highlight the unique advantages of VSELs.

  4. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine

    PubMed Central

    Tollemar, Viktor; Collier, Zach J.; Mohammed, Maryam K.; Lee, Michael J.; Ameer, Guillermo A.; Reid, Russell R.

    2015-01-01

    Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials. PMID:27239485

  5. 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Bajaj, Piyush; Schweller, Ryan M.; Khademhosseini, Ali; West, Jennifer L.; Bashir, Rashid

    2014-01-01

    Over the past several decades, there has been an ever-increasing demand for organ transplants. However, there is a severe shortage of donor organs, and as a result of the increasing demand, the gap between supply and demand continues to widen. A potential solution to this problem is to grow or fabricate organs using biomaterial scaffolds and a person’s own cells. Although the realization of this solution has been limited, the development of new biofabrication approaches has made it more realistic. This review provides an overview of natural and synthetic biomaterials that have been used for organ/tissue development. It then discusses past and current biofabrication techniques, with a brief explanation of the state of the art. Finally, the review highlights the need for combining vascularization strategies with current biofabrication techniques. Given the multitude of applications of biofabrication technologies, from organ/tissue development to drug discovery/screening to development of complex in vitro models of human diseases, these manufacturing technologies can have a significant impact on the future of medicine and health care. PMID:24905875

  6. Review and Updates in Regenerative and Personalized Medicine, Preclinical Animal Models, and Clinical Care in Cardiovascular Medicine.

    PubMed

    Barbato, Emanuele; Barton, Paul J; Bartunek, Jozef; Huber, Sally; Ibanez, Borja; Judge, Daniel P; Lara-Pezzi, Enrique; Stolen, Craig M; Taylor, Angela; Hall, Jennifer L

    2015-11-01

    The goal of this paper is to provide an updated review for scientists and clinicians on the major areas in cardiovascular medicine published in the Journal. Leading topics in regenerative and personalized medicine are presented along with a critical overview of the field. New standards in large preclinical animal models of pulmonary hypertension and left bundle branch block are highlighted. Finally, clinical care in the areas of atherosclerosis, the aortic valve, platelet biology, and myocarditis is discussed as well as autonomic modulation therapies.

  7. The current 'state of play' of regenerative medicine in horses: what the horse can tell the human.

    PubMed

    Smith, Roger Kw; Garvican, Elaine R; Fortier, Lisa A

    2014-01-01

    The horse is an attractive model for many human age-related degenerative diseases of the musculoskeletal system because it is a large animal species that both ages and exercises, and develops naturally occurring injuries with many similarities to the human counterpart. It therefore represents an ideal species to use as a 'proving ground' for new therapies, most notably regenerative medicine. Regenerative techniques using cell-based therapies for the treatment of equine musculoskeletal disease have been in use for over a decade. This review article provides a summary overview of the sources, current challenges and problems surrounding the use of stem cell and non-cell-based therapy in regenerative medicine in horses and is based on presentations from a recent Havemeyer symposium on equine regenerative medicine where speakers are selected from leading authorities in both equine and human regenerative medicine fields from 10 different countries.

  8. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine.

    PubMed

    Fu, Ji-Dong; Srivastava, Deepak

    2015-01-01

    Cardiac fibroblasts play critical roles in maintaining normal cardiac function and in cardiac remodeling during pathological conditions such as myocardial infarction (MI). Adult cardiomyocytes (CMs) have little to no regenerative capacity; damaged CMs in the heart after MI are replaced by cardiac fibroblasts that become activated and transform into myofibroblasts, which preserves the structural integrity. Unfortunately, this process typically causes fibrosis and reduces cardiac function. Directly reprogramming adult cardiac fibroblasts into induced CM-like cells (iCMs) holds great promise for restoring heart function. Direct cardiac reprogramming also provides a new research model to investigate which transcription factors and microRNAs control the molecular network that guides cardiac cell fate. We review the approaches and characterization of in vitro and in vivo reprogrammed iCMs from different laboratories, and outline the future directions needed to translate this new approach into a practical therapy for damaged hearts.

  9. Regenerative medicine for the treatment of heart disease.

    PubMed

    Hansson, E M; Lendahl, U

    2013-03-01

    Heart failure is a major cause of mortality worldwide with a steady increase in prevalence. There is currently no available cure beyond orthotopic heart transplantation, which for a number of reasons is an option only for a small fraction of all patients. Considerable hope has therefore been placed on the possibility of treating a failing heart by replacing lost cardiomyocytes, either through transplantation of various types of stem cells or by boosting endogenous regenerative mechanisms in the heart. Here, we review the current status of stem and progenitor cell-based therapies for heart disease. We discuss the pros and cons of different stem and progenitor cell types that can be considered for transplantation and describe recent advances in the understanding of how cardiomyocytes normally differentiate and how these cells can be generated from more immature cells ex vivo. Finally, we consider the possibility of activation of endogenous stem and progenitor cells to treat heart failure.

  10. Law's performativities: shaping the emergence of regenerative medicine through European Union legislation.

    PubMed

    Faulkner, Alex

    2012-10-01

    The paper undertakes a textual and documentary analysis of the Advanced Therapy Medicinal Products Regulation, which was passed into law in the European Union (EU) in 2007. This law is significant for the development of regenerative medicine in the EU and globally. Regulatory texts such as this one provide significant material for addressing key concerns in recent theorising about innovative technologies in socio-legal studies, innovation studies, and science and technology studies. These concerns include expectations about future technologies and economic sector-building. By revisiting philosopher J.L. Austin's well-known work on How to Do Things with Words, this paper deploys his concepts of performative utterances to inform its analysis. Pursuing Austin's and later commentators' analysis of performatives in language use, and drawing on Lindsay Prior's application of actor-network theory to documents, the analysis shows two different types of performativity at work in and through the document. These are termed 'generative' and 'enactive' performativity. The 'enactive' type includes 'legislative' and 'social' forms. In addition, a more conventional content analysis reveals a range of actions, both legislative and discursive, in the regulatory document. The analysis shows a tension between standardisation and imprecision in the conceptual detailing of the document. Legislative texts produced through established politico-legal conventions are a special class of document that should be accorded a more prominent place in understanding the role of political governance processes in shaping emergent technoscientific fields and sectors. PMID:23189613

  11. The role of tissue engineering and biomaterials in cardiac regenerative medicine

    PubMed Central

    Zhao, Yimu; Feric, Nicole T.; Thavandiran, Nimalan; Nunes, Sara S.; Radisic, Milica

    2014-01-01

    In recent years, the development of three-dimensional engineered heart tissue (EHT) has made large strides forward due to advances in stem cell biology, materials science, pre-vascularization strategies and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multi-faceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function following cardiac injury. However, EHTs may also serve as surrogate human cardiac tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal in the pharmaceutical industry. Unsafe drugs reach the market because pre-clinical evaluation is insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could provide functional and mature human myocardial tissues, i.e. physiologically relevant platforms, for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an overview of the present state of the art in cardiac tissue engineering, the challenges to the field and future perspectives. PMID:25442432

  12. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine

    PubMed Central

    Rosemann, Achim; Chaisinthop, Nattaka

    2016-01-01

    The article explores the formation of an international politics of resistance and ‘alter-standardization’ in regenerative stem cell medicine. The absence of internationally harmonized regulatory frameworks in the clinical stem cell field and the presence of lucrative business opportunities have resulted in the formation of transnational networks adopting alternative research standards and practices. These oppose, as a universal global standard, strict evidence-based medicine clinical research protocols as defined by scientists and regulatory agencies in highly developed countries. The emergence of transnational spaces of alter-standardization is closely linked to scientific advances in rapidly developing countries such as China and India, but calls for more flexible regulatory frameworks, and the legitimization of experimental for-profit applications outside of evidence-based medical care, are emerging increasingly also within more stringently regulated countries, such as the United States and countries in the European Union. We can observe, then, a trend toward the pluralization of the standards, practices, and concepts in the stem cell field. PMID:26983174

  13. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine.

    PubMed

    Rosemann, Achim; Chaisinthop, Nattaka

    2016-02-01

    The article explores the formation of an international politics of resistance and 'alterstandardization' in regenerative stem cell medicine. The absence of internationally harmonized regulatory frameworks in the clinical stem cell field and the presence of lucrative business opportunities have resulted in the formation of transnational networks adopting alternative research standards and practices. These oppose, as a universal global standard, strict evidence-based medicine clinical research protocols as defined by scientists and regulatory agencies in highly developed countries. The emergence of transnational spaces of alter-standardization is closely linked to scientific advances in rapidly developing countries such as China and India, but calls for more flexible regulatory frameworks, and the legitimization of experimental for-profit applications outside of evidence-based medical care, are emerging increasingly also within more stringently regulated countries, such as the United States and countries in the European Union. We can observe, then, a trend toward the pluralization of the standards, practices, and concepts in the stem cell field.

  14. Law's performativities: shaping the emergence of regenerative medicine through European Union legislation.

    PubMed

    Faulkner, Alex

    2012-10-01

    The paper undertakes a textual and documentary analysis of the Advanced Therapy Medicinal Products Regulation, which was passed into law in the European Union (EU) in 2007. This law is significant for the development of regenerative medicine in the EU and globally. Regulatory texts such as this one provide significant material for addressing key concerns in recent theorising about innovative technologies in socio-legal studies, innovation studies, and science and technology studies. These concerns include expectations about future technologies and economic sector-building. By revisiting philosopher J.L. Austin's well-known work on How to Do Things with Words, this paper deploys his concepts of performative utterances to inform its analysis. Pursuing Austin's and later commentators' analysis of performatives in language use, and drawing on Lindsay Prior's application of actor-network theory to documents, the analysis shows two different types of performativity at work in and through the document. These are termed 'generative' and 'enactive' performativity. The 'enactive' type includes 'legislative' and 'social' forms. In addition, a more conventional content analysis reveals a range of actions, both legislative and discursive, in the regulatory document. The analysis shows a tension between standardisation and imprecision in the conceptual detailing of the document. Legislative texts produced through established politico-legal conventions are a special class of document that should be accorded a more prominent place in understanding the role of political governance processes in shaping emergent technoscientific fields and sectors.

  15. The role of tissue engineering and biomaterials in cardiac regenerative medicine.

    PubMed

    Zhao, Yimu; Feric, Nicole T; Thavandiran, Nimalan; Nunes, Sara S; Radisic, Milica

    2014-11-01

    In recent years, the development of 3-dimensional engineered heart tissue (EHT) has made large strides forward because of advances in stem cell biology, materials science, prevascularization strategies, and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multifaceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function after cardiac injury. However, EHTs may also serve as surrogate human cardiac tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal in the pharmaceutical industry. Unsafe drugs reach the market because preclinical evaluation is insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could provide functional and mature human myocardial tissues, ie, physiologically relevant platforms, for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an overview of the present state of the art in cardiac tissue engineering, the challenges to the field, and future perspectives. PMID:25442432

  16. Regenerative Applications Using Tooth Derived Stem Cells in Other Than Tooth Regeneration: A Literature Review.

    PubMed

    Park, Yun-Jong; Cha, Seunghee; Park, Young-Seok

    2016-01-01

    Tooth derived stem cells or dental stem cells are categorized according to the location from which they are isolated and represent a promising source of cells for regenerative medicine. Originally, as one kind of mesenchymal stem cells, they are considered an alternative of bone marrow stromal cells. They share many commonalties but maintain differences. Considering their original function in development and the homeostasis of tooth structures, many applications of these cells in dentistry have aimed at tooth structure regeneration; however, the application in other than tooth structures has been attempted extensively. The availability from discarded or removed teeth can be an innate benefit as a source of autologous cells. Their origin from the neural crest results in exploitation of neurological and numerous other applications. This review briefly highlights current and future perspectives of the regenerative applications of tooth derived stem cells in areas beyond tooth regeneration.

  17. Regenerative Applications Using Tooth Derived Stem Cells in Other Than Tooth Regeneration: A Literature Review

    PubMed Central

    Park, Yun-Jong; Cha, Seunghee; Park, Young-Seok

    2016-01-01

    Tooth derived stem cells or dental stem cells are categorized according to the location from which they are isolated and represent a promising source of cells for regenerative medicine. Originally, as one kind of mesenchymal stem cells, they are considered an alternative of bone marrow stromal cells. They share many commonalties but maintain differences. Considering their original function in development and the homeostasis of tooth structures, many applications of these cells in dentistry have aimed at tooth structure regeneration; however, the application in other than tooth structures has been attempted extensively. The availability from discarded or removed teeth can be an innate benefit as a source of autologous cells. Their origin from the neural crest results in exploitation of neurological and numerous other applications. This review briefly highlights current and future perspectives of the regenerative applications of tooth derived stem cells in areas beyond tooth regeneration. PMID:26798366

  18. Ion cyclotron resonance as a tool in regenerative medicine.

    PubMed

    Lisi, Antonella; Ledda, Mario; de Carlo, Flavia; Pozzi, Deleana; Messina, Elisa; Gaetani, Roberto; Chimenti, Isotta; Barile, Lucio; Giacomello, Alessandro; D'Emilia, Enrico; Giuliani, Livio; Foletti, Alberto; Patti, Annamaria; Vulcano, Antonella; Grimaldi, Settimio

    2008-01-01

    The identification of suitable stem cell cultures and differentiating conditions that are free of xenogenic growth supplements is an important step in finding the clinical applicability of cell therapy in two important fields of human medicine: heart failure and bone remodeling, growth and repair. We recently demonstrated the possibility of obtaining cardiac stem cells (CSCs) from human endomyocardial biopsy specimens. CSCs self-assemble into multi-cellular clusters known as cardiospheres (CSps) that engraft and partially regenerate infarcted myocardium. CSps and cardiosphere-derived-cells (CDCs) were exposed for five days in an incubator regulated for temperature, humidity, and CO(2) inside a solenoid system. This system was placed in a magnetically shielded room. The cells were exposed simultaneously to a static magnetic field (MF) and a parallel low-alternating frequency MF, close to the cyclotron frequency corresponding to the charge/mass ratio of the Ca(++) ion. In this exposure condition, CSps and CDCs modulate their differentiation turning on cardiogenesis and turning off vasculogenesis. Cardiac markers such as troponin I (TnI) and myosin heavy chain (MHC) were up-regulated. Conversely, angiogenic markers such as vascular endothelial growth factor (VEGF) and kinase domain receptor (KDR) were down-regulated as evidenced by immunocytochemistry. Exposure to the 7 Hz calcium ion cyclotron resonance (ICR) frequency can modulate the cardiogenic vs. angiogenic differentiation process of ex vivo expanded CSCs. This may pave the way for novel approaches in tissue engineering and cell therapy. With regard to bone remodeling, it has been suggested that bone marrow-derived mesenchymal stem cells (MSC) may be considered as a potential therapeutic tool. Using the Ca(++)-dependent specific differentiation potential of the ELF-MF 7 Hz ICR, we show here that exposure of human MSC to these same MF conditions enhanced the expression of osteoblast differentiation markers such

  19. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration.

    PubMed

    Richardson, Stephen M; Kalamegam, Gauthaman; Pushparaj, Peter N; Matta, Csaba; Memic, Adnan; Khademhosseini, Ali; Mobasheri, Reza; Poletti, Fabian L; Hoyland, Judith A; Mobasheri, Ali

    2016-04-15

    Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future. PMID:26384579

  20. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.

    PubMed

    García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-15

    The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds. PMID:25587916

  1. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy.

  2. Engineering Mesenchymal Stem Cells for Regenerative Medicine and Drug Delivery

    PubMed Central

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W.

    2015-01-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. PMID:25770356

  3. Adult stem cells applied to tissue engineering and regenerative medicine.

    PubMed

    Cuenca-López, M D; Zamora-Navas, P; García-Herrera, J M; Godino, M; López-Puertas, J M; Guerado, E; Becerra, J; Andrades, J A

    2008-01-01

    Regeneration takes place in the body at a moment or another throughout life. Bone, cartilage, and tendons (the key components of the structure and articulation in the body) have a limited capacity for self-repair and, after traumatic injury or disease, the regenerative power of adult tissue is often insufficient. When organs or tissues are irreparably damaged, they may be replaced by an artificial device or by a donor organ. However, the number of available donor organs is considerably limited. Generation of tissue-engineered replacement organs by extracting stem cells from the patient, growing them and modifying them in clinical conditions after re-introduction in the body represents an ideal source for corrective treatment. Mesenchymal stem cells (MSCs) are the multipotential progenitors that give rise to skeletal cells, vascular smooth muscle cells, muscle (skeletal and cardiac muscle), adipocytes (fat tissue) and hematopoietic (blood)-supportive stromal cells. MSCs are found in multiple connective tissues, in adult bone marrow, skeletal muscles and fat pads. The wide representation in adult tissues may be related to the existence of a circulating blood pool or that MSCs are associated to the vascular system.

  4. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process.

    PubMed

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Fuller, Barry; Gibbons, Stephanie; Morris, G John

    2014-09-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to -60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze-viabilities at 93.4% ± 7.4%, viable cell numbers at 14.3 ± 1.7 million nuclei/mL alginate, and protein secretion at 10.5 ± 1.7

  5. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7

  6. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process.

    PubMed

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Fuller, Barry; Gibbons, Stephanie; Morris, G John

    2014-09-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to -60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze-viabilities at 93.4% ± 7.4%, viable cell numbers at 14.3 ± 1.7 million nuclei/mL alginate, and protein secretion at 10.5 ± 1.7

  7. 3D Biomaterial Microarrays for Regenerative Medicine: Current State-of-the-Art, Emerging Directions and Future Trends.

    PubMed

    Gaharwar, Akhilesh K; Arpanaei, Ayyoob; Andresen, Thomas L; Dolatshahi-Pirouz, Alireza

    2016-01-27

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem cell differentiation into tissue-specific lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive for tissue engineering and drug screening applications.

  8. Development of a New Tool for 3D Modeling for Regenerative Medicine

    PubMed Central

    Mattoli, Filippo; Tiribuzi, Roberto; D'Angelo, Francesco; di Girolamo, Ilaria; Quattrocelli, Mattia; Montesano, Simona; Crispoltoni, Lucia; Oikonomou, Vasileios; Cusella De Angelis, Maria Gabriella; Marconi, Peggy; Orlacchio, Antonio; Sampaolesi, Maurilio; Martino, Sabata; Orlacchio, Aldo

    2011-01-01

    The effectiveness of therapeutic treatment based on regenerative medicine for degenerative diseases (i.e., neurodegenerative or cardiac diseases) requires tools allowing the visualization and analysis of the three-dimensional (3D) distribution of target drugs within the tissue. Here, we present a new computational procedure able to overcome the limitations of visual analysis emerging by the examination of a molecular signal within images of serial tissue/organ sections by using the conventional techniques. Together with the 3D anatomical reconstitution of the tissue/organ, our framework allows the detection of signals of different origins (e.g., marked generic molecules, colorimetric, or fluorimetric substrates for enzymes; microRNA; recombinant protein). Remarkably, the application does not require the employment of specific tracking reagents for the imaging analysis. We report two different representative applications: the first shows the reconstruction of a 3D model of mouse brain with the analysis of the distribution of the β-Galactosidase, the second shows the reconstruction of a 3D mouse heart with the measurement of the cardiac volume. PMID:21776249

  9. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering.

    PubMed

    Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S

    2016-01-28

    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.

  10. Novel surgical techniques, regenerative medicine, tissue engineering and innovative immunosuppression in kidney transplantation

    PubMed Central

    Nowacki, Maciej; Nazarewski, Łukasz; Tyloch, Dominik; Pokrywczyńska, Marta; Pietkun, Katarzyna; Jundziłł, Arkadiusz; Tyloch, Janusz; Habib, Samy L.; Drewa, Tomasz

    2016-01-01

    On the 60th anniversary of the first successfully performed renal transplantation, we summarize the historical, current and potential future status of kidney transplantation. We discuss three different aspects with a potential significant influence on kidney transplantation progress: the development of surgical techniques, the influence of regenerative medicine and tissue engineering, and changes in immunosuppression. We evaluate the standard open surgical procedures with modern techniques and compare them to less invasive videoscopic as well as robotic techniques. The role of tissue engineering and regenerative medicine as a potential method for future kidney regeneration or replacement and the interesting search for novel solutions in the field of immunosuppression will be discussed. After 60 years since the first successfully performed kidney transplantation, we can conclude that the greatest achievements are associated with the development of surgical techniques and with planned systemic immunosuppression. PMID:27695507

  11. The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products.

    PubMed

    Rafiq, Qasim A; Ortega, Ilida; Jenkins, Stuart I; Wilson, Samantha L; Patel, Asha K; Barnes, Amanda L; Adams, Christopher F; Delcassian, Derfogail; Smith, David

    2015-11-01

    Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization. PMID:26628407

  12. Early evaluation and value-based pricing of regenerative medicine technologies.

    PubMed

    Koerber, Florian; Rolauffs, Bernd; Rogowski, Wolf

    2013-11-01

    Since the first pioneering scientists explored the potential of using human cells for therapeutic purposes the branch of regenerative medicine has evolved to become a mature industry. The focus has switched from 'what can be done' to 'what can be commercialized'. Timely health economic evaluation supports successful marketing by establishing the value of a product from a healthcare system perspective. This article reports results from a research project on early health economic evaluation in collaboration with developers, clinicians and manufacturers. We present an approach to determine an early value-based price for a new treatment of cartilage defects of the knee from the area of regenerative medicine. Examples of using evaluation results for the purpose of business planning, market entry, preparing the coverage decision and managed entry are discussed.

  13. The UK relative to other single payer-dominated healthcare markets for regenerative medicine therapies.

    PubMed

    Rose, James B; Williams, David J

    2012-05-01

    The UK has for many years been considered by businesses, including those based in the UK, as at best a second market for the launch of innovative medical technology products. Historically, this has been attributed to the slow pace of adoption in its National Health Service (NHS). The NHS is perceived to be subject to cost containment, high levels of fragmentation and a lack of strategic incentives to resolve its key failings as a market. Canada and Sweden offer examples of different operating models of healthcare delivery in a single payer-dominated market, and as a consequence, have evolved with different market characteristics. Together, these economies represent an important subsection of healthcare markets that are predominantly publically funded. This report examines the barriers to market entry for regenerative medicine products in these economies and attempts to evaluate the upcoming UK healthcare reforms in terms of impact on the regenerative medicine industry sector.

  14. The UK relative to other single payer-dominated healthcare markets for regenerative medicine therapies.

    PubMed

    Rose, James B; Williams, David J

    2012-05-01

    The UK has for many years been considered by businesses, including those based in the UK, as at best a second market for the launch of innovative medical technology products. Historically, this has been attributed to the slow pace of adoption in its National Health Service (NHS). The NHS is perceived to be subject to cost containment, high levels of fragmentation and a lack of strategic incentives to resolve its key failings as a market. Canada and Sweden offer examples of different operating models of healthcare delivery in a single payer-dominated market, and as a consequence, have evolved with different market characteristics. Together, these economies represent an important subsection of healthcare markets that are predominantly publically funded. This report examines the barriers to market entry for regenerative medicine products in these economies and attempts to evaluate the upcoming UK healthcare reforms in terms of impact on the regenerative medicine industry sector. PMID:22594333

  15. Novel surgical techniques, regenerative medicine, tissue engineering and innovative immunosuppression in kidney transplantation

    PubMed Central

    Nowacki, Maciej; Nazarewski, Łukasz; Tyloch, Dominik; Pokrywczyńska, Marta; Pietkun, Katarzyna; Jundziłł, Arkadiusz; Tyloch, Janusz; Habib, Samy L.; Drewa, Tomasz

    2016-01-01

    On the 60th anniversary of the first successfully performed renal transplantation, we summarize the historical, current and potential future status of kidney transplantation. We discuss three different aspects with a potential significant influence on kidney transplantation progress: the development of surgical techniques, the influence of regenerative medicine and tissue engineering, and changes in immunosuppression. We evaluate the standard open surgical procedures with modern techniques and compare them to less invasive videoscopic as well as robotic techniques. The role of tissue engineering and regenerative medicine as a potential method for future kidney regeneration or replacement and the interesting search for novel solutions in the field of immunosuppression will be discussed. After 60 years since the first successfully performed kidney transplantation, we can conclude that the greatest achievements are associated with the development of surgical techniques and with planned systemic immunosuppression.

  16. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic

    PubMed Central

    Whiting, Paul; Kerby, Julie; Coffey, Peter; da Cruz, Lyndon; McKernan, Ruth

    2015-01-01

    Since the first publication of the derivation of human embryonic stem cells in 1998, there has been hope and expectation that this technology will lead to a wave of regenerative medicine therapies with the potential to revolutionize our approach to managing certain diseases. Despite significant resources in this direction, the path to the clinic for an embryonic stem-cell-based regenerative medicine therapy has not proven straightforward, though in the past few years progress has been made. Here, with a focus upon retinal disease, we discuss the current status of the development of such therapies. We also highlight some of our own experiences of progressing a retinal pigment epithelium cell replacement therapy towards the clinic. PMID:26416684

  17. Clinical research skills development program in cell-based regenerative medicine.

    PubMed

    Schulman, Ivonne Hernandez; Suncion, Viky; Karantalis, Vasileios; Balkan, Wayne; Hare, Joshua M

    2015-02-01

    Cell-based therapy aimed at restoring organ function is one of the most exciting and promising areas of medical research. However, a novel intervention like cell-based therapy requires physician education and training. An increasing number of physicians untrained in regenerative medicine are using cell-based therapy to treat patients for a wide variety of chronic illnesses. The current lack of training for physicians in this area combined with the sharply increasing practice of regenerative medicine is concerning for a number of reasons, namely potential harm to patients and avoidable conflicts between governmental regulatory agencies and physicians. Academic medical fellowship training programs are needed that specifically prepare physicians for treating patients with cell-based therapies for various organ systems and chronic diseases. The National Heart, Lung, and Blood Institute established the Cardiovascular Cell Therapy Network to design and conduct clinical trials that advance the field of cell-based therapy for patients with cardiovascular disease. As part of the network, a two-year Clinical Research Skills Development Program was supported at two centers with the goal of training early career investigators in cell-based clinical and translational research. In this review, we describe the implementation of this training program at our institution with the purpose of promoting the further development of academic fellowship programs in cell-based regenerative medicine.

  18. Human amniotic membrane as an alternative source of stem cells for regenerative medicine.

    PubMed

    Díaz-Prado, Silvia; Muiños-López, Emma; Hermida-Gómez, Tamara; Cicione, Claudia; Rendal-Vázquez, M Esther; Fuentes-Boquete, Isaac; de Toro, Francisco J; Blanco, Francisco J

    2011-03-01

    The human amniotic membrane (HAM) is a highly abundant and readily available tissue. This amniotic tissue has considerable advantageous characteristics to be considered as an attractive material in the field of regenerative medicine. It has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Since it is discarded post-partum it may be useful for regenerative medicine and cell therapy. Amniotic membranes have already been used extensively as biologic dressings in ophthalmic, abdominal and plastic surgery. HAM contains two cell types, from different embryological origins, which display some characteristic properties of stem cells. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. Both populations have similar immunophenotype and multipotential for in vitro differentiation into the major mesodermal lineages, however they differ in cell yield. Therefore, HAM has been proposed as a good candidate to be used in cell therapy or regenerative medicine to treat damaged or diseased tissues.

  19. Advanced Tissue Sciences Inc.: learning from the past, a case study for regenerative medicine.

    PubMed

    Pangarkar, Nitin; Pharoah, Marc; Nigam, Avinav; Hutmacher, Dietmar W; Champ, Simon

    2010-09-01

    On 31st March 2003 Advanced Tissue Sciences (ATS) was liquidated, with the effect that in excess of US$300 million of stakeholder financing was destroyed. Although successful in the development of breakthrough technologies in the regenerative medicine arena and the building of a substantial portfolio of patents, the company never made a profit. In this case study, ATS’ business strategy, market and competitive environment will be discussed in the context of the company’s historical development. A number of important lessons from this case are discussed. From a management perspective the most critical lesson is the importance of effective financial planning and management of costs, and in particular R&D costs, including the significant costs associated with clinical trials. In addition, a clear strategic focus is extremely important due to the significant resources required in the development of a new therapy. From an investor’s perspective the lessons to be gathered from the ATS case are related to the risk involved in investing in the field of regenerative medicine. This case indicates that both professional and private investors did not fully question the validity of ATS’ business strategy and financial forecasts. A clear and focused strategy based on long-term investor commitment is essential for the successful commercialization of regenerative medicine.

  20. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  1. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  2. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine.

    PubMed

    Toh, Wei Seong; Lee, Eng Hin; Cao, Tong

    2011-09-01

    The current surgical intervention of using autologous chondrocyte implantation (ACI) for cartilage repair is associated with several problems such as donor site morbidity, de-differentiation upon expansion and fibrocartilage repair following transplantation. This has led to exploration of the use of stem cells as a model for chondrogenic differentiation as well as a potential source of chondrogenic cells for cartilage tissue engineering and repair. Embryonic stem cells (ESCs) are advantageous, due to their unlimited self-renewal and pluripotency, thus representing an immortal cell source that could potentially provide an unlimited supply of chondrogenic cells for both cell and tissue-based therapies and replacements. This review aims to present an overview of emerging trends of using ESCs in cartilage tissue engineering and regenerative medicine. In particular, we will be focusing on ESCs as a promising cell source for cartilage regeneration, the various strategies and approaches employed in chondrogenic differentiation and tissue engineering, the associated outcomes from animal studies, and the challenges that need to be overcome before clinical application is possible.

  3. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  4. Hyaluronic Acid-Based Clinical Biomaterials Derived for Cell and Molecule Delivery in Regenerative Medicine

    PubMed Central

    Prestwich, Glenn D.

    2013-01-01

    The development of injectable and biocompatible vehicles for delivery, retention, growth, and differentiation of stem cells is of paramount importance for regenerative medicine. For cell therapy and the development of clinical combination products, we created a hyaluronan (HA)-based synthetic extracellular matrix (sECM) that provides highly reproducible, manufacturable, approvable, and affordable biomaterials. The composition of the sECM can be customized for use with progenitor and mature cell populations obtained from skin, fat, liver, heart, muscle, bone, cartilage, nerves, and other tissues. This overview describes the design criteria for “living” HA derivatives, and the many uses of this in situ crosslinkable HA-based sECM hydrogel for three-dimensional (3-D) culture of cells in vitro and translational use in vivo. Recent advances allow rapid expansion and recovery of cells in 3-D, and the bioprinting of engineered tissue constructs. The uses of HA-derived sECMs for cell and molecule delivery in vivo will be reviewed, including applications in cancer biology and tumor imaging. PMID:21513749

  5. The Endometrium as a Source of Mesenchymal Stem Cells for Regenerative Medicine1

    PubMed Central

    Mutlu, Levent; Hufnagel, Demetra; Taylor, Hugh S.

    2015-01-01

    Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine. PMID:25904012

  6. Review and Updates in Regenerative and Personalized Medicine, Preclinical Animal Models, and Clinical Care in Cardiovascular Medicine.

    PubMed

    Barbato, Emanuele; Barton, Paul J; Bartunek, Jozef; Huber, Sally; Ibanez, Borja; Judge, Daniel P; Lara-Pezzi, Enrique; Stolen, Craig M; Taylor, Angela; Hall, Jennifer L

    2015-11-01

    The goal of this paper is to provide an updated review for scientists and clinicians on the major areas in cardiovascular medicine published in the Journal. Leading topics in regenerative and personalized medicine are presented along with a critical overview of the field. New standards in large preclinical animal models of pulmonary hypertension and left bundle branch block are highlighted. Finally, clinical care in the areas of atherosclerosis, the aortic valve, platelet biology, and myocarditis is discussed as well as autonomic modulation therapies. PMID:26453460

  7. Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine.

    PubMed

    Mikami, Yoshikazu; Matsumoto, Taro; Kano, Koichiro; Toriumi, Taku; Somei, Masanori; Honda, Masaki J; Komiyama, Kazuo

    2014-01-01

    A number of factors can lead to bone disorders such as osteoporosis, in which the balance of bone resorption vs. bone formation is upset (i.e., more bone is resorbed than is formed). The result is a loss of bone mass, with a concomitant decrease in bone density. Drugs for osteoporosis can be broadly classified as "bone resorption inhibitors", which impede bone resorption by osteoclasts, and "bone formation accelerators", which augment bone formation by osteoblasts. Here, we describe representative drugs in each class, i.e., the bisphosphonates and the parathyroid hormone. In addition, we introduce two novel bone formation accelerators, SST-VEDI and SSH-BMI, which are currently under investigation by our research group. On the other hand, regenerative therapy, characterized by (ideally) the use of a patient's own cells to regenerate lost tissue, is now a matter of global interest. At present, candidate cell sources for regenerative therapy include embryonic stem cells (created from embryos based on the fertilization of oocytes), induced pluripotent stem cells (created artificially by using somatic cells as the starting material), and somatic stem cells (found in the tissues of the adult body). This review summarizes the identifying features and the therapeutic potential of each of these stem cell types for bone regenerative medicine. Although a number of different kinds of somatic stem cells have been reported, we turn our attention toward two that are of particular interest for prospective applications in bone repair: the dedifferentiated fat cell, and the deciduous dental pulp-derived stem cell.

  8. L-PRP/L-PRF in esthetic plastic surgery, regenerative medicine of the skin and chronic wounds.

    PubMed

    Cieslik-Bielecka, Agata; Choukroun, Joseph; Odin, Guillaume; Dohan Ehrenfest, David M

    2012-06-01

    The use of platelet concentrates for topical use is of particular interest for the promotion of skin wound healing. Fibrin-based surgical adjuvants are indeed widely used in plastic surgery since many years in order to improve scar healing and wound closure. However, the addition of platelets and their associated growth factors opened a new range of possibilities, particularly for the treatment of chronic skin ulcers and other applications of regenerative medicine on the covering tissues. In the 4 families of platelet concentrates available, 2 families were particularly used and tested in this clinical field: L-PRP (Leukocyte- and Platelet-rich Plasma) and L-PRF (Leukocyte- and Platelet-Rich Fibrin). These 2 families have in common the presence of significant concentrations of leukocytes, and these cells are important in the local cleaning and immune regulation of the wound healing process. The main difference between them is the fibrin architecture, and this parameter considerably influences the healing potential and the therapeutical protocol associated to each platelet concentrate technology. In this article, we describe the historical evolutions of these techniques from the fibrin glues to the current L-PRP and L-PRF, and discuss the important functions of the platelet growth factors, the leukocyte content and the fibrin architecture in order to optimize the numerous potential applications of these products in regenerative medicine of the skin. Many outstanding perspectives are appearing in this field and require further research.

  9. Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics.

    PubMed

    Lysaght, Michael J; Jaklenec, Ana; Deweerd, Elizabeth

    2008-02-01

    This report draws upon data from a variety of sources to provide a detailed estimate of the current scope of private sector development and commercial activity in the aggregate field comprising tissue engineering, regenerative medicine, and stem cell therapeutics. Economic activity has grown a remarkable fivefold in the past 5 years. As of mid-2007 approximately 50 firms or business units with over 3000 employees offered commercial tissue-regenerative products or services with generally profitable annual sales in excess of $1.3 billion. Well over a million patients have been treated with these products. In addition, 110 development-stage companies with over 55 products in FDA-level clinical trials and other preclinical stages employed approximately 2500 scientists or support personnel and spent 850 million development dollars in 2007. These totals represent a remarkable recovery from the downturn of 2000-2002, at which time tissue engineering was in shambles because of disappointing product launches, failed regulatory trials, and the general investment pullback following the dot-com crash. Commercial success has resulted in large measure from identification of products that are achievable with available technology and under existing regulatory guidelines. Development-stage firms have become much more adept at risk management. The resilience of the field, as well as its current breadth and diversity, augurs well for the future of regenerative medicine. PMID:18333783

  10. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    NASA Astrophysics Data System (ADS)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  11. Multiscale assembly for tissue engineering and regenerative medicine

    PubMed Central

    Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-01-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488

  12. Multiscale assembly for tissue engineering and regenerative medicine.

    PubMed

    Guven, Sinan; Chen, Pu; Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-05-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bioengineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures.

  13. Impact of Stem Cells in Craniofacial Regenerative Medicine

    PubMed Central

    Sanchez-Lara, Pedro A.; Zhao, Hu; Bajpai, Ruchi; Abdelhamid, Alaa I.; Warburton, David

    2012-01-01

    Interest regarding stem cell based therapies for the treatment of congenital or acquired craniofacial deformities is rapidly growing. Craniofacial problems such as periodontal disease, cleft lip and palate, ear microtia, craniofacial microsomia, and head and neck cancers are not only common but also some of the most burdensome surgical problems worldwide. Treatments often require a multi-staged multidisciplinary team approach. Current surgical therapies attempt to reduce the morbidity and social/emotional impact, yet outcomes can still be unpredictable and unsatisfactory. The concept of harvesting stem cells followed by expansion, differentiation, seeding onto a scaffold and re-transplanting them is likely to become a clinical reality. In this review, we will summarize the translational applications of stem cell therapy in tissue regeneration for craniofacial defects. PMID:22737127

  14. The dorsal skinfold chamber: A versatile tool for preclinical research in tissue engineering and regenerative medicine.

    PubMed

    Laschke, M W; Menger, M D

    2016-01-01

    The dorsal skinfold chamber is a rodent model for non-invasive microcirculatory analyses of striated muscle and skin tissue throughout an observation period of 2-3 weeks. In combination with intravital fluorescence microscopy, this model allows the quantitative assessment of dynamic processes such as inflammation, angiogenesis, vascular remodelling and microcirculation. Accordingly, the dorsal skinfold chamber is increasingly used for preclinical research in tissue engineering and regenerative medicine. This includes studies on biocompatibility, vascularisation and incorporation of medical implants and artificial tissue constructs. Moreover, the chamber implantation procedure has been modified to analyse primary and secondary wound healing as well as revascularisation and blood perfusion of dermal substitutes, skin grafts and myocutaneous flaps. Hence, the dorsal skinfold chamber model does not only provide deep insights into fundamental regenerative mechanisms but also represents a versatile tool for the development of novel therapeutic strategies. PMID:27646143

  15. Effect of the alternative magnetic stimulation on peripheral circulation for regenerative medicine.

    PubMed

    Yambe, T; Inoue, A; Sekine, K; Shiraishi, Y; Watanabe, M; Yamaguchi, T; Shibata, M; Maruyama, M; Konno, S; Nitta, S

    2005-10-01

    Regenerative medicine for patients with peripheral atherosclerosis attracts considerable attention around the world. However, ethical problems persist in gene therapy. This study evaluates the effect of alterative magnetic stimulation on peripheral circulation. The effect of magnetic stimulation as a medical treatment was examined using a thermograph for 11 healthy volunteers. The thermograph was used to measure the rise in skin temperature. The experimental results suggested an improvement in the peripheral circulation. The results of our study suggest the effectiveness of alternative magnetic stimulation on atherosclerosis. We intend to extend our study in order to establish a methodology for regenerative medical treatment for patients with peripheral atherosclerosis. Further, we wish to advance the current research in the field of angiogenesis.

  16. The dorsal skinfold chamber: A versatile tool for preclinical research in tissue engineering and regenerative medicine.

    PubMed

    Laschke, M W; Menger, M D

    2016-09-20

    The dorsal skinfold chamber is a rodent model for non-invasive microcirculatory analyses of striated muscle and skin tissue throughout an observation period of 2-3 weeks. In combination with intravital fluorescence microscopy, this model allows the quantitative assessment of dynamic processes such as inflammation, angiogenesis, vascular remodelling and microcirculation. Accordingly, the dorsal skinfold chamber is increasingly used for preclinical research in tissue engineering and regenerative medicine. This includes studies on biocompatibility, vascularisation and incorporation of medical implants and artificial tissue constructs. Moreover, the chamber implantation procedure has been modified to analyse primary and secondary wound healing as well as revascularisation and blood perfusion of dermal substitutes, skin grafts and myocutaneous flaps. Hence, the dorsal skinfold chamber model does not only provide deep insights into fundamental regenerative mechanisms but also represents a versatile tool for the development of novel therapeutic strategies.

  17. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  18. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    PubMed Central

    Cores, Jhon; Caranasos, Thomas G.; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  19. New Challenges for Intervertebral Disc Treatment Using Regenerative Medicine

    PubMed Central

    Masuda, Koichi

    2010-01-01

    The development of tissue engineering therapies for the intervertebral disc is challenging due to ambiguities of disease and pain mechanisms in patients, and lack of consensus on preclinical models for safety and efficacy testing. Although the issues associated with model selection for studying orthopedic diseases or treatments have been discussed often, the multifaceted challenges associated with developing intervertebral disc tissue engineering therapies require special discussion. This review covers topics relevant to the clinical translation of tissue-engineered technologies: (1) the unmet clinical need, (2) appropriate models for safety and efficacy testing, (3) the need for standardized model systems, and (4) the translational pathways leading to a clinical trial. For preclinical evaluation of new therapies, we recommend establishing biologic plausibility of efficacy and safety using models of increasing complexity, starting with cell culture, small animals (rats and rabbits), and then large animals (goat and minipig) that more closely mimic nutritional, biomechanical, and surgical realities of human application. The use of standardized and reproducible experimental procedures and outcome measures is critical for judging relative efficacy. Finally, success will hinge on carefully designed clinical trials with well-defined patient selection criteria, gold-standard controls, and objective outcome metrics to assess performance in the early postoperative period. PMID:19903086

  20. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-11-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  1. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    PubMed Central

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  2. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C.; Nolta, Jan A.

    2015-01-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Significance Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it

  3. Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine

    PubMed Central

    Skalova, Stepanka; Svadlakova, Tereza; Qureshi, Wasay Mohiuddin Shaikh; Dev, Kapil; Mokry, Jaroslav

    2015-01-01

    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges. PMID:25689424

  4. Microfabricated Modular Scale-Down Device for Regenerative Medicine Process Development

    PubMed Central

    Reichen, Marcel; Macown, Rhys J.; Jaccard, Nicolas; Super, Alexandre; Ruban, Ludmila; Griffin, Lewis D.; Veraitch, Farlan S.; Szita, Nicolas

    2012-01-01

    The capacity of milli and micro litre bioreactors to accelerate process development has been successfully demonstrated in traditional biotechnology. However, for regenerative medicine present smaller scale culture methods cannot cope with the wide range of processing variables that need to be evaluated. Existing microfabricated culture devices, which could test different culture variables with a minimum amount of resources (e.g. expensive culture medium), are typically not designed with process development in mind. We present a novel, autoclavable, and microfabricated scale-down device designed for regenerative medicine process development. The microfabricated device contains a re-sealable culture chamber that facilitates use of standard culture protocols, creating a link with traditional small-scale culture devices for validation and scale-up studies. Further, the modular design can easily accommodate investigation of different culture substrate/extra-cellular matrix combinations. Inactivated mouse embryonic fibroblasts (iMEF) and human embryonic stem cell (hESC) colonies were successfully seeded on gelatine-coated tissue culture polystyrene (TC-PS) using standard static seeding protocols. The microfluidic chip included in the device offers precise and accurate control over the culture medium flow rate and resulting shear stresses in the device. Cells were cultured for two days with media perfused at 300 µl.h−1 resulting in a modelled shear stress of 1.1×10−4 Pa. Following perfusion, hESC colonies stained positively for different pluripotency markers and retained an undifferentiated morphology. An image processing algorithm was developed which permits quantification of co-cultured colony-forming cells from phase contrast microscope images. hESC colony sizes were quantified against the background of the feeder cells (iMEF) in less than 45 seconds for high-resolution images, which will permit real-time monitoring of culture progress in future experiments. The

  5. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    NASA Astrophysics Data System (ADS)

    Bhise, Nupura S.

    plasmids were associated with a single polymeric nanoparticle. To develop PBAE vectors for application in cancer drug delivery and 3-D tissue engineered cultures, the gene delivery efficacy of PBAE nanoparticles was evaluated in mammary epithelial cells used as a model for studying normal development of mammary gland as well as the events that lead to development of breast cancer. We investigated how small molecular changes to the end-capping terminal group of the polymer and changes to the polymer MW affect gene delivery in 2-D mammary cell culture compared to 3-D primary organotypic cultured mouse mammary tissue. We reported that the polymers synthesized here are more effective for gene delivery than FuGENERTM HD, one of the leading commercially available reagents for non-viral gene delivery. We also highlighted that transfection of the 3-D organotypic cultures is more difficult than transfection of 2-D cultures, but likely models some of the key challenges for in vivo gene therapy more closely than 2-D cultures. Finally, we evaluated the use of PBAE nanotechnology for genetic manipulation of stem cell fate for regenerative medicine applications. We developed a PBAE nanoparticle based non-viral protocol and compared it with an electroporation based approach to deliver episomal plasmids encoding reprogramming factors for derivation of human induced pluripotent stem cells (hiPSC). The hiPSCs generated using these approaches can be differentiated into specific cell types for in vitro disease modeling and drug screening, specifically to study retinal degeneration.

  6. Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-09-01

    The oldest animals on Earth, sponges, form both the calcareous and the siliceous matrices of their spicules enzymatically. Until recently, it has been neglected that enzymes play crucial roles during formation of these biominerals. This paradigm shift occurred after the discovery that the enzyme silicatein, which catalyzes the polycondensation of silica, and the enzyme carbonic anhydrase (CA), which catalyzes the formation of bicarbonate (HCO3(-)/CaCO3), produce solid amorphous bioglass or biocalcite. This suggests that in mammals, biosilica and biocalcite can act anabolically during hydroxyapatite (HA) synthesis and bone formation. Biosilica and biocalcite are thus promising candidates for the fabrication of biomaterials for regenerative medicine. PMID:24908383

  7. Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-09-01

    The oldest animals on Earth, sponges, form both the calcareous and the siliceous matrices of their spicules enzymatically. Until recently, it has been neglected that enzymes play crucial roles during formation of these biominerals. This paradigm shift occurred after the discovery that the enzyme silicatein, which catalyzes the polycondensation of silica, and the enzyme carbonic anhydrase (CA), which catalyzes the formation of bicarbonate (HCO3(-)/CaCO3), produce solid amorphous bioglass or biocalcite. This suggests that in mammals, biosilica and biocalcite can act anabolically during hydroxyapatite (HA) synthesis and bone formation. Biosilica and biocalcite are thus promising candidates for the fabrication of biomaterials for regenerative medicine.

  8. Bone Morphogenetic Proteins: Promising Molecules for Bone Healing, Bioengineering, and Regenerative Medicine.

    PubMed

    Carreira, Ana Claudia Oliveira; Zambuzzi, Willian Fernando; Rossi, Mariana Correa; Astorino Filho, Renato; Sogayar, Mari Cleide; Granjeiro, José Mauro

    2015-01-01

    Bone morphogenetic proteins (BMPs), glycoproteins secreted by some cells, are members of the TGF-β superfamily that have been implicated in a wide variety of roles. Currently, about 20 different BMPs have been identified and grouped into subfamilies, according to similarities with respect to their amino acid sequences. It has been shown that BMPs are secreted growth factors involved in mesenchymal stem cell differentiation, also being reported to control the differentiation of cancer stem cells. BMPs initiate signaling from the cell surface by binding to two different receptors (R: Type I and II). The heterodimeric formation of type I R and II R may occur before or after BMP binding, inducing signal transduction pathways through SMADs. BMPs may also signal through SMAD-independent pathways via mitogen-activated protein kinases (ERK, p38MAPKs, JNK). BMPs may act in an autocrine or paracrine manner, being regulated by specific antagonists, namely: noggin and chordin. Genetic engineering allows the production of large amounts of BMPs for clinical use, and clinical trials have shown the benefits of FDA-approved recombinant human BMPs 2 and 7. Several materials from synthetic to natural sources have been tested as BMP carriers, ranging from hydroxyapatite, and organic polymers to collagen. Bioactive membranes doped with BMPs are promising options, acting to accelerate and enhance osteointegration. The development of smart materials, mainly based on biopolymers and bone-like calcium phosphates, appears to provide an attractive alternative for delivering BMPs in an adequately controlled fashion. BMPs have revealed a promising future for the fields of Bioengineering and Regenerative Medicine. In this chapter, we review and discuss the data on BMP structure, mechanisms of action, and possible clinical applications.

  9. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.

    PubMed

    Hacker, Michael C; Nawaz, Hafiz Awais

    2015-11-19

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.

  10. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine

    PubMed Central

    Hacker, Michael C.; Nawaz, Hafiz Awais

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468

  11. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.

    PubMed

    Hacker, Michael C; Nawaz, Hafiz Awais

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468

  12. Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy

    PubMed Central

    Cho, Gun-Sik; Fernandez, Laviel

    2014-01-01

    Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793

  13. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  14. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  15. Stem cell applications in military medicine

    PubMed Central

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers - and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  16. Resilience of the human fetal lung following stillbirth: potential relevance for pulmonary regenerative medicine.

    PubMed

    De Paepe, Monique E; Chu, Sharon; Heger, Nicholas; Hall, Susan; Mao, Quanfu

    2012-02-01

    Recent advances in pulmonary regenerative medicine have increased the demand for alveolar epithelial progenitor cells. Fetal lung tissues from spontaneous pregnancy losses may represent a neglected, yet ethically and societally acceptable source of alveolar epithelial cells. The aim of this study was to determine the regenerative capacity of fetal lungs obtained from second trimester stillbirths. Lung tissues were harvested from 11 stillborn fetuses (13 to 22 weeks' gestation) at postdelivery intervals ranging from 10 to 41 hours and grafted to the renal subcapsular space of immune-suppressed rats to provide optimal growth conditions. Histology, epithelial and alveolar type II cell proliferation, and surfactant protein-C mRNA expression were studied in preimplantation lung tissues and in xenografts at posttransplantation week 2. All xenografts displayed advanced architectural maturation compared with their respective preimplantation tissues, regardless of gestational age and postdelivery interval. The proliferative activity of the grafts was significantly higher than that of the preimplantation tissues (mean Ki-67 labeling index 26.7%±7.7% versus 14.7%±10.5%; P<.01). The proliferative activity of grafts obtained after a long (>36 hours) postdelivery interval was significantly higher than that of the corresponding preimplantation tissue, and equivalent to that of grafts obtained after a short postdelivery interval (<14 hours). The regenerative capacity of fetal lung tissue was greater at younger (13 to 17 weeks) than at older (19 to 22 weeks) gestational ages. The presence of inflammation/chorioamnionitis did not appear to affect graft regeneration. All grafts studied displayed robust surfactant protein-C mRNA expression. In conclusion, fetal lung tissues from second trimester stillbirths can regain their inherent high regenerative potential following short-term culture, even if harvested more than 36 hours after delivery.

  17. Back to the future: how human induced pluripotent stem cells will transform regenerative medicine

    PubMed Central

    Svendsen, Clive N.

    2013-01-01

    Based on cloning studies in mammals, all adult human cells theoretically contain DNA that is capable of creating a whole new person. Cells are maintained in their differentiated state by selectively activating some genes and silencing. The dogma until recently was that cell differentiation was largely fixed unless exposed to the environment of an activated oocyte. However, it is now possible to activate primitive pluripotent genes within adult human cells that take them back in time to a pluripotent state (termed induced pluripotent stem cells). This technology has grown at an exponential rate over the past few years, culminating in the Nobel Prize in medicine. Discussed here are recent developments in the field as they relate to regenerative medicine, with an emphasis on creating functional cells, editing their genome, autologous transplantation and how this ground-breaking field may eventually impact human aging. PMID:23945396

  18. Opening the gateways to market and adoption of regenerative medicine? The UK case in context.

    PubMed

    Faulkner, Alex

    2016-04-01

    Regenerative medicine is a site for opposing forces of gatekeeping and innovation. This applies both to regulation of market entry and to clinical adoption. Key gateways include the EU's Advanced Therapy Medicinal Products Regulation, technology assessment body NICE and commissioning/service contractor National Health Service England. The paper maps recent gatekeeping flexibilities, describing the range of gateways to market and healthcare adoption seen as alternatives to mainstream routes. The initiatives range from exemptions in pharmaceutical and ATMP regulations, through 'adaptive pathways' and 'risk-based' approaches, to special designation for promising innovation, value-based assessment and commissioner developments. Future developments are considered in the UK's 'accelerated access review'. Caution is urged in assessing the impact of these gateway flexibilities and their market and public health implications. PMID:27035398

  19. New Frontier in Regenerative Medicine: Site-Specific Gene Correction in Patient-Specific Induced Pluripotent Stem Cells

    PubMed Central

    Garate, Zita; Davis, Brian R.; Quintana-Bustamante, Oscar

    2013-01-01

    Abstract Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs. PMID:23675640

  20. Alginate cell encapsulation: new advances in reproduction and cartilage regenerative medicine

    PubMed Central

    Ghidoni, Ilaria; Chlapanidas, Theodora; Bucco, Massimo; Crovato, Francesca; Marazzi, Mario; Vigo, Daniele; Torre, Maria Luisa

    2008-01-01

    Cell encapsulation, a strategy whereby a pool of live cells is entrapped within a semipermeable membrane, represents an evolving branch of biotechnology and regenerative medicine. For example, over the last 20 years, male and female gametes and embryos have been encapsulated with or without somatic cells for different purposes, such as in vitro gametogenesis, embryo culture, cell preservation and semen controlled release. Beside that, cell encapsulation technology in alginate, which is a natural biodegradable polymer that mimics the extracellular matrix and supports both cell functions and metabolism, has been developed with the aim of obtaining three-dimensional (3D) cultures. In this context, adipose-derived stromal vascular fraction (SVF) has attracted more and more attention because of its enormous potential in tissue regeneration. In fact, the SVF represents a rich source of mesenchymal cells (ADSCs), potentially able to differentiate into adipocytes, chondrocytes, osteoblasts, myocytes, cardiomyocytes, hepatocytes, and neuronal, epithelial and endothelial cells. These cells are ideal candidates for use in regenerative medicine, tissue engineering, including gene therapy and cell replacement cancer therapies. As long as technological resources are available for large-scale cell encapsulation intended for advanced therapies (gene therapy, somatic cell therapy and tissue engineering), the state-of-the-art in this field is reviewed in terms of scientific literature. PMID:19002776

  1. Integration of Drug, Protein, and Gene Delivery Systems with Regenerative Medicine

    PubMed Central

    Lorden, Elizabeth R.; Levinson, Howard M.; Leong, Kam W.

    2013-01-01

    Regenerative medicine has the potential to drastically change the field of health care from reactive to preventative and restorative. Exciting advances in stem cell biology and cellular reprogramming have fueled the progress of this field. Biochemical cues in the form of small molecule drugs, growth factors, zinc finger protein transcription factors and nucleases, transcription activator-like effector nucleases, monoclonal antibodies, plasmid DNA, aptamers, or RNA interference agents can play an important role to influence stem cell differentiation and the outcome of tissue regeneration. Many of these biochemical factors are fragile and must act intracellularly at the molecular level. They require an effective delivery system, which can take the form of a scaffold (e.g. hydrogels and electrospun fibers), carrier (viral and nonviral), nano- and micro-particle, or genetically modified cell. In this review, we will discuss the history and current technologies of drug, protein and gene delivery in the context of regenerative medicine. Next we will present case examples of how delivery technologies are being applied to promote angiogenesis in non-healing wounds or prevent angiogenesis in age related macular degeneration. Finally, we will conclude with a brief discussion of the regulatory pathway from bench-to-bedside for the clinical translation of these novel therapeutics. PMID:25787742

  2. Conference scene. A bright future for tissue engineering and regenerative medicine in the Asia Pacific region.

    PubMed

    Frith, Jessica E; Hudson, James E; Cooper-White, Justin J

    2011-03-01

    The Tissue Engineering and Regenerative Medicine International Society-Asia Pacific (TERMIS-AP) annual meeting was held in Sydney, Australia from 15-17 September 2010 and highlighted the latest developments in tissue engineering and regenerative medicine in the Asia-Pacific region. Several of the plenary lectures focused on the vascularization of tissue engineering constructs, an issue that is critical for the success of larger tissue engineered constructs and was central to the meeting overall. In addition, a wide range of research also presented developments in tissue engineering for a range of body tissues (including cardiac, neural, bone, cartilage, tendon, skeletal muscle and skin), as well as advances in technologies (high-throughput screening and microfluidics). Looking more broadly, the meeting incorporated developments covering the spectrum of fundamental research through to clinical studies, with discussions on how best to direct the scientific advances being made into realistic therapies that could be made widely available in the future. Overall, the meeting highlighted the promise of early strategies, which are now showing promising results in clinical trials, and the development of a strong foundation of research from which future therapies will no doubt be developed. PMID:21391850

  3. The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine.

    PubMed

    Hedges, Erin C; Mehler, Vera J; Nishimura, Agnes L

    2016-01-01

    In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways. Thus, as never before, compounds with potential applications for regenerative medicine can be specifically tailored in patient derived cultures. In this review, we discuss how patient specific induced pluripotent stem cells (iPSCs) have been used to model ALS and FTD and the most recent drug screening targets for these diseases. We also discuss how an iPSC bank would improve the quality of the available cell lines and how it would increase knowledge about the ALS/FTD disease spectrum.

  4. The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine

    PubMed Central

    Hedges, Erin C.; Mehler, Vera J.; Nishimura, Agnes L.

    2016-01-01

    In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways. Thus, as never before, compounds with potential applications for regenerative medicine can be specifically tailored in patient derived cultures. In this review, we discuss how patient specific induced pluripotent stem cells (iPSCs) have been used to model ALS and FTD and the most recent drug screening targets for these diseases. We also discuss how an iPSC bank would improve the quality of the available cell lines and how it would increase knowledge about the ALS/FTD disease spectrum. PMID:26966440

  5. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine

    PubMed Central

    Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.

    2015-01-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  6. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  7. Current overview on dental stem cells applications in regenerative dentistry

    PubMed Central

    Bansal, Ramta; Jain, Aditya

    2015-01-01

    Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental stem cells were shortlisted and the facts are compiled. The objective of this review article is to discuss the history of stem cells, different stem cells relevant for dentistry, their isolation approaches, collection, and preservation of dental stem cells along with the current status of dental and medical applications. PMID:25810631

  8. The Interface of Functional Biotribology and Regenerative Medicine in Synovial Joints

    PubMed Central

    Komvopoulos, Kyriakos; Reddi, A. Hari

    2008-01-01

    Biotribology is the science of biological surfaces in sliding contact encompassing the concepts of friction, wear, and lubrication of interacting surfaces. This bioscience field has emerged from the classical field of tribology and is of paramount importance to the normal function of numerous tissues, including articular cartilage, blood vessels, heart, tendons, ligaments, and skin. Surprisingly, relatively little attention has been given to the restoration of surface characteristics in the fields of tissue engineering and regenerative medicine—the science of design and manufacture of new tissues for the functional restoration of impaired or diseased organs that depend on inductive signals, responding stem cells, and extracellular matrix scaffolding. Analogous to ancient civilizations (c. 3000 B.C.) that introduced wheeled vehicles, sledges for transporting heavy blocks, and lubricants, modern biotribologists must aim to restore surface characteristics to regenerated tissues and develop novel biomaterials with optimal tribological properties. The objective of this article is to highlight the significance of functional biotribology in the physiology of body surfaces and provide a comprehensive overview of unresolved issues and controversies as it relates to regenerative medicine. Specific attention is placed on the molecular basis of lubrication, mechanical and biochemical regulation of lubricating molecules, and the need to study wear processes in articular cartilage, especially in light of degenerative diseases, such as osteoarthritis. Surface engineering of replacement tissues exhibiting low friction and high wear resistance is examined using articular cartilage as an illustrative model system. PMID:18601586

  9. Recents patents for isolating, delivering and tracking adult stem cells in regenerative medicine.

    PubMed

    Fierabracci, Alessandra

    2010-06-01

    The field of regenerative medicine offers nowadays the potential to significantly impact a wide spectrum of healthcare issues, from insulin-dependent diabetes mellitus (Type 1 diabetes, T1D) to cardiovascular disease. In tissue engineering biomaterials, biological factors, regeneration competent cells are used in the process of creating functional tissue. Regarding the type of stem or progenitor cells which represents the best candidate for therapy, embryonic stem cells have been considered the master cells capable of differentiating into every type of cells either in vitro or in vivo, in spite of serious ethical concerns. Nevertheless experimental evidence suggests that adult stem cells and even terminally differentiated somatic cells under appropriate microenvironmental treatments can be reprogrammed and contribute to a much wider spectrum of differentiated progeny than previously anticipated. One of the main goals is to exploit novel technologies aiming to isolate, expand and enrich sources of regeneration competent cells, especially adult somatic stem cells. Researchers are also trying to develop innovative strategies for effectively delivering regenerative cell populations and to implement 'tracking' tools to verify their engraftment and destiny in vivo. Here we review recent patents on the field issued over the past five years.

  10. Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell.

    PubMed

    Ratajczak, Mariusz Z; Zuba-Surma, Ewa K; Wysoczynski, Marcin; Wan, Wu; Ratajczak, Janina; Wojakowski, Wojciech; Kucia, Magda

    2008-05-01

    Regenerative medicine and tissue engineering are searching for a novel stem cell based therapeutic strategy that will allow for efficient treatment or even potential replacement of damaged organs. The pluripotent stem cell (PSC), which gives rise to cells from all three germ lineages, seems to be the most ideal candidate for such therapies. PSC could be extracted from developing embryos. However, since this source of stem cells for potential therapeutic purposes remains controversial, stem cell researchers look for PSC that could be isolated from the adult tissues or generated from already differentiated cells. True PSC should possess both potential for multilineage differentiation in vitro and, more importantly, also be able to complement in vivo blastocyst development. This review will summarize current approaches and limitations to isolate PSC from adult tissues or, alternatively, to generate it by nuclear reprogramming from already differentiated somatic cells.

  11. The future of replacement and restorative therapies: from organ transplantation to regenerative medicine.

    PubMed

    Daar, A S

    2013-01-01

    As we continue to have severe shortages of organs for transplantation, we need to consider alternatives for the future. The most likely to make a real difference in the long term is regenerative medicine (RM), a field that has emerged from the conjunction of stem cell biology and cell therapies; gene therapy; biomaterials and tissue engineering; and organ transplantation. Transplantation and RM share the same essential goal: to replace or restore organ function. Herein I briefly review some major breakthroughs of RM that are relevant to the future of organ transplantation, with a focus on the needs of people in the developing world. A definition of RM is provided and the ethical, legal, and social issues are briefly highlighted. In conclusion, I provide a projection of what the future may be for RM. PMID:24314929

  12. Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations.

    PubMed

    Laprise, Shari L

    2010-06-01

    The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability. PMID:20162468

  13. Societal impacts of regenerative medicine: reflections on the views of orthopedic professionals.

    PubMed

    Niemansburg, Sophie L; Tempels, Tjidde H; Dhert, Wouter J A; van Delden, Johannes J M; Bredenoord, Annelien L

    2015-01-01

    As the amount of clinical studies in orthopedic regenerative medicine (RM) is increasing, it is time to take into account its impact on society. A total of 36 biomedical professionals working at the front row of orthopedic RM were interviewed to explore their attitudes, opinions and expectations regarding the societal impacts of RM. Professionals mainly recognized the societal impacts of counteraction of aging, prevention of disease and social justice. The 'soft' sides of these impacts were hardly mentioned. Whereas they did not perceive themselves in the position to mitigate these impacts, professionals should take up their role as actor and become involved in the societal debate. This is important as they can co-shape the societal impacts during the developmental process of technologies and thereby stimulate responsible innovation.

  14. The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine.

    PubMed

    Jin, Guorui; Li, Kai

    2014-12-01

    Stem cells with multipotent and self-renewal abilities play a vital role in regenerative medicine and tissue engineering. They can assist tissue reconstruction through specific differentiation and secretion of various bioactive macromolecules. More and more studies confirm that the cell-fate commitment can be manipulated via constructing a specific stem cell niche. The construction of specific niches with conductive materials (conducting polymers, carbon nanotubes and graphene) can promote stem cell differentiation towards electro-active lineages and emphasize the promising role of stem cells in electro-active tissue regeneration (e.g., nerve and heart). In this review, we summarize the commonly applied conductive materials for scaffold construction and evaluate their contributions in the regeneration of electro-active tissues.

  15. Regenerative Medicine in Organ and Tissue Transplantation: Shortly and Practically Achievable?

    PubMed Central

    Heidary Rouchi, A.; Mahdavi-Mazdeh, M.

    2015-01-01

    Since the beginning of organ/tissue transplantation, the therapeutic modality of choice in end-stage organ failure, organ shortage has been the main problem in transplantation medicine. Given the so far unsolved obstacle, all hope-raising procedures to possibly tackle this long-lasting problem can draw attentions. In this context, “regenerative medicine” sounds to be more promising compared to other approaches. To consider the huge impact of hematopoietic stem cell transplantation on the treatment of some congenital or acquired hematological or metabolic disorders and some advances to produce tissue engineered materials on one hand, and to take all aspects of this emerging and costly interdisciplinary field of research into consideration, on the other hand, inevitably makes this reality unchanged, in particular in countries with low or middle income, that allograft (from deceased or living donors) will remain for years as the irreplaceable source of organ transplantation. PMID:26306154

  16. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    SciTech Connect

    Anders, Juanita; Moges, Helina; Wu, Xingjia; Ilev, Ilko; Waynant, Ronald; Longo, Leonardo

    2010-05-31

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  17. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Anders, Juanita; Moges, Helina; Wu, Xingjia; Ilev, Ilko; Waynant, Ronald; Longo, Leonardo

    2010-05-01

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  18. [Regenerative medicine in andrology: tissue engineering and gene therapy as potential treatment options for penile deformations and erectile dysfunction].

    PubMed

    Schultheiss, D; Jonas, U

    2006-09-01

    Tissue engineering and gene therapy are currently investigated in animal studies for reconstructing penile tissue or treating erectile dysfunction. This review aims to ecamine these experimental efforts from the last years and tries to give a brief introduction to the basic methodology of these new techniques from the field of regenerative medicine. PMID:17078577

  19. Advances in material design for regenerative medicine, drug delivery and targeting/imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the major breakthroughs and paradigm shifts in medicine to date have occurred due to innovations and materials and/or application/implementation of materials in clinical medicine. Artificial heart valves, implantable cardiac devices, limb prosthesis, cardiovascular stents, orthopedic implan...

  20. Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products.

    PubMed

    Astori, Giuseppe; Soncin, Sabrina; Lo Cicero, Viviana; Siclari, Francesco; Sürder, Daniel; Turchetto, Lucia; Soldati, Gianni; Moccetti, Tiziano

    2010-05-15

    Bone marrow derived stem cells administered after minimal manipulation represent an important cell source for cell-based therapies. Clinical trial results, have revealed both safety and efficacy of the cell reinfusion procedure in many cardiovascular diseases. Many of these early clinical trials were performed in a period before the entry into force of the US and European regulation on cell-based therapies. As a result, conflicting data have been generated on the effectiveness of those therapies in certain conditions as acute myocardial infarction. As more academic medical centers and private companies move toward exploiting the full potential of cell-based medicinal products, needs arise for the development of the infrastructure necessary to support these investigations. This review describes the regulatory environment surrounding the production of cell based medicinal products and give practical aspects for cell isolation, characterization, production following Good Manufacturing Practice, focusing on the activities associated with the investigational new drug development.

  1. Regenerative medicine: then and now – an update of recent history into future possibilities

    PubMed Central

    Polykandriotis, E; Popescu, L M; Horch, R E

    2010-01-01

    Abstract The fields of tissue engineering (TE) and regenerative medicine (RegMed) are yet to bring about the anticipated therapeutic revolution. After two decades of extremely high expectations and often disappointing returns both in the medical as well as in the financial arena, this scientific field reflects the sense of a new era and suggests the feeling of making a fresh start although many scientists are probably seeking reorientation. Much of research was industry driven, so that especially in the aftermath of the recent financial meltdown in the last 2 years we have witnessed a biotech asset yard sale. Despite any monetary shortcomings, from a technological point of view there have been great leaps that are yet to find their way to the patient. RegMed is definitely bound to play a major role in our life because it embodies one of the primordial dreams of mankind, such as: everlasting youth, flying, remote communication and setting foot on the moon. The Journal of Cellular and Molecular Medicine has been at the frontier of these developments in TE and RegMed from its beginning and reflects recent scientific advances in both fields. Therefore this review tries to look at RegMed through the keyhole of history which might just be like looking ‘back to the future’. PMID:20825521

  2. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering

    PubMed Central

    Tran, Richard T.; Yang, Jian; Ameer, Guillermo A.

    2015-01-01

    Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering. PMID:27004046

  3. Embryonic and Induced Pluripotent Stem Cells: Understanding, Creating, and Exploiting the Nano-Niche for Regenerative Medicine

    PubMed Central

    2013-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research. PMID:23414366

  4. Participant selection for preventive Regenerative Medicine trials: ethical challenges of selecting individuals at risk.

    PubMed

    Niemansburg, Sophie L; Habets, Michelle G J L; Dhert, Wouter J A; van Delden, Johannes J M; Bredenoord, Annelien L

    2015-11-01

    The innovative field of Regenerative Medicine (RM) is expected to extend the possibilities of prevention or early treatment in healthcare. Increasingly, clinical trials will be developed for people at risk of disease to investigate these RM interventions. These individuals at risk are characterised by their susceptibility for developing clinically manifest disease in future due to the existence of degenerative abnormalities. So far, there has been little debate about the ethical appropriateness of including such individuals at risk in clinical trials. We discuss three main challenges of selecting this participant model for testing RM interventions: the challenge of achieving a proportional risk-benefit balance; complexities in the trial design in terms of follow-up and sample size; and the difficulty of obtaining informed consent due to the many uncertainties. We conclude that selecting the model is not ethically justifiable for first-in-man trials with RM interventions due to the high risks and uncertainties. However, the model can be ethically appropriate for testing the efficacy of RM interventions under the following conditions: interventions should be low risk; the degenerative abnormalities (and other risk factors) should be strongly related with disease within a short time frame; robust preclinical evidence of efficacy needs to be present; and the informed consent procedure should contain extra safeguards with regard to communication on uncertainties.

  5. Tooth regeneration: a revolution in stomatology and evolution in regenerative medicine

    PubMed Central

    Yildirim, Sibel; Fu, Susan Y; Kim, Keith; Zhou, Hong; Lee, Chang Hun; Li, Ang; Kim, Sahng Gyoon; Wang, Shuang; Mao, Jeremy J

    2011-01-01

    A tooth is a complex biological organ and consists of multiple tissues including the enamel, dentin, cementum and pulp. Tooth loss is the most common organ failure. Can a tooth be regenerated? Can adult stem cells be orchestrated to regenerate tooth structures such as the enamel, dentin, cementum and dental pulp, or even an entire tooth? If not, what are the therapeutically viable sources of stem cells for tooth regeneration? Do stem cells necessarily need to be taken out of the body, and manipulated ex vivo before they are transplanted for tooth regeneration? How can regenerated teeth be economically competitive with dental implants? Would it be possible to make regenerated teeth affordable by a large segment of the population worldwide? This review article explores existing and visionary approaches that address some of the above-mentioned questions. Tooth regeneration represents a revolution in stomatology as a shift in the paradigm from repair to regeneration: repair is by metal or artificial materials whereas regeneration is by biological restoration. Tooth regeneration is an extension of the concepts in the broad field of regenerative medicine to restore a tissue defect to its original form and function by biological substitutes. PMID:21789959

  6. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.

    PubMed

    Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2016-01-01

    Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation. PMID:27398431

  7. Novel magnetic indenter for rheological analysis of thin biological sheet for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Maruyama, Toshiro; Akama, Tomoya; Nakamura, Tomoyuki

    2016-07-01

    A novel method is proposed for analyzing the mechanical properties of a thin sheet of cells or extracellular matrix cultured for regenerative medicine. A steel sphere is mounted onto the center of the sheet sample, placed over a circular aperture, and a loading force is exerted via an electromagnet with well-regulated current while the displacement of the sample center is optically detected. Details of the instrument and its performance are described. Loading and unloading experiment with stepwise magnetic force revealed that creep response of each of the cell sheet and matrix sheet can be expressed as a combination of a quasi-instantaneous deformation and two delayed elastic responses having different retardation times. The retardation time exhibited an increasing trend with the loading force. Close analysis of loading-force dependence and reversibility of the derived mechanical parameters revealed that these deformation modes are not independent but flexibly switches to each other depending on load magnitude and loading history. The cell sheet sample exhibited remarkable irreversibility between loading and unloading responses, which is attributed to response of the live cells to the sustained loading.

  8. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    SciTech Connect

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  9. Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Weiss, Daniel J.

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPD), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the 3rd leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and chronic obstructive pulmonary disease (COPD) with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been utilized to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy based clinical trials in lung diseases. PMID:23959715

  10. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    PubMed

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases.

  11. [Internationalization, science and health: global regenerative medicine and the parallel markets].

    PubMed

    Acero, Liliana

    2015-02-01

    Regenerative medicine involves a paradigm change due to organism regeneration at cellular and tissue level - a controversial contemporary issue and difficult to regulate. This article presents a summary of the main scientific, economic, social and regulatory global trends, analyzed according to relevant theoretical dilemmas in medical anthropology and in the sociology of science and health. This is especially true of the construction of a 'collective frame of reference' on the new biological and ontological entities, the shaping of biological citizenship, and governance through uncertainty. Empirical evidence is also presented on a key aspect in regulation and governance, namely the emergence of a new transnational demand in health research through the establishment of parallel markets for ova and experimental cellular therapies. Qualitative data collected for a broader research paper is analyzed, as well as journal reviews and information gathered during interviews with international leaders. The paper concludes with a discussion on the importance on international governance of clinical trials and on further exploration, towards a multilevel harmonization of a diversity of normative practices. PMID:25715137

  12. A showcase of bench-to-bedside regenerative medicine at the 2010 ASNTR.

    PubMed

    Eve, David J; Borlongan, Cesar V; Sanberg, Paul R

    2011-01-01

    Insight into the expanding themes of regenerative medicine is provided by the American Society for Neural Therapy and Repair's annual meeting. The 17th meeting covered a wide range of neurodegenerative disorders, exploring methods to elucidate the currently unknown mechanisms behind the disorders, as well as possible treatments ranging from the use of growth factors, gene therapy to cell transplantation. The importance of growth factors, both as a contributing factor to a disease and as a possible treatment either solo, or as a consequence of, or in conjunction with, stem cell therapy, was highlighted. The potential for viral vectors was also explored either for cells prior to transplantation or as a direct treatment regime into the brain itself. Identification of biomarkers that would allow early detection of a disease is an important factor in our fight against disease. The ability to now perform whole genome analysis and biomolecular profiling provides hope that such markers could be identified which not only could identify this likely to suffer from a disorder but also could allow its progress to be monitored. A few preclinical and clinical cell transplantation trials were also introduced as potential areas of followup in the years to come.

  13. [Internationalization, science and health: global regenerative medicine and the parallel markets].

    PubMed

    Acero, Liliana

    2015-02-01

    Regenerative medicine involves a paradigm change due to organism regeneration at cellular and tissue level - a controversial contemporary issue and difficult to regulate. This article presents a summary of the main scientific, economic, social and regulatory global trends, analyzed according to relevant theoretical dilemmas in medical anthropology and in the sociology of science and health. This is especially true of the construction of a 'collective frame of reference' on the new biological and ontological entities, the shaping of biological citizenship, and governance through uncertainty. Empirical evidence is also presented on a key aspect in regulation and governance, namely the emergence of a new transnational demand in health research through the establishment of parallel markets for ova and experimental cellular therapies. Qualitative data collected for a broader research paper is analyzed, as well as journal reviews and information gathered during interviews with international leaders. The paper concludes with a discussion on the importance on international governance of clinical trials and on further exploration, towards a multilevel harmonization of a diversity of normative practices.

  14. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGESBeta

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; et al

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  15. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    SciTech Connect

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  16. The social management of biomedical novelty: Facilitating translation in regenerative medicine.

    PubMed

    Gardner, John; Webster, Andrew

    2016-05-01

    Regenerative medicine (RM) is championed as a potential source of curative treatments for a variety of illnesses, and as a generator of economic wealth and prosperity. Alongside this optimism, however, is a sense of concern that the translation of basic science into useful RM therapies will be laboriously slow due to a range of challenges relating to live tissue handling and manufacturing, regulation, reimbursement and commissioning, and clinical adoption. This paper explores the attempts of stakeholders to overcome these innovation challenges and thus facilitate the emergence of useful RM therapies. The paper uses the notion of innovation niches as an analytical frame. Innovation niches are collectively constructed socio-technical spaces in which a novel technology can be tested and further developed, with the intention of enabling wider adoption. Drawing on primary and secondary data, we explore the motivation for, and the attempted construction of, niches in three domains which are central to the adoption of innovative technologies: the regulatory, the health economic, and the clinical. We illustrate that these niches are collectively constructed via both formal and informal initiatives, and we argue that they reflect wider socio-political trends in the social management of biomedical novelty. PMID:27019143

  17. Tissue Engineering and Regenerative Medicine: Semantic Considerations for an Evolving Paradigm

    PubMed Central

    Katari, Ravi; Peloso, Andrea; Orlando, Giuseppe

    2015-01-01

    Tissue engineering (TE) and regenerative medicine (RM) are rapidly evolving fields that are often obscured by a dense cloud of hype and commercialization potential. We find, in the literature and general commentary, that several of the associated terms are casually referenced in varying contexts that ultimately result in the blurring of the distinguishing boundaries which define them. “TE” and “RM” are often used interchangeably, though some experts vehemently argue that they, in fact, represent different conceptual entities. Nevertheless, contemporary scientists have a general idea of the experiments and milestones that can be classified within either or both categories. Given the groundbreaking achievements reported within the past decade and consequent watershed potential of this field, we feel that it would be useful to properly contextualize these terms semantically and historically. In this concept paper, we explore the various definitions proposed in the literature and emphasize that ambiguous terminology can lead to misplaced apprehension. We assert that the central motifs of both concepts have existed within the surgical sciences long before their appearance as terms in the scientific literature. PMID:25629029

  18. Novel magnetic indenter for rheological analysis of thin biological sheet for regenerative medicine.

    PubMed

    Kageshima, Masami; Maruyama, Toshiro; Akama, Tomoya; Nakamura, Tomoyuki

    2016-07-01

    A novel method is proposed for analyzing the mechanical properties of a thin sheet of cells or extracellular matrix cultured for regenerative medicine. A steel sphere is mounted onto the center of the sheet sample, placed over a circular aperture, and a loading force is exerted via an electromagnet with well-regulated current while the displacement of the sample center is optically detected. Details of the instrument and its performance are described. Loading and unloading experiment with stepwise magnetic force revealed that creep response of each of the cell sheet and matrix sheet can be expressed as a combination of a quasi-instantaneous deformation and two delayed elastic responses having different retardation times. The retardation time exhibited an increasing trend with the loading force. Close analysis of loading-force dependence and reversibility of the derived mechanical parameters revealed that these deformation modes are not independent but flexibly switches to each other depending on load magnitude and loading history. The cell sheet sample exhibited remarkable irreversibility between loading and unloading responses, which is attributed to response of the live cells to the sustained loading. PMID:27475573

  19. The use of stem cells in regenerative medicine for Parkinson's and Huntington's Diseases.

    PubMed

    Lescaudron, L; Naveilhan, P; Neveu, I

    2012-01-01

    Cell transplantation has been proposed as a means of replacing specific cell populations lost through neurodegenerative processes such as that seen in Parkinson's or Huntington's diseases. Improvement of the clinical symptoms has been observed in a number of Parkinson and Huntington's patients transplanted with freshly isolated fetal brain tissue but such restorative approach is greatly hampered by logistic and ethical concerns relative to the use of fetal tissue, in addition to potential side effects that remain to be controlled. In this context, stem cells that are capable of self-renewal and can differentiate into neurons, have received a great deal of interest, as demonstrated by the numerous studies based on the transplantation of neural stem/progenitor cells, embryonic stem cells or mesenchymal stem cells into animal models of Parkinson's or Huntington's diseases. More recently, the induction of pluripotent stem cells from somatic adult cells has raised a new hope for the treatment of neurodegenerative diseases. In the present article, we review the main experimental approaches to assess the efficiency of cell-based therapy for Parkinson's or Huntington's diseases, and discuss the recent advances in using stem cells to replace lost dopaminergic mesencephalic or striatal neurons. Characteristics of the different stem cells are extensively examined with a special attention to their ability of producing neurotrophic or immunosuppressive factors, as these may provide a favourable environment for brain tissue repair and long-term survival of transplanted cells in the central nervous system. Thus, stem cell therapy can be a valuable tool in regenerative medicine.

  20. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.

    PubMed

    Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2016-01-01

    Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation.

  1. Ex situ bioengineering of bioartificial endocrine glands: a new frontier in regenerative medicine of soft tissue organs.

    PubMed

    Toni, Roberto; Tampieri, Anna; Zini, Nicoletta; Strusi, Valentina; Sandri, Monica; Dallatana, Davide; Spaletta, Giulia; Bassoli, Elena; Gatto, Andrea; Ferrari, Andrea; Martin, Ivan

    2011-10-20

    Ex situ bioengineering is one of the most promising perspectives in the field of regenerative medicine allowing for organ reconstruction outside the living body; i.e. on the laboratory bench. A number of hollow viscera of the cardiovascular, respiratory, genitourinary, and digestive systems have been successfully bioengineered ex situ, exploiting biocompatible scaffolds with a 3D morphology that recapitulates that of the native organ (organomorphic scaffold). In contrast, bioengineering of entire soft tissue organs and, in particular endocrine glands still remains a substantial challenge. Primary reasons are that no organomorphic scaffolding for endocrine viscera have as yet been entirely assembled using biocompatible materials, nor is there a bioreactor performance capable of supporting growth within the thickness range of the regenerating cell mass which has proven to be reliable enough to ensure formation of a complete macroscopic gland ex situ. Current technical options for reconstruction of endocrine viscera include either biocompatible 3D reticular scaffolds lacking any organomorphic geometry, or allogenic/xenogenic acellular 3D matrices derived from a gland similar to that to be bioengineered, eventually recellularized by autologous/heterologous cells. In 2007, our group designed, using biocompatible material, an organomorphic scaffold-bioreactor unit for bioengineering ex situ the human thyroid gland, chosen as a model for its simple anatomical organization (repetitive follicular cavities). This unit reproduces both the 3D native geometry of the human thyroid stromal/vascular scaffold, and the natural thyrocyte/vascular interface. It is now under intense investigation as an experimental tool to test cellular 3D auto-assembly of thyroid tissue and its related vascular system up to the ex situ generation of a 3D macroscopic thyroid gland. We believe that these studies will lay the groundwork for a new concept in regenerative medicine of soft tissue and

  2. A Shift From Cell Cultures to Creatures: In Vivo Imaging of Small Animals in Experimental Regenerative Medicine

    PubMed Central

    Studwell, Anna J; Kotton, Darrell N

    2011-01-01

    Although the use of small animals for in vivo experimentation has been widespread, only recently has there been easy availability of techniques that allow noninvasive in vivo imaging of small animals. Because these techniques allow the same individual subject to be followed longitudinally throughout the duration of an experiment, their use is rapidly changing the way small animals are employed in the laboratory. In this review, we focus on six imaging modalities that are increasingly employed for small animal in vivo imaging: optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), single-photon emission tomography (SPECT), ultrasound (US), and positron-emission tomography (PET). Each modality allows for the noninvasive tracking of cells and cell products in vivo. In addition, multimodality imaging, combining two or more of these techniques, has also been increasingly employed to overcome the limitations of each independent technique. After reviewing these available imaging modalities, we detail their experimental application, exemplified by the emerging field of regenerative medicine, referring to publications whose conclusions would otherwise be difficult to support without the availability of in vivo imaging. PMID:21952170

  3. Current and future regenerative medicine — Principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    PubMed Central

    Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.

    2009-01-01

    This paper provides a bird’s-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine. The understanding of equine stem cell biology, biofactors, and scaffolds, and their potential therapeutic use in horses are rudimentary at present. Mesenchymal stem cell isolation has been proclaimed from several equine tissues in the past few years. Based on the criteria of the International Society for Cellular Therapy, most of these cells are more correctly referred to as multipotent mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering — cells, biological factors, and biomaterials — are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources. The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently in controlled clinical trials in equine patients to be regarded as evidence-based medicine. In the meantime, the medical mantra “do no harm” should prevail, and the application of stem cell-based therapies in the horse should be done critically and cautiously, and treatment outcomes (good and bad) should be recorded and reported. Stem cell and tissue engineering research in the horse has exciting comparative and equine specific perspectives that most likely will benefit the health of horses and humans. Controlled, well-designed studies are needed to move this new equine research field forward. PMID:19412395

  4. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  5. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine

    PubMed Central

    Aponte, Pedro Manuel

    2015-01-01

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  6. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.

  7. Medicinal applications of fullerenes

    PubMed Central

    Bakry, Rania; Vallant, Rainer M; Najam-ul-Haq, Muhammad; Rainer, Matthias; Szabo, Zoltan; Huck, Christian W; Bonn, Günther K

    2007-01-01

    Fullerenes have attracted considerable attention in different fields of science since their discovery in 1985. Investigations of physical, chemical and biological properties of fullerenes have yielded promising information. It is inferred that size, hydrophobicity, three-dimensionality and electronic configurations make them an appealing subject in medicinal chemistry. Their unique carbon cage structure coupled with immense scope for derivatization make them a potential therapeutic agent. The study of biological applications has attracted increasing attention despite the low solubility of carbon spheres in physiological media. The fullerene family, and especially C60, has appealing photo, electrochemical and physical properties, which can be exploited in various medical fields. Fullerene is able to fit inside the hydrophobic cavity of HIV proteases, inhibiting the access of substrates to the catalytic site of enzyme. It can be used as radical scavenger and antioxidant. At the same time, if exposed to light, fullerene can produce singlet oxygen in high quantum yields. This action, together with direct electron transfer from excited state of fullerene and DNA bases, can be used to cleave DNA. In addition, fullerenes have been used as a carrier for gene and drug delivery systems. Also they are used for serum protein profiling as MELDI material for biomarker discovery. In this review we report the aspects of medicinal applications of fullerenes. PMID:18203430

  8. Medicinal applications of fullerenes.

    PubMed

    Bakry, Rania; Vallant, Rainer M; Najam-ul-Haq, Muhammad; Rainer, Matthias; Szabo, Zoltan; Huck, Christian W; Bonn, Günther K

    2007-01-01

    Fullerenes have attracted considerable attention in different fields of science since their discovery in 1985. Investigations of physical, chemical and biological properties of fullerenes have yielded promising information. It is inferred that size, hydrophobicity, three-dimensionality and electronic configurations make them an appealing subject in medicinal chemistry. Their unique carbon cage structure coupled with immense scope for derivatization make them a potential therapeutic agent. The study of biological applications has attracted increasing attention despite the low solubility of carbon spheres in physiological media. The fullerene family, and especially C60, has appealing photo, electrochemical and physical properties, which can be exploited in various medical fields. Fullerene is able to fit inside the hydrophobic cavity of HIV proteases, inhibiting the access of substrates to the catalytic site of enzyme. It can be used as radical scavenger and antioxidant. At the same time, if exposed to light, fullerene can produce singlet oxygen in high quantum yields. This action, together with direct electron transfer from excited state of fullerene and DNA bases, can be used to cleave DNA. In addition, fullerenes have been used as a carrier for gene and drug delivery systems. Also they are used for serum protein profiling as MELDI material for biomarker discovery. In this review we report the aspects of medicinal applications of fullerenes.

  9. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics.

  10. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. PMID:27056282

  11. Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment

    PubMed Central

    Günter, Julia; Wolint, Petra; Bopp, Annina; Steiger, Julia; Cambria, Elena; Hoerstrup, Simon P.; Emmert, Maximilian Y.

    2016-01-01

    More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach. PMID:27073399

  12. The Application of Microwave Incineration to Regenerative Life Support

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Al (Technical Monitor)

    1995-01-01

    Future human exploration missions will require life support systems that are highly regenerative, requiring minimum resupply, enabling the crews to be largely self-sufficient. Solid wastes generated in space will be processed to recover usable material. Researchers at NASA Ames Research Center are studying a commercially-produced microwave incinerator as a solid waste processor. This paper will describe the results of testing to-date.

  13. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge

    PubMed Central

    Ferretti, Concetta; Mattioli-Belmonte, Monica

    2014-01-01

    Periosteum is a thin fibrous layer that covers most bones. It resides in a dynamic mechanically loaded environment and provides a niche for pluripotent cells and a source for molecular factors that modulate cell behaviour. Elucidating periosteum regenerative potential has become a hot topic in orthopaedics. This review discusses the state of the art of osteochondral tissue engineering rested on periosteum derived progenitor cells (PDPCs) and suggests upcoming research directions. Periosteal cells isolation, characterization and migration in the site of injury, as well as their differentiation, are analysed. Moreover, the role of cell mechanosensing and its contribution to matrix organization, bone microarchitecture and bone stenght is examined. In this regard the role of periostin and its upregulation under mechanical stress in order to preserve PDPC survival and bone tissue integrity is contemplated. The review also summarized the role of the periosteum in the field of dentistry and maxillofacial reconstruction. The involvement of microRNAs in osteoblast differentiation and in endogenous tissue repair is explored as well. Finally the novel concept of a guided bone regeneration based on the use of periosteum itself as a smart material and the realization of constructs able to mimic the extracellular matrix features is talked out. Additionally, since periosteum can differentiate into insulin producing cells it could be a suitable source in allogenic transplantations. That innovative applications would take advantage from investigations aimed to assess PDPC immune privilege. PMID:25126377

  14. Hurdles in tissue engineering/regenerative medicine product commercialization: a survey of North American academia and industry.

    PubMed

    Johnson, Peter C; Bertram, Timothy A; Tawil, Bill; Hellman, Kiki B

    2011-01-01

    The Tissue Engineering and Regenerative Medicine International Society-North America (TERMIS-NA) Industry Committee was formed in February 2009 to address the common roadblocks (i.e., hurdles) in the commercialization of tissue engineering/regenerative medicine products for its members. A semiquantitative online opinion survey instrument that delineated potentially sensitive hurdles to commercialization in each of the TERMIS constituency groups that generally participate in the stream of technology commercialization (academia, startup companies, development-stage companies, and established companies) was developed. The survey was opened to each of the 863 members of TERMIS-NA for a period of 5 weeks from October to November 2009. By its conclusion, 215 members (25%) had responded. Their proportionate numbers were closely representative of TERMIS-NA constituencies. The resulting data delineate what each group considers to be its most difficult and also its easiest hurdles in taking a technology to full product development. In addition, each group ranked its perception of the difficult and easy hurdles for all other groups, enabling an assessment of the degree of understanding between groups. The data depict not only critical hurdles in the path to commercialization at each stage in product development but also a variable understanding of perceptions of hurdles between groups. This assessment has provided the Industry Committee with activity foci needed to assist individual groups in the technology-commercialization stream. Moreover, the analysis suggests that enhanced communication between groups engaged in commercialization will be critical to the successful development of products in the tissue engineering/regenerative medicine sector.

  15. Regenerative thermal oxidation for non-conventional applications

    SciTech Connect

    Gosselin, G.; Gravel, J.J.O.

    1999-07-01

    Regenerative Thermal Oxidation has been applied by Biothermica to treat non-conventional emissions. These emissions include pollutants as VOC, COC, TRS, PAH, PCB, HCl and odors. In the kraft pulping industry, environmental requirements for reduced emissions of total reduced sulfur (TRS) and volatile organic compounds (VOC) from pulping operations are leading to incinerators of high destruction efficiency and thermal performance. The first installation in Canada of a Regenerative Thermal Oxidation (RTO) was placed in service early in 1997 at a kraft pulp mill in the province of Quebec. Tests have shown a TRS reduction of 99.6% with a thermal efficiency of 88.5% in the RTO. It can be considered the best method to comply with the new norms for TRS atmospheric emissions in the pulp and paper industry. In the primary aluminum process, a marked improvement in anode properties can be gained by preparing the paste at high temperature, followed by cooling with a water addition in an intensive mixer. However, the addition of cooling water results in a large increase in the emissions of VOC and PAH which can prejudice the process. A number of emission control processes were evaluated. An improved Regenerative Thermal Oxidation (RTO) unit was installed in a modern aluminum plant in Canada. The emissions of VOCs and PAHs from an EIRICH intensive mixer-cooler were reduced by more than 99.9% while all troublesome deposits in the fumes collection system were eliminated. This enabled the plant to remain well within the emission levels allowed by the environmental authority while enjoying considerable benefits from improved anode qualities. In the asphalt roofing industry, RTO was applied to treat the VOC and COC emissions and several units have been in operation since 1990. In the United States two units were installed in asphalt shingle plants and new features in the process show a VOC and COC reduction of 99%.

  16. Adult stem cells: simply a tool for regenerative medicine or an additional piece in the puzzle of human aging?

    PubMed

    Tollervey, James R; Lunyak, Victoria V

    2011-12-15

    Adult stem cells have taken center stage in current research related to regenerative medicine and pharmacogenomic studies seeking new therapeutic interventions. As we learn more about these cells, it is becoming apparent that the next big leap in our understanding of adult stem cell biology and adult stem cell aging will depend on the integration of approaches from various disciplines. Major advances and technological breakthroughs at the crossroad of fields such as biomaterials, genomics, epigenomics, and proteomics will enable the design of better tools to model human diseases, and warrant safe usage of adult stem cells in the clinic.

  17. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine.

    PubMed

    Li, Pengdong; Liu, Feilin; Wu, Chunling; Jiang, Wenyue; Zhao, Guifang; Liu, Li; Bai, Tingting; Wang, Li; Jiang, Yixu; Guo, Lili; Qi, Xiaojuan; Kou, Junna; Fan, Ruirui; Hao, Deshun; Lan, Shaowei; Li, Yulin; Liu, Jin Yu

    2015-10-01

    The use of human mesenchymal stem cells (hMSCs) in cell therapies has increased the demand for strategies that allow efficient cell scale-up. Preliminary data on the three-dimensional (3D) spinner culture describing the potential use of microcarriers for hMSCs culture scale-up have been reported. We exploited a rich source of autologous stem cells (human hair follicle) and demonstrated the robust in vitro long-term expansion of human hair follicle-derived mesenchymal stem cells (hHF-MSCs) by using CultiSpher(®)-G microcarriers. We analyzed the feasibility of 3D culture by using hHF-MSCs/CultiSpher(®)-G microcarrier constructs for its potential applicability in regenerative medicine by comparatively analyzing the performance of hHF-MSCs adhered to the CultiSpher(®)-G microspheres in 3D spinner culture and those grown on the gelatin-coated plastic dishes (2D culture), using various assays. We showed that the hHF-MSCs seeded at various densities quickly adhered to and proliferated well on the microspheres, thus generating at least hundreds of millions of hHF-MSCs on 1 g of CultiSpher(®)-G within 12 days. This resulted in a cumulative cell expansion of greater than 26-fold. Notably, the maximum and average proliferation rates in 3D culture were significantly greater than that of the 2D culture. However, the hHF-MSCs from both the cultures retained surface marker and nestin expression, proliferation capacity and differentiation potentials toward adipocytes, osteoblasts and smooth muscle cells and showed no significant differences as evidenced by Edu incorporation, cell cycle, colony formation, apoptosis, biochemical quantification and qPCR assays.

  18. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.

    PubMed

    Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid

    2015-12-01

    The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials.

  19. Innovative technical advances in the application of regenerative thermal oxidizers

    SciTech Connect

    Grzanka, R.; Truppi, T.

    1999-07-01

    Regenerative Thermal Oxidizers (RTOs) have been applied in industry for over twenty (20) years to reduce the emissions of Volatile Organic compounds (VOCs) into the atmosphere from industrial process emissions. The Clean Air Act and its amendments have established a regulatory framework setting standards for allowable levels of VOC emissions. Several forces are driving the increasing use and acceptance of this technology: (1) High efficiency and increasing stringent standards require higher destruction efficiency; (2) Low operating cost and control of emission streams with less VOCs (therefore, less fuel value) causing higher use of natural gas for combustion; (3) Low NO{sub x}--the overlapping concern of NO{sub x} generation from the combustion process; (4) Low process upsets with improved productivity of industrial process require continuous integration of VOC abatement equipment; and (5) Reduced capital cost--capital cost criteria is $/ton of VOC abated. The latest development in RTO technology is the Single Can Oxidizer (SCO). This regenerative thermal oxidizer is the accumulation of developments in many subsystems of RTOs, combined with a dramatic new configuration. Several features of the system offer unique benefits to industrial end users: (1) Single can configuration gives reduced weight, material usage, and cost; (2) Rotary valve design gives smooth operation, and low pressure fluctuations; (3) Structured block heat recovery media reduces pressure drop, and lowers HP/operating cost; and (4) SMART system lowers NO{sub x} output/reduced operation cost. This paper will present a discussion of the features listed above. In addition, it will provide analytical documentation of test results for a full scale commercial unit.

  20. Hurdles in tissue engineering/regenerative medicine product commercialization: a pilot survey of governmental funding agencies and the financial industry.

    PubMed

    Bertram, Timothy A; Tentoff, Edward; Johnson, Peter C; Tawil, Bill; Van Dyke, Mark; Hellman, Kiki B

    2012-11-01

    The Tissue Engineering and Regenerative Medicine International Society of the Americas (TERMIS-AM) Industry Committee conducted a semiquantitative opinion survey in 2010 to delineate potential hurdles to commercialization perceived by the TERMIS constituency groups that participate in the stream of technology commercialization (academia, start-up companies, development-stage companies, and established companies). A significant hurdle identified consistently by each group was access to capital for advancing potential technologies into development pathways leading to commercialization. A follow-on survey was developed by the TERMIS-AM Industry Committee to evaluate the financial industry's perspectives on investing in regenerative medical technologies. The survey, composed of 15 questions, was developed and provided to 37 investment organizations in one of three sectors (governmental, private, and public investors). The survey was anonymous and confidential with sector designation the only identifying feature of each respondent's organization. Approximately 80% of the survey was composed of respondents from the public (n=14) and private (n=15) sectors. Each respondent represents one investment organization with the potential of multiple participants participating to form the organization's response. The remaining organizations represented governmental agencies (n=8). Results from this survey indicate that a high percentage (<60%) of respondents (governmental, private, and public) were willing to invest >$2MM into regenerative medical companies at the different stages of a company's life cycle. Investors recognized major hurdles to this emerging industry, including regulatory pathway, clinical translation, and reimbursement of these new products. Investments in regenerative technologies have been cyclical over the past 10-15 years, but investors recognized a 1-5-year investment period before the exit via Merger and Acquisition (M&A). Investors considered

  1. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development.

  2. Accelerating protein release from microparticles for regenerative medicine applications

    PubMed Central

    White, Lisa J.; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-01-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. PMID:23623071

  3. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications.

    PubMed

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  4. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  5. Regenerative photonic therapy: Review

    NASA Astrophysics Data System (ADS)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  6. Call for fellowship programs in stem cell-based regenerative and cellular medicine: new stem cell training is essential for physicians.

    PubMed

    Knoepfler, Paul S

    2013-03-01

    Stem cell-based regenerative and cellular medicine is an exciting, emerging area of medical practice. While bone marrow transplantation, a stem cell-based therapy, has been a part of medicine for decades, in recent years newer and more diverse forms of stem cell-based therapies are being used to treat a rapidly growing population of patients in the USA as well as worldwide. Nonetheless, to this author's knowledge, there is currently not a single academic medical fellowship training program in the USA that specifically prepares physicians for treating patients with stem cell-based therapies other than bone marrow or hematopoietic stem cell transplantation. An increasing number of physicians untrained in stem cell-based regenerative and cellular medicine are nonetheless transplanting stem cells into hundreds if not thousands of patients for a striking diversity of conditions. Furthermore, as stem cell technology advances, a growing number of physicians with academic affiliations may look to legitimately practice regenerative and cellular medicine. What little training that physicians can currently obtain must be found on an ad hoc basis. This article should act as a call for the development of formal academic medical fellowship programs to train physicians in the practice of cellular and regenerative medicine. The USA is used here as an example of a medical sphere in which it can be argued that such training would be helpful, however such programs would be quite helpful globally.

  7. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    PubMed Central

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  8. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine.

    PubMed

    Ma, Lan; Makino, Yusuke; Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25-30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine.

  9. Fine tuning and measurement of mechanical properties of crosslinked hyaluronic acid hydrogels as biomimetic scaffold coating in regenerative medicine.

    PubMed

    Credi, Caterina; Biella, Serena; De Marco, Carmela; Levi, Marinella; Suriano, Raffaella; Turri, Stefano

    2014-01-01

    Chemically crosslinked hyaluronic acid hydrogels are synthesized with a homogeneous crosslinking process using divinyl sulfone (DVS) as crosslinking agent. Testing different conditions, in terms of both DVS content and curing time, we aim to keep control over the crosslinking process in order to prepare biocompatible hydrogels with mechanical properties closely approximating those of extracellular matrix (ECM) of natural stem cells niches (0.1÷50kPa). The hydrogels properties are evaluated through a reliable methodology based on three independent techniques: dynamic rheological analysis, used as benchmark method; swelling experiments following the Flory-Rehner theory and atomic force microscope (AFM) nanoindentation experiments. Our results demonstrate that controlling crosslinking parameters it is possible to design hydrogels with desired elastic moduli values. HA hydrogels can be ideal coating materials to be implemented in regenerative medicine and particularly in the engineering of ECM niches in vitro.

  10. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    PubMed Central

    Burdon, Tom J.; Paul, Arghya; Noiseux, Nicolas; Prakash, Satya; Shum-Tim, Dominique

    2011-01-01

    During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy. PMID:22046556

  11. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?

    PubMed Central

    Müller, Albrecht M.; Huppertz, Sascha; Henschler, Reinhard

    2016-01-01

    Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration. PMID:27721700

  12. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: which way to go?

    PubMed

    Mamidi, Murali Krishna; Dutta, Susmita; Bhonde, Ramesh; Das, Anjan Kumar; Pal, Rajarshi

    2014-12-01

    Stem cell transplantation is a generic term covering different techniques. However there is argument over the pros and cons of autologous and allogeneic transplants of mesenchymal stem cells (MSCs) for regenerative therapy. Given that the MSCs have already been proven to be safe in patients, we hypothesize that allogeneic transplantation could be more effective and cost-effective as compared to autologous transplantation specifically in older subjects who are the likely victims of degenerative diseases. This analysis is based on the scientific logic that allogeneic stem cells extracted in large numbers from young and healthy donors could be physiologically, metabolically and genetically more stable. Therefore stem cells from young donors may be expected to exhibit higher vigor in secreting trophic factors leading to activation of host tissue-specific stem cells and also be more efficient in remodeling the micro-environmental niche of damaged tissue.

  13. [Development of guidance for the approval process of brand-new medical products and regenerative medicine products].

    PubMed

    Niimi, Shingo

    2015-01-01

    Ministry of Health, Labour and Weltare has been conducting development of guidance for the approval process of brand-new medical products/development of guidance for medical devices in collaboration with Ministry of Economy, Trade and Industry as part of measures to promote practical use of brand-new medical products since 2005. The objective of this project is to expedite the processes from developmental process of medical devices to approval review and to introduce the medical devices to medical front quickly.. Ministry of Health, Labour and Welfare side has been making guidance for the guide in approval process of brand-new medical products and regeneration medicine products to aim at acceleration and facilitation of development and approval process of innovative medical products. Twenty-two of the guidance have been issued as director of the evaluation and licensing division. The evaluation index about safety and efficacy required for medical devices and regenerative medicine products in progress were put together in these guidance and useful for medical devices developer to understand the point at the approved review. Therefore, I think that the evaluation index could also contribute to the efficient product development. The guidance about implantable artificial heart is issued as the representative example which was useful in the approved review. PMID:26821464

  14. Platelet-rich plasma (PRP) and Platelet-Rich Fibrin (PRF): surgical adjuvants, preparations for in situ regenerative medicine and tools for tissue engineering.

    PubMed

    Bielecki, Tomasz; Dohan Ehrenfest, David M

    2012-06-01

    The recent developement of platelet concentrate for surgical use is an evolution of the fibrin glue technologies used since many years. The initial concept of these autologous preparations was to concentrate platelets and their growth factors in a plasma solution, and to activate it into a fibrin gel on a surgical site, in order to improve local healing. These platelet suspensions were often called Platelet-Rich Plasma (PRP) like the platelet concentrate used in transfusion medicine, but many different technologies have in fact been developed; some of them are even no more platelet suspensions, but solid fibrin-based biomaterials called Platelet-Rich Fibrin (PRF). These various technologies were tested in many different clinical fields, particularly oral and maxillofacial surgery, Ear-Nose-Throat surgery, plastic surgery, orthopaedic surgery, sports medicine, gynecologic and cardiovascular surgery and ophthalmology. This field of research unfortunately suffers from the lack of a proper accurate terminology and the associated misunderstandings, and the literature on the topic is quite contradictory. Indeed, the effects of these preparations cannot be limited to their growth factor content: these products associate many actors of healing in synergy, such as leukocytes, fibrin matrix, and circulating progenitor cells, and are in fact as complex as blood itself. If platelet concentrates were first used as surgical adjuvants for the stimulation of healing (as fibrin glues enriched with growth factors), many applications for in situ regenerative medicine and tissue engineering were developed and offer a great potential. However, the future of this field is first dependent on his coherence and scientific clarity. The objectives of this article is to introduce the main definitions, problematics and perspectives that are described in this special issue of Current Pharmaceutical Biotechnology about platelet concentrates.

  15. Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models.

    PubMed

    Sproul, Andrew A

    2015-01-01

    Human pluripotent stem cells (PSCs) have the capacity to revolutionize medicine by allowing the generation of functional cell types such as neurons for cell replacement therapy. However, the more immediate impact of PSCs on treatment of Alzheimer's disease (AD) will be through improved human AD model systems for mechanistic studies and therapeutic screening. This review will first briefly discuss different types of PSCs and genome-editing techniques that can be used to modify PSCs for disease modeling or for personalized medicine. This will be followed by a more in depth analysis of current AD iPSC models and a discussion of the need for more complex multicellular models, including cell types such as microglia. It will finish with a discussion on current clinical trials using PSC-derived cells and the long-term potential of such strategies for treating AD.

  16. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    PubMed Central

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only <0.3% from the initial red blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation

  17. Current status of the organ replacement approach for malignancies and an overture for organ bioengineering and regenerative medicine

    PubMed Central

    Hibi, Taizo; Shinoda, Masahiro; Itano, Osamu; Kitagawa, Yuko

    2014-01-01

    Significant achievements in the organ replacement approach for malignancies over the last 2 decades opened new horizons, and the age of “Transplant Oncology” has dawned. The indications of liver transplantation for malignancies have been carefully expanded by a strict patient selection to assure comparable outcomes with non-malignant diseases. Currently, the Milan criteria, gold standard for hepatocellular carcinoma, are being challenged by high-volume centers worldwide. Neoadjuvant chemoradiation therapy and liver transplantation for unresectable hilar cholangiocarcinoma has been successful in specialized institutions. For other primary and metastatic liver tumors, clinical evidence to establish standardized criteria is lacking. Intestinal and multivisceral transplantation is an option for low-grade neoplasms deemed unresectable by conventional surgery. However, the procedure itself is in the adolescent stage. Solid organ transplantation for malignancies inevitably suffers from “triple distress,” i.e., oncological, immunological, and technical. Organ bioengineering and regenerative medicine should serve as the “triple threat” therapy and revolutionize “Transplant Oncology.” PMID:24836922

  18. Comparison of international guidelines for regenerative medicine: Knee cartilage repair and replacement using human-derived cells and tissues.

    PubMed

    Itoh, Kuni; Kano, Shingo

    2016-07-01

    Regenerative medicine (RM) is an emerging field using human-derived cells and tissues (HCT). Due to the complexity and diversity of HCT products, each country has its own regulations for authorization and no common method has been applied to date. Individual regulations were previously clarified at the level of statutes but no direct comparison has been reported at the level of guidelines. Here, we generated a new analytical framework that allows comparison of guidelines independent from local definitions of RM, using 2 indicators, product type and information type. The guidelines for products for repair and replacement of knee cartilage in Japan, the United States of America, and Europe were compared and differences were detected in both product type and information type by the proposed analytical framework. Those findings will be critical not only for the product developers to determine the region to initiate the clinical trials but also for the regulators to assess and build their regulations. This analytical framework is potentially expandable to other RM guidelines to identify gaps, leading to trigger discussion of global harmonization in RM regulations. PMID:27156144

  19. Local and global returns from research in stem cells: the case of the California Institute for Regenerative Medicine.

    PubMed

    Alberro, José

    2012-07-01

    As of July 2010, the California Institute for Regenerative Medicine (CA, USA) had awarded US$1.1 billion to over 50 institutions which obtained $884.3 million in matching funds. Those grants have one-time and ongoing economic impacts: the former during the disbursement of the funds locally, while the latter result from structural changes and are global. For the period 2006-2014, one-time impacts in California (USA) are 24,000 jobs/year and $201 million in tax revenues for California ($362 million for the federal government). A grantee developed an inhibitor to treat polycythemia vera and primary myelofibrosis. The patients in remission who will return to work will cause an average increase of $94.4 million in California's annual personal income ($560.9 million for the USA) and tax revenues of $46.7 million over 10 years. The annual decrease in direct healthcare costs in California is $2.1 million. Grantees concentrate in two clusters--San Francisco and San Diego--strengthening California's leadership in stem cell research.

  20. Institutional profile. The International Society for Cellular Therapy: evolving to meet the demands of the regenerative medicine industry.

    PubMed

    Maziarz, Richard T; Arthurs, Jane; Horwitz, Edwin

    2011-03-01

    The International Society for Cellular Therapy is a global association driving the translation of scientific research to deliver innovative cellular therapies to patients. Established in 1992, its membership and leadership comprises world-class scientists, clinicians, technologists, biotech/pharma and regulatory professionals from 40 countries focused on preclinical and translational aspects of developing cell therapy products. The International Society for Cellular Therapy has evolved in alignment with the maturation of the field of cell therapy and regenerative medicine to create forums for discussion of shared concerns for commercialization of cell therapies and of development of consensus standards, recognizing that true commercialization depends upon the translational scientific community, the regional regulatory and policy institutions, and the technology support and capital investment from industry. It exists to facilitate the international work of many, to spawn new initiatives, and to synergize with other stakeholders to create the best outcome for the many patients across the world depending on the answers and improved health that cellular therapeutics will provide them.

  1. Semi-xenotransplantation: the regenerative medicine-based approach to immunosuppression-free transplantation and to meet the organ demand.

    PubMed

    Salvatori, Marcus; Peloso, Andrea; Katari, Ravi; Soker, Shay; Lerut, Jan P; Stratta, Robert J; Orlando, Giuseppe

    2015-01-01

    Although xenografts have always held immeasurable potential as an inexhaustible source of donor organs, immunological barriers and physiological incompatibility have proved to be formidable obstacles to clinical utility. An exciting, new regenerative medicine-based approach termed "semi-xenotransplantation" (SX) seeks to overcome these obstacles by combining the availability and reproducibility of animal organs with the biocompatibility and functionality of human allografts. Compared to conventional xenotransplantation wherein the whole organ is animal-derived, SX grafts are cleansed of their antigenic cellular compartment to produce whole-organ extracellular matrix scaffolds that retain their innate structure and vascular channels. These scaffolds are then repopulated with recipient or donor human stem cells to generate biocompatible semi-xenografts with the structure and function of native human organs. While numerous hurdles must be still overcome in order for SX to become a viable treatment option for end-stage organ failure, the immense potential of SX for meeting the urgent needs for a new source of organs and immunosuppression-free transplantation justifies the interest that the transplant community is committing to the field.

  2. Concise Review: Unraveling Stem Cell Cocultures in Regenerative Medicine: Which Cell Interactions Steer Cartilage Regeneration and How?

    PubMed Central

    de Windt, Tommy S.; Hendriks, Jeanine A.A.; Zhao, Xing; Vonk, Lucienne A.; Creemers, Laura B.; Dhert, Wouter J.A.; Randolph, Mark A.

    2014-01-01

    Cartilage damage and osteoarthritis (OA) impose an important burden on society, leaving both young, active patients and older patients disabled and affecting quality of life. In particular, cartilage injury not only imparts acute loss of function but also predisposes to OA. The increase in knowledge of the consequences of these diseases and the exponential growth in research of regenerative medicine have given rise to different treatment types. Of these, cell-based treatments are increasingly applied because they have the potential to regenerate cartilage, treat symptoms, and ultimately prevent or delay OA. Although these approaches give promising results, they require a costly in vitro cell culture procedure. The answer may lie in single-stage procedures that, by using cell combinations, render in vitro expansion redundant. In the last two decades, cocultures of cartilage cells and a variety of (mesenchymal) stem cells have shown promising results as different studies report cartilage regeneration in vitro and in vivo. However, there is considerable debate regarding the mechanisms and cellular interactions that lead to chondrogenesis in these models. This review, which included 52 papers, provides a systematic overview of the data presented in the literature and tries to elucidate the mechanisms that lead to chondrogenesis in stem cell cocultures with cartilage cells. It could serve as a basis for research groups and clinicians aiming at designing and implementing combined cellular technologies for single-stage cartilage repair and treatment or prevention of OA. PMID:24763684

  3. The Same but Different: Regulation of Tissue Engineering and Regenerative Medicine in the Context of Regional and International Standards and Expectations.

    PubMed

    Williams, David F

    2015-12-01

    This commentary places the contributions from several Asian-Pacific countries that constitute this Special Issue in the context of trends in global regulation of tissue engineering and regenerative medicine products and services. It concentrates on the generic issues that face regulation in each jurisdiction and the manner how these issues have to be faced in the light of cultural, political, and economic regional differences. PMID:26486499

  4. Regenerative Fuel Cell System Testbed Program for Government and Commercial Applications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Electrochemical Technology Branch has led a multiagency effort to design, fabricate, and operate a regenerative fuel cell (RFC) system testbed. Key objectives of this program are to evaluate, characterize, and demonstrate fully integrated RFC's for space, military, and commercial applications. The Lewis-led team is implementing the program through a unique international coalition that encompasses both Government and industry participants. Construction of the 25-kW RFC testbed at the NASA facility at Edwards Air Force Base was completed in January 1995, and the system has been operational since that time.

  5. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine

    PubMed Central

    Vielreicher, M.; Schürmann, S.; Detsch, R.; Schmidt, M. A.; Buttgereit, A.; Boccaccini, A.; Friedrich, O.

    2013-01-01

    This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging. PMID:23864499

  6. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview

    PubMed Central

    Verma, Kavita; Bains, Rhythm; Bains, Vivek Kumar; Rawtiya, Manjusha; Loomba, Kapil; Srivastava, Shrish Charan

    2014-01-01

    The purpose of this review is to gain an overview of the applications of the dental pulp stem cells (DPSCs) in the treatment of various medical diseases. Stem cells have the capacity to differentiate and regenerate into various tissues. DPSCs are the adult stem cells that reside in the cell rich zone of the dental pulp. These are the multipotent cells that can be explained by their embryonic origin from the neural crest. Owing to this multipotency, these DPSCs can be used in both dental and medical applications. A review of literature has been performed using electronic and hand-searching methods for the medical applications of DPSCs. On the basis of the available information, DPSCs appear to be a promising alternative for the regeneration of tissues and treatment of various diseases, although, long-term clinical trials and studies are needed to confirm their efficacy. PMID:25097638

  7. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy – The Turning Point of Cell-Based Regenerative Medicine

    PubMed Central

    Parsons, Xuejun H.

    2014-01-01

    To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting

  8. The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine

    PubMed Central

    Silini, Antonietta R.; Cargnoni, Anna; Magatti, Marta; Pianta, Stefano; Parolini, Ornella

    2015-01-01

    In the 1800s, a baby born with a caul, a remnant of the amniotic sack or fetal membranes, was thought to be lucky, special, or protected. Over time, fetal membranes lost their legendary power and were soon considered nothing more than biological waste after birth. However, placenta tissues have reclaimed their potential and since the early 1900s an increasing body of evidence has shown that these tissues have clinical benefits in a wide range of wound repair and surgical applications. Nowadays, there is a concerted effort to understand the mechanisms underlying the beneficial effects of placental tissues, and, more recently, cells derived thereof. This review will summarize the historical and current clinical applications of human placental tissues, and cells isolated from these tissues, and discuss some mechanisms thought to be responsible for the therapeutic effects observed after tissue and/or cell transplantation. PMID:26539433

  9. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market

    PubMed Central

    Geris, L.; Guyot, Y.; Schrooten, J.; Papantoniou, I.

    2016-01-01

    The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design. PMID:27051516

  10. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market.

    PubMed

    Geris, L; Guyot, Y; Schrooten, J; Papantoniou, I

    2016-04-01

    The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design.

  11. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market.

    PubMed

    Geris, L; Guyot, Y; Schrooten, J; Papantoniou, I

    2016-04-01

    The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design. PMID:27051516

  12. The role of artificial cells in cell and organ transplantation in regenerative medicine.

    PubMed

    Chang, T M S

    2005-03-01

    Potential applications of artificial cells include cell therapy, gene therapy, enzyme therapy, blood substitutes, drug carriers and many other areas. Only 2 examples will be discussed here. One is the use of artificial cells containing cells with emphasis of the use of hepatocytes for short term implantation in acute liver failure as temporary liver support so as to allow the liver to regenerate. Another example is the use of artificial red blood cells (RBC) as oxygen carrier so as to allow the bone marrow to regenerate the needed RBC.

  13. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review.

    PubMed

    Duscher, Dominik; Barrera, Janos; Wong, Victor W; Maan, Zeshaan N; Whittam, Alexander J; Januszyk, Michael; Gurtner, Geoffrey C

    2016-01-01

    The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption.

  14. Cardiac Regenerative Medicine: The Potential of a New Generation of Stem Cells

    PubMed Central

    Cambria, Elena; Steiger, Julia; Günter, Julia; Bopp, Annina; Wolint, Petra; Hoerstrup, Simon P.; Emmert, Maximilian Y.

    2016-01-01

    Cardiac stem cell therapy holds great potential to prompt myocardial regeneration in patients with ischemic heart disease. The selection of the most suitable cell type is pivotal for its successful application. Various cell types, including crude bone marrow mononuclear cells, skeletal myoblast, and hematopoietic and endothelial progenitors, have already advanced into the clinical arena based on promising results from different experimental and preclinical studies. However, most of these so-called first-generation cell types have failed to fully emulate the promising preclinical data in clinical trials, resulting in heterogeneous outcomes and a critical lack of translation. Therefore, different next-generation cell types are currently under investigation for the treatment of the diseased myocardium. This review article provides an overview of current stem cell therapy concepts, including the application of cardiac stem (CSCs) and progenitor cells (CPCs) and lineage commitment via guided cardiopoiesis from multipotent cells such as mesenchymal stem cells (MSCs) or pluripotent cells such as embryonic and induced pluripotent stem cells. Furthermore, it introduces new strategies combining complementary cell types, such as MSCs and CSCs/CPCs, which can yield synergistic effects to boost cardiac regeneration. PMID:27721703

  15. Kidney bioengineering in regenerative medicine: An emerging therapy for kidney disease.

    PubMed

    Lin, Yi-Qian; Wang, Li-Ren; Pan, Liang-Liang; Wang, Hui; Zhu, Gui-Qi; Liu, Wen-Yue; Wang, Jiang-Tao; Braddock, Martin; Zheng, Ming-Hua

    2016-02-01

    The prevalence of end-stage renal disease is emerging as a serious worldwide public health problem because of the shortage of donor organs and the need to take lifelong immunosuppressive medication in patients who receive a transplanted kidney. Recently, tissue bioengineering of decellularization and recellularization scaffolds has emerged as a novel strategy for organ regeneration, and we review the critical technologies supporting these methods. We present a summary of factors associated with experimental protocols that may shed light on the future development of kidney bioengineering and we discuss the cell sources and bioreactor techniques applied to the recellularization process. Finally, we review some artificial renal engineering technologies and their future prospects, such as kidney on a chip and the application of three-dimensional and four-dimensional printing in kidney tissue engineering.

  16. Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine.

    PubMed

    Rainer, Alberto; Giannitelli, Sara Maria; Abbruzzese, Franca; Traversa, Enrico; Licoccia, Silvia; Trombetta, Marcella

    2008-03-01

    A technique for the preparation of bioglass foams for bone tissue engineering is presented. The process is based on the in situ foaming of a bioglass-loaded polyurethane foam as the intermediate step for obtaining a bioglass porous monolith, starting from sol-gel synthesized bioglass powders. The obtained foams were characterized using X-ray diffraction analysis, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy observations. The material was assessed by soaking samples in simulated body fluid and observing apatite layer formation. Diagnostic imaging taken from human patients was used to reconstruct a human bone portion, which was used to mould a tailored scaffold fabricated using the in situ foaming technique. The results confirmed that the obtained bioactive materials prepared with three-dimensional processing are promising for applications in reconstructive surgery tailored to each single patient.

  17. Kidney bioengineering in regenerative medicine: An emerging therapy for kidney disease.

    PubMed

    Lin, Yi-Qian; Wang, Li-Ren; Pan, Liang-Liang; Wang, Hui; Zhu, Gui-Qi; Liu, Wen-Yue; Wang, Jiang-Tao; Braddock, Martin; Zheng, Ming-Hua

    2016-02-01

    The prevalence of end-stage renal disease is emerging as a serious worldwide public health problem because of the shortage of donor organs and the need to take lifelong immunosuppressive medication in patients who receive a transplanted kidney. Recently, tissue bioengineering of decellularization and recellularization scaffolds has emerged as a novel strategy for organ regeneration, and we review the critical technologies supporting these methods. We present a summary of factors associated with experimental protocols that may shed light on the future development of kidney bioengineering and we discuss the cell sources and bioreactor techniques applied to the recellularization process. Finally, we review some artificial renal engineering technologies and their future prospects, such as kidney on a chip and the application of three-dimensional and four-dimensional printing in kidney tissue engineering. PMID:26596504

  18. The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases.

    PubMed

    Peng, Jun; Zeng, Xianmin

    2011-07-28

    Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia are the most common human neurodegenerative diseases pathologically characterized by a progressive and specific loss of certain neuronal populations. The exact mechanisms of neuronal cell death in these diseases are unclear, although some forms of the diseases are inherited and genes causing these diseases have been identified. Currently there are no effective clinical therapies for many of these diseases. The recently acquired ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture may provide a powerful tool for in vitro neurodegenerative disease modeling and an unlimited source for cell replacement therapy. In the present review, we summarize recent progress on iPSC generation and differentiation into neuronal cell types and discuss the potential application for in vitro disease mechanism study and in vivo cell replacement therapy.

  19. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review.

    PubMed

    Vrana, Nihal E; Lavalle, Philippe; Dokmeci, Mehmet R; Dehghani, Fariba; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2013-12-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the

  20. Regenerative nanomedicine: current perspectives and future directions

    PubMed Central

    Chaudhury, Koel; Kumar, Vishu; Kandasamy, Jayaprakash; RoyChoudhury, Sourav

    2014-01-01

    Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined. PMID:25214780

  1. Stem cells for regenerative medicine: advances in the engineering of tissues and organs

    NASA Astrophysics Data System (ADS)

    Ringe, Jochen; Kaps, Christian; Burmester, Gerd-Rüdiger; Sittinger, Michael

    2002-07-01

    The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as mesenchymal stem or mesenchymal progenitor cells (MSC). These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, MSC have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma, which suggest these cells as an attractive cell source for tissue engineering approaches. The interest in modern biological technologies such as tissue engineering has dramatically increased since it is feasible to isolate living, healthy cells from the body, expand them under cell culture conditions, combine them with biocompatible carrier materials and retransplant them into patients. Therefore, tissue engineering gives the opportunity to generate living substitutes for tissues and organs, which may overcome the drawbacks of classical tissue reconstruction: lacking quality and quantity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Due to the prerequisite for tissue engineering to ensure a sufficient number of tissue specific cells without donor site morbidity, much attention has been drawn to multipotential progenitor cells such as embryonic stem cells, periosteal cells and mesenchymal stem cells. In this report we review the state of the art in tissue engineering with mesenchymal stem and mesenchymal progenitor cells with emphasis on bone and cartilage reconstruction. Furthermore, several issues of importance, especially with regard to the clinical application of mesenchymal stem cells, are discussed.

  2. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine.

    PubMed

    Lobo, Joana; See, Eugene Yong-Shun; Biggs, Manus; Pandit, Abhay

    2016-07-01

    Cellular morphology has recently been indicated as a powerful indicator of cellular function. The analysis of cell shape has evolved from rudimentary forms of microscopic visual inspection to more advanced methodologies that utilize high-resolution microscopy coupled with sophisticated computer hardware and software for data analysis. Despite this progress, there is still a lack of standardization in quantification of morphometric parameters. In addition, uncertainty remains as to which methodologies and parameters of cell morphology will yield meaningful data, which methods should be utilized to categorize cell shape, and the extent of reliability of measurements and the interpretation of the resulting analysis. A large range of descriptors has been employed to objectively assess the cellular morphology in two-dimensional and three-dimensional domains. Intuitively, simple and applicable morphometric descriptors are preferable and standardized protocols for cell shape analysis can be achieved with the help of computerized tools. In this review, cellular morphology is discussed as a descriptor of cellular function and the current morphometric parameters that are used quantitatively in two- and three-dimensional environments are described. Furthermore, the current problems associated with these morphometric measurements are addressed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25757807

  3. Auto-bionics – a new paradigm in Regenerative Medicine and Surgery

    PubMed Central

    Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos

    2013-01-01

    Summary The concept of bionics represents the development of engineering and technology based on natural biological systems. Traditional applications of bionics in healthcare include artificial bionic organs which can be used to replace, mimic and even enhance biological function when compared to native organic equivalents (so-called ‘Exo-bionics’). Recently there has been a new wave of bio-inspired treatments that act through the reorganisation of the existing biological organs in an individual to enhance physiology. Here the technology does not replace biological tissue, but augments function by tissue reorganization and modification – so-called ‘Auto-bionics’. Examples include the Ross (Pulmonary Autograft) Procedure, Cardiomyoplasty, Skeletal-Muscle-Ventricles, Graciloplasty and Metabolic Gastric-Bypass (gastrointestinal rearrangement to modulate hormone release and treat diabetes). These procedures will have an increased role in reconstructive strategies and the treatment of obesity, diabetes, cardiovascular disease and cancer. Auto-bionics can enhance physiological function beyond normality in some cases and represents a new era in bio-inspired versatility. PMID:20210587

  4. Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine.

    PubMed

    Shafiee, Abbas; Kabiri, Mahboubeh; Ahmadbeigi, Naser; Yazdani, Saeed Oraee; Mojtahed, Mohammad; Amanpour, Saeid; Soleimani, Masoud

    2011-12-01

    Thus far, autologous adult stem cells have attracted great attention for clinical purposes. In this study, we aimed at identifying and comprehensively characterizing a subpopulation of multipotent cells within human nasal septal cartilage. We also conducted a comparative investigation with other well-established stem cells such as bone marrow-mesenchymal stem cells, adipose tissue-mesenchymal stem cells, and unrestricted somatic stem cells. The isolated clonal population was characterized using immunofluorescence, flow cytometry, reverse transcriptase, and real-time polymerase chain reaction. Nasal septal progenitors (NSP) expressed critical pluripotency and mesoectodermal stem cell markers. They also shared many characteristics with MSC in expression of CD90, CD105, CD106, CD166, and HLA-ABC and lack of expression of CD34, CD45, and HLA-DR. NSP distinctly presented CD133 (Prominin-1). These cells could proliferate rapidly in vitro with a higher clonogenic potential and showed a longer lifespan than other studied cells. This population bears some other multipotent properties in showing a high capacity to be differentiated into other lineages including chondrocytes, osteocytes, and neural-like cell types. Another strong/positive feature of this population was their ability to be safely expanded ex vivo with no susceptibility to chromosomal abnormality or tumorigenicity both in vitro and in vivo. In conclusion, NSP could be considered as an alternative autologous cell source that can bring them to the top of therapeutic applications. PMID:21401444

  5. Building a tissue in vitro from the bottom up: implications in regenerative medicine.

    PubMed

    Urciuolo, Francesco; Imparato, Giorgia; Totaro, Alessandra; Netti, Paolo A

    2013-01-01

    Tissue engineering aims at creating biological tissues to improve or restore the function of diseased or damaged tissues. To enhance the performance of engineered tissues, it is required to recapitulate in vitro not only the composition but also the structural organization of native tissues. To this end, tissue engineering techniques are beginning to focus on generating micron-sized tissue modules having specific microarchitectural features that can be used alone as living filler in the damaged areas or serve as building blocks to engineer large biological tissues by a bottom-up approach. This work discusses the shortcomings related to traditional "top-down" strategies and the promises of emerging ''bottom-up" approaches in creating engineered biological tissues. We first present an overview of the current tissue-building techniques and their applications, with an analysis of the potentiality and shortcomings of different approaches. We then propose and discuss a novel method for the biofabrication of connective-like micro tissues and how this technique can be translated to cardiac muscle fabrication.

  6. Fuzzy logic and its applications in medicine.

    PubMed

    Phuong, N H; Kreinovich, V

    2001-07-01

    Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in medicine for tasks such as the interpretation of sets of medical findings, syndrome differentiation in Eastern medicine, diagnosis of diseases in Western medicine, mixed diagnosis of integrated Western and Eastern medicine, the optimal selection of medical treatments integrating Western and Eastern medicine, and for real-time monitoring of patient data. This was verified by trials with the following systems that were developed by our group in Vietnam: a fuzzy Expert System for Syndromes Differentiation in Oriental Traditional Medicine, an Expert System for Lung Diseases using fuzzy logic, Case Based Reasoning for Medical Diagnosis using fuzzy set theory, a diagnostic system combining disease diagnosis of Western Medicine with syndrome differentiation of Oriental Traditional Medicine, a fuzzy system for classification of Western and Eastern medicaments and finally, a fuzzy system for diagnosis and treatment of integrated Western and Eastern Medicine. PMID:11470619

  7. New application of plate-fin heat exchanger with regenerative cryocoolers

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Gwak, Kyung Hyun

    2015-09-01

    A design idea is newly proposed and investigated for the application of plate-fin heat exchanger (PFHX) with regenerative cryocoolers. The role of this heat exchanger is to effectively absorb heat from the stream of coolant and deliver it to the cold-head of a cryocooler. While various types of tubular HX's have been developed so far, a small PFHX could be more useful for this purpose by taking advantage of compactness and design flexibility. In order to confirm the feasibility and effectiveness, a prototype of aluminum-brazed PFHX is designed, fabricated, and tested with a single-stage GM cryocooler in experiments for subcooling liquid nitrogen from 78 K to 65-70 K. The results show that the PFHX is 30-50% more effective in cooling rate than the tubular HX's. Several potential applications of PFHX are presented and discussed with specific design concepts.

  8. [Application of variable magnetic fields in medicine--15 years experience].

    PubMed

    Sieroń, Aleksander; Cieślar, Grzegorz

    2003-01-01

    The results of 15-year own experimental and clinical research on application of variable magnetic fields in medicine were presented. In experimental studies analgesic effect (related to endogenous opioid system and nitrogen oxide activity) and regenerative effect of variable magnetic fields with therapeutical parameters was observed. The influence of this fields on enzymatic and hormonal activity, free oxygen radicals, carbohydrates, protein and lipid metabolism, dielectric and rheological properties of blood as well as behavioural reactions and activity of central dopamine receptor in experimental animals was proved. In clinical studies high therapeutic efficacy of magnetotherapy and magnetostimulation in the treatment of osteoarthrosis, abnormal ossification, osteoporosis, nasosinusitis, multiple sclerosis, Parkinson's disease, spastic paresis, diabetic polyneuropathy and retinopathy, vegetative neurosis, peptic ulcers, colon irritable and trophic ulcers was confirmed. PMID:15049208

  9. Telocytes in regenerative medicine

    PubMed Central

    Bei, Yihua; Wang, Fei; Yang, Changqing; Xiao, Junjie

    2015-01-01

    Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com). Functionally, TCs form a three-dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non-pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders. PMID:26059693

  10. Telocytes in regenerative medicine.

    PubMed

    Bei, Yihua; Wang, Fei; Yang, Changqing; Xiao, Junjie

    2015-07-01

    Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com). Functionally, TCs form a three-dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non-pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders. PMID:26059693

  11. Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine.

    PubMed

    Jayasinghe, Suwan N

    2013-04-21

    Recent years have seen interest in approaches for directly generating fibers and scaffolds following a rising trend for their exploration in the health sciences. In this review the author wishes to briefly highlight the many approaches explored to date for generating such structures, while underlining their advantages and disadvantages, and their contribution in particular to the biomedical sciences. Such structures have been demonstrated as having implications in both the laboratory and the clinic, as they mimic the native extra cellular matrix. Interestingly the only materials investigated until very recently for generating fibrous architectures employed either natural or synthetic polymers with or without the addition of functional molecule(s). Arguably although such constructs have been demonstrated to have many applications, they lack the one unit most important for carrying out the ability to directly reconstruct a three-dimensional functional tissue, namely living cells. Therefore recent findings have demonstrated the ability to directly form cell-laden fibers and scaffolds in useful quantities from which functional three-dimensional living tissues can be conceived. These recent developments have far-reaching ramifications to many areas of research and development, a few of which range from tissue engineering and regenerative medicine, a novel approach to analyzing cell behavior and function in real time in three-dimensions, to the advanced controlled and targeted delivery of experimental and/or medical cells and/or genes for localized treatment. At present these developments have passed all in vitro and in vivo mouse model based challenge trials and are now spearheading their journey towards initiating human clinical trials.

  12. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    nanoparticles reduced the cellular damages to the normal breast epithelial cell line (CRL 8798) induced by X-rays and to the Keratinocyte cell line induced by UV irradiation. Cerium oxide nanoparticles were also found to be neuroprotective to adult rat spinal cord and retinal neurons. We propose that cerium oxide nanoparticles act as free radical scavenger (via redox reactions on its surface) to decrease the ROS induced cellular damages. Additionally, UV-visible spectroscopic studies indicated that cerium oxide nanoparticles possess auto-regenerative property by switching its oxidation state between Ce3+ and Ce4+. The auto-regenerative antioxidant property of these nanoparticles appears to be a key component in all the biological applications discussed in the present study.

  13. Regenerative nanomedicines: an emerging investment prospective?

    PubMed Central

    Prescott, Catherine

    2010-01-01

    Cells respond to their structural surrounding and within nanostructures exhibit unique proliferative and differentiation properties. The application of nanotechnologies to the field of regenerative medicine offers the potential to direct cell fate, target the delivery of cells and reduce immune rejection (via encapsulation), thereby supporting the development of regenerative medicines. The overall objective of any therapy is the delivery of the product not just into the clinic but also to patients on a routine basis. Such a goal typically requires a commercial vehicle and substantial levels of investment in scientific, clinical, regulatory and business expertise, resources, time and funding. Therefore, this paper focuses on some of the challenges facing this emerging industry, including investment by the venture capital community. PMID:20826478

  14. Benchmarking: applications to transfusion medicine.

    PubMed

    Apelseth, Torunn Oveland; Molnar, Laura; Arnold, Emmy; Heddle, Nancy M

    2012-10-01

    Benchmarking is as a structured continuous collaborative process in which comparisons for selected indicators are used to identify factors that, when implemented, will improve transfusion practices. This study aimed to identify transfusion medicine studies reporting on benchmarking, summarize the benchmarking approaches used, and identify important considerations to move the concept of benchmarking forward in the field of transfusion medicine. A systematic review of published literature was performed to identify transfusion medicine-related studies that compared at least 2 separate institutions or regions with the intention of benchmarking focusing on 4 areas: blood utilization, safety, operational aspects, and blood donation. Forty-five studies were included: blood utilization (n = 35), safety (n = 5), operational aspects of transfusion medicine (n = 5), and blood donation (n = 0). Based on predefined criteria, 7 publications were classified as benchmarking, 2 as trending, and 36 as single-event studies. Three models of benchmarking are described: (1) a regional benchmarking program that collects and links relevant data from existing electronic sources, (2) a sentinel site model where data from a limited number of sites are collected, and (3) an institutional-initiated model where a site identifies indicators of interest and approaches other institutions. Benchmarking approaches are needed in the field of transfusion medicine. Major challenges include defining best practices and developing cost-effective methods of data collection. For those interested in initiating a benchmarking program, the sentinel site model may be most effective and sustainable as a starting point, although the regional model would be the ideal goal.

  15. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature

    PubMed Central

    Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido

    2014-01-01

    Summary This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration. PMID:25506416

  16. The NASA LeRC regenerative fuel cell system testbed program for goverment and commercial applications

    SciTech Connect

    Maloney, T.M.; Voecks, G.E.

    1995-01-25

    The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbed fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  17. The NASA LeRC regenerative fuel cell system testbed program for goverment and commercial applications

    NASA Astrophysics Data System (ADS)

    Maloney, Thomas M.; Prokopius, Paul R.; Voecks, Gerald E.

    1995-01-01

    The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbed fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway.

  18. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature.

    PubMed

    Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido

    2014-07-01

    This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration.

  19. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia.

    PubMed

    Schikorski, David; Cuvillier-Hot, Virginie; Leippe, Matthias; Boidin-Wichlacz, Céline; Slomianny, Christian; Macagno, Eduardo; Salzet, Michel; Tasiemski, Aurélie

    2008-07-15

    Following trauma, the CNS of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. In this study, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the coinitiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair. PMID:18606660

  20. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    PubMed

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery.

  1. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    SciTech Connect

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  2. [The application of palynology in forensic medicine].

    PubMed

    Zhang, Dan-Yan; Zhang, Dan-Mei; Hou, Yi-Ping

    2007-12-01

    Palynology, one science of plant's pollen and spores, has been proven to be a new frontier discipline. Because of the characteristics of pollen and spores, such as small size, light weight, large amount, and difficult to be found, they can leave physical evidence and provide new clues to solve a case. Therefore palynology has a good prospect for practical application in forensic medicine. The paper intends to analyze the advantage and limitation of palynology in forensic medicine by reviewing its general characteristics, classification, morphology, and disseminating circadian rhythm. We hope to provide some reference to apply palynology in forensic medicine.

  3. Regenerative treatment strategies in spinal surgery.

    PubMed

    Hegewald, Aldemar Andres; Ringe, Jochen; Sittinger, Michael; Thome, Claudius

    2008-01-01

    Intervertebral disc degeneration is considered a major source of low back pain. Recent advances in regenerative medicine have led to promising new approaches for the biological treatment of disc degeneration. Treatment modalities include the administration of growth factors, the application of autologous or allogenic cells, gene therapy, in situ therapy and the introduction of biomaterials or a combination thereof. Promising experimental results in vitro and in animal studies support the potential feasibility of these treatment modalities in clinical studies. We will review the current literature on regenerative treatment strategies and discuss potential drawbacks as well as opportunities in translating current knowledge into clinical practice. Major obstacles to regenerative treatment strategies might be insufficient nutritional supply, pain mediating factors and functionally impaired donor cells. Therefore, for clinical application, patient selection will be essential. Molecular, cellular and radiological diagnostic tools to evaluate the eligibility of patients for particular treatment strategies need to be developed. In spinal surgery, two approaches are conceivable. Patients operated on lumbar disc herniations often develop back pain due to disc degeneration months to years after surgery. Here, additional regenerative interventions would have a preventive intention, whereas interventions for painful degenerative disc disease as an alternative to spinal fusion or disc arthroplasty would be a curative approach.

  4. Application of Science and Medicine to Sport.

    ERIC Educational Resources Information Center

    Taylor, Albert W., Ed.

    Great progress has been made in recent years in the scientific study of exercise and application to sport. This book provides an analysis of the state of physiological and clinical knowledge related to exercise and sports. The three sections--medicine and physical activity, science and exercise, and practical application to sport--cover a variety…

  5. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.

    PubMed

    Bose, Bipasha; Katikireddy, Kishore Reddy; Shenoy, P Sudheer

    2014-01-01

    Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario.

  6. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR "In Vitro" effect on neuronal differentiation and tumorigenicity modulation in NT2 cells.

    PubMed

    Ledda, Mario; Megiorni, Francesca; Pozzi, Deleana; Giuliani, Livio; D'Emilia, Enrico; Piccirillo, Sara; Mattei, Cristiana; Grimaldi, Settimio; Lisi, Antonella

    2013-01-01

    In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca(2+)-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca(2+)-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca(2+)-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine.

  7. Microchips in Medicine: Current and Future Applications.

    PubMed

    Eltorai, Adam E M; Fox, Henry; McGurrin, Emily; Guang, Stephanie

    2016-01-01

    With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine.

  8. Microchips in Medicine: Current and Future Applications

    PubMed Central

    Eltorai, Adam E. M.; Fox, Henry; McGurrin, Emily; Guang, Stephanie

    2016-01-01

    With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine. PMID:27376079

  9. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications

    PubMed Central

    Laurencin, Cato T.; Ashe, Keshia M.; Henry, Nicole; Kan, Ho Man; Lo, Kevin W-H.

    2014-01-01

    Stimulation of bone regeneration using growth factors is a promising approach for musculoskeletal regenerative engineering. Common limitations with protein growth factors are high manufacturing costs, protein instability, contamination issues, and unwanted immunogenic responses of the host. New strategies for bone regeneration that obviate these problems can have a significant impact on the treatment of skeletal injury and diseases. Over the past decade, a large number of small molecules with the potential of regenerating skeletal tissue have been reported in the literature. Here, we review this literature, paying specific attention to the prospects for small molecule-based bone-regenerative engineering. We also review the preclinical study of small molecules associated with bone regeneration. PMID:24508820

  10. Mesenchymal stem cells in regenerative rehabilitation

    PubMed Central

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  11. Experimental animal models of myocardial damage in regenerative medicine studies involving adult bone marrow derived stem cells: ethical and methodological implications.

    PubMed

    Ciulla, Michele M; Acquistapace, Giulia; Toffetti, Laura; Magrini, Fabio; Paliotti, Roberta

    2009-06-01

    Cardiac performance after myocardial infarction is compromised by ventricular remodeling, which represents a major cause of late infarct-related chronic heart failure and death. In recent years, the scientists' interest has focused on the hypothesis that the administration of bone marrow progenitors, following myocardial infarction, could ameliorate left ventricular remodeling by continuing to differentiate along the haematopoietic lineage. This approach has been developed minding to the consolidated use of transfusions to restore lost or depleted blood components and, therefore, as an enriched dose of various progenitors, generally autologous, injected peripherally or directly in the infarcted area. Since the safety of this therapy was not yet established, for ethical reasons pioneering researchers involved in these studies used animal models as surrogate of the human biologic system. Herein this hypothesis of therapy resulted in an increased use of living animals and in the reappraisal of models of myocardial damage with limited discussion on the theoretical basis of animal models applied to cell-based therapies. Recently, the European Union and its commission for surveillance of laboratory animals advanced a new proposal to restrict the use of living animals. This review will focus on the history of models utilization in biomedicine, with particular attention to animal models, and delineate an operative comparison between the two best known models of myocardial injury, namely coronary ligation and cryodamage, in the perspective of adult stem cell research applied to cardiovascular regenerative medicine.

  12. Lipoaspirate fluid proteome: A preliminary investigation by LC-MS top-down/bottom-up integrated platform of a high potential biofluid in regenerative medicine.

    PubMed

    Inserra, Ilaria; Martelli, Claudia; Cipollina, Mara; Cicione, Claudia; Iavarone, Federica; Taranto, Giuseppe Di; Barba, Marta; Castagnola, Massimo; Desiderio, Claudia; Lattanzi, Wanda

    2016-04-01

    The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins β4 and β10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation.

  13. Lipoaspirate fluid proteome: A preliminary investigation by LC-MS top-down/bottom-up integrated platform of a high potential biofluid in regenerative medicine.

    PubMed

    Inserra, Ilaria; Martelli, Claudia; Cipollina, Mara; Cicione, Claudia; Iavarone, Federica; Taranto, Giuseppe Di; Barba, Marta; Castagnola, Massimo; Desiderio, Claudia; Lattanzi, Wanda

    2016-04-01

    The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins β4 and β10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation. PMID:26719138

  14. Concise Review: Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem and Progenitor Cells: Basic Principles, Experimental Approaches, and Impact in Regenerative Medicine

    PubMed Central

    Flores-Guzmán, Patricia; Fernández-Sánchez, Verónica

    2013-01-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine. PMID:24101670

  15. [Breakthrough in research on pluripotent stem cells and their application in medicine].

    PubMed

    Valdimarsdóttir, Guðrún; Richter, Anne

    2015-12-01

    Embryonic stem cells are, as the name indicates, isolated from embryos. They are pluripotent cells which can be maintained undifferentiated or induced to differentiate into any cell type of the body. In 1998 the first isolation of human embryonic stem cells was successful and they became an interesting source for stem cell regenerative medicine. Only 8 years later pluripotent stem cells were generated by reprogramming somatic cells into induced pluripotent stem cells (iPSCs). This was a revolution in the way people thought of cell commitment during development. Since then, a lot of research has been done in understanding the molecular biology of pluripotent stem cells. iPSCs can be generated from somatic cells of a patient and therefore have the same genome. Hence, iPSCs have great potential application in medicine, as they can be utilized in disease modelling, drug screening and cell replacement therapy.

  16. [Tissue printing; the potential application of 3D printing in medicine].

    PubMed

    Visser, Jetze; Melchels, Ferry P W; Dhert, Wouter J A; Malda, Jos

    2013-01-01

    Complex structures based on a digital blueprint can be created using a 3D printer. As this blueprint can be created using patient imaging data, there are many potential patient-specific applications of 3D printing in medicine. Individually printed metal implants and synthetic devices are currently being used on a limited scale in clinical practice. Researchers in the field of regenerative medicine are now going a step further by printing a combination of cells, growth factors and biomaterials. This process is known as 'bioprinting'. It can be used to copy the complex organization of natural tissue required to repair or replace damaged tissues or organs. The technique needs to be optimized, however, and more knowledge is required regarding the development of printed living constructs into functional tissues before 'tissue from the printer' can be clinically applied. PMID:24382049

  17. The Applications of Genetic Algorithms in Medicine.

    PubMed

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-11-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.]. PMID:26676060

  18. The Applications of Genetic Algorithms in Medicine

    PubMed Central

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  19. Enhancing Tissue Engineering and Regenerative Medicine Product Commercialization: The Role of Science in Regulatory Decision-Making for the TE/RM Product Development.

    PubMed

    Bertram, Timothy A; Johnson, Peter C; Tawil, Bill J; Van Dyke, Mark; Hellman, Kiki B

    2015-10-01

    TERMIS-AM Industry Committee (TERMIS-AM/IC), in collaboration with the TERMIS-Europe (EU)/IC, conducted a symposium involving the European Medicines Agency and the U.S. Food and Drug Administration (FDA) toward building an understanding of the rational basis for regulatory decision-making and providing a framework for decisions made during the evaluation of safety and efficacy of TE/RM technologies. This symposium was held in August 2012 during the TERMIS-WC in Vienna, Austria. Emerging from this international initiative by the European Union and the United States, representatives from the respective agencies demonstrated that there are ongoing interagency efforts for developing common national practices toward harmonization of regulatory requirements for the TE/RM products. To extend a broad-based understanding of the role of science in regulatory decision-making, TERMIS-AM/IC, in cooperation with the FDA, organized a symposium at the 2014 TERMIS-AM Annual Meeting, which was held in Washington, DC. This event provided insights from leaders in the FDA and TERMIS on the current status of regulatory approaches for the approved TE/RM products, the use of science in making regulatory decisions, and TE/RM technologies that are in the development pipeline to address unmet medical needs. A far-ranging discussion with FDA representatives, industrialists, physicians, regenerative medicine biologists, and tissue engineers considered the gaps in today's scientific and regulatory understanding of TE/RM technologies. The identified gaps represent significant opportunities to advance TE/RM technologies toward commercialization.

  20. Genomic and personalized medicine: foundations and applications.

    PubMed

    Ginsburg, Geoffrey S; Willard, Huntington F

    2009-12-01

    application of genomic and personalized medicine in health care will require dramatic changes in regulatory and reimbursement policies as well as legislative protections for privacy for system-wide adoption. Thus, there are challenges from both a scientific and a policy perspective to personalized health care; however, they will be confronted and solved with the certainty that the science behind genomic medicine is sound and the practice of medicine that it informs is evidence based.

  1. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.

    PubMed

    Russo, Valerio; Yu, Claire; Belliveau, Paul; Hamilton, Andrew; Flynn, Lauren E

    2014-02-01

    Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source. PMID:24361924

  2. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  3. Manipulating biological agents and cells in micro-scale volumes for applications in medicine.

    PubMed

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, Shuqi; Demirci, Utkan

    2013-07-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development.

  4. A hybrid regenerative water recovery system for lunar/Mars life support applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Edeen, Marybeth A.; Packham, Nigel J. C.

    1992-01-01

    Long-duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division at Johnson Space Center. The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described. Aspects of the system such as closure, automation and integration are discussed and preliminary results presented.

  5. Emerging Regenerative Approaches for Periodontal Reconstruction: Practical Applications From the AAP Regeneration Workshop

    PubMed Central

    Rios, Hector F.; Bashutski, Jill D.; McAllister, Bradley S.; Murakami, Shinya; Cobb, Charles M.; Chun, Yong-Hee Patricia; Lin, Zhao; Mandelaris, George A.; Cochran, David L.

    2015-01-01

    Focused Clinical Question Can emerging technologies for periodontal regeneration become clinical reality? Summary Emerging technologies are presenting options to hopefully improve the outcomes of regeneration in challenging clinical scenarios. Cellular allografts represent a current technology in which cells and scaffolds are being delivered directly to the periodontal lesion. Recombinant human fibroblast growth factor 2 and teriparatide (parathyroid 1–34) have each been tested in controlled prospective human randomized clinical trials, and both have been shown to have potential for periodontal regeneration. These examples, as well as other emerging technologies, show promise for continued advancement in the field of periodontal regenerative therapy. Conclusions At present, there are indications that emerging technologies can be used successfully for periodontal regeneration. Case reports and clinical trials are being conducted with a variety of emerging technologies. However, many are yet to be approved by a regulatory agency, or there is a lack of evidence-based literature to validate their expanded use. PMID:26146593

  6. Diode pumped, regenerative Nd:YAG ring amplifier for space application

    NASA Technical Reports Server (NTRS)

    Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.

  7. Nanotechnology applications in medicine and dentistry.

    PubMed

    Gupta, Jyoti

    2011-05-01

    Nanotechnology, or nanoscience, refers to the research and development of an applied science at the atomic, molecular, or macromolecular levels (i.e. molecular engineering, manufacturing). The prefix "nano" is defined as a unit of measurement in which the characteristic dimension is one billionth of a unit. Although the nanoscale is small in size, its potential is vast. As nanotechnology expands in other fields, clinicians, scientists, and manufacturers are working to discover the uses and advances in biomedical sciences. Applications of nanotechnology in medical and dental fields have only approached the horizon with opportunities and possibilities for the future that can only be limited by our imagination. This paper provides an early glimpse of nanotechnology applications in medicine and dentistry to illustrate their potentially far-reaching impacts on clinical practice. It also narrates the safety issues concerning nanotechnology applications.

  8. Nanotechnology applications in medicine and dentistry.

    PubMed

    Gupta, Jyoti

    2011-05-01

    Nanotechnology, or nanoscience, refers to the research and development of an applied science at the atomic, molecular, or macromolecular levels (i.e. molecular engineering, manufacturing). The prefix "nano" is defined as a unit of measurement in which the characteristic dimension is one billionth of a unit. Although the nanoscale is small in size, its potential is vast. As nanotechnology expands in other fields, clinicians, scientists, and manufacturers are working to discover the uses and advances in biomedical sciences. Applications of nanotechnology in medical and dental fields have only approached the horizon with opportunities and possibilities for the future that can only be limited by our imagination. This paper provides an early glimpse of nanotechnology applications in medicine and dentistry to illustrate their potentially far-reaching impacts on clinical practice. It also narrates the safety issues concerning nanotechnology applications. PMID:25426600

  9. Regenerative Aerobraking

    NASA Astrophysics Data System (ADS)

    Moses, Robert W.

    2005-02-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  10. Regenerative Aerobraking

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2004-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  11. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    SciTech Connect

    Malinauskas, M.; Purlys, V.; Zukauskas, A.; Rutkauskas, M.; Danilevicius, P.; Paipulas, D.; Bickauskaite, G.; Gadonas, R.; Piskarskas, A.; Bukelskis, L.; Baltriukiene, D.; Bukelskiene, V.; Sirmenis, R.; Gaidukeviciute, A.; Sirvydis, V.

    2010-11-10

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY--ALS130-100, Z--ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software ''3D-Poli'' specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  12. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Rutkauskas, M.; Danilevičius, P.; Paipulas, D.; Bičkauskaitė, G.; Bukelskis, L.; Baltriukienė, D.; Širmenis, R.; Gaidukevičiutė, A.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-11-01

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY—ALS130-100, Z—ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software "3D-Poli" specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  13. Extremophiles and their application to veterinary medicine.

    PubMed

    Irwin, Jane Ann

    2010-01-01

    Extremophiles can be defined as organisms that can survive in extreme environments that cannot support mammalian life. They include microorganisms that can tolerate temperature extremes, extremes of pH, salinity, hydrostatic pressure and ionizing radiation, as well as low oxygen tension, desiccation and the presence of heavy metals. Psychrophilic organisms also include fish in polar waters and animals that withstand freezing. Rare examples of thermophilic pathogens exist, and the main category of extremophilic animal pathogens comprises psychrophilic and psychrotrophic microorganisms that cause fish diseases, e.g. Flavobacterium psychrophilum, Moritella viscosa, Aliivibrio wodanis and Aliivibrio salmonicida. The most widely known application of an extremophile product in veterinary medicine is DNA polymerase from thermophiles, which is a mainstay of PCR-based diagnostics for an extensive range of animal pathogens. DNA polymerases and other extremophile enzymes are also used in many molecular biology applications and animal genomics. Other extremophile products may find application in veterinary medicine in the future. These include enzymes in biosensors, compatible solutes in skin care products, drug excipients, treatments for respiratory disease, radioprotectants, peptide antibiotics, archaeal lipids for drug delivery and anti-cancer therapeutics.

  14. Extremophiles and their application to veterinary medicine.

    PubMed

    Irwin, Jane Ann

    2010-01-01

    Extremophiles can be defined as organisms that can survive in extreme environments that cannot support mammalian life. They include microorganisms that can tolerate temperature extremes, extremes of pH, salinity, hydrostatic pressure and ionizing radiation, as well as low oxygen tension, desiccation and the presence of heavy metals. Psychrophilic organisms also include fish in polar waters and animals that withstand freezing. Rare examples of thermophilic pathogens exist, and the main category of extremophilic animal pathogens comprises psychrophilic and psychrotrophic microorganisms that cause fish diseases, e.g. Flavobacterium psychrophilum, Moritella viscosa, Aliivibrio wodanis and Aliivibrio salmonicida. The most widely known application of an extremophile product in veterinary medicine is DNA polymerase from thermophiles, which is a mainstay of PCR-based diagnostics for an extensive range of animal pathogens. DNA polymerases and other extremophile enzymes are also used in many molecular biology applications and animal genomics. Other extremophile products may find application in veterinary medicine in the future. These include enzymes in biosensors, compatible solutes in skin care products, drug excipients, treatments for respiratory disease, radioprotectants, peptide antibiotics, archaeal lipids for drug delivery and anti-cancer therapeutics. PMID:20662377

  15. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response.

    PubMed

    Badylak, Stephen F

    2014-07-01

    Biologic scaffold materials composed of mammalian extracellular matrix (ECM) are prepared by decellularization of source tissues harvested from either humans (allogeneic) or a variety of other (xenogeneic) species. These matrix scaffold materials are commonly regulated and used as surgical mesh materials for applications such as ventral hernia repair, musculotendinous tissue reconstruction, dura mater replacement, reconstructive breast surgery, pelvic floor reconstruction, and the treatment of cutaneous ulcers, among others. The clinical results for these applications vary widely for reasons which include characteristics of the source tissue, methods and efficacy of tissue decellularization, and methods of processing/manufacturing. However, the primary determinant of success or failure in the clinical setting is the response of the host to these implanted biologic scaffold materials. It is logical to question why any non-self biologic material, particularly a xenogeneic material, would not elicit an early and aggressive adverse immune response. The present manuscript briefly describes the known mechanisms by which these biologic scaffold materials can facilitate a constructive remodeling response, the known causative factors of an adverse response, and provides a general discussion of the role of the macrophage in determining outcome.

  16. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  17. Carbon Nanotubes: Applications in Pharmacy and Medicine

    PubMed Central

    He, Hua; Pham-Huy, Lien Ai; Dramou, Pierre; Xiao, Deli; Zuo, Pengli

    2013-01-01

    Carbon nanotubes (CNTs) are allotropes of carbon, made of graphite and constructed in cylindrical tubes with nanometer in diameter and several millimeters in length. Their impressive structural, mechanical, and electronic properties are due to their small size and mass, their strong mechanical potency, and their high electrical and thermal conductivity. CNTs have been successfully applied in pharmacy and medicine due to their high surface area that is capable of adsorbing or conjugating with a wide variety of therapeutic and diagnostic agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They have been first proven to be an excellent vehicle for drug delivery directly into cells without metabolism by the body. Then other applications of CNTs have been extensively performed not only for drug and gene therapies but also for tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants. Moreover, CNTs have been recently revealed as a promising antioxidant. This minireview focuses the applications of CNTs in all fields of pharmacy and medicine from therapeutics to analysis and diagnosis as cited above. It also examines the pharmacokinetics, metabolism and toxicity of different forms of CNTs and discusses the perspectives, the advantages and the obstacles of this promising bionanotechnology in the future. PMID:24195076

  18. Carbon nanotubes: applications in pharmacy and medicine.

    PubMed

    He, Hua; Pham-Huy, Lien Ai; Dramou, Pierre; Xiao, Deli; Zuo, Pengli; Pham-Huy, Chuong

    2013-01-01

    Carbon nanotubes (CNTs) are allotropes of carbon, made of graphite and constructed in cylindrical tubes with nanometer in diameter and several millimeters in length. Their impressive structural, mechanical, and electronic properties are due to their small size and mass, their strong mechanical potency, and their high electrical and thermal conductivity. CNTs have been successfully applied in pharmacy and medicine due to their high surface area that is capable of adsorbing or conjugating with a wide variety of therapeutic and diagnostic agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They have been first proven to be an excellent vehicle for drug delivery directly into cells without metabolism by the body. Then other applications of CNTs have been extensively performed not only for drug and gene therapies but also for tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants. Moreover, CNTs have been recently revealed as a promising antioxidant. This minireview focuses the applications of CNTs in all fields of pharmacy and medicine from therapeutics to analysis and diagnosis as cited above. It also examines the pharmacokinetics, metabolism and toxicity of different forms of CNTs and discusses the perspectives, the advantages and the obstacles of this promising bionanotechnology in the future. PMID:24195076

  19. Applications of viral nanoparticles in medicine

    PubMed Central

    Yildiz, Ibrahim; Shukla, Sourabh; Steinmetz, Nicole F.

    2011-01-01

    Several nanoparticle platforms are currently being developed for applications in medicine, including both synthetic materials and naturally-occurring bionanomaterials such as viral nanoparticles (VNPs) and their genome-free counterparts, virus-like particles (VLPs). A broad range of genetic and chemical engineering methods have been established that allow VNP/VLP formulations to carry large payloads of imaging reagents or drugs. Furthermore, targeted VNPs and VLPs can be generated by including peptide ligands on the particle surface. In this article, we highlight state-of-the-art virus engineering principles and discuss recent advances that bring potential biomedical applications a step closer. Viral nanotechnology has now come of age and it will not be long before these formulations assume a prominent role in the clinic. PMID:21592772

  20. Quantum kernel applications in medicinal chemistry.

    PubMed

    Huang, Lulu; Massa, Lou

    2012-07-01

    Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design. PMID:22857535

  1. Femtosecond laser application in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-10-01

    Near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses of low sub-nanojoule and nJ pulse energies in combination with focusing optics of high numerical aperture can be used as versatile multiphoton tools in nanobiotechnology and nano/micro-medicine. Novel diagnostic applications include gene imaging by multiphoton multicolor FISH (MM-FISH) and high-resolution multiphoton tomography of skin as well as tissue engineered cardiovascular structures based on two-photon autofluorescence excitation and second harmonic generation (SHG) of endogenous biomolecules. Using high-intense (1011 - 1012 W/cm2) 80 MHz femtosecond laser beams, non-invasive targeted transfection of mammalian cells with DNA can be realized by creation of highly localized membrane perforations. Nanosurgery can be performed by optical knocking out of intracellular and intratissue structures. Potential applications include gene and cancer therapy, eye and brain surgery as well as optical engineering of single DNA molecules as key elements in bionanotechnology.

  2. Studies in High Frequency Oscillating Compressible Flow for Application in a Micro Regenerative Cryocooler

    NASA Astrophysics Data System (ADS)

    Garaway, I.; Grossman, G.

    2006-04-01

    Phenomena associated with oscillating flow in the regenerator and other cryocooler components are crucial, especially in micro regenerative systems that must operate at higher frequencies. The dependence of the phase angle and friction factor on operating frequency has been discussed quite extensively with some contradictions being reported experimentally. Recent published models have addressed this issue analytically, and pointed to fluid inertial effects as the possible cause of this dependence. When addressed analytically, an incompressible fluid with constant material properties was assumed, for simplicity. The results of these studies show considerable discrepancies when compared to the aforementioned experimental results. These discrepancies seem to be rooted in the simplifying assumptions. The helium employed in cryocoolers is hardly incompressible, nor does it possess constant properties. This paper extends earlier work to consider a compressible, temperature dependent fluid in high frequency oscillating flow. The problem is solved using a CFD numerical package. Results show that the phase angle is dependent on operating frequency at typical regenerator operating conditions while the friction factor should have no dependence at these typical frequencies. This study shows how the inclusion of compressibility and temperature dependence significantly adjusts the theoretical results to values much closer to those observed experimentally.

  3. Urine-derived stem cells: A novel and versatile progenitor source for cell-based therapy and regenerative medicine

    PubMed Central

    Zhang, Deying; Wei, Guanghui; Li, Peng; Zhou, Xiaobo; Zhang, Yuanyuan

    2014-01-01

    Engineered functional organs or tissues, created with autologous somatic cells and seeded on biodegradable or hydrogel scaffolds, have been developed for use in individuals with tissue damage suffered from congenital disorders, infection, irradiation, or cancer. However, in those patients, abnormal cells obtained by biopsy from the compromised tissue could potentially contaminate the engineered tissues. Thus, an alternative cell source for construction of the neo-organ or functional recovery of the injured or diseased tissues would be useful. Recently, we have found stem cells existing in the urine. These cells are highly expandable, and have self-renewal capacity, paracrine properties, and multi-differentiation potential. As a novel cell source, urine-derived stem cells (USCs) provide advantages for cell therapy and tissue engineering applications in regeneration of various tissues, particularly in the genitourinary tract, because they originate from the urinary tract system. Importantly, USCs can be obtained via a non-invasive, simple, and low-cost approach and induced with high efficiency to differentiate into three dermal cell lineages. PMID:25411659

  4. A novel cell-containing device for regenerative medicine: biodegradable nonwoven filters with peripheral blood cells promote wound healing.

    PubMed

    Iwamoto, Ushio; Hori, Hideo; Takami, Yoshihiro; Tokushima, Yasuo; Shinzato, Masanori; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-12-01

    The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-β1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application. PMID:26026790

  5. A novel cell-containing device for regenerative medicine: biodegradable nonwoven filters with peripheral blood cells promote wound healing.

    PubMed

    Iwamoto, Ushio; Hori, Hideo; Takami, Yoshihiro; Tokushima, Yasuo; Shinzato, Masanori; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-12-01

    The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-β1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application.

  6. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  7. Injectable Foams for Regenerative Medicine

    PubMed Central

    Prieto, Edna M.; Page, Jonathan M.; Harmata, Andrew J.

    2013-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements, have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable calcium phosphate cements, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and non-cytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. PMID:24127230

  8. Basic science and clinical application of stem cells in veterinary medicine.

    PubMed

    Ribitsch, I; Burk, J; Delling, U; Geißler, C; Gittel, C; Jülke, H; Brehm, W

    2010-01-01

    :329-336, 2008). It is believed that these stem cells serve as cell source to maintain tissue and organ mass during normal cell turnover in adult individuals. Therefore, the focus of attention in veterinary science is currently drawn to adult stem cells and their potential in regenerative medicine. Also experience gained from the treatment of animal patients provides valuable information for human medicine and serves as precursor to future stem cell use in human medicine.Compared to human medicine, haematopoietic stem cells only play a minor role in veterinary medicine because medical conditions requiring myeloablative chemotherapy followed by haematopoietic stem cell induced recovery of the immune system are relatively rare and usually not being treated for monetary as well as animal welfare reasons.In contrast, regenerative medicine utilising MSCs for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. Therefore, MSCs from either extra embryonic or adult tissues are in the focus of attention in veterinary medicine and research. Hence the purpose of this chapter is to offer an overview on basic science and clinical application of MSCs in veterinary medicine. PMID:20309674

  9. Regenerative Strategies for Craniofacial Disorders

    PubMed Central

    Garland, Catharine B.; Pomerantz, Jason H.

    2012-01-01

    Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders. PMID:23248598

  10. [Enlightenment of drug application and evaluation procedures of medicines registered (listed) in Australia on studies of new traditional Chinese medicines].

    PubMed

    Ren, Jian-Xun; Liu, Jian-Xun

    2014-11-01

    Modern and international studies on new traditional Chinese medicines are the main trend of the development of traditional Chinese medicines at present. In Australia, new traditional Chinese medicines refer to complementary medicines, which are mainly registered and launched as listed medicines. The application documents of registered (listed) medicines in Australia mainly cover detailed description of active pharmaceutical ingredients, pharmacological and toxicological studies, dosage form and adverse effects. Each part has detailed specifications and instructions, which helps ensure that applicants could accurately understand the requirements in application for registering (listing) medicines, and provides very important reference to the studies and development of new traditional Chinese medicines in China.

  11. Application of shock waves in medicine.

    PubMed

    Thiel, M

    2001-06-01

    Extracorporeal-generated shock waves were introduced approximately 20 years ago to disintegrate kidney stones. This treatment method substantially changed the treatment of urolithiasis. Shock waves have become the treatment of choice for kidney and ureteral stones. Urology, however, is not the only medical field for the potential use of shock waves for problems. Shock waves subsequently have been used in orthopaedics and traumatology to treat various insertional tendinopathies (enthesiopathies) and delayed unions and nonunions of fracture. Shock wave application also has been used in the treatment of tendinopathies in veterinary conditions (race horses). The concept of orthopaedic disorders is that shock waves stimulate or reactivate healing processes in tendons, surrounding tissue and bones, probably through microdisruption of avascular or minimally vascular tissues to encourage revascularization, release of local growth factors, and the recruitment of appropriate stem cells conducive to more normal tissue healing. The current author will give an overview of history and basic research of the application of shock waves in medicine. PMID:11400881

  12. Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus).

    PubMed

    Griffeth, Richard J; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological

  13. Platelet-Rich Plasma and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine-Associated Treatments in Bottlenose Dolphins (Tursiops truncatus)

    PubMed Central

    Griffeth, Richard J.; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological

  14. Nuclear medicine applications for the diabetic foot

    SciTech Connect

    Hartshorne, M.F.; Peters, V.

    1987-04-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described.

  15. [Resources and application of She's nationality wild medicinal plants].

    PubMed

    Lei, Hou-Xing; Li, Jian-Liang; Zheng, Song-Ming; Fan, Li-Hua; Li, Shui-Fu; Cheng, Wen-Liang; Hua, Jin-Wei; Yu, Hua-Li; Dai, De-Xiong; Xie, Yuan-Wei

    2014-08-01

    To make a thorough investigation of the common She's nationality wild medicinal plants resources in our country, including the species, the distribution, the folk application and the endemic medicinal plant species, Field surveyed was conducted with 25 She people mainly lived area (county, district or city) throughout the country, the folk prescription and treatment cases provided by She's medical personnel, the drug usage and dosage, the commonly used traditional She's medicine and drug samples were collected. And the distribution, growing environment of these plants were investigated, their characteristics, photographs, GPS data and track were record , and the fresh wax leaf or plants specimens were collected. In total 1 600 varieties of folk medicine of She's nationality, 450 disease names and 1 016 prescriptions were collected. 520 kinds of these medicinal plants were commonly used, growing mainly distributed in the southeastern China, about 200 meters above sea level to 1 500 meters. There are 5 First-Grade State protection wild plants (medicinal), 15 second-Grade State protection wild plants (medicinal), and 11 She characteristic medicinal plants in our study, they belong to 144 families, 312 genera 494 species, 2 subspecies, 17 varieties, 3 forms and 1 cultivated varieties of She's nationality. Folk medicine usage is different from the traditional Chinese medicine and ethnic medicine. This survey finds out the common She's nationality wild medicinal plants resources in China, including the species, the distribution, the folk application and commonly used drugs, and found the rare and endangered medicinal plants and the She's nationality endemic medicinal plants, which provides a basis for further development and use the traditional She's medicine resources.

  16. Regulatory requirements for clinical trial and marketing authorisation application for cell-based medicinal products.

    PubMed

    Salmikangas, P; Flory, E; Reinhardt, J; Hinz, T; Maciulaitis, R

    2010-01-01

    The new era of regenerative medicine has led to rapid development of new innovative therapies especially for diseases and tissue/organ defects for which traditional therapies and medicinal products have not provided satisfactory outcome. Although the clinical use and developments of cell-based medicinal products (CBMPs) could be witnessed already for a decade, robust scientific and regulatory provisions for these products have only recently been enacted. The new Regulation for Advanced Therapies (EC) 1394/2007 together with the revised Annex I, Part IV of Directive 2001/83/EC provides the new legal framework for CBMPs. The wide variety of cell-based products and the foreseen limitations (small sample sizes, short shelf life) vs. particular risks (microbiological purity, variability, immunogenicity, tumourigenicity) associated with CBMPs have called for a flexible, case-by-case regulatory approach for these products. Consequently, a risk-based approach has been developed to allow definition of the amount of scientific data needed for a Marketing Authorisation Application (MAA) of each CBMP. The article provides further insight into the initial risk evaluation, as well as to the quality, non-clinical, and clinical requirements of CBMPs. Special somatic cell therapies designed for active immunotherapy are also addressed. PMID:19940964

  17. Regulatory requirements for clinical trial and marketing authorisation application for cell-based medicinal products.

    PubMed

    Salmikangas, P; Flory, E; Reinhardt, J; Hinz, T; Maciulaitis, R

    2010-01-01

    The new era of regenerative medicine has led to rapid development of new innovative therapies especially for diseases and tissue/organ defects for which traditional therapies and medicinal products have not provided satisfactory outcome. Although the clinical use and developments of cell-based medicinal products (CBMPs) could be witnessed already for a decade, robust scientific and regulatory provisions for these products have only recently been enacted. The new Regulation for Advanced Therapies (EC) 1394/2007 together with the revised Annex I, Part IV of Directive 2001/83/EC provides the new legal framework for CBMPs. The wide variety of cell-based products and the foreseen limitations (small sample sizes, short shelf life) vs. particular risks (microbiological purity, variability, immunogenicity, tumourigenicity) associated with CBMPs have called for a flexible, case-by-case regulatory approach for these products. Consequently, a risk-based approach has been developed to allow definition of the amount of scientific data needed for a Marketing Authorisation Application (MAA) of each CBMP. The article provides further insight into the initial risk evaluation, as well as to the quality, non-clinical, and clinical requirements of CBMPs. Special somatic cell therapies designed for active immunotherapy are also addressed.

  18. Therapeutic Applications of Herbal Medicines for Cancer Patients

    PubMed Central

    Yin, Shu-Yi; Wei, Wen-Chi; Jian, Feng-Yin; Yang, Ning-Sun

    2013-01-01

    Medicinal herbs and their derivative phytocompounds are being increasingly recognized as useful complementary treatments for cancer. A large volume of clinical studies have reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. Here, we briefly review some examples of clinical studies that investigated the use of herbal medicines for various cancers and the development of randomized controlled trials (RCTs) in this emerging research area. In addition, we also report recent studies on the biochemical and cellular mechanisms of herbal medicines in specific tumor microenvironments and the potential application of specific phytochemicals in cell-based cancer vaccine systems. This review should provide useful technological support for evidence-based application of herbal medicines in cancer therapy. PMID:23956768

  19. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  20. [Medicinal plant hairy roots generating and their applications].

    PubMed

    Zhang, Meng; Gao, Wei; Wang, Xiu-Juan

    2014-06-01

    As a kind of the plant tissue cultures, hairy root culture is characterized by rapid growth without exogenous hormones source and high yield of secondary metabolites, which attracted the attention of scholars in resent years. This work systematically summarized the research of medicinal plant hairy roots, including the mechanism, current situation of medicinal plant hairy roots, and their applications. PMID:25272822

  1. Modelling the regenerative niche: a major challenge in biomaterials research.

    PubMed

    Kirkpatrick, C James

    2015-12-01

    By definition, biomaterials are developed for clinical application. In the field of regenerative medicine their principal function is to play a significant, and, if possible, an instructive role in tissue healing. In the last analysis the latter involves targeting the 'regenerative niche'. The present paper will address the problem of simulating this niche in the laboratory and adopts a life science approach involving the harnessing of heterotypic cellular communication to achieve this, that is, the ability of cells of different types to mutually influence cellular functions. Thus, co-culture systems using human cells are the methodological focus and will concern four exemplary fields of regeneration, namely, bone, soft tissue, lower respiratory tract and airway regeneration. The working hypothesis underlying this approach is that in vitro models of higher complexity will be more clinically relevant than simple monolayer cultures of transformed cell lines in testing innovative strategies with biomaterials for regeneration. PMID:26816650

  2. Novel applications of ubiquinone biopolymer nanocarriers for preventive and regenerative therapeutics: The Saccharomyces cerevisiae paradigm.

    PubMed

    Hoennscheidt, Christoph; Margaritis, Argyrios; Krull, Rainer

    2015-01-15

    Since the last decade, nanodispersed drug delivery systems gain increasingly more importance for therapeutic research fields. The forced transport to the centers of inflammation is supposed to take advantage as a novel strategic approach. Thus, the focus of this study was to investigate the applicability of ubiquinone nanoformulations against oxidative stress. The physiological reduction of reactive oxygen species (ROS) seems to be a promising treatment to point out the potential effects of these sophisticated nano-constructs. Therefore, the yeast strain Saccharomyces cerevisiae N34 was used for in vitro studies as a representative for eukaryotic organisms. Growth parameters during sequential fed batch-cultivation were monitored online using focused beam reflectance measurement (FBRM) method. The ability to control diverse cellular processes makes this yeast strain to a valuable tool for the initial investigation by understanding the fundamental mechanisms of nanoparticulate formulations onto eukaryotic cells. Furthermore, the characteristic stress response of yeast cell culture was examined, so that drug effects could be determined quantitatively. As a chemical stressor, diamide was tested in the range of 1-1000 mg diamide per g cell dry weight (CDW). The ubiquinone nanoformulation demonstrated a total stress reduction of approximately 14% in the yeast culture, confirming the potential applicability of ubiquinone. PMID:25448560

  3. Concise review: pluripotent stem cell-based regenerative applications for failing β-cell function.

    PubMed

    Holditch, Sara J; Terzic, Andre; Ikeda, Yasuhiro

    2014-05-01

    Diabetes engenders the loss of pancreatic β-cell mass and/or function, resulting in insulin deficiency relative to the metabolic needs of the body. Diabetic care has traditionally relied on pharmacotherapy, exemplified by insulin replacement to target peripheral actions of the hormone. With growing understanding of the pathogenesis of diabetic disease, alternative approaches aiming at repair and restoration of failing β-cell function are increasingly considered as complements to current diabetes therapy regimens. To this end, emphasis is placed on transplantation of exogenous pancreas/islets or artificial islets, enhanced proliferation and maturation of endogenous β cells, prevention of β-cell loss, or fortified renewal of β-like-cell populations from stem cell pools and non-β-cell sources. In light of emerging clinical experiences with human embryonic stem cells and approval of the first in-human trial with induced pluripotent stem cells, in this study we highlight advances in β-cell regeneration strategies with a focus on pluripotent stem cell platforms in the context of translational applications.

  4. Adipose-derived adult stem cells: available technologies for potential clinical regenerative applications in dentistry.

    PubMed

    Catalano, Enrico; Cochis, Andrea; Varoni, Elena; Rimondini, Lia; Carrassi, Antonio; Azzimonti, Barbara

    2013-01-01

    Tissue homeostasis depends closely on the activity and welfare of adult stem cells. These cells represent a promising tool for biomedical research since they can aid in treatment and promote the regeneration of damaged organs in many human disorders. Adult stem cells indefinitely preserve their ability to self-renew and differentiate into various phenotypes; this capacity could be promoted in vitro by particular culture conditions (differentiation media) or spontaneously induced in vivo by exploiting the biochemical and mechanical properties of the tissue in which the stem cells are implanted. Among the different sources of adult stem cells, adipose tissue is an attractive possibility thanks to its ready availability and the standard extraction techniques at our disposal today. This review discusses the isolation, characterization, and differentiation of human adipose-derived adult stem cells, as well as regeneration strategies, therapeutic uses, and adverse effects of their delivery. In particular, since oral disorders (e.g., trauma, erosion, and chronic periodontitis) often cause the loss of dental tissue along with functional, phonetic, and aesthetic impairment, this review focuses on the application of human adipose-derived adult stem cells, alone or in combination with biomaterials, in treating oral diseases.

  5. [Advances in the application of smart phones in modern medicine].

    PubMed

    Wang, Lin; Hu, Jie; Li, Fei; Wei, Huilin; Li, Ying; Lu, Tianjian; Wang, Shuqi; Xu, Feng

    2014-02-01

    Since smart phones have been developed, significant advances in the function of mobile phone due to the development of software, hardware and accessories have been reached. Till now, smart phones have been engaged in daily life with an increasing impact. As a new medical model, mobile phone medicine is emerging and has found wide spread applications in medicine, especially in diagnosing, monitoring and screening various diseases. In addition, mo bile phone medical application shows great potential trend to improve healthcare in resource-limited regions due to its advantageous features of portability and information communication capability. Nowadays, the scientific and technological issues related to mobile phone medicine have attracted worldwide attention. In this review, we summarize state-of-the-art advances of mobile phone medicine with focus on its diagnostics applications in order to expand the fields of their applications and promote healthcare informatization.

  6. [Application of precision medicine in the field of surgery].

    PubMed

    Deng, Aiwen; Xiong, Ribo; Zeng, Canjun

    2015-11-01

    Precision medicine, based on personalized medicine, is to provide personalized and precise treatment. The emergence of 3D printing technique as well as genome sequencing provides an effective way to realize precise and personalized treatment. The application of 3D printing technique in the field of surgery is listed as following: optimize operation plan to achieve precise and personalized surgery; design personalized navigation template; personalized prosthesis production; design of personalized tissue and organ. With the development of tissue engineering, new material technology and genome sequencing and the improvement in related polices and regulations, precision medicine will step on a higher level in the field of surgery. This review introduces the application of precision medicine in the field of surgery.

  7. [Application of precision medicine in the field of surgery].

    PubMed

    Deng, Aiwen; Xiong, Ribo; Zeng, Canjun

    2015-11-01

    Precision medicine, based on personalized medicine, is to provide personalized and precise treatment. The emergence of 3D printing technique as well as genome sequencing provides an effective way to realize precise and personalized treatment. The application of 3D printing technique in the field of surgery is listed as following: optimize operation plan to achieve precise and personalized surgery; design personalized navigation template; personalized prosthesis production; design of personalized tissue and organ. With the development of tissue engineering, new material technology and genome sequencing and the improvement in related polices and regulations, precision medicine will step on a higher level in the field of surgery. This review introduces the application of precision medicine in the field of surgery. PMID:26607096

  8. [Flow cytometry: applications in transfusion medicine].

    PubMed

    Boval, B

    2000-06-01

    In transfusion medicine, flow cytometry (FCM) is a methodology combining laser radiation, optics and a computerized treatment of numerous results. We can measure size, cellularity and fluorescence intensity of cells or particles in suspension after the binding of appropriate fluorescent antibodies or fluorescent dyes. The main utilisation of FCM in transfusion medicine is for quality control of the process of leukocyte reduction in red cell concentrates or in platelet units, using commercial kits. In addition, it is used for the enumeration of CD 34 positive cells before bone marrow transplantation and for control of platelet function in platelet units. For clinical investigations, FCM may be used for red cell phenotyping, essentially to detect minor populations (chimerism), for the estimation of red cell survival, or for the detection of fetal erythrocytes. In the field of platelet immunology, FCM is an essential tool for detecting platelet antibodies (auto or allo), for platelet phenotyping or for cross-matching. In the future perhaps, FCM will permit us to detect bacterial contamination or prion protein in transfused blood cells. PMID:10919227

  9. Application and Exploration of Big Data Mining in Clinical Medicine

    PubMed Central

    Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling

    2016-01-01

    Objective: To review theories and technologies of big data mining and their application in clinical medicine. Data Sources: Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Study Selection: Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. Results: This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster–Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Conclusion: Big data mining has the potential to play an important role in clinical medicine. PMID:26960378

  10. The potentiality of vanadium in medicinal applications.

    PubMed

    Rehder, Dieter

    2012-09-01

    In the early treatment of diabetes with vanadium, inorganic vanadium compounds have been the focus of attention; organic vanadium compounds are nowadays increasingly attracting attention. A key compound is bis(maltolato)oxidovanadium, which became introduced into clinical tests Phase IIa. Organic ligands help modulate the bioavailability, transport and targeting mechanism of a vanadium compound. Commonly, however, the active onsite species is vanadyl (VO(2+)) or vanadate (H(2)VO(4) (-)), generated by biospeciation. The mode of operation can be ascribed to interaction of vanadate with phosphatases and kinases, and to modulation of the level of reactive oxygen species interfering with phosphatases and/or DNA. This operating mode has also been inferred for most cancerostatic vanadium compounds, although some, for example vanadocenes, may directly intercalate with DNA. Novel medicinal potentiality of vanadium compounds is geared towards endemic diseases in tropical countries, in particular leishmaniasis, Chagas' disease and amoebiasis, and viral infections such as Dengue fever, SARS and HIV.

  11. Regenerative (Regen) ECLSS Operations Water Balance

    NASA Technical Reports Server (NTRS)

    Tobias, Barry

    2010-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."

  12. Fusion and regenerative therapies: is immortality really recessive?

    PubMed

    Stolzing, Alexandra; Hescheler, Jürgen; Sethe, Sebastian

    2007-12-01

    Harnessing cellular fusion as a potential tool for regenerative therapy has been under tentative investigation for decades. A look back the history of fusion experiments in gerontology reveals that whereas some studies indicate that aging-related changes are conserved in fused cells, others have demonstrated that fusion can be used as a tool to revoke cellular senescence and induce tissue regeneration. Recent findings about the role of fusion processes in tissue homeostasis, replenishment, and repair link insights from fusion studies of previous decades with modern developments in stem cell biology and regenerative medicine. We suggest that age-associated loss of regenerative capacity is associated with a decline of effectiveness in stem cell fusion. We project how studies into the fusion of stem cells with tissue cells, or the fusion between activator stem cells and patient cells might help in the development of applications that "rejuvenate" certain target cells, thereby strategically reinstating a regeneration cascade. The outlook is concluded with a discussion of the next research milestones and the potential hazards of fusion therapies. PMID:18072882

  13. Biomimetic microenvironments for regenerative endodontics.

    PubMed

    Kaushik, Sagar N; Kim, Bogeun; Walma, Alexander M Cruz; Choi, Sung Chul; Wu, Hui; Mao, Jeremy J; Jun, Ho-Wook; Cheon, Kyounga

    2016-01-01

    Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability. Therefore, this review focuses on the development and application of the

  14. Biomimetic microenvironments for regenerative endodontics.

    PubMed

    Kaushik, Sagar N; Kim, Bogeun; Walma, Alexander M Cruz; Choi, Sung Chul; Wu, Hui; Mao, Jeremy J; Jun, Ho-Wook; Cheon, Kyounga

    2016-01-01

    Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability. Therefore, this review focuses on the development and application of the

  15. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

    PubMed Central

    Sardinha, Jose Paulo; Myers, Simon

    2014-01-01

    Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery. PMID:24883273

  16. Application of smart nanostructures in medicine.

    PubMed

    He, Jingjing; Qi, Xiaoxue; Miao, Yuqing; Wu, Hai-Long; He, Nongyue; Zhu, Jun-Jie

    2010-09-01

    Smart nanostructures are sensitive to various environmental or biological parameters. They offer great potential for numerous biomedical applications such as monitoring, diagnoses, repair and treatment of human biological systems. The present work introduces smart nanostructures for biomedical applications. In addition to drug delivery, which has been extensively reported and reviewed, increasing interest has been observed in using smart nanostructures to develop various novel techniques of sensing, imaging, tissue engineering, biofabrication, nanodevices and nanorobots for the improvement of healthcare.

  17. Extremophiles and their application to veterinary medicine.

    PubMed

    Irwin, Jane A; Baird, Alan W

    2004-06-01

    : Extremophiles are organisms that can grow and thrive in harsh conditions, e.g., extremes of temperature, pH, salinity, radiation, pressure and oxygen tension. Thermophilic, halophilic and radiation-resistant organisms are all microbes, some of which are able to withstand multiple extremes. Psychrophiles, or cold-loving organisms, include not only microbes, but fish that live in polar waters and animals that can withstand freezing. Extremophiles are structurally adapted at a molecular level to withstand these conditions. Thermophiles have particularly stable proteins and cell membranes, psychrophiles have flexible cellular proteins and membranes and/or antifreeze proteins, salt-resistant halophiles contain compatible solutes or high concentrations of inorganic ions, and acidophiles and alkaliphiles are able to pump ions to keep their internal pH close to neutrality. Their interest to veterinary medicine resides in their capacity to be pathogenic, and as sources of enzymes and other molecules for diagnostic and pharmaceutical purposes. In particular, thermostable DNA polymerases are a mainstay of PCR-based diagnostics.

  18. [Applications of electromagnetic radiation in medicine].

    PubMed

    Miłowska, Katarzyna; Grabowska, Katarzyna; Gabryelak, Teresa

    2014-05-08

    Recent decades have been devoted to the intense search for the response to questions related to the impact of radiation on the human body. Due to the growing fashion for a healthy lifestyle, increasing numbers of works about the alleged dangers of electromagnetic waves and diseases that they cause appeared. However, the discoveries of 20th century, and knowledge of the properties of electromagnetic radiation have allowed to broaden the horizons of the use of artificial sources of radiation in many fields of science and especially in medicine. The aim of this paper is to show that although excessive radiation or high doses are dangerous to the human body, its careful and controlled use, does not pose a threat, and it is often necessary in therapy. The possibility of using ionizing radiation in radiotherapy, isotope diagnostics or medical imaging, and non-ionizing radiation in the treatment for dermatological disorders and cancers will be presented. The unique properties of synchrotron radiation result in using it on a large scale in the diagnosis of pathological states by imaging methods.

  19. Extremophiles and their application to veterinary medicine

    PubMed Central

    2004-01-01

    Extremophiles are organisms that can grow and thrive in harsh conditions, e.g., extremes of temperature, pH, salinity, radiation, pressure and oxygen tension. Thermophilic, halophilic and radiation-resistant organisms are all microbes, some of which are able to withstand multiple extremes. Psychrophiles, or cold-loving organisms, include not only microbes, but fish that live in polar waters and animals that can withstand freezing. Extremophiles are structurally adapted at a molecular level to withstand these conditions. Thermophiles have particularly stable proteins and cell membranes, psychrophiles have flexible cellular proteins and membranes and/or antifreeze proteins, salt-resistant halophiles contain compatible solutes or high concentrations of inorganic ions, and acidophiles and alkaliphiles are able to pump ions to keep their internal pH close to neutrality. Their interest to veterinary medicine resides in their capacity to be pathogenic, and as sources of enzymes and other molecules for diagnostic and pharmaceutical purposes. In particular, thermostable DNA polymerases are a mainstay of PCR-based diagnostics. PMID:21851659

  20. Applications of Fluorine in Medicinal Chemistry.

    PubMed

    Gillis, Eric P; Eastman, Kyle J; Hill, Matthew D; Donnelly, David J; Meanwell, Nicholas A

    2015-11-12

    The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography.