Science.gov

Sample records for regeneratively cooled thrust

  1. A Regeneratively-Cooled Thrust Chamber for the Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall; Sparks, Dave; Woodcock, Gordon; Jim Turner (Technical Monitor)

    2000-01-01

    This document consists of presentation slides about the development of the regeneratively cooled thrust chamber for the Fastrac engine. The Fastrac engine was originally developed to demonstrate low cost design and fabrication methods. It was intended to be used in an expendable booster. The regen thrust chamber enables a more cost efficient test program. Using the low cost design and fabrication methodology designed for the 12K regeneratively cooled chamber, the contractor designed, developed and fabricated a regeneratively cooled thrust chamber for the Fastrac engine.

  2. A Regeneratively Cooled Thrust Chamber For The Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Sparks, Dave; Woodcock, Gordon

    2000-01-01

    Abstract This paper presents the development of a low-cost, regeneratively-cooled thrust chamber for the Fastrac engine. The chamber was fabricated using hydraformed copper tubing to form the coolant jacket and wrapped with a fiber reinforced polymer composite Material to form a structural jacket. The thrust chamber design and fabrication approach was based upon Space America. Inc.'s 12,000 lb regeneratively-cooled LOX/kerosene rocket engine. Fabrication of regeneratively cooled thrust chambers by tubewall construction dates back to the early US ballistic missile programs. The most significant innovations in this design was the development of a low-cost process for fabrication from copper tubing (nickel alloy was the usual practice) and use of graphite composite overwrap as the pressure containment, which yields an easily fabricated, lightweight pressure jacket around the copper tubes A regeneratively-cooled reusable thrust chamber can benefit the Fastrac engine program by allowing more efficient (cost and scheduler testing). A proof-of-concept test article has been fabricated and will he tested at Marshall Space Flight Center in the late Summer or Fall of 2000.

  3. Investigation of electroforming techniques. [fabrication of regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1975-01-01

    Copper and nickel electroforming was examined for the purpose of establishing the necessary processes and procedures for repeatable, successful fabrication of the outer structures of regeneratively cooled thrust chambers. The selection of electrolytes for copper and nickel deposition is described. The development studies performed to refine and complete the processes necessary for successful chamber shell fabrication and the testing employed to verify the applicability of the processes and procedures to small scale hardware are described. Specifications were developed to afford a guideline for the electroforming of high quality outer shells on regeneratively cooled thrust chamber liners. Test results indicated repeatable mechanical properties could be produced in copper deposits from the copper sulfate electrolyte with periodic current reversal and in nickel deposits from the sulfamate solution. Use of inert, removable channel fillers and the conductivizing of such is described. Techniques (verified by test) which produce high integrity bonds to copper and copper alloy liners are discussed.

  4. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  5. A graphite-lined regeneratively cooled thrust chamber

    NASA Technical Reports Server (NTRS)

    Stubbs, V. R.

    1972-01-01

    Design concepts, based on use of graphite as a thermal barrier for regeneratively cooled FLOX-methane thrust chambers, have been screened and concepts selected for detailed thermodynamic, stress, and fabrication analyses. A single design employing AGCarb-101, a fibrous graphite composite material, for a thermal barrier liner and an electroformed nickel structure with integral coolant passages was selected for fabrication and testing. The fabrication processes and the test results are described and illustrated.

  6. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  7. Development of sputtering process to deposit stoichiometric zirconia coatings for the inside wall of regeneratively cooled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Busch, R.

    1978-01-01

    Thermal barrier coatings of yttria stabilized zirconia and zirconia-ceria mixtures were deposited by RF reactive sputtering. Coatings were 1-2 mils thick, and were deposited on copper cylinders intended to simulate the inner wall of a regeneratively cooled thrust chamber. Coating stoichiometry and adherence were investigated as functions of deposition parameters. Modest deposition rates (approximately 0.15 mil/hr) and subambient sustrate temperatures (-80 C) resulted in nearly stoichiometric coatings which remained adherent through thermal cycles between -196 and 400 C. Coatings deposited at higher rates or substrates temperatures exhibited greater oxygen deficiences, while coatings deposited at lower temperatures were not adherent. Substrate bias resulted in structural changes in the coating and high krypton contents; no clear effect on stoichiometry was observed.

  8. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  9. Propellant feed system of a regeneratively cooled scramjet

    SciTech Connect

    Kanda, Takeshi; Masuya, Goro; Wakamatsu, Yoshio )

    1991-04-01

    An expander cycle for an airframe-integrated hydrogen-fueled scramjet is analyzed to study regenerative cooling characteristics and overall specific impulse. Below Mach 10, the specific impulse and thrust coincide with the reference values. At Mach numbers above 10, a reduction of the specific impulse occurs due to the coolant flow rate requirement, which is accompanied by an increase of thrust. It is shown that the thrust may be increased by injecting excess fuel into the combustor to compensate for the decrease of the specific impulse. 9 refs.

  10. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generally, in regeneratively cooled engines, the fuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  11. Transpiration And Regenerative Cooling Of Rocket Engine

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1989-01-01

    Transpiration cooling extends limits of performance. Addition of transpiration cooling to regeneratively-cooled rocket-engine combustion chamber proposed. Modification improves performance of engine by allowing use of higher chamber pressure. Throat section of combustion-chamber wall cooled by transpiration, while chamber and nozzle sections cooled by fluid flowing in closed channels. Concept applicable to advanced, high-performance terrestrial engines or some kinds of industrial combustion chambers. With proper design, cooling scheme makes possible to achieve higher chamber pressure and higher overall performance in smaller engine.

  12. Regeneratively cooled rocket engine for space storable propellants

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Waldman, B. J.

    1973-01-01

    Analyses and experimental studies were performed with the OF2 (F2/O2)/B2H6 propellant combination over a range in operating conditions to determine suitability for a space storable pressure fed engine configuration for an extended flight space vehicle configuration. The regenerative cooling mode selected for the thrust chamber was explored in detail with the use of both the fuel and oxidizer as coolants in an advanced milled channel construction thrust chamber design operating at 100 psia chamber pressure and a nominal mixture ratio of 3.0 with a 60:1 area ratio nozzle. Benefits of the simultaneous cooling as related to gaseous injection of both fuel and oxidizer propellants were defined. Heat transfer rates, performance and combustor stability were developed for impinging element triplet injectors in uncooled copper calorimeter hardware with flow, pressure and temperature instrumentation. Evaluation of the capabilities of the B2H6 and OF2 during analytical studies and numerous tests with flow through electrically heated blocks provided design criteria for subsequent regenerative chamber design and fabrication.

  13. Analysis of Regen Cooling in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  14. Regeneratively Cooled Liquid Oxygen/Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  15. Regeneratively Cooled Liquid Oxygen/Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  16. Advanced regenerative-cooling techniques for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Shoji, J. M.

    1975-01-01

    A review of regenerative-cooling techniques applicable to advanced planned engine designs for space booster and orbit transportation systems has developed the status of the key elements of this cooling mode. This work is presented in terms of gas side, coolant side, wall conduction heat transfer, and chamber life fatigue margin considerations. Described are preliminary heat transfer and trade analyses performed using developed techniques combining channel wall construction with advanced, high-strength, high-thermal-conductivity materials (NARloy-Z or Zr-Cu alloys) in high heat flux regions, combined with lightweight steel tubular nozzle wall construction. Advanced cooling techniques such as oxygen cooling and dual-mode hydrocarbon/hydrogen fuel operation and their limitations are indicated for the regenerative cooling approach.

  17. NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine

    NASA Image and Video Library

    1958-12-21

    An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.

  18. A hydrogen-oxygen rocket engine coolant passage design program (RECOP) for fluid-cooled thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1994-01-01

    The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.

  19. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  20. Liquid Oxygen Cooling of Hydrocarbon Fueled Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1989-01-01

    Rocket engines using liquid oxygen (LOX) and hydrocarbon fuel as the propellants are being given serious consideration for future launch vehicle propulsion. Normally, the fuel is used to regeneratively cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability. Another possibility for the coolant is the liquid oxygen. Combustion chambers previously tested with LOX and RP-1 as propellants and LOX as the collant demonstrated the feasibility of using liquid oxygen as a coolant up to a chamber pressure of 13.8 MPa (2000 psia). However, there was concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot gas side wall. In order to study this effect, chambers were fabricated with slots machined upstream of the throat between the cooling passage wall and the hot gas side wall to simulate cracks. The chambers were tested at a nominal chamber pressure of 8.6 MPa (1247 psia) over a range of mixture ratios from 1.9 to 3.1 using liquid oxygen as the coolant. The results of the testing showed that the leaking LOX did not have a deleterious effect on the chambers in the region of the slots. However, there was unexplained melting in the throat region of both chambers, but not in line with the slots.

  1. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  2. Regeneratively cooled transition duct with transversely buffered impingement nozzles

    DOEpatents

    Morrison, Jay A; Lee, Ching-Pang; Crawford, Michael E

    2015-04-21

    A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In the impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.

  3. Low-thrust chemical propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1980-01-01

    Results from investigations leading to the definition of low thrust chemical engine concepts are described. From the thrust chamber cooling analyses, regenerative/radiation-cooled LO2/H2 thrust chambers offered the largest thrust and chamber pressure operational envelope primarily due to the superior cooling capability of hydrogen and its low critical pressure. Regenerative/radiation-cooled LO2/CH4 offered the next largest operational envelope. The maximum chamber pressure for film/radiation-cooling was significantly lower than for regenerative/radiation-cooling. As in regeneration-cooling, LO2/H2 thrust chambers achieved the highest maximum chamber pressure, LO2/CH4 film/radiation-cooling was found not feasible and LO2/RP-1 film/radiation-cooling was extremely limited. In the engine cycle/configuration evaluation, the engine cycle matrix was defined through the incorporation of the heat transfer results. Engine cycle limits were established with the fuel-cell power cycle achieving the highest chamber pressure; however, the fuel cell system weights were excessive. The staged combustion cycle achieved the next highest chamber pressure but the preburner operational feasibility was in question.

  4. An Integrated Cryogenic System for Spacecraft Power, Thrust, and Cooling

    DTIC Science & Technology

    1961-11-14

    LIBRARY COpy J. L. MUON JUN , 1961 "Al hief Engineer, AiResearch Manufacturing Division, The GarrettCorporation, Los Angeles, Calif.I hsdocument has...chemical APU tions less than 1 hr, battery , solid-propellant, and heat sink (in addition to a solar or nuclear and monopropellant systems will be used...Durations 0.2 lb average (coatinuous) pander and fuel cell) High Thrust, Short Durations 1000 lb see Batteries for 12 kwhr output (solar power unit) 2

  5. Test program to provide confidence in liquid oxygen cooling of hydrocarbon fueled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1986-01-01

    In previous tests of liquid oxygen cooling of hydrocarbon fueled rocket engines, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastropic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed here.

  6. Test program to provide confidence in liquid oxygen cooling of hydrocarbon fueled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1986-01-01

    In previous tests of liquid oxygen cooling of hydrocarbon fueled rocket engines, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastropic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed here.

  7. Cooling of High Pressure Rocket Thrust Chambers with Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Price, H. G.

    1980-01-01

    An experimental program using hydrogen and oxygen as the propellants and supercritical liquid oxygen (LOX) as the coolant was conducted at 4.14 and 8.274 MN/square meters (600 and 1200 psia) chamber pressure. Data on the following are presented: the effect of LOX leaking into the combustion region through small cracks in the chamber wall; and verification of the supercritical oxygen heat transfer correlation developed from heated tube experiments; A total of four thrust chambers with throat diameters of 0.066 m were tested. Of these, three were cyclically tested to 4.14 MN/square meters (600 psia) chamber pressure until a crack developed. One had 23 additional hot cycles accumulated with no apparent metal burning or distress. The fourth chamber was operated at 8.274 MN/square meters (1200 psia) pressure to obtain steady state heat transfer data. Wall temperature measurements confirmed the heat transfer correlation.

  8. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  9. Thermal Stability of RP-2 for Hydrocarbon Boost Regenerative Cooling

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Deans, Matthew C.; Stiegemeier, Benjamin R.; Psaras, Peter M.

    2013-01-01

    A series of tests were performed in the NASA Glenn Research Centers Heated Tube Facility to study the heat transfer and thermal stability behavior of RP-2 under conditions similar to those found in rocket engine cooling channels. It has long been known that hydrocarbon fuels, such as RP-2, can decompose at high temperature to form deposits (coke) which can adversely impact rocket engine cooling channel performance. The heated tube facility provides a simple means to study these effects. Using resistively heated copper tubes in a vacuum chamber, flowing RP-2 was heated to explore thermal effects at a range of test conditions. Wall temperature (850-1050F) and bulk fluid temperature (300-500F) were varied to define thermal decomposition and stability at each condition. Flow velocity and pressure were fixed at 75 fts and 1000 psia, respectively. Additionally, five different batches of RP-2 were tested at identical conditions to examine any thermal stability differences resulting from batch to batch compositional variation. Among these tests was one with a potential coke reducing additive known as 1,2,3,4-Tetrahydroquinoline (THQ). While copper tubes were used for the majority of tests, two exploratory tests were performed with a copper alloy known as GRCop-42. Each tube was instrumented with 15 thermocouples to examine the temperature profile, and carbon deposition at each thermocouple location was determined post-test in an oxidation furnace. In many tests, intermittent local temperature increases were observed visually and in the thermocouple data. These hot spots did not appear to correspond with a higher carbon deposition.

  10. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  11. Test program to provide confidence in liquid oxygen cooling of hydrocarbon fueled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1986-01-01

    An experimental program has been planned at the NASA Lewis Research Center to build confidence in the feasibility of liquid oxygen cooling for hydrocarbon fueled rocket engines. Although liquid oxygen cooling has previously been incorporated in test hardware, more runtime is necessary to gain confidence in this concept. In the previous tests, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot-gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastrophic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed in this report. Four thrust chambers, three with cracks and one without, should be tested. The axial location of the cracks should be varied parametrically. Each chamber should be instrumented to determine the effects of the cracks, as well as the overall performance and durability of the chambers.

  12. Potential Applications of the Ceramic Thrust Chamber Technology for Future Transpiration Cooled Rocket Engines

    NASA Astrophysics Data System (ADS)

    Herbertz, Armin; Ortelt, Markus; Müller, Ilja; Hald, Hermann

    The long-term development of ceramic rocket engine thrust chambers at the German Aerospace Center(DLR) currently leads to designs of self-sustaining, transpiration-cooled, fiber-reinforced ceramic rocket engine chamber structures.This paper discusses characteristic issues and potential benefits introduced by this technology. Achievable benefits are the reduction of weight and manufacturing cost, as well as an increased reliability and higher lifetime due to thermal cycle stability.Experiments with porous Ceramic Matrix Composite(CMC) materials for rocket engine chamber walls have been conducted at the DLR since the end of the 1990s.This paper discusses the current status of DLR's ceramic thrust chamber technology and potential applications for high thrust engines.The manufacturing process and the design concept are explained.The impact of variations of engine parameters(chamber pressure and diam-eter)on the required coolant mass flow are discussed.Due to favorable scaling effects a high thrust application utilizes all benefits of the discussed technology, while avoiding the most significant performance drawbacks.

  13. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  14. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  15. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation

  16. Altitude testing of a flight weight, self-cooled, 2D thrust vectoring exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Wooten, W. H.; Blozy, J. T.; Speir, D. W.; Lottig, R. A.

    1984-01-01

    The Augmented Deflector Exhaust Nozzle (ADEN) was tested in PSL-3 at NASA-Lewis Research Center using an F404 engine. The ADEN is a flight weight Single Expansion Ramp Nozzle with thrust vectoring, an internal cooling system utilizing the available engine fan flow, and a variable area throat controlled by the engine control system. Test conditions included dry and max A/B operation at nozzle pressure ratios from 2.0 to 15.0. High nozzle pressure loading was simulated to verify structural integrity at near maximum design pressure. Nozzle settings covered the full range in throat area and + or - 15 deg deflection angle. Test results demonstrated expected aerodynamic performance, cooling system effectiveness, control system stability, and mechanical integrity.

  17. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.; Yost, M. C.; Tobin, R. D.

    1973-01-01

    Tests were conducted on the regenerative cooled thrust chamber of the space shuttle orbit maneuvering engine. The conditions for the tests and the durations obtained are presented. The tests demonstrated thrust chamber operation over the nominal ranges of chamber pressure mixture ratio. Variations in auxiliary film coolant flowrate were also demonstrated. High pressure tests were conducted to demonstrate the thrust chamber operation at conditions approaching the design chamber pressure for the derivative space tug application.

  18. Prediction of engine performance and wall erosion due to film cooling for the 'fast track' ablative thrust chamber

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.

    1994-01-01

    Efforts have been made at the Propulsion Laboratory (MSFC) to design and develop new liquid rocket engines for small-class launch vehicles. Emphasis of the efforts is to reduce the engine development time with the use of conventional designs while meeting engine reliability criteria. Consequently, the engine cost should be reduced. A demonstrative ablative thrust chamber, called 'fast-track', has been built. To support the design of the 'fast-track' thrust chamber, predictions of the wall temperature and ablation erosion rate of the 'fast-track' thrust chamber have been performed using the computational fluid dynamics program REFLEQS (Reactive Flow Equation Solver). The analysis is intended to assess the amount of fuel to be used for film cooling so that the erosion rate of the chamber ablation does not exceed its allowable limit. In addition, the thrust chamber performance loss due to an increase of the film cooling is examined.

  19. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  20. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  1. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  2. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  3. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  4. Investigation of the efficiency of regenerative cooling of the ramjet combustor by gasification products of energy-intensive material

    NASA Astrophysics Data System (ADS)

    Averkov, I. S.; Arefyev, K. Yu.; Baykov, A. V.; Yanovskiy, L. S.

    2017-01-01

    The results of mathematical modeling of the thermal state of combustion chambers with regenerative cooling for ramjet engines of promising flying vehicles are presented. The cooling of combustion chambers by the gasification products of a combined charge of the energy-intensive material is considered, where the polyethylene is used as a stuff, and the HMX-based compounds are used as the active substance. The flow rates of the cooling eneregy-intensive material are determined, which provide acceptable levels of temperatures of combustion chambers at various modes of engines operation are determined.

  5. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  6. Liquid oxygen cooling of high pressure LOX/hydrocarbon rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Price, H. G.; Masters, P. A.

    1986-01-01

    An experimental program using liquid oxygen (LOX) and RP-1 as the propellants and supercritical LOX as the coolant was conducted at 4.14, 8.27, and 13.79 MN/sq m (600, 1200, and 2000 psia) chamber pressure. The objectives of this program were to evaluate the cooling characteristics of LOX with the LOX/RP-1 propellants, the buildup of the soot on the hot-gas-side chamber wall, and the effect of an internal LOX leak on the structural integrity of the combustor. Five thrust chambers with throat diameters of 6.6 cm (2.5 in.) were tested successfully. The first three were tested at 4.14 MN/sq m (600 psia) chamber pressure over a mixture ratio range of 2.25 to 2.92. One of these three was tested for over 22 cyclic tests after the first through crack from the coolant channel to the combustion zone was observed with no apparent metal burning or distress. The fourth chamber was tested at 8.27 MN/sq m (1200 psia) chamber pressure over a mixture range of 1.93 to 2.98. The fourth and fifth chambers were tested at 13.79 MN/sq m (2000 psia) chamber pressure over a mixture ratio range of 1.79 to 2.68.

  7. Low-thrust Isp sensitivity study

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1982-01-01

    A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.

  8. Task 12 data dump (phase 2) OME integrated thrust chamber test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.; Pauckert, R. P.

    1974-01-01

    The characteristics and performance of the orbit maneuvering engine for the space shuttle are discussed. Emphasis is placed on the regeneratively cooled thrust chamber of the engine. Tests were conducted to determine engine operating parameters during the start, shutdown, and restart. Characteristics of the integrated thrust chamber and the performance and thermal conditions for blowdown operation without supplementary boundary layer cooling were investigated. The results of the test program are presented.

  9. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  10. Fluid thrust control system. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Howell, W. L.; Jansen, H. B.; Lehmann, E. N. (Inventor)

    1968-01-01

    A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls.

  11. Fabrication of liquid-rocket thrust chambers by electroforming

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Kazaroff, J. M.

    1974-01-01

    Electroforming has proven to be an excellent fabrication method for building liquid rocket regeneratively cooled thrust chambers. NASA sponsored technology programs have investigated both common and advanced methods. Using common procedures, several cooled spool pieces and thrust chambers have been made and successfully tested. The designs were made possible through the versatility of the electroforming procedure, which is not limited to simple geometric shapes. An advanced method of electroforming was used to produce a wire-wrapped, composite, pressure-loaded electroformed structure, which greatly increased the strength of the structure while still retaining the advantages of electroforming.

  12. Structural analysis of cylindrical thrust chambers, volume 3

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1981-01-01

    A system of three computer programs is described for use in conjunction with the BOPAGE finite element program. The programs are demonstrated by analyzing cumulative plastic deformation in a regeneratively cooled rocket thrust chamber. The codes provide the capability to predict geometric and material nonlinear behavior of cyclically loaded structures without performing a cycle-by-cycle analysis over the life of the structure. The program set consists of a BOPACE restart tape reader routine, and extrapolation program and a plot package.

  13. Fluid-structure interaction analysis applied to thermal barrier coated cooled rocket thrust chambers with subsequent local investigation of delamination phenomena

    NASA Astrophysics Data System (ADS)

    Kowollik, D. S. C.; Horst, P.; Haupt, M. C.

    2013-03-01

    The aim of this work is to investigate numerically thermal barrier coating (TBC) systems applied to realistic rocket thrust chamber conditions. A global full parametric three-dimensional (3D) modeling approach for cooled rocket thrust chambers is presented to be able to simulate the fluid-structure interaction (FSI) phenomena involved. In a subsequent analysis step, realistic mechanical and thermal boundary conditions are extracted from critical design regions of the global model and applied to a local finite element model (FEM) to analyze possible TBC delaminations by means of a Fracture Mechanics (FM) approach.

  14. Hot-gas-side heat transfer with and without film cooling on a simulated nuclear rocket thrust chamber using H2-O2

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Schacht, R. L.; Jones, W. L.

    1972-01-01

    Heat-transfer coefficients were obtained on a thrust chamber which simulated the geometry of the NERVA nuclear rocket. The tests were performed with and without peripheral film cooling over a chamber pressure range of 1.05 million to 5.84 million newtons per square meter (153 to 847 psia). With no film cooling, the overall axial variation in the value of the correlation coefficient C of the equation (Stanton)* (Prandtl)* to the 0.7ths power = C(Reynolds)* to the -0.2ths power, where * indicates the reference enthalpy condition, was reduced 66 percent when the local diameter in the Reynolds number was replaced by the axial distance from the injector face. The average peak values of C were reduced 25 percent with 2 and 3.75 percent cooling and 50 percent with 7.5 percent cooling.

  15. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.; Tobin, R. D.

    1975-01-01

    Analyses and preliminary designs of candidate OME propellant combinations and corresponding engine designs were conducted and evaluated in terms of performance, operating limits, program cost, risk, inherent life and maintainability. For the Rocketdyne recommended and NASA approved propellant combination and cooling concept (NTO/MMH regeneratively cooled engine), a demonstration thrust chamber was designed, fabricated, and experimentally evaluated to define operating characteristics and limits. Alternate fuel (50-50) operating characteristics were also investigated with the demonstration chamber. Adverse operating effects on regenerative cooled operation were evaluated using subscale electrically heated tubes and channels. An investigation of like doublet element characteristics using subscale tests was performed. Full scale 8- and 10-inch diameter like-doublet injectors for the OME were designed, fabricated, and tested. Injector stability was evaluated analytically and experimentally.

  16. Thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.

    1985-01-01

    The reusable life of the Space Shuttle main engine (SSME) is influenced by the cyclic life of the regeneratively liquid cooled main combustion chamber (MCC). During an operational duty cycle the MCC liner is subjected to a large transient thermal gradient that imparts a high thermal cyclic strain to the liner hot gas wall. Life predictions of such chambers have usually been based on low cycle fatigue (LCF) evaluations. Hot-fire testing, however, has shown significant mid-channel wall deformation and thinning during accrued cyclic testing. This phenomenon is termed cyclic creep and appears to be significantly accelerated at elevated temperatures. An analytical method that models the cyclic creep phenomenon and its application to thrust chamber life prediction is presented. The chamber finite element geometry is updated periodically to account for accrued wall thinning and distortion. Failure is based on the tensile instability failure criterion. Cyclic life results for several chamber life enhancing coolant channel designs are compared to the typically used LCF analysis that neglects cyclic creep. The results show that the usable cyclic creep life is approximately 30 to 50% of the commonly used LCF life.

  17. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  18. Thrust chamber material technology program

    NASA Astrophysics Data System (ADS)

    Andrus, J. S.; Bordeau, R. G.

    1989-03-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  19. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  20. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  1. Graphical method for predicting life of a rocket thrust chamber with half-hard zirconium-copper liner and electroformed nickel closeout

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.

    1977-01-01

    A method for estimating the life of a regeneratively cooled rocket thrust chamber was developed and is based on the hot-gas wall temperature and the temperature difference between the hot-gas wall and the outside surface of the closeout. This method permits a quick estimate of the life of a thrust chamber when design changes or test-cycle variations are considered. Strain range and life are presented graphically as functions of these temperature parameters for a typical high-performance rocket thrust chamber with a half-hard zirconium-copper liner and an electroformed nickel closeout.

  2. Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: Insights from thermokinematic and erosion modeling of the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    McQuarrie, Nadine; Ehlers, Todd A.

    2015-06-01

    Advancements in thermochronology and numerical modeling offer the potential to associate the age of thermochronometric samples to both exhumational and deformational processes. However, understanding how these components are related in compressional systems requires linking the geometry and magnitude of fault slip to the distribution and amount of erosion. To address this, we apply a 2-D thermokinematic model to a forward modeled balanced cross section to quantify the cooling history in fold-thrust belt settings. The restored cross section provides a kinematic path of rocks and structures necessary to reproduce the surface geology. By assigning ages to displacement amounts, we produced a range of potential velocity vectors used to calculate heat transport, erosion, and rock cooling. We test the predicted ages against a suite of previously published thermochronometric data from the Bhutan Himalaya to explore the utility of the data to constrain the timing, rate, and geometry of fault motion as well as variations in the exhumation rate. We evaluate the cooling history associated with a constant rate of shortening of 18 mm/yr, rates that are 2.0, 1.5, 0.75, and 0.5 times the constant rate, and rates that vary with time to determine which kinematic history best matches the measured cooling ages. The combination of relatively old apatite fission track and zircon (U-Th)/He measured ages and younger (15-9 Ma) 40Ar/39Ar ages from white mica is best matched with faster rates (relative to constant rates) between 11.5 and 8 Ma and slower than constant rates from 17 to 11.5 Ma and 8 Ma to present.

  3. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  4. Hydrogen film/conductive cooling

    NASA Technical Reports Server (NTRS)

    Ewen, R. L.

    1972-01-01

    Small scale nozzle tests using heated nitrogen were run to obtain effectiveness and wall heat transfer data with hydrogen film cooling. Effectiveness data are compared with an entrainment model developed from planar, unaccelerated flow data. Results indicate significant effects due to flow turning and acceleration. With injection velocity effects accounted for explicitly, heat transfer correlation coefficients were found to be the same with and without film cooling when properties are evaluated at an appropriate reference temperature for the local gas composition defined by the coolant effectiveness. A design study for an O2/H2 application with 300 psia (207 N/sq cm) chamber pressure and 1500 lbs (6670 N) thrust indicates an adiabatic wall design requires 4 to 5 percent of the total flow as hydrogen film cooling. Internal regenerative cooling designs were found to offer no reduction in coolant requirements.

  5. Hydrogen film cooling of a small hydrogen-oxygen thrust chamber and its effect on erosion rates of various ablative materials

    NASA Technical Reports Server (NTRS)

    Hannum, N.; Roberts, W. E.; Russell, L. M.

    1977-01-01

    An experimental investigation was conducted to determine what arrangement of film-coolant-injection orifices should be used to decrease the erosion rates of small, high temperature, high pressure ablative thrust chambers without incurring a large penalty in combustion performance. All of the film cooling was supplied through holes in a ring between the outer row of injector elements and the chamber wall. The best arrangement, which had twice the number of holes as there were outer row injection elements, was also the simplest. The performance penalties, presented as a reduction in characteristic exhaust velocity efficiency, were 0.8 and 2.8 percentage points for the 10 and 20 percent cooling flows, respectively, The best film-coolant injector was then used to obtain erosion rates for 19 ablative materials. The throat erosion rate was reduced by a factor of 2.5 with a 10 percent coolant flow. Only the more expensive silica phenolic materials had low enough erosion rates to be considered for use in the nozzle throat. However, some of the cheaper materials might qualify for use in other areas of small nozzles with large throat diameters where the higher erosion rates are more acceptable.

  6. Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.; Meyer, Michael L.

    1996-01-01

    In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.

  7. Thrust rollers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2007-01-01

    A thrust roller bearing system comprising an inner rotating member, an outer rotating member and multiple rollers coupling the inner rotating member with outer rotating member. The inner and outer rotating members include thrust lips to enable the rollers to act as thrust rollers. The rollers contact inner and outer rotating members at bearing contact points along a contact line. Consequently, the radial/tilt and thrust forces move synchronously and simultaneously to create a bearing action with no slipping.

  8. Development of sputtered techniques for thrust chambers. [coolant passage closing by triode sputtering

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Broch, J. W.; Allard, P. A.

    1976-01-01

    Procedures for closing out coolant passages in regeneratively cooled thrust chambers by triode sputtering, using post and hollow Cu-0.15 percent Zr cathodes are described. The effects of aluminum composite filler materials, substrate preparation, sputter cleaning, substrate bias current density and system geometry on closeout layer bond strength and structure are evaluated. High strength closeout layers were sputtered over aluminum fillers. The tensile strength and microstructure of continuously sputtered Cu-0.15 percent Zr deposits were determined. These continuous sputtered deposits were as thick as 0.75 cm. Tensile strengths were consistently twice as great as the strength of the material in wrought form.

  9. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  10. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  11. Coupled heat transfer analysis of thrust chambers with recessed shear coaxial injectors

    NASA Astrophysics Data System (ADS)

    Song, Jiawen; Sun, Bing

    2017-03-01

    To investigate the effects of recessed lengths on combustion performance and heat loads in LOX/methane thrust chambers with shear coaxial injectors, a coupled numerical methodology is developed to solve the combustion and heat transfer in thrust chambers with regenerative cooling. In this methodology, the transcritical turbulent combustion is modeled by a validated non-adiabatic flamelet model considering real-fluid properties; turbulent flows within the thrust chamber and cooling channels are computed by a pressure-based coupled algorithm. The validation indicates that the prediction with detailed chemistry mechanism and the Chung method confirms quantitatively to literature experimental data. The results reveal that the recess causes an increase of wall heat flux in the whole thrust chamber and makes the heat flux peak in the combustion chamber moves downstream. Furthermore, both the heat flux peaks in the combustion chamber and nozzle increase first and then decrease as recessed lengths increase. Meanwhile, chamber pressure, hot-gas temperature, and the averaging heat flux of the combustion chamber wall are positively correlated with recessed lengths. However, the heat loads are more sensitive to the recessed lengths than chamber pressure and hot-gas temperature. Much attention should be paid to the protection of chamber wall.

  12. Regenerative Endodontics.

    PubMed

    Feigin, Kristina; Shope, Bonnie

    2017-09-01

    Regenerative endodontics has been defined as "biologically based procedure designed to replace damaged structures, including dentin and root structures, as well as cells of the pulp-dentin complex." This is an exciting and rapidly evolving field of human endodontics for the treatment of immature permanent teeth with infected root canal systems. These procedures have shown to be able not only to resolve pain and apical periodontitis but continued root development, thus increasing the thickness and strength of the previously thin and fracture-prone roots. In the last decade, over 80 case reports, numerous animal studies, and series of regenerative endodontic cases have been published. However, even with multiple successful case reports, there are still some remaining questions regarding terminology, patient selection, and procedural details. Regenerative endodontics provides the hope of converting a nonvital tooth into vital one once again.

  13. Regenerative endodontics.

    PubMed

    Simon, S; Smith, A J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  14. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  15. Weak Thrusts

    NASA Image and Video Library

    2016-07-09

    One active region at the edge of the Sun pushed out about ten thrusts of plasma in just over a day long period (July 9-10, 2016). All of them, propelled by magnetic forces, quickly withdrew back into the active region. The images were taken in a wavelength of extreme ultraviolet light. Movies are also available at the Photojournal. http://photojournal.jpl.nasa.gov/catalog/PIA20883

  16. Simplified installation of thrust bearings

    NASA Technical Reports Server (NTRS)

    Sensenbaugh, N. D.

    1980-01-01

    Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.

  17. A technology data base for the design of 500 to 5000-lb thrust class liquid rocket engines utilizing hydrogen and oxygen as propellants

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1982-01-01

    This paper presents an overview of the results of experimental evaluations of candidate designs for igniters, injectors, and propellant-cooled thrust chambers applicable to restartable high-performance, high-reliability upper-stage engines and to pulsing-type reaction control engines (RCE). Injection element types best suited for liquid, gas, and liquid/gas phase propellant supply are identified. The resulting interactions between element type, combustion efficiency, and chamber wall heating are compared. The distinction between thrust chamber design requirements for upper stage vs RCE applications as measured by cycle life requirements is translated into design configurations consisting of all-film-cooled, all-regeneratively-cooled, and composites of the two cooling approaches. The validity of the design approaches is confirmed by data from engine durability testing involving over 90,000 starts and 9,000 thermal cycles on RCE-type designs and multiple long-duration burns (up to 2,000 sec) on regeneratively cooled upper-stage designs.

  18. Thrust expansion engine

    NASA Astrophysics Data System (ADS)

    Zovko, Carl T.

    1993-03-01

    Break-up activity of water by injection of hot propellant gas into channels of a thrust expansion engine is suppressed to prevent rapid cooling of the gas utilizing one or more methods including injection of a secondary inflow of the propellant gas and/or the water under lower pressures into the channels, injection of a viscosity enhancer and/or surfactant into the inflow stream of the water, and restricting outflow of the water from the channels by means of convergent nozzles.

  19. Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels

    NASA Technical Reports Server (NTRS)

    Locke, Justin M.; Landrum, D. Brian

    2005-01-01

    Sound understanding of the cooling efficiency of supercritical hydrogen is crucial to the development of high pressure thrust chambers for regeneratively cooled LOX/LH2 rocket engines. This paper examines historical heat transfer correlations for supercritical hydrogen and the effects of uncertainties in hydrogen property data. It is shown that uncertainty due to property data alone can be as high as 10%. Previous heated tube experiments with supercritical hydrogen are summarized, and data from a number of heated tube experiments are analyzed to evaluate conditions for which the available correlations are valid.

  20. Regenerative Aerobraking

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2004-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  1. Regenerative Aerobraking

    NASA Astrophysics Data System (ADS)

    Moses, Robert W.

    2005-02-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  2. Entropy generation analysis of two-bed, silica gel-water, non-regenerative adsorption chillers

    NASA Astrophysics Data System (ADS)

    Chua, H. T.; Ng, K. C.; Malek, A.; Kashiwagi, T.; Akisawa, A.; Saha, B. B.

    1998-06-01

    The current thrust on the use of environmentally friendly technologies for cooling applications, inter alia, envisages the adoption of adsorption systems. Adsorption chillers are known to be `inefficient' due to their low coefficient of performance. Although the basic physics of heat and mass transfer in various components of the system is well understood, there is a lacuna in the quantification of irreversibilities. In this paper, a silica gel-water, two-bed, non-regenerative chiller is analysed. It is shown that the largest cycle-averaged rate of entropy generation is in the beds and that the least is in the condenser. The entropy generation rates in the beds are further studied, showing that the maximum contribution is made during the switching phase. In general, manufacturers' effort to maximize cooling capacity is shown to correspond to maximum entropy generation in the evaporator.

  3. Active Magnetic Regenerative Liquefier

    SciTech Connect

    Barclay, John A.; Oseen-Send, Kathryn; Ferguson, Luke; Pouresfandiary, Jamshid; Cousins, Anand; Ralph, Heather; Hampto, Tom

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  4. Clocked Thrust Reversers

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2017-01-01

    An aircraft includes a fuselage including a propulsion system supported within an aft portion. A thrust reverser is mounted proximate to the propulsion system for directing thrust in a direction to slow the aircraft. The thrust reverser directs thrust at an angle relative to a vertical plane to reduce interference on control surfaces and reduce generation of underbody lift.

  5. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  6. [Regenerative approach for COPD].

    PubMed

    Kubo, Hiroshi

    2011-10-01

    No treatment to cure of chronic obstructive pulmonary disease (COPD) is available. Regenerative medicine is one of promising areas for this intractable disease. Several reagents and growth factors are known to promote lung regeneration in small animal models. However, regenerative medicines for human lungs are not achieved yet. Recent advances in stem cell biology and tissue engineering have expanded our understanding of lung endogenous stem cells, and this new knowledge provides us with new ideas for future regenerative therapy for lung diseases. Although lungs are the most challenging organ for regenerative medicine, our cumulative knowledge of lung regeneration and of endogenous progenitor cells makes clear the possibilities for regenerative approach to COPD.

  7. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  8. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  9. Improved Regenerative Sorbent-Compressor Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  10. Advanced cooling techniques for high-pressure hydrocarbon-fueled engines

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1979-01-01

    The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.

  11. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  12. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  13. A review of thrust-vectoring schemes for fighter applications

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Re, R. J.

    1978-01-01

    This paper presents a review of thrust vectoring schemes for advanced fighter applications. Results are presented from wind tunnel and system integration studies on thrust vectoring nozzle concepts. Vectoring data are presented from wind tunnel tests of axisymmetric C-D (convergent-divergent) and nonaxisymmetric wedge, C-D, single ramp and USB (upper-surface blowing) nozzle concepts. Results from recent airframe/nozzle integration studies on the impact of thrust vectoring on weight, cooling and performance characteristics are discussed. This review indicates that the aircraft designer has, at his disposal, a wide range of thrust vectoring schemes which offer potential for added or improved aircraft capability.

  14. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  15. Supercritical oxygen heat transfer. [regenerative cooling

    NASA Technical Reports Server (NTRS)

    Spencer, R. G.; Rousar, D. C.

    1977-01-01

    Heat transfer to supercritical oxygen was experimentally measured in electrical heated tubes. Experimental data were obtained for pressures ranging from 17 to 34.5 MPa (2460 to 5000 psia), and heat fluxes from 2 to 90 million w/sq cm (1.2 to 55 Btu/(sq in. sec)). Bulk temperatures ranged from 96 to 217 K (173 to 391 R). Experimental data obtained by other investigators were added to this to increase the range of pressure down to 2 MPa (290 psia) and increase the range of bulk temperature up to 566 K (1019 R). From this compilation of experimental data a correlating equation was developed which predicts over 95% of the experimental data within + or - 30%.

  16. Breadboard RL10-11B low thrust operating mode

    NASA Technical Reports Server (NTRS)

    Kmiec, Thomas D.; Galler, Donald E.

    1987-01-01

    Cryogenic space engines require a cooling process to condition engine hardware to operating temperature before start. This can be accomplished most efficiently by burning propellants that would otherwise be dumped overboard after cooling the engine. The resultant low thrust operating modes are called Tank Head Idle and Pumped Idle. During February 1984, Pratt & Whitney conducted a series of tests demonstrating operation of the RL10 rocket engines at low thrust levels using a previously untried hydrogen/oxygen heat exchanger. The initial testing of the RL10-11B Breadboard Low Thrust Engine is described. The testing demonstrated operation at both tank head idle and pumped idle modes.

  17. Regenerative (Regen) ECLSS Operations Water Balance

    NASA Technical Reports Server (NTRS)

    Tobias, Barry

    2010-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."

  18. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  19. PPT thrust stand

    NASA Astrophysics Data System (ADS)

    Haag, Thomas W.

    1995-11-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  20. Variable thrust cartridge

    DOEpatents

    Taleyarkhan, Rusi P.

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  1. Staged regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  2. Regenerative medicine blueprint.

    PubMed

    Terzic, Andre; Harper, C Michel; Gores, Gregory J; Pfenning, Michael A

    2013-12-01

    Regenerative medicine, a paragon of future healthcare, holds unprecedented potential in extending the reach of treatment modalities for individuals across diseases and lifespan. Emerging regenerative technologies, focused on structural repair and functional restoration, signal a radical transformation in medical and surgical practice. Regenerative medicine is poised to provide innovative solutions in addressing major unmet needs for patients, ranging from congenital disease and trauma to degenerative conditions. Realization of the regenerative model of care predicates a stringent interdisciplinary paradigm that will drive validated science into standardized clinical options. Designed as a catalyst in advancing rigorous new knowledge on disease causes and cures into informed delivery of quality care, the Mayo Clinic regenerative medicine blueprint offers a patient-centered, team-based strategy that optimizes the discovery-translation-application roadmap for the express purpose of science-supported practice advancement.

  3. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  4. Ion thrusting system

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.

  5. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  6. Optimal performance of regenerative cryocoolers

    NASA Astrophysics Data System (ADS)

    de Boer, P. C. T.

    2011-02-01

    The key component of a regenerative cryocooler is its regenerative heat exchanger. This device is subject to losses due to imperfect heat transfer between the regenerator material and the gas, as well as due to viscous dissipation. The relative magnitudes of these losses can be characterized by the ratio of the Stanton number St to the Fanning friction factor f. Using available data for the ratio St/ f, results are developed for the optimal cooling rate and Carnot efficiency. The variations of pressure and temperature are taken to be sinusoidal in time, and to have small amplitudes. The results are applied to the case of the Stirling cryocooler, with flow being generated by pistons at both sides of the regenerator. The performance is found to be close to optimal at large ratio of the warm space volume to the regenerator void volume. The results are also applied to the Orifice Pulse Tube Refrigerator. In this case, optimal performance additionally requires a large ratio of the regenerator void volume to the cold space volume.

  7. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  8. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  9. Thrust Augmentation with Mixer/Ejector Systems

    NASA Technical Reports Server (NTRS)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  10. Thrust stand for low-thrust liquid pulsed rocket engines.

    PubMed

    Xing, Qin; Zhang, Jun; Qian, Min; Jia, Zhen-yuan; Sun, Bao-yuan

    2010-09-01

    A thrust stand is developed for measuring the pulsed thrust generated by low-thrust liquid pulsed rocket engines. It mainly consists of a thrust dynamometer, a base frame, a connecting frame, and a data acquisition and processing system. The thrust dynamometer assembled with shear mode piezoelectric quartz sensors is developed as the core component of the thrust stand. It adopts integral shell structure. The sensors are inserted into unique double-elastic-half-ring grooves with an interference fit. The thrust is transferred to the sensors by means of static friction forces of fitting surfaces. The sensors could produce an amount of charges which are proportional to the thrust to be measured. The thrust stand is calibrated both statically and dynamically. The in situ static calibration is performed using a standard force sensor. The dynamic calibration is carried out using pendulum-typed steel ball impact technique. Typical thrust pulse is simulated by a trapezoidal impulse force. The results show that the thrust stand has a sensitivity of 25.832 mV/N, a linearity error of 0.24% FSO, and a repeatability error of 0.23% FSO. The first natural frequency of the thrust stand is 1245 Hz. The thrust stand can accurately measure thrust waveform of each firing, which is used for fine control of on-orbit vehicles in the thrust range of 5-20 N with pulse frequency of 50 Hz.

  11. Design of a thrust stand for high power electric propulsion devices

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1989-01-01

    A thrust stand for use with high power electric propulsion devices has been designed and tested. The thrust stand was specifically tailored to the needs of a 0.1 to 0.25 MW magnetoplasmadynamic (MPD) thruster program currently in progress at the NASA Lewis Research Center. The thrust stand structure was built as an inverted pendulum arrangement, supported at the base by water-cooled electrical power flexures. Thrust stand tares due to thruster discharge current were demonstrated to be negligible. Tares due to an applied field magnet current, after considerable effort, were reduced to less than 3.0 percent of measured thrust. These tares, however, could be determined independently and subtracted from the indicated thrust measurement. The paper gives a detailed description of the thrust stand design and operation with a 0.1 MW class MPD device. Other thrust stand tares due to vibration and thermal effects are discussed, along with issues of accuracy and repeatability.

  12. Design of a thrust stand for high power electric propulsion devices

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1989-01-01

    A thrust stand for use with high power electric propulsion devices was designed and tested. The thrust stand was specifically tailored to the needs of a 100 to 250 kW magnetoplasmadynamic (MPD) thruster program currently in progress at the NASA Lewis Research Center. The thrust stand structure was built as an inverted pendulum arrangement, supported at the base by water-cooled electrical power flexures. Thrust stand tares due to thruster discharge current were demonstrated to be negligible. Tares due to an applied field magnet current, after considerable effort, were reduced to less than 3.0 percent of measured thrust. These tares, however, could be determined independently and subtracted from the indicated thrust measurement. A detailed description is given for the thrust stand design and operation with a 100 kW class MPD device. Other thrust stand tares due to vibration and thermal effects are discussed, along with issues of accuracy and repeatability.

  13. Regenerative similariton laser

    NASA Astrophysics Data System (ADS)

    North, Thibault; Brès, Camille-Sophie

    2016-05-01

    Self-pulsating lasers based on cascaded reshaping and reamplification (2R) are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  14. Regenerative Life Support Evaluation

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1977-01-01

    This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.

  15. Regenerative Life Support Evaluation

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1977-01-01

    This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.

  16. Summary of: Regenerative endodontics.

    PubMed

    Clark, Stephen J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  17. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  18. Environmental Thrust Handbook.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    This handbook was prepared as a tool to assist U. S. Department of Agriculture (USDA) employees coordinate their resources and efforts to help people improve their environment. Twenty-two projects are outlined as potential environmental thrusts at the community level. It is the role of USDA employees to encourage and assist, in every way possible,…

  19. Lightweight Chambers for Thrust Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Lee, Jonathan; Holmes, Richard; Zimmerman, Frank; Effinger, Mike; Turner, James E. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot

  20. Lightweight Chambers for Thrust Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Lee, Jonathan; Holmes, Richard; Zimmerman, Frank; Effinger, Mike; Turner, James E. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot

  1. Regenerative fuel cell study

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1972-01-01

    The completion of the study is reported for the regenerative fuel cell subsystem (RFCS) as an energy storage process for use aboard the space shuttle launched modular space station (MSS). The MSS mission requirements, and RFCS are discussed, and a comparison between RFCS and a nickel cadmium battery subsystem is presented. Development costs are also discussed.

  2. Monte Mountain thrust, additional confirmation of the central Nevada thrust

    SciTech Connect

    Chamberlain, A.K. ); Chamberlain, R.L. )

    1990-05-01

    The Monte Mountain thrust, a newly identified thrust exposed in the Timpahute Range, east central Nevada places porous Devonian reservoir rocks over rich Mississippian source rocks at the peak oil generating window. The thrust provides insurmountable evidence of a thrust model that may lead to discovery of giant oil and gas fields along the 400-mi long central Nevada thrust belt. The Timpahute Range lies a little over 50 mi on strike to the south of the prolific Grant Canyon field. Scattered remnants of the north-trending thrust belt are obscured by parallel valleys of Tertiary valley fill and volcanics. The fact that the east-west-trending Timpahute Range could contain exposures of the north-south-trending central Nevada thrust belt attracted them to the range, Familiarity with the stratigraphic section led to the discovery of the thrust. As much as 750 ft of Devonian Guilmette sandstones, in the hanging wall just above the thrust contact have been erroneously mapped as Mississippian Scotty Wash sandstones. These Devonian sandstones could be excellent reservoir rocks. Sandstones in the Guilmette increase in thickness westward. East-vergent thrusting has juxtaposed plates of thicker Guilmette sandstones with plates of thinner sandstones, Reconstruction of Devonian paleogeography provides a clue to the amount of displacement along thrust boundaries.

  3. Advanced hydrogen/oxygen thrust chamber design analysis

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1973-01-01

    The results are reported of the advanced hydrogen/oxygen thrust chamber design analysis program. The primary objectives of this program were to: (1) provide an in-depth analytical investigation to develop thrust chamber cooling and fatigue life limitations of an advanced, high pressure, high performance H2/O2 engine design of 20,000-pounds (88960.0 N) thrust; and (2) integrate the existing heat transfer analysis, thermal fatigue and stress aspects for advanced chambers into a comprehensive computer program. Thrust chamber designs and analyses were performed to evaluate various combustor materials, coolant passage configurations (tubes and channels), and cooling circuits to define the nominal 1900 psia (1.31 x 10 to the 7th power N/sq m) chamber pressure, 300-cycle life thrust chamber. The cycle life capability of the selected configuration was then determined for three duty cycles. Also the influence of cycle life and chamber pressure on thrust chamber design was investigated by varying in cycle life requirements at the nominal chamber pressure and by varying the chamber pressure at the nominal cycle life requirement.

  4. Geometry of blind thrusts

    SciTech Connect

    Kligfield, R.; Geiser, P.; Geiser, J.

    1985-01-01

    Blind thrusts are structures which at no time in their history broke the erosion surface and along which displacement progressively changes upwards. Faults of the stiff layer along which displacement progressively decreases to zero (tip) are one prominent type of blind thrust structure. Shortening above such tips is accommodated entirely by folding whereas shortening below the tip is partitioned between folding and faulting. For these types of faults it is possible to determine the original length of the stiff layer for balancing purposes. A systematic methodology for line length and area restoration is outlined for determining blind thrust geometry. Application of the methodology is particularly suitable for use with microcomputers. If the folded form of the cover is known along with the position of the fault and its tip, then it is possible to locate hanging and footwall cutoffs. If the fault trajectory, tip, and a single hanging wall footwall cutoff pair are known, then the folded form of the cover layer can be determined. In these constructions it is necessary to specify pin lines for balancing purposes. These pin lines may or may not have a zero displacement gradient, depending upon the amount of simple shear deformation. Examples are given from both Laramide structures of the western USA and the Appalachians.

  5. Regenerative periodontal therapy.

    PubMed

    Hägi, Tobias T; Laugisch, Oliver; Ivanovic, Aleksandar; Sculean, Anton

    2014-03-01

    The goal of regenerative periodontal therapy is to completely restore the tooth's supporting apparatus that has been lost due to inflammatory periodontal disease or injury. It is characterized by formation of new cementum with inserting collagen fibers, new periodontal ligament, and new alveolar bone. Indeed conventional, nonsurgical, and surgical periodontal therapy usually result in clinical improvements evidenced by probing depth reduction and clinical attachment gain, but the healing occurs predominantly through formation of a long junctional epithelium and no or only unpredictable periodontal regeneration. Therefore, there is an ongoing search for new materials and improved surgical techniques, with the aim of predictably promoting periodontal wound healing/regeneration and improving the clinical outcome. This article attempts to provide the clinician with an overview of the most important biologic events involved in periodontal wound healing/ regeneration and on the criteria on how to select the appropriate regenerative material and surgical technique in order to optimize the clinical outcomes.

  6. Regenerative photonic therapy: Review

    NASA Astrophysics Data System (ADS)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  7. Regenerative Endodontics: Burning Questions.

    PubMed

    Smith, Anthony J; Cooper, Paul R

    2017-09-01

    Pulp regeneration and its clinical translation into regenerative endodontic procedures are receiving increasing research attention, leading to significant growth of the published scientific and clinical literature within these areas. Development of research strategies, which consider patient-, clinician-, and scientist-based outcomes, will allow greater focus on key research questions driving more rapid clinical translation. Three key areas of focus for these research questions should include cells, signaling, and infection/inflammation. A translational pathway is envisaged in which clinical approaches are increasingly refined to provide regenerative endodontic protocols that are based on a robust understanding of the physiological processes and events responsible for the normal secretion, structure, and biological behavior of pulpal tissue. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  9. Regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Kackley, Nancy D.; Laconti, Anthony B.

    1992-01-01

    A development status evaluation is presented for moderate-temperature, single-unit, regenerative fuel cells using either alkaline or solid polymer proton-exchange membrane (PEM) electrolytes. Attention is given to the results thus far obtained for Pt, Ir, Rh, and Na(x)Pt3O4 catalysts. Alkaline electrolyte tests have been performed on a half-cell basis with a floating-electrode cell; PEM testing has been with complete fuel cells, using Nafion 117.

  10. Regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Swette, Larry L.; Kackley, Nancy D.; Laconti, Anthony B.

    A development status evaluation is presented for moderate-temperature, single-unit, regenerative fuel cells using either alkaline or solid polymer proton-exchange membrane (PEM) electrolytes. Attention is given to the results thus far obtained for Pt, Ir, Rh, and Na(x)Pt3O4 catalysts. Alkaline electrolyte tests have been performed on a half-cell basis with a floating-electrode cell; PEM testing has been with complete fuel cells, using Nafion 117.

  11. Cytomics in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Pierzchalski, Arkadiusz

    2008-02-01

    Cytomics is the high-content analysis of cell-systems [6, 78]. The area of Cytomics and Systems Biology received great attention during the last years as it harbours the promise to substantially impact on various fields of biomedicine, drug discovery, predictive medicine [6] and may have major potential for regenerative medicine. In regenerative medicine Cytomics includes process control of cell preparation and culturing using non-invasive detection techniques, quality control and standardization for GMP and GLP conformity and even prediction of cell fate based on sophisticated data analysis. Cytomics requires quantitative and stoichiometric single cell analysis. In some areas the leading cytometric techniques represent the cutting edge today. Many different applications/variations of multicolour staining were developed for flow- or slide-based cytometry (SBC) analysis of suspensions and sections to whole animal analysis [78]. SBC has become an important analytical technology in drug discovery, diagnosis and research and is an emerging technology for systems analysis [78]. It enables high-content high-throughput measurement of cell suspensions, cell cultures and tissues. In the last years various commercial SBC instruments were launched principally enabling to perform similar tasks. Standardisation as well as comparability of different instruments is a major challenge. Hyperspectral optical imaging may be implemented in SBC analysis for label free cell detection based on cellular autofluorescence [3]. All of these developments push the systemic approach of the analysis of biological specimens to enhance the outcome of regenerative medicine.

  12. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  13. A regenerative elastocaloric heat pump

    NASA Astrophysics Data System (ADS)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  14. Regenerative rotary displacer Stirling engine

    SciTech Connect

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  15. Recommended Practices in Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John

    2013-01-01

    Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.

  16. Low thrust vehicle concept study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.

  17. Recommended Practices in Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John

    2013-01-01

    Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.

  18. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  19. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  20. REGENERATIVE TRANSISTOR AMPLIFIER

    DOEpatents

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  1. Regenerative Sorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1991-01-01

    Two-stage sorption refrigerator achieves increased efficiency via regenerative-heating concept in which waste heat from praseodymium/cerium oxide (PCO) chemisorption compressor runs charcoal/krypton (C/Kr) sorption compressor. Waste heat from each PCO sorption compressor used to power surrounding C/Kr sorption compressor. Flows of heat in two compressor modules controlled by gas-gap thermal switches. Has no wearing moving parts other than extremely long life, room-temperature check valves operating about twice per hour. Virtually no measurable vibration, and has potential operating life of at least ten years.

  2. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  3. Hydrodynamic optimization of trust ring pump and lubricating oil system for large hydroelectric units thrust bearing

    NASA Astrophysics Data System (ADS)

    Lai, X.; Lu, Z.; Zhang, X.; Yang, S.

    2014-03-01

    Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions form thrust bearing and operation conditions of hydro turbine generator unit. Because the oil circulating and cooling system with thrust-ring- pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump, additionally, the head and discharge are varying with the operation conditions of hydro-generator unit and characteristic of the oil circulating and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulating and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization of both the oil circulating and cooling system and thrust-ring-pump is purposed in this paper. Firstly, the head and discharge required at different conditions are decided by 1D flow numerical simulation of the oil circulating and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and discharge from the simulation. Thirdly, the flow passage geometry matching optimization between holes inside the thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulating and cooling system are collaborative hydrodynamic optimized with predicted head- discharge curve and the efficiency-discharge curve of thrust-ring-pump. The presented methodology has

  4. Internal performance characteristics of thrust-vectored axisymmetric ejector nozzles

    NASA Technical Reports Server (NTRS)

    Lamb, Milton

    1995-01-01

    A series of thrust-vectored axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at the Langley research center. This study indicated that discontinuities in the performance occurred at low primary nozzle pressure ratios and that these discontinuities were mitigated by decreasing expansion area ratio. The addition of secondary flow increased the performance of the nozzles. The mid-to-high range of secondary flow provided the most overall improvements, and the greatest improvements were seen for the largest ejector area ratio. Thrust vectoring the ejector nozzles caused a reduction in performance and discharge coefficient. With or without secondary flow, the vectored ejector nozzles produced thrust vector angles that were equivalent to or greater than the geometric turning angle. With or without secondary flow, spacing ratio (ejector passage symmetry) had little effect on performance (gross thrust ratio), discharge coefficient, or thrust vector angle. For the unvectored ejectors, a small amount of secondary flow was sufficient to reduce the pressure levels on the shroud to provide cooling, but for the vectored ejector nozzles, a larger amount of secondary air was required to reduce the pressure levels to provide cooling.

  5. Regenerative Medicine Build-Out

    PubMed Central

    Pfenning, Michael A.; Gores, Gregory J.; Harper, C. Michel

    2015-01-01

    Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Significance Regenerative medicine is at the

  6. Regenerative Medicine Build-Out.

    PubMed

    Terzic, Andre; Pfenning, Michael A; Gores, Gregory J; Harper, C Michel

    2015-12-01

    Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Regenerative medicine is at the vanguard of health care

  7. Will Regenerative Medicine Replace Transplantation?

    PubMed Central

    Orlando, Giuseppe; Soker, Shay; Stratta, Robert J.; Atala, Anthony

    2013-01-01

    Recent groundbreaking advances in organ bioengineering and regeneration have provided evidence that regenerative medicine holds promise to dramatically improve the approach to organ transplantation. The two fields, however, share a common heritage. Alexis Carrel can be considered the father of both regenerative medicine and organ transplantation, and it is now clear that his legacy is equally applicable for the present and future generations of transplant and regenerative medicine investigators. In this review, we will briefly illustrate the interplay that should be established between these two complementary disciplines of health sciences. Although regenerative medicine has shown to the transplant field its potential, transplantation is destined to align with regenerative medicine and foster further progress probably more than either discipline alone. Organ bioengineering and regeneration technologies hold the promise to meet at the same time the two most urgent needs in organ transplantation, namely, the identification of a new, potentially inexhaustible source of organs and immunosuppression-free transplantation of tissues and organs. PMID:23906883

  8. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Arne, Dennis; Worley, Brenton; Wilson, Christopher; Chen, She Fa; Foster, David; Luo, Zhi Li; Liu, Shu Gen; Dirks, Paul

    1997-10-01

    Thermochronological data from the Songpan-Ganze˛Fold Belt and Longmen Mountains Thrust-Nappe Belt, on the eastern margin of the Tibetan Plateau in central China, reveal several phases of differential cooling across major listric thrust faults since Early Cretaceous times. Differential cooling, indicated by distinct breaks in age data across discrete compressional structures, was superimposed upon a regional cooling pattern following the Late Triassic Indosinian Orogeny. 40Ar/ 39Ar data from muscovite from the central and southern Longmen Mountains Thrust-Nappe Belt suggest a phase of differential cooling across the Wenchuan-Maouwen Shear Zone during the Early Cretaceous. The zircon fission track data also indicate differential cooling across a zone of brittle re-activation on the eastern margin of the Wenchuan-Maouwen Shear Zone during the mid-Tertiary, between ˜38 and 10 Ma. Apatite fission track data from the central and southern Longmen Mountains Thrust-Nappe Belt reveal differential cooling across the Yingxiu-Beichuan and Erwangmiao faults during the Miocene. Forward modelling of apatite fission track data from the northern Longmen Mountains Thrust-Nappe Belt suggests relatively slow regional cooling through the Mesozoic and early Tertiary, followed by accelerated cooling during the Miocene, beginning at ca. 20 Ma, to present day. Regional cooling is attributed to erosion during exhumation of the evolving Longmen Mountains Thrust-Nappe Belt (LMTNB) following the Indosinian Orogeny. Differential cooling across the Wenchuan-Maouwen Shear Zone and the Yingxiu-Beichuan and Erwangmiao faults is attributed to exhumation of the hanging walls of active listric thrust faults. Thermochronological data from the Longmen Mountains Thrust-Nappe Belt reveal a greater amount of differential exhumation across thrust faults from north to south. This observation is in accord with the prevalence of Proterozoic and Sinian basement in the hanging walls of thrust faults in the

  9. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  10. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  11. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  12. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  13. Regenerative periodontal therapy.

    PubMed

    Kao, Daniel W K; Fiorellini, Joseph P

    2012-01-01

    Traditional treatment for loss of bone and attachment due to periodontal disease has focused around repairing the damage induced. However, over the past few decades, clinicians have begun to utilize regenerative techniques to rebuild bone, cementum and the periodontal ligament. Conventional procedures most often involve the use of barrier membranes with bone grafts that foster selective cell repopulation and regrowth of osseous structures. Since the predictability of these techniques may be limited to certain case types, pharmacologically based efforts are underway to investigate the possibility of harnessing osseous regrowth potential. Clinical research has found that proteins are potent biological mediators that promote many of the events in wound healing, and have been shown to promote bone formation in human clinical studies.

  14. PEM regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.

    1993-01-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  15. Regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  16. Hydrogels in Regenerative Medicine

    PubMed Central

    Slaughter, Brandon V.; Khurshid, Shahana S.; Fisher, Omar Z.; Khademhosseini, Ali

    2015-01-01

    Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field. PMID:20882499

  17. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  18. Combustion effects on film cooling

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Ewen, R. L.

    1977-01-01

    The effects of: (1) a reactive environment on film cooling effectiveness, and (2) film cooling on rocket engine performance were determined experimentally in a rocket thrust chamber assembly operating with hydrogen and oxygen propellants at 300 psi chamber pressure. Tests were conducted using hydrogen, helium, and nitrogen film coolants in an instrumented, thin walled, steel thrust chamber. The film cooling, performance loss, and heat transfer coefficient data were correlated with the ALRC entrainment film cooling model which relates film coolant effectiveness and mixture ratio at the wall to the amount of mainstream gases entrained with the film coolant in a mixing layer. In addition, a comprehensive thermal analysis computer program, HOCOOL, was prepared from previously existing ALRC computer programs and analytical techniques.

  19. The pharmacology of regenerative medicine.

    PubMed

    Christ, George J; Saul, Justin M; Furth, Mark E; Andersson, Karl-Erik

    2013-07-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.

  20. Fabrication of GRCop-84 Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2005-01-01

    GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regeneratively cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from prealloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.

  1. Fabrication of GRCop-84 Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Loewenthal, William; Ellis, David

    2006-01-01

    GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regenerative1y cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from pre-alloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.

  2. Decellularized scaffolds in regenerative medicine

    PubMed Central

    Yu, Yaling; Alkhawaji, Ali; Ding, Yuqiang; Mei, Jin

    2016-01-01

    Allogeneic organ transplantation remains the ultimate solution for end-stage organ failure. Yet, the clinical application is limited by the shortage of donor organs and the need for lifelong immunosuppression, highlighting the importance of developing effective therapeutic strategies. In the field of regenerative medicine, various regenerative technologies have lately been developed using various biomaterials to address these limitations. Decellularized scaffolds, derived mainly from various non-autologous organs, have been proved a regenerative capability in vivo and in vitro and become an emerging treatment approach. However, this regenerative capability varies between scaffolds as a result of the diversity of anatomical structure and cellular composition of organs used for decellularization. Herein, recent advances in scaffolds based on organ regeneration in vivo and in vitro are highlighted along with aspects where further investigations and analyses are needed. PMID:27486772

  3. Low thrust optimal orbital transfers

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1994-01-01

    For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.

  4. Thermally regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Ludwig, F. A.; Kindler, A.; McHardy, J.

    1991-10-01

    The three phase project was undertaken to investigate solventless ionic liquids as possible working fluids for a new type of thermally regenerative fuel cell (TRFC). The heart of the new device, invented at Hughes Aircraft Company in 1983, is an electrochemical concentration cell where acid and base streams react to produce electrical energy. Thermal energy is then used to decompose the resulting salts and regenerate the cell reactants. In principle, a TRFC can be matched to any source of thermal energy simply by selecting working fluids with the appropriate regeneration temperature. However, aqueous working fluids (the focus of previous studies) impose limitations on both the operating temperatures and the achievable energy densities. It was the need to overcome these limitations that prompted the present investigation. Specific aims were to identify possible working fluids for TRFC systems with both low and high regeneration temperatures. A major advantage of our aqueous-fluid TRFC systems has been the ability to use hydrogen electrodes. The low activation and mass transfer losses of these electrodes contribute substantially to overall system efficiency.

  5. Personalized Regenerative Medicine.

    PubMed

    Arjmand, Babak; Goodarzi, Parisa; Mohamadi-Jahani, Fereshteh; Falahzadeh, Khadijeh; Larijani, Bagher

    2017-03-01

    Personalized medicine as a novel field of medicine refers to the prescription of specific therapeutics procedure for an individual. This approach has established based on pharmacogenetic and pharmacogenomic information and data. The terms precision and personalized medicines are sometimes applied interchangeably. However, there has been a shift from "personalized medicine" towards "precision medicine". Although personalized medicine emerged from pharmacogenetics, nowadays it covers many fields of healthcare. Accordingly, regenerative medicine and cellular therapy as the new fields of medicine use cell-based products in order to develop personalized treatments. Different sources of stem cells including mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs) have been considered in targeted therapies which could give many advantages. iPSCs as the novel and individual pluripotent stem cells have been introduced as the appropriate candidates for personalized cell therapies. Cellular therapies can provide a personalized approach. Because of person-to-person and population differences in the result of stem cell therapy, individualized cellular therapy must be adjusted according to the patient specific profile, in order to achieve best therapeutic results and outcomes. Several factors should be considered to achieve personalized stem cells therapy such as, recipient factors, donor factors, and the overall body environment in which the stem cells could be active and functional. In addition to these factors, the source of stem cells must be carefully chosen based on functional and physical criteria that lead to optimal outcomes.

  6. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  7. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  8. In-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    The major aspects of processes that may be used for the determination of in-flight thrust are reviewed. Basic definitions are presented as well as analytical and ground-test methods for gathering data and calculating the thrust of the propulsion system during the flight development program of the aircraft. Test analysis examples include a single-exhaust turbofan, an intermediate-cowl turbofan, and a mixed-flow afterburning turbofan.

  9. In-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    The major aspects of processes that may be used for the determination of in-flight thrust are reviewed. Basic definitions are presented as well as analytical and ground-test methods for gathering data and calculating the thrust of the propulsion system during the flight development program of the aircraft. Test analysis examples include a single-exhaust turbofan, an intermediate-cowl turbofan, and a mixed-flow afterburning turbofan.

  10. Heating system for regenerative coke oven batteries

    SciTech Connect

    Weber, H.; Morgenstern, M.; Stalherm, D.; Urbye, K.

    1984-02-14

    A heating system for regenerative coke oven batteries having a plurality of coke oven chambers separated by heating walls and a plurality of regenerators extending the length of the coke oven for preheating air and cooling hot waste gases comprises a plurality of spaced heating ducts extending upwardly in the heating walls which are grouped into two adjacent pairs of heating ducts. The ducts in each group of four heating ducts are separated by first and second binder walls with the first binder walls carrying one binder duct for supplying air and discharging hot waste to and from adjacent heat ducts in one of the pairs in the group. The second wall is either provided with no heating ducts or a pair of heating ducts. A horizontal channel connects the tops of all four heating ducts in each group and the lower end of each heating duct is provided with a rich gas supply nozzle.

  11. Micro thrust and heat generator

    SciTech Connect

    Garcia, E.J.

    1995-12-31

    The present invention relates generally to micromachines such as microengines or micromotors. More specifically, the invention is directed to a micro rocket which functions as a source of heat and thrust, and utilizes chemical energy to drive or power micromechanical apparatuses. The invention is adaptable to applications involving defense, bio-medical, manufacturing, consumer product, aviation, automotive, computer, inspection, and safety systems. A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachine techniques (LIGA).

  12. Army (MANTECH) Thrust Area Concept: Optics Thrust Area

    NASA Technical Reports Server (NTRS)

    Kopacz, Stanley P.

    1992-01-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.

  13. Army (MANTECH) thrust area concept: Optics thrust area

    NASA Astrophysics Data System (ADS)

    Kopacz, Stanley P.

    1992-04-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.

  14. Army (MANTECH) Thrust Area Concept: Optics Thrust Area

    NASA Technical Reports Server (NTRS)

    Kopacz, Stanley P.

    1992-01-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.

  15. Uncertainty of in-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Steurer, John W.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    Methods for estimating the measurement error or uncertainty of in-flight thrust determination in aircraft employing conventional turbofan/turbojet engines are reviewed. While the term 'in-flight thrust determination' is used synonymously with 'in-flight thrust measurement', in-flight thrust is not directly measured but is determined or calculated using mathematical modeling relationships between in-flight thrust and various direct measurements of physical quantities. The in-flight thrust determination process incorporates both ground testing and flight testing. The present text is divided into the following categories: measurement uncertainty methodoogy and in-flight thrust measurent processes.

  16. Uncertainty of in-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Steurer, John W.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    Methods for estimating the measurement error or uncertainty of in-flight thrust determination in aircraft employing conventional turbofan/turbojet engines are reviewed. While the term 'in-flight thrust determination' is used synonymously with 'in-flight thrust measurement', in-flight thrust is not directly measured but is determined or calculated using mathematical modeling relationships between in-flight thrust and various direct measurements of physical quantities. The in-flight thrust determination process incorporates both ground testing and flight testing. The present text is divided into the following categories: measurement uncertainty methodoogy and in-flight thrust measurent processes.

  17. Thrusting and back-thrusting as post-emplacement kinematics of the Almora klippe: Insights from Low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Patel, R. C.; Singh, Paramjeet; Lal, Nand

    2015-06-01

    Crystalline klippen over the Lesser Himalayan Sequence (LHS) in the Kumaon and Garhwal regions of NW-Himalaya, are the representative of southern portion of the Main Central Thrust (MCT) hanging wall. These were tectonically transported over the juxtaposed thrust sheets (Berinag, Tons and Ramgarh) of the LHS zone along the MCT. These klippen comprise of NW-SE trending synformal folded thrust sheet bounded by thrusts in the south and north. In the present study, the exhumation histories of two well-known klippen namely Almora and Baijnath, and the Ramgarh thrust sheet, in the Kumaon and Garhwal regions vis-a-vis Himalayan orogeny have been investigated using Apatite Fission Track (AFT) ages. Along a ~ 60 km long orogen perpendicular transect across the Almora klippe and the Ramgarh thrust sheet, 16 AFT cooling ages from the Almora klippe and 2 from the Ramgarh thrust sheet have been found to range from 3.7 ± 0.8 to 13.2 ± 2.7 Ma, and 6.3 ± 0.8 to 7.2 ± 1.0 Ma respectively. From LHS meta-sedimentary rocks only a single AFT age of 3.6 ± 0.8 Ma could be obtained. Three AFT ages from the Baijnath klippe range between 4.7 ± 0.5 and 6.6 ± 0.8 Ma. AFT ages and exhumation rates of different klippen show a dynamic coupling between tectonic and erosion processes in the Kumaon and Garhwal regions of NW-Himalaya. However, the tectonic processes play a dominant role in controlling the exhumation. Thrusting and back thrusting within the Almora klippe and Ramgarh thrust sheet are the post-emplacement kinematics that controlled the exhumation of the Almora klippe. Combining these results with the already published AFT ages from the crystalline klippen and the Higher Himalayan Crystalline (HHC), the kinematics of emplacement of the klippen over the LHS and exhumation pattern across the MCT in the Kumaon and Garhwal regions of NW-Himalaya have been investigated.

  18. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    NASA Astrophysics Data System (ADS)

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2017-01-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  19. The Pharmacology of Regenerative Medicine

    PubMed Central

    Saul, Justin M.; Furth, Mark E.; Andersson, Karl-Erik

    2013-01-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase “regenerative pharmacology” to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is “the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues.” As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all. PMID:23818131

  20. Development of Aluminum Composites for a Rocket Engine's Lightweight Thrust Cell

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Elam, Sandy; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The Aerospike liquid fueled rocket engine for the X-33 aerospace vehicle consists of several thrust cells, which can comprise as much as 25% of the engine weight. The interior wall of the thrust cell chamber is exposed to high temperature combustion products and must be cooled by using liquid hydrogen. Ultimately, reducing engine weight would increase vehicle performance and allow heavier payload capabilities. Currently, the thrust cell's structural jacket and manifolds are made of stainless steel 347, which can potentially be replaced by a lighter material such as an Aluminum (Al) Metal Matrix Composites (MMC). Up to 50% weight reduction can be expected for each of the thrust cell chambers using particulate SiC reinforced Al MMC. Currently, several Al MMC thrust cell structural jackets have been produced, using cost-effective processes such as gravity casting and plasma spray deposition, to demonstrate MMC technology readiness for NASA's advanced propulsion systems.

  1. Development of Aluminum Composites for a Rocket Engine's Lightweight Thrust Cell

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Elam, Sandy; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The Aerospike liquid fueled rocket engine for the X-33 aerospace vehicle consists of several thrust cells, which can comprise as much as 25% of the engine weight. The interior wall of the thrust cell chamber is exposed to high temperature combustion products and must be cooled by using liquid hydrogen. Ultimately, reducing engine weight would increase vehicle performance and allow heavier payload capabilities. Currently, the thrust cell's structural jacket and manifolds are made of stainless steel 347, which can potentially be replaced by a lighter material such as an Aluminum (Al) Metal Matrix Composites (MMC). Up to 50% weight reduction can be expected for each of the thrust cell chambers using particulate SiC reinforced Al MMC. Currently, several Al MMC thrust cell structural jackets have been produced, using cost-effective processes such as gravity casting and plasma spray deposition, to demonstrate MMC technology readiness for NASA's advanced propulsion systems.

  2. Regenerative Endodontics for Adult Patients.

    PubMed

    He, Ling; Kim, Sahng G; Gong, Qimei; Zhong, Juan; Wang, Sainan; Zhou, Xuedong; Ye, Ling; Ling, Junqi; Mao, Jeremy J

    2017-09-01

    The goal of endodontics is to save teeth. Since inception, endodontic treatments are performed to obturate disinfected root canals with inert materials such as gutta-percha. Although teeth can be saved after successful endodontic treatments, they are devitalized and therefore susceptible to reinfections and fractures. The American Association of Endodontists (AAE) has made a tremendous effort to revitalize disinfected immature permanent teeth in children and adolescents with diagnoses including pulp necrosis or apical periodontitis. The American Dental Association (ADA) in 2011 issued several clinical codes for regenerative endodontic procedures or apical revascularization in necrotic immature permanent teeth in children and adolescents. These AAE and ADA initiatives have stimulated robust interest in devising a multitude of tissue engineering approaches for dental pulp and dentin regeneration. Can the concept of regenerative endodontics be extended to revitalize mature permanent teeth with diagnoses including irreversible pulpitis and/or pulp necrosis in adults? The present article was written not only to summarize emerging findings to revitalize mature permanent teeth in adult patients but also to identify challenges and strategies that focus on realizing the goal of regenerative endodontics in adults. We further present clinical cases and describe the biological basis of potential regenerative endodontic procedures in adults. This article explores the frequently asked question if regenerative endodontic therapies should be developed for dental pulp and/or dentin regeneration in adults, who consist of the great majority of endodontic patients. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Bio-regenerative life support

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.; Wydeven, Theodore, Jr.

    1989-01-01

    The basis for and the potential uses of bio-regenerative life support are examined. Bio-regenerative life support systems are an alternative to physical-chemical regeneration techniques for use when resupply of a crew in space is expensive, or when the logistics of resupply are difficult. Many of the scientific studies required for bio-regenerative life support systems have been completed and preliminary development of some components will begin within the next 12 to 18 months. The focus of the work that lies ahead will be efficient power and mass use, long-term system stability, component function, systems integration, and extensive testing in the space environment. Because of the advantages of bio-regeneration, it is anticipated that human life support for long-term space missions will evolve to include increasingly large amounts of biologically-based regeneration.

  4. Biomaterials for Bone Regenerative Engineering.

    PubMed

    Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T

    2015-06-24

    Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low thrust propulsion literature survey

    NASA Technical Reports Server (NTRS)

    Monroe, Darrel

    1989-01-01

    A literature search was performed to investigate the area of low thrust propulsion. In an effort to evaluate this technology, a number of articles, obtained through the use of the NASA-RECON database, were collected and categorized. The study indicates that although much was done, particularly in the 1960's and 1970's, more can be done in the area of practical navigation and guidance. It is suggested that the older studies be reinvestigated to see what potential there exists for future low thrust applications.

  6. Thrust-vectored differential turns

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Lefton, L.

    1980-01-01

    Barrier surface construction in the joint space of the differential turning game for thrust-vectored vs. conventional aircraft is discussed. Differential-turn studies are based on modifications of existing computer programs including an energy-turn program, and one which generates hodograph data. Optimal turning flight in energy approximation is discussed for the conventional aircraft configurations. It is concluded that any advantages realized from thrust-vectoring are minor, unless hover is possible, where advantages would be major at low energies, and affect tactics at high energies as well.

  7. Recommended Practices in Thrust Measurements

    DTIC Science & Technology

    2013-10-01

    Turin.5,38 This stand consists of two BeCu plates which hang from flexible BeCu mounts on a rigid block of Zerodur c, a material with a very low coe...2013 Figure 4. Example of a state-of-the-art hanging pendulum thrust stand. 38 Two spherical mirrors mounted on the plates form an optical cavity for...the Zerodur frame. Temperature control and careful choice of materials were used to minimize and correct for thermal drift. 2. Thrust Stand Performance

  8. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  9. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  10. Thermoacoustic simulator for regenerative machines

    NASA Astrophysics Data System (ADS)

    Luo, E.; Wu, J.; Yang, J.; Xiao, J.

    2002-05-01

    Linear thermoacoustic theory is a powerful tool to understand the working mechanism of many regenerative machines. Based on the theory, the authors have developed a computer code "Thermoacoustic Simulator" for analyzing and designing different regenerative cryocoolers including String refrigerators, Stirling and G-M types of pulse tube refrigerators and G-M cryocoolers. Also, standing-wave and traveling-wave thermoacoustic machines can be simulated, too. This paper will present the philosophy of the "Thermoacoustic Simulator" and some demonstrations of simulation for different types of cryocoolers and thermoacoustic engines.

  11. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  12. Regenerative Endodontics by Cell Homing.

    PubMed

    He, Ling; Zhong, Juan; Gong, Qimei; Cheng, Bin; Kim, Sahng G; Ling, Junqi; Mao, Jeremy J

    2017-01-01

    Apical revascularization (AR) and platelet-rich plasma have been used to restore dental pulp vitality in infected immature permanent teeth. Two regenerative therapies are cell transplantation and cell homing. This article updates and benchmarks these therapies with cell homing. A case report concluded that AR increased root length; however, quantitative and statistical assessments disproved this. Regenerative endodontic therapies require prospective clinical trials demonstrating safety and efficacy. These therapies are intrinsically susceptible to procedural and patient variations. Cell homing uses novel molecules that drive therapeutic efficacy, and may be less sensitive to procedural and patient variations. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tectonothermal history of an exhumed thrust-sheet-top basin: An example from the south Pyrenean thrust belt

    NASA Astrophysics Data System (ADS)

    Labaume, Pierre; Meresse, Florian; Jolivet, Marc; Teixell, Antonio; Lahfid, Abdeltif

    2016-05-01

    This paper presents a new balanced structural cross section of the Jaca thrust-sheet-top basin of the southern Pyrenees combined with paleothermometry and apatite fission track (AFT) thermochronology data. The cross section, based on field data and interpretation of industrial seismic reflection profiles, allows refinement of previous interpretations of the south directed thrust system, involving the identification of new thrust faults, and of the kinematic relationships between basement and cover thrusts from the middle Eocene to the early Miocene. AFT analysis shows a southward decrease in the level of fission track resetting, from totally reset Paleozoic rocks and lower Eocene turbidites (indicative of heating to Tmax > ~120°C), to partially reset middle Eocene turbidites and no/very weak resetting in the upper Eocene-lower Oligocene molasse (Tmax < ~60°C). AFT results indicate a late Oligocene-early Miocene cooling event throughout the Axial Zone and Jaca Basin. Paleomaximum temperatures determined by vitrinite reflectance measurements and Raman spectroscopy of carbonaceous material reach up to ~240°C at the base of the turbidite succession. Inverse modeling of AFT and vitrinite reflectance data with the QTQt software for key samples show compatibility between vitrinite-derived Tmax and the AFT reset level for most of the samples. However, they also suggest that the highest temperatures determined in the lowermost turbidites correspond to a thermal anomaly rather than burial heating, possibly due to fluid circulation during thrust activity. From these results, we propose a new sequential restoration of the south Pyrenean thrust system propagation and related basin evolution.

  14. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  15. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  16. Thrust reverser with variable nozzle

    NASA Technical Reports Server (NTRS)

    Butler, Lawrence (Inventor)

    1997-01-01

    A thrust reverser is provided for both modulating and reversing bypass flow discharged from a fan through a bypass duct of a turbofan gas turbine engine. The reverser includes an aft cowl joined to a forward cowl and having an aft end surrounding a core engine to define a discharge fan nozzle of minimum flow throat area. The aft cowl is axially translatable relative to the forward cowl from a first position fully retracted against the forward cowl, to a second position partially extended from the forward cowl, and to a third position fully extended from the forward cowl. A plurality of cascade turning vanes are disposed between the forward and aft cowls, and a plurality of thrust reversing deflector doors are pivotally mounted to the aft cowl and bound the bypass duct. The deflector doors are selectively deployed from a stowed position corresponding with the first and second positions of the aft cowl for allowing unrestricted flow of the bypass flow through the fan nozzle. The doors also have a deployed position corresponding with the third position of the aft cowl for substantially deflecting the bypass flow from discharging through the fan nozzle to discharging through the cascade vanes for effecting thrust reverse. Axial translation of the aft cowl between the first and second positions varies flow area of the fan nozzle to vary thrust effected by the discharged bypass flow.

  17. Pulsed Electric Propulsion Thrust Stand Calibration Method

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.

  18. Regenerative Fuel Cell Test Rig at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.

    2003-01-01

    The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.

  19. [Regenerative nodular hyperplasia in HIV].

    PubMed

    González, Ramiro Javier Romo; Chaves, Emiliano; Mullen, Eduardo; Copello, Hercilia

    2011-12-01

    Nodular regenerative hyperplasia of the liver is a rare condition. We describe here the case of a patient with HIV who presented with a clinical syndrome of portal hypertension. After multiple evaluations the diagnosis was recognized by the histology. The findings were attributed to the prolonged use of didanosine.

  20. Regenerative Strategies for Craniofacial Disorders

    PubMed Central

    Garland, Catharine B.; Pomerantz, Jason H.

    2012-01-01

    Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders. PMID:23248598

  1. CFD evaluation of an advanced thrust vector control concept

    NASA Technical Reports Server (NTRS)

    Tiarn, Weihnurng; Cavalleri, Robert

    1990-01-01

    A potential concept that can offer an alternate method for thrust vector control of the Space Shuttle Solid Rocket Booster is the use of a cylindrical probe that is inserted (on demand) through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternate to that of a gimbaled nozzle or a Liquid Injection Thrust Vector (LITVC) system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment can be time consuming and expensive, whereas a CFD assessment can be very time- and cost-effective. Two key requirements of the proposed concept are PTVC vectoring performance and the active cooling requirements for the probe to maintain its thermal and structural integrity. An active thermal cooling method is the injection of coolant around the pheriphery of the probe. How much coolant is required and how this coolant distributes itself in the flow field is of major concern. The objective of the work reported here is the use of CFD to answer these question and in the design of test hardware to substantiate the results of the CFD predictions.

  2. Effect of Tube Geometry on Regenerative Cooling Performance

    NASA Technical Reports Server (NTRS)

    Parris, Daniel K.; Landrum, D. Brian

    2005-01-01

    The flowfield characteristics in a rocket engine coolant channels are analyzed by use of a commercial CFD and multiphysics software developed by the CFD Research Corp. called CFD-ACE+. The channels are characterized by high Reynolds number flow, varying aspect ratio, varying curvature, asymmetric and symmetric heating. The supercritical hydrogen coolant introduces large property variations that have a strong influence on the developing flow and the resulting heat transfer. This paper only shows the effect of aspect ratio and curvature for constant properties.

  3. Biomimetic microenvironments for regenerative endodontics.

    PubMed

    Kaushik, Sagar N; Kim, Bogeun; Walma, Alexander M Cruz; Choi, Sung Chul; Wu, Hui; Mao, Jeremy J; Jun, Ho-Wook; Cheon, Kyounga

    2016-01-01

    Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability. Therefore, this review focuses on the development and application of the

  4. Low-thrust vehicles concept studies

    NASA Technical Reports Server (NTRS)

    Ketchum, W. J.

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were studied in order to provide the required additional data to better compare new, low thrust chemical propulsion systems with other propulsion approaches such as advanced electric systems. Study results indicate that it is cost-effective and least risk to combine the low thrust OTV and stowed spacecraft in a single 65 K shuttle. Mission analysis indicates that there are 25 such missions, starting in 1987. Multiple shuttles (LSS in one, OTV in another) result in a 20% increase in LSS (SBR) diameter over single shuttle launches. Synthesis and optimization of the LSS characteristics and OTV capability resulted in determination of the optimum thrust-to-weight and thrust level. For the space based radar with radial truss arms (center thrust application), the optimum thrust-to-weight (maximum) is 0.1, giving a thrust of 2000 lb. For the annular truss (edge-on thrust application) the structure is not as sensitive, and thrust of 1000 lb appears optimum. For the geoplatform, optimum T/W is .15 (3000 lb thrust). The effects of LSS structure material, weight distribution, and unit area density were evaluated, as were the OTV engine thrust transient and number of burns.

  5. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  6. Low thrust orbit determination program

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Shults, G. L.; Huling, K. R.; Ratliff, C. W.

    1972-01-01

    Logical flow and guidelines are provided for the construction of a low thrust orbit determination computer program. The program, tentatively called FRACAS (filter response analysis for continuously accelerating spacecraft), is capable of generating a reference low thrust trajectory, performing a linear covariance analysis of guidance and navigation processes, and analyzing trajectory nonlinearities in Monte Carlo fashion. The choice of trajectory, guidance and navigation models has been made after extensive literature surveys and investigation of previous software. A key part of program design relied upon experience gained in developing and using Martin Marietta Aerospace programs: TOPSEP (Targeting/Optimization for Solar Electric Propulsion), GODSEP (Guidance and Orbit Determination for SEP) and SIMSEP (Simulation of SEP).

  7. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.

  8. Thrust-Vector-Control System

    NASA Technical Reports Server (NTRS)

    Murray, Jonathan

    1992-01-01

    Control gains computed via matrix Riccati equation. Software-based system controlling aim of gimbaled rocket motor on spacecraft adaptive and optimal in sense it adjusts control gains in response to feedback, according to optimizing algorithm based on cost function. Underlying control concept also applicable, with modifications, to thrust-vector control on vertical-takeoff-and-landing airplanes, control of orientations of scientific instruments, and robotic control systems.

  9. Constraints on the tectonics of the Mule Mountains thrust system, southeast California and southwest Arizona

    SciTech Connect

    Tosdal, R.M. )

    1990-11-10

    The Mule Mountains thrust system crops out discontinuously over a 100-km-strike length in the Blythe-Quartzsite region of southeast California and southwest Arizona. Along the thrust system, middle and upper crustal metamorphic and plutonic rocks of Proterozoic and Mesozoic age are thrust north-northeastward (015{degree} to 035{degree}) over a lower plate metamorphic terrane that formed part of the Proterozoic North American craton, its Paleozoic sedimentary rock cover, overlying Mesozoic volcanic and sedimentary rocks, and the intruding Jurassic and Cretaceous granitic rocks. Stratigraphic, petrologic, and Pb isotopic ties for Jurassic granitoids and for Jurassic( ) and Cretaceous sedimentary rocks across the various parts of the thrust system indicate that related crustal blocks are superposed and preclude it from having large displacements. The thick-skinned thrust system is structurally symmetrical along its length with a central domain of synmetamorphic thrust faults that are flanked by western and eastern domains where lower plate domains where lower plate synclines underlie the thrusts. Deformation occurred under low greenschist facies metamorphic conditions in the upper crust. Movement along the thrust system was probably limited to no more than a few tens of kilometers and occurred between 79{plus minus}2 Ma and 70{plus minus}4 Ma. The superposition of related rocks and the geometry of the thrust system preclude it from being a major tectonic boundary of post-Middle Jurassic age, as has been previously proposed. Rather, the thrust system forms the southern boundary of the narrow zone of Cretaceous intracratonic deformation, and it is one of the last tectonic events in the zone prior to regional cooling.

  10. Thrust sensing for small UAVs

    NASA Astrophysics Data System (ADS)

    Marchman, Christopher Scott

    Unmanned aerial vehicles (UAVs) have become prevalent in both military and civilian applications. UAVs have many size categories from large-scale aircraft to micro air vehicles. The performance, health, and efficiency for UAVs of smaller sizes can be difficult to assess and few associated instrumentation systems have been developed. Thrust measurements on the ground can characterize systems especially when combined with simultaneous motor power measurements. This thesis demonstrates the use of strain measurements to measure the thrust produced by motor/propeller combinations for such small UAVs. A full-bridge Wheatstone circuit and electrical resistance strain gauges were used in conjunction with constant-stress cantilever beams for static tests and dynamic wind tunnel tests. An associated instrumentation module monitored power from the electric motor. Monitoring the thrust data over time can provide insights into optimal propeller and motor selection and early detection of problems such as component failure. The approach provides a system for laboratory or field measurements that can be scaled for a wide range of small UAVs.

  11. Space Shuttle booster thrust imbalance analysis

    NASA Technical Reports Server (NTRS)

    Bailey, W. R.; Blackwell, D. L.

    1985-01-01

    An analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight are presented. Results from flights STS-1 through STS-13 are included. A statistical analysis of the observed thrust imbalance data is presented. A 3 sigma thrust imbalance history versus time was generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two space shuttle flights which used replacement aft segments (STS-9 and STS-13).

  12. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  13. Electrospun Nanofibers for Regenerative Medicine**

    PubMed Central

    Liu, Wenying; Thomopoulos, Stavros

    2013-01-01

    This article reviews recent progress in applying electrospun nanofibers to the emerging field of regenerative medicine. We begin with a brief introduction to electrospinning and nanofibers, with a focus on issues related to the selection of materials, incorporation of bioactive molecules, degradation characteristics, control of mechanical properties, and facilitation of cell infiltration. We then discuss a number of approaches to fabrication of scaffolds from electrospun nanofibers, including techniques for controlling the alignment of nanofibers and for producing scaffolds with complex architectures. We also highlight applications of the nanofiber-based scaffolds in four areas of regenerative medicine that involve nerves, dural tissues, tendons, and the tendon-to-bone insertion site. We conclude this review with perspectives on challenges and future directions for design, fabrication, and utilization of scaffolds based on electrospun nanofibers. PMID:23184683

  14. Regenerative Endodontic Procedures: Clinical Outcomes.

    PubMed

    Diogenes, Anibal; Ruparel, Nikita B

    2017-01-01

    Immature teeth are at risk for pulp necrosis, resulting in arrested root development and poor long-term prognosis. There is growing evidence that regenerative endodontic procedures promote desirable clinical outcomes. Despite significant advances in the field of regenerative endodontics and acceptable clinical outcomes, current evidence suggests that the tissues formed following currently used procedures do not completely recapitulate the former pulp-dentin complex. Further research is needed to identify prognostic factors and predictors of successful outcomes and to develop different treatment strategies to better predictably achieve all identified clinical outcomes, while favoring tissue formation that more closely resembles the pulp-dentin complex. Copyright © 2016. Published by Elsevier Inc.

  15. Regenerative medicine in kidney disease.

    PubMed

    Little, Melissa H; Kairath, Pamela

    2016-08-01

    The treatment of renal failure has changed little in decades. Organ transplantation and dialysis continue to represent the only therapeutic options available. However, decades of fundamental research into the response of the kidney to acute injury and the processes driving progression to chronic kidney disease are beginning to open doors to new options. Similarly, continued investigations into the cellular and molecular basis of normal kidney development, together with major advances in stem cell biology, are now delivering options in regenerative medicine not possible as recently as a decade ago. In this review, we will discuss advances in regenerative medicine as it may be applied to the kidney. This will cover cellular therapies focused on ameliorating injury and improving repair as well as advancements in the generation of new renal tissue from stem/progenitor cells. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

    PubMed Central

    Sardinha, Jose Paulo; Myers, Simon

    2014-01-01

    Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery. PMID:24883273

  17. Aarhus Regenerative Orthopaedics Symposium (AROS)

    PubMed Central

    Foldager, Casper B; Bendtsen, Michael; Berg, Lise C; Brinchmann, Jan E; Brittberg, Mats; Bunger, Cody; Canseco, Jose; Chen, Li; Christensen, Bjørn B; Colombier, Pauline; Deleuran, Bent W; Edwards, James; Elmengaard, Brian; Farr, Jack; Gatenholm, Birgitta; Gomoll, Andreas H; Hui, James H; Jakobsen, Rune B; Joergensen, Natasja L; Kassem, Moustapha; Koch, Thomas; Kold, Søren; Krogsgaard, Michael R; Lauridsen, Henrik; Le, Dang; Le Visage, Catherine; Lind, Martin; Nygaard, Jens V; Olesen, Morten L; Pedersen, Michael; Rathcke, Martin; Richardson, James B; Roberts, Sally; Rölfing, Jan H D; Sakai, Daisuke; Toh, Wei Seong; Urban, Jill; Spector, Myron

    2016-01-01

    The combination of modern interventional and preventive medicine has led to an epidemic of ageing. While this phenomenon is a positive consequence of an improved lifestyle and achievements in a society, the longer life expectancy is often accompanied by decline in quality of life due to musculoskeletal pain and disability. The Aarhus Regenerative Orthopaedics Symposium (AROS) 2015 was motivated by the need to address regenerative challenges in an ageing population by engaging clinicians, basic scientists, and engineers. In this position paper, we review our contemporary understanding of societal, patient-related, and basic science-related challenges in order to provide a reasoned roadmap for the future to deal with this compelling and urgent healthcare problem. PMID:28271925

  18. CMD kinetics and regenerative medicine

    PubMed Central

    Anjamrooz, Seyed Hadi

    2016-01-01

    The author’s theory of the cell memory disc (CMD) offers a radical and holistic picture of the cell from both functional and structural perspectives. Despite all of the attention that has been focused on different regenerative strategies, several serious CMD-based obstacles still remain that make current cell therapies inherently unethical, harmful, and largely ineffective from a clinical viewpoint. Accordingly, unless there is a real breakthrough in finding an alternative or complementary approach to overcome these barriers, all of the discussion regarding cell-based therapies may be fruitless. Hence, this paper focuses on the issue of CMD kinetics in an attempt to provide a fresh perspective on regenerative medicine. PMID:27186287

  19. The unitized regenerative fuel cell

    SciTech Connect

    1997-05-01

    Fuel cells can operate on hydrogen fuel and oxygen from air. If the fuel cell is designed to also operate in reverse as an electrolyzer, then electricity can be used to convert the water back into hydrogen and oxygen. This dual function system is known as a reversible or unitized regenerative fuel cell. This is an excellent energy source in situations where weight is a concern.

  20. Regenerative Medicine for Battlefield Injuries

    DTIC Science & Technology

    2012-10-01

    that stimulate cartilage reeneraton across a critical size defect (CSD) in a long bone, using the axolotl , Abystoma mexicanum as a model system...of this scaffold was the right one. Experiments grafting axolotl cartilage and muscle to Xenopus tarsal CSDs indicate that the tissues enhance...regenerative response. 15. SUBJECT TERMS- Axolotl hindlimb model, fibula, temporal characterization of fracture repair, characterization of repair of

  1. Regenerative potential of dental pulp.

    PubMed

    Trope, Martin

    2008-07-01

    The regenerative potential of dental pulp, particularly in mature teeth, has been considered extremely limited. However, our improved understanding of pulpal inflammation and repair and improved dental materials and technologies make vital pulp therapy a viable alternative to root canal treatment. This article explores our knowledge in this regard and the future potential of saving or even regenerating the pulp as a routine dental procedure.

  2. Regenerative potential of dental pulp.

    PubMed

    Trope, Martin

    2008-01-01

    The regenerative potential of dental pulp, particularly in mature teeth, has been considered extremely limited. However, our improved understanding of pulpal inflammation and repair and improved dental materials and technologies make vital pulp therapy a viable alternative to root canal treatment. This article explores our knowledge in this regard and the future potential of saving or even regenerating the pulp as a routine dental procedure.

  3. Hydrocarbon maturation in thrust belts: Thermal considerations

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.; Edman, Janell D.

    Sedimentary strata within thrust belts experience transient thermal histories which perturb the maturation paths of organic material contained within the rocks. Calculation of the thermal history, including perturbations which occur with overthrusting, for a particular sequence of tectonic events, allows us to evaluate the timing of maturation reactions and the remaining generative potential in the source rock during the evolution of the geologic terrain. In addition, thermal-maturation indicators can be used to constrain tectonic models for a region and eliminate nonviable geologic interpretations. We have utilized a numerical model to evaluate the thermal response to burial, erosion and thrusting. This model allows us to specify reasonably complex (and geologically reasonable) tectonic histories, including time varying erosion and sedimentation, syn-thrusting erosion, and multiple thrusting events. Such complexities are not easily incorporated in analytic thermal models of thrust belt evolution. In case studies of the western overthrust belt of Wyoming, thermal modeling of geologic histories provides insight into maturation processes, timing and geometries of thrust sheets, and pre-thrusting tectonism. In particular, the timing of thrust sheet motion in the Wyoming portion of the thrust belt appears to be younger than normally thought. Much of the thin skinned thrusting evaluated here appears (from a thermal perspective) to be of similar age to Laramide thrusting in the region.

  4. Regenerative endodontics: regeneration or repair?

    PubMed

    Simon, Stéphane R J; Tomson, Phillip L; Berdal, Ariane

    2014-04-01

    Recent advances in biotechnology and translational research have made it possible to provide treatment modalities that protect the vital pulp, allow manipulation of reactionary and reparative dentinogenesis, and, more recently, permit revascularization of an infected root canal space. These approaches are referred to as regenerative procedures. The method currently used to determine the origin of the tissue secreted during the repair/regeneration process is largely based on the identification of cellular markers (usually proteins) left by cells that were responsible for this tissue production. The presence of these proteins in conjunction with other indicators of cellular behavior (especially biomineralization) and analysis of the structure of the newly generated tissue allow conclusions to be made of how it was formed. Thus far, it has not been possible to truly establish the biological mechanism controlling tertiary dentinogenesis. This article considers current therapeutic techniques to treat the dentin-pulp complex and contextualize them in terms of reparative and regenerative processes. Although it may be considered a semantic argument rather than a biological one, the definitions of regeneration and repair are explored to clarify our position in this era of regenerative endodontics. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Regenerative endodontics: A way forward.

    PubMed

    Diogenes, Anibal; Ruparel, Nikita B; Shiloah, Yoav; Hargreaves, Kenneth M

    2016-05-01

    Immature teeth are susceptible to infections due to trauma, anatomic anomalies, and caries. Traditional endodontic therapies for immature teeth, such as apexification procedures, promote resolution of the disease and prevent future infections. However, these procedures fail to promote continued root development, leaving teeth susceptible to fractures. Regenerative endodontic procedures (REPs) have evolved in the past decade, being incorporated into endodontic practice and becoming a viable treatment alternative for immature teeth. The authors have summarized the status of regenerative endodontics on the basis of the available published studies and provide insight into the different levels of clinical outcomes expected from these procedures. Substantial advances in regenerative endodontics are allowing a better understanding of a multitude of factors that govern stem cell-mediated regeneration and repair of the damaged pulp-dentin complex. REPs promote healing of apical periodontitis, continued radiographic root development, and, in certain cases, vitality responses. Despite the clinical success of these procedures, they appear to promote a guided endodontic repair process rather than a true regeneration of physiological-like tissue. Immature teeth with pulpal necrosis with otherwise poor prognosis can be treated with REPs. These procedures do not preclude the possibility of apexification procedures if attempts are unsuccessful. Therefore, REPs may be considered first treatment options for immature teeth with pulpal necrosis. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  6. Current research on regenerative systems.

    PubMed

    Shapira, J; Mandel, A D; Quattrone, P D; Bell, N L

    1969-01-01

    Multiple studies directed toward the development of a regenerative life support system have shown that easily synthesized organic compounds and microbiological materials are potentially capable of being used as foods for long-duration space missions. Animal feeding studies have supported these views. The organic compounds presently believed to offer the greatest potential are glycerol, simple glycerol derivatives such as triacetin, and formose sugars. Laboratory studies indicate that glycerol can be synthesized from formaldehyde which in turn is obtained by the direct catalytic oxidation of methane, a by-product of the Sabatier reaction used in spacecraft atmosphere control system. Formose sugars are derived from the self-condensation of formaldehyde. Mixtures of glycerol and triacetin have been shown to be suitable as a major component of diets fed to weanling rats for prolonged periods. These compounds do not exist as stereoisomers and therefore offer advantages over the formose sugars. Hydrogenomonas eutropha is the microbiological system under investigation. An automated system for the continuous autotrophic production of Hydrogenomonas bacteria is in operation, and the nutritional requirements for growth in the system using urea as a nitrogen source are being studied. Nutritional evaluation of Hydrogenomonas bacteria has shown they are capable of supplying the total protein requirement of growing rats for prolonged periods. The potential and problems of these regenerative systems and the prospects for the accomplishment of a totally regenerative food system will be discussed.

  7. Synfolding magnetization in the Jurassic Preuss Sandstone, Wyoming- Idaho-Utah thrust belt

    USGS Publications Warehouse

    Hudson, M.R.; Reynolds, R.L.; Fishman, N.S.

    1989-01-01

    The Jurassic Preuss Sandstone, exposed in five thrust plates of the Wyoming-Idaho-Utah thrust belt, carried directions of remanent magnetization that group most tightly after only partial unfolding. Field, petrographic, and rock magnetic evidence indicates that the carrier of this magnetization is detrital, low-Ti titanomagnetite. The detrital titanomagnetite was remagnetized at low temperatures (75??-150??C) probably completely during folding. Anisotropy of magnetic susceptibility and petrographic observations indicate that the detrital titanomagnetite has been affected by tectonic strain. The locus of acquisition of synfolding magnetization in the Preuss migrated in conjunction with deformation in the thrust belt. A model is presented in which synfolding magnetization was acquired during cooling and folding as strata moved up thrust ramps. A lack of reverse-polarity directions remains a puzzling feature of the remanence. -from Authors

  8. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  9. Transpiration cooled throat for hydrocarbon rocket engines

    NASA Technical Reports Server (NTRS)

    May, Lee R.; Burkhardt, Wendel M.

    1991-01-01

    The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.

  10. Space shuttle maneuvering engine reusable thrust chamber program. Task 11: Low epsilon stability test report data dump

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.

    1974-01-01

    The stability characteristics of the like-doublet injector were defined over the range of OME chamber pressures and mixture ratios. This was accomplished by bomb testing the injector and cavity configurations in solid wall thrust chamber hardware typical of a flight contour with fuel heated to regenerative chamber outlet temperatures. It was found that stability in the 2600-2800 Hz region depends upon injector hydraulics and on chamber acoustics.

  11. Thermal regenerative design of a fuel cell cogeneration system

    NASA Astrophysics Data System (ADS)

    Hwang, Jenn-Jiang

    2012-12-01

    The objective of the present work is to design and fabricate a thermal management system (TMS) that commands a proton exchange membrane fuel cell (PEMFC) based cogeneration system to generate the electricity and hot water efficiently. Parametric studies include the external load (PL) and the regenerative temperature (TR). A thermostat valve is employed to optimize the stack operation temperature, while a thermal regenerative unit (TRU) containing a planar heat exchanger is used to recover the heat dissipated by the stack. First, the dynamics of thermal and electrical characteristics such as voltage, current, power, coolant temperature, coolant flow rate, and hydrogen flow rate are measured to check the reliability of the TMS. Then, the effectiveness of the planar heat exchanger is determined to verify the cooling ability of the TRU. Moreover, the transient system efficiencies, including electrical efficiency, thermal efficiency, and overall efficiency are determined. Furthermore, the effect of the regenerative temperature on the time-averaged system efficiencies is examined under different external loads. Finally, an empirical correlation for time-averaged overall efficiency is proposed for helping in design of the PEMFC cogeneration system.

  12. A review on endogenous regenerative technology in periodontal regenerative medicine.

    PubMed

    Chen, Fa-Ming; Zhang, Jing; Zhang, Min; An, Ying; Chen, Fang; Wu, Zhi-Fen

    2010-11-01

    Periodontitis is a globally prevalent inflammatory disease that causes the destruction of the tooth-supporting apparatus and potentially leads to tooth loss. Currently, the methods to reconstitute lost periodontal structures (i.e. alveolar bone, periodontal ligament, and root cementum) have relied on conventional mechanical, anti-infective modalities followed by a range of regenerative procedures such as guided tissue regeneration, the use of bone replacement grafts and exogenous growth factors (GFs), and recently developed tissue engineering technologies. However, all current or emerging paradigms have either been shown to have limited and variable outcomes or have yet to be developed for clinical use. To accelerate clinical translation, there is an ongoing need to develop therapeutics based on endogenous regenerative technology (ERT), which can stimulate latent self-repair mechanisms in patients and harness the host's innate capacity for regeneration. ERT in periodontics applies the patient's own regenerative 'tools', i.e. patient-derived GFs and fibrin scaffolds, sometimes in association with commercialized products (e.g. Emdogain and Bio-Oss), to create a material niche in an injured site where the progenitor/stem cells from neighboring tissues can be recruited for in situ periodontal regeneration. The choice of materials and the design of implantable devices influence therapeutic potential and the number and invasiveness of the associated clinical procedures. The interplay and optimization of each niche component involved in ERT are particularly important to comprehend how to make the desired cell response safe and effective for therapeutics. In this review, the emerging opportunities and challenges of ERT that avoid the ex vivo culture of autologous cells are addressed in the context of new approaches for engineering or regeneration of functional periodontal tissues by exploiting the use of platelet-rich products and its associated formulations as key

  13. Tongue thrust and its influence in orthodontics.

    PubMed

    Fraser, Cary

    2006-01-01

    The oral myofunctional disorder of tongue thrust has been described in various ways, such as 'deviate swallow' 'infantile swallow, and 'abnormal swallow' to name a few. The term 'tongue thrust' has been adopted, mainly because of its greater usage among authors, and since it gives a more accurate description of the lingual behavior about to be discussed. 'Tongue thrust' and 'tongue thrusting' are used in preference to 'tongue thrust swallow' or 'tongue thrust swallowing' because this behavior is generally thought to be less associated with the act of swallowing and more with the resting posture of the tongue. 'Thrust' is still an inappropriate word since the tongue is not really 'thrusting' during rest. However, it must be remembered that 'thrusting' in this instance is still a mild but continuous lingual pressure factor. The significance lies in whether or not this 'thrust, either during swallowing and other functional behaviors, or during rest, is responsible for, contributes to, or is a consequence of the development of a malocclusion.

  14. Modular multi-engine thrust control assembly

    SciTech Connect

    Sakurai, S.

    1986-02-04

    This patent describes a modular thrust control lever assembly for controling forward/reverse thrust generated by an aircraft engine. It includes an electric/electronic engine thrust control system, an inhibit mechanism for preventing inadverent or premature establishment of at least one of forward and reverse engine thrust. It consists of a (a) housing; (b) a control lever assembly pivotally mounted within the housing for fore and aft pivotal movement in a single vertical plane; (c) movable inhibit mechanism normally mounted in the path of movement of the laterally projecting roller on the control lever assembly between at least one of the maximum thrust limit positions of the assembly and the adjacent intermediate idle thrust position; (d) a electric/electronic engine thrust control system including an mechanism for reconfiguring the thrust controls of the engine upon movement of the thrust control lever assembly to the adjacent intermediate idle thrust position; (e) a mechanism responsive to the output signal for shifting the inhibit mechanism out of the path of movement of the control lever assembly.

  15. Mathematical model and experimental validation of a rock bed regenerative cooler

    SciTech Connect

    Mumma, S.A.; Rodriquez, J.M.

    1980-01-01

    A study was made of the fuctional characteristics of a rock bed regenerative indirect evaporative cooling system (RBR). The study was divided into two portions: the first dealing with the experimental investigation of the thermodynamic behavior of the system and the second with the development of a mathematical model for simulating performance. Indirect evaporative cooling systems based on rock beds for heat exchange and/or storage are technically feasible for regions that do not require dehumidification of outdoor air for comfort. The mathematical model used for the simulation tracks the experimental data, thus providing the system designer with a valuable tool. The rock bed regenerative cooling system offers a viable alternative to the expensive air condition unit and to the comfort limited evaporative cooler for providing comforting conditions. It also offers an operating savings potential in both the electrical demand and consumption compared with mechanical refrigeration and, therefore, a cost savings under current electrical rates in the proposed new demand rate charges.

  16. Thrust generator for boring tools

    SciTech Connect

    Dismukes, N.B.

    1984-03-13

    The present invention provides an electrically powered system for advancing a rotary boring tool in situations where the inclination of the bore hole is such that the force of gravity does not provide sufficient forward thrust. One or more marine screw propellers are rotated by the motor which itself is restrained from rotation by being fixedly connected to a flexible, twist resistant conduit for conducting the drilling fluid and electric power from the surface. The system may also provide for different rotative speeds for propeller and bit and for counter-rotating propellers to minimize torque forces on the conduit.

  17. The general performance characteristics of a Stirling refrigerator with regenerative losses

    NASA Astrophysics Data System (ADS)

    Chen, Jincan; Yan, Zijun

    1996-04-01

    The influence of finite-rate heat transfer and regenerative losses on the performance of a Stirling refrigerator using an ideal or Van der Waals gas as the working substance is investigated. The cooling rate and the coefficient of performance are derived. The optimal relation between the cooling rate and the coefficient of performance is obtained. The maximum cooling rate and the corresponding coefficient of performance are determined for different cases. The problem of optimizing other parameters is also discussed. The results obtained here will be useful for the further understanding and the selection of the optimal operating conditions of a Stirling refrigerator.

  18. Chronology of paleozoic metamorphism and deformation in the Blue Ridge thrust complex, North Carolina and Tennessee

    SciTech Connect

    Goldberg, S.A.; Dallmeyer, R.D.

    1997-05-01

    The Blue Ridge province in northwestern North Carolina and northeastern Tennessee records a multiphase collisional and accretionary history from the Mesoproterozoic through the Paleozoic. To constrain the tectonothermal evolution in this region, radiometric ages have been determined for 23 regionally metamorphosed amphibolites, granitic gneisses, and pelitic schists and from mylonites along shear zones that bound thrust sheets and within an internal shear zone. The garnet ages from the Pumpkin Patch a thrust sheet (458, 455, and 451 Ma) are similar to those from the structurally overlying Spruce Pine thrust sheet (460, 456, 455, and 450 Ma). Both thrust sheets exhibit similar upper amphibolite-facies conditions. Because of the high closure temperature for garnet, the garnet ages are interpreted to date growth at or near the peak of Taconic metamorphism. Devonian metamorphic ages are recognized in the Spruce Pine thrust sheet, where Sm-Nd and Rb-Sr garnet ages of 386 and 393 Ma and mineral isochron ages of 397 {+-} 14 and 375 {+-} 27 Ma are preserved. Hornblendes record similar {sup 40}Ar/{sup 39}Ar, Sm-Nd, and Rb-Sr ages of 398 to 379 Ma. Devonian {sup 40}Ar/{sup 39}Ar hornblende ages are also recorded in the structurally lower Pumpkin Patch thrust sheet. The Devonian mineral ages are interpreted to date a discrete tectonothermal event, as opposed to uplift and slow cooling from an Ordovician metamorphic event. The Mississippian mylonitization is interpreted to represent thrusting and initial assembly of crystalline sheets associated with the Alleghanian orogeny. The composite thrust stack of the Blue Ridge complex was subsequently thrust northwestward along the Linville Falls fault during middle Alleghanian orogeny (about 300 Ma).

  19. Regenerative Engineering and Bionic Limbs

    PubMed Central

    James, Roshan; Laurencin, Cato T.

    2015-01-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  20. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  1. Regenerative Engineering and Bionic Limbs.

    PubMed

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  2. [Chondrocytes application in regenerative medicine].

    PubMed

    Dziedzic, Katarzyna; Zalewski, Mateusz; Gadek, Artur; Drukała, Justyna

    2014-01-01

    Cartilage reconstruction is a crucial issue for tissue engineering because of high damage frequency in connection with low regenerative capacity. Microfractures and shaving are the oldest and most commonly used practices. The newest techniques are: Autologous Chondrocyte Implantation, Matrix Associated Chondrocytes Implantation and their derivatives. Dedifferentiation of chondrocytes due to low proliferation rate and phenotype loss makes isolation and in vitro culture of normal human chondrocytes very complex. Therefore, obtaining mesenchymal stem cells from various sources and differentiating them into chondrocytes is another interesting approach.

  3. The imperative for regenerative agriculture.

    PubMed

    Rhodes, Christopher J

    2017-03-01

    A review is made of the current state of agriculture, emphasising issues of soil erosion and dependence on fossil fuels, in regard to achieving food security for a relentlessly enlarging global population. Soil has been described as "the fragile, living skin of the Earth", and yet both its aliveness and fragility have all too often been ignored in the expansion of agriculture across the face of the globe. Since it is a pivotal component in a global nexus of soil-water-air-energy, how we treat the soil can impact massively on climate change - with either beneficial or detrimental consequences, depending on whether the soil is preserved or degraded. Regenerative agriculture has at its core the intention to improve the health of soil or to restore highly degraded soil, which symbiotically enhances the quality of water, vegetation and land-productivity. By using methods of regenerative agriculture, it is possible not only to increase the amount of soil organic carbon (SOC) in existing soils, but to build new soil. This has the effect of drawing down carbon from the atmosphere, while simultaneously improving soil structure and soil health, soil fertility and crop yields, water retention and aquifer recharge - thus ameliorating both flooding and drought, and also the erosion of further soil, since runoff is reduced. Since food production on a more local scale is found to preserve the soil and its quality, urban food production should be seen as a significant potential contributor to regenerative agriculture in the future, so long as the methods employed are themselves 'regenerative'. If localisation is to become a dominant strategy for dealing with a vastly reduced use of fossil fuels, and preserving soil quality - with increased food production in towns and cities - it will be necessary to incorporate integrated ('systems') design approaches such as permaculture and the circular economy (which minimise and repurpose 'waste') within the existing urban infrastructure. In

  4. Regenerative superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  5. Regenerative Simulation Using Internal Controls.

    DTIC Science & Technology

    1982-01-01

    VSIYIRSITY OT 21A AT AUSTIN Decnber, 1982 .. ;ɟ Ilk Copyright by Jan Dnise Eakie 1982 To T.M., T.J,, and T.B. 4] ACKNOWLEDGEMENTS Dr . James R. Wilson...was the supervising pro- fessor for this research. Without his guidance and support, none of this would have been possible. I also wish to thank Dr . W.G...Lesso, Dr . P.A. Jensen, and Dr . R. Sullivan for their assistance as members of my graduate committee. 9| REGENERATIVE SIMULATION USING INTERNAL

  6. Wavelength tunable alexandrite regenerative amplifier

    SciTech Connect

    Harter, D.J.; Bado, P.

    1988-11-01

    We describe a wavelength tunable alexandrite regenerative amplifier which is used to amplify nanosecond slices from a single-frequency cw dye laser or 50-ps pulses emitted by a diode laser to energies in the 10-mJ range. The amplified 5-ns slices generated by the cw-pumped line narrowed dye laser are Fourier transform limited. The 50-ps pulses emitted by a gain-switched diode laser are amplified by more than 10 orders of magnitude in a single stage.

  7. Regenerative superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  8. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  9. Regenerative thermal oxidation for non-conventional applications

    SciTech Connect

    Gosselin, G.; Gravel, J.J.O.

    1999-07-01

    Regenerative Thermal Oxidation has been applied by Biothermica to treat non-conventional emissions. These emissions include pollutants as VOC, COC, TRS, PAH, PCB, HCl and odors. In the kraft pulping industry, environmental requirements for reduced emissions of total reduced sulfur (TRS) and volatile organic compounds (VOC) from pulping operations are leading to incinerators of high destruction efficiency and thermal performance. The first installation in Canada of a Regenerative Thermal Oxidation (RTO) was placed in service early in 1997 at a kraft pulp mill in the province of Quebec. Tests have shown a TRS reduction of 99.6% with a thermal efficiency of 88.5% in the RTO. It can be considered the best method to comply with the new norms for TRS atmospheric emissions in the pulp and paper industry. In the primary aluminum process, a marked improvement in anode properties can be gained by preparing the paste at high temperature, followed by cooling with a water addition in an intensive mixer. However, the addition of cooling water results in a large increase in the emissions of VOC and PAH which can prejudice the process. A number of emission control processes were evaluated. An improved Regenerative Thermal Oxidation (RTO) unit was installed in a modern aluminum plant in Canada. The emissions of VOCs and PAHs from an EIRICH intensive mixer-cooler were reduced by more than 99.9% while all troublesome deposits in the fumes collection system were eliminated. This enabled the plant to remain well within the emission levels allowed by the environmental authority while enjoying considerable benefits from improved anode qualities. In the asphalt roofing industry, RTO was applied to treat the VOC and COC emissions and several units have been in operation since 1990. In the United States two units were installed in asphalt shingle plants and new features in the process show a VOC and COC reduction of 99%.

  10. Theoretical and experimental study on regenerative rotary displacer Stirling engine

    SciTech Connect

    Raggi, L.; Katsuta, Masafumi; Isshiki, Naotsugu; Isshiki, Seita

    1997-12-31

    Recently a quite new type of hot air engine called rotary displacer engine, in which the displacer is a rotating disk enclosed in a cylinder, has been conceived and developed. The working gas, contained in a notch excavated in the disk, is heated and cooled alternately, on account of the heat transferred through the enclosing cylinder that is heated at one side and cooled at the opposite one. The gas temperature oscillations cause the pressure fluctuations that get out mechanical power acting on a power piston. In order to attempt to increase the performances for this kind of engine, the authors propose three different regeneration methods. The first one comprises two coaxial disks that, revolving in opposite ways, cause a temperature gradient on the cylinder wall and a regenerative axial heat conduction through fins shaped on the cylinder inner wall. The other two methods are based on the heat transferred by a proper closed circuit that in one case has a circulating liquid inside and in the other one is formed by several heat pipes working each one for different temperatures. An engine based on the first principle, the Regenerative Tandem Contra-Rotary Displacer Stirling Engine, has been realized and experimented. In this paper experimental results with and without regeneration are reported comparatively with a detailed description of the unity. A basic explanation of the working principle of this engine and a theoretical analysis investigating the main influential parameters for the regenerative effect are done. This new rotating displacer Stirling engines, for their simplicity, are expected to attain high rotational speed especially for applications as demonstration and hobby unities.

  11. AMR (Active Magnetic Regenerative) refrigeration for low temperature

    NASA Astrophysics Data System (ADS)

    Jeong, Sangkwon

    2014-07-01

    This paper reviews AMR (Active Magnetic Regenerative) refrigeration technology for low temperature applications that is a novel cooling method to expand the temperature span of magnetic refrigerator. The key component of the AMR system is a porous magnetic regenerator which allows a heat transfer medium (typically helium gas) to flow through it and therefore obviate intermittently operating an external heat switch. The AMR system alternatingly heats and cools the heat transfer medium by convection when the magneto-caloric effect is created under varying magnetic field. AMR may extend the temperature span for wider range than ADR (Adiabatic Demagnetization Refrigerator) at higher temperatures above 10 K because magneto-caloric effects are typically concentrated in a small temperature range in usual magnetic refrigerants. The regenerative concept theoretically enables each magnetic refrigerant to experience a pseudo-Carnot magnetic refrigeration cycle in a wide temperature span if it is properly designed, although adequate thermodynamic matching of strongly temperature-dependent MCE (magneto-caloric effect) of the regenerator material and the heat capacity of fluid flow is often tricky due to inherent characteristics of magnetic materials. This paper covers historical developments, fundamental concepts, key components, applications, and recent research trends of AMR refrigerators for liquid helium or liquid hydrogen temperatures.

  12. MPD thrust chamber flow dynamics

    NASA Astrophysics Data System (ADS)

    1990-08-01

    Flow within the thrust chamber of a Magnetoplasmadynamic (MPD) arcjet is examined experimentally and modeled with a 2-D magnetohydrodynamic code. Two quasi-steady MPD thrusters are considered under the same input conditions of current (21 kA) and total mass flow rate (0.006 kg/s, argon + 1.5 percent hydrogen). The arcjets have the same basic design, consisting of a central cathode, 3.8 cm diameter and 5 cm long, separated from a coaxial anode of equal length by a uniform gap of 2.3 cm. Two different mass injection arrangements are used (100 percent at mid-radius, and 50 percent at the cathode base, with the remainder at mid-radius). A new spectroscopic analysis procedure is developed that allows distributions of radial speed, heavy particle temperature and turbulent speed to be extracted from chordal measurements of light emission by the two species in the plasma flow. Good qualitative (and reasonable quantitative) agreement exists with distributions calculated by the MHD code, indicating that flow within the thrust chamber expands from an electromagnetically pumped plasma base (vs a pumped jet off the cathode tip). The significant variation of internal flow dynamics with mass injector arrangement implies the need for extensive experimentally validated code modeling in order to evaluate the potential performance of MPD thrusters.

  13. Lightweight Chambers for Thrust Cell Applications

    NASA Technical Reports Server (NTRS)

    Elam, Sandy; Effinger, Mike; Holmes, Dick; Lee, Jonathan; Jaskowiak, Martha; Turner, Jim E. (Technical Monitor)

    2000-01-01

    This is a viewgraph presentation which reviews the progress in the development of lightweight chambers for thrust cell applications. The objective of the program is to reduce thrust assembly weights to create lighter engines which will allow for an increase in the payload. Using new composite materials and fabrication technologies the team has constructed 7 different thrust cell demonstration units. The materials used in the demonstration units are reviewed.

  14. Simulation of low thrust guidance problems

    NASA Technical Reports Server (NTRS)

    Dawkins, G. S.; Long, D.

    1974-01-01

    The determination of optimal rocket control profiles and the guidance procedures used to approximate these profiles have received much attention. Simple guidance procedures have sufficed for the Apollo flights. A modified version of the linear tangent guidance law is developed which can be used for a low-thrust orbital maneuvering system such as the space shuttle. The modification allows the estimation of gravity over long thrusting arcs which is necessary for low thrust systems.

  15. Simulation of low thrust guidance problems

    NASA Technical Reports Server (NTRS)

    Dawkins, G. S.; Long, D.

    1974-01-01

    The determination of optimal rocket control profiles and the guidance procedures used to approximate these profiles have received much attention. Simple guidance procedures have sufficed for the Apollo flights. A modified version of the linear tangent guidance law is developed which can be used for a low-thrust orbital maneuvering system such as the space shuttle. The modification allows the estimation of gravity over long thrusting arcs which is necessary for low thrust systems.

  16. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    NASA Astrophysics Data System (ADS)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot

  17. Rotary phased radial thrust variable drive transmission

    SciTech Connect

    Shook, W.B.

    1991-09-17

    This patent describes a rotary phased radial thrust variable drive transmission located between a rotable input driving member and an output driven member which are mounted for relative rotation on a common axis. It includes radial thrust linkages carried by one of the members, and a cam unit surrounding the axis and having a selected profile, the thrust linkages carrying cam-followers for engaging the cam profile during relative rotation of the members and thrust means for engaging a mating surface on the other of the members to supply torque thereto so as to result in rotation thereof, and adjustable means for varying the profile of the cam unit.

  18. Thrust control system design of ducted rockets

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren

    2011-07-01

    The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.

  19. Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

    1990-01-01

    Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

  20. Breadboard RL10-2B low-thrust operating mode (second iteration) test report

    NASA Technical Reports Server (NTRS)

    Kanic, Paul G.; Kaldor, Raymond B.; Watkins, Pia M.

    1988-01-01

    Cryogenic rocket engines requiring a cooling process to thermally condition the engine to operating temperature can be made more efficient if cooling propellants can be burned. Tank head idle and pumped idle modes can be used to burn propellants employed for cooling, thereby providing useful thrust. Such idle modes required the use of a heat exchanger to vaporize oxygen prior to injection into the combustion chamber. During December 1988, Pratt and Whitney conducted a series of engine hot firing demonstrating the operation of two new, previously untested oxidizer heat exchanger designs. The program was a second iteration of previous low thrust testing conducted in 1984, during which a first-generation heat exchanger design was used. Although operation was demonstrated at tank head idle and pumped idle, the engine experienced instability when propellants could not be supplied to the heat exchanger at design conditions.

  1. Regenerative Medicine in Alzheimer's Disease

    PubMed Central

    Felsenstein, Kevin M.; Candelario, Kate M.; Steindler, Dennis A.; Borchelt, David R.

    2013-01-01

    Identifying novel, effective therapeutics for Alzheimer's disease (AD) is one of the major unmet medical needs for the coming decade. Because the current paradigm for developing and testing disease modifying AD therapies is protracted and likely to be even longer with the shift towards earlier intervention in pre-clinical AD, it is an open question whether we can develop, test, and widely deploy a novel therapy in time to help the current at-risk generation if we continue to follow the standard paradigms of discovery and drug development. There is an imperative need to find safe and effective preventative measures that can be rapidly deployed to stem the coming wave of AD that will potentially engulf the next generation. We can broadly define regenerative medicine as approaches that use stem-cell-based therapies or approaches that seek to modulate inherent neurogenesis. Neurogenesis, though most active during pre-natal development has been shown to continue in several small parts of the brain, which includes the hippocampus and the subventricular zone, suggesting its potential to reverse cognitive deficits. If AD pathology impacts neurogenesis then it follows that conditions that stimulate endogenous neurogenesis (e.g., environmental stimuli, physical activity, trophic factors, cytokines, and drugs) may help to promote the regenerative and recovery process. Herein, we review the complex logistics of potentially implementing neurogenesis-based therapeutic strategies for the treatment of AD. PMID:24286919

  2. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    NASA Technical Reports Server (NTRS)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural

  3. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  4. Weakening inside incipient thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Collettini, C.; Oliot, E.

    2013-12-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that nucleate along décollement levels. Geological and geophysical evidence suggests that these faults might be weak because of a combination of processes such as pressure-solution, phyllosilicates reorientation and delamination, and fluid pressurization. In this study we aim to decipher the processes and the kinetics responsible for weakening of tectonic décollements. We studied the Millaris thrust (Southern Pyrenees): a fault representative of a décollement in its incipient stage. This fault accommodated a total shortening of about 30 meters and is constituted by a 10m thick, intensively foliated phyllonite developed inside a homogeneous marly unit. Detailed chemical and mineralogical analyses have been carried out to characterize the mineralogical change, the chemical transfers and volume change in the fault zone compared to non-deformed parent sediments. We also carried out microstructural analysis on natural and experimentally deformed rocks. Illite and chlorite are the main hydrous minerals. Inside fault zone, illite minerals are oriented along the schistosity whereas chlorite coats the shear surfaces. Mass balance calculations demonstrated a volume loss of up to 50% for calcite inside fault zone (and therefore a relative increase of phyllosilicates contents) because of calcite pressure solution mechanisms. We performed friction experiments in a biaxial deformation apparatus using intact rocks sheared in the in-situ geometry from the Millaris fault and its host sediments. We imposed a range of normal stresses (10 to 50 MPa), sliding velocity steps (3-100 μm/s) and slide-hold slide sequences (3 to 1000 s hold) under saturated conditions. Mechanical results demonstrate that both fault rocks and parent sediments are weaker than average geological materials (friction μ<<0.6) and have velocity-strengthening behavior because of the presence of phyllosilicate horizons. Fault rocks are

  5. Project S'COOL

    NASA Technical Reports Server (NTRS)

    Green, Carolyn J.; Chambers, Lin H.

    1998-01-01

    The Students Clouds Observations On-Line or S'COOL project was piloted in 1997. It was created with the idea of using students to serve as one component of the validation for the Clouds and the Earth's Radiant Energy System (CERES) instrument which was launched with the Tropical Rainfall Measuring Mission (TRMM) in November, 1997. As part of NASA's Earth Science Enterprise CERES is interested in the role clouds play in regulating our climate. Over thirty schools became involved in the initial thrust of the project. The CERES instrument detects the location of clouds and identifies their physical properties. S'COOL students coordinate their ground truth observations with the exact overpass of the satellite at their location. Their findings regarding cloud type, height, fraction and opacity as well as surface conditions are then reported to the NASA Langley Distributed Active Archive Center (DAAC). The data is then accessible to both the CERES team for validation and to schools for educational application via the Internet. By March of 1998 ninety-three schools, in nine countries had enrolled in the S'COOL project. Joining the United States participants were from schools in Australia, Canada, France, Germany, Norway, Spain, Sweden, and Switzerland. The project is gradually becoming the global project envisioned by the project s creators. As students obtain the requested data useful for the scientists, it was hoped that students with guidance from their instructors would have opportunity and motivation to learn more about clouds and atmospheric science as well.

  6. Project S'COOL

    NASA Technical Reports Server (NTRS)

    Green, Carolyn J.; Chambers, Lin H.

    1998-01-01

    The Students Clouds Observations On-Line or S'COOL project was piloted in 1997. It was created with the idea of using students to serve as one component of the validation for the Clouds and the Earth's Radiant Energy System (CERES) instrument which was launched with the Tropical Rainfall Measuring Mission (TRMM) in November, 1997. As part of NASA's Earth Science Enterprise CERES is interested in the role clouds play in regulating our climate. Over thirty schools became involved in the initial thrust of the project. The CERES instrument detects the location of clouds and identifies their physical properties. S'COOL students coordinate their ground truth observations with the exact overpass of the satellite at their location. Their findings regarding cloud type, height, fraction and opacity as well as surface conditions are then reported to the NASA Langley Distributed Active Archive Center (DAAC). The data is then accessible to both the CERES team for validation and to schools for educational application via the Internet. By March of 1998 ninety-three schools, in nine countries had enrolled in the S'COOL project. Joining the United States participants were from schools in Australia, Canada, France, Germany, Norway, Spain, Sweden, and Switzerland. The project is gradually becoming the global project envisioned by the project s creators. As students obtain the requested data useful for the scientists, it was hoped that students with guidance from their instructors would have opportunity and motivation to learn more about clouds and atmospheric science as well.

  7. The Beaufort Sea fold-and-thrust belt, northwestern Canada: Implications for thrust-belt evolution

    SciTech Connect

    Root, K.G. )

    1991-06-01

    The northeasternmost segment of the Cordilleran thrust belt of western North American underlies the Beaufort Sea continental margin. Folds and associated northesat-directed thrusts in this region formed synchronously with Tertiary sedimentation. As a result, the times of fold development can be determined from reflection seismic data by analyzing lateral thickness changes in stratigraphic sequences of known ages, and onlap and truncation relationships at unconformities. Thrust faulting occurred throughout the late Paleocene-Pliocene. The abundant temporal data indicate the deformational seuqence was significantly differet from the simple, steplike, foreland-propagating model formulated in other less well-dated thrust belts. Many thrusts were active simultaneously, especially during the late Eocnee, when the region of active thrusting had an across-strike width of greater than 200 km. This observation calls into question the popular concept that only one thrust moves at a time as a thrust belt develops. The thrust belt propagated along, as well as across, strike. During the late Paleocene-middle Eocene, the area of active thrusting was bounded on the southeast by poorly imaged zones of right-lateral strike-slip faults that apparently are the northern offshore continuation of the Rapid fault array. The change in the age of thrusting along strike results in no obvious geometrical anomalies and could not be deduced without timing information. This has an important implication: temporal data cannot necessarily be projected along strike in a thrust belt.

  8. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  9. High power thrust vector actuation

    NASA Astrophysics Data System (ADS)

    Kittock, M. J.

    1993-06-01

    Modern missile programs are frequently favoring electro-mechanical (EM) thrust vector actuation (TVA) over hydraulic for a variety of reasons. However, actuation system performance requirements are not relaxed for EM systems. Thus the development of EM systems with greater power output is required. The configuration of EM actuator studied consists of a DC brushless motor driving a spur gear train, which drives a ballscrew that converts rotary motion to rectilinear motion. This design produces an actuator with high levels of performance in a compact mechanical package. Design for manufacturability and assembly (DFMA) was part of the design process, resulting in an actuator that can be assembled easily and will operate reliably. This paper will discuss the mechanical details of the resultant actuator and report test results on a prototype derivative.

  10. Changes in Regenerative Capacity through Lifespan

    PubMed Central

    Yun, Maximina H.

    2015-01-01

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging. PMID:26512653

  11. Changes in Regenerative Capacity through Lifespan.

    PubMed

    Yun, Maximina H

    2015-10-23

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging.

  12. Lessons from developmental biology for regenerative medicine.

    PubMed

    Turner, Neill J; Keane, Timothy J; Badylak, Stephen F

    2013-09-01

    The ultimate goal of regenerative medicine is the functional restoration of lost or damaged tissues and organs. Since most tissues in man lack true regenerative properties and instead respond to injury with an inflammatory response and scar tissue formation, regenerative medicine strategies that include combinations of cells, scaffolds, and bioactive molecules to replace injured or missing tissues have been developed. The physical, chemical, and electrical cues that define the microenvironmental niche and the effect of these influences upon cell behavior during development are of interest to developmental biologists, with obvious overlap to the interest of the regenerative medicine field. This manuscript provides an overview of current approaches for tissue restoration being investigated in the field of regenerative medicine and attempts to identify areas of mutual beneficial interest with the field of developmental biology.

  13. A reevaluation of the age of the Vincent-Chocolate Mountains thrust system, southern California

    SciTech Connect

    Jacobsen, C.E. . Dept. of Geological and Atmospheric Sciences); Barth, A.P. . Dept. of Geology)

    1993-04-01

    The Vincent-Chocolate Mountains (VCM) thrust superposes Mesozoic arc plutons and associated Precambrian country rock above subduction-related Pelona-Orocopia schist. The thrust is disrupted in many areas by postmetamorphic deformation, but appears to be intact in the San Gabriel Mountains. Two Rb-Sr mineral-isochron ages from Pelona Schist and mylonite in the San Gabriel Mountains led Ehlig (1981) to conclude that the original thrusting event occurred at c. 60 Ma. However, biotite K-Ar ages determined by Miller and Morton (1980) for upper plate in the same area caused Dillon (1986) to reach a different conclusion. The biotite ages range mainly from 74--60 Ma and increase structurally upward from the VCM thrust. Dillon (1986) inferred that the age gradient was due to uplift and cooling of the upper plate during underthrusting of Pelona Schist. This would indicate that the VCM thrust was at least 74 Ma in age. An alternative to the interpretation of Dillon (1986) is that the biotite age gradient largely predates the VCM thrust. Upward heat flow, leading to older ages at higher structural levels, could have resulted from either static cooling of Cretaceous plutons or uplift and erosion induced by crustal thickening during possible west-directed intra-arc thrusting at c. 88--78 Ma (May and Walker, 1989). Subsequent underthrusting of Pelona Schist would establish a cold lower boundary to the crust and cause the closure of isotopic systems in the base of the upper plate. A 60 Ma time of thrusting is also suggested by two amphibole [sup 40]Ar/[sup 39]Ar ages from the Pelona Schist of the San Gabriel Mountains. Peak metamorphic temperature in this area was below 480 C and amphibole ages should thus indicate time of crystallization rather than subsequent cooling. Four phengite [sup 40]Ar/[sup 39]Ar ages of 55--61 Ma from Pelona Schist and mylonite indicate rapid cooling from peak metamorphic temperatures, consistent with subduction refrigeration.

  14. Measuring Model Rocket Engine Thrust Curves

    ERIC Educational Resources Information Center

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  15. Measuring Model Rocket Engine Thrust Curves

    ERIC Educational Resources Information Center

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  16. Thrust bolting: roof bolt support apparatus

    DOEpatents

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  17. Mu rhythm desynchronization by tongue thrust observation

    PubMed Central

    Sakihara, Kotoe; Inagaki, Masumi

    2015-01-01

    We aimed to investigate the mu rhythm in the sensorimotor area during tongue thrust observation and to obtain an answer to the question as to how subtle non-verbal orofacial movement observation activates the sensorimotor area. Ten healthy volunteers performed finger tap execution, tongue thrust execution, and tongue thrust observation. The electroencephalogram (EEG) was recorded from 128 electrodes placed on the scalp, and regions of interest were set at sensorimotor areas. The event-related desynchronization (ERD) and event-related synchronization (ERS) for the mu rhythm (8–13 Hz) and beta (13−25 Hz) bands were measured. Tongue thrust observation induced mu rhythm ERD, and the ERD was detected at the left hemisphere regardless whether the observed tongue thrust was toward the left or right. Mu rhythm ERD was also recorded during tongue thrust execution. However, temporal analysis revealed that the ERD associated with tongue thrust observation preceded that associated with execution by approximately 2 s. Tongue thrust observation induces mu rhythm ERD in sensorimotor cortex with left hemispheric dominance. PMID:26441599

  18. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If...

  19. Analysis of reacting flowfields in low-thrust rocket engines and plumes

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan Mitchell

    The mixing and combustion processes in small gaseous hydrogen-oxygen thrusters and plumes are studied by means of a computational model developed as a general purpose analytic procedure for solving low speed, reacting, internal flowfields. The model includes the full Navier-Stokes equations coupled with species diffusion equations for a hydrogen-oxygen reaction kinetics system as well as the option to use either the k-Epsilon or q-Omega low Reynolds number, two-equation turbulence models. Solution of the governing equations is accomplished by a finite-volume formulation with central-difference spatial discretizations and an explicit, four-stage, Runge Kutta time-integration procedure. The Runge-Kutta scheme appears to provide efficient convergence when applied to the calculation of turbulent, reacting flowfields in these small thrusters. Appropriate boundary conditions are developed to properly model propellant mass flowrates and regenerative wall cooling. The computational method is validated against measured engine performance parameters on a global level, as well as experimentally obtained exit plane and plume flowfield properties on a local level. The model does an excellent job of predicting the measured performance trends of an auxiliary thruster as a function of O/F ratio, although the performance levels are consistently underpredicted by approximately 4 percent. These differences arise because the extent to which the wall coolant layer and combustion gases mix and react is underpredicted. Predictions of velocity components, temperature and species number densities in the near-field plume regions of several low-thrust engines show reasonable agreement with experimental data obtained by two separate laser diagnostic techniques. Discrepancies between the predictions and measurements are primarily due to three-dimensional mixing processes which are not accounted for in the analysis. Both comparisons with experiment and the evident reason for errors in absolute

  20. A possible explanation for foreland thrust propagation

    NASA Astrophysics Data System (ADS)

    Panian, John; Pilant, Walter

    1990-06-01

    A common feature of thin-skinned fold and thrust belts is the sequential nature of foreland directed thrust systems. As a rule, younger thrusts develop in the footwalls of older thrusts, the whole sequence propagating towards the foreland in the transport direction. As each new younger thrust develops, the entire sequence is thickened; particularly in the frontal region. The compressive toe region can be likened to an advancing wave; as the mountainous thrust belt advanced the down-surface slope stresses drive thrusts ahead of it much like a surfboard rider. In an attempt to investigate the stresses in the frontal regions of thrustsheets, a numerical method has been devised from the algorithm given by McTigue and Mei [1981]. The algorithm yields a quickly computed approximate solution of the gravity- and tectonic-induced stresses of a two-dimensional homogeneous elastic half-space with an arbitrarily shaped free surface of small slope. A comparison of the numerical method with analytical examples shows excellent agreement. The numerical method was devised because it greatly facilitates the stress calculations and frees one from using the restrictive, simple topographic profiles necessary to obtain an analytical solution. The numerical version of the McTigue and Mei algorithm shows that there is a region of increased maximum resolved shear stress, τ, directly beneath the toe of the overthrust sheet. Utilizing the Mohr-Coulomb failure criterion, predicted fault lines are computed. It is shown that they flatten and become horizontal in some portions of this zone of increased τ. Thrust sheets are known to advance upon weak decollement zones. If there is a coincidence of increased τ, a weak rock layer, and a potential fault line parallel to this weak layer, we have in place all the elements necessary to initiate a new thrusting event. That is, this combination acts as a nucleating center to initiate a new thrusting event. Therefore, thrusts develop in sequence

  1. Comparison of three thrust calculation methods using in-flight thrust data

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.

    1981-01-01

    The gross thrust of an experimental airplane was determined by each method using the same flight maneuvers and generally the same data parameters. Coefficients determined from thrust stand calibrations for each of the three methods were then extrapolated to cruise flight conditions. The values of total aircraft gross thrust calculated by the three methods for cruise flight conditions agreed within + or - 3 percent. The disagreement in the values of thrust calculated by the different techniques manifested itself as a bias in the data. There was little scatter (0.5 percent) for the thrust levels examined in flight.

  2. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  3. Vortex Ring State and Asymmetric Thrust Oscillations

    NASA Astrophysics Data System (ADS)

    McCauley, Gregory; Savas, Omer; Caradonna, Francis

    2008-11-01

    When the helical vortices of a rotor are not convected away, the vortices may form a ring-like structure about the rotor disk. This vortex ring state (VRS) is most common during rapid descent and leads to thrust oscillations coupled to the formation and subsequent breakdown of the ring. Experimental observations at and near VRS were made using strobed particle image velocimetry on a three-blade rotor in a towing tank. Simultaneous strain gage readings allowed direct measurement of the rotor's thrust history in this state. Operating conditions near the cusp of VRS were investigated to offer insight into the initial evolution of this undesirable state. In addition, asymmetries in the periodic thrust histories during non-axial descent are analyzed in conjunction with corresponding vorticity evolutions. Salient features of the vortex wake structure during highly asymmetric thrust oscillations are discussed in contrast to VRS cases with nearly symmetric thrust oscillations.

  4. Regenerative Electroless Etching of Silicon.

    PubMed

    Kolasinski, Kurt W; Gimbar, Nathan J; Yu, Haibo; Aindow, Mark; Mäkilä, Ermei; Salonen, Jarno

    2017-01-09

    Regenerative electroless etching (ReEtching), described herein for the first time, is a method of producing nanostructured semiconductors in which an oxidant (Ox1 ) is used as a catalytic agent to facilitate the reaction between a semiconductor and a second oxidant (Ox2 ) that would be unreactive in the primary reaction. Ox2 is used to regenerate Ox1 , which is capable of initiating etching by injecting holes into the semiconductor valence band. Therefore, the extent of reaction is controlled by the amount of Ox2 added, and the rate of reaction is controlled by the injection rate of Ox2 . This general strategy is demonstrated specifically for the production of highly luminescent, nanocrystalline porous Si from the reaction of V2 O5 in HF(aq) as Ox1 and H2 O2 (aq) as Ox2 with Si powder and wafers.

  5. Variable ratio regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  6. [Regenerative medicine: history and perspectives].

    PubMed

    Okabayashi, Koji; Asashima, Makoto

    2008-05-01

    Regenerative medicine using stem cells is one of the most important topics today. Embryonic stem cells (ES cells) are useful in the studies of the differentiation of various cells or tissues for transplantation therapy, because of their pluripotency to differentiate into almost all types of cells in the body. However, it is controversial to use human ES cells, because it is necessary to sacrifice the life of human embryos for the establishment of these cells. Induced pluripotent stem cells (iPS cells) generated from somatic cells of patients are one of the alternative sources of human pluripotent stem cells while avoiding ethical problems. Epigenetic studies using iPS cells may be valuable to find the way to control cell differentiation more effectively.

  7. Unitized regenerative fuel cell systems

    SciTech Connect

    Mitlitsky, F; Molter, T M; Myers, B; Weisberg, A H

    1998-09-10

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs).[1] URFC systems are being designed and developed for a variety of applications, including high altitude long endurance (HALE) solar rechargeable aircraft (SRA), zero emission vehicles (ZEVs), hybrid energy storage/propulsion systems for spacecraft, energy storage for remote (off-grid) power sources, and peak shaving for on-grid applications.[1-10] Energy storage for HALE SRA was the original application for this set of innovations, and a prototype solar powered aircraft (Pathfinder-Plus) recently set another altitude record for all propeller-driven aircraft on August 6, 1998, when it flew to 80,285 feet (24.47 km).[11

  8. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  9. Oxygen/Alcohol Dual Thrust RCS Engines

    NASA Technical Reports Server (NTRS)

    Angstadt, Tara; Hurlbert, Eric

    1999-01-01

    A non-toxic dual thrust RCS engine offers significant operational, safety, and performance advantages to the space shuttle and the next generation RLVs. In this concept, a single engine produces two thrust levels of 25 and 870 lbf. The low thrust level is provided by the spark torch igniter, which, with the addition of 2 extra valves, can also be made to function as a vernier. A dual thrust RCS engine allows 38 verniers to be packaged more efficiently on a vehicle. These 38 vemiers improve translation and reduce cross coupling, thereby providing more pure roll, pitch, and yaw maneuvers of the vehicle. Compared to the 6 vemiers currently on the shuttle, the 38 dual thrust engines would be 25 to 40% more efficient for the same maneuvers and attitude control. The vernier thrust level also reduces plume impingement and contamination concerns. Redundancy is also improved, thereby improving mission success reliability. Oxygen and ethanol are benign propellants which do not create explosive reaction products or contamination, as compared to hypergolic propellants. These characteristics make dual-thrust engines simpler to implement on a non-toxic reaction control system. Tests at WSTF in August 1999 demonstrated a dual-thrust concept that is successful with oxygen and ethanol. Over a variety of inlet pressures and mixture ratios at 22:1 area ratio, the engine produced between 230 and 297 sec Isp, and thrust levels from 8 lbf. to 50 lbf. This paper describes the benefits of dual-thrust engines and the recent results from tests at WSTF.

  10. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  11. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  12. Optimal thermoeconomic performance of an irreversible regenerative ferromagnetic Ericsson refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Xu, Zhichao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2016-07-01

    On the basis of the Langevin theory of classical statistical mechanics, the magnetization, entropy, and iso-field heat capacity of ferromagnetic materials are analyzed and their mathematical expressions are derived. An irreversible regenerative Ericsson refrigeration cycle by using a ferromagnetic material as the working substance is established, in which finite heat capacity rates of low and high temperature reservoirs, non-perfect regenerative heat of the refrigeration cycle, additional regenerative heat loss, etc. are taken into account. Based on the regenerative refrigeration cycle model, a thermoeconomic function is introduced as one objective function and optimized with respect to the temperatures of the working substance in the two iso-thermal processes. By means of numerical calculation, the effects of the effective factor of the heat exchangers in high/low temperature reservoir sides, efficiency of the regenerator, heat capacity rate of the low temperature reservoir, and applied magnetic field on the optimal thermoeconomic function as well as the corresponding cooling rate and coefficient of performance are revealed. The results obtained in this paper can provide some theoretical guidance for the optimal design of actual regenerative magnetic refrigerator cycle.

  13. Modeling regenerative braking and storage for vehicles

    SciTech Connect

    Wicks, F.; Donnelly, K.

    1997-12-31

    The fuel savings benefits of regenerative braking and storage for vehicles are often described but not quantified. For example, the federal government and automobile manufacturers are sponsoring a Program for a New Generation of Vehicles (PGNV) with a goal of obtaining a performance of 80 mpg in a family size car. It is typically suggested that such a vehicle will be a hybrid engine and electric drive with regenerative braking. The authors note that while regenerative braking has the potential of saving fuel, it may also do more harm than good as a result of additional weight, less than ideal charge/discharge efficiency on the batteries or storage flywheels and the limited portion of the entire driving cycle when regenerative braking can be utilized. The authors also noted that if regenerative braking can have a net benefit, it would be on a heavy vehicle such as a municipal bus because of the frequent stop and go requirements for both traffic light and passengers. Thus the authors initiated a study of regenerative braking on such a vehicle. The resulting analysis presented in this paper includes data following municipal buses to define the driving cycle, modeling the bus power requirements from weight, aerodynamics and rolling resistance, and then calculating the fuel saving that could result from an ideal regenerative braking system.

  14. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  15. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  16. Experimental and theoretical comparison of the Probe Thrust Vector Control concept

    NASA Technical Reports Server (NTRS)

    Cavalleri, Robert; Tiarn, Weihnurng; Lewis, Lynn

    1991-01-01

    A concept that offers an alternate method for thrust vector control of liquid or solid propellant rockets is the use of a solid body or probe that is inserted on demand through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternative to that of a gimbaled nozzle or a Liquid Injection Thrust Vector control system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment is time consuming and expensive, whereas a CFD assessment is time- and cost-effective. Two key requirements of the concept are PTVC vectoring performance and active cooling requirements for the probe to maintain its thermal and structural integrity. The objective of the work reported here is presentation of experimental subscale cold flow tests and comparison of these tests with CFD predictions and the response time of the PTVC system.

  17. Optimal design of thrust force in vertical-type HTS bulk LRM

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Matsumoto, H.; Eguchi, M.

    2005-10-01

    We proposed the vertical-type linear reluctance motor (LRM) with HTS bulks cooled in zero-field. The double-sided HTS bulk LRM is propelled contactlessly only by electromagnetic repulsive force from both sides of a double-sided armature guideway. This paper presents optimal thrust force design based on the dependence of thrust on the size of HTS bulk attached to the cage in vertical-type HTS bulk LRM. The thrust force is calculated by Finite Element Method (FEM), taking into account the E-J characteristic. Improved HTS bulk LRM which is 1.5 times heavier than the previous cage can be propelled contactlessly in propulsion and guidance simulation.

  18. Benchmarking numerical models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  19. Collar nut and thrust ring

    DOEpatents

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  20. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  1. Preliminary investigation of cooling-air ejector performance at pressure ratios from 1 to 10

    NASA Technical Reports Server (NTRS)

    Ellis, C W; Hollister, D P; Sargent, A F , Jr

    1951-01-01

    Preliminary investigation was made of conical cooling air ejector at primary pressure ratios from 1 to 10. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The cooling-air flow was maintained at zero and the resulting pressure variation in the shroud indicated pumping ability. The gross thrust of the ejector and nozzle were compared. Several ratios of the spacing between the nozzle and shroud exit to the nozzle exit diameter were investigated for several shroud to nozzle exit diameter ratios. Maximum gross thrust loss occurred under conditions of zero cooling-air flow and was as much as 35 percent below nozzle jet thrust. For minimum thrust loss, ejector should be designed with as low diameter and spacing ratio as possible.

  2. Libby thrust belt and adjacent structures - new factors to consider in thrust tectonics of northwestern Montana

    SciTech Connect

    Harrison, J.E.; Cressman, E.R.

    1985-05-01

    About 40 mi (65 km) west of the Rocky Mountain trench and at least 9 mi (15 km) above the sole detachment of the Rocky Mountain thrust belt is a zone of Cretaceous-Tertiary thrust faults up to 25 mi (40 km) wide in middle Proterozoic and Cambrian rocks. This zone (the Libby thrust belt) extends northward from the Lewis and Clark line to the northwest corner of Montana. Within the Libby thrust belt is a series of complex ramps, horsts, splays, and folds that accommodate a tectonic shortening of about 6.2 mi (10 km). Backsliding has occurred on some listric thrust faults, and middle Tertiary(.) extensional horst-and-graben faults offset or join most thrust faults. On the east, the lead thrust ramps up onto the broad open Purcell anticlinorium. On the west, the Libby thrust belt is overridden in the north by the lead thrust of the Yaak plate (whose central part is the broad, open Sylvanite anticline), and in the south, it is overridden by the Moyie thrust (which trends northwest and also overrides the west edge of the Yaak plate). Geologic cross sections suggest that the Belt rocks have overridden the Cambrian at shallow depths only and that Cambrian and younger Phanerozoic strata probably do not occur at greater depths beneath and west of the Purcell anticlinorium. This interpretation differs significantly from interpretations that suggest intercalation of major wedges of Paleozoic and Belt rocks at depth in this same area.

  3. Low-thrust chemical orbit transfer propulsion

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    The need for large structures in high orbit is reported in terms of the many mission opportunities which require such structures. Mission and transportation options for large structures are presented, and it is shown that low-thrust propulsion is an enabling requirement for some missions and greatly enhancing to many others. Electric and low-thrust chemical propulsion are compared, and the need for an requirements of low-thrust chemical propulsion are discussed in terms of the interactions that are perceived to exist between the propulsion system and the large structure.

  4. Improvement of propeller static thrust estimation

    NASA Technical Reports Server (NTRS)

    Brusse, J.; Kettleborough, C. F.

    1975-01-01

    The problem of improving the performance estimation of propellers operating in the heavily loaded static thrust condition was studied. The Goldstein theory was assessed as it applies to propellers operating in the static thrust. A review of theoretical considerations is presented along with a summary of the attempts made to obtain a numerical solution. The chordwise pressure distribution was determined during operation at a tip speed of 500 ft/sec. Chordwise integration of the pressures leads to the spanwise load distribution and further integration would give the axial thrust.

  5. Orbital motion under continuous tangential thrust

    NASA Technical Reports Server (NTRS)

    Boltz, Frederick W.

    1992-01-01

    The effect of continuous tangential thrust on the orbital motion and mass loss of a vehicle initially in a circular orbit is investigated analytically. It is shown that, for a thrust-to-weight ratio of greater than 0.16175, escape speed will eventually be reached along an unwinding spiral trajectory. For lower thrust-to-weight ratios, escape speed is never attained, and the flight path oscillates around a logarithmic spiral trajectory. Formulas are obtained for the approximate orbital motion and time of flight along each type of trajectory and for mass loss due to expenditure of rocket propellant.

  6. An Experimental Study of Thrust Augmenting Ejectors

    DTIC Science & Technology

    1983-12-01

    A , AN EXPERIMENTAL STUDY OF THRUST AUG’XENTING EJECTORS THESIS William D. Lewis Captain 11. S. Army AFIT/GAE/Ai/83D- 13 1 DTIC Li~i ELECTE JANI...83D-13 AN LEPERIMENTAL STUDY OF THRUST AUG-M..TING EJECTORS "l•HSIS William D. Levis Captain U. S. Army AF1T/GAAE/AA/$3D- 13 ’jK Approved for public...release; distribution unliaited I V .,, AFIT/GAE/AA/83D- 13 AN EXPERIMENTAL STUDY OF THRUST AUGMENTING EJECTORS THESIS Presented to *he Faculty of the

  7. Stem cell research and regenerative medicine in 2014: first year of regenerative medicine in Japan.

    PubMed

    Okano, Hideyuki

    2014-09-15

    It is my great pleasure to announce that we were able to publish the Japan Issue in Stem Cells and Development, especially in this year 2014. This year, 2014, is said to be the First Year of Regenerative Medicine in Japan. This movement is likely to be based on the establishment of a new law system regarding regenerative medicine (an Act for Ensuring the Safety of Regenerative Medicine or the so-called Regenerative Medicine Law) and the partial revision of the Pharmaceutical Affairs Law (PAL). Both laws will come into effect in 2014 in this country. These new law systems are expected to have a great impact on the facilitation of R&D related to regenerative medicine and stem cell biology. In the present Japan Issue, some excellent stem cell research in this country will be introduced to celebrate the First Year of Regenerative Medicine in Japan.

  8. A continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers: improvements

    SciTech Connect

    Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    1999-02-01

    Spiral plate heat exchangers as adsorbers have been proposed, and a prototype heat regenerative adsorption refrigerator using activated carbon-methanol pair has been developed and tested. Various improvements have been made, the authors get a specific cooling power for 2.6 kg-ice/day-kg adsorbent at the condition of generation temperature lower than 100 C. Discussions on the arrangements of thermal cycles and influences of design are shown.

  9. Electron Cooling

    NASA Astrophysics Data System (ADS)

    Ellison, Timothy J. P.

    1991-08-01

    Electron cooling is a method of reducing the 6 -dimensional phase space volume of a stored ion beam. The technique was invented by Budker and first developed by him and his colleagues at the Institute for Nuclear Physics in Novosibirsk. Further studies of electron cooling were subsequently performed at CERN and Fermilab. At the Indiana University Cyclotron Facility (IUCF) an electron cooling system was designed, built, and commissioned in 1988. This was the highest energy system built to date (270 keV for cooling 500 MeV protons) and the first such system to be used as an instrument for performing nuclear and atomic physics experiments. This dissertation summarizes the design principles; measurements of the longitudinal drag rate (cooling force), equilibrium cooled beam properties and effective longitudinal electron beam temperature. These measurements are compared with theory and with the measured performance of other cooling systems. In addition the feasibility of extending this technology to energies an order of magnitude higher are discussed.

  10. Regenerative medicine: a primer for paediatricians.

    PubMed

    Polak, Dame Julia M

    2009-11-01

    Regenerative medicine is a multidisciplinary field concerned with the replacement, repair or restoration of injured tissues. Cell therapy and tissue engineering are part of the broader remit of regenerative medicine. The ultimate aim is to provide safe and efficient therapies for a large number of clinical conditions. Novel regenerative therapies are already in use in initial clinical trials. The main components of regenerative medicine are cells and specially designed materials. A vast variety of cells types are currently used including: adult and stem cells. Equally a large number of natural and man-made materials have been investigated. Despite of considerable advances many challenges lie ahead. These are summarised in this review article. The field is slowly maturing and the initial unhelpful hype has been replaced by a more measured, mature and realistic outlook.

  11. Regenerative medicine applications in combat casualty care.

    PubMed

    Fleming, Mark E; Bharmal, Husain; Valerio, Ian

    2014-03-01

    The purpose of this report is to describe regenerative medicine applications in the management of complex injuries sustained by service members injured in support of the wars in Afghanistan and Iraq. Improvements in body armor, resuscitative techniques and faster transport have translated into increased patient survivability and more complex wounds. Combat-related blast injuries have resulted in multiple extremity injuries, significant tissue loss and amputations. Due to the limited availability and morbidity associated with autologous tissue donor sites, the introduction of regenerative medicine has been critical in managing war extremity injuries with composite massive tissue loss. Through case reports and clinical images, this report reviews the application of regenerative medicine modalities employed to manage combat-related injuries. It illustrates that the novel use of hybrid reconstructions combining traditional and regenerative medicine approaches are an effective tool in managing wounds. Lessons learned can be adapted to civilian care.

  12. Applications of regenerative medicine in organ transplantation.

    PubMed

    Jain, Aditya; Bansal, Ramta

    2015-01-01

    A worldwide shortage of organs for clinical implantation establishes the need to bring forward and test new technologies that will help in solving the problem. The concepts of regenerative medicine hold the potential for augmenting organ function or repairing damaged organ or allowing regeneration of deteriorated organs and tissue. Researchers are exploring possible regenerative medicine applications in organ transplantation so that coming together of the two fields can benefit each other. The present review discusses the strategies that are being implemented to regenerate or bio-engineer human organs for clinical purposes. It also highlights the limitations of the regenerative medicine that needs to be addressed to explore full potential of the field. A web-based research on MEDLINE was done using keywords "regenerative medicine," "tissue-engineering," "bio-engineered organs," "decellularized scaffold" and "three-dimensional printing." This review screened about 170 articles to get the desired knowledge update.

  13. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  14. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  15. Regenerative medicine for neurological disorders.

    PubMed

    Park, Dong-Hyuk; Eve, David J; Chung, Yong-Gu; Sanberg, Paul R

    2010-03-16

    The annual meeting of the American Society for Neural Therapy and Repair (ASNTR) has always introduced us to top-notch and up-to-date approaches for regenerative medicine related to neuroscience, ranging from stem cell-based therapy to novel drugs. The 16th ASNTR meeting focused on a variety of different topics, including the unknown pathogenesis or mechanisms of specific neurodegenerative diseases, stem cell biology, and development of novel alternative medicines or devices. Newly developed stem cells, such as amniotic epithelial stem cells and induced pluripotent stem cells, as well as well-known traditional stem cells, such as neural, embryonic, bone marrow mesenchymal, and human umbilical cord blood-derived stem cells, were reported. A number of commercialized stem cells were also covered at this meeting. Fetal neural tissues, such as ventral mesencephalon, striatum, and Schwann cells, were investigated for neurodegenerative diseases or spinal cord injury. A number of studies focused on novel methods for drug monitoring or graft tracking, and combination therapy with stem cells and medicine, such as cytokines or trophic factors. Finally, the National Institutes of Health guidelines for human stem cell research, clinical trials of commercialized stem cells without larger animal testing, and prohibition of medical tourism were big controversial issues that led to heated discussion.

  16. Clinical imaging in regenerative medicine

    PubMed Central

    Naumova, Anna V; Modo, Michel; Moore, Anna; Murry, Charles E; Frank, Joseph A

    2014-01-01

    In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring. PMID:25093889

  17. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  18. Along-Strike Variability in Erosion of the Nepalese Himalayan Thrust Belt

    NASA Astrophysics Data System (ADS)

    DeCelles, P. G.; Carrapa, B.; Cross, E. A., III; Ojha, T. P.; Reiners, P. W.

    2015-12-01

    We present 22 apatite fission track (AFT) and 82 single grain zircon He (ZHe) ages for thirty samples from Greater Himalayan (GH) and Lesser Himalayan (LH) rocks and AFT ages for two detrital samples from the Kaligandaki River and Modi Khola in central and western Nepal. At regional scale ages decrease from central to western Nepal. Ages in central Nepal are < 5 Ma with many < 2 Ma, whereas ages west of the Kaligandaki are 5-14 Ma. The sand samples are dominated by 8-6 Ma detrital AFT age populations. Thermal modeling of AFT and ZHe ages in western Nepal shows an episode of rapid cooling between 12 and 8 Ma during emplacement of the Ramgarh thrust. Rocks from lower structural positions have younger (< 8 Ma) ages, consistent with growth of the Lesser Himalayan duplex. Old cooling ages in western Nepal correlate with lower erosion rates, drier climate, and an upward-convex to gently sloping topographic profile. Precipitation in western Nepal is concentrated at the front of the high-grade, GH klippen, which orographically shelter the thrust belt to the north. Younger ages in central Nepal instead correlate with higher erosion rates, northward penetration of intense monsoonal precipitation into the interior of the range, and development of an upward-concave topographic profile indicative of relatively intense erosion. This region lacks GH rocks south of the trace of the Main Central thrust, and the area between the Main Boundary and Main Frontal thrusts is lower than 1 km allowing precipitation to penetrate farther north. Higher erosion in central compared to western Nepal is also supported by the geology: resistant GH rocks in southern central Nepal are limited to the Kathmandu klippe, whereas in western Nepal they cover a larger area in the Dadeldhura and Jajarkot klippen. Cooling ages in western Nepal are interpreted to date the timing of thrust-sheet emplacement as supported by a southward decrease of ages. In central Nepal the correlation between intense

  19. Torsional thrust stand for characterization of microthrusters

    NASA Astrophysics Data System (ADS)

    Cheah, K. H.; Low, K. S.

    2016-10-01

    This paper describes the setup of a precise thrust stand based on torsional pendulum design for characterizing the performance of microthrusters. Calibration has been carried out by using an improved version of electrostatic calibrator, which produces a wide range of accurate and repeatable calibration force. After the calibration, the thrust stand can resolve constant force from 40μN to 3.4mN and impulse bit from 7μNs to 340μNs. The usefulness of the thrust stand has been demonstrated by measuring the performance of two different microthrusters: a pulsed plasma thruster that produces impulse bit of 23.15μNs and a vaporizing liquid microthruster that produces steady state thrust of 633.5μN.

  20. Combination radial and thrust magnetic bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor)

    2002-01-01

    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.

  1. Tests on Thrust Augmenters for Jet Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Shoemaker, James M

    1932-01-01

    This series of tests was undertaken to determine how much the reaction thrust of a jet could be increased by the use of thrust augmenters and thus to give some indication as to the feasibility of jet propulsion for airplanes. The tests were made during the first part of 1927 at the Langley Memorial Aeronautical Laboratory. A compressed air jet was used in connection with a series of annular guides surrounding the jet to act as thrust augmenters. The results show that, although it is possible to increase the thrust of a jet, the increase is not large enough to affect greatly the status of the problem of the application of jet propulsion to airplanes.

  2. The NASA low thrust propulsion program

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Bennett, Gary L.

    1989-01-01

    The NASA OAST Propulsion, Power, and Energy Division supports a low thrust propulsion program aimed at providing high performance options for a broad range of near-term and far-term mission and vehicles. Low thrust propulsion has a major impact on the mission performance of essentially all spacecraft and vehicles. On-orbit lifetimes, payloads, and trip times are significantly impacted by low thrust propulsion performance and integration features for Earth-to-orbit (ETO) vehicles, Earth-orbit and planetary spacecraft, and large platforms in Earth orbit. Major emphases are on low thrust chemical propulsion, both storables and hydrogen/oxygen; low-power (auxiliary) electric arcjects and resistojets; and high-power (primary) electric propulsion, including ion, magnetoplasmadynamic (MPD), and electrodeless concepts. The major recent accomplishments of the program are presented and their impacts discussed.

  3. Thrust measurement of dimethyl ether arcjet thruster

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    2011-04-01

    The present paper describes thrust measurement results for an arcjet thruster using Dimethyl ether (DME) as the propellant. DME is an ether compound and can be stored as a liquid due to its relatively low freezing point and preferable vapor pressure. The thruster successfully produced high-voltage mode at DME mass flow rates above 30 mg/s, whereas it yielded low-voltage mode below 30 mg/s. Thrust measurements yielded a thrust of 0.15 N and a specific impulse of 270 s at a mass flow rate of 60 mg/s with a discharge power of 1300 W. The DME arcjet thruster was comparable to a conventional one for thrust and discharge power.

  4. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE PAGES

    Backus, Sterling; Durfee, Charles; Lemons, Randy; ...

    2017-02-10

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  5. Preserving human cells for regenerative, reproductive, and transfusion medicine

    PubMed Central

    Asghar, Waseem; Assal, Rami El; Shafiee, Hadi; Anchan, Raymond M.; Demirci, Utkan

    2014-01-01

    Cell cryopreservation enables maintaining cellular life at sub-zero temperatures by slowing down biochemical processes. Various cell types are routinely cryopreserved in modern reproductive, regenerative, and transfusion medicine. Current cell cryopreservation methods involve freezing (slow/rapid) or vitrifying cells in the presence of a cryoprotective agent (CPA). Although these methods are clinically utilized, cryo-injury due to ice crystals, osmotic shock, and CPA toxicity cause loss of cell viability and function. Recent approaches using minimum volume vitrification provide alternatives to the conventional cryopreservation methods. Minimum volume vitrification provides ultra-high cooling and rewarming rates that enable preserving cells without ice crystal formation. Herein, we review recent advances in cell cryopreservation technology and provide examples of techniques that are utilized in oocyte, stem cell, and red blood cell cryopreservation. PMID:24995723

  6. Regenerative fuel cell engineering - FY99

    SciTech Connect

    Michael A. Inbody; Rodney L. Borup; James C. Hedstrom; Jose Tafoya; Byron Morton; Lois Zook; Nicholas E. Vanderborgh

    2000-01-01

    The authors report the work conducted by the ESA-EPE Fuel Cell Engineering Team at Los Alamos National Laboratory during FY99 on regenerative fuel cell system engineering. The work was focused on the evaluation of regenerative fuel cell system components obtained through the RAFCO program. These components included a 5 kW PEM electrolyzer, a two-cell regenerative fuel cell stack, and samples of the electrolyzer membrane, anode, and cathode. The samples of the electrolyzer membrane, anode, and cathode were analyzed to determine their structure and operating characteristics. Tests were conducted on the two-cell regenerative fuel cell stack to characterize its operation as an electrolyzer and as a fuel cell. The 5 kW PEM electrolyzer was tested in the Regenerative Fuel Cell System Test Facility. These tests served to characterize the operation of the electrolyzer and, also, to verify the operation of the newly completed test facility. Future directions for this work in regenerative fuel cell systems are discussed.

  7. Regenerative Medicine Applications in Wound Care.

    PubMed

    Ali Nilforoushzadeh, Mohammad; Mollapour Sisakht, Mahsa; Marcus Seifalian, Alexander; Amir Amirkhani, Mohammad; Reza Banafsheh, Hamid; Verdi, Javad; Sharifzad, Farzaneh; Taghiabadi, Ehsan

    2017-09-29

    During the last two decades, a number of studies have been published on different aspects of regenerative medicine in the field of dermatology. The following article aims at integrating all available information about regenerative dermatology, from the past to the present. In addition, we focused on most well-known application of regenerative medicine in dermatology field, wound healing, especially for burns and non-healing wounds based on available skin replacement in market. The present review focuses on providing an overview on available products in market and on-going clinical trials. These are valuable to get the picture of latest trends and also helpful for clinicians. In future, regenerative dermatology may encompass more effective and time-saving therapies for treating skin injuries and diseases. However, more clinical trials are required to establish standardized protocols and ascertain the safety, long-term effects, and efficacy of the novel therapeutic methods in regenerative dermatology. Despite several improvements in this field, extensive research is required for performing successful and precise clinical trials in future. Further improvements would enable the researchers to develop new products in this field. In this review, we have discussed the most recent breakthroughs in the field of regenerative dermatology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Current overview on challenges in regenerative endodontics

    PubMed Central

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan

    2015-01-01

    Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. Materials and Methods: A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were “regenerative endodontics,” “dental stem cells,” “growth factor regeneration,” “scaffolds,” and “challenges in regeneration.” This review article screened about 150 articles and then the relevant information was compiled. Results: Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Conclusion: Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth. PMID:25657518

  9. Current overview on challenges in regenerative endodontics.

    PubMed

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan

    2015-01-01

    Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were "regenerative endodontics," "dental stem cells," "growth factor regeneration," "scaffolds," and "challenges in regeneration." This review article screened about 150 articles and then the relevant information was compiled. Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth.

  10. Thrust Vectoring to Eliminate the Vertical Stabilizer

    DTIC Science & Technology

    1979-12-01

    THRUST VECTORING TO ELIMINATE THE VERTICAL STABILIZER THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of...qualities is shown to be 1 rad/sec. I i~ i 2i, THRUST VECTORING TO ELIMINATE THE VERTICAL STABILIZER I. Introduction There is increasing concern ove" he...the height of the cockpit will not help very much and would reduce the pilot’s visibility. Reduction of the size or elimination of the vertical

  11. GSFC Technology Thrusts and Partnership Opportunities

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline

    2010-01-01

    This slide presentation reviews the technology thrusts and the opportunities to partner in developing software in support of the technological advances at the Goddard Space Flight Center (GSFC). There are thrusts in development of end-to-end software systems for mission data systems in areas of flight software, ground data systems, flight dynamic systems and science data systems. The required technical expertise is reviewed, and the supported missions are shown for the various areas given.

  12. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  13. Modes of thrust generation in flying animals

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Song, Jialei; Tobalske, Bret; Luo Team; Tobalske Team

    2016-11-01

    For flying animals in forward flight, thrust is usually much smaller as compared with weight support and has not been given the same amount of attention. Several modes of thrust generation are discussed in this presentation. For insects performing slow flight that is characterized by low advance ratios (i.e., the ratio between flight speed and wing speed), thrust is usually generated by a "backward flick" mode, in which the wings moves upward and backward at a faster speed than the flight speed. Paddling mode is another mode used by some insects like fruit flies who row their wings backward during upstroke like paddles (Ristroph et al., PRL, 2011). Birds wings have high advance ratios and produce thrust during downstroke by directing aerodynamic lift forward. At intermediate advance ratios around one (e.g., hummingbirds and bats), the animal wings generate thrust during both downstroke and upstroke, and thrust generation during upstroke may come at cost of negative weight support. These conclusions are supported by previous experiment studies of insects, birds, and bats, as well as our recent computational modeling of hummingbirds. Supported by the NSF.

  14. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  15. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  16. Turbulence modelling of flow fields in thrust chambers

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.

  17. Turbulence modelling of flow fields in thrust chambers

    NASA Astrophysics Data System (ADS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-02-01

    Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.

  18. Thrusting and sedimentation along an emergent thrust front: an example from the External Sierras of the Southern Pyrenees, Spain

    SciTech Connect

    Anastasio, D.J.; De Paor, D.G.

    1985-01-01

    Depending on the relative rates of thrusting and erosion, emergent thrusts, like glaciers, may advance or retreat while continually moving forward. The relative rates of thrusting and erosion as a thrust ruptures the land surface also control the mountain front geometry. For listric thrusts, the high angle of intersection with the land surface results in primarily upward rather than horizontal movement. If thrust movement is much faster than the prevailing erosion a large emergent toe will develop as the thrust sheet advances over its synorogenic deposits. Alternatively, if the erosion rates are generally faster than thrusting, synorogenic deposits will progressively onlap onto a receding mountain front. Comparable rates of thrusting and erosion result in steady state uplift and denudation. In the External Sierras the thrust front reached the synorogenic surface during the Paleogene and resulted in the accumulation of thick synorogenic deposits. Relatively slow rates of thrusting (<1mm/a) and uplift (<0.5mm/a) of the External Sierras, coupled with moderate erosion rates resulted in a near stationary mountain front. Despite this, temporal and spatial fluctuations in the thrusting resulted in three different mountain front geometries. In places, the thrust front has been buried by molasse, elsewhere, the emergent thrust sheet has deformed its proximal molasse by bulldozing, producing deposits analogous to push moraines, and in other places the frontal thrust has overridden its molasse. Striated cobbles within the molasse immediately below the frontal thrust may have functioned like ball bearings, reducing the friction with the overriding thrust sheet.

  19. Static Thrust and Power Characteristics of Six Full-Scale Propellers

    NASA Technical Reports Server (NTRS)

    Hartman, Erwin P; Biermann, David

    1940-01-01

    Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.

  20. Effect of micro cooling channels on a hydrogen peroxide monopropellant microthruster performance

    NASA Astrophysics Data System (ADS)

    Huh, Jeongmoo; Kwon, Sejin

    2015-12-01

    In this paper, a hydrogen peroxide monopropellant microthrusters with and without regenerative micro cooling channels were fabricated and performance test results were compared to determine cooling effect of the regenerative micro cooling channels. Photosensitive glass was used as microfabrication material, which is cost-effective for MEMS fabrication process. Nine photosensitive glasses was integrated using UV and thermal bonding and composed the microthrusters. 90wt% hydrogen peroxide was used both as monopropellant and cooling fluid. For hydrogen peroxide decomposition, catalyst was fabricated and inserted into the microchamber. Platinum was used as the catalyst active material and γ-alumina was used as catalyst support. Experimental testing was conducted to determine effect of the cooling channels and the chamber pressure, temperature and surface temperature were measured. The performance test results showed that it was possible to relieve the thermal shock of the micro thruster structure by as much as 64% by adding regenerative micro cooling channels on both sides of the microthruster chamber. However, the chamber pressure and temperature decreased by regenerative cooling channels due to excessive cooling effects.

  1. On the Thrust of a Single Electrode Electrohydrodynamic Thruster

    NASA Astrophysics Data System (ADS)

    Ilit', Tomáš; Váry, Michal; Valko, Pavol

    2015-03-01

    Linear thrust generation by a single pin emitter electrode under AC excitation has been studied. Presented are thrust measurements of a single electrode thruster, in comparison with classical, two electrode electrohydrodynamic thruster. The experiments show comparable thrust for both configurations at low voltage levels, suggesting higher thrust-to-weight ratio of single electrode thrusters at low applied voltages. Further, a hypothesis of single electrode thrust creation is proposed.

  2. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  3. Pressure Available for Cooling with Cowling Flaps

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1941-01-01

    Report presents the results of a full-scale investigation conducted in the NACA 20-foot tunnel to determine the pressure difference available for cooling with cowling flaps. The flaps were applied to an exit slot of smooth contour at 0 degree flap angle. Flap angles of 0 degree, 15 degrees, and 30 degrees were tested. Two propellers were used; propeller c which has conventional round blade shanks and propeller f which has airfoil sections extending closer to the hub. The pressure available for cooling is shown to be a direct function of the thrust disk-loading coefficient of the propeller.

  4. Regenerative medicine: Current therapies and future directions

    PubMed Central

    Mao, Angelo S.; Mooney, David J.

    2015-01-01

    Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies. PMID:26598661

  5. Regenerative Medicine and Stem Cells in Dermatology.

    PubMed

    Moioli, Eduardo K; Bolotin, Diana; Alam, Murad

    2017-05-01

    Clinically relevant regenerative medicine is still in its early stages of development. Difficulties in regenerating large-scale and complex structures, the lack of safety data, and the paucity of clinical trials have slowed the process of technological advance. To familiarize the clinician with techniques available in the laboratory and experimental approaches being tested clinically. In addition, a layout is discussed for how dermatologists can lead the way in bringing regenerative medicine to clinical reality. This article reviews the relevant literature on regenerative medicine for dermatological applications and discusses findings and techniques in a clinically relevant context. Multiple cell-free and cell-based approaches for regenerating dermatologic tissues have been reported in the basic science and clinical literature. These are reviewed in the order of complexity. Incremental steps are needed to apply the principles of regenerative medicine to simple medical problems first. Such a stepwise approach would commence, for example, with creation of single-function tissues that could fill soft-tissue defects and proceed to the development of fully functional skin grafts. Likewise, cell-free approaches can build the foundation for the more technically demanding cell-based strategies that are likely necessary for achieving the ultimate goal of regenerative dermatology.

  6. Regenerative principles enrich cardiac rehabilitation practice.

    PubMed

    Behfar, Atta; Terzic, Andre; Perez-Terzic, Carmen M

    2014-11-01

    Cardiovascular morbidity imposes a high degree of disability and mortality, with limited therapeutic options available in end-stage disease. Integral to standard of care, cardiac rehabilitation aims on improving quality-of-life and prolonging survival. The recent advent of regenerative technologies paves the way for a transformative era in rehabilitation medicine whereby, beyond controlling risk factors and disease progression, the prospect of curative solutions is increasingly tangible. To date, the spectrum of clinical experience in cardiac regenerative medicine relies on stem cell-based therapies delivered to the diseased myocardium either acutely/subacutely, after a coronary event, or in the setting of chronic heart failure. Application of autologous/allogeneic stem cell platforms has established safety and feasibility, with encouraging signals of efficacy. Newer protocols aim to purify cell populations in an attempt to eliminate nonregenerative and enrich for regenerative cell types before use. Most advanced technologies have been developed to isolate resident cell populations directly from the heart or, alternatively, condition cells from noncardiac sources to attain a disease-targeted lineage-specified phenotype for optimized outcome. Because a multiplicity of cell-based technologies has undergone phase I/II evaluation, pivotal trials are currently underway in larger patient populations. Translation of regenerative principles into clinical practice will increasingly involve rehabilitation providers across the continuum of patient care. Regenerative rehabilitation is thus an emerging multidisciplinary field, full of opportunities and ready to be explored.

  7. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-04-19

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  8. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  9. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  10. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  11. Static performance of a cruciform nozzle with multiaxis thrust-vectoring and reverse-thrust capabilities

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Asbury, Scott C.

    1992-01-01

    A multiaxis thrust vectoring nozzle designed to have equal flow turning capability in pitch and yaw was conceived and experimentally tested for internal, static performance. The cruciform-shaped convergent-divergent nozzle turned the flow for thrust vectoring by deflecting the divergent surfaces of the nozzle, called flaps. Methods for eliminating physical interference between pitch and yaw flaps at the larger multiaxis deflection angles was studied. These methods included restricting the pitch flaps from the path of the yaw flaps and shifting the flow path at the throat off the nozzle centerline to permit larger pitch-flap deflections without interfering with the operation of the yaw flaps. Two flap widths were tested at both dry and afterburning settings. Vertical and reverse thrust configurations at dry power were also tested. Comparison with two dimensional convergent-divergent nozzles showed lower but still competitive thrust performance and thrust vectoring capability.

  12. Vorticity dynamics and thrust during VRS

    NASA Astrophysics Data System (ADS)

    Savas, Omer; Green, Richard; Caradonna, Francis

    2007-11-01

    Under certain conditions of rapid descent of a rotorcraft, the vortices that usually trail below a rotor disk to form the helical vortex wake collapse into a ring-like structure around the plane of the disk, which is known as the vortex ring state (VRS). The formation and subsequent breakdown of the ring-like vortex is accompanied by large thrust excursions. In axial descent the thrust excursions are aperiodic, while in non-axial descent a periodicity on the order of several tens of rotor revolutions is observed. We discuss here experimental observations of the phase relation between the thrust cycle and vorticity distribution. The experiments were performed in a towing tank using a three-blade rotor. Rotor thrust was measured by strain gages and the vorticity fields using PIV. The flow structure as marked by vorticity distribution highlight the changes in the flow topology during the VRS cycles contrast the flow behavior at the leading and the trailing edges. The flow over the trailing edge exhibits large variations, whereas that over the leading edge is more tamed. Maxima of the VRS thrust oscillations correlate well with the maxima of enstrophy observed at the trailing edge of the rotor disk.

  13. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  14. Earthquake Surface Rupture of the Salt Range Thrust at the Himalayan Thrust Front in Pakistan

    NASA Astrophysics Data System (ADS)

    Meigs, A.; Yule, J. D.; Madden, C.; Yeats, R.; Hussain, A.; Akhtar, S. S.; Latif, A.; Waliullah, A.; Ashraf, M.; Ramzan, S.; Dasti, N.

    2007-12-01

    Considerable evidence from Nepal and India now indicates that the basal detachment of the Himalaya produces great earthquakes that result in large coseismic displacements at the thrust front in India and Nepal (the Main Frontal thrust). In contrast, knowledge of the earthquake potential of the Salt Range thrust in Pakistan (SRT) is virtually absent. It has been clear since the publication of the Salt Range maps of Gee (1989) that the SRT deforms young surficial deposits and is an active fault. What remains uncertain is whether surface rupturing events occur on the SRT, with what frequency those events occur, and what is the size of the associated earthquakes. In a field reconnaissance of the SRT in Spring, 2007, we were able to confirm that this thrust is an active fault, and we discovered numerous localities where the fault nearly reaches the surface, cutting all but the youngest few meters of colluvial deposits. Whereas our observations suggest that surface rupturing events occur on the SRT, a number of characteristics of the Pakistani Himalaya suggests the earthquake behavior of the basal detachment and thrust front may be substantially different than it is in India and Nepal to the southeast. Key differences include an uncertain, but lower, convergence rate at the thrust front (5 to 13 mm/yr), a low tapered thrust wedge, and localization of the basal detachment in a weak evaporite unit. In this sense, the front of the Zagros fold-and-thrust belt in Iran may be a more appropriate analog for the thrust front in Pakistan than the Himalayan thrust front to the southeast. Future mapping of deformed geomorphic surfaces and paleoseismic trenching along the SRT will provide the first direct evidence of the earthquake potential and recurrence of plate- boundary earthquakes in Pakistan. This knowledge is critical for hazard assessment in north-central Pakistan where more than 7 million people are likely to be affected by a great earthquake on the plate boundary.

  15. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  16. Therapeutic potential of nanoceria in regenerative medicine

    SciTech Connect

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet; Munusamy, Prabhakaran; Baer, Donald R.; McGinnis, James F.; Mattson, Mark P.; Self, William; Seal, Sudipta

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  17. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  18. Cardiovascular Regenerative Technologies: Update and Future Outlook

    PubMed Central

    Mallone, Anna; Weber, Benedikt; Hoerstrup, Simon P.

    2016-01-01

    In the effort of improving treatment for cardiovascular disease (CVD), scientists struggle with the lack of the regenerative capacities of finally differentiated cardiovascular tissues. In this context, the advancements in regenerative medicine contributed to the development of cell-based therapies as well as macro- and micro-scale tissue-engineering technologies. The current experimental approaches focus on different regenerative strategies including a broad spectrum of techniques such as paracrine-based stimulation of autologous cardiac stem cells, mesenchymal cell injections, 3D microtissue culture techniques and vascular tissue-engineering methods. These potential next-generation strategies are leading the way to a revolution in addressing CVD, and numerous studies are now undertaken to assess their therapeutic value. With this review, we provide an update on the current research directions, on their major challenges, limitations, and achievements. PMID:27721705

  19. Combined hydraulic and regenerative braking system

    SciTech Connect

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  20. Pulsed thrust measurements using electromagnetic calibration techniques

    SciTech Connect

    Tang Haibin; Shi Chenbo; Zhang Xin'ai; Zhang Zun; Cheng Jiao

    2011-03-15

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.

  1. Earth-Mars Low Thrust Orbit Transfer

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    Low-thrust trajectories with variable radial thrust is studied in this paper. The problem is tackled by solving the Hamilton- Jacobi-Bellman equation for the nonlinear dynamics. The dynamics of the system will be factorized in such a way that the new factorized system is accessible. The problem is tackled using the Approximating Sequence Riccati Equations (ASRE) method. The technique is based on Linear Quadratic Regulator (LQR) with fixed terminal state, which guarantees closed loop solution, instead of solving the two-point boundary value problem in which the classical optimal control is stated, this technique allows us to derive closed-loop solutions. This technique can be applied to any planet-to-planet transfer; it has been applied here to the Earth-Mars low-thrust transfer.

  2. Status of Low Thrust Work at JSC

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.

    2004-01-01

    High performance low thrust (solar electric, nuclear electric, variable specific impulse magnetoplasma rocket) propulsion offers a significant benefit to NASA missions beyond low Earth orbit. As NASA (e.g., Prometheus Project) endeavors to develop these propulsion systems and associated power supplies, it becomes necessary to develop a refined trajectory design capability that will allow engineers to develop future robotic and human mission designs that take advantage of this new technology. This ongoing work addresses development of a trajectory design and optimization tool for assessing low thrust (and other types) trajectories. This work targets to advance the state of the art, enable future NASA missions, enable science drivers, and enhance education. This presentation provides a summary of the low thrust-related JSC activities under the ISP program and specifically, provides a look at a new release of a multi-gravity, multispacecraft trajectory optimization tool (Copernicus) along with analysis performed using this tool over the past year.

  3. Regenerative potential of immature permanent teeth with necrotic pulps after different regenerative protocols.

    PubMed

    Nagy, Mohamed M; Tawfik, Hosam E; Hashem, Ahmed Abdel Rahman; Abu-Seida, Ashraf M

    2014-02-01

    Regenerative endodontics is a promising alternative treatment for immature teeth with necrotic pulps. The present study was performed to assess the regenerative potential of young permanent immature teeth with necrotic pulp after the following treatment protocols: (1) a mineral trioxide aggregate (MTA) apical plug, (2) the regenerative endodontic protocol (blood clot scaffold), and (3) the regenerative endodontic protocol with a blood clot and an injectable scaffold impregnated with basic fibroblast growth factor. Immature necrotic permanent maxillary central incisors (n = 36) of patients 9-13 years old were divided into 3 groups according to the treatment protocol: the MTA group (MTA apical plug), the REG group (regenerative endodontic protocol [blood clot]), and the FGF group (regenerative endodontic protocol [blood clot + injectable scaffold]). Follow-up was done up to 18 months. Standardized radiographs were digitally evaluated for an increase in root length and thickness, a decrease in the apical diameter, and a change in periapical bone density. After a follow-up period of 18 months, most of the cases showed radiographic evidence of periapical healing. Groups 2 and 3 showed a progressive increase in root length and width and a decrease in apical diameter. The regenerative endodontic procedure allowed the continued development of roots in teeth with necrotic pulps. The use of artificial hydrogel scaffold and basic fibroblast growth factor was not essential for repair. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Test plan pressure fed thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Dunn, Glenn

    1990-01-01

    Aerojet is developing the technology for the design of a reliable, low cost, efficient, and lightweight LOX/RP-1 pressure fed engine. This technology program is a direct result of Aerojet's liquid rocket booster (LRB) study and previous NASA studies that identified liquid engines using high bulk density hydrocarbon fuels as very attractive for a space transportation system (STS). Previous large thrust LOX/RP-1 engine development programs were characterized by costly development problems due to combustion instability damage. The combustion stability solution was typically obtained through trial and error methods of minimizing instability damage by degrading engine performance. The approach to this program was to utilize existing and newly developed combustion analysis models and design methodology to create a thrust chamber design with features having the potential of producing reliable and efficient operation. This process resulted in an engine design with a unique high thrust-per-element OFO triplet injector utilizing a low cost modular approach. Cost efficient ablative materials are baselined for the injector face and chamber. Technology demonstration will be accomplished through a hot fire test program using appropriately sized subscale hardware. This subscale testing will provide a data base to supplement the current industry data bank and to anchor and validate the applied analysis models and design methodology. Once anchored and validated, these analysis models and design methodology can be applied with greatly increased confidence to design and characterize a large scale pressure fed LOX/RP-1 thrust chamber. The objective of this test program is to generate a data base that can be used to anchor and validate existing analysis models and design methodologies and to provide early concept demonstration of a low cost, efficient LOX/RP-1 thrust chamber. Test conditions and hardware instrumentation were defined to provide data sufficient to characterize combustion

  5. Cooling vest

    NASA Technical Reports Server (NTRS)

    Kosmo, J.; Kane, J.; Coverdale, J.

    1977-01-01

    Inexpensive vest of heat-sealable urethane material, when strapped to person's body, presents significant uncomplicated cooling system for environments where heavy accumulation of metabolic heat exists. Garment is applicable to occupations where physical exertion is required under heavy protective clothing.

  6. Cool Andromeda

    NASA Image and Video Library

    2013-01-28

    In this new view of the Andromeda, also known as M31, galaxy from the Herschel space observatory, cool lanes of forming stars are revealed in the finest detail yet. M31 is the nearest major galaxy to our own Milky Way at a distance of 2.5 million light-ye

  7. Regenerative therapy: a periodontal-endodontic perspective.

    PubMed

    Kinaia, Bassam Michael; Chogle, Sami M A; Kinaia, Atheel M; Goodis, Harold E

    2012-07-01

    Periodontal and endodontic diseases are inflammatory responses leading to periodontal and pulpal tissue loss. Regenerative therapies aim to restore the lost structures to vitality and function. Various materials and treatments methods have been used such as bone grafts, guided tissue regeneration, enamel matrix derivatives, growth and differentiation factors, and stem cells. Although the current materials and methods demonstrated adequate clinical results, true and complete biological tissue regeneration is not yet attainable. The current article reviews chronologically the materials and methods used in periodontal and endodontic regeneration highlighting their clinical success and shortcomings, and discussing future directions in regenerative therapy.

  8. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOEpatents

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  9. Global strategic partnerships in regenerative medicine.

    PubMed

    French, Anna; Suh, Jane Y; Suh, Carol Y; Rubin, Lee; Barker, Richard; Bure, Kim; Reeve, Brock; Brindley, David A

    2014-09-01

    The approach to research and development in biomedical science is changing. Increasingly, academia and industry seek to collaborate, and share resources and expertise, by establishing partnerships. Here, we explore the co-development partnership landscape in the field of regenerative medicine, focusing on agreements involving one or more private entities. A majority of the largest biopharmaceutical companies have announced strategic partnerships with a specific regenerative medicine focus, signifying the growth and widening appeal of this emerging sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Experimental fatigue life investigation of cylindrical thrust chambers

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1977-01-01

    Twenty-two cylindrical test sections of a cylindrical rocket thrust chamber were fabricated and 21 of them were cycled to failure to explore the failure mechanisms, determine the effects of wall temperature on cyclic life, and to rank the material life characteristics for comparison with results from isothermal tests of 12 alloys at 538 C. Cylinder liners were fabricated from OFHC copper, Amzirc, and NAR1loy-Z. Tests were conducted at a chamber pressure of 4.14 MW/sq m using hydrogen-oxygen propellants at an oxidant-fuel ratio of 6.0, which resulted in an average throat heat flux of 54 MW/sq m. The cylinders were cooled with liquid hydrogen at an average rate of 0.91 Kg/sec. All failures were characterized by a thinning of the cooling channel wall at the centerline and eventual failure by tensile rupture. Cyclic life rankings of the materials based on temperature do not agree with published rankings based on uniaxial, isothermal strain tests.

  11. The induced thrust effect - A propulsion method

    NASA Astrophysics Data System (ADS)

    Pais, Salvatore C.

    1991-09-01

    The 'induced thrust' (IT) method whose theoretical fundamentals and basic implementation are presented is applicable to both nuclear and chemical rocket-propulsion systems. IT principles are illustrated in the framework of the back-to-back 'joined ship' model, in which the combustion chamber pressure within one vehicle is caused to act as the back pressure of the other vehicle to which it is joined (and vice versa). The IT impulse generated by mutual plume impingement as the vehicles move away from each other constitutes an additional propulsive force which exceeds the individual thrust capacity of the separate powerplants. A unique mathematical algorithm is used to analyze the concept.

  12. Sub-micro-Newton resolution thrust balance

    NASA Astrophysics Data System (ADS)

    Hathaway, G.

    2015-10-01

    Herein is described a sensitive vacuum balance for measuring the thrust produced by small (˜0.5 kg) thrusters typically employed in microsat station-keeping. The balance is based on a torsion design but incorporates jewel-pivot bearings instead of the more typical torsion spring bearings. Novel tilt control allows maintenance of true verticality of the bearing axis even while under vacuum. The low moment of inertia design allows it to measure small thrusts from high-voltage devices without direct wire conductor connections. Calibration by several means is described including use of a previously calibrated dielectric barrier discharge thruster.

  13. Wing design with attainable thrust considerations

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Shrout, B. L.; Darden, C. M.

    1984-01-01

    A CAD process that includes leading-edge thrust considerations for wings with high aerodynamic efficiencies is outlined. Rectangular grids are used for evaluation of both subsonic and supersonic pressure loadings. Account is taken of the Mach number, Re, the wing planform, the presence of camber, the airfoil geometry and the locations and forces induced by shed vortices. Optimization techniques are applied to the candidate surfaces in order to consider the attainable thrust. Inclusion of the optimization techniques permits analyses of mission-adaptive wings and various flap systems and the elimination of singularities in the flight envelope.

  14. SEP thrust subsystem performance sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.

    1973-01-01

    This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.

  15. Thrust chamber thermal barrier coating techniques

    NASA Technical Reports Server (NTRS)

    Quentmeyer, Richard J.

    1988-01-01

    Methods for applying thermal barrier coatings to the hot-gas side wall of rocket thrust chambers in order to significantly reduce the heat transfer in high heat flux regions was the focus of technology efforts for many years. This paper describes a successful technique developed by the Lewis Research Center that starts with the coating of a mandrel and then builds the thrust chamber around it by electroforming appropriate materials. This results in a smooth coating with exceptional adherence, demonstrated in hot fire rig tests. The low cycle fatigue life of chambers with coatings applied in this manner was increased dramatically compared to uncoated chambers.

  16. Thrust chamber thermal barrier coating techniques

    NASA Technical Reports Server (NTRS)

    Quentmeyer, Richard J.

    1989-01-01

    Methods for applying thermal barrier coatings to the hot-gas side wall of rocket thrust chambers in order to significantly reduce the heat transfer in high heat flux regions has been the focus of technology efforts for many years. A successful technique developed by NASA-Lewis that starts with the coating on a mandrel and then builds the thrust chamber around it by electroforming appropriate materials is described. This results in a smooth coating with exceptional adherence, as was demonstrated in hot fire rig tests. The low cycle fatigue life of chambers with coatings applied in this manner was increased dramatically compared to uncoated chambers.

  17. Flow visualization study in high aspect ratio cooling channels for rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1993-01-01

    The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this

  18. A microNewton thrust stand for average thrust measurement of pulsed microthruster.

    PubMed

    Zhou, Wei-Jing; Hong, Yan-Ji; Chang, Hao

    2013-12-01

    A torsional thrust stand has been developed for the study of the average thrust for microNewton pulsed thrusters. The main body of the thrust stand mainly consists of a torsional balance, a pair of flexural pivots, a capacitive displacement sensor, a calibration assembly, and an eddy current damper. The behavior of the stand was thoroughly studied. The principle of thrust measurement was analyzed. The average thrust is determined as a function of the average equilibrium angle displacement of the balance and the spring stiffness. The thrust stand has a load capacity up to 10 kg, and it can theoretically measure the force up to 609.6 μN with a resolution of 24.4 nN. The static calibrations were performed based on the calibration assembly composed of the multiturn coil and the permanent magnet. The calibration results demonstrated good repeatability (less than 0.68% FSO) and good linearity (less than 0.88% FSO). The assembly of the multiturn coil and the permanent magnet was also used as an exciter to simulate the microthruster to further research the performance of the thrust stand. Three sets of force pulses at 17, 33.5, and 55 Hz with the same amplitude and pulse width were tested. The repeatability error at each frequency was 7.04%, 1.78%, and 5.08%, respectively.

  19. Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1991-01-01

    One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.

  20. Hundred-picosecond narrowband chirped-pulse generation in an Yb:YAG regenerative amplifier using transmission gratings

    NASA Astrophysics Data System (ADS)

    Hwang, SungIn; Tokita, Shigeki; Kawashima, Toshiyuki; Nishioka, Hajime; Kawanaka, Junji

    2016-12-01

    We have demonstrated a seed source for an optical parametric chirped pulse amplification pumping source through a cryogenically cooled Yb:YAG regenerative amplifier, which can vary the pulse duration depending on the number of passes and generate a very high chirp rate. The Fourier-transform-limited pulse duration of 10 ps was extended to a few hundred picoseconds (109 to 165 ps) to prevent damage to the gain medium in the subsequent high-pulse-energy pumping source, which was seeded by the regenerative amplifier. This was achieved by inserting a transmission diffraction grating pair inside the cavity of the regenerative amplifier. The variable pulse duration could be set between 109 and 165 ps by electronically adjusting the pass number of pulses inside the cavity. The stretched pulse duration and the spectral width as functions of the pass number were characterized by considering the dispersion from the grating stretcher as well as the gain narrowing effect.

  1. Expanding horizons of cellular plasticity in regenerative medicine.

    PubMed

    Sen, Chandan K

    2015-10-01

    This Guest Editorial introduces the Regenerative Medicine Theme Issue, which provides critical insight into the unfolding frontier of regenerative medicine. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Reverse thrust performance of the QCSEE variable pitch turbofan engine

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Reemsnyder, D. C.; Blodmer, H. E.

    1980-01-01

    Results of steady state reverse and forward to reverse thrust transient performance tests are presented. The original quiet, clean, short haul, experimental engine four segment variable fan nozzle was retested in reverse and compared with a continuous, 30 deg half angle conical exlet. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30 deg exlet resulted in lower engine vibrations, lower fan blade stress, and approximately a 20 percent improvement in reverse thrust. Objective reverse thrust of 35 percent of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff to reverse thrust transients.

  3. Reverse thrust performance of the QCSEE variable pitch turbofan engine

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Reemsnyder, D. C.; Bloomer, H. E.

    1980-01-01

    Results of steady-state reverse and forward-to-reverse thrust transient performance tests are presented. The original QCSEE 4-segment variable fan nozzle was retested in reverse and compared with a continuous, 30-deg half-angle conical exlet. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30-deg exlet resulted in lower engine vibrations, lower fan blade stress and approximately a 20% improvement in reverse thrust. Objective reverse thrust of 35% of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff-to-reverse thrust transients.

  4. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  5. Thrust reverser for high bypass turbofan engine

    SciTech Connect

    Matta, R.K.; Bhutiani, P.K.

    1990-05-08

    This patent describes a thrust reverser for a gas turbine engine of the type which includes an outer wall spaced from the center body of a core engine to define a bypass duct therebetween. The thrust reverser comprising: circumferentially displaced blocker doors, each of the doors being movable between a normal position generally aligned with the outer wall and a thrust reversing position extending transversely of the bypass duct for blocking the exhaust of air through the bypass duct and directing the air through an opening in the outer wall for thrust reversal; each of the blocker doors being of lightweight construction and including a pit in the inner surface thereof in the normal position; means for covering the pit during normal flow of air through the bypass duct to reduce the pressure drop in the bypass duct and to reduce noise. The covering means including a pit cover hingedly mounted at one end thereof on the blocker door and means of biasing the pit cover away from the blocker door to a position providing smooth flow of air through the bypass duct during normal operation.

  6. Take-off and propeller thrust

    NASA Technical Reports Server (NTRS)

    Schrenk, Martin

    1933-01-01

    As a result of previous reports, it was endeavored to obtain, along with the truest possible comprehension of the course of thrust, a complete, simple and clear formula for the whole take-off distance up to a certain altitude, which shall give the correct relative weight to all the factors.

  7. Reverse Core Engine with Thrust Reverser

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2017-01-01

    An engine system has a gas generator, a bi-fi wall surrounding at least a portion of the gas generator, a casing surrounding a fan, and the casing having first and second thrust reverser doors which in a deployed position abut each other and the bi-fi wall.

  8. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1985-01-01

    Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.

  9. Ascent thrust vector control system test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Testing of the Ascent Thrust Vector Control System in support of the Ares 1-X program at the Marshall Space Flight Center in Huntsville, Alabama. This image is extracted from a high definition video file and is the highest resolution available

  10. Mesenchymal stem cells, aging and regenerative medicine

    PubMed Central

    Raggi, Chiara; Berardi, Anna C.

    2012-01-01

    Summary Tissue maintenance and regeneration is dependent on stem cells and increasing evidence has shown to decline with age. Stem cell based-aging is thought to influence therapeutic efficacy. Mesenchymal stromal cells (MSCs) are involved in tissue regeneration. Here, we discuss the effects of age-related changes on MSC properties considering their possible use in research or regenerative medicine. PMID:23738303

  11. Regenerative Studies: College Community and Community College.

    ERIC Educational Resources Information Center

    Woltz, Mary G.

    This case study applies principles derived from the Center for Regenerative Studies (CRS) to a community college in North Carolina. CRS, on the campus of California State Polytechnic Institute (California), is dedicated to the education, demonstration, and research of degenerative systems in the areas of shelter, food production, energy, water and…

  12. Regenerative nanomedicine: current perspectives and future directions

    PubMed Central

    Chaudhury, Koel; Kumar, Vishu; Kandasamy, Jayaprakash; RoyChoudhury, Sourav

    2014-01-01

    Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined. PMID:25214780

  13. Applications of regenerative medicine in organ transplantation

    PubMed Central

    Jain, Aditya; Bansal, Ramta

    2015-01-01

    A worldwide shortage of organs for clinical implantation establishes the need to bring forward and test new technologies that will help in solving the problem. The concepts of regenerative medicine hold the potential for augmenting organ function or repairing damaged organ or allowing regeneration of deteriorated organs and tissue. Researchers are exploring possible regenerative medicine applications in organ transplantation so that coming together of the two fields can benefit each other. The present review discusses the strategies that are being implemented to regenerate or bio-engineer human organs for clinical purposes. It also highlights the limitations of the regenerative medicine that needs to be addressed to explore full potential of the field. A web-based research on MEDLINE was done using keywords “regenerative medicine,” “tissue-engineering,” “bio-engineered organs,” “decellularized scaffold” and “three-dimensional printing.” This review screened about 170 articles to get the desired knowledge update. PMID:26229352

  14. Regenerative medicine: does Erythropoietin have a role?

    PubMed

    Buemi, Michele; Lacquaniti, Antonio; Maricchiolo, Giulia; Bolignano, Davide; Campo, Susanna; Cernaro, Valeria; Sturiale, Alessio; Grasso, Giovanni; Buemi, Antoine; Allegra, Alessandro; Donato, Valentina; Genovese, Lucrezia

    2009-01-01

    Regenerative Medicine, a recent new medical domain, aims to develop new therapies through the stimulation of natural regenerative processes also in human beings. In this field, Erythropoietin (EPO) represents a significant subject of research. Several studies allow the assertion that EPO, in different concentrations, has protective effects mainly on the central nervous system, cardiovascular system and renal tissue. This action is carried out through one of few regenerative activities of human beings: angiogenesis. This mechanism, which involves endothelial stem cells and VEGF (Vascular Endothelial Growth Factor), has been experimentally demonstrated with Recombinant human erythropoietin (rHuEPO) and Darbepoetin, a long-acting EPO derivate. Furthermore, the demonstration of a cardiac production of EPO in Fugu rubripes and in Zebrafish has led cardiologists to "discover" Erythropoietin, postulating a hypothetical role in treatment of cardiovascular disease for this hormone. This is some of the experimental evidence which demonstrates that EPO can be in reason considered an important element of research of Regenerative Medicine and put in the network of drugs able to regenerate tissues and organs.

  15. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  16. Regenerative fuel cells for space applications

    NASA Technical Reports Server (NTRS)

    Appleby, A. John

    1987-01-01

    After several years of development of the regenerative fuel cell (RFC) as the electrochemical storage system to be carried by the future space station, the official stance has now been adopted that nickel hydrogen batteries would be a better system choice. RFCs are compared with nickel hydrogen and other battery systems for space platform applications.

  17. Regenerative nanomedicine: current perspectives and future directions.

    PubMed

    Chaudhury, Koel; Kumar, Vishu; Kandasamy, Jayaprakash; RoyChoudhury, Sourav

    2014-01-01

    Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell-cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined.

  18. Stem cells in regenerative medicine: introduction.

    PubMed

    Ilic, Dusko; Polak, Julia M

    2011-01-01

    Considerable amount of information about the potential of stem cell therapy in regenerative medicine is available today. Scientific meetings and publications in specialized journals enable experts in stem cell science and regenerative medicine to follow worldwide cutting-edge research. However, controversial information plaguing the media and the Internet lead patients to believe that stem cells are the long-awaited panacea even though there are little or no stringent factual data available yet. PubMed database systematically searched in the period 4-6 January 2011. Stem cell-based therapy is a future of regenerative medicine. Based on unsubstantial claims fueled by media, patients are frequently seeking advice about the risks and prospects of specific therapeutic regimes from their physicians. Reports in specialized journals written in a scientific vocabulary are difficult to evaluate for many primary-care physicians. Hence, physicians are reluctant to provide advice or endorse treatment options for cell-based therapies. AREAS TIMELY FOR FURTHER DEVELOPMENT: We wish to fill the gap and offer physicians suitable guidance. By giving a comprehensive overview of different types of stem cells and their potential in a simple language, here we are introducing a series of articles written by world-renowned experts on regenerative medicine about the current status and prospects of the field from the point of view of the standard level of patient safety and efficacy for the healthcare industry.

  19. Where is dentistry in regenerative medicine?

    PubMed

    Ricci, John L; Terracio, Louis

    2011-08-01

    Where does dentistry fit into the field of regenerative medicine? Based on the fact that the goal of regenerative medicine is to restore function to damaged organs and tissues, it is apparent that dentistry, which has long embraced the concept of restoring function of damaged teeth, has embraced this goal from the very beginning. In this brief review we present the opinion that if you take as the primary criterion the restoration of tissue and organ function, dentistry has not only been at the forefront of restorative medicine but actually predates it in practice. We illustrate the depth and breadth of dental regenerative medicine using examples of therapies or potential therapies from our laboratories. These begin with an example from a historical area of strength, dental implant design and fabrication, progress to a more high tech bone scaffold fabrication project, and finish with a stem cell-based soft tissue engineering project. In the final analysis we believe that the restorative nature of dentistry will keep it at the forefront of regenerative medicine. © 2011 FDI World Dental Federation.

  20. Performance analysis of reciprocating regenerative magnetic heat pumping

    NASA Astrophysics Data System (ADS)

    Chen, D. T.; Murphy, R. W.; Mei, V. C.; Chen, F. C.; Lue, J. W.; Lubell, M. S.

    1994-02-01

    Transient flow phenomena in the regenerator tube of reciprocating magnetic heat pumps have been studied numerically and experimentally. In the numerical study, two approaches were taken: (1) solving the energy balance equations for fluid through a porous bed directly and (2) solving the Navier-Stokes equations with a buoyancy force term in the momentum equation. A flow thermal mixing problem was found in both approaches because of the piston-like motion of the regenerator tube that hinders the development of the temperature. The numerical study results show that a 45 K temperature span can be reached in 10 minutes of charge time through the use of a 7-Tesla magnetic field. Using the second numerical approach, temperature stratification in the regenerator fluid column was clearly indicated through temperature rasters. The study also calculates regenerator efficiency and energy delivery rates when heating load and cooling load are applied. Piecewise variation of the regenerator tube moving speed has been used in the present numerical study to control the mass flow rate, reduce thermal mixing of the flow and thus the regenerative losses. The gadolinium's adiabatic temperature has been measured under 6.5 Tesla of magnet field and different of operating temperatures ranging from 285 K to 320 K. Three regenerative heat pumping tests have also been conducted based on the Reynolds number of the regenerator tube flow, namely Re=300, Re=450, and Re=750 without loads. Maximum temperature span are 12 & 11 K and 9 K for the case of Re=300, Re=450 and Re=750, respectively. Experimental data are in good agreement with the numerical calculation results, and have been used to calibrate the numerical results and to develop a design database for reciprocating-type room-temperature magnetic heat pumps.

  1. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  2. Performance analysis of reciprocating regenerative magnetic heat pumping. Final report

    SciTech Connect

    Chen, D.T.; Murphy, R.W.; Mei, V.C.; Chen, F.C.; Lue, J.W.; Lubell, M.S.

    1994-02-01

    Transient flow phenomena in the regenerator tube of reciprocating magnetic heat pumps have been studied numerically and experimentally. In the numerical study, two approaches were taken: (1) solving the energy balance equations for fluid through a porous bed directly and (2) solving the Navier-Stokes equations with a buoyancy force term in the momentum equation. A flow thermal mixing problem was found in both approaches because of the piston-like motion of the regenerator tube that hinders the development of the temperature. The numerical study results show that a 45 K temperature span can be reached in 10 minutes of charge time through the use of a 7-Tesla magnetic field. Using the second numerical approach, temperature stratification in the regenerator fluid column was clearly indicated through temperature rasters. The study also calculates regenerator efficiency and energy delivery rates when heating load and cooling load are applied. Piecewise variation of the regenerator tube moving speed has been used in the present numerical study to control the mass flow rate, reduce thermal mixing of the flow and thus the regenerative losses. The gadolinium`s adiabatic temperature has been measured under 6.5 Tesla of magnet field and different of operating temperatures ranging from 285 K to 320 K. Three regenerative heat pumping tests have also been conducted based on the Reynolds number of the regenerator tube flow, namely Re=300, Re=450, and Re=750 without loads. Maximum temperature span are 12 & 11 K and 9 K for the case of Re=300, Re=450 and Re=750, respectively. Experimental data are in good agreement with the numerical calculation results, and have been used to calibrate the numerical results and to develop a design database for reciprocating-type room-temperature magnetic heat pumps.

  3. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  4. Cooling technique

    DOEpatents

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  5. [Lifting-thrusting and rotating manipulations: a comparison on energy input].

    PubMed

    Wang, Xi-ming

    2011-01-01

    Through the energy input model of lifting-thrusting and rotating manipulations, using the theory of energy density, energy flux density and sound intensity level in physics, the average energy flux intensity and frequency distributions of average poynting's vector were calculated respectively within the range of infrasound. According to the distribution table, it was discovered that both of the energy flux density and sound intensity level during the process of acupuncture were high. And it was concluded that the essence of meridians was probably fascial tissues which were rich in elastic fibers and collagenous fibers. The heat-producing needling with reinforcing effect (setting the moutain on fire) which focused on forceful thrusting was held to be the result of the action of same position solitary wave. And the coolness-producing needling with reducing effect (thorough heavenly cool) emphasized on the manipulation of forceful lifting was considered as the action of opposite position solitary wave. The energy input of lifting-thrusting manipulation is comparatively larger than the rotating method, however without significant difference. The speed of manipulations applied is regarded to have greater impact on energy transmission. And the energy produced by rotating manipulation can be better transmitted through meridians.

  6. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  7. Timing of Eocene-Miocene thrust activity in the Western Axial Zone and Chaînons Béarnais (west-central Pyrenees) revealed by multi-method thermochronology

    NASA Astrophysics Data System (ADS)

    V. Bosch, Gemma; Teixell, Antonio; Jolivet, Marc; Labaume, Pierre; Stockli, Daniel; Domènech, Mireia; Monié, Patrick

    2016-03-01

    We present new apatite (U-Th)/He (AHe), apatite fission track (AFT) and zircon (U-Th)/He (ZHe) data to unravel the timing of exhumation and thrusting in the western Axial Zone of the Pyrenees and the adjacent North Pyrenean Zone (Chaînons Béarnais). In the north, ZHe data yield cooling signals between 26 and 50 Ma in the Chaînons Béarnais, which are consistent with the onset of thrust-related cooling in the neighboring Mauléon Basin modeled by previous authors. Non-reset Triassic ages are found in the footwall of the North Pyrenean Frontal thrust (Aquitaine Basin). To the south, similar ZHe ages in both the hanging wall and footwall of the Lakora thrust record Late Eocene to Oligocene cooling that we attribute to the activity of the Gavarnie thrust. Thermal modeling of samples from the Lakora thrust hanging wall indicates cooling from Early Eocene times, recording activity of the Lakora thrust. Paleozoic detrital samples from the westernmost Axial Zone and from the Eaux-Chaudes and Balaitous-Panticosa granitic plutons yield AFT signals between 20 and 30 Ma and ZHe between 20 and 25 Ma. Modelling indicates fast cooling during this time, which we attribute to the motion of the Guarga thrust. AHe data from these Axial Zone plutons, combined with modelling, show a post-tectonic signal (8-9 Ma), which indicates renewed erosion after a period without major cooling and exhumation between 20 to 10 Ma.

  8. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A. J.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 A to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  9. Thrust measurements of a hollow-cathode discharge

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Banks, B. A.

    1972-01-01

    Thrust measurements of a hollow cathode mercury discharge were made with a synthetic mica target on a torsion pendulum. Thrust measurements were made for various target angles, tip temperatures, flow rates, keeper discharge powers, and accelerator electrode voltages. The experimental thrust data are compared with theoretical values for the case where no discharge power was employed.

  10. Thrust and Propulsive Efficiency from an Instructive Viewpoint

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2010-01-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static…

  11. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel burning thrust augmentor. 33.79... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.79 Fuel burning thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff...

  12. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel burning thrust augmentor. 33.79... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.79 Fuel burning thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff...

  13. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel burning thrust augmentor. 33.79... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.79 Fuel burning thrust augmentor. Each fuel burning thrust augmentor, including the nozzle, must— (a) Provide cutoff...

  14. Summary of Scale-Model Thrust-Reverser Investigation

    NASA Technical Reports Server (NTRS)

    Povolny, John H; Steffen, Fred W; Mcardle, Jack G

    1957-01-01

    An investigation was undertaken to determine the characteristics of several basic types of thrust-reverser. Models of three types, target, tailpipe cascade, and ring cascade, were tested with unheated air. The effects of design variables on reverse-thrust performance, reversed-flow boundaries, and thrust modulation characteristics were determined.

  15. Relationship between Biomechanical Characteristics of Spinal Manipulation and Neural Responses in an Animal Model: Effect of Linear Control of Thrust Displacement versus Force, Thrust Amplitude, Thrust Duration, and Thrust Rate.

    PubMed

    Reed, William R; Cao, Dong-Yuan; Long, Cynthia R; Kawchuk, Gregory N; Pickar, Joel G

    2013-01-01

    High velocity low amplitude spinal manipulation (HVLA-SM) is used frequently to treat musculoskeletal complaints. Little is known about the intervention's biomechanical characteristics that determine its clinical benefit. Using an animal preparation, we determined how neural activity from lumbar muscle spindles during a lumbar HVLA-SM is affected by the type of thrust control and by the thrust's amplitude, duration, and rate. A mechanical device was used to apply a linear increase in thrust displacement or force and to control thrust duration. Under displacement control, neural responses during the HVLA-SM increased in a fashion graded with thrust amplitude. Under force control neural responses were similar regardless of the thrust amplitude. Decreasing thrust durations at all thrust amplitudes except the smallest thrust displacement had an overall significant effect on increasing muscle spindle activity during the HVLA-SMs. Under force control, spindle responses specifically and significantly increased between thrust durations of 75 and 150 ms suggesting the presence of a threshold value. Thrust velocities greater than 20-30 mm/s and thrust rates greater than 300 N/s tended to maximize the spindle responses. This study provides a basis for considering biomechanical characteristics of an HVLA-SM that should be measured and reported in clinical efficacy studies to help define effective clinical dosages.

  16. Thrust and Propulsive Efficiency from an Instructive Viewpoint

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2010-01-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static…

  17. Young thrust-fault scarps in the highlands - Evidence for an initially totally molten moon

    NASA Technical Reports Server (NTRS)

    Binder, A. B.; Gunga, H.-C.

    1985-01-01

    Attention is given to thermoelastic stress calculations implying that if only the outer few hundreds of km of a moon with a cool interior were initially molten, the lunar highlands should not have young compressional tectonic features. Extrapolations from Apollo panoramic images showing young thrust faults in the highlands suggest that about 2000 thrust fault scarps exist on the highlands, generally occurring in series or complexes of four or five scarps that are on average 5 km long. The ages of the scarps range from 60 + or - 30 to 680 + or - 250 my, with a possible factor bias of +2 to -4. The scarps are the youngest endogenic features on the moon, and indicate that the moon was initially molten.

  18. Cooling device

    SciTech Connect

    Teske, L.

    1984-02-21

    A cooling device is claimed for coal dust comprising a housing, a motor-driven conveyor system therein to transport the coal dust over coolable trays in the housing and conveyor-wheel arms of spiral curvature for moving the coal dust from one or more inlets to one or more outlets via a series of communicating passages in the trays over which the conveyor-wheel arms pass under actuation of a hydraulic motor mounted above the housing and driving a vertical shaft, to which the conveyor-wheel arms are attached, extending centrally downwardly through the housing.

  19. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  20. Apatite Fission-Track Thermochronology of the Southern Verkhoyansk Fold-and-Thrust Belt, Russia

    NASA Astrophysics Data System (ADS)

    Toro, J.; Prokopiev, A.; Colgan, J.; Dumitru, T.; Miller, E. L.

    2004-12-01

    The Verkhoyansk fold-and-thrust belt of eastern Yakutia is one of the largest Mesozoic compressional belts. It involves an immense prism of strata deposited on the passive margin of the North Asian craton from Late Proterozoic through Jurassic time. Current models suggest that shortening in the Verkhoyansk was the result of collision and accretion of terranes against the Asian margin. The onset of deformation is constrained by the beginning of rapid subsidence in the Pri-Verkhoyansk foreland basin during Late Jurassic and by a poor quality 151±1 Ma 40Ar/39Ar age from the Sette-Daban zone of the Southern Verkhoyansk. The central part of the fold-and-thrust belt is underlain by low-grade Late Paleozoic basinal clastic rocks intruded by granodioritic plutons (119-123 Ma, 40Ar/39Ar biotite). To the west there is a 25km-wide belt of intensely deformed Early to Middle Paleozoic basinal strata known as the Sette-Daban zone, which has a fan-shaped cleavage pattern. Still further west, lies the 40-80 km wide Kyllakh Zone composed of a series of west-vergent thrusts that involve Late Proterozoic-Jurassic platformal strata. Conodont alteration indices reveal that there were up to 14 km of tectonic and sedimentary burial in the Sette-Daban, while vitrinite reflectance data show that foreland basin sedimentation was minimal. We carried out apatite fission-track (AFT) thermochronology on 17 samples collected along a 120km long transect between the Allakh-Yun' and Yudama rivers. One apatite sample from Lower Jurassic sandstone of the foreland is not reset, yielding an age of 210±10 Ma. Five samples from the frontal thrust sheets yielded central ages ranging from 78±6 to 91±9 Ma. However, all these samples have mean track-length distributions of less than 13.2 micrometers, indicative of relatively long residence within the PAZ. These ages reflect erosional denudation as a response to thrust uplift beginning in mid- to Late Cretaceous time followed by slow cooling during the

  1. Orbital transfer vehicle 3000 LBF thrust chamber assembly hot fire test program

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Hayden, Warren R.

    1988-01-01

    The Aerojet Orbital Transfer Vehicle (OTV) Thrust Chamber Assembly (TCA) concept consists of a hydrogen cooled chamber, and annular injector, and an oxygen cooled centerbody. The hot fire testing of a heat sink version of the chamber with only the throat section using hydrogen cooling is documented. Hydraulic performance of the injector and cooled throat were verified by water flow testing prior to TCA assembly. The cooled throat was proof tested to 3000 psia to verify the integrity of the codeposited EF nickel-cobalt closeout. The first set of hot fire tests were conducted with a heat sink throat to obtain heat flux information. After demonstration of acceptable heat fluxes, the heat sink throat was replaced with the LH2 cooled throat section. Fourteen tests were conducted with a heat sink chamber and throat at chamber pressures of 85 to 359 psia. The injector face was modified at this time to add more face coolant flow. Ten tests were then conducted at chamber pressures of 197 to 620 psia. Actual heat fluxes at the higher chamber pressure range were 23 percent higher than the average of 10 Btu/in 2 predicted.

  2. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  3. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  4. Measuring Model Rocket Engine Thrust Curves

    NASA Astrophysics Data System (ADS)

    Penn, Kim; Slaton, William V.

    2010-12-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro2 and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a simple engine holder can be constructed and used with Vernier's LabPro and force probe to record data that students can use to compare to sample data from the rocket manufacturer or the National Association of Rocketry's3 engine certification sheets, calculate total impulse, and make predictions for model rocket launches. PASCO markets a rocket engine test bracket4 that mounts to its PASPORT force sensor for similar measurements. The engine holder described here is very economical, and all the parts can be obtained from a local hardware store or home center.

  5. Thrust production by a mechanical swimming lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, M. C.; Smits, A. J.

    2011-05-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey to investigate the formation of the wake structure, the shedding vorticity from the body, and the relationship between thrust production and pressure on the surface of the robot. The robot mimics the motion of living lamprey in steady swimming by using a programmable microcomputer to actuate 13 servomotors that produce a traveling wave along the length of the lamprey body. The amplitude of the phase-averaged surface pressure distribution along the centerline of the robot increases toward the tail, which is consistent with previous momentum balance experiments. This indicates that thrust is produced mainly at the tail. The phase relationship between the pressure signal and the vortex shedding from the tail is also examined, showing a clear connection between the location of vortex structures and the fluctuations of the pressure signal.

  6. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  7. Advanced tube-bundle rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Pavli, Albert J.

    1990-01-01

    An advanced rocket thrust chamber for future space application is described along with an improved method of fabrication. Potential benefits of the concept are improved cyclic life, reusability, and performance. Performance improvements are anticipated because of the enhanced heat transfer into the coolant which will enable higher chamber pressure in expander cycle engines. Cyclic life, reusability and reliability improvements are anticipated because of the enhanced structural compliance inherent in the construction. The method of construction involves the forming of the combustion chamber with a tube-bundle of high conductivity copper or copper alloy tubes, and the bonding of these tubes by an electroforming operation. Further, the method of fabrication reduces chamber complexity by incorporating manifolds, jackets, and structural stiffeners while having the potential for thrust chamber cost and weight reduction.

  8. Advanced tube-bundle rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Pavli, Albert J.

    1990-01-01

    An advanced rocket thrust chamber for future space application is described along with an improved method of fabrication. Potential benefits of the concept are improved cyclic life, reusability, and performance. Performance improvements are anticipated because of the enhanced heat transfer into the coolant which will enable higher chamber pressure in expander cycle engines. Cyclic life, reusability and reliability improvements are anticipated because of the enhanced structural compliance inherent in the construction. The method of construction involves the forming of the combustion chamber with a tube-bundle of high conductivity copper or copper alloy tubes, and the bonding of these tubes by an electroforming operation. Further, the method of fabrication reduces chamber complexity by incorporating manifolds, jackets, and structural stiffeners while having the potential for thrust chamber cost and weight reduction.

  9. Low-thrust mission risk analysis.

    NASA Technical Reports Server (NTRS)

    Yen, C. L.; Smith, D. B.

    1973-01-01

    A computerized multi-stage failure process simulation procedure is used to evaluate the risk in a solar electric space mission. The procedure uses currently available thrust-subsystem reliability data and performs approximate simulations of the thrust subsystem burn operation, the system failure processes, and the retargetting operations. The application of the method is used to assess the risks in carrying out a 1980 rendezvous mission to Comet Encke. Analysis of the results and evaluation of the effects of various risk factors on the mission show that system component failure rates is the limiting factor in attaining a high mission reliability. But it is also shown that a well-designed trajectory and system operation mode can be used effectively to partially compensate for unreliable thruster performance.

  10. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    SciTech Connect

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  11. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    SciTech Connect

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  12. Static Thrust Analysis of the Lifting Airscrew

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Hefner, Ralph A

    1937-01-01

    This report presents the results of a combined theoretical and experimental investigation conducted at the Georgia School of Technology on the static thrust of the lifting air screw of the type used in modern autogiros and helicopters. The theoretical part of this study is based on Glauert's analysis but certain modifications are made that further clarify and simplify the problem. Of these changes the elimination of the solidity as an independent parameter is the most important. The experimental data were obtained from tests on four rotor models of two, four, and five blades and, in general, agree quite well with the theoretical calculations. The theory indicates a method of evaluating scale effects on lifting air screws, and these corrections have been applied to the model results to derive general full-scale static thrust, torque, and figure-of-merit curves for constant-chord, constant-incidence rotors. Convenient charts are included that enable hovering flight performance to be calculated rapidly.

  13. Pulsed thrust propellant reorientation - Concept and modeling

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Patag, Alfredo E.; Korakianitis, T. P.; Chato, David J.

    1992-01-01

    The use of pulsed thrust to optimize the propellant reorientation process is proposed. The ECLIPSE code is used to study the performance of pulsed reorientation in small-scale and full-scale propellant tanks. A dimensional analysis of the process is performed and the resulting dimensionless groups are used to present and correlate the computational predictions of reorientation performance. Based on the results obtained from this study, it is concluded that pulsed thrust reorientation seems to be a feasible technique for optimizing the propellant reorientation process across a wide range of spacecraft, for a variety of missions, for the entire duration of a mission, and with a minimum of hardware design and qualification.

  14. CFD Code Survey for Thrust Chamber Application

    NASA Technical Reports Server (NTRS)

    Gross, Klaus W.

    1990-01-01

    In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.

  15. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Allard, P. A.

    1979-01-01

    The 0.152 cm thick sputtered and copper deposits were electron beam welded to wrought copper. Tensile specimens were machined from the weld assemblies and tested at room temperature. Tensile strength approached the strength of wrought material. Elongations up to 25% were measured. Sputtered aluminum was used to fill 0.157 cm wide by 0.127 cm deep grooves in thrust chamber spool piece liners. The liners were closed out by sputtering copper from post and hollow cathodes.

  16. Low Carbon Propulsion Strategic Thrust Overview

    NASA Technical Reports Server (NTRS)

    Dryer, Jay

    2014-01-01

    NASA is taking a leadership role with regard to developing new options for low-carbon propulsion. Work related to the characterization of alternative fuels is coordinated with our partners in government and industry, and NASA is close to concluding a TC in this area. Research on alternate propulsion concepts continues to grow and is an important aspect of the ARMD portfolio. Strong partnerships have been a key enabling factor for research on this strategic thrust.

  17. Minimum Time Turns Using Vectored Thrust.

    DTIC Science & Technology

    1984-12-01

    small, typicilly on the order of 10 seconds, the fuel consumed during the maneuver is negligible and the aircraft weight remains constant. The aircraft...practical (2, 3), these angles were allowed full range in order to determine how much range of thrust vectoring would be exploited if it were available...angle. 15q 15 *q 111. The Optimial Control Problem The formulation of the minimum turning time problem involves first- order non-linear differential

  18. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, G. S.; Mo, J. D.

    1991-01-01

    A Navier-Stokes code was developed for low thrust viscous nozzle flow field prediction. An implicit finite volume in an arbitrary curvilinear coordinate system lower-upper (LU) scheme is used to solve the governing Navier-Stokes equations and species transportation equations. Sample calculations of carbon dioxide nozzle flow are presented to verify the validity and efficiency of this code. The computer results are in reasonable agreement with the experimental data.

  19. Thermal effects in an accelerating thrust bearing

    NASA Technical Reports Server (NTRS)

    Doo, R.; Rodkiewicz, C. M.; Gupta, R. N.

    1985-01-01

    This study is mainly concerned with the development of transient temperatures in a thrust bearing. The effect of Prandtl number on temperatures was also investigated. All lubricant properties were assumed to be constant. It was found that the location of highest temperatures depended on the bearing ratio. The effect of Prandtl number on temperatures was small. However, its effect on the heat transfer at the surfaces was significant.

  20. Benchmarking analogue models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  1. Thrust bolting: Roof-bolt-support apparatus

    SciTech Connect

    Tadolini, S.C.; Dolinar, D.R.

    1991-01-01

    The invention relates to a method for installing a roof bolt in a borehole of a rock formation and more specifically to tensioning the unit without the aid of a mechanical anchoring device or threaded tensioning threads. The bolt is capable of being placed into tension along the length and the levels of active support can be controlled by varying the length of the grouted portion and the level of thrust applied to the bolt during installation.

  2. Pulsed Thrust Method for Hover Formation Flying

    NASA Technical Reports Server (NTRS)

    Hope, Alan; Trask, Aaron

    2003-01-01

    A non-continuous thrust method for hover type formation flying has been developed. This method differs from a true hover which requires constant range and bearing from a reference vehicle. The new method uses a pulsed loop, or pogo, maneuver sequence that keeps the follower spacecraft within a defined box in a near hover situation. Equations are developed for the hover maintenance maneuvers. The constraints on the hover location, pulse interval, and maximum/minimum ranges are discussed.

  3. Feedback Control Design for Counterflow Thrust Vectoring

    DTIC Science & Technology

    2005-09-01

    thrust vector angle. A model 27N pneumatic R-DDV servovalve from HR Textron is used in the test rig for this purpose. Data acquisition and control are...support this research. We also thank Robert Avant, Fritz Dittus and Mohammed I. Alidu for helping in the experimental setup. References ’Alvi, F. S... Thomson , M., "Minimal Controller Synthesis for Time-delay Systems Using a Smith Predictor," IEE Colloquium on Adaptive Controllers in Practice - Part Two

  4. Lightweight Chambers for Thrust Cell Applications

    NASA Technical Reports Server (NTRS)

    Elam, S.; Effinger, M.; Holmes, R.; Lee, J.; Jaskowiak, M.

    2000-01-01

    Traditional metals like steel and copper alloys have been used for many years to fabricate injector and chamber components of thruster assemblies. While the materials perform well, reducing engine weights would help existing and future vehicles gain performance and payload capability. It may now be possible to reduce current thruster weights up to 50% by applying composite materials. In this task, these materials are being applied to an existing thrust cell design to demonstrate new fabrication processes and potential weight savings. Two ceramic matrix composite (CMC) designs, three polymer matrix composite (PMC) designs, and two metal matrix composite (MMC) designs are being fabricated as small chamber demonstration units. In addition, a new alloy of copper, chrome, and niobium (Cu-8Cr-4Nb) is being investigated for thrust chamber liners since it offers higher strength and increased cycle life over traditional alloys. This new alloy is being used for the liner in each MMC and PMC demonstration unit. During June-August of 2000, hot-fire testing of each unit is planned to validate designs in an oxygen/hydrogen environment at chamber pressures around 850 psi. Although the weight savings using CMC materials is expected to be high, they have proven to be much harder to incorporate into chamber designs based on current fabrication efforts. However, the PMC & MMC concepts using the Cu-8Cr-4Nb liner are nearly complete and ready for testing. Additional efforts intend to use the PMC & MMC materials to fabricate a full size thrust chamber (60K lb(sub f) thrust class). The fabrication of this full size unit is expected to be complete by October 2000, followed by hot-fire testing in November-December 2000.

  5. Fluorescent Cell Imaging in Regenerative Medicine

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Murphy, Sean V.; Soker, Shay

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. PMID:27158228

  6. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  7. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  8. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  9. Endometrial stem cells in regenerative medicine.

    PubMed

    Verdi, Javad; Tan, Aaron; Shoae-Hassani, Alireza; Seifalian, Alexander M

    2014-01-01

    First described in 2004, endometrial stem cells (EnSCs) are adult stem cells isolated from the endometrial tissue. EnSCs comprise of a population of epithelial stem cells, mesenchymal stem cells, and side population stem cells. When secreted in the menstrual blood, they are termed menstrual stem cells or endometrial regenerative cells. Mounting evidence suggests that EnSCs can be utilized in regenerative medicine. EnSCs can be used as immuno-modulatory agents to attenuate inflammation, are implicated in angiogenesis and vascularization during tissue regeneration, and can also be reprogrammed into induced pluripotent stem cells. Furthermore, EnSCs can be used in tissue engineering applications and there are several clinical trials currently in place to ascertain the therapeutic potential of EnSCs. This review highlights the progress made in EnSC research, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo.

  10. The onset of regenerative properties in ctenophores.

    PubMed

    Martindale, Mark Q

    2016-10-01

    Ctenophores are a clade of animals that branch off at the base of the animal tree. They have a unique and delicate body plan, and distinct pattern forming mechanisms at different life history stages. They have a stereotyped embryonic cell lineage and are highly 'mosaic' as embryos, but most have amazing capacity to regenerate as adults. Unfortunately, only a handful of ctenophore species have been studied in detail. This review summarizes the key features of the regenerative properties of adults, and the characteristics of the embryological onset of regenerative abilities. The genomes of several ctenophore species have already been sequenced, and these resources set the stage for more detailed cellular and molecular analysis of body plan patterning in this group. Copyright © 2016. Published by Elsevier Ltd.

  11. Endometrial stem cells in regenerative medicine

    PubMed Central

    2014-01-01

    First described in 2004, endometrial stem cells (EnSCs) are adult stem cells isolated from the endometrial tissue. EnSCs comprise of a population of epithelial stem cells, mesenchymal stem cells, and side population stem cells. When secreted in the menstrual blood, they are termed menstrual stem cells or endometrial regenerative cells. Mounting evidence suggests that EnSCs can be utilized in regenerative medicine. EnSCs can be used as immuno-modulatory agents to attenuate inflammation, are implicated in angiogenesis and vascularization during tissue regeneration, and can also be reprogrammed into induced pluripotent stem cells. Furthermore, EnSCs can be used in tissue engineering applications and there are several clinical trials currently in place to ascertain the therapeutic potential of EnSCs. This review highlights the progress made in EnSC research, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo. PMID:25097665

  12. Unitized Regenerative Fuel Cell System Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2003-01-01

    A Unitized Regenerative Fuel Cell (URFC) Energy Storage System is being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The tank surfaces also play an important role in the temperature control of regenerative gas dryers/humidifiers used to dry the hydrogen and oxygen gases produced by electrolysis during the charging and also used to humidify the hydrogen and oxygen gases used by fuel cell during the discharging of the URFCS. A bi- directional pressure controller is used to control the pressure of the oxygen and hydrogen gas inside the URFC stack during both charging and discharging of the URFC system. A water storage accumulator is used to store water reactant and control water pressure inside the URFC stack.

  13. Regenerative endodontics: a road less travelled.

    PubMed

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan; Kumar, Tarun; Kaur, Dilpreet

    2014-10-01

    Although traditional approaches like root canal therapy and apexification procedures have been successful in treating diseased or infected root canals, but these modalities fail to re-establish healthy pulp tissue in treated teeth. Regeneration-based approaches aims to offer high levels of success by replacing diseased or necrotic pulp tissues with healthy pulp tissue to revitalize teeth. The applications of regenerative approaches in dental clinics have potential to dramatically improve patients' quality of life. This review article offers a detailed overview of present regenerative endodontic approaches aiming to revitalize teeth and also outlines the problems to be dealt before this emerging field contributes to clinical treatment protocols. It conjointly covers the basic trilogy elements of tissue engineering.

  14. Regenerative endodontics: a state of the art.

    PubMed

    Bansal, Rashmi; Bansal, Rajesh

    2011-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue grafting, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. Non-vital infected teeth have long been treated with root canal therapy (for mature root apex) and apexification (for immature root apex), or doomed to extraction. Although successful, current treatments fail to re-establish healthy pulp tissue in these teeth. But, what if the non-vital tooth could be made vital once again? That is the hope offered by regenerative endodontics, an emerging field focused on replacing traumatized and diseased pulp with functional pulp tissue. Restoration of vitality of non-vital tooth is based on tissue engineering and revascularization procedures. The purpose of this article is to review these biological procedures and the hurdles that must be overcome to develop regenerative endodontic procedures.

  15. Regenerative Endodontics: A Road Less Travelled

    PubMed Central

    Bansal, Ramta; Mittal, Sunandan; Kumar, Tarun; Kaur, Dilpreet

    2014-01-01

    Although traditional approaches like root canal therapy and apexification procedures have been successful in treating diseased or infected root canals, but these modalities fail to re-establish healthy pulp tissue in treated teeth. Regeneration-based approaches aims to offer high levels of success by replacing diseased or necrotic pulp tissues with healthy pulp tissue to revitalize teeth. The applications of regenerative approaches in dental clinics have potential to dramatically improve patients’ quality of life. This review article offers a detailed overview of present regenerative endodontic approaches aiming to revitalize teeth and also outlines the problems to be dealt before this emerging field contributes to clinical treatment protocols. It conjointly covers the basic trilogy elements of tissue engineering. PMID:25478476

  16. Chemical transdifferentiation: closer to regenerative medicine.

    PubMed

    Xu, Aining; Cheng, Lin

    2016-06-01

    Cell transdifferentiation, which directly switches one type of differentiated cells into another cell type, is more advantageous than cell reprogramming to generate pluripotent cells and differentiate them into functional cells. This process is crucial in regenerative medicine. However, the cell-converting strategies, which mainly depend on the virus-mediated expression of exogenous genes, have clinical safety concerns. Small molecules with compelling advantages are a potential alternative in manipulating cell fate conversion. In this review, we briefly retrospect the nature of cell transdifferentiation and summarize the current developments in the research of small molecules in promoting cell conversion. Particularly, we focus on the complete chemical compound-induced cell transdifferentiation, which is closer to the clinical translation in cell therapy. Despite these achievements, the mechanisms underpinning chemical transdifferentiation remain largely unknown. More importantly, identifying drugs that induce resident cell conversion in vivo to repair damaged tissue remains to be the end-goal in current regenerative medicine.

  17. Regenerative medicine solutions in congenital diaphragmatic hernia.

    PubMed

    De Coppi, Paolo; Deprest, Jan

    2017-06-01

    Congenital diaphragmatic hernia (CDH) remains a major challenge and associated mortality is still significant. Patients have benefited from current therapeutic options, but most severe cases are still associated to poor outcome. Regenerative medicine is emerging as a valid option in many diseases and clinical trials are currently happening for various conditions in children and adults. We report here the advancement in the field which will help both in the understanding of further CDH development and in offering new treatment options for the difficult situations such as repair of large diaphragmatic defects and lung hypoplasia. The authors believe that advancements in regenerative medicine may lead to increase of CDH patients׳ survival. Copyright © 2017. Published by Elsevier Inc.

  18. Micro-Scale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  19. Induced Pluripotent Stem Cells for Regenerative Medicine

    PubMed Central

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine. PMID:24905879

  20. Regenerative nanomedicines: an emerging investment prospective?

    PubMed Central

    Prescott, Catherine

    2010-01-01

    Cells respond to their structural surrounding and within nanostructures exhibit unique proliferative and differentiation properties. The application of nanotechnologies to the field of regenerative medicine offers the potential to direct cell fate, target the delivery of cells and reduce immune rejection (via encapsulation), thereby supporting the development of regenerative medicines. The overall objective of any therapy is the delivery of the product not just into the clinic but also to patients on a routine basis. Such a goal typically requires a commercial vehicle and substantial levels of investment in scientific, clinical, regulatory and business expertise, resources, time and funding. Therefore, this paper focuses on some of the challenges facing this emerging industry, including investment by the venture capital community. PMID:20826478

  1. An Analysis of Nuclear-Rocket Nozzle Cooling

    NASA Technical Reports Server (NTRS)

    Robbins, William H.; Bachkin, Daniel; Medeiros, Arthur A.

    1960-01-01

    A nuclear-rocket regenerative-cooling analysis was conducted over a range of reactor power of 46 to 1600 megawatts and is summarized herein. Although the propellant (hydrogen) is characterized by a large heat-sink capacity, an analysis of the local heat-flux capability of the coolant at the nozzle throat indicated that, for conventional values of system pressure drop, the cooling capability was inadequate to maintain a selected wall temperature of 1440 R. Several techniques for improving the cooling capability were discussed, for example, high pressure drop, high wall temperature, refractory wall coatings, thin highly conductive walls, and film cooling. In any specific design a combination of methods will probably be utilized to achieve successful cooling.

  2. Test apparatus for measuring jet engine thrust

    SciTech Connect

    Laskody, J.R.

    1988-12-06

    This patent describes an apparatus for simultaneously measuring variables to calculate total thrust generated from a turbofan jet engine having a lengthwise axis and which is characterized by (1) a section for generating drive gases, (2) a fan section which rotates about the lengthwise axis in response to the drive gases and which includes (i) exterior blades which rotate with the fan section for generating a propelling force, and (ii) an outer cowling, and (3) an outlet section for exhausting the drive gases to the atmosphere to provide a further propelling force, the apparatus comprising: a. a cradle for supporting the engine; b. means for suspending the cradle from a support structure so as to permit movement of the cradle in the lengthwise direction; c. means for measuring a forward force generated by the drive gases which are exhausted to the atmosphere for calculating the nozzle gas thrust, the measuring means including load cell means which are connected between the support structure and the cradle; d. dynamometer means including a rotatable portion, for measuring a torque generated by the engine fan section for calculating the thrust output of the fan section; and e. drive gear means for connecting the dynamometer means to the engine fan section, the drive gear means including belt means which are removably connected to the fan section and to the rotatable portion of the dynamometer means so as to transmit a rotational force between the fan section and the dynamometer means.

  3. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  4. Evolutionary Computing for Low-thrust Navigation

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Fink, Wolfgang; vonAllmed, Paul; Petropoulos, Anastassios E.; Russell, Ryan P.; Terrile, Richard J.

    2005-01-01

    The development of new mission concepts requires efficient methodologies to analyze, design and simulate the concepts before implementation. New mission concepts are increasingly considering the use of ion thrusters for fuel-efficient navigation in deep space. This paper presents parallel, evolutionary computing methods to design trajectories of spacecraft propelled by ion thrusters and to assess the trade-off between delivered payload mass and required flight time. The developed methods utilize a distributed computing environment in order to speed up computation, and use evolutionary algorithms to find globally Pareto-optimal solutions. The methods are coupled with two main traditional trajectory design approaches, which are called direct and indirect. In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. In the indirect approach, a thrust control problem is transformed into a costate control problem, and the initial values of the costate vector are optimized. The developed methods are applied to two problems: 1) an orbit transfer around the Earth and 2) a transfer between two distance retrograde orbits around Europa, the closest to Jupiter of the icy Galilean moons. The optimal solutions found with the present methods are comparable to other state-of-the-art trajectory optimizers and to analytical approximations for optimal transfers, while the required computational time is several orders of magnitude shorter than other optimizers thanks to an intelligent design of control vector discretization, advanced algorithmic parameterization, and parallel computing.

  5. Calculating track thrust with track functions

    NASA Astrophysics Data System (ADS)

    Chang, Hsi-Ming; Procura, Massimiliano; Thaler, Jesse; Waalewijn, Wouter J.

    2013-08-01

    In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a “calorimetric” measurement using both charged and neutral particles and a “track-based” measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe, and therefore calculable in perturbative QCD, track-based measurements necessarily depend on nonperturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape “track thrust” and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are nonperturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a partial cancellation between nonperturbative parameters, the distributions for calorimeter thrust and track thrust are remarkably similar, a feature also seen in LEP data.

  6. The thrust belts of Western North America

    SciTech Connect

    Moulton, F.C.

    1993-08-01

    Most of the Basin and Range physiographic province of western North America is now believed to be part of the overthrust. The more obvious overthrust belt along the eastern edge of the Basin and Range Province is named the Sevier orogenic belt, where older rocks are observed thrust onto younger rocks. More detailed surface geological mapping, plus deep multiple-fold geophysical work and many oil and gas wildcat wells, have confirmed an east-vergent shortened and stacked sequence is present in many places in the Basin and Range. This western compressive deformed area in east central Nevada is now named the Elko orogenic belt by the U.S. Geological Survey. This older compressed Elko orogenic belt started forming approximately 250 m.y. ago when the North American plate started to move west as the Pangaea supercontinent started to fragment. The North American plate moved west under the sediments of the Miogeocline that were also moving west. Surface-formed highlands and oceanic island arcs on the west edge of the North American plate restricted the westward movement of the sediments in the Miogeocline, causing east-vergent ramp thrusts to form above the westward-moving North American plate. The flat, eastward-up-cutting thrust assemblages moved on the detachment surfaces.

  7. Thrust and power measurements of Olympic swimmers

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Wu, Vicki; Hutchison, Sean; Mark, Russell

    2012-11-01

    Elite level swimming is an extremely precise and even choreographed activity. Swimmers not only know the exact number of strokes necessary to take them across the pool, they also plan to be a precise distance from the wall at the end of their last stroke. Too far away and they lose time by drifting into the wall. Too close and their competitor may slide in before their hand comes forward to touch the wall. In this context, it is important to know, in detail, where and how a swimmer propels her/himself through the water. Over the past decade, state-of-the-art flow and thrust measurement diagnostics have been brought to competitive swimming. But the ability to correlate stroke mechanics to thrust production without somehow constraining the swimmer has here-to-fore not been possible. Using high speed video, a simple approach to mapping the swimmer's speed, thrust and net power output in a time resolved manner has been developed. This methodology has been applied to Megan Jendrick, gold medalist in the 100 individual breast stroke and 4 × 100 medley relay events in 2000 and Ariana Kukors, 2009 world champion and continuing world record holder in the 200 individual medley. Implications for training future elite swimmers will be discussed.

  8. MHD thrust vectoring of a rocket engine

    NASA Astrophysics Data System (ADS)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  9. Nozzle Thrust Optimization While Reducing Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Gilinsky, M. M.

    1995-01-01

    A Bluebell nozzle design concept is proposed for jet noise reduction with minimal thrust loss or even thrust augmentation. A Bluebell nozzle has a sinusoidal lip line edge (chevrons) and a sinusoidal cross section shape with linear amplitude increasing downstream in the divergent nozzle part (corrugations). The experimental tests of several Bluebell nozzle designs have shown nose reduction relative to a convergent-divergent round nozzle with design exhaust number M(e) = 1.5. The best design provides an acoustic benefit near 4dB with about 1 percent thrust augmentation. For subsonic flow ((M(e)= 0.6)), the tests indicated that the present method for design of Bluebell nozzles gives less acoustic benefit and in most cases jet noise increased. The proposed designs incorporate analytical theory and 2D and 3D numerical simulations. Full Navier-Stokes and Euler solvers were utilized. Boundary layer effects were used. Several different designs were accounted for in the Euler applications.

  10. Evolutionary Computing for Low-thrust Navigation

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Fink, Wolfgang; vonAllmed, Paul; Petropoulos, Anastassios E.; Russell, Ryan P.; Terrile, Richard J.

    2005-01-01

    The development of new mission concepts requires efficient methodologies to analyze, design and simulate the concepts before implementation. New mission concepts are increasingly considering the use of ion thrusters for fuel-efficient navigation in deep space. This paper presents parallel, evolutionary computing methods to design trajectories of spacecraft propelled by ion thrusters and to assess the trade-off between delivered payload mass and required flight time. The developed methods utilize a distributed computing environment in order to speed up computation, and use evolutionary algorithms to find globally Pareto-optimal solutions. The methods are coupled with two main traditional trajectory design approaches, which are called direct and indirect. In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. In the indirect approach, a thrust control problem is transformed into a costate control problem, and the initial values of the costate vector are optimized. The developed methods are applied to two problems: 1) an orbit transfer around the Earth and 2) a transfer between two distance retrograde orbits around Europa, the closest to Jupiter of the icy Galilean moons. The optimal solutions found with the present methods are comparable to other state-of-the-art trajectory optimizers and to analytical approximations for optimal transfers, while the required computational time is several orders of magnitude shorter than other optimizers thanks to an intelligent design of control vector discretization, advanced algorithmic parameterization, and parallel computing.

  11. Performance Characteristics of Cylindrical Target-type Thrust Reversers

    NASA Technical Reports Server (NTRS)

    Steffen, Fred W; Mcardle, Jack G

    1956-01-01

    From tests on cylindrical target-type thrust reversers, it was found that the reverser frontal area, lip angle, end-plate angle, and end-plate depth had important effects on reverse-thrust performance. Frontal area, reverser depth, lip angle, and end-plate angele had important effects on the spacing required for unrestricted nozzle flow. For reverse-thrust ratios greater than 64 percent, the reversed flow attached to the 7 degree cowl in quiescent air. Swept-type cylindrical reversers were generally unstable. The thrust-modulation characteristics of a cylindrical target-type thrust reverser were found to be satisfactory.

  12. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  13. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  14. Earthquake rupture in shallow portion of subduction zone: An ancient record from the Ishido thrust (out-of-sequence thrust) in Boso Peninsula, central Japa

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Chiyonobu, S.; Ujiie, K.; Hamada, Y.; Kamiya, N.; Saito, S.; Yamada, Y.

    2015-12-01

    Although earthquake ruptures in shallow portion of plate boundary have recently been identified (e.g. Tohoku, Nankai, etc.), their mechanisms why the shallow portion of plate boundary composed mainly of clay minerals can accumulate strain and make seismic slip are under controversial. In this presentation, we show an ancient record of earthquake rupture in shallow portion of subduction zone, characterized by frictional melting of smectite. Two young and non-metamorphosed accretionary complexes developed in the Miura and Boso peninsulas, central Japan: 1) the Early to Middle Miocene and 2) the Late Miocene to Early Pliocene accretionary complex. Based on the vitrinite reflectance, the maximum burial depth were estimated as 2-3 km (65-90˚C) and less than 1 km (about 20 ˚C), respectively. The former complex thrust up above the latter one, leading to formation of the Ishido thrust. The difference of maximum paleotemperature and low angle of the thrust dipping (<30˚) implies the total net slip should be over a few km. The fault core is composed of black-colored thin (<1 mm) pseudotachylite and fault gouge. Under SEM-BSE observation, the pseudotachylite is characterized by homogeneous glassy matrix including fragments of quartz/feldspar, submicron-sized Fe-rich spherules, and vesicles. Based on the mineralogy of the host rock, spot analyses and elemental mapping, origin of the pseudotachylite was apparently frictional melting of smectite containing Fe. Fe-rich spherules formed by rapid cooling of pseudotachylite. On the other hand, occurrences of the fault gouge: no grain-preferred orientations, folding with pseudotachylite, intrusion into pseudotachylite and vice versa, suggest that the gouge corresponds to the fluidized zone associated with high-speed shear. This fluidized zone contains large number of pseudotachylite fragments, and some pseudotachylite cut the fluidized zone, indicative of plural earthquake ruptures occurred along this thrust.

  15. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.

    PubMed

    Deng, Meng; James, Roshan; Laurencin, Cato T; Kumbar, Sangamesh G

    2012-03-01

    Successful regeneration necessitates the development of three-dimensional (3-D) tissue-inducing scaffolds that mimic the hierarchical architecture of native tissue extracellular matrix (ECM). Cells in nature recognize and interact with the surface topography they are exposed to via ECM proteins. The interaction of cells with nanotopographical features such as pores, ridges, groves, fibers, nodes, and their combinations has proven to be an important signaling modality in controlling cellular processes. Integrating nanotopographical cues is especially important in engineering complex tissues that have multiple cell types and require precisely defined cell-cell and cell-matrix interactions on the nanoscale. Thus, in a regenerative engineering approach, nanoscale materials/scaffolds play a paramount role in controlling cell fate and the consequent regenerative capacity. Advances in nanotechnology have generated a new toolbox for the fabrication of tissue-specific nanostructured scaffolds. For example, biodegradable polymers such as polyesters, polyphosphazenes, polymer blends and composites can be electrospun into ECM-mimicking matrices composed of nanofibers, which provide high surface area for cell attachment, growth, and differentiation. This review provides the fundamental guidelines for the design and development of nanostructured scaffolds for the regeneration of various tissue types in human upper and lower extremities such as skin, ligament, tendon, and bone. Examples focusing on the collective work of our laboratory in those areas are discussed to demonstrate the regenerative efficacy of this approach. Furthermore, preliminary strategies and significant challenges to integrate these individual tissues into one complex organ through regenerative engineering-based integrated graft systems are also discussed.

  16. Regenerative Liquid Propellant Gun Igniter Concepts

    DTIC Science & Technology

    1987-10-01

    AL 35898-5500 Ft Enox , KY 40121 Commander 1 Commiander US Army Belvoir R&D Ctr US Army Development and ATTNt STRBE-WC Eployment Agency Tech Library...REGENERATIVE LIQUID PROPELLANT GUN IGNITER CONCEPTS JOHN D. KNAPTON AVI BIRK JAIMES DESPIRITO CRIS WATSON DTIC E-1FCTE OCTOBER- 1987 SMAR 1 41988D...5 I. INTRODUCTION 1 . BACKGROUND, ........ . . . . . . . . . . . . . . . . . . . 2 . P R O PELL AN T * 6

  17. Low temperature thermally regenerative electrochemical system

    DOEpatents

    Loutfy, Raouf O.; Brown, Alan P.; Yao, Neng-Ping

    1983-01-01

    A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  18. Low-temperature thermally regenerative electrochemical system

    DOEpatents

    Loutfy, R.O.; Brown, A.P.; Yao, N.P.

    1982-04-21

    A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  19. Regenerative medicine. The industry comes of age.

    PubMed

    Mason, C

    2007-01-01

    The regenerative medicine industry has moved into a new era in which commercialisation and not research is the number one priority. To achieve its new goal, much has had to change, including the introduction of expert business management, simpler but superior products and scalability of manufacture. Mass public and political support is supplying both long-term resources and the market demand to finally create a sustainable new health-care sector.

  20. A solar regenerative thermoelectrochemical converter (RTEC)

    SciTech Connect

    Townsend, C.W.; McHardy, J. )

    1992-02-01

    This is an executive summary of a final subcontract report that describes the successful completion of a closed-loop demonstration of a regenerative thermoelectromechanical device using solar heat input for the production of electricity. The full report, which contains a detailed description of the two-year effort, is currently subject to a government secrecy order which precludes public release of the information. Copies of the full report will be made available for general release whenever the secrecy order is lifted.

  1. Optimization of an irreversible Stirling regenerative cycle

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; Cano-Bianco, M.; León-Galicia, A.; Rivera-Camacho, J. M.

    2015-01-01

    In this work a Stirling regenerative cycle with some irreversibilities is analyzed. The analyzed irreversibilities are located at the heat exchangers. They receive a finite amount of heat and heat leakage occurs between both reservoirs. Using this model, power and the efficiency at maximum power are obtained. Some optimal design parameters for the exchanger heat areas and thermal conductances are presented. The relation between the power, efficiency and the results obtained are shown graphically.

  2. Common ethical issues in regenerative medicine.

    PubMed

    Awaya, Tsuyoshi

    2005-01-01

    One of the common ethical issues in regenerative medicine is progress in 'componentation' (= being treated as parts) of the human body, and the enhancement of the view of such "human body parts." 'Componentation' of the human body represents a preliminary step toward commodification of the human body. The process of commodification of the human body follows the steps of 'materialization' (= being treated as a material object) [first step] -- 'componentation' [second step] -- 'resourcialization' (= being treated as resources) [third step] -- commodification [fourth step]. Transplantation medicine and artificial organ developments have dramatically exposed the potential of organs and tissues as parts, and regenerative medicine has a role in advancing 'componentation' of the human body and further enhancing the view of human body parts. The 'componentation' of the human body, regardless of the degree of regenerative medicine's contribution to it, is considered as a challenge to the traditional view of human bodies and the abstract value of "Human Dignity" in the same way or alongside the 'resourcialization' and commodification. However, in the future, a new perspective of human bodies that means "a perspective whereby human bodies, organs, tissues, and even the bodies themselves are perceived as disposable tools like disposable cameras, syringes, or contact lens" and therefore a new ethical view, suitable for a new reality, may emerge.

  3. Mesenchymal stem cells in regenerative rehabilitation.

    PubMed

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future.

  4. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine

    PubMed Central

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given. PMID:27379231

  5. Allogenicity & immunogenicity in regenerative stem cell therapy

    PubMed Central

    Charron, Dominique

    2013-01-01

    The development of regenerative medicine relies in part on the capacity of stem cells to differentiate into specialized cell types and reconstitute tissues and organs. The origin of the stem cells matters. While autologous cells were initially the preferred ones the need for “off the shelf” cells is becoming prevalent. These cells will be immediately available and they originate from young non diseased individuals. However their allogenicity can be viewed as a limitation to their use. Recent works including our own show that allogenicity of stem cell can be viewed as on one hand detrimental leading to their elimination and on the other hand beneficial through a paracrine effect that can induce a local tissue regenerative effect from endogenous stem cells. Also their immune modulatory capacity can be harnessed to favor regeneration. Therefore the immune phenotype of stem cells is an important criteria to be considered before their clinical use. Immuno monitoring of the consequences of their in vivo injection needs to be taken into account. Transplantation immunology knowledge will be instrumental to enable the development of safe personalized regenerative stem cell therapy. PMID:24434327

  6. Allogenicity & immunogenicity in regenerative stem cell therapy.

    PubMed

    Charron, Dominique

    2013-11-01

    The development of regenerative medicine relies in part on the capacity of stem cells to differentiate into specialized cell types and reconstitute tissues and organs. The origin of the stem cells matters. While autologous cells were initially the preferred ones the need for "off the shelf" cells is becoming prevalent. These cells will be immediately available and they originate from young non diseased individuals. However their allogenicity can be viewed as a limitation to their use. Recent works including our own show that allogenicity of stem cell can be viewed as on one hand detrimental leading to their elimination and on the other hand beneficial through a paracrine effect that can induce a local tissue regenerative effect from endogenous stem cells. Also their immune modulatory capacity can be harnessed to favor regeneration. Therefore the immune phenotype of stem cells is an important criteria to be considered before their clinical use. Immuno monitoring of the consequences of their in vivo injection needs to be taken into account. Transplantation immunology knowledge will be instrumental to enable the development of safe personalized regenerative stem cell therapy.

  7. An animal model to study regenerative endodontics.

    PubMed

    Torabinejad, Mahmoud; Corr, Robert; Buhrley, Matthew; Wright, Kenneth; Shabahang, Shahrokh

    2011-02-01

    A growing body of evidence is demonstrating the possibility for regeneration of tissues within the pulp space and continued root development in teeth with necrotic pulps and open apices. There are areas of research related to regenerative endodontics that need to be investigated in an animal model. The purpose of this study was to investigate ferret cuspid teeth as a model to investigate factors involved in regenerative endodontics. Six young male ferrets between the ages of 36-133 days were used in this investigation. Each animal was anesthetized and perfused with 10% buffered formalin. Block sections including the mandibular and maxillary cuspid teeth and their surrounding periapical tissues were obtained, radiographed, decalcified, sectioned, and stained with hematoxylin-eosin to determine various stages of apical closure in these teeth. The permanent mandibular and maxillary cuspid teeth with open apices erupted approximately 50 days after birth. Initial signs of closure of the apical foramen in these teeth were observed between 90-110 days. Complete apical closure was observed in the cuspid teeth when the animals were 133 days old. Based on the experiment, ferret cuspid teeth can be used to investigate various factors involved in regenerative endodontics that cannot be tested in human subjects. The most appropriate time to conduct the experiments would be when the ferrets are between the ages of 50 and 90 days. Copyright © 2011. Published by Elsevier Inc.

  8. Regenerative implantable medical devices: an overview.

    PubMed

    Yu, Shu-Yang; Li, Fu-Yao; Wang, Hong-Man

    2016-06-01

    To conduct a bibliometric evaluation and trend prediction of English literature on animal-derived regenerative implantable medical devices based on tissue engineering technology. Data identified by a search strategy with eleven combinations of keywords before 1 January, 2014 were downloaded from eight databases on 25 November, 2014. The study analysed publication year, journal preference, authors' geographic location and research topics. Research on animal-derived regenerative implantable medical devices is gradually increasing. The majority of the first authors are from colleges or universities. Approximately one-third of the papers were the result of cooperation of different institutions. The top five productive countries are the United States, China, UK, Germany and Italy. Biomaterials are the main literature source. Bradford's law analysis shows that a core journal area has formed. The active areas of research and future research directions are 'scaffold materials', 'biocompatibility', 'growth factors' and 'extracellular matrix'. Research of animal-derived regenerative implantable medical devices has attracted more and more attention from the academia. But most of the research achievements are generated by a few developed countries. Researchers around the world need to complement each other in knowledge and academic resources by communication and cooperation. © 2016 Health Libraries Group.

  9. Regenerative magnetorheological dampers for vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zou, Li; Liao, Wei-Hsin

    2015-04-01

    Magnetorheological (MR) dampers are promising for vehicle suspensions, by virtue of their adaptive properties. During the everyday use of vehicles, a lot of energy is wasted due to the energy dissipation by dampers under the road irregularities. On the other hand, extra batteries are required for the current MR damper systems. To reduce the energy waste and get rid of the dependence on extra batteries, in this paper, regenerative MR dampers are proposed for vehicle suspensions, which integrate energy harvesting and controllable damping functions. The wasted vibration energy can be converted into electrical energy and power the MR damper coil. A regenerative MR damper for vehicle suspensions is developed. Damping force and power generation characteristics of the regenerative MR damper were modeled and analyzed. Then the damper is applied to a 2 DOF suspension system for system simulation under various road conditions. Simulation results show that riding comfort can be significantly improved, while harvesting energy for other use in addition to supply power for the controlled MR damper.

  10. Mesenchymal stem cells in regenerative rehabilitation

    PubMed Central

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  11. Regenerative endodontics--Creating new horizons.

    PubMed

    Dhillon, Harnoor; Kaushik, Mamta; Sharma, Roshni

    2016-05-01

    Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics. © 2015 Wiley Periodicals, Inc.

  12. Initiation process of a thrust fault revealed by analog experiments

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Dotare, Tatsuya; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-04-01

    We conducted 2D (cross-sectional) analog experiments with dry sand using a high resolution digital image correlation (DIC) technique to reveal initiation process of a thrust fault in detail, and identified a number of "weak shear bands" and minor uplift prior to the thrust initiation. The observations suggest that the process can be divided into three stages. Stage 1: characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will be generated later. Before initiation of the fault, the area to be the hanging wall starts to uplift. Stage 2: defined by the generation of the new thrust and its active displacement. The location of the new thrust seems to be constrained by its associated back-thrust, produced at the foot of the surface slope (by the previous thrust). The activity of the previous thrust turns to zero once the new thrust is generated, but the timing of these two events is not the same. Stage 3: characterized by a constant displacement along the (new) thrust. Similar minor shear bands can be seen in the toe area of the Nankai accretionary prism, SW Japan and we can correlate the along-strike variations in seismic profiles to the model results that show the characteristic features in each thrust development stage.

  13. Three-dimensional geometry and kinematics of experimental piggyback thrusting

    NASA Astrophysics Data System (ADS)

    Mulugeta, Genene; Koyi, Hemin

    1987-11-01

    The three-dimensional geometry and kinematics of piggyback stacks of imbricate thrust sheets are illustrated and discussed using a single model shortened in a squeeze box. Strike-parallel geometric elements simulated include lateral ramps, eyed sheath folds, splays, and thrust/thrust interference. Fine details of these structures were exposed by eroding a shortened wedge of sand using a newly developed vacuum-eroding technique. A kinematic analysis of the model shows a stepwise increase in imbricate thrust spacing and/or a decrease in rate of nucleation of imbricate thrusts in the direction of thrust transport. Despite the steady forward advance of a rear wall, the piggyback wedge accreted episodically, recording different strain domains in longitudinal cross sections. Strain partitioning in single layers by bed-length balancing showed an increase in layer shortening with volume loss and a corresponding decrease in imbricate thrusting and ramp folding with depth.

  14. Conjunction challenges of low-thrust geosynchronous debris removal maneuvers

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.; Schaub, Hanspeter

    2016-06-01

    The conjunction challenges of low-thrust engines for continuous thrust re-orbiting of geosynchronous (GEO) objects to super-synchronous disposal orbits are investigated, with applications to end-of-life mitigation and active debris removal (ADR) technologies. In particular, the low maneuverability of low-thrust systems renders collision avoidance a challenging task. This study investigates the number of conjunction events a low-thrust system could encounter with the current GEO debris population during a typical re-orbit to 300 km above the GEO ring. Sensitivities to thrust level and initial longitude and inclination are evaluated, and the impact of delaying the start time for a re-orbiting maneuver is assessed. Results demonstrate that the mean number of conjunctions increases hyperbolically as thrust level decreases, but timing the start of the maneuver appropriately can reduce the average conjunction rate when lower thrust levels are applied.

  15. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    NASA Astrophysics Data System (ADS)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  16. Ouachita Mountain thrust front: An integrated approach to prospect analysis in thrust belts

    SciTech Connect

    Dodge, R.L. ); Keeling, M.A. ); Cassiani, D. )

    1990-05-01

    The thrust front of the Ouachita Mountains in western Arkansas is defined by the prominent asymmetric Washburn anticline. Previously interpreted as a complexly thrust-faulted anticline, the feature has been reinterpreted as a delta or triangle structure based on integration of surface mapping from thematic mapper (TM) data with subsurface interpretation of seismic and well-log cross sections. The northern limb of the Washburn anticline consists of a relatively unfaulted steeply north-dipping sheet above a major north-dipping backthrust. The southern limb consists of several steeply south-dipping thrust sheets that form a duplex zone in the center of the delta structure. Seismic and well-log interpretations suggested the presence of the imbrication in the core of the structure, but poor seismic resolution within the structure made interpretation of the backthrust and duplex geometry difficult. Surface mapping from TM imagery indicates the presence of the backthrust and the extent and geometry of the delta structure. Thrust sheets and horses also crop out, and their geometry is a guide to interpretation of subsurface data sets. The new model of the Ouachita thrust front as a delta structure has aided in subsurface data analysis and has resulted in a better understanding of trap geometry and distribution. This study also demonstrates the application of detailed surface mapping from satellite remote-sensing data to prospect-scale analysis.

  17. Study of the effects of fuel vortex film cooling on high temperature coating durability

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A report on the effects of fuel vortex film cooling on high temperature coating durability is presented. The program evaluated candidate high temperature oxidation resistant reaction control system engine thrust chamber material. As a result of the evaluation, the current and future programs may be optimized from the materials standpoint. Engine firing data for the evaluation of one material system is generated. The subjects considered are: (1) screening of materials, (2) thrust chamber fabrication, (3) engine testing, and (4) analysis of the data.

  18. Development of a simplified procedure for thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Porowski, J. S.; Badlani, M.; Kasrale, B.; Odonnell, W. J.; Peterson, D.

    1981-01-01

    An analytical design procedure for predicting thrust chamber life considering cyclically induced thinning and bulging of the hot gas wall is developed. The hot gas wall, composed of ligaments connecting adjacent cooling channel ribs and separating the coolant flow from the combustion gas, is subjected to pressure loading and severe thermal cycling. Thermal transients during start up and shut down cause plastic straining through the ligaments. The primary bending stress superimposed on the alternate in-plane cyclic straining causes incremental bulging of the ligaments during each firing cycle. This basic mechanism of plastic ratcheting is analyzed and a method developed for determining ligament deformation and strain. The method uses a yield surface for combined bending and membrane loading to determine the incremental permanent deflection and pregressive thinning near the center of the ligaments which cause the geometry of the ligaments to change as the incremental strains accumulate. Fatigue and tensile instability are affected by these local geometry changes. Both are analyzed and a failure criterion developed.

  19. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  20. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.